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ABSTRACT 

A STUDY OF HUMAN OPERATOR  PERFORMANCE USING 

REGRESSION  ANALYSIS 

August  Llewellyn  Burgett 

The  purpose of this  research  is  twofold:  the  development of a 

parameter  identification  technique  which  can  be  used  with  intervals of 

data  which a r e  on the   o rder  of 20-seconds  and  shorter in length  and 

secondly,  the  use of this  technique in a study of var ious  aspects  of 

human  operator  performance in low order  compensatory  control  tasks.  

A s  developed  here,  the  parameter  identification  technique is a 

modification of the  c lass ical   s ta t is t ical   regression  analysis ,   modif ied 

in the  sense  that  integrals of continuous  functions of t ime  are   used  to  

obtain  the  desired  parameter  estimates  instead of sums of d i scre te  

data   samples .  In addition  to  the  integral  formulation, a technique  pro- 

posed by A .  I.   Rubin  is  used  to  implicitly  invert  the  correlation  ma- 

trix  which is part  of any  regression  analysis  formulation.  This  makes 

the  entire  technique  amenable  to  implementation on an  analog  computer. 

In the  present   research  the  parameters   being  es t imated  appear   as  

elements of a dynamical  system.  The  estimates of the  system  para-  

meter  values  are  obtained by first   constructing a model of the  system 

for which  the  parameter  values  are  known.  The  system  parameter 

estimates  are  then  obtained by combining  the known model   parameter  

values  with  estimates,  obtained  with  the  regression  analysis  technique, 

of the  difference  between  the  corresponding  model  and  system  para- 

m e t e r s  . 

The  Fegression  analysis  technique is used  to  analyze  the  per- 

formance of human  operators in low order  compensatory  manual  con- 

t rol   systems.   This   s tudy  is   based on  two  experiments in which  the 

subjects  controlled  single  and  double  integrator  dynamical  systems 

with  an input  which  was  low  frequency  noise. In modeling  the  human 
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operator   system  the  "crossover   model"   proposed by D. T.  McRuer 

is used.  This  model  expresses  the  entire  forward-loop of the  compen- 

satory  control   system as a s e r i e s  of operators :  a gain K, a t ime-  

delay T and a single  integration.  The  study  takes  the  form of obtain- 

ing  estimates of the  parameters  K and T for  twenty-five  20-second  in- 

tervals  for  each  day of tes t ing.   From  an  analysis  of these  parameter  

values,  infcrcnccs  are  made  about  the  performancc of the  human  op- 

e r a t o r s .  

A novel  approach  which is taken in the  analysis of the  parameter 

values is to  divide  the  variance of both K and T, based  on  20-second 

data  intervals,  into a within-subject  component  and a between-subject 

component for- each  day of testing. On the  basis  of the  components of 

var iance  for  K and T the  following  characteristics of the  human  op- 

e r a t o r  when  controlling low order   t lynamical   systems  are   inferred.  

( 1) The human  operator  adopts a more  consistent  "signal  pro- 

cessing  path" as  he  learns  the  tracking  task.  

( 2 )  The   subjec ts   a re   more   un i form in control  strategy  for  the 

double  integrator  system  than  for  the  single  integrator  sys- 

t e m .  

( 3 )  The  variance of T is a more  sensit ive  indicator of learning 

than is the  average  value of e i ther  K o r  T .  

(4 )  There  appears  to be  an  inherent  variability in the  human 

operator  gain o n  which  training  has  little  effect. 
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C H A P T E R  1 

1NTR.ODUCTION 

During  the last twenty-five  years  there  has  been a large  amount 

of research  directed  toward  describing  various  aspects of human  oper- 

ator  tracking  behavior.   There  are  two  rather  dist inct   though  not  unre- 

lated  motivations  for  this  research.  The  psychologist  or  physiologist 

is interested in human  tracking  behavior  as  one  part of the  overall  

study of human  perceptual-motor  performance.  The  control  engineer 

is  interested  in  human  tracking  behavior  because  there  are  many  situ- 

ations  today  where  the  human  operator  is  an  integral  part of a complex 

system.  One  current  example  is  a manned  spacecraft,  which  cannot 

be  designed  without  knowledge of the  capabilities of the  different  com- 

ponents of this  machine.  

1.1  ComDensatorv  Tracking  Tests 

One  method  that  is  used  extensively  for  studying  human  operator 

behavior  is  the  compensatory  tracking  test.  The  basic  block  diagram 

fo r  a compensatory  tracking  test is shown  in  Fig. 1 , l -  1. As can  be 

seen  from  this  f igure,   the  compensatory  tracking  test   has  several   as- 

pects  which  are  similar  to  manual  control  tasks  such  as  driving  an 

automobile o r  flying  an  airplane. 

The  primary  objective of the  human  operator  (subject) in  a com- 

pensatory  tracking  test   is   to  perform in such a manner  that   the  system 

output 0(t) follows  the  system  input +(t) as   c losely  as   possible .  In  a 

great   many  cases   the input is  in the  form of a continuously  varying 

random-appearing  signal.  To  realize  physcially  this  control  situation, 

a signal  that  is  proportional  to  the  instantaneous  difference  between 

system input  and  output,  €(t),  is  presented  to  the  subject.  The  subject, 

in many  mechanizations of such tests today ,   s ees   t he   e r ro r   a s   t he   d i s -  

placement of a line or  dot from  the  center of an  oscil loscope  screen. 
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Figure 1. 1-1 Block Diagram of Compensatory Control System 



Thus  the  objective of the  subject  can  be  restated in t e r m s  of t he   e r ro r  

signal.  The  objective of the  subject is to perform in such a manner  as 

to  keep  the  indication of the   sys tem  e r ror  as near   the   cen ter  of the 

oscil loscope  screen as possible.  To  accomplish  this  the  subject is 

provided  with a control  device.  Commonly  this  device is some  form of 

control  stick  which  the  subject  manipulates  with  his  arm o r  hand, A s  

is   seen in Fig.  1 .  1-1,  the  manipulation of the  control  stick  produces a 

signal,  c(  t),  which is used  as  the  forcing  function o r  input signal  for  the 

controlled  element. A more  complete   descr ipt ion of the  actual  test  

situation  analyzed i.n this  report  is given in Section 5. 1 .  

1 . 2  -. Human  Operator  Modeling 

One  method of analyzing  compensatory  tracking  test  data is to 

attempt  to  match  the  human  operator  behavior  with a mathematical  

model .   There   a re  two basic  approaches  to  developing a model  to  use 

in the  analysis of test   data.  One method  involves  qualitative o r  psycho- 

logical  models.  The  second  method  uses  quantitative o r  engineering 

models .  

Psychological  models  are  characterized by  an  attempt  to  model 

the  f ine  or   micro-s t ructure  of the  human  operator. In the  qualitative 

approach  algorithms  are  proposed for individual  elements  such  as 

muscles,  joints,  neural  pathways and other  components of the  neuro- 

muscular   system [30]”‘. Other  aspects of psychological  models  are  the 

inclusion of the  human  capacity to remember  and  predict  [24]  and  also 

the  inclusion of the  capability  for  adapting  to  changing  situations [ 9 ,  

301. Although  this  type of model wil l  in theory  account  for  many  as- 

pects of the  human  operator  behavior,  they  are  difficult  to  apply  due 

to  the  sometimes  non-quantitative  description  that  the  models  give. 

In the  models  which  do  give a quantitative  description  there is inevi- 

tably a large  number of undetermined  parameters.   Determining  these 

parameter   values   is  a difficult  job. 

“Bracketed  numbers  are  references  given  at   the end of the   repor t .  

J. 
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On  the  other  hand,  engineering  models  are  based on  an  attempt to 

descr ibe  the macroscopic  performance of the  human  operator.  In this 

regard  ,little  effort  is  directed  toward  associating  the  various  compo- 

nents of the  model  with  corresponding  physiological  elements of the 

human  operator.   The  particular  models  that   have  been  proposed  are 

a lmost  as many in number as the  number of investigators [8, 3 51. Of 

the  many  quantitative  models  that  have  been  proposed,  one of the  most 

popular  today  is  the  random input describing  function  model [16]. 

In summary ,   there   a re  two basic  approaches  that  can  be  taken  to 

extend  the  knowledge of human  operator  performance. One  approach 

would  be to begin  with a psychological  model  and  attempt  to  manipulate 

the  various  model  components in such a way that a given  piece of com- 

pensatory  test   data  is   matched.  The  results of such a method  are  often 

less   than  sat isfactory  due in large  part   to  the  difficult ies of psychologi- 

cal  models  mentioned  previously.  The  second  approach  that  can  be  taken 

is to  start  with  an  engineering  model  such as a describing  function  model 

and  determine as much as possible  about  the  “black  box“  which is being 

modeled,  This  approach  does not  give  explicit  information  about  the 

physiology of the  human  operator but  it  does  provide a means fo r  mak-  

ing  inferences  about  the  human  operator.  For  the  reasons  just  men- 

t ioned,  the  research  reported  here  uti l izes  an  engineering  model 

which is based  on a random  input  describing-function  model. 

1 . 3  Random  Input  Describing  Function 
” ”___ 

The  random  input  describing  function  is  an  extension of the   more  

common  sinusoidal  describing  function  for  nonlinear  systems [39] . 

The  main  difference in the  description of a system  character ized 

by the two types of describing  function is the  input.  The  sinusoidal 

describing  function  is  applicable  to a system  which  has 

a periodic  input  and a periodic  response.  The  random 
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input  describing  function, as the  name  implies,  is  applied  to a system 

which  has a random  signal as the  input. A common  type of random  in- 

put is descr ibed in Chapter  5.  Both  types of describing  function are  

strictly  defined  only  for  t ime-invariant  nonlinear  systems. For this 

type of system,  the  random  input  describing  function  represents  the 

"best", in the  mean  square  error   sense,   l inear   t ransfer   funct ion  for  

the  nonlinear  element  involved [ 161 . 

The  use of a random  input  describing  function  to  describe  the 

human  operator  is   expressed  well  in the  comment  by  Elkind [ 8 ] . "The 

essential   idea of the  describing  function  approach  is  that  the  dynamic 

charac te r i s t ics  of the  human  pilot,  which a re  non-linear,  noisy,  and 

time-varying,  can  be  represented by a l inear   opera tor  Y (p)  (the  de- 

scribing  function)  and a remnant  noise  n(t),  added  to  the  output of 

Yp(p) . ' I  A representation of the  random  input  describing  function 

model of the  human  operator  is  shown in F ig .   1 .3-1 .   For   th i s   type  of 

model,  the  random  input  describing  function is 

P 

where @ ( j w )  is   the   cross-spectral   densi ty  

human  operator  output  signal  and @+E(jw) is 
w 

1 . 3 - 1  

of the  input  signal arid the 

the  cross-spectral   densi ty  

of the  input  signal  and  the  system  error  signal. In pract ice ,  Yp(jw) is  

most  easily  evaluated by  computing  the two cross-spec t ra l   dens i t ies  

from  experimental   data  and  performing  the  division  indicated.  A s  

mentioned  above, Y (p) is strictly  defined  only  for  stationary  systems, 

while in practice  the  definition  given  in  Eq.  1.3-1  is  applied  formally 

even when there   is   s t rong  evidence  that   the   remnant   term  is   due in p a r t  

to  t ime-variations of the  human  operator.  

P 

A s  is seen   f rom Eq. 1.3-1, Y (jw) is  a complex  function of fre- 
P 

quency.  Thus to be  completely  specified,  the  gain  and  phase o r  r e a l  

and  imaginary  parts of  Y ( jw )  must   be  specif ied  for  all f requencies .  P 
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F igure  1 . 3  - 1 Block  Diagram for Describing  Function of Human  Operator 
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In practice,  however, it is   more  convenient  to  assume an a pr ior i   mathe-  

mat ical   form  for  Y (jw)  which  approximately  fits  the  experimentally-de- 

termined  frequency  function  given by Eq. 1 . 3 - 1 .  In such a procedure 

the  coefficients  that  are  part of the  assumed Y,(jw) are  undetermined 

and must  be  estimated  to  give  the  complete  form  for  each  individual  case 

tested.  Of the  many  mathematical   forms  that   have  been  proposed [27, 

28, 35,  371 one  that is useful  and  currently  popular  is   the  "crossover 

model"  proposed by McRuer,  et  al.  [28].  It  was found by these  authors 

that a consistent  expression  could  be  obtained if the  human  operator  de- 

scribing  function  was  combined with the  transfer  function  for  the  con- 

trolled  element.   Thus  the  crossover  model is expressed  as  follows: 

P 

1 . 3 - 2  

The  crossover  model  has  been  shown  to  fit  experimental  data  quite 

P well  for  such  controlled  elements  as Y (p)  = 1 /p ,  1 / p 2  and 1 /(p - 2) [22,  

281. In addition  to  fitting  the  experimental  data  well,  the  crossover 

model is character ized by only  two parameters,  the  gain, K, and  the 

time-delay, T. For these  reasons  the  crossover   model  is very  useful 

when automatic  parameter  identification  techniques  are  utilized. 

1 . 4  Remnant 

The  remnant,  n(t), as used in this  report,  represents  the  portion 

of the  human  operator's  output,  c(t),  which is not l inearly  correlated 

with  the  system  input,  +(t).  Under  the  assumption  that  the  remnant 

has   zero  s ta t is t ical   mean,   the  fact   that   the   remnant   and input a r e  un- 

correlated  is   expressed by the  cross-spectral   densi ty  of the input  and 

the  remnant  being  equal  to  zero, i .  e . ,  

@ ( jw)  = 0 1 .'4- 1 

This  formulation of the  remnant is actually a computational  artifact 

s ince  there  is strong  evidence  that  the  remnant is composed of t e r m s  

9" 
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due  to   such  human  operator   character is t ics  as nonlinearity  and time- 

variation as well as a certain  amount of additive  noise  [27]. 

Several   s tudies  of the  time-varying  and  nonlinear  aspects of the 

human  operator  have  been  performed [ 3 ] .  These  studies  can  be  in- 

terpreted as efforts  to  account  for  some of the  remnant  signal  which is 

par t  of the  describing  function  characterization.  Ra-ther  than  present 

an  extensive  review of these  studies,  a short   d iscussion of a few per t i -  

nent  studies  is  given  here. 

Two  approaches  that  have  been  takep. in studies of human  operator 

t ime-variat ion  are   discussed  here .  One  approach  that  has  been  taken 

is  to  represent  the  human  operator by a time-varying  weighting  func- 

t ion.   Estimates a$e then'  obtained  for  this  time-varying  weighting  func- 
. .  

tion.  Elkind [7] has  applied a regression  analysis  technique  to  this 

problem  and  obtained a piece-wise  constant  representation of the 

weighting  function.  Wierwille  and Gagne/  [41] have  generalized  this 

approach  to a method  which  gives a continuously  varying  estimate of 

the  time-varying  weighting  function.  Both of these  methods  give a good 

qualitative  representation of the  human  operator  time-variation. How- 

ever,  a time-varying  weighting  function is not an  easily  interpretable 

description of t ime-variation. 

Another  description  which is a res t r ic ted   case  of the  t ime-vary-  

ing  weighting  function  is  to  represent  the  human  operator by a t ime-  

varying  differential  equation.  This  is  equivalent  to an a pr ior i   speci-  

fication of the  form of the  weighting  function.  This  approach  has  been 

taken by McDonnell  [29].  The  particular  method  used  by  McDonnell 

was  to  assume  that  the  human  operator  could  be  represented by a 

modified  crossover  model  which  had a time-varying  gain in place of 

the  constant  gain  given  by Eq. 1.3-2.  McDonnell 's  results [29] suggest 

that  this  is a reasonable  representation of the  human  operator.  Having 

est imates  of t ime-varying  parameters  of the  human  operator  provides 

a more  interpretable  representation  than  does a time-varying  weighting 
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function. 

One  approach  to  the  study of nonlinearities of the  human  opera- 

tor has  been  proposed by Weirwille  and Gagn; [42]. This  method  is a 

further  extension of the method  discussed in the preceding  paragraph. 

The  method  makes  use of predetermined  nonlinearities  which are 

operated in parallel   with  the  human  operator  closed-loop  system. This 

wr i te r   fee l s  that the  method is inappropriate for analyzing  human op- 

erator  nonlinearit ies,   due  to  the  fact   that   any  human  operator  non- 

l inear i t ies   appear  in the  forward-loop of the  closed-loop  system. 

Thus  any  nonlinearity  which  matched  the  closed-loop  response  would 

be  very  difficult   to  interpret  in t e r m s  of a forward-loop  nonlinearity. 

A proposed  method  for  circumventing  this  problem  is  disc'ussed in 

Chapter 6 ,  
'. 

A less  general   approach  to  analyzing  human  operator  nonlinearity 

has  been  taken by Smith [34 ]  and  Young  and  Meiry [40]. The  resul ts  

presented in both  papers  indicate  that for certain  tasks  the  human  op- 

erator   ut i l izes  a saturating or bang-bang  type of response.  Although 

this  effect  is  not  readily  apparent in all control   s i tuat ions,   these  re-  

sults  give a basis   for   assuming  that  a portion of the  human  operator 

remnant  is  due  to  some  type of nonlinearity. 

1 .  5 Description of the  Research . - - - " " - - ." "_ " 

In the  research  reported  here   cer ta in   aspects  of human  operator 

performance in compensatory  tracking  tests  are  analyzed. In the  two 

compensatory  tracking  experiments  analyzed  the  subject was  presented 

with a random  input.  The  distinguishing  feature of the  experiments 

was  the  controlled  element,  one  having Y (p) = 5/p  and  the  other  having C 
Yc(p) = 5 / p 2 .  In the  analysis of the  data,  values of gain  and  time- 

delay of the  crossover   model  are obtained  for  20-second  intervals 

using a computational  technique  based  on  regression  analysis. A m a j o r  

analysis  technique  employed in this  work  is  to  obtain  estimates of the 

within-subject  and  the  between-subject  variance of both  the  gain  and 
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the  t ime-delay of the  human  operator  for  each  day of testing.  The  esti- 

ma tes  of the  variance  components  are  then  used  to  make  inferences 

about  such  characterist ics of the  human  operator as sources  of remnant, 

uniformity of human  operators  for  the  controlled  elements  used  and  the 

effect of training on human  operator  signal  processing. 

The  contents of this  report   are  divided  as  follows.  The  applica- 

tion of regression  analysis  to  system  identification is developed in 

Chapter 2 .  Chapter 3 discusses  the  use of regression  analysis  in de- 

termining  es t imates  of gain  and  time-delay  for  the  crossover  model. 

Various  sources of e r r o r  in the  regression  analysis  technique  are 

analyzed in Chapter 4 with  particular  emphasis  on  application  to  the 

crossover   model .   Chapter  5 deals with  the  analysis  and  results of the 

compensatory  tracking  task  experiments  that  were  conducted.  Chapter 

6 is  the  concluding  chapter in which a review of resul ts  is presented 

along  with  suggested  areas of additional  research.  Several  appendices 

a r e  included  which  present  details of computer  implementation as well 

as theoretical  and  experimental  details. 
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C H A P T E R  2 

PARAMETER.  ESTIMATION 
BASED ON LINEAR R.EGRESSION ANALYSIS 

2. 1 Simple  Linear  Regression  Analysis 

Consider  two  random  variables, X. and X 1 ,  which  have a continu- 

ous  joint  density  function, p( x. , x1 ) . For the  analysis  that  will  be  dis - 

cussed  here  i t   is   convenient  to  consider X1 as an  independent variable 

and X. as a dependent  variable.  The  conditional  density  function  for 

X. is   then  expressed  by 

2 . 1 - 1  

where  p(xl)   is   the  marginal  density  function  for x, [4].  Since  the  con- 

ditional  density  function  for X. is  dependent on the  value of x,, all  con- 

ditional  moments of X o ,  and in par t icular   the  f i rs t   moment  or mean of 

Xo,  will  be  dependent  on  the  value of X1 . Thus  the  expression  for   the 

conditional  mean of X o ,  Eo, is  

X0 = G o  pix0 /xl)dxo 2 . 1 - 2  
-00 

The  relation  between To and  the  value of X, can  be  written as 

where  f(x, ) represents   the  regression of X. on X, . 

Regression  analysis  is   used  here  to  obtain a "best   estimate",  in 

the  least   square  sense [2], of the  function  f(xl)   from  samples of experi-  

mental   data.   With  no  restrictions on the  form of f(x1)  this  is a problem 

in the  calculus of variations.   Rather  than  treating  the  general   problem 

we  will  consider  here  only  linear  functions,  f(xl) = p1 + pz(xl - X1). 
If the form of f (x l )   i s   res t r ic ted   to   th i s  class of functions,  Eq. 2 .1  - 3  
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can  be  writ ten as:  

x0 = P1 + Pt(x1 - x1) 
- 

2.1-4 

With  this  restriction  the  problem of finding a "best  estimate"  is re- 

duced  to a problem of ordinary  calculus. In this  situation it is  only 

necessary  to  obtain  estimates  for  the  parameters PI and p2 in Eq. 

2.1-4. When f (x l )   i s   res t r ic ted   as  in Eq. 2.1-4  to   the  c lass  of l inear 

functions,  this is known a s  a problem in l inear  regression  analysis.  

In  applying  regression  analysis  to  obtain  estimates of the  para-  

m e t e r s ,  N observations of the  variables X. and X1 are   made  f rom  ex-  

perimental   data.  For  each  observation,  an  estimate of X o ,  yo,  is  ob- 

tained  from  the  expression: 

Yo = bl + b2(Xl - x1s) 
- 2.1-5 

where  bl   is   an  estimate of p1 and  b2  is  an  estimate of p 2 .  xlS is the 

sample  mean of XI  which is defined  by: 

- 

2.1-6 

The  best   es t imates ,  in the  mean  square  sense,  of the  parameters  

and p2 a r e  obtained  by  minimizing a cost  function, J .  This  cost  func- 

tion is a measu re  of the  errors  between  the  observed  values of x. and 

the  estimated  values  from Eq. 2.1-5.  The  cost  function, J, is 

2.1-7 

To obtain  the  best  estimate of the  parameters ,   the   gradient  of J is se t  

equal  to  zero.  This  yields  the  equations; 

2.1-8 
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Rearranging  Eqs.  2 1-8  and 2 1-9  gives: 

2.1-10 

Note  from  the  definition of the  sample  mean  given in Eq.  2.1-6  that: 

I N  
2.1-12 

Combining Eqs 2.1-1 0 through  2.1-1 2 yields  the  best   estimates of p1 

and p2 which are  denoted  respectively by ble  and  bZe. 

2.1-1 3 

2.1-14 

By adopting  definitions of sample   mean  s imi la r  to that  given in Eq.  

2.1-6,  Eqs.  2.1-13  and  2.1-1 4 can  be  written in t e r m s  of the  various 

sample   means   as :  
- 

'le = xos 2.1-1 5 

2.1-16 

It  can  be  shown [ 2 ] that  the  best  estimates,  ble  and b,,, as de- 

fined by Eqs . 2.1-15 and 2.1-16 are   unbiased  es t imates  of PI and Pt . 
Also it can be shown [13] that if X. and XI a r e  jointly  gaussian  random 

13 



variables,  then  the  estimates  defined by Eqs. 2.1-15  and 2.1-16 a r e  

maximum  likelihood  estimates of p1 and pz . 

2 . 2  An E x a m d e  

A s  an  application of the  theory  presented in Section  2.1  consider 

the  system  given in Fig.  2 . 2 - 1 .  This  is  a simple  l inear  system  which 

has  a random  signal, X1 (t) ,   as  input.   The  observable  system  response,  

Xo(t) ,   i s  a combination of the  actual  system  response  and an additive 

noise  signal  r( t) .   The  additive  noise  term  could be due  to  many  sources,  

just  one of which  is  measurement  uncertainties.  From  Fig.  2.2-1 it 

can  be  seen  that  Xo(t)  and  XI  (t)  are  related  by: 

A s  a simplifying  assumption,  let  both  Xl(t)  and  r(t)  have  zero  mean 

Figure 2 . 2 - 1  A Linear  Regression  Analysis  Example 

The  switch  symbols  shown in Fig.   2.2-1  represent  sampling  de- 

vices.  Thus,  instead of using  the  entire  t ime  histories of Xo(t)  and 

XI  ( t ) ,   samples  of these  functions  are  used i.n the  calculations.  Although 

it i s  not cri t ical   to  the  discussion of this  section  let u s  assume  that   the 

samples  are  taken  periodically in t ime.  The  sample  period,  as  shown 

in Fig.  2 .  2-1 i s  At seconds.  For  consistency  with  Section  2.1,  define 

the  sampled  values of X. (t)  by  the  following  notation : 

x. ( i  At) = xoi 2 . 2 - 2  
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A similar  notation  is   used  for  sampled  values of X, (t) and r(t) . Since 

the  means of both  XI (t) and r(t) have  been  assumed  to  be  zero,  let u s  

fur ther   assume  that   the   number of samples  taken, N ,  is  large  enough 

that  the  sample  means of  X. andX1  are   essent ia l ly   zero,  i .  e . ,  

. N  

- l N  
XIS  = - Xli z 0 N 

i=1 

2 .2-3  

2.2-4 

From  Fig.  2.2-1  it   might  be  expected  that  the  conditional  mean 

of X. would be a l inear  functicn of values of XI . Thus in this  situation 

restricting  the  function  f(xl) of Eq. 2.1-3  to  the  class of l inear  func- 

tions  is a valid  step.  With  this  restriction  the  assumed  form  for  the 

conditional  mean of X. i s :  
- 
x0 = PXl  2 . 2 - 5  

The  cost  function  defined by Eq. 2 . 1 - 7  is   then: 

2 .2-6  

where b is   the  estimate of p. Since  the  cost  function, J ,  is a function 

of only  one  parameter in this  case,   the  partial   derivatives of Eqs. 

2.1-8  and  2.1-9  are  replaced by  the  total  derivative  giving: 

l N  dJ = - (x0i - bxli)( - xli) = 0 db N i=1 
2 . 2 - 7  

R.earranging Eq. 2 . 2 - 7  gives  the  expression  for  the  best  estimate of p.  

2:2-8 

From  Fig.  2 .2-1 it  is  seen  that  the  value of xoi can  be  expressed  as  

the sum of two  components. 
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xoi = pxli + ri 2 . 2 - 9  

Substituting  the  expression from Eq.  2 . 2 - 9  into  Eq. 2. 2-8 yields  the 

expression for the  best   es t imate  of the  system  parameter  p. 

2.2-1 0 

Note  that if Xl(t)   and  r(t)   are  uncorrelated  then b is  an  unbiased  esti- 

mate  of the  system  parameter  P.  A more  complete   discussion of the 

effect of additive  noise is given in Chapter 4 .  

e 

2.3 Intepral  Formulation of Repression  Analvsis 

A s  will  be  seen in Section 2. 5 it i s  often  convenient  to  apply  ana- 

log  computer  techniques  to  the  solution of regression  analysis   problems.  

T o  facilitate  the  application of analog  techniques,  consider  integral 

representations  for  the  summations  given in Section 2.2. The Euler  

approximation  [18]  for  the  integral  of a general   variable  y(t)  is: 
cp 

N J. 

1 
N .  yi  M - T l y ( t )  dt 

1 = 1  0 

2.3-1 

where,  

T = NAt;   yi  = y(iAt) 

Thus the  cost  function, J, given by Eq. 2.2-6 can  be  considered  as  the 

Euler  approximation of a corresponding  integral  cost  function, . 
r r  JI 

The  gradient of J is I 

0 

and  the  value of b that  minimizes J is given by I 
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2.3-3 

Comparing  the  terms  in  Eqs.  2.2-10  and  2.3-3,  it   is  seen  that  the 

t e r m s  in Eq.  2.2-10  represent  the  Euler  approximations of the cor- 

responding  terms in Eq. 2.3-3.   I t   is   seen  then  that   the  integral   formu- 

lation  gives  results  which  are  comparable  with  the  results  using  the 

classical  summation  type of cost  function.  Thus  for  the  type of prob- 

lem in which  analog  computer  methods  may  be  used,  the  formulation 

using  integrals  can  directly  replace  the  formulation  using  summations.  

2. 4 Multiple " ~ Linear  Regression  Analysis 

Consider  the  extension of the  concepts  discussed in Sections 1, 

2 and 3 of this   chapter   to   the  case  where  there  is one  dependent  variable, 

Xo ,  and L independent  variables,  X1, Xa,  . . . , XL. In this  case  the  con- 

ditional  density  function  for X. is expressed by 

2.4-1 

where  p(x1,  x2, . . . , x ) is the  marginal  joint  density  function  for L 
XI ,  x2, . . . , XL.  The  conditional  mean of Xo, To, is  then a function of 

the  values of X1 ,   X2 ,  . . . , X and  can  be  expressed  by L 

A s  wassdone  in  Section  2.1  let  us  consider  here  only  the  linear 

regression  analysis   problem.  Then  for   this   res t r ic ted  problem  Eq.  

2 .4-2  is   wri t ten as: 

2 .4-3  

17 
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To simplify  the  following  analysis,  let u s  introduce  the  following 

matrix  notation.  Let x and p be L dimensional  column  vectors  which 

have  e lements   xl ,   x2,  . . . , xL  and pl, pz. . . . , p, respectively.  Then 

Eq. 2.4-3  can  be  rewrit ten in vector  notation as 

- - 

x o = p x _  
- #  2 . 4 - 4  

where  the  superscr ipt  # indicates  matrix o r  vector   t ranspose [l].  

The  application of regression  analysis   discussed  here   makes  use 

of the  integral  formulation  presented in Section  2.  3.  Therefore,  the 

cost  function, J, that is to  be  minimized is expres sed   a s  a time  inte- 

g ra l  of data  for  the  interval 0 5 t 5 T .  

T 
J = - l ( x o  - b xfd t  

1 # 
2T " 

0 

2 .4 -5  

The  subscr ipt  I as   used in Eq. 2.3-2  to  indicate  an  integral  formula- 

tion of the  performance index J will   be  omitted  for  the  remainder of the 

repor t   s ince  only  integral  forrnulations  are  used. In Eq. 2 .4 -  5 the 

vector b represents  an est imate  of the  vector p. The  best   es t imate  of 

- p for this  interval of data is obtained by setting  the  gradient of J equal 
- - 

to   zero.  
T 

"- aJ - a {&- 1 (xo - b # xfdt} = 0 
ab ab 
I 

" 

- 
0 

2.4-6 

Performing  the  partial  differentiation  indicated in Eq. 2.4-6  yields 

where 
T 

R = L 1 x x d t  T -- # 

2.4-7 

2 .4-8  

2.4-9 

18 



Under  the  assumption  that  the  inverse of R exists,   the  expression  for 

the  best   es t imate ,  he, is 

b = R  v -e 
- 1  

2.4-1 0 - 

The  value of b obtained  from  Eq.  2.4-1 0 is   the  best   estimate,   in  the 

mean  square   sense ,  of the  vector of regression  coefficients,  p, based 

on  the T seconds of data  used.  The  effect of additive  noise,  such as 

was  i l lustrated  in  Section  2.3,   and  other  factors  are  discussed in 

Chapter  4. 

-e 
- 

2. 5 Implicit  Matrix  Inversion 
" 

In Sect ion  2 .4  it is  seen  that  an L X L matr ix ,  R, must  be  in- 

verted  to  obtain  the  parameter  estimate.  If an  analog  computer  is 

being  used  to  perform  the  necessary  operations,   matrix  inversion  is  

a difficult  and  equipment-consuming  process.  Similarly, if a digital 

computer  is  used  to  solve Ec, . 2 . 4 - 7 ,  matr ix   inversion on the  digital 

computer  can  be a t ime  consuming  process.  In problems  such  as   the 

one  illustrated in Section 2 .  2 it is convenient  to  use  an  analog  computer, 

which  implies  using  an  integral  formulation  as  suggested in Section 

2 .  3.  However,  the  integral  formulation  presents  the  problem of solv- 

ing  Eq.  2.4-7 on the  analog  computer. 

Rubin  [31, 321  has  suggested a means  for  el iminating  the  neces- 

si ty  for  matrix  inversion when an  analog  computer  is  used  to  solve 

Eq. 2.4-7.   The  operat ion  expressed by Eq.  2.4-10  can  be  thought of 

a s  one  method of adjusting  the  value of b - subsequent  to  the  interval 

( 0 ,  T) . This is theoretically an instantaneous  adjustment of the  value 

of b .  - In actual  practice,   however,   using  either.an  analog or digital 

computer,  the  inversion of the   mat r ix  R requi res  a smal l  but  nonzero 

amount of t ime.  The  method  proposed by  Rubin  also  requires a smal l  

amount of time  to  adjust  the  value of b but  in  this  case  the  matrix R is 

not  explicitly  inverted.  Instead of the  algebraic  adjustment  procedure 

suggested by Eq.  2.4-10,  the  adjustment of the  value of b - is  controlled 

.- 
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by a differential  equation. The appropriate  differential  equation  is ob- 

tained  by  equating  the  time  derivative b', - and  the  negative  gradient of J 

2 .  5-1 

where k is   an  arbitrary  posit ive  constant.   The  prime  notation, ( . ) I ,  is  

used  to  denote  differentiation  with  respect  to  time,  but  with  time re-  

stricted  to  values  subsequent  to  the  interval (0, T) . Rearranging Eq. 

2 .  5-1 yields  the  differential  equation  which  regulates  the  adjustment of 

b - 
bf + k R b  = k v  2 .  5-2 - - - 

Consider  now some  proper t ies  of the   mat r ix   R .  If it   is  assumed 

that 
I- 

T f (x . ) ' d t  1 # O i = 1, 2, . . . ,  L 
0 

which  will  be  the  case in any  practical  situation,  then  it  can  be  shown 

as follows  that R is a nonnegative  definite  matrix.  The  expression for 

A, the  diagonal  matrix of eigenvalues of R ,  is 

A = P - l R P  2 .  5-3 

where P is   the   matr ix  of eigenvectors of R .  Since R is r ea l  and sym- 

met r ic ,  P is  an  orthogonal  matrix  and 

Now: 

A necessary  and  sufficient  condition  that R be  nonnegative 

definite  is  that all the  eigenvalues of R be  nonnegative [ 13. 

To show  that all eigenvalues of R a r e  nonnegative,  consider  the form 

of A .  
I- 

2 . 5 - 5  
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and since P is  a constant  matrix,  

T 

A = 1 P'xx' P d t  T 
0 

- 

Now define 

then 

z(t) = P x(t) # 
- 

z z dt 
0 
" 

Equating  the  diagonal  terms of both  sides of Eq .  2 .  5-7 yields 

T 
1 '  

A i  T = - (zi)Zdt 2 0 i = l , 2 ,  . . . ,  L 
0 

2.  5-6 

2 .  5-7 

2 .5 -8  

Therefore  all eigenvalues  are  nonnegative  and R is a nonnegative  defi- 

ni te   matr ix .  

In many  si tuations,   especially  for  the  matrix R used in the  data 

analysis of Chapter 5, the  eigenvalues  will   be  str ictly  posit ive.   For 

th i s   case   l e t  u s  denote  the  smallest  eigenvalue of the   mat r ix  R by A 

Since Eq. 2 .  5 -2  represents  a linear  differential  equation  with a constant 

input, the  response  will   be  within  1% of the  steady-state  solution in 

approximately  f ive  t imes  the  longest  t ime-constant,   i .   e . ,  

m in 

bf - 0 2.5-9 - 

for 

where t is measured  from the  end of the  interval (0 ,  T) . 
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As bf + 0 i t   i s   seen from Eq. 2.5-2  that :  - 

k R b  + k v  - - 
o r  

b - b  = R .  v 
-1  

- -e - 

2.5-10 

2.5-11 

Thus by using  the  differential  equation  approach  to  adjusting  the  value 

of b, - the  awkward  step of matrix  inversion  using  the  analog  computer 

can  be  circumvented. 

By  combining  the  integral  formulation  presented in  Section 2 .  3 

and  the  implicit  matrix  inversion  discussed in this  section,  i t   is   seen 

that  the  regression  analysis  problem  is   amenable  to  solution  using  an 

analog  computer.  

2 .6   Parameter   Ident i f icat ion in Linear  Dvnamic  Svstems 

In this  section we  will treat   the  problem of parameter  identifica- 

tion in l inear   dynamic  systems.   The  system  is   represented by ei ther  

the  weighting  function  h(t, - c) or   the  corresponding  t ransfer   operator  

H(p, 5) [23], as shown in Fig.   2 .6-1,   where - c is  an L dimensional  para- 

meter   vector .   The  system  under   s tudy  has   parameter   value c = c" and 

output   eo( t ) .  In addition  it  is  necessary  to  construct a model of this 

system  which  has  parameter  value c = c and  output uo(t) .   Regression 

analysis  is  used  to  obtain  an  estimate of the  difference  between ?' and c 

" 

A 
" 

A 
- - 

which  is  then  combined  with c to  obtain  the  estimate of c". 
A 
- - 

Figure   2 .6-  1 Linear  System  Representation 

Before  discussing  the  parameter  identification  problem, let u s  
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consider some  aspects  of the  system  response.   The  response of the 

system and model   for  a given  input  can  be  expressed by convolution 

o r  in operator  notation, 

The two time  histories  can  be  symbolized  as in F ig .  2 . 6 - 2 .  

Figure 2 . 6  - 2  Symbolization of System  Response 

2 . 6 - 1  

2 . 6 - 2  

2 . 6 - 3  

2 . 6 - 4  

In a region of the  parameter  space  where  the  system  represented 

by H(p, - r )  is  stable,  typical  weighting  functions for ” c = ? can  be  ex- 

panded in a Taylor  series  about c = c , A 
” 
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# 

where 

A c = ? - $  
" - 

Using  this  expansion of h(t, - c") ,  the  corresponding  response is 

where  the  e lements  of the  vector  u(t ,  e)  a re  convolutions 
" 

00 

and  where  the  elements of the  matr ix  V( t,  c )  a r e  convolutions A 
- 

+( p)dp i = 1, 2, . . . , L 
-aJ - j = 1, 2, . . . , L  

2 , 6 - 5  

2.6-6 

2.6-7 

2.6-8 

2.6-9 

If,in a sufficiently small region  about  eo(t)  defined  by 

le&) - uo(t)) 5 6, 6 > 0, the  nonlinear  terms of Eq. 2.  6-7 a re  negli- 

gible,  then  the  linear  approximation 

is  valid 

where 

eo ( t )  z uo(t)  + ( t ,  $ ) A C  # 
- " 

In  the  region  specified by 6 ,  the   IAc .  
1 

2.6-10 

I must   sat isfy 

00 

1 , 2 ,  . . . ,  L 2.6-11 

i = 1 , 2 ,  . . . ,  L 2.6-1 2 
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and 

2.6-13 

F r o m  Eq. 2.6-1 4 i t   is   seen  that  when Eq. 2.6-1 1 is satisfied, eo( t )  
can  be  approximated  by  the  system  shown in F ig .   2 .6-3 .  

A 

1 -  
The  functions  u.(t,  c)   are   the  parameter   inf luence  coeff ic ients  

[ 3 8 ]  for  the  system  which  represents  the  sensit ivity of the   sys tem 

response  to   small   changes in the  system  parameters .   Other   authors  

[22, 381 have  obtained  the  parameter  influence  coefficients  for a s y s -  

tem by differentiating  the  differential  equation of the  system  with 

respec t   to   the   parameters  in question. 

In the  analysis  above it is shown  that  the  system  response  for 

one  set of parameter   va lues ,  c = c,  can  be  obtained  approximately 

by  combining  the  model  response f o r  a second  set of pa rame te r  

values, c = c ,  

cients.   Consider now the  reverse   problem of determining  the  value 

of - 7 when the  value of 2 and  the  time  functions  e0(t), uo( t)  and 

u(t, c )   a r e  all known.  One  method of obtaining  an  estimate of the 

value of - 7 is  to  apply  the  regression  analysis  technique  discussed in 

Sections 2 . 4  and  2. 5 .  To  be a valid  calculation,  the  value of ? m u s t  

be  such  that   Expression  2.6-11 is satisfied.  

N 

- - 

A 
- - and  the  corresponding  parameter  influence  coeffi- 

- 
A 
" 

- 

Before  discussing  the  application of regress ion   ana lys i s   to   the  

problem of es t imat ing - c", le t  u s  define  the  variable  el (t) as: 
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System  being  studied 

r 
Approximate  system 

""""""" 1 

L """"""" _I 

Figure  2 . 6  - 3  Generation of Approximation  to  System  Response 
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From Eq. 2.6-1 0, this  can  be  rewritten as: 

e l ( t )  M u ( t ,   c )Ac  # A  2.6-16 
" 

Rather  than  consider  identification  based on e,  (t) let us consider a 

system  output e(t) which  is  the sum of e,(t) and the  effects of such 

factors as additive  noise.  Due  to  the  randomness of e(t) it i s   more  

appropriate  to  consider  the  conditional  mean of e(t) for  a given  input, 

where 

e(t) = e(t) - uo(t)   2.6-17 

and  the  conditional  mean is: 

- 
e(t) M u (t,  $ )A,  # 2.6-1 8 - " 

Using  this  expression  for  E(t)  it is desired  to  obtain  estimates of the 

parameter   vector  Ac which  can  be  combined  with  the known value of 

c to  obtain  an  estimate of c".  To  obtain  an  estimate of Ac a cost  func- 

t ion  similar  to  that  of Eq.   2 .4-5 is defined  as 

- 
A 
- - - 

T 

J = [e(t) - u ( t ,   c )b I2d t  # A  

2T 2.6-19 
0 

- - _  

where b is an  estimate of Ac and  data is available f o r  the  interval - 
( 0 ,  T) . A s  in Section 

sense,  is  obtained by 

T 

- 

2.4, the  best  estimate of Ac, in the  mean square 

setting  the  gradient of J equal  to  zero, i. e . ,  
- 

2 . 6 - 2 0  

Rearranging Eq. 2.6-20  gives  the  best  estimate of Ac - to  be:  

where 
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T 

2.6-22 
0 

T 

v ( c )  = e( t )u( t ,   c )d t  
A A 

T 2.6-23 
" 

0 

" 

Under  the  assumption  that  the  inverse of R(c)  exists,   the  method 

of Section 2 -5  may  be  used  to  implicit ly  perform  the  matrix  inversion. 

Having  the  best  estimate of Ac - defined by Eq. 2 .  6-21, a n  est imate  of 

A 
- 

c" can  be  obtained  from : - 
- A  c = c + b  
- e  - - e  

2 .6-24 

2 . 7  Iterative  Considerations 

In most  practical   si tuations,   the  value of c" is not  known  well - 
enough  to  guarantee  that Eq. 2 .  6-1 1 will be  satisfied  initially. In such 

situations  an  iterative  identification  technique is necessary  to  obtain 

good est imates  of c". One  technique,  based on the  method of Section 

2 . 6 ,  is to  initially  guess  at  the  value of c" and se t  c equal  to  this  guess. 

Then  apply  the  method of Section 2 . 6  to  obtain  an  estimate, c" . The 

data  then  can  be  rerun  with a new  value of c equal  to  the  last  value of 

- 
A 

- - 

- e  
A 
- 

.. 
c , i . e . ,  - e  

2.7-1 

o r  
A 
c .  = c . + b  . 
- If1 - 1  - e l  

A 2 . 7 - 2  

This  method is known as  the  "Gauss-Newton"  iteration  technique  [13]. 

Unfortunately  this  method is not  guaranteed  to  be  convergent  for  arbi- 
t rar i ly   large  values  of Ac. - However,  the  method is known to  be  quad- 
ratically  convergent in some  small  neighborhood of - ? [13]. 

To  apply  this  iterative  technique  to  the  data  from a given  interval, 

( 0 ,  T), the  time  histories of $(t)  and  Oo(t)  must  be  recorded o r  s tored in 

some  manner  for use  during  each  iteration.  One  method for accom- 

plishing  this is to record  the  t ime  histories of +(t) and eo( t )  on magnetic 

tape  which  then  can  be  replayed  for  each  iteration. An objection  to  this 
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approach is the  fact   that   each  i teration  requires T seconds of actual 

t ime.  If many  iterations are required  this  can  be a time  consuming 

process.  However,  due  to  equipment  limitations,  this  is  often  the 

method  that  must  be  used. A s  is discussed in Chapter 5, this   is   the  

method of iteration  that was  used  in  analysing  the  experimental  data 

from  the  human  operator  tests.  

If a hybrid  computer is available,  the  iteration  process  can  be 

accomplished  with a great  reduction in t ime.  A block  diagram  for im- 

plementing  the  i terative  regression  analysis  method on a hybrid  com- 

puter is given in F i g .   2 . 7  -1.  In this  implementation,  the  first  estimate 

of ? is   obtained  from  an  on-line  computation  ofR(c)  and  v(c).  A l l  sub- 

sequent  computations of R ( c )  and  v(c)  are  obtained  from a "fast-time" 

solution of E q s .  2 . 6 - 2 2  and  2.6-23.  This  "fast-time' '   computation is 

made  possible by being  able  to  reproduce  $(t)  and  e,(t)  from  the  digital 

s torage  a t  a much  fas ter   ra te   than  the  sampling  ra te  of the  analog  to 

digital   converter.   Analog  to  digital   conversion  rates of 1 O 5  samples  

per  second of a single  variable  are  possible  with  available  equipment 

[36].  It  has  been  found [ 22 ]  that  conversion  rates  as  low as 20 samples  

per   second  are   adequate   for   s ignals  of the  type  considered in Chapter 

5 .  Using a "fast-time"  scale  which is 1 O3 t imes  real-t ime  and  an  in- 

terval  length of the  order of twenty  seconds it is  possible  to  obtain  ten 

iterations in less  than  one  second of actual   t ime.   Thus  the  t ime  re-  

quired  for  data  reduction in the  analysis of Chapter 5 could  be  reduced 

considerably  with  the  use of a hybrid  computer. 

A A 
- - " 

A A 
- " 
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W 
0 

4. 
-I- 

*R(;, ) and - v(cl 

(Real-time) 

4. 
-I- 

*R(;, ) and - v(cl 

(Real-time) 

Implicitly 

invert ~ ( 2  . I  

to obtain 
1 

b . and 7 -e l   -e i  

I I  
I 

Set 
N - = c  
-e i 

I (Fast- t ime)  I 

I I  These  circuits would 
J 5 

Analog  to  Digital  to 

-m Digital  Digital * Analog 1 
W Storage * 

Converter 
Converter 

be  physically  the 
same,  but with dif- 
ferent   t ime  scales .  

6 
6, = 

L'maxB 

Figure 2 . 7  - 1 Hybrid  Computer  Parameter  Identification  Block  Diagram 



C H A P T E R  3 

APPLICATION OF R.EGRESSION ANALYSIS 
TO  THE CROSSOVER  MODEL 

3.1  The  Model 

A s  discussed in Chapter  1, the  f irst   choice in determining a 

model of the  human  operator  is  between a psychological  model  and  an 

engineering  model.  Once  this  decision  has  been  made  it  is  necessary 

to  choose  the  actual  model  to be used  based on the  par t icular   aspects  

of the  experiment  that  is  to be per formed.  For  the  type of study  pro- 

posed  here ,   i .   e . ,   inference of gross   charac te r i s t ics  of the  human  op- 

e ra tor ,  it was  decided  to u s e  an  engineering  model  for  analysis of the 

experimental  data. 

Of the  many  engineering  models  that  have  been  proposed,  the 

crossover  model  proposed by McRuer ,   e t   a l .  [ 2 8 ]  has  advantages 

which a r e  not shared  by other   models .   The  t ransfer   operator   which 

character izes   the  crossover   model  is given in Eq.  1 . 3 - 2  and is r e -  

peated  here.  

3 . 1 - 1  

The  fundamental  strong  point of the  crossover   model  is the good fit  to 

experimental  data in the  frequency  domain  for  controlled  elements  such 

as  Yc(p) = l / p  and  Yc(p) = l /pz .   The  f i t   i s   especial ly  good in the 

frequency  range  where  the  open-loop  system,  including  the  human 

operator,  has  unity  gain.  Although  other  models  such as the  extended 

crossover   model  [ 2 8 ]  fit  the  experimental  frequencydata  better for the  en- 

t ire  frequency  spectrum,  McRuer,   et   al .  [ 2 8 ]  point  out  that  the  cross'over 

model is "adequate  to  describe  key  trends in the  crossover  region.' '   Coupled 

with  the good match  to  frequency  domain  data  is  the  important  point  that 

the  model  includes  only  two  parameters,  open-loop  gain  and  time-delay. 

Thus in any parameter  identification  technique,  the  necessary 
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computational  equipment  is'  minimized. In addition,  Jackson [223 has 

shown ". . . that   the   crossover   model   output   is   most   sensi t ive  to   para-  

meter changes in the  same  ( f requency)   region  i t   most   accurately  de-  

scr ibes   human  response.  " 

Due to  difficulties in implementing a pure  t ime-delay,  especially 

when  the  length of delay  is  not known a priori,  an  approximation of 

pure  t ime-delay  is   used.  The  form  used  is  a f i r s t   o r d e r  Pade'approxi- 

mation [ 393. Using  this  approximation  the  transfer  operator  for a pure 

time-delay of T seconds  can  be  approximated as 

e - TP N 
N 

2 
" 

-r P 
" 

2 
" t P  
T 

3 .1 -2  

The  frequency  domain  phase  shift  characteristics f o r  both a pure   t ime-  

delay  and  the  Pade'approximation  are  shown in F ig .  3 .  1- 1 .  From  this 

f igure it is seen  that  the  Pade/approximation  has a phase  shift  which 

agrees  quite  well  with  the  phase  shift of the  pure  time-delay  for  low  val- 

ues of frequency. Also note  that  both  the  pure  time-delay  and  the ap -  

proximation  have  unity  gain  for all frequencies.   Since  the  dominant  fre- 

quencies  present in the  experimental   data  are of the   o rder  of 2 r a d / s e c  

and T is   the   order  of 0 .  2 5  sec,  it is  felt  that  the  Pade'approximation 

used  is  sufficiently good for  analyzing  the  experimental  data (TU = 0 .  5 ) .  

With this  approximation  the  actual  model  used is a modified 

crossover  model,   modified in the  sense  that   the  pure  t ime-delay  is  

represented  by the  Padgapproximation.   Thus  the  model   used  to   ana-  

lyze  experimental  data  has a t ransfer   opera tor ,  

A s  is   d iscussed in Chapter 5, the  data  for  each  experimental  

t r i a l  is divided  into  successive  intervals.   Estimates of the  two  model 

parameters ,  K and T, are  then  obtained  for  each  interval.  The 
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Figure 3 .1-1  Comparison of Phase  Characteristics of Pure  Time-Delay 
and Firs t   Order  Pade’ Approximation 
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remainder  of this  chapter is devoted  to  developing  the  circuits, and 

various  aspects of these  circuits,  which are used in the  analysis of the 

experimental  data.  Block  diagrams for  the  circuits  are  presented in 

this  chapter  while  the  corresponding  analog  computer  circuit  diagrams 

are   p resented  in Appendix A .  

3 .  2 Comparison of Equation  Error  and  Response Error  Techniques 
- ~ ” _  

Two  approaches  that  are  commonly  taken in parameter  identifica- 

t ion  problems  are   the  equat ion  error   approach  and  the  response  error  

approach [ 2 0 ] .  The  two  methods  are  compared  here  and  reasons  for  the 

use of the  response  error  technique in the  present   data   analysis   are   de-  

veloped. 

For   the  purpose of this  discussion,  consider  the  example of a 

closed-loop  system of the  form  shown in Fig.  3 .  2 - 1 .  

Figure 3 . 2 -  1 Closed-Loop  Linear  System  Representation 

For simplicity  let u s  assume  that  the  open-loop  transfer  operator, 

G(p), is given by 

3 . 2 - 1  

Then  the  closed-loop  transfer  operator is: 
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3 . 2 - 2  

Let  the  value of K in the  system  be K = K. Then  the  system  output  can 

be  represented by 

N 

3 . 2 - 3  

e,(t)  = e o  + beo - M 3 . 2 - 4  

where b is an  es t imate  of K .  The  best   estimate of K is then  the  value 

of b which  minimizes  an  appropriate  norm of e, (t) . A block  diagram 

which  would  be  used in the  application of the  equation  error  method is 

given in Fig.  3 .  2 - 2 .  

N N 

When regression  analysis is used  to  obtain  the  parameter  esti- 

mates,   the  norm  or  cost   function  used is the  integral   squared  error .  

Thus  the  cost  function, J 1 ,  for  the  equation  error  method is 

. .  

J1 = 2 T  I [ e l ( t ) 1 2 d t  3 . 2 - 5  
0 

, 
N 

The bes.t estimate of K, in the  mean  square  sense,  is obtained  by  setting 
- aJ1 
ab 

equal  to  zero 

3 = L$Bo - € ) [ e o  + b e 0  - b€]dt = 0 
ab T 

0 

For  this  example,   the  best   estimate,  be, is 

3 . 2 - 6  

3 . 2 - 7  

A distinct  advantage of this  formulation  over  that of Section 2 - 6  
N 

is that  the  estimate of K is obtained  with no requirement  that a 
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1 

F igure  3 . 2 - 2  Block  Diagram  for  Equation E r r o r  
Parameter  Identification 
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corresponding  model  parameter  be  sufficiently  close  to K.  Thus  this  

method  does  not  require  an  iterative  computational  procedure. Varia- 

tions of the  equation e r ror  formulation  have  been  used  to  determine 

such  system  parameters  as  aircraft   dynamic  stabil i ty  derivatives  from 

flight  data [ 32,331, and  servomechanism  l inear   and  nonl inear   terms 

[19,25]. 

N 

In  addition to the  advantage of not requiring  an  i terative  compu- 

ta t ional   procedure  there   are   two  ra ther   ser ious  disadvantages.   The 

first   disadvantage  is   the  fact   that  all s ta te   var iables  must be   measured  

to  obtain  the  parameter  estimate  given by Eq. 3.  2-7.  In  systems of 

high  order,   the  requirement  that  all s ta te   var iables   be  measurable   can 

be   a lmost   imposs ib le   to   meet .  One  method  for  circumventing  this 

problem  has  been  proposed  by  Kohr  [25].  This  method  involves  pass- 

ing a given  signal  through a "state  variable  filter ' '   from  which  not  only 

the  desired  signal  but  also all necessary  der ivat ives  of the  signal  can 

be  obtained,  at   least   approximately.  

A second  disadvantage of the  equation  error  formulation  involves 

the   p resence  of additive  noise  such  as  was  discussed in Section 2 .  2. 

In such  situations  it   has  been  shown [ 7 ] that   the   parameter   es t imates  

are  statist ically  biased  due  to  the  noise.   This  effect   can  be  quite  pro- 

nounced  when large  amounts of no ise   a re   p resent .  In fact,  this  effect 

was  the  main  reason  for  not using  the  equation  error  formulation in 

the  analysis of the  human  operator  data in Chapter 5.  

In  applying  the  response  error  method, a computer  model of the 

process  shown in F ig .  3 .  2-1 must  be  physically  constructed.   The  re- 

sponse of this  model,  which  has  the  same  input as the  system  being a 

analysed,  is  denoted  by  z(t) . The  response   e r ror ,  ez (  t),  is  then  de- 

fined  by: 

A block  diagram  for  use  in  applying  the  response  error  technique  is  
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given  in  Fig. 1 2 .  6 - 3 .  In this  method, as in the  equation  error  method, 

the  best   es t imates  of the  model   parameters  are  obtained by minimizing 

an  appropriate  norm of e z ( t ) .  

In a general   formulat ion of the   response   e r ror   method,   the   var i -  

ables  ui(t)   discussed in  connection  with  Fig. 2 . 6 - 3  do  not  have  to  be 

sensitivity  coefficients. A s  Elkind [ 7 ] has  formulated  the  problem, 

the  functions  u.(tf   correspond  to  outputs  from  fi l ters  which  are  orthog- 

onal  to  each  other. In this  type of formulation  the  parameter  esti-  

mates  are  combined  with  the  individual  filter  weighting  functions  to  ob- 

ta in   an  es t imate  of the unknown system  weighting  function.  Thus in the 

example  given  the  regression  analysis   parameter   es t imates  would  be 

used  to  obtain  an  estimate of the  closed-loop  weighting  function: 

1 

-2Kt 
N 

h(t) = K e  

or the   c losed-loop  t ransfer   operator  

3 .2-8  

3 .  2-9 

Although  this  formulation  does not require  i teration  to  obtain  the 

parameter   es t imates ,   the   method  does  not   give a direct   es t imate  of the 

pa rame te r  K. To obtain  estimates of the unknown sys tem  parameters ,  

the  formulation  discussed in Section 2 . 6  must  be  used.  This  formula- 

tion in general   requires  an  i teration  process  to  obtain  the  best   estimate 

of the   des i red   parameters .  

N 

A major  advantage of either  formulation of t he   r e sponse   e r ro r  

technique  is   the   fact   that   the   parameter   es t imates   obtained  are   s ta t is-  

tically  unbiased in the  presence of additive  noise.  This  is  an  important 

charac te r i s t ic  in situations  such  as  human  operator  analysis  where 

large  amounts of equivalent  additive  noise  are  present.  

In this   research  the  choice  between  using  the  equat ion  error   ap-  

proach or one of the   response   e r ror   formula t ions   was   based  on  two 
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factors. One factor  was  the  desire  to  obtain  estimates of the  actual 

system  parameters   ra ther   than  an  es t imate  of the  system  t ransfer  

opera tor  or weighting  function.  The  second  factor was  the  desire   to  

have  statistically  unbiased  estimates of the  parameters  in the  presence 

of additive  noise.  The  only  formulation  that  satisfies  both  factors  is 

the  method  described in Section 2 . 6  Unfortunately,  this  is  also  the 

only  one of the  three  methods  which  requires  an  i terative  computa- 

t ional  procedure.  

3 . 3  Regression  Analysis  Applied  to  the  Crossover  Model 

In  this  section  the  parameter  influence  coefficient  equations  and 

other  related  expressions  discussed in Sections 2 .  5 and 2 . 6  will be  de- 

veloped  for  the  approximate  crossover  model.  The  expression of Eq. 

3 .  1-3 is the  open-loop  transfer  function  for  this  model.   The  corre- 

sponding  closed-loop  transfer  operator  for  the  model is 

ycyP - K', - PI 
2 

H(p,  K, T) = __-_ - 
l + Y  Y 2 2K 

C P p2 + ( - - K ) p  + -  
3 .3 -1  

T T 

Note  that  the  time-delay  parameter, T ,  appears  in Eq.  3 .  3- 1 as  

the  denominator of an  equivalent  parameter, CY, 

2 
C Y "  3 . 3 - 2  

If the  parameter  influence  coefficient  for T is obtained, T will  always 

appear   as  a denominator  which  requires  many  division  circuits in the 

implementation.  Although  division  circuits  are  completely  valid  and 

practical   to  implement  they  are in general  not as  convenient  to  use as 

are  circuits  which  perform  multiplication. For this  reason,  the  use 

of CY eliminates  the  need  for  division  circuits in the  implementation. 

The  use of cr in analyzing  the  data of Chapter 5 requi res   the   t ransfor -  

mation of each  value of CY that  is  obtained  back  into a corresponding 

value of T. The  equations  for  the  crossover  model  and  the  correspond- 

ing  c losed-loop  t ransfer   operator  in t e r m s  of cr a r e  given  respectively 

T 
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by Eqs. 3 . 3 - 3  and 3 . 3 - 4 .  

3 . 3 - 3  

3 . 3 - 4  

A s  described in Section 2 .  6, the  parameter  influence  coefficients 

are  obtained  by  the u s e  of filters  which  have  transfer  operators  which 
aH aH a r e  - aK and - . The  expressions  for  these  transfer  operators  are 

aLY 

" aH - 2Kp2 
a @  (Q  - K)p +cuK]' 

3 . 3 - 5  

3 . 3 - 6  

Thus  the  expressions  for  ul(t),  the  parameter  influence  coefficient  for 

K, and  uz(t),  the  parameter  influence  coefficient for Q, a r e  

3 . 3 - 7  

3 . 3 - 8  

Having  these  expressions,  the  system  used  to  analyze  the  ex- 

perin;ental  data is shown in F ig .  3 .   3 - 1 .  In F ig .  3 . 3 - 1 ,  the  para- 

meter   values  of the  human  operator  system are  denoted by a tilde (-) 

and  the  parameter  values in the  model  are  denoted  by a care t  ( A ) .  The 

differences  between  the  two  values  are  denoted as 

A K = K  - K  
N h  

3 . 3 - 9  

AQ = Q - a  - A  3 . 3 - 1 0  

The  expressions for the  parameter  influence  coefficients  given 

by Eqs. 3 . 3 - 7  and 3 . 3  - 8  can  be  rearranged  to  give: 
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Figure 3 . 3 - 1  Block Diagram of Crossover Model  Analysis  System 

4 1  
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3 .3 -1  1 

3 .3-12  

A block  diagram for implementing  Eqs.   3.3 -4, 3 . 3  - 11 and 3 . 3  - 12 is 

given  in  Fig. 3 . 3  - 2 .  

A s  a check  on  setting up the  computer  circuits,  a dynamic  check 

was  performed  on  the  computer  circuits.   This  dynamic  check  involves 

comparing  the  computer  response  for a sinusoidal  input  with  the  calcu- 

la ted  response  for   the  same  input .   This   dynamic  check  is   a lso  pre-  

sented in  Appendix A .  

3.4   Es t imat ion  of P a r a m e t e r s  __--__- 

In applying  regression  analysis to the  estimation of c ros sove r  

model   parameters ,   the   cost   funct ion  used  is  

T 

where  bl   is   an  estimate of AK and b, i s  a n  es t imate  of Aa. 

Section  2.4,   the  best   parameter  estimates,  i .  e . ,   va lues  of 

3 .4-1 

A s  in 

b, and  b, 

which  minimize J, a r e  obtained  by  settingthe  gradient of J equal  to  zero. 

T 

-- a b 2  a J  - - - T 1 r [ -u , ( t ) ] [ e ( t )   -b lu l ( t )   -b ,u , ( t ) ]d t  = 0 
0 

where 

e(t)  = e(t)  - u o ( t )  

3 . 4 - 3  

3 .4-4  

Rearranging  Eqs.   3 .4-2  and  3 .4-3  yields   the  best  estimate: 
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Figure 3 . 3 - 2  Block Diagram for  Crossove r  Model  Implementation 
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b = R- 'v  - e  - 3 . 4 - 5  

3 . 4 - 6  

with  elements, 

r . .  = s'.,t) uj(t)dt 
1J T 

0 

i = 1 ,2  
j = 1 , 2  

and v is  a vector  with  elements, - 
T 

v = 1 ui(t)  e(t)  dt i = 1, 2 i T  
0 

3 . 4 - 7  

3 . 4 - 8  

The  block  diagram for evaluating  the  elements of R and v - is  given in 

F ig .  3 . 4 - 1 .  

In the  actual  analysis,  successive  T-second  intervals of da t a   a r e  

analyzed.  Thus in obtaining  the  elements of R and v - it is necessary  

to  begin  calculating a se t  of values  for a second  interval  immediately 

after  the  term  ination of a given  interval.  This  capability is provided 

by  using  two s e t s  of integrators  with  the  proper  set   being  automatically 

addressed  for  each  interval.  

A s  descr ibed in Section 2. 5, R is inverted  implicitly  by  solving 

3 . 4 - 9  

The  block  diagram  for  the  implicit  matrix  inversion  calculation  is 

shown in F igure  3 . 4 - 2 .  A typical  response for this  computation is 

shown in F igure  3 . 4 - 3 .  A s  seen  in this  f igure,   the  implicit   matrix  in- 

vers ion  requires   no  more  than 50 mill iseconds . With a state-of-the-art  
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Figure 3 . 4 -  1 Block Diagram for  Evaluating R and v - 
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::This integration  occurs  subsequent  to  the 
computation of R and  v. - 

b 
ze 

Figure 3 . 4 - 2  Block  Diagram  for  Solving 

b f +  k R b  = k v  - - - 
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1.0-  

0.5 - 
kl " 
10 

0- 

1.0- 

3 -  
20 

0.5" 

K K  
10 10  10 

b 
> = A + ?  

b 

20  20 
9 = + - 2e 

20 

0- 

Term  inat ion of 
Interval ( 0 ,  T) bf = O + b = b  - - -e 

Note  that  these  time  histories  include  such  effects  as  recorder 
dynamics  and  thus  represent a least  upper bound on the   re -  
sponse  t ime. 

Figure 3 . 4 - 3  Typical  Response of: 

bf + k R b  = k v  - - - 
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high  speed  computer  this  time  could be reduced  by  at   least  a factor of 

10.  

A s  in Section 2 . 6 ,  the   es t imates  of K and (Y a r e  obtained  from 

and 

cy = cy + b,, 
N h 

e 

3. 5 Modifications  to  Parameter  Estimation  ComDutations 

3.4-10 

3.4-11 

In the  interest  of computing  accuracy  and  simplicity of mechaniza- 

tion,  two  modifications  were  made in the  computation of R and v dis-  

cussed in Sect ions  3 .3   and  3 .4 .  
- 

The  first  modification  is  based on the  analysis of infinite  data  in- 

tervals   presented in Appendix B.  In this  appendix  it  is  shown  that 

I 

l im r12 = l im { $ l u , ( t )u2 ( t )d t}  = 0 
T- fw  T + w  0 

3.  5-1 

If Eq. 3 .  5-1  were  approximately  satisfied  for  sufficiently  short  finite 

data  intervals,  then r12 could  be  eliminated  from  the  computations. 

To  determine  the  relative  effect  of r12 for   short   data   intervals  

the  normalized  covariance, p, of ul( t )   and  uz( t )   i s   considered.  

The  matr ix  R rewri t ten in t e r m s  of p is  

P GX 

P Gz2 r 2 2  1 
3 .  5-2  

3 .5-3  

and R is 
-1 
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1 

r11 

P 
1 

r 2  2 

- 

- -22 

3 .5-4  

Then  from Eq. 3.4-5,  the  expression for the  best   parameter   es t imate ,  

b , is  - e  

b =  -e ( 1  - p 2 )  
1 

1 
r11 
- 

From  Eq.  3.  5-5, i t  is seen  that  if p is small  compared  to  unity,  then 

the  cross-correlation  (off-diagonal  terms) of R can  be  neglected. 

The  resul ts  of an  empir ical   survey of the  value of p for  different 

s e t s  of parameter   va lues   a re   p resented  in F ig .   3 .   5 -1 .   These   da ta   a re  

for  an  interval 20 seconds in length.  Shorter  intervals  produced 

larger   values  of p . From  Fig.  3 .  5- 1 it is seen  that   for  T = 20 seconds 

the  value of [ p I i s   less   than  0 .01 5 for   a l l  of the  values of K and (Y used.  

Thus  neglect ing  the  cross-correlat ion  terms is a valid s tep .  

The  second  modification  was  made to compensate for the  effect on 

u2( t )  of variations in the  model   parameter   values .   The  var ia t ion in the 

low  frequency  gain of u1 ( t)  and  u2(t)  as a function of the  value of K and 

(Y is seen  by rewri t ing Eqs.  3 .3-7  and  3 .3-8 as: 
T 

3 .  5-6 

3 .5-7 

In the  experiments  discussed in Chapter 5, the  input,  +(t),  is a random 

signal with a cut-off  frequency of 2 r a d l s e c .  Also, typical  values of K 
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T = 20 seconds 

0 

Figure 3 .  5-1 A Survey of I p I a s  a Function of K and cy 



and CY are 4 and 7 respectively. For these  conditions  the - p2 and 
( 0  - K) 

CYK 
p t e r m s  in the  denominator of Eq. 3 .  5-7 a r e   s m a l l  enough  that 

f o r  a given  input  the  magnitude of uz(t)   is ,   at   least   to a first   approxi- 

mation,  inversely  proportional  to 0 ' .  

CYK 

1 T 
The  comparison of empirical   values of both - f [u2( t ) ]  dt  and 

2 

$2 T TO 
- j [u2(t)I2dt  given in Fig.  3 .  5-2 substantiates  this  hypothesis.   From 
TO 
this  figure it is   seen  that   more  uniform  values  are  obtained  for 
A2 T 
- j [u2( t ) ]  dt than  for - J[u2(t)]   dt   over  the  range of values of CY con- 

s idered .  If the  fixed  scale is used,  the  values of - l [u2 ( t ) ]  dt for l a rge  

cy would introduce  analog-computer  errors in the  parameter  calculation. 

Thus  the  equations  were  modified  to  be  based on the  automatically-scaled 

- [u2(t)I2dt.   The  modified  expressions  involving  u2(t)   are:  
TO 

CY 2 1 T  2 

TO TO 1 T  2 

TO 

cy 2 T  

l- 

0 

3 . 5 - 8  

3 .5-9  

The  modified  analysis  block  diagrams  are  given in F igs .   3 .  5-3, 

3 .  5-4  and 3 .  5 - 5 ,  These  block  diagrams  reflect   the  changes  to  Figs.  

3 .3-2,   3 .3-3  and  3 .3-4  due  to   delet ing  the  cross-correlat ion  terms in 

R and also  due  to  the  automatic  scaling of u 2 ( t ) .  
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K /  1 

+ 
. 2  . 4  . 6  

C Y /  20  
1 . 0  

Each  number is the  avarage of 
ten 20 second r u n s .  

Lower  number = 50 J ut  dt; 

gain of u2(t)  fixed. 

Upper  number = 1.  388a2 J uidt  
gain of uz(t)   variable.  

T 

0 

T 

0 

T 
Figure 3 . 5 - 2  Comparison of Values of Ju;  dt for  Fixed  Gain  and  Variable  Gain  on u2( t )  
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Figure 3.5-3 Modified Block Diagram for Crossover Model 
Implementation 
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, ,. . 

L 

I 

I 

Figure 3 .  5-4 Modified Block Diagram  for  Evaluating R and v - 
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b 2e 

Figure 3 .  5-5 Modified Block Diagram f o r  Solving 

b' + k R b  = k v  - .- - 
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C H A P T E R  4 

SOURCES O F  ERROR IN APPLICATION O F  
REGRESSION  ANALYSIS TO  THE CROSSOVER  MODEL 

A s  with  any  computational  technique,  there are  severa l   sources  

of e r r o r  when  using  the  regression  analysis  technique. In this   chapter  

four  different  sources of e r r o r   a r e   d i s c u s s e d .  To obtain  the  maximum 

benefit,   the  analysis  is  based  on a known system  which  is in the  form 

of the  crossover   model .   Except   for   the  discussion of Sections 4 . 4  and 

4 .  5 it is assumed  that   no  external  noise  is   present.  

4 .  1 Analysis  Using  an  Infinite  Interval of Data ""- 

In the  init ial   phases of this  work  it  was  thought  that  the  non- 

iterative  on-line  technique  discussed in Section 3 . 6  might  provide a 

reasonably  accurate  computational  technique.  This  was  based  on  two 

assumptions.   The  f irst   assumption  was  that  a good est imate  of the 

system  parameter   values  would  be  available  prior  to  the  actual  ana- 

lysis.   The  second  assumption  was  that   the  variation of the  human 

operator   parameter   values   f rom  one  interval   to   the  next  would  be 

sma l l .   Th i s  would  then  imply  that  the  linear  approximation  given  by 

Eq. 2 . 6 - 1 4  is valid.  

To  determine  the  magnitude of e r ro r   t ha t  is produced by the  non- 

i terative  technique,  parameter  estimates  were  obtained  using a known 

model in place of the  human  operator  system.  Thus  the  analysis  dis-  

cussed   here   i s   based  on  the  system  shown in F ig .  3 . 3 - 1  with a s imu-  

lated  human  operator.   To  eliminate as many  sources  of e r r o r  as 

possible in these  calculations  it   was  decided  to  obtain  the  results  ana- 

lytically  based on an  infinite  interval of data.  The  results  obtained 

for  the  infinite  interval  are  also  useful as a re ference  in Section 4 .  3 .  

Let  us  define  the  estimate  obtained  from  an  infinite  data interval 

as boo . Then 
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b = lim [R-’v] 
T-00 

“CO - 4 . 1 - 1  

The  expressions  for   the  es t imated  values  of K and  are   then 
N 

N 

Ko3 = 2 + bool 4 . 1 - 2  

4 . 1 - 3  

Rather  than  directly  evaluate  the  expressions of Eq. 4 .  1 - 1 in the 

time  domain,  an  indirect  frequency  domain  method  is  used.  This 

method  is  based  on  the  input,  $(t),  being  an  ergodic  stationary  random 

process  which  then  allows  the  infinite  integrals in the  t ime  domain  to 

be  replaced  by  corresponding  integrals in the  frequency  domain.  This 

frequency  domain  method  is  developed in  Appendix B along  with  the 

necessary  expressions  for  determining b . Also in Appendix B is a 

copy of the  digital  computer  program  that  is  used  to  numerically  evalu- 

a te   these  expressions.  

“00 

Parameter   es t imates   are   obtained  for   three  different   sets  of 

system  parameter   values  : 

Condition 1, K = 5. 5, = 12 

Condition 2 ,  K = 4 .  5,  = 1 5  

Condition 3 ,  K = 3 .  0 ,  = 8 

N 

N 

N 

For each  set  of system  parameter   values ,   s ixteen  different   sets  of 

model   parameter   va lues   a re   used .   The   model   parameter   va lues   cor -  

respond  to 

1 1 - - r \  - AK = - (K-K)  = = t O . O l ,  zt0.025,  &0.05, & O .  1 
10 10 

The  re la t ion  between  the  system  and  model   parameter   values   is   shown 

in Fig. 4 .  1-1.  Due to scal ing  requirements  of the  analog  computer, 
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0 - System Parameter 
Values 

A - Model  Parameter 
Values 

N N 

Condition ! :  K = 5. 5, (Y = 12 

Condition 2: K = 4 .  5, = 15 

Condition 3 :  K = 3 ,  (Y = 8 

N 

N N 

0 

Figure 4 .  1-1  Relation  Between  System  and  Model  Parameter  Values 



b,,/10  and b,,/20 are  computed  rather  than  ble  and  bze.  For  this 

reason,  the  data  presented in Sections  4.1,   4.2 and 4.3 a re   based  on 

ble/  10 and  b,e/20. 

The  resul ts  of the  numerical   calculations  are  l isted in Table 

4 .1-1   and   a re   a l so   p resented  in F i g s .   4 .  1-2 and  4.  1-3.  The  results 

in F ig .   4 .1-2   a re   for   the   case   where  'K = K .  The  results in F ig .   4 .1 -3  

are   for   the  case  where i$ = 2. 

A N  

One  observation  that  can  be  made  from  Figs.  4.1-2  and  4.  1-3 is 

that  for a given  difference  and  especially  for  large  differences  between 

the  system  and  model  parameter  values,   the  relative  error in the  esti-  

mation of ;u" is invariably  larger  than  the  relative  error in the  estimation 

of K .  The  magnitude of t he   e r ro r s  involved  indicates  that if a nonitera- 

tive  on-line  procedure is used,  one  might  expect  better  accuracy in the 

est imates  of K than in the  estimates of r. 

N 

N 

Another  application of the  data  presented in Figs .  4 .  1 - 2  and 

4 . 1 - 3  is in connection  with Eq. 2 . 6  - 1 1 .  In this  equation  an  expression 

is given  for  the  maximum  difference  between  system,  and  model  for 

which  linearization is valid.  Rather  than  analytically  obtain  the  neces- 

sary  maximum  values  that   are a part of this  expression,  the  empirical  

results of Figs .  4 .  1 - 2  and 4 .  1 - 3  can  be  used.  The  results  presented in 

these  figures  indicate  that if K and $ a r e  within 870 of K and g r e s p e c -  

t ively,   the  error in Km is l e s s  than 0.57'0 and  the e r r o r  in is less  than 

170. Similarly, if K and 2 a r e  within 1570 of K and ;y" respectively,  the 

e r r o r  in K is less  than 17'0 and  the e r r o r  in gm is less   than 47" .  

A N 

N 

A 
03 

N 

N 

03 

4 . 2  Convergence . - -. . - - - - of Iterative  Regress ion Analysis 

In Section 4 .  1 it is seen  that  for  large  differences  between  the 

system and model  parameter  values,  the  first  estimate  obtained  by  re- 

gression  analysis wil l  not  be accurate  which  indicates  that  an  iterative 

technique is required.  It  was  also  noted in Section  2.7  that  the  regres- 

sion  analysis  converges in an  arbitrarily  small  neighborhood of the 

I 
\ 
\ 
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TABLE 4 . 1 - 1  

Parameter   Es t imates   Based  on an  Infinite  Interval of Data 

K 
10  20 

N 
N 

Condition 1 : - = 0 .  55, - = 0 . 6 0  CY 

0 . 6 5 0  

* 0 . 6 0 0  

0 . 5 7 5  

0.  560 

0 .  540 

0 .  525 

* 0 .  500 

0 . 4 5 0  

0 .  550 

* 0 .  550 

0 . 5 5 0  

0 . 5 5 0  

0 .  550 

0 .  550 

* 0 . 5 5 0  

0 .  550 

b 110 
1 0 3  

-0 .0980  

- 0 . 0 5 0 4  

- 0 . 0 2 5 2  

-0 .0100 

0 . 0 1 0 0  

0 . 0 2 4 6  

0 . 0 4 7 9  

0 . 0 8 9 1  

-0 .0066  

- 0 . 0 0  14 

- 0 . 0 0 0 3  

-0 .0000  

-0 .0000  

- 0 . 0 0 0 2  

-0 .0009  

- 0 . 0 0 3 0  

K" I10 
03 

0 . 5 5 2  

0 . 5 5 0  

0 . 5 5 0  

0 .  550 

0 . 5 5 0  

0 .  550 

0 . 5 4 8  

0 . 5 3 9  

0 . 5 4 3  

0 . 5 4 9  

0 . 5 5 0  

0 .  550 

0 . 5 5 0  

0 .  550 

0 . 5 4 9  

0 . 5 4 7  

81 20 

0 . 6 0 0  

0 .600  

0 . 6 0 0  

0 . 6 0 0  

0 . 6 0 0  

0 . 6 0 0  

0 . 6 0 0  

0 . 6 0 0  

0 . 5 0 0  

0 . 5 5 0  

0 . 5 7 5  

0 . 5 9 0  

0 . 6 1 0  

0 . 6 2 5  

0 . 6 5 0  

0 . 7 0 0  

b 120 

0 .0216  

0 . 0 0 6 3  

0 . 0 0 1 7  

0 . 0 0 0 3  

0 . 0 0 0 3  

0 . 0 0 1 9  

0 . 0 0 8 2  

0 . 0 3 6 8  

0 . 0 6 9 6  

0 .0426  

0 . 0 2 3 2  

0 . 0 0 9 7  

- 0 . 0 1 0 2  

-0 .0267  

- 0 . 0  569 

- 0 . 1 2 7  1 

2 0 3  
i7 I 2 0  
03 

. 6 2 2  

,606  

. 6 0 2  

. 6 0 0  

. 6 0 0  

. 6 0 2  

. 6 0 8  

. 6 3 7  

. 570 

. 593 

. 59 8 

. 6 0 0  

. 6 0 0  

. 598 

. 593 

. 573 

The  as te r i sks  (::) denote  conditions  that  are  studied in Section 4 . 3 .  
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&I10 

* 0 .550  
0 .500  
0 . 4 7 5  
0 .460  
0 .440 
0 .425  
0 .400  

* 0 .350 
* 0 .450  

0 . 4 5 0  
0 .450  
0 .450  
0 .450 
0 . 4 5 0  
0 .450  

* 0 .450  

izl 10 

0.400 
* 0 .350  

0 . 3 2 5  
0 .310 
0 .290 
0 .275  

* 0 .250  
0 .200 
0 .300  

* 0.300 
0.300 
0 . 3 0 0  
0 .300  
0 .300 

* 0.300 
0 .300 

TABLE 4 . 1 - 1  (cont.)  
N N 

Condition 2: - - - 0.45,  20 - 
10 

- 0 . 7 5  
P 

bloo/10 E 03 I10 $1 20 b 120 
203 

- 0 . 1 0 8 9   0 . 4 4 1  

0 .750   0 .0005  -0 .0101   0 .450  
0 .750   0 .0030  -0.0257 0.449 
0.750  0 .0110 -0 .0527  0 .447 
0 .750  0 .0373 

0 .0099   0 .450  0 . 7 5 0   0 . 0 0 0 5  
0 . 0 2 4 1   0 . 4 4 9  0 .750   0 .0035  
0 . 0 4 6 4   0 . 4 4 6  .- 0 .750  0 .0153 
0 .0839   0 .434  0 .750 ':.- 0 .0729 

-0 .0008   0 .449  

-0.0000 0 .450 
0 . 7 4 0   0 . 0 0 9 8  -0.0000 0.450 
0 . 7 2 5   0 . 0 2 3 8  -0.0000 0 .450  
0 . 7 0 0   0 . 0 4 5 3  -0.0002 0 .450  
..O. 650 ' 0 .0813 

0 . 8 5 0   - 0 . 1 1 8 1  -0 .0004   0 .450  
0 .800  -0.0 545 -0.000 1 0 .450  
0 .775  -0 .026 1 -0.0000 0 .450  
0 .760  -0.0 102 

E N 

Condition 3: - - P 
10 

- 0.30,  - = 0 . 4 0  
20 

b 110 
IC0 

-0 .0944  
-0 .0505 
-0 .0254 
- 0 . 0 1 0 1  

0 .0099 
0 .0242  
0 .0459 
0 .0780 

-0 ,0073 
-0 .0015  
-0 .0003  

-:o. 0000 
-0.0003 
-0.0009 
-0.0027 

' -0.0000 

z I 1 0  
03 

0.306 
0 .300 
0 .300  
0 .300  
0.300 
0 .299  
0 .296  
0 . 2 7 8  
0 .293  
0.299 
0 .300  
0 . 3 0 0  
0 .300 
0 .300 
0 .299 
0 .297 

81 20 

0 .400  
0.400 
0 .400  
0 .400  
0 .400 
0 . 4 0 0  
0 .400  

~ 0 .300 
0 .350  

I 0 .375  
I 0 .390  
' 0 .410  

0 .425  
0 .450 
0.500 

~ 0 .400  
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b 120 

0 .0342 
0 . 0 1 1 4  
0 .0032  
0 .0005  
0 .0006  
0 . 0 0 4 2  
0 .0190  
0 .0988 
0 .0593 
0 .0401  
0 . 0 2 2 5  
0 .0096 

2m 

-0 .0  104 
-0 .0273 
-0 .0593 
-0 .1366 

; 120 
03 

0 .787  
0 . 7 6 1  
0.753 
0 .750  
0 . 7 5 0  
0 .753  
0 .765  
0 .823 
0 . 7 3 1  
0 . 7 4 5  
0 .749 
0 .750 
0 .750 
0 .749  
0 .746 
0 .732  

I 2 0  

0 . 4 3 4  
0 . 4 1 1  
0.403 
0 .400 
0 . 4 0 1  
0 . 4 0 4  
0.419 
0 .499 
0 .359 
0 .390 
0 .398  
0 .400 
0 .400 
0 .398  
0 . 3 9 1  
0.363 
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system  parameter   values ,  K and Z. In general  this  convergence is not 

guaranteed in a global  domain.  To  test  the  convergence of this  technique, 

the  human  operator  system was replaced  by a known sys tem  as   descr ibed  

in Section 4. 1.  A typical  result of the  convergence  study  is  given' in 

Fig.  4 . 2 - 1 .  From  these   resu l t s  it is seen  that  for  quite  large  initial 

differences  between  the  system  and  model  parameter  values,   the  re- 

gression  analysis  technique not  only  converges  but  takes  less  than  ten 

iterations  to  converge  to  the  proper  value. 

- 

Although  the  conditions of F igs .  4 . 1 - 2  and  4.1-3,  namely  either 
A -  
K = K o r  $ = ;y", a r e  not met  exactly,   the  results of these  f igures  can 

be  generally-compared  with  Fig. 4 .   2 - 1 .  For  instance,   the  f irst   i tera- 

tion  where - = 0 . 5 7  and 7 = 0 .  20 yields  an  estimate Ke which 

is 39% in e r r o r  and an estimate  which is 35'7'0 in e r r o r .   T h e s e   r e -  

sults  are  outside  the  range  considered in Section  4.1 but agree  in gen- 

e r a l  with  Fig. 4 .  1 -3  where $ = (Y. Similarly for  the  fifth  iteration 

where -- '- ' = 0 ,057  and = 0 . 0 5 ,  the  estimate K is 1.470 in 

e r r o r  and  the  estimate ," is 170 in e r r o r  which is predictable  from 

Figs .   4 .  1 - 2  and  4. 1 - 3 .  

K -  f? - A  
CY-CY N 

K CY 

e 

- 
- A  
CY-cy 

N 

K CY e 

e 

4. 3 Effect of Finite  Data  Interval 

A source  of e r r o r  that is related  to  the  material   discussed in 

Section  4. 1 is the  effect of a finite  interval of data ,  It has  been  shown 

by Gilbert  [14]  that a s ta t i s t ica l   e r ror  in the  value of the  elements of 

R and v resul ts  when  a finite  interval of data is used. As in Section 

4. 1 let u s  consider  an input  which is a stationary  ergodic  random  pro- 

c e s s .  A s  discussed in Appendix C, it a l so  is necessary  to   require   that  

the input signal  be a gaussian  process .  

- 

In Section  4. 1 the  parameter  estimate,  b , for an  infinite  data - e  
interval  was  defined  as 

b = l im b = lim [R-ly]  
--03 

T+=J  T+=J 
- e  4 .3-1  
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mediate  estimate of the  system 
parameters .  In the  noniterative 
on-line implementation,  each  such 
set  of values is used  as  the  model 
parameter  values  duringthe  sub- 
sequent  interval. 

Note that six iterations  were  re- 
quiredfor  this  set of system  and 
model  parameter  values. 

Figure 4 . 2 -  1 Convergence of Regression  Analysis  Technique 



The effect of using  finite  intervals of data  can  be  considered as a p e r -  

turbation, - 6, from b . Thus, 
"m 

b = b  + 6  -e "co - 4 . 3 - 2  

It  is  shown in Appendix C that 

E [ 6 ]  - = 0 4 . 3  -3 

Also in Appendix C, expressions are obtained  for  the  upper bound of 

the  var iance of the  elements of 6 .  For   the  crossover   model ,   the   upper  

bounds on the  var iances   are   given by 
- 

and 

The  integr.als of Eqs.  4.3-4  and  4.3-5  were  evaluated  numeri-  

cally  using a digital  computer  program  which  is  given in Appendix c .  
The  twelve  sets of parameter  values f o r  which  the  variance  upper  bounds 

were  calculated  are  denoted by an  as ter isk ( A ? )  in Table 4 .  1 - 1 .  The 

upper  bounds  are  calculated  for  two  values of T :  5 seconds  and 20 . 

seconds.  

R.ather  than  tabulate  the  variance  upper  bounds,  the  upper bound 

on the  standard  deviation of 6, and 6,, which  have  the same dimension- 

ality as K and cr respec t ive ly ,   a re   p resented  in Table 4 .  3 - 1 .  It is seen  

from  Table   4 .3-  1 that  the  effect of using  finite  lengths of data  is  quite 

small,  even for  lengths of data as shor t  as five  seconds.  Table 4 .  3 - 1 

shows  that for a five  second  interval,  estimates of b,,  and b,, will, in 

general ,   vary  not  more  than  ten  per  cent  from  the  value  obtained  from 
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TABLE 4 . 3 - 1  

Upper Bound on Standard  Deviation of Parameter  Estimates, b1e and bze,  Due to Finite  Data  Intervals 

2 10 

0 . 5 5  

0 . 5 5  

0 . 5 5  

0 . 5 5  

0 . 4 5  

0 . 4 5  

0 . 4 5  

0 . 4 5  

0 .30  

0 . 3 0  

0 . 3 0  

0 . 3 0  

k i l o  

0 . 6 0  

0 . 5 0  

0 . 5 5  

0 . 5 5  

0 . 5 5  

0 . 3 5  

0 . 4 5  

0 . 4 5  

0 . 3 5  

0 . 2 5  

0 . 3 0  

0 . 3 0  

2 20 

0 . 6 0  

0 . 6 0  

0 . 6 0  

0 . 6 0  

0 . 7 5  

0 . 7 5  

0 . 7 5  

0 . 7 5  

0 . 4 0  

0 . 4 0  

0 . 4 0  

0 . 4 0  

2 / 2 0  

0 . 6 0  

0 . 6 G  

0 . 5 5  

0 . 6 5  

0 . 7 5  

0 . 7 5  

0 . 6 5  

0 . 8 5  

0 . 4 0  

0 . 4 0  

0 . 3 5  

0 . 4 5  

T = 20 seconds 

b1eIE  bze/Y 

0.0170 0.0025 

0 .0168 0 . 0 3 1 5  

0 .0008 0 .01F5 

0 . 0 0 0 5  0 .0190 

0 . 0 4 7 0  0 . 0 1 0 2  

0 .0440 0 .0222 

0.0006 0 .0218 

0 . 0 0 0 3  0 . 0 3 0 2  

0 .0406 0 .0082 

0 . 0 4 0 4  0 .0140 

0.0017 0 . 0 2 7 8  

0.0010 0 . 0 3 7 5  

T = 5 seconds 

b,e/iT b,e/G' 

0 . 0 3 4 0  0.0050 

0.0336 0.0630 

0 .0016 0.0310 

0.0010 0.0380 

0 .0940 0 . 0 2 0 4  

0 .0880 0 .0444 

0.0011 0.0436 

0 .0005 0.0604 

0 .0812 0 .0165 

0 .0808 0 .0280 

0.0035 0.0556 

0 .0019 0 .0750 



an  infinite  interval of data.   This  is  not  entirely  unexpected  for  the  fol- 

lowing  reason.  Although  the  effect of finite  averaging  time  on  the  values 

of the  individual  components of R and  v - may  be  large,   the  value of b is 

determined by a rat io  of these  e lements .   The  error   effects  in the  ele- 

ments  of R and  v  then  essentially  cancel  giving a rather  small   random 

e r r o r  in the   parameter   es t imates ,  b . 

-e  

- 

- e  

In  addition  to  the  digital  computer  numerical  analysis  discussed 

here  and in Appendix C, a s e r i e s  of t r ia ls   was r u n  on the  analog  com- 

puter  using a simulated  human  operator.   Each  tr ial   was  for a different 

s e t  of system  and  model  parameter  values.   During  each  tr ial ,   para- 

meter  estimates  were  obtained for each of twenty-five 20 second  inter- 

vals.   The  parameter  estimate  data  obtained  from  this  experiment  was 

used  to  compute  estimates of the  variance of b,,/10  and  b,,/20.  The 

upper bound on the  variances  computed  with  the  digital  program and the 

sample  variances  obtained  from  the  analog  data  are  compared in Table 

4 . 3 - 2 .  

From  Table  4 . 3  - 2  it is seen  that in general  the  upper  bounds  ob- 

tained  from  the  numerical   analysis  agree  quite  well  with  the  analog  data. 

However, it should  be  pointed  out  that  the  variances  computed  from  the 

analog  data  reflect not  only  the  effect of using a finite  data  interval but 

a lso  any  random  errors  in the  computer  mechanization.  This would 

seem  to  be  verified by the  two  cases  where  the  sample  variance is l a rge r  

than  the  upper  bound  computed  with  the  digital  program.  Note  however 

that  the  variance of the  parameter  estimates  due  to  finite  data  intervals 

is extremely  small   for  both of t hese   ca ses .  

4.4  Effect of Additive  Noise 

A s  discussed in Section 1 . 3 ,  the  human  operator  control  system 

can  be  characterized by an  equivalent  "black-box"  system.  Such a "black- 

box" system  contains  an  equivalent  human  operator  which  has  an  output 

consisting of the  response of a l inear  t ime-invariant  system  plus  noise 

which is uncorrelated with  the  input  signal.  The  noise  can  be  redefined 

to  be a signal,  r(t),   which is added  outside of the  closed-loop  system [ 27 ] .  
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TABLE  4.3-2 

Comparison of Theoretical  and  Empirical  Data  on 
Statistical  Characteristics of Parameter Estimates, b and b le ze 

Q, 
W 

N 

K /  10 

0 .45  

0 .45  

0 .45  

0 .45  

N 

K/ 10 

0 .45  

0.45 

0 .45  

0 .45  

k/ 10 

0 .55  

0 . 3 5  

0 .45  

0.45 

IZI 10 

0 .55  

0 .35  

0 .45  

0 .45  

2 20 

0 .75  

0 .75  

0 .75  

0 .75  

;I 20 

0 .75  

0 .75  

0 .75  

0.75 

21 20 

0 .75  

0 .75  

0 .65  

0 . 8 5  

$1 20 

0 .75  

0 .75  

0 .65  

0 .85  

b 110 
1 0 3  

- 0 .  1089 

0.0839 

-0.0008 

-0.0004 

b,/10 

0.0373 

0.0729 

0.0813 

-0.1181 

b I 10 Data, T = 20 seconds le 

Empirical 
Average 

- 0 .  1096 

0.0813 

- 0 . 0 0  14 

- 0 . 0 0  12 

Variance  Empirical 

Bound Estimate 

4.  52E-04* 3.64.E-06 

Upper  Variance 

3.993-04 1.763-06 

6.36E-08 1.02E-07 

1.44E-08 1.26E-07 

b /20  Data, T = 20 seconds 
2e 

Empirical 
Average 

0.0385 

0.0738 

0.0834 

-0 .  1176 

Variance 
Upper 
Bound 

5.90E-05 

2.76E-04- 

2.68E-04 

5.  17E-04 

Empirical 
Variance 
Estimate 

1.51E-05 

4.493-05 

1.00E-06 

3.02E-06 

*E-04 = 



In the notation of Fig. 1 . 3  - 1, n( t) and r( t) are related by: 

4 . 4 -  1 

The  equivalent  system is shown in Fig.   3.3  -1  along  with  the  correspond- 

ing  model  and  parameter  influence  coefficients. 

A s  has  been  noted  by  other  authors [7, 201, the  noise  signal  will 

cause  a s t a t i s t i ca l   e r ro r  in the  es t imates  of the   parameters  of the  l inear 

t ime-invariant   par t  of the  equivalent  system.  Elkind,  et  al. [ 7 ]  haveper -  

formed  an  analysis  that is s imilar   to   the  analysis   presented in th i s   sec-  

tion.  However,  the  use of a sampled-data  system in the  above  reference 

resulted  in  an  analysis  method  the  details  of which are   substant ia l ly  

different  from  that  presented  here.  

Consider  the  system  given in Fig.   3 .3-1.   I t   i s   assumed  that   the  

additive  noise, r(t), has  zero  mean  and  is   statist ically  independent of the 

input  signal,   +(t) .   To  restrict   the  sources of e r r o r  in this  analysis  to 

r(t), it  is  assumed  that  the  model is identical  to  the  closed-loop  portion 

of the   sys tem.   For   the   case  of the  crossover   model ,   th is   implies   that  

fz = K and &' = g .  Then in Fig.   3 .3-1,  
N 

uo(t)  = eo(t)  4 .4-2  

If the  equations  developed in Section  3.4  are  applied,  it is   seen  that  

e(t)  = O(t) - uo(t)  = r(t) 4 . 4 - 3  

and  the  expression  for  the  best   parameter  estimate is given  by 

4 . 4 - 4  

Let u s  define  the  variable  z(t)  as - 

- z(t) = R - l  - u( t) 

Then  the  expression  for  b is  - e  

b = Ir( t) z(t)  dt -e T - 

4.4-5  

4 .4-6  
0 

Consider now the  statistical  effect of r ( t )  . Since  the  effect of r ( t )  

is desired  for  any  given  interval of data  and  both  $(t)  and r(t) a re   con-  

sidered  to  be  random  processes,   i t  is necessary  to   consider   the  condi-  

tional  effect of r ( t ) .   However   s ince +(t) and r(t) are   assumed  to   be  
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statistically  independent,  identical results are obtained if r ( t )   i s  as- 

sumed  to  be  random  and +(t) is assumed to be deterministic.   Then  the 

expected  value of b is  obtained as follows. -e 

= - T 1 fE[r(t)] z(t)dt  
0 

- 

4.4 -7  

4.4-8  

Since r(t) is  assumed  to  have  zero  mean, 

E[be] - = 0 4.4-9 

Thus b is an  unbiased  estimate in the   p resence  of additive  noise. Now 

consider  the  variance of b . Note  that: 
- e  

Then  the  covariance  matrix  for b is  given  by: -e  

4 .4-1  1 

Under  the  additional  assumption  that  r(t) is a stationary  process,   Eq. 

4.   4- 11 can  be  rewritten in t e r m s  of the  autocorrelation  function of r ( t )  

a s  : 

0 0  

where + ( u )  is   the  autocorrelation of r(t) and r 

u = t, - t ,  

4 . 4 - 1 2  

Without  further  assumptions  on  the  statistical  properties of r(t), 

Eq. 4.4-12  cannot  be  further  simplified.  However, it has  been  shown 

[ 2 8 ]  that  the  equivalent  noise  for  the  human  operator  has a flat power 

spectral   densi ty   over  a wide  range of frequencies.  In this   case,  it is not 

unreasonable to approximate r(t) by  white  noise  with a spectral   densi ty  
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given  by 

@,(jw) = N 4.4-13 

The  corresponding  autocorrelation  for  r(t)  is  then, 

where 6(u) is  the  Kronecker  delta  function.  Substituting  this  expres- 

sion  for  the  autocorrelation  into Eq . 4 . 4 -  12 yields 

4 .4-15  

Referring  back  to  the  definition of - z(t)  given  by Eq. 4 .4 -5   sugges t s   r e -  

writing Eq. 4 .4 -15  as 

T 

Note  that 

T 

R = l u ( t )  u # ( t )dt  T - -  
0 

is  a symmetr ic   mat r ix .   Therefore  

- 1  # R = [R-' J 

and  the  expression  for  the  covariance of b becomes -e 

E[b b ] = "R 
# N -1 

-e-e T 

4.4-16 

4.4-17 

It  has  been  shown in Section 3 .  5 that if T is  sufficiently  long, 

then 
rll 0 

0 r 2 2  - 

4.4-18 
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In the case where  the  approximation of Eq.  4.  4-18  is  valid,  the  vari- 

ances  of the  e lements  of b a r e  -e 

4.4-19 

4.4-20 

Two  conclusions  can  be  drawn  from  Eq.  4.4-'17. For  a given 

interval of data,   the  variance of the   parameter   es t imates   i s   d i rec t ly  

proportional  to  the  magnitude of the  noise   spectral   densi ty .  Secondl.y, 

the  var iance of the  parameter  estimates  is   inversely  proportional  to 

the  length of the  data  interval.  Thus  to  achieve a given  variance of 

the  estimates,   the  length of the  data  interval  must  be  increased as the 

amount of equivalent  noise in the  human  operator  system  increases.  

4 .  5 Effect of Model  Initial  Conditions 

The  discussion in this  section  is  meant  to  be  qualitative in nature  

rather  than  quantitative as in the  preceding  sections of this  chapter.  

To  that   end,  the  crossover  model  is  not considered  per   se   but   ra ther  a 

general   l inear   t ime-invariant   system  is   considered.  F o r  completeness 

it is assumed  that   the  system  output  is   corrupted by additive  noise. A 

block  diagram  for  the  system  and  corresponding  model  is  given in 

Fig.  4 . 5 - 1  . 

The  system  responses  can  be  writ ten as.  

where  the  subscript  c denotes  the  transient  solution  and  the 

73 



I- 

F igure  4. 5-1 Block  Diagram of General  Linear  System 
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subscr ipt  q denotes  the  steady-state  solution 

If the  system  represented by H(p, - c") is  

state  manner,   then €loc(t) = 0 and 

~ 2 3 1 .  

performing in a steady- 

To obtain  correct   resul ts  from the  parameter   es t imat ion  calcu-  

lations,   the  elements of R and v should  be  obtained for the condition 

where  the  model   is   a lso  operat ing in the  steady-state.   Thus  for  any 

interval of data,  the  transient  solution of uo(t)  and  the  u.(t)  should  be 

zero,  or, 

- 

1 

UfJ (t) = ufJq(t) 

u l ( t )  = u,qW 

u ( t )  = u (t) L Lq 

However, in general ,   the  parameter  values of the  model  will  change  at 

the  beginning of each  data  interval.  This  change of parameter  values 

will  introduce a transient  effect  which is character ized by uoc(t)  and  the 

u .  (t)  being  non-zero  during  the  initial  moments of each  interval.   This 

effect is symbolized in Fig.  4. 5 - 2 .  The  presence of the  transient 

terms  will   cause  the  values of R and v to be in e r r o r .  

1c 

- 

The  effect of th i s   e r ror   t e rm is difficult  to  determine in any  given 

situation  due  to  $(t)  being a random  process.   This  effect   is   most  easily 

compensated  for by start ing  the  calculation of the  elements of R and v - 

at   some  t ime  af ter   the   change of value  has  been  made in the  model  para- 

m e t e r s .  For any  stable  system,  which  the  human  operator  is,  the 

model  transient  solutions  will  decay  to  zero.  Thus by delaying  the 

calculation of the  elem  ents of R and v a sufficiently  long  time,  the 

effect of the  change of parameter  value  can  be  minimized.  Typical 

values of K and (Y a r e  4 and 7, r e~pec t ive ly~which   co r re sponds   t o  a t ime-  

constant  for  the  model of about 0 . 6  seconds.  In the  implementation of 

both  techniques a two  second  delay o r  approximately  three  time-constants 

- 
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A -  

- 

c - c2 

Figure 4.  5-2 Symbolization of Effect of Parameter   Change on uo(t)  
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was  included  between  the  time  that  the  model  parameter  values  were 

changed  and  the start of the  calculation of R and - v.  
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C H A P T E R .  5 

HUMAN OPERATOR  PERFORMANCE  TESTS AND RESULTS 

The  regression  analysis  technique  described in Chapters  2 and 3 

has  been  applied  to  data  from  two  compensatory  tracking  experiments. 

These  experiments  and  the  analysis of the  data   are   discussed in this 

chapter .  

5 .  1 Description -~ of the  Compensatory  Tracking  Experiments 

The  data  that   are  analyzed in th i s   chapter   a re   the   resu l t s  of ex- 

per iments   performed  by  Jackson  and  are   descr ibed in detail   elsewhere 

[22] .  For   completeness  of this  report ,   however,   the  major  aspects of 

the  experiments   are   presented  here .  

The  general   arrangement of the  experimental  set-up  is  shown in 

the  block  diagram of Fig. 1 .  1 - 1.  The  oscil loscope  used  was a 5-inch 

Fairchild  x-y  indicator  with a P-31 phosphor  coating.  The  oscillo- 

scope  display  was in the  form of  a dot  which  moved  horizontally  with 

respect   to  a ver t ical   cursor   located in the  center  of the  screen.   The 

displacement of the  dot  from  the  center  was  proportional  to  the  system 

e r ro r .   The   f ace  of the  oscilloscope  was  located  approximately 28  

inches from the  eyes  of the  subject.  

The  subject was  seated in a straight  backed  chair   with  his  r ight 

a r m  on the  control  st ick.   The  st ick  is  of the   s ide   a rm  type ,   i .   e . ,   the  

subject 's  elbow  joint was  constrained  to a fixed  angle of about 90  de-  

grees .   This   type of control   s t ick  constrains   the  arm  motion of the  sub- 

ject  to rotation at the  shoulder  joint   using  such  upper  torso  muscles as 

the  subscapularis  and  infraspinatus [21]. The  control  st ick  incorporates 

a light  spring  to  provide  an  indication of the  center  position  and  has 

essentially no  damping. A l l  subjects  were  right  handed  males  with  no 

known physical  abnormalit ies.  
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The  experiments  had  two  distinguishing  characteristics,  con- 

trolled  element  and  subjects  involved.  The  transfer  operator of the 

controlled  element for the first experiment  was Y (p) = 5/p  while  the 

t ransfer   opera tor  of the  controlled  element  for  the  second  experiment 

was Y (p) = 5/pz.   Each  experiment  had a separate  group of three  sub-  

jec t s  who  took pa r t .  

C 

C 

In  both  experiments the subjects   were  tes ted for  a total  of ten 

days.  Within  each  day,  each  subject  completed  five  two-minute trials 

at each of three  input  cut-off  frequencies  for a total of 15 trials each 

day.  The  blocks of 5 t r i a l s   fo r  a given  cut-off  frequency  were  ran- 

domly  ordered on  each  day of testing. 

The input signal  for  these  experiments  was  pseudo-random  noise 

which  had  an  approximately  gaussian  amplitude  distribution [15]. This  

signal  was  produced  by  passing a binary  sequence  from a pseudo- 

random  noise  generator  through  an  analog  f i l ter  [I71 with a t ransfer  

operator  of the  form 

4 radians  per  second  were  obtained by using  the  appropriate  value of 

w . Note  that  the  data  for a cut-off  frequency of 2 radians  per   second 

are  the  only  data  analyzed  and  discussed in this   report .  

1 
(p/wc + 1P . Input  cut-off  frequencies of 1, 2 and 

C 

During  each  experimental   tr ial   the input signal  and  the  output 

signal  were  recorded  on  separate  channels of a four  channel  magnetic 

tape.   These  recorded  signals  were  then  replayed in the  process  of 

analyzing  the  experimental  data. 

5. 2 I terative  Parameter  Identification ___ Technique 

The  regression  analysis  method of parameter  identification  de- 

sc r ibed  in Chapters  2 and 3 was  used  to  analyze  the  experimental  ‘data. 

In  applying  this  regression  analysis  technique,  each  two  minute  trial 

was  divided  into  five  non-overlapping 20 second  subintervals.   During 

each  20 second  interval,  the  best  value of the   parameters  K /  10 and 

a/20 were  obtained  using  the  iteration  procedure.  This  normalization 
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for K and a was chosen  because  the  parameter  ranges are typically 

0 . 2  5 K /  10 2 1 . 0  and  0.15 5 u / 2 0  5 0 . 7 5 .  The  cr i ter ion  used  to   termi-  

nate   the  i terat ive  process   was 

and 

where n denotes  the  subinterval with 

n = 1, '2, . . . , 5  5 .2-1 

1 5 0 . 0 1 5  n = l , 2 ,  . . . ,  5 5 .2-2  

i n   e a c h  two  minute  trial  and m de- 

notes  the  number of the  i terat ion.   The  best   es t imates  of the  human 

ope ra to r   pa rame te r s  K and T a r e  given in Appendix E. Note  that 

T = Z / c y .  In applying  the  iterative  procedure,  the  initial  values of k/lO 

and  g/20  for all five  subintervals  were  set  equal  to  corresponding  para- 

meter  values  obtained  by  Jackson [22]  using a different  identification 

technique.  With  these  initial  conditions, m 5 6 was  sufficient  for all 

trials  analyzed  and in a large  number of t r ia l s  m 5 2 was  sufficient  to 

satisfy Eqs. 5.2-1  and 5 .  2 - 2 .  

A s  mentioned  previously,  only  the 2 radian  per  second  cut-off- 

frequency  data  were  analyzed  during  this  investigation.  For  the  single 

integrator  controlled  element  the  second,  sixth  and  tenth  days of tes t -  

ing were  analyzed.  For  the  double  integrator  controlled  element  the 

third,  seventh  and  ninth  days of testing  were  analyzed. A l l  indications 

are   that   the   intermediate   days of testing  have  results  which  are  consis- 

tent  with  results  for  those  days  that  were  analyzed. 

5 . 3  Analvsis of I te ra ted   Parameter   Values  

One  method of analyzing  the  parameter  values  obtained was  to  

study  the  t ime  histories of the  parameters .   I t  w a s  thought  that a subject 

might  follow  some  consistent  trend in the  variation of gain  and  time- 

delay  during a t r ia l   o r   dur ing  a single  day of testing.  This  type of 

con  sistency would become  apparent  from a visual  examination of the 
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parameter   t ime  his tor ies .   Typical   parameter   t ime  his tor ies   for   one 

day of testing  are  shown in Fig.   5.3-1.  It is   apparent  from  the  t ime 

histories  such  as  that   shown in Fig.  5 . 3  - 1 that  the  subjects  did not 

have  any  consistent  trends in gain or time-delay  within a single  day of 

testing. 

A second  method of analyzing  the  parameter  values was to  con- 

s ider   the  two  parameters ,  K and T, a s  independent  random  variables. 

With  this  point of view  the  distributions of the  parameters  might  well  

give  some  insight  into  subject  behavior. 

Rather  than  study  the  entire  distribution of each of the   parameters  

it was  decided  to  study  the  mean  and  variance of each  distribution. 

Since  the  mean  and  variance of a random  var iable   are   theoret ical   para-  

m e t e r s  which a r e  not measurable ,  it is   necessary  to  obtain  estimates 

of these  quantities from the  empirical   data.  On a given  day of testing 

the  sample  average for  either  parameter  value for a given  subject  is 

represented by 
- 25 

Gi = & xij  i = 1, 2, 3 
j = i  

5 . 3 - 1  

In  Appendix D, it is shown  that 5. is an  unbiased  estimate of the  true 

mean  value,  pi. In Eq. 5.3-1,  the x,, represent   samples  of either K 

or T.  

I 

‘J 

The  sample  values of K and T were  obtained on each  day of tes t -  

ing, using  the  regression  analysis  technique  to  obtain  the  best  estimate 

of the   parameters   for   each  of twenty-five 20 second  intervals of data 

for  each  subject.  This  gives a total of 7 5 es t imates  of both K and T 

for  each  day of tes t ing.   The  parameter   average  values   are   presented 

in Fig.   5 .3-2 for the   case Y (p) = 5 /p  and  in Fig.   5 .3-3  for   the  case C 
Yc(p) = 5 / p 2 .  

Two  major   character is t ics  of t he   ave rage   pa rame te r   va lues   a r e  

apparent  from  Figs.   5.3-2  and  5.3-3,   namely: 
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Figure 5 .3 -1  Iterative  Parameter  Estimation  Time  History, Yc(p) = 5/p ,  Subject 3 ,  Day 6 
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Figure  5.3-2  Average  Parameter  Values,  Yc(p) = 5 /p  
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Figure  5.3-3  Average  Parameter  Values,  Yc(p)  = 5/p2  



(1) The  daily  average  value of K increases  with  learning. 

(2) The  daily  average  value of T decreases  with  learning. 

The   resu l t s  of Figs .   5 .3-2  and  5 .3-3  agree  completely  with  those  pre-  

sented by Jackson [22]. This  is  entirely  expected  since  the  experimental 

data  is  the  same as that  analyzed by Jackson  using a different  parameter 

identification  method. In addition  to  the  average  parameter  data, 

Jackson  a lso  presented  error   score   data   which  shows  error   scores  

that   decrease with learning.  Thus  one  interpretation of the   charac te r -  

ist ics of the  average  parameter  values  mentioned  above  is   that  in the 

p rocess  of consciously  attempting  to  improve  his  error  score  the  sub- 

ject   increases  his  gain,  K, and  shortens  his  time-delay T. 

This  interpretat ion is born  out by the  following  analysis.  The 

spectral   density of the  system  error  signal  can  be  writ ten  as:  

5 .3-2  

where  the  various  signals  are  those  given in Fig.  1.3-1  for  the  equi- 

valent  human  operatcr.  Let u s  take  the  simple  case of Y (p) = - and 1 
C  P 

assume  that   the   crossover   model  giv.es  a sufficiently good representa-  

tion of the  system.  Then, 

and 

5.3-3 

5 .3-4  

The  reasoning  followed in this  analysis  is   that  if the  spectral   density 
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of the  error  signal,  aE( ja), is   small ,   then  the  error  signal  i tself  is in 

genera l   smal l .  Now consider  the  following  cases. 

( 1) T fixed:  Inspection of Eq. 5 . 3 - 4  shows  that  for  this  case, 

(jw) dec reases   a s  K increases .  
E 

( 2 )  K fixed:  Again  inspection of Eq. 5. 3 -4 shows  that  for  small 

values of T the  denominator of both  terms  increases  

for  decreasing  value of T .  Thus ‘PE(jw) decreases  as 

T dec reases .  

Thus it is seen  that  increasing  the  value of K and  decreasing  the  value 

of T corresponds  to  decreasing  the  magnitude of E ( t ) .  A third  mecha- 

nism  for  reducing ‘P (jw) is to  reduce  the  remnant  signal,  n(t) . Note  also 

that @ (jw) is not necessarily  independent of the  value of K and T .  

E 

n 

In the  analysis of the  variance of the   parameters ,  K and T, the 

following  approach is taken.  The  total of three  subjects  on  any  given 

day of testing is considered  as  a source  of a population, of values 

of the  random  variable K and a l so   as  a sou rce  of a population, A , of 

values of the  random  variable T.  Within  the  total  population,  either 

A or A , there  are  three  subpopulations,  

represent ing  parameter   values   for   one of the  three  individual  subjects. 

In Appendix D, it is shown  that  the  total  variance of either K o r  T is 

given by 

A K’ 

T 

K T AK1’ AK2’ 
e tc . ,   each  

u2 = u& + u2 
B 5 . 3 - 5  

For the  approach  outlined  above,  the  first  component of the  total 

variance  which is the  within-subject  variance, is given by 
W’ 

3 
u2 = 4 cci; w 5 . 3 - 6  

The a-2 represents   the  var iance of the  parameter   value within  each of 

the  three  individual  subjects.  The  second  component of the  total   vari-  

ance  is  the  between-subject  variance, m z  and  is  given by 

L 

B’ 
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3 
u; = +  ( p - p $  

2 5.3-7 
i=1 

The p. represent  the  average  parameter  value  for  each  individual  sub- 

ject  and p represents   the  average  parameter   value  for   the  total  of 

three  subjects.   Thus,  

1 

3 

p = :  c Pi 5.3-8 
i=1 

To study  the  components of var iance of K and T given  by Eq. 

5.3-5,  unbiased  estimates of the  elements of this  equation  are  obtained 

from  the  empirical   data.  In  Appendix D, it  is  shown  that  the  following 

are   unbiased  es t imates ,  

EmsTota l ]  = 0- 2 

E[MSW] = u2 

E[MSB] = CT 2 

W 

B 

where 

5 .3 -9  

5. 3-1 0 

5 .  3-1  1 

5 .  3-1 2 

5. 3-1 3 

5. 3 -1 4 

In Eqs .  5. 3-12 through  5.3-14,  x..  represents a sample of either K o r  

T, and 
'J 

The  total  variance  and  the  components of the  total  variance  were 

calculated  for  both K, T and  the  auxiliary  variable CY for  the  days of 

testing  given in Section  5. 2 .  The   resu l t s  of these  calculations  are 
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presented in F igs .  5 . 3  -4 and 5 . 3  - 5. 
Before  proceeding  further,   let   us  define  parameter  t ime-variation. 

It has  been Bhown [ 2 6 ]  that   small   variations of gain  and  time-delay  can 

be  represented  by  an  equivalent  additive  noise  term.  Thus  the  problem 

of separating  the  remnant  term  into  components  due  to  parameter  time- 

variation  and  due  to  motor o r  additive  noise  is  indeterminate.  Also, 

Wierwille  and Gagne'have  pointed  out [41] that if no  constraint is placed 

on  the  rate of variation of the  parameters  or gains  that ". . . instead of 

having  the  time-varying  gains  follow  the  changes in the  human  opera- 

tor's  dynamics,  the  gains  simply  track  the  (output)  signal  itself. " Thus 

one  arbitrary  method  for  partitioning  the  remnant  term would  be  to a t -  

tribute  low  frequency  components  to  parameter  time-variation  and  high 

frequency  components  to  motor  noise.  The  distinction  between  low  and 

high  frequency is also a question  which  each  experimenter  must  decide. 

A s  implemented  here,   the  parameters K and T a r e   r e s t r i c t e d  to f r e -  

quencies  on  the  order of one  cycle  per  minute  and  lower.   This  restric- 

tion  is  imposed  by  taking  the  best  parameter  values  for  successive 2 0 -  

second  intervals. 

Jackson  has  shown [ 2 2 ]  that   the  human  operator  remnant  is   larger 

for  the  case of the  double  integrator  controlled  element  than  for  the 

single  integrator  controlled  element. In addition,  it  has  been  postulated 

in the  l i terature [ 2 7 ,  281 that  this  increased  remnant is due  to,  among 

other   sources ,  a more  pronounced  time  variability of the  human  opera- 

t o r  in the   f i r s t   case .  If this is true,  then  the  within-subject  variance 

of the  parameters  should be  appreciably  larger  for  the  double  integrator 

controlled  element  than  for  the  single  integrator  controlled  element. 

The  hypothesis of a larger  within-subject  variance  is  not  substantiated 

by F igs .   5 .3 -4  and 5 .3 -5 .  Although  the  results  for  the  time-delay, T, 

indicate a larger  within-subject  variance  for  the  double  integrator  con- 

trolled  element,   reference  to Eq. 3.3-4  shows  that  this  does not di- 

rectly  account  for a larger  remnant.  Thus  the  results  indicate  that  the 

increased  remnant  for  the  case of the  double  integrator  controlled 
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Figure 5 . 3 - 4  Components of Parameter  Variance, Yc(p) = 5 / p  
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element is not  due  to  increased  time  variation of the  human  operator. 

By implication  then,  this  suggests  that  the  increased  remnant is due  to 

such  sources  as more  pronounced  nonlinearity of the  human  operator. 

Another  observation  that  can  be  made  is  that  the  within-subject 

var iance  for  K shows  very  little  change  as  the  subjects  learn  while  the 

within-subject  variance  for  the  time-delay  shows a marked   decrease  

with  learning.  This is a significant  finding  which  has  not  been  reported 

in the  literature  previously.  The  fact  that  the  within-subject  variance 

of the  gain, K, is essentially  constant  for  all  days of testing  indicates 

that   there  is an  inherent  variability in the  gain on which  training  has 

little  effect. On the  other  hand,  the  decrease in within-subject  variance 

for  the  time-delay  indicates  that  the  variability of T is a character is t ic  

of the  human  operator  which is very  dependent on the  amount of training. 

One  explanation of the  relationship  between  variability of T and 

training is the  following. In F igs .  5 . 3 - 2  and 5 . 3  - 3  it was  pointed  out 

that  the  subject  increases  his  average  gain  and  decreases  his  average 

t ime-delay  as   he  learns   to   perform  the  compensatory  t racking  task.  

These  learning  trends  were  associated with a conscious  effort  on  the 

par t  of the  subject  to  reduce  the  system  error.   The  total   results  then 

indicate  that in the  process of learning,  the  human  operator not only 

reduces  the  average  value of his  t ime-delay by consciously  trying  to  do 

a better  job of tracking,  but  also  subconsciously  adopts a more   cons is -  

tent  signal  processing  mechanism. One  analogy  that  has  been  suggested 

[ l o ]  for  the  mental  operations  inherent in the  learning  process is a 

modern  electronic  data-processing  system.  Using  such  an  analogy, 

the  signal  processing  mechanism  mentioned  above would correspond  to 

the  computer  program  used in the  performance of the  t racking  task.  

This  program would consist of many  subroutines  which  can  be  changed 

0.r modified.  The  large  initial  within-subject  variance of T would co r -  

respond  to  the  subject  experimenting  with a wide  variety of subroutines.  

Then as the  subject  learns  he would reduce  the  variety of subroutines 

that he t r i e s  as well  as  modifying  the  complete  program  to  make  it  more 



efficient. In experiments of a different  nature,  learning  to  roll  cigars, 

Crossman [ 5 J  has   a r r ived   a t  a similar  description:  "The  writer  has 

taken  the  bhsic  premise  that  a learner  faced  by a new  task  tr ies out 

var ious  methods,   re ta ins   the  more  successful   ones   and  re jects   the  less  

successful   ones .  " 

Along  this  same  line,  it   is  seen  from  Figs. 5 .   3 - 4  and 5.3-5 that 

the  within-subject  variance of the  t ime-delay  is   appreciably  larger   for  

the  double  integrator  controlled  element  than  for  the  single  integrator 

case .   This  in all  likelihood  is  due  to  the  increased  difficulty of the 

double  integrator  case.  More  important  than  the  relative  magnitudes  is 

the  noticeable  decrease of the  within-subject  variance in Fig.  

5.3-5  between  the  seventh  and  the  ninth  day of testing.  This  indicates 

that  the  subjects  have not completely  learned  the  task by the  ninth  day 

of tes t ing.   The  average  parameter   values   presented in F igs .  5 . 3 - 2  

and  5.3-3  do not show  as  readily  this  apparent  incompletion of learning. 

Thus  the  results  suggest  that  the  variance of a human  operator 's   t ime-  

delay is a more  sensi t ive  cr i ter ion of learning  than is the  mean  value of 

the  t ime-delay. 

The  similarity  between  the  time-delay  within-subject  variance 

curves  for  Y (p) = 5/p  and Y (p) = 5/pz  is  not apparent  from  Figs.  

5.3-4  and 5 . 3 - 5 .  However in Fig.  5 . 3 - 6  where  the  same  data   are  

plotted  on a logarithmic  scale,  it is seen  that   the  curves  are  str ikingly 

similar  except  for  magnitude.  From  Fig.   5.3-6  then, it can  be  con- 

cluded  that  the  effect of training  on  the  t ime-delay  variance  is   similar 

for  both  controlled  elements. 

C C 

Another  observation  that  can  be  made  from  the  data  presented in 

F igs .   5 .3-4  and 5 . 3 - 5  deals  with  the  between-subject  variance of gain 

and  time-delay,  It is seen  that on the  final  day of testing  the  between- 

subject  variance  for  both  parameters is much  smaller  for  the  double 

integrator  case  than  for  the  single  integrator  case.   This  agrees with 

the  finding of McRuer,  et al. [ 281 that   the  mor e difficult  task  constrains 

the  subjects  to  behave in a uniform  manner.  Also,  for  the  single 
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integrator  controlled  element  the  between-subject  variance  for  the  hu- 

man  operator  gain is much  more  pronounced  than  for  the  t ime-delay. 

This  indicates  that   for  the  more  easily  controlled  case,   the  human  op- 

erator  gain  is  a better  indicator of individuality  than is t ime-delay. 

5.4  Power  Match  Considerations 

A performance  measure  has  been  suggested  which  indicates  the 

percentage of the  human  operator  system  output  power  that is accounted 

for  by the  model  being  used.  This  performance  measure is called  the 

power  match, PM, [37],  and  for  these  experiments is 
120 

e2( t )d t  
P M  = 1 - lozo 

f e2 ( t )d t  
0 

5 .4 -1  

During  the  analysis  performed on the  experimental  data,  two  values of 

power  match  were  computed  for  each  trial.  The  two  values of power 

match  correspond  to  two  different  sets of parameter   values   that   are  

used in the  model  during  the  .calculation.  One  value of power  match 

was  obtained  using  the  average of the  f ive  parameter  values  for  each 

t r i a l .  In this  calculation  the  model  parameters  were  fixed  at  the  aver- 

age  value  for  the  entire  tr ial .  A second  value of power  match  was  ob- 

tained  for  each  tr ial   using  the  best   parameter  values  for  each of the 

five 20 second  intervals  within  the  trial. In this  calculation  the  model 

parameters  were  set   automatically  at   the  best   value  during  each of the 

20 second  intervals  during  the  tr ial .  

The  values of power  match  for  each of the  five  trials  within a 

given  day of testing  were  averaged  together  to  give a single  value of 

power  match  for  each  subject  for  each  day of testing.  These  values of 

power  match  for  the  two  sets of parameter   values   are   presented in 

F igs .  5 . 4 - 1  and 5.4-2.   The  data  presented in these  figures  indicate 

a smal l  but  consistent  improvement in power  match when the  best   para- 

meter   values   are   used  for   each 20 second  interval  over  the  power 

match  obtained when the   average   parameter   va lues   a re   used   dur ing   the  
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ent i re   t r ia l .   Jackson [22] has  shown  that  the  crossover  model as 

formulated in Eq.   3 .3-4   i s   very   c lose   to   the   bes t   l inear   cons tan t   co-  

efficient  model  for  the  human  operator  controlling  the  first  and  second 

order  controlled  elements  used  here.   Thus  the  power  match  obtained 

using  the  crossover  model  gives a good  indication of the  amount of r em-  

nant  power  present in the  human  operator  system  output.  The  small 

improvement in the  power  match  when  the  best   parameter  values  are 

used  for  each  interval  is  then  another  indication  that  human  operator 

time  variation  accounts  for  only a smal l   par t  of the  remnant ,  

5. 5 Noniterative  On-Line  Parameter  Identification 

It  has  been  shown [13] that  the  iterative  regression  analysis  de- 

scr ibed in Chapter 2 converges  quadratically  near  the  optimum  values 

of the  parameters .   I t  is therefore  conceivable  that good approximations 

of the  system  parameters  could  be  obtained  without  iterations. 

Because  the  iterations  are  costly  and  time  consuming,  for  com- 

parison  purposes a noniterative  on-line  regression  analysis  was  applied 

to  obtain  estimates of the  crossover   model   parameters   for   the  same 

test  conditions  analyzed in Section  5.3.  In this  application  the  model 

parameters  were  init ially  set   at   values  which  were known to  be good 

est imates  of the  average  parameter  values  for  the  given  tr ial .   These 

known parameter  values  were  used  for  the  f irst   interval of the   t r ia l .  

At the  beginning of each  subsequent  interval  within  the  trial  the  model 

parameter  values  were  updated  to  the  best   estimate  from  the  preceding 

interval, i .  e . ,  

5 .5-1 

5.5-2 

where i = 1, 2, . . . , 5, represents  the  interval  within a t r i a l .  

Some  typical  t ime  histories of the  parameters  obtained by this 

method  are  shown in Fig.  5. 5-1  along  with  the  corresponding  system 

input  and  output  functions.  The e r r o r  E E , o r  E between  the k' r a' 
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Figure 5 .5-1  Noniterative On-Line Parameter  Estimation  Time History 

Yc(p)=  5/p, Subject 3, Day 6 



parameter  values  obtained by noniterative  on-line  technique  and  the 

values  obtained  by  the  iterative  technique  described in Section 5.  2 was 

computed for each 20 second  interval  that   was  analyzed.  This  error 

is  defined by 

E = 1 0 0 ~'??.r?!%? __-___________-..___.I.______ ________ P a r a m e t e r  Value)  -(On-line  Parameter  Value) 
Iterative  Parameter  Value 

5 . 5 - 3  

The  average [ E  I was  computed  for  each  day of tes t ing.   These  data   are  

presented in F igs .  5 . 5 - 2  and 5 . 5 - 3 .  It can  be  seen  from  these  data 

that  except  for  the  early  days of testing,  the  average I E I of a l l   para-  

m e t e r s  is less  than 1070 a l though  much  la rger   e r rors   a re  not uncommon. 

Thus if an  investigator  should  have a rather  noncritical  situation  where 

e r r o r s  in the  parameter  values of 10% can  be  tolerated  the  noniterative 

on-line  technique would  be  useful. 
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C H A P T E R  6 

SUMMARY AND RECOMMENDATIONS 

This  concluding  chapter  has  two  purposes.  One  is  to  review  and 

summarize  the  research  discussed in the  preceding  chapters.   The 

second  purpose  is   to  suggest  directions  for  additional  research.  The 

r e s e a r c h   r e s u l t s   a r e  divided  into  two a r e a s .  One area  consis t?  of the 

development  and  analysis of the  regression  analysis  parameter  identi-  

fication  technique.  The  second  research  area is devoted  to  the  analysis 

of human  operator  compensatory  tracking  experiments. 

6 .  1 Summary of Regression  Analysis   Parameter  ~ Identification 

In Chapter 2 a review is presented of the  statistical  background 

of regression  analysis .   This   s ta t is t ical   pr inciple  is then  developed 

into a parameter  identification  technique  for  dynamical  systems.  The 

technique  consists of obtaining  estimates  for  the  difference  between un- 

known pa rame te r s  of a system  under  study  and known parameters  of a 

model.   The  estimate of the  system  parameters,   is  

where c is the known model  parameter  vector and b is the  estimate 

obtained  from 

A 
- - e  

b = R  v - e  
- 1  
- 

It is shown  that  this  parameter  identification  technique  yields  satisfac- 

tory  resul ts  in a single  computation if the  difference  between  the sys-  

tem  and  model  parameter  values is sufficiently  small. In general, 

s ince   the   sys tem  parameters   a re  known only  approximately, a single 

computation  does  not  give a satisfactory  result  and  the  computation 

must  be i terated.  One  feature  that is introduced in Chapter 2 is the 

use of implicit  inversion of the  matrix R .  By the  use of implicit   ma- 

trix  inversion,  the  regression  analysis  technique is amenable  to  imple- 

mentation on an  analog  computer. 

The  method  developed in Chapter 2 f o r  a general   system is applied 
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to  the  specific  case of the  crossover  model of the  human  operator in 

Chapter 3 .  The  application  is  quite  straightforward.  However,  there 

are   subt le t ies  in the  implementation  which  are  significant.  One  prob- 

lem  that  became  apparent  during  the  development  is  that of scaling  the 

elements of the  matr ix  R .  It was found  that  over a wide  range of model 

parameter  values,  typical  magnitudes of the  elements of R vary  consid- 

erably.   Thus  system  gain  sett ings  which  are  acceptable  for  one  set  of 

model  parameter  values  may  be  unacceptable  for  another  set of model 

parameter   values .   The  most   sat isfactory  method of overcoming  this 

problem in an  analog  implementation  is  to  provide  automatic  scaling of 

the  elements of R based  on  the  values of the  model   parameters .   This  

was  done in the  present  implementation  and  satisfactory  results  were 

obtained. A second  feature of the  implementation  was  the  use of the 

fact  that  the  covariance of the  parameter  influence  coefficients  for  the 

crossover   model  is zero.   Thus if sufficiently  long  data  intervals  are 

used,  the  off-diagonal  elements of R can  be  neglected.  This  results in 

a much  simpler  implementation.  Both  the  necessity of automatic seal- 

ing of R and  the  fact  that  the  parameter  influence  coefficients  have  zero 

covariance  are  results  which  may  have  application  to  the  identification 

of systems  other  than  the  human  operator. 

In Chapter 4 severa l   sources  of e r r o r  in the  application of r e -  

gression  analysis   to   the  crossover   model   are   discussed.  A s  mentioned 

previously, a sat isfactory  resul t  is obtained  from a single  computation 

if the  parameter  values of the  system  being  identified  are known suff i -  

ciently  well.  To  determine how  well  the  system  parameter  values  must 

be known for  the  single  computation  to  give  acceptable  results, a study 

based  on  an  infinite  interval of data  was  made.  It  was found that if the 

difference  between  the  assumed  system  parameter  values,   i .   e . ,   the 

model  parameter  values,   and  the  true  values  was not larger   than 8% for  

both K and c y ,  the  single  computation  gives  results  which  are in e r r o r  by 

not more  than 1%. For  the  case of larger  initial  differences  between  the 

model and system  parameter  values  i t   was shown  experimentally  that 
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the  iterative  computational  technique  converged  to  the  proper  value in 

less  than  ten  iterations. 

Another  source of e r ror   i s   the   use  of a finite  length of data.  This 

e r r o r   i s  in the  form of a statistical  difference  between  the  values  for 

the  elements of R and  v  based  on  an  infinite  interval of data  and  values 

which a re   based  on a finite  length of data.  It  is  found  that  the  variance 

of the  parameter  estimate  due  to  this  effect  is  bounded by a term  which 

is  inversely  proportional  to  the  length of the  data  interval.  The  results 

of numerical  calculations  indicate  that  the  standard  deviation of the 

e r r o r  due  to  data  intervals  as  short   as  f ive  seconds is less  than 10% 

for  the  estimates of both K and (Y. 

- 

The  model of the  human  operator  used  throughout  this  research 

character izes   the  system output as the  response of a l inear   t ime-  

invariant  system  plus  an  uncorrelated  additive  noise  term.  I t  is im- 

portant to know the  effect of the  equivalent  noise  on  the  estimates of the 

l inear   system  parameter   values .  It is shown  that  the  expected  value of 

the  parameter  estimates  obtained by regression  analysis  are  unaffected 

by the  additive  noise,   i .   e . ,   the  regression  analysis  parameter  values 

are   unbiased  es t imates  of the  t rue  system  parameters  in the  presence 

of additive  noise. It is further  shown  that if the  additive  noise is white, 

then  the  variance of the  parameter   es t imates  is directly  proportional 

to  the  amount of noise  present and inversely  proportional  to  the  length 

of the  data  interval. 

A final  source of e r ror   tha t  is discussed in Chapter 4 is that  due 

to  erroneous  model  init ial   conditions  at   the  start  of a data  interval. It 

is pointed  out  that  the  elements of R and v - should  be  based on a steady- 

s ta te   response of the  model.  However, in the  process  of obtaining  the 

parameter   es t imates ,  it is necessary  to  change  the  value of the  model 

parameters   a t   the   s ta r t  of each  data  interval.  This  change in parameter  

values  causes a t ransient  in the  model  response  which in turn  gives 

erroneous  values   for  R and v .  - The  suggested  solution  to  this  problem 



is to  delay the   s tar t  of the  calculation of the  elements of R and  v for  

approximately  three  t ime-constants of the  model   af ter   the   parameter  

values  have  been  changed. 

6 . 2  Human  Operator  Experimental  Results 

- 

The  impetus  for  developing  the  regression  analysis  parameter 

estimation  technique  was  the  desire  to  analyze  human  operator  per- 

formance  data.   The  analysis of the  human  operator  data was on the 

bas i s  of twenty  second  data  intervals.  Using  this  data  interval  it  was  

possible   to   obtain  parameter   es t imates  for twenty-five  intervals  for 

each  subject  during  each  day of testing.  The  results  based on a study 

of the  mean  and  variance of the  random  variables, K and T a r e :  

( 1) Average  human  operator  gain, K, increases  with  learning. 

(2)  Average  human  operator  time-delay, T, decreases  with 

learning. 

These  t rends  are   interpreted  as   being  the  direct   resul t  of the 

subject  learning  to  do a better  job of tracking. 

The  real  power of the  regression  analysis  technique  becomes 

apparent in studying  the  variance of the  parameters .   To  s tudy  t ime-  

variation of the   parameters  it is necessary  to  have  estimates  for  short  

intervals of data.   The  regression  analysis  technique  can  be  used  to 

obtain  such  estimates  while  such  methods  as  continuous  parameter  ad- 

justment  techniques  can  not. 

By making  use of the  fact  that  the  total  variance of both K and T 

can  be  separated into a within-subject  and a between-subject  component 

for  each  day of testing,  the  following  results  were  obtained. 

( I )  The  human  operator  adopts a more  consis tent   perceptual-  

motor   s ignal   processing  path  as   he  learns   the  t racking  task.  

( 2 )  For the  single  integrator  controlled  element,  the  average 

value of K is a better  indication of individuality in the  trained 

human  operator  than  is  the  average  time-delay. 
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(3 )  For the  more  difficult  to  control  double  integrator  controlled 

element,   the  subjects  adopt  more  uniform  average  values of 

gain  and  t ime-delay  than  for  easier  control  tasks.  

(4) The  increased  remnant  for a double  integrator  controlled 

element  over  that  for a single  integrator  controlled  element 

appears  to  be  mainly  due  to  sources  other  than  t ime  varia- 

tion of the  human  operator. 

(5) The  variance of T appears   to   be a more  sensitive  indicator of 

learning  than  the  average  value of either K or T .  

(6)  There  appears  to  be  an  inherent  variabil i ty in the  human 

operator  gain on  which  learning  has  little  effect. 

6 . 3  Recommendations 

There  are  three  recommended  areas  for  extension of the   research  

repor ted   here .  

(1 )  Verification of the  results on  the  variance of K and T: The 

r e su l t s  of Chapter 5 a re   based  on six  subjects.  The  concept 

of analyzing  the  variance of the  gain  and  time-delay is novel 

and  hence  these  results  should  be  verified by s imilar   analysis  

on data   f rom  more  subjects .   Also  the  var iance of parameters  

based on data  intervals  shorter  than  twenty  seconds  should  be 

analyzed. 

(2)  Use of regression  analysis  in study of nonlinearit ies  as a 

source  of remnant:  To  be  meaningful  this  analysis  requires 

a model  which  includes  nonlinearities in the  forward  loop. 

Such  models  are  most  easily  analyzed by  the  equation e r r o r  

technique.  Thus a combination of the  regression  analysis  

and a technique  such as that  described by Wingrove  and 

Edwards [43]  for  eliminating  the  bias in the  equation  error 

method would seem  to  be a likely  approach. 

( 3 )  Use of regression  analysis  in more  difficult   tasks:  A pos- 

sible  application of regression  analysis  would be in a study 



of emphasis in a two-axis  control  situation.  The  gain  and 

t ime-delay or equivalent  parameters for  each  axis  could  be 

determined  for   short   t ime  intervals .   The  parameter   values  

could  then  be  studied  for  changes of attention or emphasis 

from  one  axis  to  the  other. A similar  application would  be 

parameter  identification in natural  settings,  e.  g.,   automobile 

driving. 
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APPENDIX A 

ANALOG  COMPUTER.  CIR.CUITS 

The  analog  computer  circuits  used in the  data  analysis  are  pre- 

sented in this  appendix.  Thenotation  used is basically  that   recom- 

mended by Simulation  Councils,  Inc.  as  reported in the  December 1967 

issue of Simulation.  It was necessary  to   make  several   modif icat ions 

and  extensions  to  this  notation  which  are  summarized in Fig.  A -  1 .   A l l  

var iab les   a re   expressed  in t e r m s  of "machine  units".  Thus  the  com- 

puter  reference  voltage,  100 volts  for  the  computer  used  here,   cor- 

responds  to  one  machine  unit ,   i .e. ,  +1OOv = + 1 . 0   m . u .  

( 1) Multiplier  (Two  types) 

X z = +xy 

Y I 

( 2 )  Mode Control 

Integrator  mode of operation is defined by the  following  diagram 

and  truth-table. 

Q- 
Logic  level 

OP HO Mode 
I 

Res  et 

Operate 

0 Undefined 

Figure  A-1  Circuit  Diagram  Notation 
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(3 )  SPDT Switch 

Y x=? 

1 . Logic  input 

o r  

level 

-X 

D = A + B + C  

E = A   + B + C  
"" 

( 5) Latching  Push-button 

The  logic  output of this  device  changes  State  each  time  the  button 

is depressed.  

(6)  Pulser  o r  "One-shot" 

A*B 100 

0 l: 

I 

Figure A -  1 Circuit  Diagram  Notation  (continued) 
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(7 )  Flip-flop 

:::With S = 0 and C = 0 , a 0 -. 1 

transition  on  the  trigger  line,  T, 

wil l  cause  the output  to  change 

s ta te .  

Figure A - 1 Circuit  Diagram  Notation  (continued) 

The  circuits  shown in F igs .  A-2,  A-4 and A - 5  are  the  circuit   dia- 

grams  corresponding  to  the  computational  block  diagrams of Figs .  

3 . 3 - 2 ,   3 . 4 - 1  and 3 . 4 - 2  respectively.  The  circuits  given in F igs .  A-6, 

A - 7  and A - 8  correspond  to  the  modified  block  diagrams of F igs .  3 .   5 -3 ,  

3 .   5 - 4  and 3 . 5 - 5  respectively. 

As a check on the  computer  setup of Fig. A - 2  the  steady-state 

sinusoidal  response of uo ( t) ,  u1 (t)  and  u2(t) was  compared with the 

theoretical  functions. Fo r  the  case  of k = 3, $ = 6 and  $(t) = 0 . 3  sin 2t, 

the  magnitude  and  phase of u o (  t), u1 (t)  and u2  ( t )   a r e :  

Iuz(t)I = 0 . 0 3 1  

The  corresponding  computer  t ime  histories  are  given in Fig.  

A - 3 .  
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Figure A-2 Circuit  Diagram for Crossover  Model  Implementation 
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4 1 second 

Figure A - 3  Dynamic Check Time Histories 
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* Logic  signals 
a re  from c i r -  
cuit of F ig .  
A - 1 2 .  

i E F  

E F  
D 

u2 dt  

dt 

Figure A - 4  Circuit  for Evaluating R and v 
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+lOJul  dt 
0 

t lOfu,  e dt 
0 

I 

O2O 

I 
+,COJ’ul u2  dt 

M I 5  
20 1000 

t50f u2  e dt 
0 - 

2o 2 +50su2  dt 
0 A 0  

Figure A -  5 Ci rcu i t  f o r  Solving bf - + k R b - = k - v 

tb,, 120 
+ 
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I 

- 

0 1  

1 0  

Figure A-6 Modified  Circuit for  Crossover  Model  Lmplementation 
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e dt 

2.5 
+UO( t) 

F igure  

E F  

- 

" 

4 F  

4 

20 
-1 .388($f ju  

0 

E F  

E F  

- 2 O j u I  d t  2o 2 

0 

E F  

A - 7  Modified  Circuit  for  Evaluating R and v - 
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I " 

20 
+20Ju: dt 

0 

20 
1000 

+20{  u1 e dt bl,/10 
0 

A 0  

. 

+ O .  694-(0) j u 2  e dt A 2  2o 

n 
b,,/20 

- - 
+1.388(0) A 2 ju2dt  202 

0 A 0  

I 

Figure A - 8  Modified  Circuit fo r  Solving b' + k R b = k v  
1 - - 
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In  the  experimental   data  analysis  two  approaches  were  used  in 

sett ing  the  model  parameter  values:   one  was  i terative,   the  other was  

a noniterative  on-line  method. 

The  circuitry  for  the  i terative  analysis  is   presented in Figs .  

A-9  and  A-10.  The  model  parameter  values  for  each of the  T-second 

intervals  are  preprogrammed  using  the  "sequential   coefficient  selec- 

tor" ( s .  c .  s . )  presented in Fig.  A-10. A s  shown  in  Fig.  A-9  the  para- 

meter   values   are   obtained by using  the s .  c .  s .  as feedback  resistors 

of summing  amplifiers  which  have a constant  input.  The  resistance 

corresponding  to  the  parameter  value  for a given  data  interval is se t  

prior  to  the  analysis of data  using  the  manual  switches  shown in Fig.  

A -  10.  Then  during  the  calculation,  the s . c . s . automatically  steps  to 

the  proper  resistance  value  at  the  beginning of each  interval. 

In the  noniterative  on-line  analysis  the  model  parameter  values 

for  each  interval  are  obtained  using  the  circuit   shown in Fig.  A -  11. 

A s  indicated in this  figure,  the  model  parameter  values  for a given  in- 

terval   are   set   equal   to   the  es t imate   f rom  the  preceding  interval ,  i .  e . ,  

In the  noniterative  analysis,   two  l imits  are  imposed on the  model  para- 

meter   values .  One  limit,  imposed  due  to  the  potentially  large  errors 

in the  noniterative  estimates of the  human  operator  parameter  values,  

assures   that   the   model   equat ions  are   s table .   To  guarantee  that   the  

model  represented by Eq.  3 . 3 - 4  is   s table ,   the   parameter   values   are  

limited  such  that  the  damping  ratio of the  second  order  system is g rea t e r  

than 0 . 2 .  This  l imit   requires  that  6 2 1.5K.  The  second  l imitation is 

imposed  to  assure  that  6 does  not  exceed  the  valid  range of the  multi-  

pliers.  It  was  found  that a s imilar   l imit   i s  not necessary  for  K . The 

implementation of these two limits is seen in the  comparator-switch 

combinations of Fig.  A-1  1. 

A 

A 

The  logic  control  circuitry for  the  analog  computational  circuits 

is given in Fig.A-12  and  typical  logic  t ime  histories  are  presented in 

Fig. A-13 .  
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+-- l.o S . C .  s ' ~  update  command 

* sequential  coefficient  selector 

Figure A - 9  Circui t  for Obtaining  Iterated  Parameter  Values 
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Interval 

Interval 

Interval 

Interval 

480k 240k 12Ok 60k 30k 

I I I I I 

i- 1 - 1  - 

Interval 5 

F o r  the  condition  shown, 
the  system  is  in the  sec-  
ond interval  with 

R = 270kS2 

Bank of 
Manual 
Switches 

Figure A-10 Sequential  Coefficient  Selector 



and 

F igure  A-11 Circui t  for Obtaining  Noniterated  On-line 
Parameter   Values  
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The  "analog  gate"  shown in Fig.  A - I 4  is used  to  assure  that  none 

of the  elements of R and  v  exceeds  the  valid  range of the  computer 

components. In operation  the  analog  gate,  when  used  with a compara-  

tor,   produces a logic "1" output if the  absolute  value of any  element of 

R o r  v exceeds 100 volts. A s  is seen in Fig.  A -  12, this  logic  signal 

is then  used  to  place  the  integrators of all elements of R and v into 

Hold pr ior   to   the end of the  given  20-second  interval. 

- 

- 

- 

The  circuitry  for  computing  the  power  match, PM, discussed 

in Section 5 . 4  is   presented in Fig. A -  15. 

120 
$ e'dt 

$ 02dt 
P M  = 1 - 120 0 

0 
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A P P E N D I X  B 

ANALYSIS O F  INFINITE DATA INTERVAL 

Let  us  init ially  consider a general   l inear  t ime-invariant  system 

of the  form  shown in Fig.  B-  1. In this  preliminary  analysis,   i t   is   de- 

s i r e d  to  obtain  an  expression  for the covariance of the two signals,  

y1 (t) and  y2(t) .  If the  two  sections of the  system in Fig.   B-1  have 

weighting  functions g, (t)  and g2(t)  respectively,  then y1 (t) and  yz(t)   can 

be  expressed as convolutions. 

B- 1 

B-2 

The  t ime-cross-correlation  function, r ( u ) ,  [ 6 3 for  y1  (t)  and  y2(t) 

is  then  given  by: 
Y1 Y 2  

T/2 

B-3 

Similarly  the  statist ical   cross-correlation  function  for  the two functions, 

9 ( v ) ,  is  given  by: 
Y l Y 2  

If the  system  input is a stationary  and  ergodic  random  process,   then 

r - Y l Y Z ( V )  = 9 ( v )  
Y l Y 2  

with  probability  one. 

The  expression  for + ( v )  can  be  expanded as  follows: 
Y l Y 2  

B- 5 

B-6 

127 



Figure B-1 Block Diagram for Linear  Time-Invariant  System 
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The  power  spectral  density @ (w) which  is  defined  as  the 
Y l Y 2  

Fourier   t ransform of the  correlation  function [ 6 ] is  then: 

M 

B-7 

B-8 

B-9 

m m c a  

Define a new  variable, y, a s  : 

y = v + p - a  

then 

and 

where + ( t )  is the  autocorrelation  function for +(t),  and @ (jw) is  the 

corresponding  autospectral  density. GI( jw) is the  transfer  function 

corresponding  to  yl(t)  and G2(jw) is  the  transfer  function  corresponding 

+ + 

to Y2(t) . 

The  cross-correlation  function, 4 ( v ) ,  can now be  expressed 
Y $2 

as the inverse   Fourier   t ransform of 9i (jw) . 
Y l Y 2  
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06 

B -1 5 

B-16 

The  covariance of yl(t)   and  y2(t)   corresponds  to 9 (0) which  can  be 

expressed as : 
y1y2 

+ (0 )  = 3” (jo)dw 
Y I Y 2  2n Y l Y Z  

B-17 
-m 

Consider now rear ranging  Eq . B-17 to  a form which  is  more  amenable 

to  numerical  calculation.  Note  that, 

then 
0 co 

m 

+ ( 0 )  = r[CD ( jw )  + @* (jw)]do 
Y l Y 2  2Tr Y l Y Z  

0 
Y l Y 2  

Substituting Eq. B-14 into Eq. €3-2 1 yields:  

m 

Since $(t) is a r e a l   p r o c e s s .  

* 
@+(jw) = @+(jw) 

B-18 

B-19 

B- 20 

B-21 

B- 22  

B- 23 
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and 
ob 

B- 24 

B - 2 5  

From Eq. B-5 it is seen  that   the  t ime  covariance,  i .  e . ,  I? (0) ,  
Y1 Yz 

can  be  written as:  

( jw)  dw B- 26 4J 
0 

Consider now the  application of Eq . B - 2 6  to  the  analysis of  the 

crossover   model .   The  system  that  is to  be  studied  is  given  in  Fig. 

B - 2 .  In Chapter 3 ,  it was  shown  that  the  best  estimate of AKand A a  

is  given  by: 

b = R-’v -e  - 

where, 

= [I: :::I 
and 

The  elements of R and v have  the form: - 

r i j  = T [ui(t)uj(t)]dt 

- T / 2  

and 
T / 2  

v = S ui( t) e(t) dt i T  

1=1,2 

j = l , 2  

i = l , 2  

B- 27 

B - 2 8  

B- 29 

B - 3 0  

B-3 1 

- T / 2  
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Figure B-2 Block Diagram f o r  Crossover Model Analysis 
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B-32 

Expressions  for   the  l imit ing  case of T + 00 can  be  obtained  by  applying 

E ~ .  B-26 to Eqs. 13-30 and  B-31.  The  expressim s for  the  l imiting 

case   a re   then:  
00 

lim rl l  = - 1 1 IHK(jw)I‘@+(jw)dw 
A 

T+ w 
Tr 

0 

00 

m 

l im v1 = - 1 1 Re{[Ag(jw)][H(jw) - A ( j w ) ]  )@+(jw)dw 
T* 03 

Tr 
0 

B-33 

B-34 

B-35 

B-36 

B-37 

The  value of b for  the  limiting  case of T - 03 is denoted  by b - e  - m .  
Thus, 

B-38 

To  obtain  the  value of b it is   necessary  to  evaluate  the  integrals of 

Eqs. B-33  through  B-37.  To  numerically  perform  these  integrations 

it is necessary  to  obtain  algebraic  expressions fo r  each of the  inte- 

grands.  

“00 

The  expressions  for  the  integrands  are  obtained by direct   substi-  

tution of the  expressim s that  are  given as par t  of Fig.  B-2  into Eqs. 

B-33  through  B-37. To simplify  the  necessary  algebraic  manipulation, 

the  following  auxillary  variables  are  defined. 
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P1 = Input Filter C u t - o f f   F r e q u e n c y  ( radlsec)  

P 2  = k '  

P3 = (Y 

P4 = K 

N 

N 

A 

P 5  = $ 

A N 1  = [( P5)2 + w 2 ] u  

A N 2  = - 2 ( P 4 )  W' 

A N 3  = ( P 2 ) ( P 3 )  

A N 4  = - ( P ~ ) w  

A N 5  = ( P 4 ) ( P 5 )  

A N 6  = - ( P ~ ) w  

A N 7  = [ ( A N 3 )  - u 2 ]  

A N 8  = [(P3) - ( P 2 ) J w  

A N 9  = [ (AN5)  - m 2 ]  

A N 1 0  = [(P5) - ( P 4 ) I w  

D l  = [ ( A N 7 ) 2  + ( A N 8 ) 2 ]  

D 2  = [ (AN9) '  + ( A N 1 0 ) 2 ]  

A f t e r  considerable a l g e b r a i c   m a n i p u l a t i o n ,  the expressions for  

the i n t e g r a n d s  a r e  f o u n d  to  be: 

A 1  

A 2  = 

A 3  = 

- - 



- { (AN5) (AN9)  - (AN6) (AN10) )  . I) B-43 

The  input  used in the  numerical   calculations  was a white  noise 

signal  which  was  passed  through a l inear   f i l ter .   The  f i l ter   used  was a 

critically  damped  second  order  filter  with a cut-off  frequency of 

2 rad /sec .   Thus  @ (jw) has  the  form, 4J 4 

o r  
1 

where  the input  cut-off  frequency  is  fixed  at: 

P1 = 2 r ad / sec  

B-44 

B-45 

A For t r an  I1 program w a s  writ ten  to  perform  the  necessary 

numerical   calculations  discussed in this  appendix.  The  computer  used 

to  implement  the  program  was a SDS-940  digital   computer.  A copy of 

the  program  is   included  here.  
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-elm 

*APPEND /AUGALL/ 
VERSI DN 4- 12- 68 

*P 

10 

12 

20 

25 

26 

27 
28 

29 
30 

I 1  

A@ 

42 

44 
35 

49 
50 

52 
I 
2 
4 
5 
3 

DIMENSION PCS)rANClO).DC2).RC4).V(2).SC30)rIS(5).A(2) 

N5=0 
DIF=1000001 

DPEN CB,INPUTs/DATA/) 
READ 2,1~CP(1)-1=1.5) 
TYPE 4, cPcI),I=l,5) 
I R=O 

IDDNE = 0 
IR=IR+l 
EL=O -0 
ER=19.0 

TEWV=O -0 

N!JRD=7 
ISC5)=1 

PI=3.1415927 
CALL ROMBERG( EL. E& NORDI W n  V a  S n  1 S )  
IF (ISC5)) 25.40125 
AN(I)=CP(5)**2 + Y**2)*W 

ANC3)=PC2)*PC3) 
ANC2)=-2*PC4)*W**2 

ANc4)=-Pc2)*w 
ANc5)=Pc4)*Pc5) 
ANC6)=-PC4)*W 
ANC7)=ANC3)-W*t2 
ANCB)=(PC3)-PCP))*W 
AN(P)=AN(5)-W**2 
ANClO)=(PC5)-PC4))*W 
D(l)=AN(7)+*2 + ANC8)**2 
DC2)=ANC9)**2 + ANClO)**2 
DTWSQ=l/CD(2)**2) 
HKSQ=DTWSQ*((W**3 + V*P(5)**2)**2) 
HASQ=DTWSQ*C4*W**4*PC4)**2) 
Q=ANt$)*ANC7)-ANC3)*ANC8) 
E=AN(3)*ANC7) + AN(4)*AN(B) 
F=ANC9)**2-ANC10)**2 
G=2*AN(9)*AN(IO) 
H=l/D(l) 

REHK=DTYSQ+AN(I)*CH*CQ*F+E*G)-(ANC9)*ANC6)+ANClO)*ANCS))) 

SX=1/CCI+CV/P(1.))**2)**2) 
RMA=DTWSQ*AN(2)fCH*CE+F-Q*G)-CAN(5)*AN(9)-ANC6)*AN(lO))) 

V=HKS.Q*  SX 
IF (IR-1) 27r26,27 

GD TD  20 
IF CIR-2) 29.2R.29 

GO TD 20 
V=HASQ+SX 

V=RMK*SX 
IF (IR-3) 31r30r31 

GD  TD 20 
V=RMA+SX 
0 TO 20 
TEMV=TEMV + V 

EL=ER 
IF ( I  DONE-0 1 44.42~44 

ER=ER+ 1 
ISc~5)=1 

GD TD 20 
IDDNE-1 

TYPE 5r TEMV 
IF (ABSFCV)-DIF) 35.35. 42 

RC I R)  =TEMV 

A(l)=R(3)/RCl) 
AC2)=RC4)/R(2> 

N5=N5 + 1 

IF  (IR-4) 12,50,12 

TYPE 3, A(l).,ACP) 

IF C N 5 - 5 )  10.52.52 

FORMAT C5F6.2) 
CLDSB  (2) 

FDRMAT (F13-8) 
FDRMAT (BH INPUT n5F7.2) 
FDRMAT (/F13.8//) 
FORMAT (8H A(1) = ,F11.6.4X18H AC2) = ,Fll.6//> 

END 
STDP 

*VRITE TAUGALL/ 
OLD FILE? 
528 WORDS. 
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I 

A P P E N D I X  C 

EFFECT OF FINITE DATA INTERVAL 

Let  us  init ially  consider a general   l inear   t ime-invariant   system 

such as is  discussed in Section  2.6.  The  description of the  system  con- 

tains a parameter   vec tor ,  c ,  of dimension  L.  The  system  with  cor- 

responding  model  can  be  represented as in Fig.   C-1.  In  this  f igure,  

- is  the  value of the  parameter   vector   for   the  system  and $ is  the  value 

of the  parameter   vector   for   the  model .  

- 

" 

It   is   seen in Section  2.6  that  under  appropriate  conditions  on - 

and  that  the  estimate of the  difference  between  and $ obtained  by 

regression  analysis ,  b , is  defined  by: 
- - - 

-e 

b = R-'v - e  - 

The  matr ix  R is  defined  by: 
TI2 

where, 

- TI2 

and  the  vector v is defined  by: - 

T/2 

v = 1 [!(t) e(  t)] dt - T  
- TI2 

Let  u s  now define a new variable,  z(t),  by: - 

c- 1 

c-2 

c-3 

c -4  

- z(t) = R-' - u(t) c-5 
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1 

Figure  C-1 Block  Diagram  for  Linear  System 
with  Corresponding  Model 
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Then, 
C - 6  

Let u s  a lso at this  point  define  the  value of k e  for   the  case of an 

infinite  interval of data.  A s  in Appendix B this  is  defined  by: 

b = l i m  b 
-00 

T-+m 
-e  

c-7 

Then for the  case  where +(t) is a stationary  ergodic  random  process, 

c - 8  

Consider now another  expression  for  the  value of b -e  . Eq. C-6 

can  be  rewritten in the form of a convolution as  follows: 

where, 

= f E [ z ( t  - -a) e( t   -u)]w(a)  da 
-00 

-m - 

r 
m 

c -9  

c- 10 

c - 1 1  



Consider now the  effect on the  value of b of a finite  interval of 

dpta, i. e . ,  T < 00. Gilbert [14] has  shown  that  this  effect  can  be  con- 

s idered as a perturbation  from  the  value of b given by Eq. C-i',  then, 

-e 

"00 

b = b  + 6  -e -00 - c- 12 

where - 6 represents  the  effect  of the  finite  data  interval.  Note  that 

s ince 

E[b - e] = E[b + 61 = b C-  13 
"00 -0O 

it follows  that, 

E[6] - = 0 C -  14 

Consider now the  covariance  matrix  for b , which  from Eq. -e  
C-12 is given  by: 

E[b b # ] = E [ b  b #  + b  6 # + 6 b # + 6 6 ]  # -e-e "03"Oo "m - " 00 " 

and  since b is a constant 
"03 

E[b b ] = b b' + E[6 6'1 
# 

- e - e  -00-00 " 

C-15 

C-16 

Eq.  C-16  can  be  rewritten in t e r m s  of the  covariance  matrix  for 6 a s :  - 

E[66 3 = E[b  b'] - b b #  - e - e  -CO -00 

# 
" 

C- 17 

If the  convolution  expression  for b is substituted in Eq.  C-17,  then - e  

C-18 

Expanding  Eq.  C-18  and  interchanging  the  integration  and  expectation 

operations  yields : 
m 0 O  

~ [ 6  " 6'1 = 1 (1E[z(t -a,)z # ( t   - u , ) e ( t   - q ) e ( t   - ~ ~ ) ] w ( u ~ ~ ~ ( u ~ ) d u ~ d ~ ~  
-00 -0O 

- 

# - b  b C-19 
-03 "00 
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A t  this  point  i t   is   necessary  to  make  one  more  assumption,  namely  that  

e(t) and all of the  z.( t)  are jointly  gaussian.  Under  this  assumption, a 

typical  element of the  matr ix   E[z( t  - -ul)z ( t  -u2)e( t  -u l )e ( t  -u2)]  can  be 

written as 

1 
# 

+E[zi(t - ul)e(t  - ul)]E[z.(t - u2)e ( t  - r2)] 
J 

+E[z.(t  1 -ul)e( t   -u2)]E[z.( t   -u2)e( t  -uJ] 
J 

i = 1, 2, . . . ,  L ;  
j = l , 2 ,  . . . ,  L 

c -20  

or,  in t e r m s  of correlation  functions, 

c -22  

If it is  noted  that, 

then  Eq. C - 2 i  can  be  writ ten in t e r m s  of correlation  function  as, 

C -23 
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Note  now  that, 

C-24 

The  covariance  matr ix   for  6 can now be  wri t ten  as :  - 

where it has  been  noted  that 

p = a1 - IT2 

o r  

a2 = a1 - p 
For  convenience,  let, 

Then, 

or,  

C-26 

C -27 

C -28 

03 

Consider now  the  evaluation of J w(al)w(ul - p)du, . This  evalua- 

tion is aided  by  the  sketch  presented in Fig.  C-2.  The  value of w(u) 
-00 

for  this  f igure  is   from  the  definit ion of w(a)  given in Eq. C -  10 .  F rom 

Fig.   C-2  i t   i s   seen  for   the  case of p = 0 ,  that, 

Also  from  Fig.  C-2,  it   is  seen  that  for  any  given  value of p, 

C-29 

-m 
J 
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p- Shaded  area T2 

( 0 Elsewhere 

Figure C-2 Graphical  Description of w ( u 1 ) w ( ~ -  p) 

Therefore  the  following  inequality is satisfied,  

03 

C - 3 0  
-03 

From  this  point on let  u s  consider  only  the  diagonal  terms of 

E [ 6  " 6'1, i .   e . ,   t he   va r i ance  of the  individual  elements of - 6 .  Define  the 

var iance of 6 .  by: 
1 

E[6:] = cr 2 

Also  denote  the  diagonal  terms of the  matr ix  s(( p) by: 

C - 3 1  

C - 3 2  
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Then, 

n 
co 

n 
00 

From Eq. C-30, 

c - 3 3  

c - 3 4  

For   t he   r ema inde r  of the  discussion of this  appendix,  iet u s  con- 

sider  the  crossover  model  for  the  human  operator.   The  general   sys- 

tem  given in F i g .  C-1  is  then  replaced  by  the  specific  system  which is 

presented in Fig.   B-2.  From  Fig.   B-2  and  other  discussion it i s   seen  

that L = 2 for the  crossover   model .  

Consider now  obtaining  expressions  for S2 p) and Q 2 (  p) . From 

Eq. C-32  the  expression  for n1(p) i s :  

Since  the  processes   under   discussion  here   are   assumed  to   be  s ta t ion-  

a r y  and  ergodic,  the  expressions of Eq. C-35  can  be  written as, 

C-36 

The  necessary  expressions  for  zl(t)   and  z2(t)   are  obtained  from  the 

definition  given in Eq. C-5.  From  this  definit ion,  
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Substituting  the  expressions of Eq. C - 3 7  into Eqs C - 3 5  and C - 3 6  and 

rear ranging   te rms   y ie lds  : 

C -38  

An expression  for n2( p) can be obtained by similar  manipulations 

1 -1 

14 5 



In  Appendix B it is  shown  that, 

This  fact  can  be  used  very  beneficially  in  simplifying Eqs. C-38  and 

C-39. When Eq. C-40 is substituted  into  these  equations,  the  expres- 

s ions  for  Q,( p) and a,( p) become: 

Combining Eqs. C-34,  C-41  and  C-42  yields: 

C-41 

C -42 

c -43 

To obtain a value  for  the  upper  bounds  given  by  Eqs. C -43  and C -44, 

the  integration is more  easi ly   carr ied  out  in the  frequency  domain  than 

in the  time  domain.  Thus if Plancherells  theorem is applied to the  in- 

finite  integrals of Eqs. C-43  and  C-44,  these  equations  become: 

c -45 

C -46 

After  sufficient  algebraic  manipulation  the  integrals of Eqs. 

C-45 can be put  in  the  following  forms. 
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n 
03 

n 03 j @:UI(jw) dw = 2 j Re[@'  (jw)]dw 
-00 eu 1 

0 

03 
n 
m 

c -47 

C -48 

c -49 

Completely  analogous  expressions  can  be  obtained for the  integrals of 

Eq. C - 4 6 .  Substituting Eqs. C - 4 7  through C - 4 9  and  the  corresponding 

integrals for  Eq. C - 4 6  yields : 

C - 5 0  

C - 5 1  

For  the   case  of the  crossover  model,   the  integrands of Eq. C - 5 0  

can  be  expanded  using  the  transfer  operators  given in F i g .  B-2. 
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I- 

Again,  completely  analogous  expressions  can  be  obtained  for  the  inte- 

grands of Eq. C - 5 1 .  To complete  the  integrations of Eqs . C-50 and 

C-51 it is  convenient  to  define  several  auxiliary  variables. In addition 

to  the  variables P 1 through P5, A N  1 through A N 1 0 ,  D l ,  D2 and A 1 

through A 5  defined in Appendix €3, it is  necessary  to  define  the  follow- 

ing var iab les .  

A *  - A 
(A6)  = Im{H k(H - H)} 

- :ty)li){& [ ( (AN7)(AN4)  -(ANg)(AN3))(21AN9)(ANlO)) 

- ( ( A N 3 ) ( A N 7 )   + ( A N 4 ) ( A N 8 ) ) ( ( A N 9 ) 2   - ( A N 1 0 ) 2 ) ]  

+ [ ( A N 5 ) ( A N 9 )  - ( A N 6 ) ( A N 1 0 ) ]   C - 5 6  

(A7) = Im{H ( H  -&)I A *  N 

a 

+ ( ( A N 3 ) ( A N 7 )  t(AN4)(AN8))(2(AN9)(ANlO))] 
- [ ( A N 9 ) ( A N 6 )   + ( A N l O ) ( A N 5 ) ]  -} c - 5 7  

J 

( A 8 )  = { E  - H)(H - G)"} = { / H I  + I f i 1 2 -  ZRe[Hfi ] )  
A -  - 2  

2 
( D I I ( D 2 )  

- [(AN3)(AN5)+(AN4)(AN6))((AN7)(AN9)+(ANg)(ANlO)) 

- ( ( A N 4 ) ( A N 5 )  - ( A N 6 ) ( A N 3 ) ) ( ( A N 7 ) ( A N l O )   - ( A N 9 ) ( A N 8 ) ) ] )  
J 

C-58 

03 

(12) = S { ( A 2 ) ( A 8 )   + ( A 4 ) 2  - (A7)2} (A5)2do . 
0 

c -59 

C - 6 0  
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The  integrals of Eqs. C-59  and  C-60  represent  the  numerator of 

Eqs. C-50  and C-51 respectively.   The  denominator  integrals  are ob- 

tained  from Eqs. B-39, B-41 and  B-45. 

A modification  to  the  computer  program  given in Appendix B was 

written  to  evaluate Eqs. C-50  and C-51 using  the  auxiliary  variables 

presented  here  and in Appendix B. A copy of this  modified  program  is  

included  here. 
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10 

12 

20 

25 

26 

27 

30 

42 

44 
35 
45 
50 

5 
52 

6 
1 
2 
4 

* 

NS=N5 + 1 
IF (IR-2) 12,50~12 

CLOSE (2) 
IF CN5-6) 10152.52 

FORMAT  (/F14-8//) 
FORMAT  CF14-8/) 

FORMAT C5F6.2) 
FORMAT CF13.10) 
FORMAT (8H INPUT ,537.2) 
STOP 
END 
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APPENDIX D 

COMPONENTS OF VARIANCE 

Let us  consider a population A which  is  defined by the  density 

function  p(x) of the  random  variable X.  In addition,  let  the  population 

A be  composed of N mutually  exclusive  subpopulations A I ,  A z ,  . . . , A N  

which  have  individual  density  functions p1 (x),  pz (x), . . . , pN(x) . It  can 

be  shown [48] that:  

N 

where,  

'i = P r o b  [X c Ai]  D-2  

NOW let  p. and r2  represent  the  mean  and  variance  respectively of X for  

X c A .  Also  le t  p.. and ciz represent  the  mean  and  variance  for X c A . .  
1 1 1 

It is then  desired  to  obtain  expressions 

of p( x)  and  the  pi( x) . 

Consider   f i rs t   the   expression  for  

p = xp(x)dx 
-03 s' 

From Eq. D-1, 
03 

r i-. 
N 

which  re la te   these  parameters  

the  mean, p. 

D-3 

Interchanging  the  integration  and  summation  operators  yields: 

Then, 

D - 4  

D-5 

D-6 

Now consider   the  expression  for   the  var iance,  IT'. 
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03 

d 2  = !(x - pfp(x) dx 
-03 

D-7 

Again  substituting  the  expression of Eq. D-1 and  interchanging  the  in- 

tegration  and  summation  operators  yields : 

D-8 

D-9 

Noting  that   the  cross-product  terms in the  squared  expression  vanish 

yields : 

N 
u2 = + f  + ( P i  - P)21 

i=1 
If i t   is   assumed  that:  

= q z  = . . 

then, 

and, 

l N   l N  
u2 = .- c r z  + --X( pi - p)' 

N N .  i= 1 1 = 1  

D-10 

D-11 

D-12 

D-13 

From Eq. D-13 it is seen  that  r z  can  be  thought of as having  two 

components.  One  component, u , is  due  to  the  variance  with  the  indi- 

vidual  subpopulations  and  the  second  component, r2 is  due  to  the  dif- 

ference in the   means  of the  individual  subpopulations.  The two compo- 

nents of r2 a r e  defined  by: 

2 

W 

B' 

D- 14 

D-15 
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Then, 

rz = ( r2  + 0- 2 
W B 

D- 16 

Let  us now consider  the  problem of obtaining  unbiased  estimates 

of the  elements of Eq. D-16.  It is assumed  that M independent  samples 

are   taken  f rom  each of the  subpopulations A , ,  A z ,  . . . , A N .  Thus a total  

of N X M samples  are taken  from  the  population A .  Denote  the  samples 

from  subpopulation A .  by x , xiz, . . . , xiM . 
1 il  

A s  a preliminary  to  obtaining  estimates of the  elements of Eq. 

D- 16, let   us  consider  some  properties of the  general   sample,   x. .  . 
Rather  than  carry  through  the  density  function  notation  introduced  earlier, 

le t   us   express   x . .   as   fol lows:  

1J 

1J 

x . .  = CY1 X , j  + CYZX2’ + . . . + CY 
‘1 J N xNj  

D- 17 

where, 

1 with  probability - 1 

0 with  probability ( 1  - 
CY i = {  N 1  

N) 
The CY. fo rm a se t  of mutually  exclusive  and  exhaustive  random  variables 

which a r e  independent of the x . .  . Thus. 
1 

1J 

P rob  (a l  = 1 o r  ‘y2 = 1 o r . .  . o r  CY = 1) = Prob (a1 = 1) + N 
Prob  (az = l)+.  . . + P r o b  (aN = 1) D- 18 

and 

P rob  (CY, = 1 o r  az = 1 o r  . . . o r  CY = 1) = 1 N 
D- 19 

Then 

E[x..] = E[x. . /cr l   =l]Prob(al  =1)  +E[x../cu2=1]Prob(cr2= 1) 
1J ‘3 Ll 

+ - . - + E [ x . . / a N   = l ] P r o b ( ~  = 1) 
‘J N 

= 1  1 1 
NPl  +f3 pz + . . .  +N% 

D- 20 
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From Eq. D- 12,  it  is  seen  that, 

E[x..] = p D-22 
1J 

Consider  now E[x..   x 3. Note  that  the  subpopulations  are as- 
‘J Pm 

sumed  to  be  mutually  exclusive  and  the  samples  within a subpopulation 

a re   a s sumed  to be  independent.  Consider  the  following f o u r  conditions. 

1) i = e ,  j = m  

E[x .X ] = E[ (X..)’] = u f  + pi 2 iJ Pm ‘J 

E[x..x I = pi 2 
‘J Pm 

3) i #  e ,  j = m  

D- 23 

D- 24 

D-25 

E [ x . . x  ] = pipe 
‘J Pm D- 26 

Let u s  now consider  obtaining  an  unbiased  estimate of the  total 

variance,  u’. A s  a likely  candidate  for  such  an  estimate  consider MS,,  

which is defined  by 

N M  

where 

or 

where 

Note  that 

D- 27 

D- 28 

D-29 

D-30 

D-3 1 
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E[G] = p, 

and 

1 M 

j= l  ‘J 
E[Gi] = E E[x..] i = 1, 2, . . . , N 

D-32 

D-33 

E[Gi] = pi D-34 

Thus G is an unbiased  estimate of p and  the E.  are  unbiased estimates 

of the p . i 

L 

Let US now consider if MSI is  an  unbiased  estimate of cr‘. F i r s t  

rewr i te  MS, as: 

D-35 

D-36 

Consider now the  expected  value of the  individual  terms of Eq. D-36 

Denote  these  terms by A ,  B and  C.  Then, 

D-37 

D-38 

From Eqs. D-22 and D-23 i t   i s   seen  that  E[A] i s :  
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D-39 

D-40 

Consider now the E[B] which is defined  by: 

D-4 1 

The  f i rs t   three  terms  inside  the  double   summation are ,  respectively, 

pip, -p2 and p . 2 

Now consider  the  fourth  term  within  the  summations.  

When l = i, 

= - E[x.. xim] 1 

M ‘J m =1 

From Eqs.  D-23  and  D-24  this  becomes, 

2 

‘J m # j  

D-43 

D-44 

when e # i, 

E[x. . E e ]  = pi pt 
‘J 

D-4 5 
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Substituting  Eqs.  D-44  and  D-45  into  Eq.  D-43  yields: 

E[x..G] = E cri + pi p 
- 1 2  

'J 

Eq.  D-42  can now be  expressed as: 

and, 

E[B] = 

- - 

E[B] = 
N 

Finally,  E[C] is given  by: 

T h e   c r o s s   t e r m s  of the  multiplication of Eq. D-51 have  the  form, 

= o  

D-46 

D-47 

D-48 

D-49 

D- 50 

D-51 

D-52 

Thus Eq. D-51 can  be  rewri t ten as: 
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The  var iance of the  sample  mean is known [ 111 to  be  related  to  the 

variance of the  corresponding  random  variable by 

Then Eq. D-53  can  be  rewritten  as, 

Combining Eqs. D-40, D-49 and  D-56  yields : 

N 

MN - 1  i=1 1 MN -1  iZ1 

N 
M EIMS1] = {- CcTf.+" np.- P$ 2 

2 
N 

- Caf + ___- E.;} 
N(MN -1) iZ1 1 N(MN -1) i z 1  

D- 53 

D- 54 

D- 55 

D- 56 

D- 57 

D- 58 

D- 59 

Inspection of Eqs. D-13 and  D-59  shows  that, in general, MS1 - is  

not an  unbiased  estimate of u t .  Further  inspection of these two  equa- 

tions  shows  that  for  two  special  cases, MS, is  an  unbiased  estimate of 

u . These   ca ses   a r e :  

- 

2 

(1) p.1 = p.2 = . . . =  % 

( 2 )  l imit  as M -. m 

Now consider  modifying MS, s o  that  an  unbiased  estimate of u2 is 
1 

M N - 1  obtained.  The  most  apparent  modification  is  to  subtract - t imes  
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l N  an unbiased  estimate of - C (p - p.J2 from MSl . N i=1 

In an  effort  to  obtain an unbiased  estimate of - C (p- pi)2, which 1 
N 1  

incidentally  is u2  (Eq .  D-16), let us consider MS2 which  is  defined  by B 

l N  
MS2 = G ( E  - Ei)2 D-60 

i=1 

Eq. D-60  can  be  rewritten  as: 

l N  
MS2 = c [ (P i  - p) + (G - Pi) + ( p  - a 1  2 

i = 1  i 

D-6 1 

The  E[MS2]  can  be  determined  from  the  expected  value of the  individual 

t e r m s  of Eq. D-6 1.  Then, 

From Eq.  D-54 it is seen  that 

From Eqs.  D-51  through D-55,  it is seen  that 

D-62 

D-63 

D-64 

The expression for the   f i rs t   cross-product   term  is  
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LY 

- - - [p: - p i  - p y i  + ppi] = 0 D-65 
2 2 

N 
i=1 

The  expression  for  the  second  cross-product is: 

D-66 

The  expression  for  the  third  cross-product  term  is:  

F r o m  Eq. D-54, for  the  case t = i, 

For   the   case  t f i, 

Therefore,  Eq. D-67  becomes 

D-68 

Combining Eqs. D-62  through  D-68  yields 

D-70 
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From  Eq.  D-70 it is  seen  that M S t  is not  an  unbiased  estimate 

of u2 Again,  the  reasoning is that  an  unbiased  estimate of ut can  be 

obtained  by  modifying  MSt . 
B‘ B 

To modify MS2 consider  obtaining  an  unbiased  estimate of 
1 which is also uz A s  a candidate,  consider MS3 defined  by 
N i=1 i ’ W‘ 

Then, 

The  expected  value  inside  the  brackets is 

E[(x . .  - pi)( pi - Gi)] = E[x. .p. - p 2 + wiGi - X .  .Ei] - 

‘3 ‘J 1 i LJ 

- pi - pi + pi - E(x. . X .  1 M LJ lm 
- 2  2 2 l M  

m = I  

When m = j ,  

When  m # j, 

E[x X = pi 2 

ij  im 

Then, 

D-7 1 

D-72 

D-73 

D-74 

D-75 

and  Eq.  D-72 can be  rewri t ten  as  
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M M - 1  
- N(M - 1) (T)'; 

. N  
D-76 

D-77 

Now MSw can be  used in conjunction  with MSz to  obtain  an  un- 

biased  estimate of u2 Define MSB by B '  

MSB = MS2 - (m) MSw 
N - 1  

Then  from  Eqs.  D-70,  D-76  and  D-77  it  is  seen  that 

Similarly  define MS Tot a1 by 

D-78 

D-79 

D- 80 

D-81 
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APPENDIX E 

EXPERIMENTAL DATA 

In the  course of the  experimental   analysis,   best   estimates of 

crossover  model  gain,  I < ,  and  time-delay, T ,  were  obtained.  These 

values  were  obtained by the  i terative  regression  analysis  technique. 

The  conditions  analysed  are: 

Two  controlled  elements; Yc(p) = 5/p,  Yc(p) = 5 / p 2 .  

F o r  each  controlled  element;  three  different  subjects,  five  two 

minute  trials  per  subject,  five  20-second  intervals  within  each 

t r i a l .  

The   parameter   es t imates   a re   p resented  in Table E .  1 .  
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Table E. 1 EXPERIMENTAL  DATA 

Y,(p) = 5 / p  DAY 2 PARAMETER K 

S U B J E C T  1 S U B J E C T  2 S U B J E C T  3 

5 . 7 7  4 . 7 6  3 . 24 

4 . 3 5  5 .   14  2 . 8 5  

4 . 3 0  4 .  50 3 . 4 6  

3 .   83  4 . 9 2  2 . 8 8  

3 . 3 7  5.  16 3 .  52 

T R I A L  1 

T R I A L  2 

T R I A L  3 

T R I A L  4 

3 . 6 7  4 . 7 5  3 , 4 6  

3 . 7 6   4 . 4 6   2 . 9 1  

2 .  58 3 . 8 4  2 .  58 

2 . 8 2   3 . 2 5   2 . 6 9  

3 .  17 3 . 9 4   2 .  52 

4 . 0 1  2 . 4 3  4 .  27 

3 . 0 8  2 .  84 3 . 4 7  

3 . 6 7   3 . 1 1  2 . 8 6  

3 . 8 1   4 . 0 9  2 . 9 2  

3 .  03 3 . 8 4  2 . 9 7  

4 .   83  4 .  23 3 . 9 3  

3 . 6 7  3 . 6 8   3 .  51 

2 . 6 3  4 . 3 8   3 .  28 

3 . 2 5  4 . 5 3   2 . 4 3  

3 . 5 5  3 . 7 3   2 . 8 7  

T R I A L  5 4 . 6 6  3 . 47 3 . 4 1  

4 . 0 4  3 . 7 4  2 . 9 8  

3 . 7 8  3 .   8 5  2.   81 

3 . 8 9  4 . 4 2  2 . 7 9  

4 . 0 4  3 . 7 3  2 . 4 5  
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Yc(p) = 5 / p  DAY 6 P A R A M E T E R  K 

S U B J E C T  1 S U B J E C T  2 S U B J E C T  3 
T R I A L  1 5 . 9 5  6 . 5 5  4.   41 

5 . 7 8  7 . 8 1  3 . 9 8  

5 . 9 1  7 . 8 9  3 . 3 0  

5 . 3 3  6 . 3 3  2 . 6 8  

4 . 4 3  6 .   1 5  3 . 4 7  

4 . 7 2   6 . 6 1  4.   13 

5 . 2 2   6 . 0 4  4 . 1 2  

4 . 6 1   5 . 5 9  3 . 9 7  

4 . 7 3   6 .   5 5  4 . 4 7  

5 . 2 2   6 .  51 3 . 4 9  

T R I A L  2 

T R I A L  3 

T R I A L  4 

5.  11 7 . 2 1  3 . 9 4  

5 . 3 7   7 . 9 7   3 . 6 3  

5 .   2 8   7 . 8 1   3 . 4 8  

4 . 3 1   6 .   8 3   3 . 9 1  

6 .  22 7 . 5 5   3 . 4 0  

4 . 3 8  6 . 0 6  4 .  13 

4 . 9 8   6 . 4 8  3 . 3 3  

4 . 7 1   6 .  51 3 . 3 5  

5 .   86   6 .66  2 . 9 2  

4 .  27 6 . 9 1  3 . 3 4  

T R I A L  5 4 . 3 5  7 . 0 9  3 . 6 7  

4 . 4 8  6 . 3 1  3 . 9 6  

4 . 9 4  6 .  51 3 . 4 9  

5 . 6 0  6 . 6 9  3 .  51 

5.  18 5.  53 3 .   5 8  
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Yc(p) = 5 / p  DAY 10 P A R A M E T E R  K 

SUBJECT 1 S U B J E C T  2 S U B J E C T  3 

6 . 0 6  8 .   1 0  3 . 8 4  

6 . 0 5  1 0 . 4 2  2 . 7 1  

6 . 7 1  8 . 0 3  3 . 3 2  

6 . 6 1  8 .  81 3 . 4 4  

7 . 1 1  7 . 56 3 . 47 

8 . 4 1  7 .  26 3 .  29 

7 . 4 3  7 . 6 9  2 . 8 2  

6 . 7 8  6 . 0 7  3 . 9 5  

6 .  28 8 . 0 7  3 . 7 3  

6 . 6 9  6 . 8 1  3 .  29 

6 . 8 2  8 . 2 8  3 . 9 4  

6 . 8 8  7 . 6 9  3 . 6 3  

5 . 7 5  6 . 8 3  4 . 4 0  

5 .97  6 .  89 4 .   62  

6 . 0 6  7 . 4 7  3 . 6 2  

6 . 6 0  7 . 5 7  3 . 9 4  

6 .  27 7 .  52 3 . 6 6  

6 . 3 6  7 . 8 4  3 . 7 0  

5 . 7 5  6 . 5 2  3 . 4 3  

5 .  58 7 .  19 3 . 9 9  

T R I A L  1 

T R I A L  2 

T R I A L  3 

T R I A L  4 

T R I A L  5 
5 . 8 9  7 . 8 0  4 . 3 4  

6 . 1 5  7 . 8 2  3 . 9 7  

6 . 3 2  6 .  23 3 . 9 1  

6 . 9 3  7 . 0 4  3 .  24 

5 . 6 4  7 . 1 5  3 .  29 
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Yc(p) = 5/p2   DAY 3 P A R A M E T E R  K 

S U B J E C T  1 S U B J E C T  2 S U B J E C T  3 

1 . 7 2  3 . 0 3  2 . 9 3  

2.  28 3 . 1 1  2 . 6 6  

1 . 6 0  3 .   1 5  3 . 0 8  

1 .   13  2 . 8 6  3 .  17 

1 .81  3 . 0 8  3 . 1 1  

T R I A L  1 

T R I A L  2 2.   28 2.  87 3 . 8 1  

2.  17 3 . 5 5  3 . 6 7  

2 . 3 1  3 . 3 3  3 . 7 3  

2 . 0 8  2 . 7 9  3 . 6 6  

2 .   2 5  3 . 1 2  3 .  23 

T R I A L  3 2 . 6 2  2 . 7 6  2 .  58 

2 .   2 5  3 . 7 9  2 . 9 1  

2 . 7 8  2 . 9 5  3 . 8 0  

2 .  54 2 . 3 2  2 . 5 5  

1 .   8 5  3 . 0 9  2 . 4 5  

T R I A L  4 

T R I A L  5 

1 . 0 9  3 .   1 5  2 . 6 7  

1 . 57 3 .  17 3 .  18 

1 . 8 5  3 .  03 2 . 4 7  

2 . 6 1  3 .   82  3 . 0 4  

1 . 9 5  3 . 6 5  3 . 4 1  

1 . 4 2  3 . 0 4  3 . 6 9  

1 . 3 4  3 . 8 1  3 . 9 5  

1 . 7 7  3 . 2 1  3 .  89 

2 . 3 5  2 . 4 3  3 .  50 

2 . 3 0  3 . 5 5  3 . 59 
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Yc(p) = 5 / p 2  DAY 7 P A R A M E T E R  K 

S U B J E C T  1 SUBJECT 2 S U B J E C T  3 
T R I A L  1 2 . 3 7  

2 . 4 1  

2 . 4 9  

2 .  52 

2.  57 

TRIAL 2 2 . 2 1  

2.   48 

2 . 7 8  

2 . 6 8  

2 . 7 6  

T R I A L  3 3 . 0 1  

2 . 8 1  

2 .  52 

2 . 6 5  

2 . 7 8  

T R I A L  4 2 . 0 9  

2.   58 

2 . 6 9  

2 . 3 7  

2 .  54 

T R I A L  5 2.  81 

3 . 2 2  

2 . 6 4  

2 .  87 

2 . 7 6  

4 . 0 7  

3 . 0 3  

3 . 5 5  

4 . 3 0  

3 . 8 7  

3 .   8 4  

3 . 4 8  

3 .   2 4  

3 . 1 5  

3 .  19 

4 . 2 2  

3 . 8 5  

3 .   1 8  

3 . 0 7  

2 . 9 4  

3 . 0 4  

2 . 9 2  

2 . 4 3  

2 . 4 5  

3 , 3 5  

3 . 3 8  

3 . 3 1  

3 . 7 1  

3 . 4 2  

3 . 0 5  

3 . 7 1  

3 .  57 

3 . 2 1  

3 . 27 

3 . 9 3  

3 . 9 7  

3 . 4 1  

3 . 6 9  

3 . 6 7  

3 . 4 7  

3 .   4 8  

3 .  19 

2 . 9 7  

2 . 6 5  

3 .  1 5  

3 . 3 4  

2 . 6 8  

3 .  23 

3 . 6 6  

3 . 6 7  

3 . 5 5  

2 . 9 4  

2 . 9 0  

3 . 57 

2 .  82 
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Y,(P) = 5/P2 DAY 9 PARAMETER K 

SUBJECT 1 SUBJECT 2 SUBJECT 3 

3 . 3 3  3 . 2 8  3 .  26 

2 . 6 4  2. 59 2 . 9 1  

2.  57 3 . 4 3  3 . 6 5  

3 .  14 3 . 0 5  3 . 7 2  

3 . 0 7  2 . 7 7  3 . 7 2  

TRIAL 1 

TRIAL 2 

TRIAL 3 

TRIAL 4 

TRIAL 5 

3 . 9 4  3 .  13 3 . 6 8  

3 . 3 2  2.   84 3 . 6 4  

3 . 3 5  3 . 0 1  3 . 83 

2 . 2 1  3 . 3 0  3 . 0 1  

2 . 6 8  3 . 0 3  3 . 2 0  

2 . 6 5  2.   82 2 . 4 4  

2 .   84  3 .   28  3 .  23 

2 . 4 5  2 . 9 7  3 . 1 2  

2.  89 2 . 7 3  3 . 4 2  

2 . 9 0  2 . 9 5  3 . 7 7  

3 . 57 3 . 4 2  3 . 7 9  

2. 57 2.   88 4. 16 

3 .   5 2  2 . 4 1  3 .  19 

3 . 3 6  2 .69  3 . 6 1  

3 . 4 1  3 . 2 2  3 . 7 5  

3 .09  3 . 4 3  2 . 4 4  

2 . 9 8  3 . 3 2  3 . 0 2  

3 .   15  3 . 3 2  3 . 2 1  

3 . 1 9  3 . 1 8  3 . 5 9  

3 . 3 2  3 . 4 6  3 . 8 5  
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Yc(p) = 5/p DAY 2 PARAMETER T 

SUBJECT 1 

0 .  23 1 

0. 234 

0.258 

0.268 

0 .  281 

TRIAL 1 

TRIAL 2 0.286 

0. 236 

0.216 

0.308 

0.212 

TRIAL 3 0. 261 

0.264 

0.205 

0.231 

0.264 

TRIAL 4 0. 238 

0. 250 

0. 208 

0.202 

0.244 

TRIAL 5 0.242 

0.226 

0. 218 

0.203 

0 .  215 

SUBJECT 2 SUBJECT 3 

0 .  276 0. 268 

0 .  258 0.300 

0. 261 0.299 

0.274 0.348 

0.221 0. 281 

0.267 0 .  277 

0. 255 0.280 

0.218 0. 246 

0 .  230 0.304 

0.210 0. 266 

0.330 0. 288 

0.266 0 .  214 

0.268 0. 268 

0.275 0. 251 

0.252 0. 171 

0. 272 0.251 

0.246 0.255 

0. 206 0.244 

0 .  233 0. 196 

0.240 0.192 

0.254 0.208 

0.274 0.242 

0.236 0 .  253 

0. 236 0. 163 

0.224 0.266 
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Y,(p) = 5 / p   D A Y  6 P A R A M E T E R  T 

S U B J E C T  1 S U B J E C T  2 S U B J E C T  3 

0 . 2 0 5  0 .  191 0 . 2 8 0  

0 .  185 0 . 1 7 1  0 . 2 5 2  

0 . 2 0 2  0 . 1 6 9  0 . 2 7 7  

0 . 2 1 2  0 . 2 1 0  0 .  243 

0 . 1 8 4  0 . 2 0 1  0 .  195  

T R I A L  1 

T R I A L  2 0 . 2 1 8  0 . 1 9 6  0 .  216 

0 . 1 9 1  0 . 2 1 4  0 . 2 1 0  

0 . 2 0 3  0 . 2 0 6  0 . 2 5 0  

0 . 1 9 9  0 .  197 0 .  248 

0 . 2 1 0  0 . 1 8 1  0 .  242 

T R I A L  3 0 .  255 0 .  185 0 .  26 2 

0 . 2 1 0  0 .  167 0 .  242 

0 . 2 0 9  0 .  171 0 . 2 4 3  

0 . 2 1 8  0 .  195  0 .  254 

0 .  193 0 . 1 7 6  0 .  260 

T R I A L  4 0 . 2 1 4  0 .  216 0 .  218 

0 . 2 1 6  0 . 2 0 2  0 .  197 

0 . 2 0 5  0 , 2 0 4  0 .  237 

0 . 2 1 0  0 . 2 0 0  0 . 2 1 2  

0 . 2 3 3  0 .  193 0 . 2 1 4  

T R I A L  5 0 . 2 1 0  0 . 1 8 8  0 .  240 

0 . 2 2 0  0 . 2 0 0  0 .  191 

0 .  190 0 .  192 0 . 2 1 0  

0 . 2 0 2  0 .  199 0 . 2 6 6  

0 . 2 1 8  0 . 1 9 8  0 .  242 
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Y,(p) = 5 / p  DAY  10  PARAMETER T 

S U B J E C T  1 S U B J E C T  2 S U B J E C T  3 

0 .  216 0 .  1 6 5  0 . 2 2 0  

0 . 2 0 8  0 . 1 2 8  0 .  276 

0 . 1 9 9  0 . 1 6 6  0 .  214 

0 . 2 0 2  0 .  151 0 .  219 

0 . 1 8 8  0 .  1 7 5  0 .  252 

T R I A L  1 

T R I A L  2 
0 .  158 0 .  183 0 .  241 

0 .  179 0 .  173 0 .  215 

0 .  197 0 .  193 0 .  199 

0 .  207 0 .  1 6 5  0 .  214 

0 .  186 0 .  194 0 . 2 1 0  

T R I A L  3 0 .  195 0 . 1 6 1  0 . 2 1 1  

0 . 1 9 4  0 .  1.73 0 .  205 

0 . 2 0 0  0 .  179 0 .  23 1 

0 . 1 8 8  0 .  1 7 5  0 .  224 

0 . 1 8 8  0 .  178 0 .  240 

T R I A L  4 
0 .  192 0 .  167 0 .  241 

0 . 1 9 9  9,   174 0 .  217 

0 . 2 0 3  0 .  170 0 .  228 

0 .  204 0 .  172  0 .  260 

0 . 2 0 0  0 . 1 7 0  0 .  258 

T R I A L  5 0 . 2 1 4  0 .  167 0 .  218 

0 .  188 0 .  170 0 .  224 

0 .  207 0 .  181 0 . 2 0 2  

0 . 1 9 2  0 . 1 8 4  0 . 2 2 4  

0 . 2 0 5  0 .  174 0 .  207 
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Y,(p) = 5/pz DAY 3 PARAMETER T 

SUBJECT 1 SUBJECT 2 SUBJECT 3 
TRIAL 1 0 .  589 

0 .446 

0 .  5 4 4  

0 . 6 2 5  

0 . 4 5 3  

TRIAL 2 0 . 4 7 0  

0 . 4 1 2  

0 . 4 8 4  

0 .  456 

0 . 4 2 0  

TRIAL 3 
0 . 3 9 5  

0 . 4 4 6  

0 . 3 8 0  

0 . 3 4 8  

0 . 4 7 6  

TRIAL 4 0 .  274 

0 .  589 

0 .  578 

0 . 4 7 1  

0 . 6 3 3  

TRIAL 5 
0 .  585 

0 . 7 0 5  

0 . 6 6 6  

0 . 5 6 8  

0 .  581 

0 . 4 1 1  

0 . 4 0 5  

0 . 3 7 2  

0 . 3 9 2  

0 . 4 1 0  

0 . 3 6 2  

0 . 3 3 0  

0 . 3 3 9  

0 . 3 8 9  

0 . 3 3 4  

0 . 4 2 2  

0 . 3 5 2  

0 . 4 1 4  

0 . 4 8 3  

0 . 3 9 8  

0 . 3 4 2  

0 . 3 4 4  

0 . 4 0 6  

0 . 3 4 8  

0 . 3 5 2  

0 . 3 9 6  

0 . 3 5 0  

0 . 3 6 8  

0 . 4 1 5  

0 . 3 6 5  

0 . 4 5 5  

0 .  500 

0 . 4 3 3  

0 . 4 2 0  

0 . 4 2 7  

0 . 3 5 1  

0 . 3 6 4  

0 . 3 5 7  

0 . 3 4 2  

0 . 3 9 5  

0 . 4 6 1  

0 . 4 5 9  

0 . 3 2 5  

0 . 4 6 7  

0 . 4 9 0  

0 . 4 3 9  

0 . 4 1 9  

0 .  341 

0 . 4 3 9  

0 . 3 9 2  

0 . 3 6 1  

0 . 3 3 7  

0 . 3 0 5  

0 . 3 8 0  

0 . 3 7 2  
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P 

Yc(p) = 5 / p 2  DAY 7 PAR.AMETER T 

S U B J E C T  1 S U B J E C T  2 SUBJECT 3 
T R I A L  1 0 .  550 0 . 3 2 7   0 . 3 6 0  

0 .  524 0 . 3 8 2  0 . 3 7 3  

0 . 4 6 1  0 . 3 7 5  0 . 3 6 5  

0 . 4 1 9  0 310 0 . 3 3 1  

0 .  518 0 . 3 4 4  0 . 3 3 2  

T R I A L  2 

T R I A L  3 

T R I A L  4 

T R I A L  5 

0 . 6 0 2  0 . 3 4 2  0 . 3 3 6  

0 . 4 6 1  0 . 3 8 3  0 . 3 9 0  

0 . 4 0 1  0 . 4 1 1  0 . 3 6 1  

0 . 4 4 2  0 . 4 2 0  0 . 3 6 4  

0 . 3 9 1  0 . 3 9 4  0 . 3 6 4  

0 . 3 7 5  0 . 3 1 6  0 . 3 8 4  

0 . 3 6 4  0 . 3 3 1  0 . 4 1 6  

0 . 4 2 2  0 . 3 4 5  0 . 4 4 9  

0 . 4 1 6  0 , 3 7 9  0 . 4 1 0  

0 . 3 1 8  0 . 3 8 3  0 . 4 2 1  

0 . 4 2 7  0 . 3 8 5  0 . 3 5 8  

0 . 4 0 4  0 . 4 3 0  0 . 4 5 9  

0 . 4 7 1  0 . 4 6 5  0 . 4 1 1  

0 . 4 9 8  0 . 3 6 8  0 . 3 6 4  

0 . 4 5 0  0 . 3 6 2  0 . 3 6 4  

0 . 4 6 0  0 . 3 6 4  0 . 3 6 5  

0 . 4 1 5  0 . 3 3 6  0 . 4 1 1  

0 . 4 2 5  0 . 3 3 0  0 , 3 8 8  

0 . 4 2 4  0 . 3 6 1  0 . 3 7 4  

0 . 4 7 0  0 . 3 8 4  0 . 4 7 0  
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Y c ( p )  = 5 / p z  DAY 9 PAR,AMETER T 

SUBJECT 1 SUBJECT 2 SUBJECT 3 
TRIAL 1 

0.400 0 . 4 0 5  0 . 3 6 5  

0 . 4 5 6  0 . 4 0 5  0 . 3 6 5  

0 . 4 0 0  0 . 3 8 9  0 . 3 6 5  

0 . 4 2 5  0 . 4 0 8  0 . 3 5 8  

0 . 3 8 8  0 . 4 2 1  0 . 3 5 8  

TRIAL 2 
0 . 3 3 9  0 . 3 6 1  0 . 3 5 8  

0 . 4 0 1  0 . 3 8 2  0 . 3 6 6  

0 . 3 8 3  0 . 3 7 4  0 . 3 4 8  

0 . 3 9 5  0 . 3 8 3  0 . 4 3 3  

0 . 3 8 3  0 . 3 7 4  0 . 4 1 0  

TRIAL 3 
0 . 4 1 0  0 . 4 7 0  0 . 5 2 9  

0 . 4 7 0  0 . 3 5 8  0 . 3 5 1  

0 . 4 4 0  0 . 3 6 1  0 . 3 6 9  

0 . 4 1 0  0 . 3 9 1  0 . 3 9 1  

0 . 4 3 3  0 . 4 1 6  0 . 3 4 2  

TRIAL 4 0 . 3 0 7  0 . 3 4 0  0 . 3 5 2  

0 . 3 5 6  0 . 4 1 0  0 . 3 2 0  

0 . 3 5 5  0 . 3 5 1  0 . 4 1 1  

0 . 3 6 1  0 . 3 7 8  0 . 3 6 9  

0 . 3 1 4  0 . 4 0 4  0 . 3 5 1  

TRIAL 5 
0 . 3 6 0  0 . 3 5 2  0 . 4 9 7  

0 . 3 5 4  0 . 3 5 2  0 . 3 9 7  

0 .395 0 . 3 5 4  0 . 3 9 8  

0 . 4 0 0  0 . 3 6 9  0 . 3 5 3  

0 . 4 0 1  0 . 3 8 6  0 . 3 3 4  
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