XVII. Communications Systems Research: Coding and Synchronization Studies TELECOMMUNICATIONS DIVISION

A. Performance of a Low-Rate Command Data Link, S. Farber

1. Introduction

This article gives the performance of an orthogonal signal frequency-shift-keyed command link. This ground-to-spacecraft link will code low-rate binary information into one of two frequency-modulated tones modulated onto the carrier. The purpose of this article is to examine
the error performance capabilities of such a scheme under the assumptions (1) that the phase error out of the spacecraft tracking loop does not vary significantly over a bit time and (2) that the phase error out of the spacecraft tracking loop does vary significantly over a bit time.

2. System Model

The transmitted signal is assumed to be of the form

$$
s(t)=(2 P)^{1 / 2} \cos \left[\omega_{c} t+k \sin (\omega t+\theta)+\Psi\right], \quad \omega=\omega_{0}, \omega_{1}
$$

where ω_{c} is the carrier frequency, k the index of modulation, and $\omega=\omega_{0}$ represents a zero being transmitted while $\omega=\omega_{1}$ represents a one being transmitted. The angles Ψ and θ are assumed to be uniformly distributed random variables defined on the interval $-\pi, \pi$ radians.

The signal $s(t)$ can be expanded in a Fourier series about ω_{c} to yield

$$
\begin{aligned}
s(t)= & (2 P)^{1 / 2} J_{0}(k) \cos \left(\omega_{c} t+\Psi\right) \\
& -(2 P)^{1 / 2} J_{1}(k)\left\{\cos \left[\omega_{c} t-(\omega t+\theta)+\Psi\right]-\cos \left[\omega_{c} t+(\omega t+\theta)+\Psi\right]\right\} \\
& +(2 P)^{1 / 2} J_{2}(k)\left\{\cos \left[\omega_{c} t-2(\omega t+\theta)+\Psi\right]+\cos \left[\omega_{c} t+2(\omega t+\theta)+\Psi\right]\right\} \\
& -(2 P)^{1 / 2} J_{3}(k)\left\{\cos \left[\omega_{c} t-3\left(\omega_{c} t+\theta\right)+\Psi\right]-\cos \left[\omega_{c} t+3(\omega t+\theta)+\Psi\right]\right\} \\
& +(2 P)^{1 / 2} J_{4}(k)\left\{\cos \left[\omega_{c} t-4(\omega t+\theta)+\Psi\right]+\cos \left[\omega_{c} t+4(\omega t+\theta)+\Psi\right]\right\}
\end{aligned}
$$

where J_{k} is the Bessel function of order k. An indication of the behavior of $J_{i}(k), i=0,1,2$, can be seen in Fig. 1 for values of k satisfying $0 \leq k \leq 2$.

If the tracking loop works on the fundamental component, it will form an estimate $\hat{\Psi}(t)$ of $\Psi(t)$ so that the received signal mixed with (2) ${ }^{1 / 2} \sin \left[\omega_{c} t+\hat{\Psi}(t)\right]$ and filtered will yield

$$
r_{1}(t)=(P)^{1 / 2} \sin [k \sin (\omega t+\theta)+\phi(t)]+n_{1}(t)
$$

while the received signal mixed with $(2)^{1 / 2} \cos \left[\omega_{c} t+\hat{\Psi}(t)\right]$ and filtered will yield

$$
r_{2}(t)=(P)^{1 / 2} \cos [k \sin (\omega t+\theta)+\phi(t)]+n_{2}(t)
$$

where $\phi(t)=\hat{\Psi}(t)$ - Ψ and $n_{1}(t)$ and $n_{2}(t)$ represent independent white gaussian noise of single-sided spectral density N_{0} (Ref. 1).

If the tracking loop is a phase-locked loop preceded by a bandpass limiter, then the distribution on ϕ as given by Lindsey (Ref. 2) using DSN parameters is

$$
p(\phi)=\frac{\exp \left(\rho_{L} \cos \phi\right)}{2 \pi I_{0}\left(\rho_{L}\right)}, \quad-\pi<\phi \leq \pi
$$

where

$$
\begin{aligned}
\rho_{L} & =\frac{3 z}{\Gamma\left(1+\frac{2}{\mu}\right)}, \quad \Gamma=\frac{1+0.345 z y}{0.862+0.690 z y} \\
z & =\frac{P_{c}}{N_{0} b_{L 0}}, \quad y=\frac{1}{800} \\
\mu & =\frac{\left(\gamma_{0}\right)^{1 / 2} \exp \left(-\frac{\gamma_{0} y}{2}\right)\left[I_{0}\left(\frac{\gamma_{0} y}{2}\right)+I_{1}\left(\frac{\gamma_{0} y}{2}\right)\right]}{(z)^{1 / 2} \exp \left(-\frac{z y}{2}\right)\left[I_{0}\left(\frac{z y}{2}\right)+I_{1}\left(\frac{z y}{2}\right)\right]}
\end{aligned}
$$

and $\gamma_{0}=4$. (It should be noted that the usual DSN parameters are $y=1 / 400$ and $\gamma_{0}=2$.) I_{k} is the modified Bessel function of order $k . P_{c}$ represents the power in the

Fig. 1. Plot of J_{0}^{2}, $2 \mathrm{~J}_{1}^{2}$, and $2 \mathrm{~J}_{2}^{2}$, showing division of power between fundamental and other components
carrier, $b_{L 0}$ the loop design bandwidth, and N_{0} the singlesided spectral density of the noise. For the above signal, we find $P_{c}=P J_{0}^{2}(k)$.

3. Error Rates for Various Detectors

For convenience, let us define the random variables

$$
\begin{aligned}
& k_{\phi}=\frac{1}{T_{b}} \int_{0}^{r_{b}} \cos \phi(t) d t \\
& \lambda_{\phi}=\frac{1}{T_{b}} \int_{0}^{T_{b}} \sin \phi(t) d t
\end{aligned}
$$

where T_{b} is the time per bit.

If the data is extracted using only the component of $r_{1}(t)$ at frequency ω, namely,

$$
(P)^{1 / 2} \cos \phi(t) 2 J_{1}(k) \sin (\omega t+\theta)+n_{1}(t), \quad 0<t \leq T_{b} ; \omega=\omega_{0}, \omega_{1}
$$

then the problem is essentially to decide which of two signals is present. Hence, an incoherent phase receiver using orthogonal signals can be used to obtain a bit probability of error (Ref. 3) of

$$
P_{E}^{I}=E\left\{\frac{1}{2} \exp \left[-\frac{1}{2} k_{\Phi}^{2} R\right]\right\}
$$

where E is the expectation operation, $R=S T_{b} / N_{0}$, and $S=2 J_{1}^{2}(k) P$ is the power in the data.
If the data is extracted from the fundamental components of both $r_{1}(t)$ and $r_{2}(t)$, namely,

$$
(P)^{1 / 2} \cos \phi(t) 2 J_{1}(k) \sin (\omega t+\theta)+n_{1}(t), \quad 0<t<T_{b}
$$

and

$$
(P)^{1 / 2} \sin \phi(t) 2 J_{1}(k) \sin (\omega t+\theta)+n_{2}(t), \quad \omega=\omega_{0}, \omega_{1}
$$

then by using the doubly incoherent receiver discussed in Subsection 8, it is possible to obtain a probability of error of

$$
P_{E}^{D}=\min _{0 \leq \beta \leq 1} E\left\{1 / 2 c(\beta) \exp \left[-1 / 2\left(k_{\bar{\phi}}^{\partial}+\lambda_{\phi}^{2}\right) R\right]\right\}
$$

where

$$
c(\beta)=\frac{\exp \left[\frac{1}{2}\left(\frac{1-\beta}{1+\beta}\right) \lambda_{\phi}^{2} R\right]-\beta^{2} \exp \left[-\frac{1}{2}\left(\frac{1-\beta}{1+\beta}\right) k_{\phi}^{2} R\right]}{1-\beta^{2}}
$$

and β is an arbitrary gain factor, $0 \leq \beta \leq 1$.

We note that when $\beta=0$, the doubly incoherent receiver degenerates to the incoherent receiver so that we always have $P_{E}^{D} \leq P_{E}^{I}$ for a given index of modulation k. Since, as the index of modulation increases from zero, the amount of power in the data will increase, causing R to increase, while the amount of power in the carrier will decrease, causing ρ_{L} to decrease, there will be an optimum value of k, corresponding to an optimum division of power. In particular, ρ_{L} depends on

$$
\dot{z}=\frac{P_{c}}{N_{0} b_{L 0}}=\frac{P T_{b}}{N_{0}} \cdot \frac{1}{b_{L 0} T_{b}} \cdot J_{0}^{2}(k)
$$

where

$$
R=\frac{S T_{b}}{N_{0}}=\frac{P T_{b}}{N_{0}} \cdot 2 J_{1}^{2}(k)
$$

By letting $\delta=1 / 2 b_{L 0} T_{b}$ and $\mathscr{R}=P T_{b} / N_{0}$, we can write

$$
\begin{aligned}
& z=2 \mathscr{R} \delta J_{0}^{2}(k) \\
& R=2 \not R J_{1}^{2}(k)
\end{aligned}
$$

[It should be noted that Lindsey (Ref. 2) uses $\delta=1 / b_{L 0} T_{b}$.]

4. Extremely Low Data Rates

When the data rate is extremely low, corresponding to $\delta \ll 1$, it is appropriate (Ref. 1) to use the approximations

$$
k_{\phi}=\frac{1}{T_{b}} \int_{0}^{T_{b}} \cos \phi(t) d t \simeq E\{\cos \phi\}
$$

and

$$
\lambda_{\phi}=\frac{1}{T_{b}} \int_{0}^{T_{0}} \sin \phi(t) d t \simeq E\{\sin \phi\}
$$

Using Lindsey's model for the density on ϕ as given above, we find

$$
\begin{aligned}
& k_{\phi} \simeq \eta=\frac{I_{1}\left(\rho_{L}\right)}{I_{0}\left(\rho_{L}\right)} \\
& \lambda_{\phi} \simeq 0
\end{aligned}
$$

The optimum value of β for the doubly incoherent receiver then occurs at $\beta=0$ so that the doubly incoherent receiver reduces to the incoherent receiver with probability of error given by

$$
P_{B}^{D}=P_{E}^{I}=1 / 2 \exp \left(-1 / 2 \eta^{2} R\right)
$$

The resulting minimum value of the probability of error is plotted in Fig. 2a versus \mathscr{R} for several values of δ, while the optimum values of k are plotted in Fig. 2b and the resulting values of ρ_{L} are plotted in Fig. 2c. In order that

the tracking loop acquire frequency lock, it is necessary to require that $\rho_{L} \supseteq 6$.

5. Moderate Data Rates

Moderate data rates occur when the phase does not vary significantly over a bit time so that $\delta \cong 1$ and the approximations

$$
k_{\phi}=\frac{1}{T_{b}} \int_{0}^{T_{b}} \cos \phi(t) d t \cong \cos \phi
$$

Fig. 2. Plots of behavior of incoherent receiver under the assumption of non-constant phase, showing (a) probability of error, (b) optimal value of modulation index k, and (c) resulting value of ρ_{L}
and

$$
\lambda_{\phi}=\frac{1}{T_{b}} \int_{0}^{T_{b}} \sin \phi(t) d t \cong \sin \phi
$$

are valid.
Under these circumstances, we find the probability of error for the incoherent receiver is

$$
P_{E}^{I}=\int_{-\pi}^{\pi} 1 / 2 \exp \left(-1 / 2 R \cos ^{2} \phi\right) \exp \left(\rho_{L} \cos \phi\right) \frac{d \phi}{2 \pi I_{0}\left(\rho_{L}\right)}
$$

The minimum value of P_{E}^{I} is plotted in Fig. 3a, the optimum value of k to give this value of P_{E}^{t} is plotted in Fig. 3b, and the resulting value of ρ_{L} is plotted in Fig. 3c.

The probability of error for the doubly incoherent receiver is

$$
P_{E}^{D}=\min _{0 \leq \beta \leq 1} \int_{-\pi}^{\pi} c(\beta) \frac{d \phi}{2 \pi I_{0}\left(\rho_{L}\right)} 1 / 2 \exp (-1 / 2 R)
$$

where

$$
c(\beta)=\frac{\exp \left[\frac{1}{2}\left(\frac{1-\beta}{1+\beta}\right) R \sin ^{2} \phi\right]-\beta^{2} \exp \left[-\frac{1}{2}\left(\frac{1-\beta}{1+\beta}\right) R \cos ^{2} \phi\right]}{1-\beta^{2}}
$$

We note that, when $\beta \rightarrow 1$, we can evaluate $\boldsymbol{c}(\beta)$ by L'Hospital's rule to find

$$
c(\mathrm{l})=1+\frac{R}{8}
$$

which is independent of ϕ. Combining this with the fact that the performance of the doubly incoherent detector cannot be better than the performance of the incoherent detector with $\phi=0$, we find

$$
\frac{1}{2} \exp \left(-\frac{1}{2} R\right) \leq P_{z}^{D} \leq \frac{1}{2}\left(1+\frac{R}{8}\right) \exp \left(-\frac{1}{2} R\right)
$$

so that P_{E}^{D} must be exponentially asymptotic to the optimum receiver performance for the given signaling scheme.

The minimum value of P_{E}^{D} is plotted in Fig. 4a, the optimum value of k to give this value of P_{E}^{D} is plotted in Fig. 4b, the resulting value of ρ_{L} is plotted in Fig. 4c, and the optimum value of β is plotted in Fig. 4d.

6. In Between Rates

For rates between those discussed in Subsections 3, 4, and 5 , we expect the probabilities of error to fall somewhere in between the probabilities of error obtained above.

This would imply that as the rate increases from extremely low to moderate, the probability of error for the incoherent detector would increase from the values in Fig. 2a to the much larger values in Fig. 3a. The probability of error for the doubly incoherent detector, however, would decrease from the values in Fig. 2a to the slightly lower values in Fig. 4a. The desirability of using a doubly incoherent receiver, which is somewhat more complicated to implement as opposed to the simpler incoherent receiver, would, of course, depend on the exact probability of error for the rate under consideration.

Fig. 3. Plots of behavior of incoherent receiver under the assumption of constant phase, showing (a) probability of error, (b) optimal value of modulation index k, and (c) resulting value of ρ_{L}

Fig. 4. Plots of behavior of doubly incoherent receiver under the assumption of constant phase, showing (a) probability of error, (b) optimal value of modulation under k, (c) resulting value of ρ_{L}, and (\mathbf{d}) optimal value of β

7. Using the Second Harmonic

The doubly incoherent detector may also be used to extract information about the data from the first harmonic of $r_{1}(t)$ and the second harmonic of $r_{2}(t)$; namely,

$$
(P)^{1 / 2} \cos \phi(t) 2 J_{1}(k) \sin (\omega t+\theta)+n_{1}(t), \quad \omega=\omega_{0}, \omega_{1}
$$

and

$$
(P)^{1 / 2} \cos \phi(t) J_{2}(k) \cos 2(\omega t+\theta)+n_{2}(t), \quad 0<t \leqslant T_{b}
$$

This would yield a probability of error of

$$
P_{E}^{D}=\min _{0 \leq \beta \leq 1} E\left\{1 / 2 c(\beta) \exp \left[-1 / 2 k_{\phi}^{2}\left(R_{1}+R_{2}\right)\right]\right\}
$$

where

$$
c(\beta)=\frac{\exp \left[\frac{1}{2}\left(\frac{1-\beta}{1+\beta}\right) k_{\phi}^{2} R_{2}\right]-\beta^{2} \exp \left[-\frac{1}{2}\left(\frac{1-\beta}{1+\beta}\right) k_{\phi}^{2} R_{1}\right]}{1-\beta^{2}}
$$

and

$$
\begin{aligned}
& R_{1}=2 J_{1}^{2}(k) \notin R \\
& R_{2}=2 J_{2}^{2}(k) \not R
\end{aligned}
$$

This yields an improvement in signal-to-noise ratio of about $J_{2}^{2}(k) / J_{1}^{2}(k)$ over the incoherent receiver. An indication of this ratio can be obtained from Fig. 1. For values of k near 1 , the improvement is about 10%.

8. Description and Analysis of the Doubly Incoherent Receiver

We assume two signals of the form

$$
r_{1}(t)=(P)^{1 / 2} \sin \left[k \sin \left(\omega t+\theta_{1}\right)+\phi\right]+n_{1}(t)
$$

and

$$
r_{2}(t)=(P)^{1 / 2} \cos \left[k \sin \left(\omega t+\theta_{2}\right)+\phi\right]+n_{2}(t), \quad 0<t \leq T ; \omega=\omega_{0}, \omega_{1}
$$

where the angles θ_{1} and θ_{2} are arbitrary and $n_{1}(t)$ and $n_{2}(t)$ are the independent white gaussian noise process of the one-sided spectral density N_{0}.

The doubly incoherent receiver then consists of two sections of the form shown in Fig. 5, one with $\omega=\omega_{0}$ and one with $\omega=\omega_{1}$. The variable β is an arbitrary gain factor which is to be chosen to minimize the probability of error. If we define the random variables

$$
k_{\phi}=\frac{1}{T} \int_{0}^{T} \cos \phi(t) d t
$$

and

$$
\lambda_{\phi}=\frac{1}{T} \int_{0}^{T} \sin \phi(t) d t
$$

then the output of the ω_{0} section when $\sin \omega_{0} t$ was transmitted is

$$
Q_{0}=u_{1}^{2}+u_{1}^{2}+u_{2}^{2}+\beta\left(u_{3}^{2}+u_{4}^{2}\right)
$$

Fig. 5. Diagram of one section of the doubly incoherent receiver
where

$$
\begin{array}{ll}
u_{1}=\left(\frac{2 E}{N_{0}}\right)^{1 / 2} k_{\phi} \cos \theta_{1}+n_{1}, & u_{2}=\left(\frac{2 E}{N_{0}}\right)^{1 / 2} k_{\phi} \sin \theta_{1}+n_{2} \\
u_{3}=\left(\frac{2 E}{N_{0}}\right)^{1 / 2} \lambda_{\phi} \cos \theta_{2}+n_{3}, & u_{4}=\left(\frac{2 E}{N_{0}}\right)^{1 / 2} \lambda_{\phi} \sin \theta_{2}+n_{1}
\end{array}
$$

and the output of the ω_{1} section when $\sin \omega_{0} t$ was transmitted is

$$
Q_{1}=v_{1}^{2}+v_{2}^{2}+\beta\left(v_{3}^{2}+v_{4}^{2}\right)
$$

where

$$
v_{1}=m_{1}, \quad v_{2}=m_{2}, \quad v_{3}=m_{3}, \quad v_{4}=m_{4}
$$

The noises n_{i} and $m_{i}, i=1$ to 4 , are mutually independent gaussian random variables of unit variance. Similar variables are defined in a symmetrical way when $\sin \omega_{1} t$ was transmitted.

The estimate of which value of ω was sent is taken to correspond to the section with the largest output. Thus, the probability of error is given by

$$
P_{E}^{D}=\min _{0 \leq \beta \leq 1} P_{r}\left(Q_{0}<Q_{1} \mid \omega=\omega_{0}\right)
$$

assuming that $\operatorname{prob}\left(\omega=\omega_{0}\right)=\operatorname{prob}\left(\omega=\omega_{1}\right)$.

By first conditioning on Q_{0}, we readily find

$$
P_{r}\left(Q_{0}<\left.Q_{1}\right|_{\omega}=\omega_{0}, k_{\phi}, \lambda_{\phi}, Q_{0}\right)=\frac{1}{1-\beta} \exp \left(-\frac{1}{2} Q_{0}^{2}\right)-\frac{1}{1-\beta} \exp \left(-\frac{1}{2} Q_{0}^{2}\right)
$$

But we have that

$$
P_{E}^{D}=\min _{0 \leq \beta \leq 1} E\left\{P_{r}\left(Q_{0}<Q_{1} \mid \omega=\omega_{0}, k_{\phi}, \lambda_{\phi}, Q_{0}\right)\right\}
$$

where the expectation is taken over the variables n_{1}, n_{2}, n_{3}, and n_{4} and the functionals k_{ϕ} and λ_{ϕ}. A straightforward integration yields

$$
P_{E}^{D}=\min _{0 \leq \beta \leq 1} \frac{1}{2} E \frac{\exp \left[-\left(\frac{\beta}{1+\beta} \lambda_{\phi}^{2}+\frac{1}{2} k_{\phi}^{2}\right) \frac{P T_{b}}{N_{0}}\right]-\beta^{2} \exp \left[-\left(\frac{1}{2} \lambda_{\phi}^{2}+\frac{1}{1+\beta} k_{\varphi}^{2}\right) \frac{P T_{b}}{N_{0}}\right]}{1-\beta^{2}}
$$

where the expectation is now only over k_{ϕ} and λ_{ϕ}. This is the expression used in Subsection 3.

9. Conclusion

For the schemes discussed, it can be seen that the optimum value of the index of modulation k for low rates is almost always given by the constraint $\rho_{L}=6$.

Also, for certain rates the doubly incoherent receiver gives considerably better error performance than the incoherent receiver. Just how much better for a given rate, however, remains an open question which can perhaps best be answered by simulation.

References

1. Viterbi, A. J., Optimum Detection and Signal Selection for Partially Coherent Binary Communication, Wescon 13.1. Western Electronic Manufacturers' Association, Los Angeles, Calif., 1964.
2. Lindsey, W. C., "Performance of Phase-Coherent Receivers Preceded by Bandpass Limiters," IEEE Trans. on Commun. Technol., April 1968.
3. Wozencraft and Jacobs, Principles of Communication Engineering, John Wiley \& Sons, Inc., New York, 1965.

B. Analysis of a Serial Orthogonal Decoder, R. R. Green

1. Introduction

This article presents a more straightforward mathematical analysis of the decoder discussed in SPS 37-39, Vol. IV, pp. 247-252. As before, the problem is to perform the matrix vector product $y=H_{n} x$, where x is a real
vector with 2^{n} components. H_{n} is the code matrix, or dictionary, defined inductively by $H_{n}=H_{n-1} \otimes H_{1}$, with

$$
H_{1}=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

and \otimes denotes the Kronecker product.

2. Notation

Subscripts are used to denote the size of matrices in the following way: A_{m} implies that A_{m} is a 2^{m} by 2^{m} square matrix. I_{m} denotes the 2^{m} by 2^{m} identity matrix.

The Kronecker product of two matrices, say A and B, is defined by $A \otimes B=\left(a_{i j} B\right)$. This product is associative, i.e.,

$$
(A \otimes B) \otimes C=A \otimes(B \otimes C)
$$

and, if the dimensions are correct for the necessary ordinary matrix products to be defined, we have (Ref. 1)

$$
(A \otimes B)(C \otimes D)=A C \otimes B D
$$

From the foregoing, we have the following useful relations:

$$
\begin{aligned}
I_{m} \otimes I_{n} & =I_{m+n} \\
\left(I_{m} \otimes A_{n}\right)\left(I_{m} \otimes B_{n}\right) & =I_{m} \otimes A_{n} B_{n} \\
\left(A_{n} \otimes I_{m}\right)\left(B_{n} \otimes I_{m}\right) & =A_{n} B_{n} \otimes I_{m} \\
\left(A_{n} \otimes I_{m}\right)\left(I_{n} \otimes B_{m}\right) & =A_{n} \otimes B_{m}=\left(I_{n} \otimes B_{m}\right)\left(A_{n} \otimes I_{m}\right)
\end{aligned}
$$

3. Motivation

The difficulty in evaluating $H_{n} x$ directly, on a term-by-term basis, is the size of H_{n}. Since every element in H_{n} is either 1 or -1 , direct evaluation would involve $2^{n}\left(2^{n}-1\right)$ additions or subtractions. This difficulty can be relieved by factoring H_{n} into the matrix product of n different 2^{n} by 2^{n} matrices, which will be denoted $M_{n}^{(1)}, M_{n}^{(2)}, \cdots, M_{n}^{(n)}$. Each matrix $M_{n}^{(i)}$ has only two non-zero elements per row, thus only $n 2^{n}$ additions or subtractions are involved.

Furthermore, the structure of each matrix $M_{n}^{(i)}$ is such that it can be easily implemented with special-purpose digital equipment. Thus, we can construct a set of
decoder stages, the first realizing $M_{n}^{(1)}$, the second $M_{n}^{(2)}$, etc. If these stages are then connected together serially, the input to stage 1 being x, the output of stage 1 being the input to stage 2 , etc., the output of stage n will be y. Due to this serial structure of the decoder, n additions or subtractions are being done simultaneously. Thus, the digital equipment need only be fast enough to perform 2^{n} additions or subtractions per code word time, or one addition or subtraction per symbol time.

It is an interesting and somewhat surprising result that the stages of the decoder may be connected in an arbitrary order and the output of the last stage will still be the desired vector y.

4. Analysis

The following analysis is a special case of a more general result involving a code matrix which is the Kronecker product of n arbitrary matrices. Since the general case provides no particular additional insight into the decoder under consideration, the results have been particularized to this special case. It should be noted, however, that in the general case the factor matrices have the same form, the same commutivity result holds, and a somewhat more general product theorem can be proved.

Define

$$
M_{n}^{(i)}=I_{n-i} \otimes H_{1} \otimes I_{i-1}, \quad \text { for } 1 \leq i \leq n
$$

Theorem 1

$$
M_{n}^{(i)} M_{n}^{(j)}=M_{n}^{(j)} M_{n}^{(i)}
$$

Proof. Assume $i>j$ (if $i=j$, the result is trivial) then

$$
\begin{aligned}
M_{n}^{(i)} M_{n}^{(j)} & =\left(I_{n-i} \otimes H_{1} \otimes I_{i-1}\right)\left(I_{n-j} \otimes H_{1} \otimes I_{j-1}\right) \\
& =\left[\left(I_{n-i} \otimes H_{1} \otimes I_{i-j-1}\right) \otimes I_{j}\right]\left[I_{n-j} \otimes\left(H_{1} \otimes I_{j-1}\right)\right] \\
& =I_{n-i} \otimes H_{1} \otimes I_{i-j-1} \otimes H_{1} \otimes I_{j-1} \\
& =\left[I_{n-i+1} \otimes\left(I_{i-j-1} \otimes H_{1} \otimes I_{j-1}\right)\right]\left[\left(I_{n-i} \otimes H_{1}\right) \otimes I_{i-1}\right] \\
& =\left(I_{n-j} \otimes H_{1} \otimes I_{j-1}\right)\left(I_{n-i} \otimes H_{1} \otimes I_{i-1}\right) \\
& =M_{n}^{(j)} M_{n}^{(i)}
\end{aligned}
$$

Thus, Theorem 1 shows that the order of any two successive stages may be interchanged, and thus any possible permutation of the stages may be realized, without changing the final output. Also, the commutivity shown implies that we need not keep track of order when discussing matrix products of the $M_{n}^{(i)}$.

Theorem 2

$$
\prod_{i=1}^{m} M_{n}^{(i)}=I_{n-m} \otimes H_{m}, \quad 1 \leq m \leq n
$$

Proof. For $m=1$, we have

$$
\prod_{i=1}^{m} M_{n}^{(i)^{\prime}}=M_{n}^{(1)}=I_{n-1} \otimes H_{1}
$$

Assume the result is true for m, then prove for $m+1$:

$$
\prod_{i=1}^{m+1} M_{n}^{(i)}=M_{n}^{(m+1)} \prod_{i=1}^{m} M_{n}^{(i)}=\left(I_{n-m-1} \otimes H_{1} \otimes I_{m}\right)\left(I_{n-m} \otimes H_{m}\right)=I_{n-m-1} \otimes H_{1} \otimes H_{m}=I_{n-m-1} \otimes H_{m+1}
$$

Thus, by induction, the result is true for any m between 1 and n.

In particular, we see from Theorem 2, letting $m=n$, that

$$
\prod_{i=1}^{n} M_{n}^{(i)}=I_{n-n} \otimes H_{n}=I_{0} \otimes H_{n}=H_{n}
$$

Also, as in the previous article on this decoder, it can be shown that

$$
M_{n}^{(i)}=P_{n}^{i} R_{n}\left(P_{n}^{i-1}\right)^{T}
$$

where P_{n} and R_{n} are defined inductively for $n \geqslant 1$ by

$$
P_{n+1}=\left(I_{1} \otimes P_{n}\right)\left(P_{2} \otimes I_{n-1}\right)
$$

and

$$
R_{n+1}=\left(P_{2} \otimes I_{n-1}\right)\left(I_{1} \otimes R_{n}\right)
$$

with $P_{1}=I_{1}$ and $P_{2}=\left(P_{i j}\right)$. Here

$$
P_{11}=P_{23}=P_{32}=P_{44}=1
$$

and otherwise $P_{i j}=0 ; R_{1}=H_{1}$. Thus, we see that connecting the n decoder stages $M_{n}^{(1)}$ through $M_{n}^{(n)}$ in any order whatever performs the operation $H_{n} x$. Furthermore, if the stages are connected in numerical order, $M_{n}^{(1)}$ first, $M_{n}^{(2)}$ second, etc., the output at any intermediate stage, say the j th stage, provides a decoder for H_{j}. Thus, the algorithm has multiple-mission capability.

Reference

1. Bellman, Richard, Introduction to Matrix Analysis. McGrawHill Book Co., Inc., New York, 1960.

C. Optimal Codes and a Strong Converse for Transmission Over Very Noisy Memoryless Channels, A. J. Viterbi ${ }^{1}$

1. Introduction

Wyner (Ref. 1) has obtained the following lower bounds on the asymptotic performance of the optimal codes for the additive white gaussian channel, where T is the message duration, R is the rate in nats $/ \mathrm{s}$, and C is the channel capacity:

$$
P_{E}>\exp \{-T[E(R)+o(T)]\}
$$

where

$$
\begin{align*}
E(R) & =\frac{C}{2}-R, \quad 0 \leqslant R \leq \frac{C}{4} \\
& =\left[(C)^{1 / 2}-(R)^{1 / 2}\right]^{2}, \quad \frac{C}{4} \leqslant R<C \tag{1}
\end{align*}
$$

and

$$
1-P_{E}<\exp \left\{-T\left[E^{*}(R)+o(T)\right]\right\}
$$

where

$$
\begin{equation*}
E^{*}(R)=\left[(R)^{1 / 2}-(C)^{1 / 2}\right]^{2} ; \quad R>C \tag{2}
\end{equation*}
$$

The second bound on the probability of correct decision for rates above capacity is generally referred to as a "strong converse."

It is well known (Ref. 2) that equal-energy orthogonal signals are asymptotically optimum because they achieve the error probability

$$
\begin{equation*}
P_{E}<\exp [-T E(R)] \tag{3}
\end{equation*}
$$

[^0]where $E(R)$ is given by Eq. (1). We begin by showing, through an application of extreme value theory (Ref. 3), that for rates above capacity orthogonal signals yield
\[

$$
\begin{equation*}
1-P_{E}>\exp \left\{-T\left[E^{*}(R)+O\left(\ln \frac{T}{T}\right)\right]\right\}, \quad R>C \tag{4}
\end{equation*}
$$

\]

which proves their asymptotic optimality ${ }^{2}$ above as well as below capacity.

We extend these results by showing the essential equivalence of all memoryless input-discrete very noisy channels to the white gaussian channel and thus extend the strong converse to this wider class of channels.

2. The Additive White Gaussian Channel

Balakrishnan (Ref. 4) has shown that for any equalenergy, a priori equiprobable set of M signals used on the white gaussian channel, the probability of correct decision using the optimum (maximum likelihood) decision rule is

$$
\begin{equation*}
1-P_{E}=M^{-1} e^{-\lambda} E\left\{\exp \left[(2 \lambda)^{1 / 2} \max _{\lambda \leq m \leq M} z_{m}\right]\right\} \tag{5}
\end{equation*}
$$

where $\lambda=C T, C=S / N_{0}$, the ratio of received signal pow'er to one-sided noise spectral density, while $\left\{z_{m}\right\}$ is a set of M zero-mean, unit-variance, gaussian random variables with a covariance matrix whose elements are the normalized integral inner products among signals.

Let $R=\ln M / T$ and restrict to orthogonal signals; Eq. (5) becomes

$$
\begin{align*}
1-P_{E}= & \exp [-T(C+R)] \\
& \times E\left\{\exp \left[(2 C T)^{1 / 2} \max _{1 \leq m \leq e^{R T}} z_{m}\right]\right\} \tag{6}
\end{align*}
$$

where $\left\{z_{m}\right\}$ are independent normalized gaussian variables, since the covariance matrix for orthogonal signals is the identity matrix.

Equation (6) can be rewritten as

$$
\begin{align*}
& 1-P_{B}= \\
& \exp [-T(C+R)] \\
& \times \int_{-\infty}^{\infty} \exp \left[(2 C T)^{1 / 2} x\right] \frac{d}{d x}[F(x)]^{e R x} d x \tag{7}\\
&=\exp (-T C) \int_{-\infty}^{\infty} \exp \left[(2 C T)^{1 / 2} x\right][F(x)]^{e n T_{-1}} d[F(x)]
\end{align*}
$$

where

$$
F(x) \triangleq \int_{-\infty}^{x} e^{-y^{2} / 2} \frac{d y}{(2 \pi)^{1 / 2}}
$$

is the (cumulative) gaussian distribution.

We proceed to evaluate Eq. (7) by applying a technique from extreme value theory due to Cramér (Ref. 3). Consider the transformation

$$
\begin{equation*}
1-\xi e^{-R T}=F(x) \tag{8}
\end{equation*}
$$

which has the inverse (Ref. 3)

$$
\begin{align*}
x & =F^{-1}\left(1-\xi e^{R T}\right) \\
& =(2 R T)^{1 / 2}-\frac{\ln 4 \pi R T}{2(2 R T)^{1 / 2}}-\frac{\ln \xi}{(2 R T)^{1 / 2}}+O\left(\frac{1}{R T}\right) \tag{9}
\end{align*}
$$

Substituting Eqs. (8) and (9) into Eq. (7), we obtain

$$
\begin{align*}
1-P_{E} & =\exp [-T(C+R)] \int_{0}^{e R T} \exp \left[(2 C T)^{1 / 2} F^{-1}\left(1-\xi e^{R T}\right)\right]\left(1-\xi e^{-R T}\right)^{e R T-1} d \xi \\
& =\exp \left\{-T\left[C+R-2(R C)^{1 / 2}+\frac{\ln 4 \pi R T}{2\left(2 \frac{R}{C}\right)^{1 / 2} T}-O\left(T^{-3 / 2}\right)\right]\right\} \int_{0}^{e^{R T}} \xi^{-(C / R) 1 / 2}\left(1-\xi e^{-R T}\right)^{e R T-1} d \xi \tag{10}
\end{align*}
$$

[^1]The last integral is bounded from below by

$$
\left\{e\left[1-\left(\frac{C}{R}\right)^{1 / 2}\right]\right\}^{-1}
$$

for $R>C$. Thus, it follows that for orthogonal signals on the white gaussian channel

$$
\begin{gather*}
1-P_{E}>\exp \left(-T\left\{\left[(R)^{1 / 2}-(C)^{1 / 2}\right]^{2}+O\left(\frac{\ln T}{T}\right)\right\}\right) \\
R>C \tag{11}
\end{gather*}
$$

which proves Inequality (4).

3. Input-Discrete Very Noisy Memoryless Channels

The error probability expression for the white gaussian channel, Eq. (5), can be generalized to any memoryless finite-dimensional (or time-discrete) channel. For any set of M equally likely messages and a maximum likelihood decision rule, for any set of N -dimensional channel input sequences $\left\{x^{(j)} ; j=1,2, \cdots, M\right\}$, and for y, an N -dimensional output sequence, we have

$$
\begin{equation*}
1-P_{R}=M^{-1} \sum_{j=1}^{M} \int_{D_{j}} p\left(\mathbf{y} \mid \mathbf{x}^{(j)}\right) d \mathbf{y} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{j}=\left\{\mathbf{y}: p\left(\mathbf{y} \mid \mathbf{x}^{(j)}\right)=\max _{m} p\left(\mathbf{y} \mid \mathbf{x}^{(m)}\right)\right\} \tag{13}
\end{equation*}
$$

Then, since

$$
\bigcup_{j=1}^{M} D_{j}=Y_{N}
$$

the N-dimensional output space, we can rewrite Eq. (12) as

$$
\begin{align*}
1-P_{E} & =M^{-1} \int_{\mathbf{Y}_{N}} \max _{m} p\left(\mathbf{y} \mid \mathbf{x}^{(m)}\right) d \mathbf{y} \\
& =M^{-1} \int_{\mathbf{Y}_{J}} q(\mathbf{y}) \max _{m} \frac{p\left(\mathbf{y} \mid \mathbf{x}^{(m)}\right)}{q(\mathbf{y})} d \mathbf{y} \\
& =M^{-1} E_{\mathbf{y}}\left[\max _{m} \frac{p\left(\mathbf{y} \mid \mathbf{x}^{(m)}\right)}{q(\mathbf{y})}\right] \tag{14}
\end{align*}
$$

where $q(y)$ is an arbitrary probability measure on the output space and E_{y} is the expectation with respect to this measure. Substitution of the appropriate likelihood functions for the white gaussian channel and for the
$q(y)$ corresponding to the likelihood function for a zerosignal hypothesis reduces Eq. (14) to Eq. (5) (cf Helstrom, Ref. 5).

For memoryless time-discrete channels,

$$
p\left(\mathbf{y} \mid \mathbf{x}^{(m)}\right)=\prod_{n=1}^{N} p\left(y_{n} \mid x_{n}^{(m)}\right)
$$

and specializing to the independent output measure,

$$
q(\mathbf{y})=\prod_{n=1}^{N} q\left(y_{n}\right)
$$

Eq. (14) becomes

$$
\begin{equation*}
1-P_{E}=M^{-1} E_{\mathrm{y}}\left\{\exp \left[\max _{m} z_{m}(\mathrm{y})\right]\right\} \tag{15}
\end{equation*}
$$

where

$$
\begin{equation*}
z_{m}(\mathbf{y})=\sum_{n=1}^{N} \ln \left[\frac{p\left(y_{n} \mid x_{n}^{(m)}\right)}{q\left(y_{n}\right)}\right] \tag{16}
\end{equation*}
$$

Such channel is said to be very noisy if

$$
\begin{equation*}
p\left(y_{n} \mid x_{m}^{(n)}\right)=q\left(y_{n}\right)\left[1+\epsilon\left(x_{n}^{(m)}, y_{n}\right)\right] \tag{17}
\end{equation*}
$$

where $\epsilon(x, y) \rightarrow 0$ uniformly in x and y, and $q\left(y_{n}\right)$ is an arbitrary probability density or distribution. It follows that for any n and m

$$
\begin{equation*}
0=\int_{Y} p(y \mid x) d y-1=\int_{Y} q(y) \epsilon(x, y) d y \tag{18}
\end{equation*}
$$

We now restrict attention to a discrete input alphabet of K symbols, so that each $x_{n}^{(m)}$ is taken from the set $\left\{x_{1}, x_{2}, \cdots, x_{K}\right\}$. For this class of channels, we need only consider the class of fixed composition codes, which are characterized by the property that each code word is some permutation of the same sequence of N symbols, since Shannon, Gallager, and Berlekamp (Ref. 6) have shown that the asymptotic performance of the best code in the restricted subclass is the same as for the best code in the unrestricted class. Thus, given that the relative frequency of the symbol x_{k} in each code word of the fixed composition code is
$\rho_{k}=\frac{\Delta \text { number of occurrences of } x_{k}}{N}, \quad k=1,2, \cdots, K$
we have that the means of the random variables $z_{m}(y)$ relative to the output measure

$$
\prod_{n=1}^{N} q\left(y_{n}\right)
$$

are all equal to

$$
\left.\begin{array}{rl}
E_{\mathrm{y}}\left[z_{m}(\mathrm{y})\right] & =N \sum_{k=1}^{\hbar} \rho_{k} \int_{Y} q(y)\left[\ln \frac{p\left(y \mid x_{k}\right)}{q(y)}\right] d y \\
& \approx-N \sum_{k=1}^{K} \rho_{k} \int_{Y} q(y)\left[\frac{\epsilon^{2}\left(x_{k}, y\right)}{2}\right] d y \tag{19}
\end{array}\right\}
$$

where we have used Eq. (18) and also Condition (17) to neglect.all terms above quadratic in $\boldsymbol{\epsilon}$.

Similarly, since the channel is memoryless,

$$
\begin{equation*}
\operatorname{var}_{\mathrm{y}}\left[z_{m}(\mathrm{y})\right]=N \sum_{l=1}^{K} \rho_{k} \operatorname{var}_{y}\left[\ln \frac{p\left(y \mid x_{k}\right)}{q(y)}\right] \tag{20}
\end{equation*}
$$

But again neglecting terms above quadratic in ϵ,

$$
\begin{equation*}
\operatorname{var}_{y}\left[\ln \frac{p\left(y \mid x_{k}\right)}{q(y)}\right] \approx \int_{Y} q(y) \epsilon^{2}\left(x_{k}, y\right) d y \tag{21}
\end{equation*}
$$

Also, the capacity of a very noisy input-discrete memoryless channel is given by

$$
\begin{align*}
C= & \max _{\left\{p_{k}\right\}} \sum_{k=1}^{K} p_{k} \int_{Y} p\left(y \mid x_{k}\right) \ln \frac{p\left(y \mid x_{k}\right)}{q(y)} d y \\
\approx & \max _{\left\{p_{k}\right\}} \sum_{k=1}^{K} p_{k} \int_{Y} q(y)\left[1+\epsilon\left(x_{k}, y\right)\right] \\
& \times\left[\epsilon\left(x_{k}, y\right)-\frac{\epsilon^{2}\left(x_{k}, y\right)}{2}\right] d y \\
\approx & \max _{\left\{p_{k}\right\}} \sum_{k=1}^{K} p_{k} \int_{Y} q(y) \frac{\epsilon^{2}\left(x_{k}, y\right)}{2} d y \tag{22}
\end{align*}
$$

Thus, choosing the relative frequencies $\left\{\rho_{k}\right\}$ corresponding to the maximizing distribution for capacity, we have from Eqs. (19), (20), and (21)

$$
\begin{gather*}
E_{\mathrm{y}}\left[z_{m}(\mathrm{y})\right] \approx-N C \tag{23}\\
\operatorname{var}_{\mathrm{y}}\left[z_{m}(\mathrm{y})\right]=2 N C \tag{24}
\end{gather*}
$$

Furthermore, since $z_{m}(y)$ is the sum of N independent random variables, by the central limit theorem it must be asymptotically gaussian. In fact, if we normalize by letting

$$
\begin{equation*}
v_{m}(\mathrm{y}) \triangleq \frac{z_{m}(\mathrm{y})+N C}{(2 N C)^{1 / 2}} \tag{25}
\end{equation*}
$$

it follows from Eqs. (23) and (24) that $v_{m}(y)$ is a zeromean, unit-variance, random variable and by the BerryEsseen theorem (cf Loève, Ref. 7) we have that $P_{v}(x)$, the distribution function of the normalized variable v_{m}, differs from the normalized gaussian distribution $F(x)$ by no more than

$$
\begin{aligned}
\left|P_{v}(x)-F(x)\right| & \leq \frac{\theta E\left(\left|z_{m}\right|^{3}\right)}{\left(\operatorname{var} z_{m}\right)^{3 / 2}} \\
& \approx \frac{\theta N \sum_{k=1}^{K} \rho_{k} \int_{\mathrm{Y}} q(y)\left|\epsilon\left(x_{k}, y\right)\right|^{3} d y}{(2 N C)^{3 / 2}} \\
& \approx 0
\end{aligned}
$$

when we neglect all terms in ϵ of order higher than quadratic.

Thus, all the variables v_{m} are asymptotically gaussian with zero means and unit variances. Applying Eq. (25) to Eq. (15) and letting $R^{\prime}=(\ln M) / N$ nats/symbol,

$$
\begin{align*}
1-P_{B}= & \exp \left[-N\left(R^{\prime}+C\right)\right] \\
& \times E_{\mathbf{y}}\left\{\exp \left[(2 N C)^{1 / 2} \max _{1 \leq m \leq e^{N R^{\prime}}} v_{m}(y)\right]\right\} \tag{26}
\end{align*}
$$

This formula is identical to the form of Eq. (6) for orthogonal signals on white gaussian channels, except that the variables v_{m} are not necessarily independent. However, for rates below capacity it is well known (Ref. 6) that the error probability for the best code on memoryless very noisy input-discrete channels behaves asymptotically exactly as that for orthogonal signals in the white gaussian channel [i.e., Expressions (1) and (3) hold with T replaced by N and R replaced by $\left.R^{\prime}\right]$. For
this to be the case, the best code on memoryless very noisy input-discrete memoryless channels must asymptotically lead to independent $v_{m}(y)$ in Eq. (26), since any other covariance matrix would lead asymptotically to a greater P_{z} below capacity. Thus, Eq. (26) reduces to Eq. (6), and the asymptotic behavior above capacity given by Expressions (2) and (4) must hold also for the best code on this class of channels.

References

1. Wyner, A. D., "On the Probability of Error for Communication in White Gaussian Noise," IEEE Trans. on Inform. Theory, Vol. IT-13, pp. 86-90, Jan, 1967.
2. Wozencraft, J. M., and Jacobs, I. M., Principles of Communication Engineering. John Wiley \& Sons, Inc., New York, 1965.
3. Cramér, H., Mathematical Methods of Statistics, pp. 374-376. Princeton University Press, Princeton, N. J., 1946.
4. Balakrishnan, A. V., "A Contribution to the Sphere-Packing Problem of Communication Theory," J. Math. Analysis and Appl., Vol. 3, No. 3, pp. 485-506, Dec. 1961.
5. Helstrom, C. W., Editor's Note, IEEE Trans. Inform. Theory, Vol. IT-14, No. 2, p. 311, Mar. 1968.
6. Shannon, C. E., Gallager, R. G., and Berlekamp, E. R., "Lower Bounds to Error Probability for Coding on Discrete Memoryless Channels, I," Inform. Contr., Vol. 10, No. 1, pp. 81-83, Jan. 1967.
7. Loève, M., Probability Theory, p. 288. Van Nostrand, New York, 1965.

[^0]: ${ }^{1}$ Consultant, University of California at Los Angeles.

[^1]: ${ }^{2}$ It has long been conjectured that regular simplex signals are globally optimum for all rates on the white gaussian channel, and this obviously implies the asymptotic optimality of orthogonal signals. However, only the local first- and second-order conditions of optimality of regular simplex signals have been shown (Ref. 4) and all attempts at proving global optimality at all rates have met with failure.

