General Disclaimer
 One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

FINAL REPORT for

COLLISIONS OF ELECTRONS AND IONS WITH HYDROGEN ATOMS (8 May 1967-7 May 1968)

Contract No.: NAS 5-11C25

Prepared by
Gulf General Atom = Incorporated
P. O. Box 608, San Diego, California 92112
for
Goddard Space Flight Center
Greenbelt, Maryland

FINAL REPORT

for
COLLISIONS OF ELECTRONS AND IONS WITH HYDROGEN ATOMS (8 May 1967-7 May 1968)

Contract No.: NAS 5-11025

Goddard Space Flight Center
Contracting Officer: J. L. Turner
Technical Monitor: Aaron Temkin
Work done by:

J. C. Y. Chen (Consultant)
E. M. Clarke (Summer Consultant) written by:
E. K. Curley
R. D. Hostetler
J. William McGowan
W. Meckbach (Visiting Scientist)
W. Olson
J. F. Williams (Associated Scientist)
Prepared by McGowan
Gulf General Atomic Incorporated
P. O. Box 608, San Diego, California 92112

Project Manager: J. William McGowan
for
Goddard Space Flight Center
Greenbelt, Maryland

Abstract

A study of $2 p$ excitation of the hydrogen atom under electron impact is reported. The major finds have been the resonance structure just above the threshold of excitation, which was not predicted, and just below the threshold of $n=3$, which was predicted but which for higher angular momentum states does not agree with theory. Resonance structure above $n+3$ has also been observed.

Dissociative excitation of H_{2} and D_{2} has been studied under high electron energy resolution. Several new dissociation channels have been identified. Gaseous filtering techniques to be applied to radiations in the vacuum ultraviolet were studied. Some of the computer codes used on this program are given in the report, along with abstracts and papers published this year.

CONTENTS

ABSTRACT ii

1. INTRODUCTION 1
2. NEW INSTRUMENTATION 3
3. THE 2p EXCITATION THRESHOLD 7
4. THE 2p EXCITATION IN THE VICINITY OF $n=3$ 13
5. TOTAL CROSS SECTION MEASUREMENTS 14
6. GASEOUS FILTERS 18
7. DISSOCIATIVE EXCITATION OE MOLECULAR HYDROGEN 23
8. THE THEORETICAL COMPLEMENT 27
9. DATA PROCESSING FOR ELECTRON-ATOM ELASTIC AND INELASTIC EXPERIMENTS AND A PROGRAM LISTING 29
9.1. Terminology 29
9.2. Paper Tape Format 30
9.3. Description and Instructions 30
10. OTHER COMPLEMENTARY ACTIVITIES 151
REFERENCES 156
APPENDIX I. ABSTRACTS OF PAPERS GIVEN AT SCIENTIFIC MEETINGS I-1
APPENDIX II. PAPERS RESULTING THIS YEAR FROM THE PROGRAM II-1
FIGURES
11. One cycle of 35 from run 39 C showing the threshold region for $2 p$ excitation. In the single cycle no feature is recognizable 5
12. The summation of 35 cycles where the sharp rise at the excitation threshold and a hint of the resonance structure just above threshold are quite evident 6
13. A sketch of the electron hydrogen atom collision region showing roughly the geometry used in the experiment 8
14. The solid curve is the $2 p$ excitation cross section caiculated byBurke et al, for the cross section observed at 90° to the directionof the bombarding electrons. The open circles are the low reso-lution data (0.35 eV) of Chamberlain et al: for the Lyman-alphameasured at 90° to the electron path. The experimental valuehas been normalized to the theoretical. The data represented bythe closed circles are for a resolution of 0.07 eV . They too havebeen normalized to the theoretical cross section but are propor-tional to the total cross section rather than that at 90°9
15. Theoretical and experimental values for the total excitation cross section in the vicinity of threshold. From threshold to 10.5 eV the statistical uncertainty is approximately $\pm 1 \%$. Between 11.60 and 12.20 the uncertainty is less than $\pm 2 \%$. For the rest of the $0.07-\mathrm{eV}$ resolution data it is $\sim 3 \%$ 10
16. Comparison of our low resolution results with those of Long, Cox, and Smith to which our results are normalized 15
17. A cross section for the excitation of the sum of the 3 s and 3 d states of atomic hydrogen. Shown for comparison are the theoretical value of Burke, Ormonde, and Whitaker and the recent experimental results of Kleinpoppin et al. 17
18. A schematic diagram of the photodetector and chemical filter used in these experiments 19
19. Relative excitation curves obtained with four different chemical filters: (a) molecular oxygen; (b) dry atomic helium; (c) dry molecular nitrogen; and (d) dry CO_{2}. The pressure in the CO_{2} filter is slightly higher than in the other filters 21
20. The excitation curve for dissociative excitation resulting from the removal of the molecular contribution below 14 eV . This curve is generated by subtracting $\sim 5 \%$ of the helium signal from the O_{2} curve 22
21. A comparison of the dissociative excitation results for H_{2} and D_{2}. Also shown are a segment from the earlier Lyman-alpha excitation measurements of Fite and Brackman (FB) and a segment of the Balmer-alpha excitation curve of Burrows and Dunn (BD) 24
22. A segment of the dissociative excitation curve near threshold, from which much of the 0.07 eV electron energy distribution is analytically removed from the curve 25
TABLE
23. Structure in 2 p excitation curve 12

1. INT RODUCTION

During the past year, primary attention has been focused upon the collision of highly resolved electrons with hydrogen atoms leading to the excitation of the lowest radiative state of the atom, i.e.,

$$
e+H(1 s)=H(2 p)+e .
$$

As in the case of elastic scattering of electrons from hydrogen atoms, inelastic scattering, particularly in the vicinity of the various levels of the hydrogen atom, is dominated by the formation of the temporary compound negative ion states.

In Section 3 of this report, the resonances found in the $2 p$ channel immediately above the excitation threshold are discussed; in Section 4, those below and above the $n=3$ level of the hydrogen atom are considered. In Section 5, a comparison is made between the measured cross section in the vicinity of threshold and the best calculated values.

Complementing the study of electrons colliding with the hydrogen atom, a study has been made of the collision of electrons with the hydrogen molecule and the subsequent dissociative excitation of the $2 p$ state of the hydrogen atom,
in competition with

$$
e+H_{2}=H(2 p)+H(1 s)+e
$$

$$
\mathrm{e}+\mathrm{H}_{2}=\mathrm{H}(2 \mathrm{p})+\mathrm{H}^{-} .
$$

The contribution to 2 p excitation from the second reaction is small. The measurements made on H_{2} are unfortunately complicated by uitraviolet radiation other than Lyman-alpha which passes through the few narrow windows in the O_{2} filter. In Section 6, the results of a short study of gaseous and chemical filters are discussed; in Section 7, the results of dissociative excitation are reviewed.

Since the primary purpose of the program is to test theory and to relate the results with the theory, we have been conducting under NASA's support a small theoretical program. This program is discussed in Section 8.

Because of the extreme complexity of the 2 p excitation problem, we have developed a number of computer codes to process and analyze the data in next year's program. In Section 9 the se codes are discussed and are thus made generally available to the scientific community. Finally, Section 10 presents a discussion of other activities that have complemented the program.

Abstracts of papers presented at scientific meetings appear in Appendix I, and articles that resulted from studies made on this program are included as Appendix II.

2. NEW INSTRUMENTATION

The apparatus used this year is essentially that used last year except for minor changes in electronics and the addition of a photo detector on a rotating table. The photo detector was designed to detect Lyman-alpha radiation. During this period two types of photon counter were used. The first was the iodine-filled Geiger counters developed some years ago in this laboratory. This was replaced by an Electromechanical Research multiplier* photo tube with lithium fluoride optics. It is an 18-stage silver magnesium dynode multiplier with a potassium bromide photocathode. The geometry chosen had a side window.

The spectral sensitivity of the tube extended from $1050 \AA$ to $1500 \AA$ with very high sensitivity at the Lyman-alpha level (1216 \AA). This new photo tube has the necessary characteristic that long wavelengths are amply rejected. The photo tube was chosen to replace the iodine-filled Geiger counter for two reasons. First, estimates indicated that the photo tube would be from a factor of 3 to 10 more sensitive than the Geiger counter. Second, since the experiments required extensive counting times, extreme reliability of all parts was necessary. It was felt that the photo tube, which has essentially infinite lifetime, would be a sensible substitute for the Geiger counter, which is unpredictable in its operating characteristics and comparatively short lived.

Unfortunately, the expectations for the sensitivity of this tube have not been met. At the very most, sensitivity has been increased by a factor of 2. However, since the time of its installation six months ago, the photo tube has required no service even though it has been in continuous operation for most of this time.

Between the photo detector and the interaction volume defined by the electron and hydrogen atom beams, a $1-\mathrm{cm}-\mathrm{long}$ cell with lithium fluoride windows is placed and is filled with molecular oxygen. It is a strange quirk of nature that in the absorption spectrum of molecular oxygen, one of seven very narrow windows is centered around Lyman-alpha, i. e., at $1216 \AA$. For the chemical (gaseous) filter to pass Lyman-alpha, the oxygen must be dry. If any moisture is present, the transmission of the cell can be greatly reduced. Consequently, dried oxygen is continuously flowed through the cell.

The experimental demands associated with the study of 2 p excitation of atomic hydrogen have been excessive. The experiments have required the complete stability of the electronics, the electron beam, the hydrogen atom beam, etc., over periods well in excess of 24 hr to collect a significant number of data. In many experiments, data have been taken in $0.015-\mathrm{V}$ intervals with from 60 to 100 points per cycle. For each cycle, then, the total interval is 0.9 eV for 60 data points and 1.5 eV for 100 data points. The normal counting time per data point is 1 min . If there are 60 points per cycle, the time for one cycle is 1 hr . It is interesting to compare the results that can be obtained from one cycle with those that can be obtained when a number of cycles are summed together. An example (Run 39C) is given in Figs. 1 and 2. Figure 1 shows one of 35 cycles, while in Fig. 2 all 35 cycles have been summed. In the single cycle, no feature is recognizable. In the composite Fig. 2, the 2p excitation threshold is clearly defined and the resonance near the threshold can be seen. The randomness observed below threshold gives some idea of the fluctuation of the background.

At the peak of the resonance, Fig. 2 shows approximately 300 counts for the integrated signal. One standard deviation for the (signal plus background) and background combined is approximately ± 30 counts. The resonance peak, as shown in Fig. 2 and in many of the earlier runs, was only slightly more than twice this standard deviation.

To define the first resonance above the $2 p$ excitation threshold and to determine whether or not there are subsequent resonances, it was necessary to conduct an experiment that ran for 109 cycles. In this instance, there were 40 points per cycle. The time required for continuous running was in excess of 70 hr .
CONRET TEOTT 0VI 3508162

Fig. 1. One cycle of 35 from run 39 C showing the threshold region for 2 p excitation. lin the single cycle no feature is recognizable.

3. THE 2p EXCITATION THRESHOLD

In this section, we discuss the excitation of $\mathrm{H}(2 \mathrm{p})$ from threshold to 0.6 eV above threshold. The collision region is shown schematically in Fig. 3. A modulated rectangular beam of hydrogen atoms nearly 90% pure is crossed with a rectangular beam of electrons with an energy distribution that ranges from 0.06 eV to 0.18 eV . Electrons from a source 127° electrostatic electron energy analyzer enter a magnetic and electric field free region, cross the modulated hydrogen atom beam from below, and pass into a collector in which a crossed electric field can be applied to collect all the electrons. When this crossed field is removed, the electrons can pass through the collector to a second electrostatic energy analyzer, where the energy distribution of the electrons is measured.

Photons from the interaction of the two beams were normally detected at an angle of 54.5° with respect to the direction of the bombarding electrons. At this angle the measured signal was proportional to the total $2 p$ excitation cross section. (1) Ion 3 from the interaction region were accelerated along the atomic beam axis into a Paul mass filter. As in previous experiments at this laboratory, the linear extrapolation of the ionization efficiency curve to its energy axis was used as a calibration for the electron energy scale. The data were recorded automatically over many hours, as described in Section 2. The system can be programmed to step through a prescribed energy interval. All data were collected digitally; i. e., for each energy interval, the signal plus background ($\mathrm{S}+\mathrm{N}$), the background (N), and the electron current were recorded on punched tape to be processed later by the computer. Every 8 to 12 hr , the excitation process was interrupted and an ionization efficiency curve for atomic hydrogen was taken to help fix the electron energy scale for excitation. Over more than 100 hr , in many instances the reproducibility of the onset of the ionization efficiency curves was within $\pm 0.015 \mathrm{eV}$.

In Fig. 4, the total cross section measurements near threshold are compared with theory ${ }^{(2)}$ and with the previously reported results of Chamberlain et al. ${ }^{(3)}$ This comparison is made primarily to show the difference between the resolutions of the two experiments and the width of the structure that one is looking for compared with what has been observed experimentally. In the left-hand portion of Fig. 5, theoretical results are compared with the theoretical predictions wherein the energy

ELECTRON
 COLLECTOR

AND ANALYZER

LYMAN a COUNTER WITH O 2

FILTER

TO MASS
ANALYSER
SOURCE OF RESOLVED ELECTRONS
LC-61849

Fig. 3. A sketch of the electron hydrogen atom collision
region showing roughly the geometry used in the
experiment

Fig. 4. The solid curve is the $2 p$ excitation cross section calculated by Burke et al. for the cross section observed at 90° to the direction of the bombarding electrons. The open circles are the low resolution data (0.35 eV) of Chamberlain et al. for the Lyman-alpha measured at 90° to the electron path. The experimental value has been normalized to the theoretical. The data represented by the closed circles are for a resolution of 0.07 eV . They too have been normalized to the theoretical cross section but are proportional to the total cross section rather than that at 90°.

distribution, approximately 0.07 eV , has been folded into the theoretical curve. As can be seen, the agreement between the measured and predicted shapes of the first resonance is good. It follows, then, that the excitation cross section does consist of a sharp rise, as predicted by Damburg and Gailitis, (4) from a close-coupling approximation calculation that includes the three lowest hydrogen atom states, $1 \mathrm{~s}, 2 \mathrm{~s}$, and 2 p . It is also clear from our measurements that the sharp resonance predicted by Taylor and Burke, (5) who also used a close-coupling approximation, does really exist within 0.03 eV of threshold. Burke and his associates have shown that the total flux of this resonance is in the ${ }^{1} \mathrm{P}$ channel of the H^{-}compound state. This resonance unfortunately was not recognizable in the previous calculations of Damburg and Gailitis because of the coarseness of the energy grid used by them.

In the experimental results immediately following the first resonance, there appear to be at least two other broad resonance structures. Although these structures have been recognized from ourearliest measurements, it was only recently that the statistics were good enough to permit us to say definitely that they exist. It was also necessary to make certain that these small structures were not due to the excitation of some countable ultraviolet from the collision of electrons with the residual H_{2} in the system. Table 1 lists the positions of the most promient structures; however, one must remember that these positions may not correspond exactly to the positions of the resonances themselves, but rather to the resonances with the electron energy distribution folded into them.

The use of the finite number of terms in the close-coupling expansion used to describe even these lowest states may be subject to some question since it is not clear how quickly the expansion converges. In the case of the elastic scattering resonances below the first inelastic threshold $n=2$, there is every indication that the convergence is rapid. However, it is not yet clear that the ${ }^{1} P$ "shape" resonance described by the three-state approximation above $=2$ is not better described by an expansion that includes the first six or more states of the hydrogen atom. Unfortunately, Burke et al. ${ }^{(2)}$ have carried out their six-state approximation calculations only from just below the $n=3$ level down to within 0.2 eV of the 2 p excitation threshold. Over the range where the three- and six-state approximations overlap, i.e., in the region from 0.2 to 1.0 eV above the $2 p$ threshold, the six-state calculation gives a cross section value approximately 8% lower than that given by the three-state approximation.

Another calculation reported by Taylor and Burke ${ }^{(5)}$ has been carried out using the close-cupling approximation that includes the first three states of the hydrogen atom and potential terms that describe the electronelectron interaction (correlation) as a power series of terms involving r_{12},
the distance between the two electrons. Over the same energy range as taken above, the later calculation gives a cross section value that is approximately 20% below that given by the three-state approxication. Near threshold, the correlation terms have now shifted the calculated resonance closer to the threshold and have considerably reduced its width. This is in keeping with the experimental finding. The need for more work on the theory has recently been recognized by Damburg and Geltman, (6) who indicate that another possible source of incompleteness results from the lack of the inclusion of polarization terms of order α / r^{4}. In the case of $2 s$ excitation, the inclusion of polarization has had a marked effect on the calculated cross section.

TABLE 1
STRUCTURE IN 2p EXCITATION CURVE

Energy	Description of Structure	Comments
10.20 ± 0.02	Steep slope	Onset
10.29 ± 0.02	First max	Predicted ${ }^{1} \mathrm{P}$ "shape" resonance
10.45 ± 0.03	Second max	
10.65 ± 0.03	Third max	
11.65 ± 0.03	Small min	Predicted ${ }^{1} \mathrm{~S}$ resonance
11.77 ± 0.02	Possible min	Predicted ${ }^{1} \mathrm{D}$ resonance
11.89 ± 0.02	Large min	Predicted ${ }^{1} \mathrm{P}$ resonance
12.06 ± 0.04	Broad max	"Shape" resonance at $\mathrm{n}=3$ threshold
12.16 ± 0.05	Min	
12.23 ± 0.05	Small max	
$\underline{12.35 \pm 0.05}$	Small max	

4. THE 2p EXCITATION IN THE VICINITY OF $n=3$

Figure 5 shows details of the experimental cross section from 11.35 eV to 12.55 eV . This region overlaps the $\mathrm{n}=3$ threshold. Bridging the two threshold regions are low resolution measurements. Just below the $n=3$ threshold can be seen several recognizable resonances, the most predominant of which appears near 11.88 eV . A smaller resonance appears in the vicinity of 11.65 eV . Also shown in the figure is the calculation for the six-state approximation showing a number of resonances. Folded into the calculated cross section is the experimental energy distribution, which is approximately 0.07 eV . The agreement between theory ${ }^{(2)}$ and experiment is not considered good for the ${ }^{1} \mathrm{P}$ resonance, while for the ${ }^{1} \mathrm{~S}$ resonances the agreement is thought to be quite satisfactory.

At and above the threshold of $n=3$ can be seen a prominent bump, which is most likely associated with a "shape" resonance just above the $\mathrm{n}=3$ threshold. Part of the flux for this resonance appears directly in the 2 p channel. Another portion, most likely the largest part, arrives through cascade from the 3 s and 3 d states of the atom. The positions of the resonance structure below and above the $n=3$ level are included in Table 1.

5. TOTAL CROSS SECTION MEASUREMENTS

Since it is impossible to measure the cross section absolutely, we have determined it from a normalization to the Borne approximation at energies in excess of 200 eV . Although this procedure is not entirely satisfactory, at present there is no simple method available for making an absolute determination. Data have been taken between the $2 p$ excitation threshold and 200 eV ; the most precise data, however, have been taken below 60 eV . In fact, continuous data have been taken every 0.1 V from 60 eV until threshold. We have found the most precise way to determine our cross section is to normalize our data to those of Long, Cox, and Smith, who in turn have normalized theirs to the Born approximation. The relative accuracy of their data is $\pm 2 \%$.

Although we have not been able to assign to our data relative accuracies as small as this, we have compared our data with those of Long, Cox, and Smith (see Fig. 6). The cross sections defined by the two sets of data points are indistinguishable. It is interesting to note in our data that the finite excitation threshold is recognizable just above 10.2 eV , even though the resolution in this experiment is only 0.18 eV . Also, one can see a hint of the resonance structure in the vicinity of $n=3$ and in the continuously taken data below $n=4$.

To obtain an accurate estimate of the cross section in the threshold region, the high resolution data were subsequently normalized to the lowest resolution data, thus fixing the cross section scale. The values of the cross section given in Fig. 4 were fixed in this way. It is interesting to note that the cross section thus obtained is only 80% of the lowest cross section predicted. The approximation used to arrive at the cross section closest to the experimental value is the three-state close-coupling approximation, which includes 20 electron-electron correlation terms.

Quite recently, Fite et al. ${ }^{(8)}$ have determined that the Lyman-alpha radiation emitted by hydrogen 2 s atoms in a weak electric field is polarized. Consequently, all earlier measurements or estimates of the 2 s excitation cross section are in error since no allowance was made for this polarization. Once the cross sections have been corrected for the polarization, at the cross section maximum, which is in the vicinity of $n=3$, the value obtained is only 80% of the lowest predicted cross section resulting from the sixstate close-coupling approximation.

Fig. 6. Comparison of our low resolution results with those of Long, Cox, and Smith to which our results are normalized
${ }_{z}{ }^{\circ} \mathrm{e} \mu$) NOIIJ3S SSO甘O NOIIV1IJXJ dz $7 \forall 101$

It is an informative exercise to estimate the size of the combined excitation cross section for the 3 s and 3 d states of atomic hydrogen. These data are reflected in the total cross section measurements for the production of the Lyman-alpha radiation since the 3 s and 3 d cross sections can only couple with the ground state by passing through the $2 p$ state. Although our total excitation cross section for the $2 p$ state does not agree in absolute magnitude with that predicted by Burke et al., it is quite obvious that below the $n=3$ level the general shape of the measured and calculated cross sections is the same. Consequently, there is some justification in normalizing the magnitude of the calculated cross section to that of the measured cross section in the region just above the $n=2$ level. Having done this, we observe that the calculated portion of the cruss section for the $2 p$ state above $n=3$ is considerably lower than the total measured cross section (Fig. 5, broken line above $n=3$). To a first and perhaps crude approximation, the difference between the measured and normalized theoretical curves can be said to be due to cascade. This difference is shown in Fig. 7. No attempt has been made to include any contribution for the shape resonance above $n=3$ in the calculations or to allow for the addition of states above $n=4$ in the theory.

It is now possible to compare this difference with the predicted cross sections of Burke et al. As shown in Fig. 7, the agreement between experiment and theory is satisfactory. In fact, even with this crude approximation in which no attempt has been made to account for polarization or other factors, as in the case of 2 p excitation, the value of the estimated cross section again lies slightly below that of the predicted cross section. This result is not at all in agreement with the recently published data of Kleinpoppin and Krase ${ }^{(9)}$ for Balmer-alpha excitation. Since our result depends upon a normalizing of the six-state approximation to the results below $n=3$, we hesitate to say their result is in error, Furthermore, it is not clear that the six-state approximation necessarily gives an accurate description of the region above $n=3$, although it seems reasonable that it is not in error by much.

Fig. 7. A cross section for the excitation of the sum of the 3 s and 3d states of atomic hydrogen. Shown for comparison are the theoretical value of Burke, Ormonde, and Whitaker and the recent experimental results of Kleinpoppin et al.

6. GASEOUS FILTERS

One of the most important problems associated with the study of the excitation of atomic hydrogen is the unequivocal detection of Lyman-alpha $(1216 \AA)$. Provided a large enough signal is available from the experiment, one can use a vacuum ultraviolet spectrometer. However, in experiments such as those performed in this laboratory where the number of photons available is very small, it becomes absolutely necessary to have the largest possible collection efficiency and reasonably large angle of acceptance. It has long been recognized that the Geiger counter, filled with either nitric oxide or iodine and with lithium fluoride optics, could be used to detect vacuum ultraviolet radiation in the vicinity of Lyman-alpha. However, to ensure the unequivocal detection of the Lyman-alpha and particularly to eliminate the molecular radiation normally associated with the bombardment of residual H_{2} in the experiment, it was necessary to find a filter that would preferentially pass the $1216 \AA$ radiation.

It was observed by Watanabe ${ }^{(10)}$ and others that in the absorption spectrum of O_{2} in the vacuum ultraviolet and in the vicinity of 10 eV there are seven very deep transmission windows, one of which is centered at the Lyman-alpha. It has been the repeated observation in our laboratory that in the study of the excitation of atomic hydrogen to the $n=2$ level, the combination of the chemical filter filled with oxygen and either a Geiger counter or a photomultiplier has been an effective detector of Lyman-alpha. However, in the study of the dissociative excitation of H_{2}, either by proton or electron impact, it has been recognized that there is a large contribution of molecular radiation, which passes either through the other windows or through the optically thick portion of the chemical filter.

To effectively study the dissociative excitation process it is therefore necessary to eliminate this background radiation. To do this, a series of experiments was carried out in which different gases were used as the optical filter. In Fig. 8 we show a schematic diagram of our experiment. In all cases the gases used in the chemical filter flowed through the filter continuously. However, in the case of CO_{2} the rate of flow was much slower than in the cases of nitrogen, helium, and oxygen, which were virtually the same. The pressure in all filters was slightly in excess of 1 atm.

Fig. 8. A schematic diagram of the photodetector and chemical filter used in these experiments

In Fig. 9 we show the relative number of photons reaching the counter as a function of electron energy when electrons bombard H_{2}. Four different gases have been used in the chemical filter. The electron energy for these experiments ranges from approximately 10 to 20 eV , an interval which embraces the onset of the molecular radiation at approximately 10.3 eV and the onset of dissociative excitation in the vicinity of 14.7 eV . Figure 9 shows the results when the O_{2} filter was used. The onset of the molecular radiation is ciearly visible at 10.3 eV , as is the onset of the dissociative excitation of the hydrogen atom in the 2 p state near 14.7 eV . From this curve alone we can judge that, once we have moved a few electron volts from the threshold of dissociative excitation, the molecular contribution to the total curve is in the vicinity of 20%. Near threshold for dissociative excitation, of course, the molecular contribution is proportionately larger. Looking at Fig. 9, one can see virtually no difference in the magnitude and shape of the curves for He and N_{2} (b and c , respectively), verifying what we already know, i.e., that both He and N_{2} are transparent in this optical region.

Now that we recognize in curve (a) the onset of the dissociative excitation, we can use curves (b) and (c) to estimate the relative contribution of Lyman-alpha and other molecular radiation as seen by the counter. A reasonable extension of the curve, from below the dissociative excitation threshold to above, gives us this information. Above approximately 16 eV we estimate that the radiation from dissociative excitation is in the vicinity of 20% of the total radiation. This estimate, of course, is approximate, but it is reasonable. In curve (d) the complicated absorption spectrum of CO_{2} is seen reflected in the structure of the curve.

To generate Fig. 10, the helium curve has been normalized to the O_{2} curve in the vicinity below 14 eV and the helium curve has been subtracted from the O_{2} curve in this region. The residual signal is shown in Fig. 10. The fine structure below 14.7 eV appears to be real for it is present in the curves when either helium or nitrogen is subtracted from the oxygen data. In both cases there is a sharp onset in the vicinity of the dissociative excitation threshold. It is interesting to note that above 16 eV , structure is quite pronounced in the curve.

It must be realized that by subtracting the helium (or nitrogen) data from the O_{2} data, we have eliminated part of the dissociative excitation signal in the vicinity above the dissociative excitation threshold. However, this is small (20% of 20%), approximately 4% of the total signal. From this study it is clear that the estimates of the total cross section made earlier by Fite and Brackmann ${ }^{(1)}$ are high by approximately 20%.

Fig. 9. Relative excitation curves obtained with four different chemical filters: (a) molecular oxygen; (b) dry atomic helium; (c) diry molecular nitrogen; and (d) dry CO_{2}. The pressure in the CO_{2} filter is slightly higher than in the other filters

7. DISSOCIATIVE EXCITATION OF MOLECULAR HYDROGEN

From the discussion in Section 6, it is clear that the originally reported value for the dissociative excitation of the $2 p$ state of atomic hydrogen from H_{2} was in error due to a large contribution of molecular radiation coming from the interaction region. As can be seen in Fig. 11, the cross section for H_{2} is nearly 20% lower than the original measurements of Fite and Brackmann. (1) It is also clear from Fig. 11 that the dissociative excitation of D_{2} has a cross section that is only 90% of that of H_{2}. This isotope effect is in keeping with the predictions of Platzman, (11) who pointed out that there are a number of molecular states that lie above the first ionization potential. In general, there are two major deexcitation paths available for such excited states, autoionization and predissociation. The first of these processes is nearly mass independent; the time for it therefore should almost be independent of isotope substitution. The time required for dissociation depends on the velocity with which the particles separate and therefore is strongly mass dependent. A similar isotope effect has recently been reported by Burrows and Dunn(12) and by Vroom and deHeer. (13) Shown also in Fig. 11 is the maximum of the Balmer alpha excitation curve of Burrows and Dunn. The shape of the curve is very similar to our H_{2} curve.

In our preliminary data, the break in the total excitation curve in the case of H_{2} is at a higher potential than in the case of D_{2}. It is clear from the figure that in the case of D_{2} the channel that includes excitation plus proton formation does not play a major role, whereas in the case of H_{2} the onsets of both the formation of two excited states and the formation of the (2 p) atom plus a proton are below the major structure that appears in our curve. No doubt this is associated with the isotope effect, details of which are not yet completely understood.

In Fig. 12 we show the excitation curve near threshold. The data shown are only relative. This curve is one from which the energy distribution of our beam has been largely removed. Three sets of data are overlapped. The structure that appears at the end of the first also appears in the beginning of the second; similarly, the structure that appears at the end of the second appears in the beginning of the third. The onset is in the vicinity of 14.7 eV . There follows a rather straight portion of the curve with very little structure. Then, in the vicinity of 15.8 eV the onset of nearly 12 small ripples, which are fairly evenly spaced, is seen. The spacing between the

ripples is in the vicinity of 0.14 to 18 eV . This series of ripples shows a change above the ionization potential, 15.43 eV . In fact, the continuous ripple form goes on until nearly 17.8 eV , the dissociation limit of H_{2}^{+}. Above this the nature of the structure changes, and the orderliness seems to disappear. The larger ripples which are apparent in Fig. 10 then seem to dominate. The cause of this structure is not completely understood. It is possible, although not likely, that it is due to the structure in the molecular radiation in the background of our signal, which has not been completely removed. If, however, this structure is related to the dissociative excitation of H_{2} into the 2 p channel, then one is prompted to suggest either that it results from a temporary formation of an H_{2}^{-}compound state, which decays into several modes, one the dissociative channel and the other the excitation of molecular levels, or that it reflects competition between predissociation and autoionization, i. e.,

$$
\mathrm{e}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{2}^{*}+\mathrm{e},
$$

followed by

$$
\mathrm{H}_{2}^{*} \rightarrow \mathrm{H}(2 \mathrm{p})+\mathrm{H}(1 \mathrm{~s})
$$

competing with
$\rightarrow \mathrm{H}_{2}^{*}+\mathrm{e}$.

8. THE THEORETICAL COMPLEMENT

During this contract period, Professor J. C. Y. Chen, University of California, San Diego (UCSD), has participated in our study of electron hydrogen collisions. His activities at Gulf General Atomic and at the University have covered the following subjects:

1. The application of Faddeev's equation to a number of atomic problems
a. (e-H) elastic scattering resonances
b. (e-H) excitation threshold
c. ($e^{+}-H$) elastic scattering and positronium formation
2. Close-coupling calculations (or the (e-H) system in momentum space)
3. Electroin resonance scattering from molecules

Work is also under way at UCSD on a new variational calculation for ($\mathrm{e}-\mathrm{H}$) scattering and on the field detachment of H^{-}.

Included in Appendix II is an article that resulted from these studies. In it, Ball, Chen, and Wong have investigated various solutions of the Faddeev equation for Coulomb potentials, and a practical method for solving the Faddeev equations below the three-particie breakup threshold is developed. The method is then applied to the (e, H) system in which the H^{-}bound state and the lowest members of the compound states in both the singlet and triplet series are calculated. The calculated position of the lowest ${ }^{1}$ S resonance is in excellent agreement with the experiment, while the width of the lowest ${ }^{1} \mathrm{~S}$ resonance is slightly less than that found experimentally.

Also during this contract year, with the support of NASA and Gulf General Atomic, a series of colloquia on atomic and molecular processes (CAMP) has been conducted. Many of the colloquia were given by people who are actively participating in electron proton and positron hydrogen atom scattering studies. A list of colloquia speakers and their topics is given in Section 10.

This spring a two-day "working session" on electron hydrogen atom collisions was held in La Jolla. The primary purpose of this session was to consider the programs presently under way and to determine what information could best be obtained from experiment to direct further theoretical studies. The program for this successful working session is also listed in Section 10.

9. DATA PROCESSING FOR ELECTRON-ATOM ELASTIC AND INELASTIC EXPERIMENTS AND A PROGRAM LISTING

The output data from the experimental devices are on punched paper tape. In order to process these data using the 1108 FORTRAN IV programs, the data first must be converted to punched cards or magnetic tape. Because of the ease in handling, storing, etc., the latter was chosen. To aid in understanding the descriptions and the instructions for the use of the various programs involved, a brief listing of terms and definitions is presented below.

9.1. TERMINOLOGY

Paper Tape

Data word: a fixed number of digits plus separator character
Data block: a block consisting of four data words--channel chamber, signal + noise, noise, and current, respectively

Data section: a section of paper tape that contains a finite number of data blocks

Leader: a section of paper tape that is comprised of feed characters' Illegal character: any punch or combination of punches that does not represents digits 0 through 9, a separator, or a feed character

Magnetic Tape

FD (Field Data Code): 2 octal digit code representation for character and digit

Floating point: the form in which a number containing an implied decimal must be before computation in FORTRAN IV can take place with meaningful results
Image tape: magnetic tape on which the image of a paper tape is written, except illegal characters, which are represented as slashes (/) (FD format)

Library tape: magnetic tape in which many data sections are stored for later retrieval

Scratch tape: tape used for one computer run only; its contents are not saved

Backup tape: a copy of any magnetic taft, used for protection purposes

9.2. PAPER TAPE FORMAT

The paper tape must contain a minimum of five feet of leader before the first data section. The leader must be marked "START" in large letters. Each data section must be separated by a minimum of 18 inches of feed characters. Five feet of 'eader must follow the last data section.

9. 3. DESCRIPTION AND INSTRUCTIONS

This section contains a description of the function of each of the following programs ised in conjunction with the electron scattering experiments, along with a detailed set of directions for use and a listing of the complete program for each.

Program Function

1. READPT Used with the 1004 paper tape reade. to read the paper tape and write the information on a magnetic tape. A slash (/) is written on the magnetic tape for any illegal character in the paper tape.
2. TEDIT Reads the magnetic tape as written by READPT, converts data from FD to floating point format, and stacks information on a library data tape. Output consists of printed tape and printer plots. Eliminates any illegal characters (slashes) by linear interpolation or direct substitution.
3. TREAD Reads the data library tape written by TEDIT and lists all runs on this tape.
4. ABEAM4 Reads the data library tape written by TEDIT and provides various calculations and printer plots as requested by user.
5. COPY

Reads the data library tape and copies the information onto backup tape.
6. UPI:ATE
7. LEDF Reads the data library tape, lists all experiments by number, and writes end of file on the tape. (It was designed to place an end of file on the library tape designed to place an end of file on the library tape
when it was oraitted by TEDIT through oversight on the part of user or through a fault of the computer during a TEDIT run.)
8. SM $\varnothing \varnothing$ TH Fourier-smooths data, unfolds a given Gaussian electron energy distribution from the data, and gives the results in tabular form. At present only the derivatives of the data are given. The program is prepared to accept card input. The deck of cards needed is generated as one of the options in ABEAM4.
9. SIMCUR Folds into any given function a Gaussian distribution of specified full width at half maximum. The results are generated in both tabular and graphic form.
10. SIMTAB

Allows tia user to make certain changes to the data on the library tape. A new library tape is written and the original library tape remains unchanged.

Folds into any function in tabular form a Gaussian distribution of specified full width at half maximum. A ninth-order polynomial i terpolation scheme is included in this program. The results are given in both tabular and graphic form.

STEP 1: READPT

The information contained on the paper tape is transferred to a magnetic tape.by the READPT program. The READPT program is an integral part of the 1108 system; therefore, no program deck is required by the user.

The paper tape must be in the format described in Section 9.2. A data card must be punched for each data section on the paper tape to be read by READPT. The format of the data card is as follows:

The information in columns 1 through 7 is mandatory. The information starting in column 19 for identification of each data section is arbitrary. Below is an example READPT input deck for a paper tape containing three data sections.

The printed output from READPT consists of three data blocks per line. Slashes are substituted for any illegal characters in the paper tape.

Prior to the start of step 2, the TEDIT program, the output listing from READPT is examined for errors. A data section is made up of one or more cycles. The channel numbers normally run sequentially, starting at 00000 , to a maximum of 00099 for each cycle. In order for TEDIT to recognize the start of a new cycle it is mandatory that each starting channel number be all zeros (00000) and contain no slashes. TEDIT will correct all other channel numbers that contain slashes.

On the output listing from READPT, columns 1, 5, and 9 are the channel numbers. If errors in the paper tape have caused the channel numbers to shift from these columns, the paper tape must be corrected and step 1 repeated until all errors of this type have been eliminated.

The computer program is not included in this report since it is a standard library program held at the computer center.

STEP 2: TEDIT

TEDIT reads a data card, then reads a data section from the magnetic tape written by READPT. It converts the tape data from FD to floating point and a fixed point (integer) and writes the information on the library tape (to be used by ABEAM4 program). The printed output from TEDIT contains the following:

1. A listing of each data section by cycle
2. A printer plot of (signal + noise) - (noise) = signal
3. A printer plot of current by cycle
4. After processing each data section, a listing of Σ^{*} signal, $\Sigma($ signal + noise $), \Sigma$ noise, $\Sigma($ signal/current), $\Sigma(($ signal + noise)/current), Σ (noise/current) is given. Also, a printer plot of Σ signal and Σ (signal/current) is given.

When a blank data card is encountered, an end of file is written on the library tape and processing is completed.

The data card for each data section must be in the following format:

Column	Name of Variables	FORTRAN Format
$1-6$	Experiment number	A6
$7-12$	Gas type	A6
$13-18$	Current variance	F6.0
$19-24$	Time of starting experiment	A6
$25-30$	Resolution	F6.0
$31-36$	Voltage interval	F6.0
$37-42$	Initial voltage	F6.0
$43-48$	Time interval (sec)	F6.0
$49-54$	Approximate minimum signal	F6.0
$55-60$	Approximate maximum signal	F6.0
$61-66$	Approximate minimum current	F6.0
$67-72$	Approximate maximum current	F6.0

[^0]Date of experiment
When a new library tape is to be created, a one (1) must be punched in column 80 of the first data card only. Otherwise, this column is left blank.

Data cards must be in the same sequence as the experiments (data sections) on the paper tape. The information from the data cards is also written on the library tape (except column 80).

Below is an example deck setup consisting of three experiments. The last card must be a blank card.

On the 1108 run request form, check "Do Not Rerun This Job." The number of experiments that may be stacked on the data library tape depends on tape size; the maximum number is 200 .

A program listing follows.
OFOR TEDIT, TEDIT
UNVAC 1108 FORTRAN IV LEVEL 2201
THIS COMPILATION WAS DONE ON O2 MAY 68 AT $10: 19: 07$

main program

-1......... the purpose of this routine is to read a mag. tape containing the
_2.__c_image of one or more paper tapes. edit this tape and write the info. .-3. C ON A LIBRARY DATA TAPE. -.. 4. C
_ 5. DIMENSION CHAN(100), SPLUSN(100), NOISE(100), CURR(100), SIG(100), 6. $\quad 1 \quad X(102)$, $Y(102)$ 7. ._._real notse
-8. INTEGER Chan
9. DIMENSION ERR1(100), ERR2(100), ERR3(100), ERR4(100), BUFF(90).
 12._1._._. \quad SUM6(100) 14.__INTEGER BUFF, BLANK. SLASH! FIVE, ASTERO, ERRORO ERRA. ERR2. ERR3. 15. .-_ 1 ERR4, TEE 16. -_COMMON BUFF 17. -_ DATA BLANK/GH. 18. 1 MINUS/6H19. .-............ rewind ptape 20. . REwIno LTtape IBEGIN $=0$
22. C.0 read main data card: one per each paper tape image on mag. tape (ptape). 23. 10 READ(5,11) NUM, ITYPE, VAR, TIME, RES, DVOLT, VOLTST, TINT, SIGMIN
24. 1 . SIGMAX, CURMIN, CURMAX, DATE (1), DATE (2), ITIME
25. 11 formati 2a6, F6.0, a6, 8F6.0, A6, A1, II). 26. C. C. . has the last paper tape image_been processed? . 27. .- IF (NUM.NE. BLANK) GO TO 14 28. 12 CALL REWI (LTAPE)
29. -_._CALL REWI (PTAPE)
30. STOP
31. . C.. initialize cycle counter to zero, set last cycle flag to zero. 32. $\quad 14$ KOUNT $=0$
33. - $0015 \quad 1=1,100$
34.sum1 $(1)=0.0$
35. _- SUM2 $(1)=0.0$
36. $\quad \operatorname{Sum} 3(1)=0.0$
37. $\quad \operatorname{sum4}(1)=0.0$
38.SUMS $(1)=0.0$
39. $15 \operatorname{SUMS}(1)=0.0$
40. C. SET INDEX COUNTER FOR CHAN. SPLUSN. NOISE AND CURR ARRAYS TO ZERO.
41. $L=0$
42. WRITE(6, 17) NUM, ITYPE, VAR, TIME, RES
43. ... 17 FORMATI 1H1, $9 x$ 10HRUN NUMBER, 1 X , A6, // 10 X ЗhGAS 1 X AG,// 10 X 44. 1 iohvariance x_{1}. $1 \times$ F6.2, // 10 X 4HTIME, $1 \times$ A6, // 10X 4HRES. $1 \times$ 45. 2 F6.2/1
46. WRITE(6,18) DVOLT, VOLTST, TINT, SIGMIN, SIGMAX, CURMIN: CURMAX 47. 18 FORMATS 10 X 17hVOLTAGE increment 1 x F6.2. // 10 X 17HSTARTING VOLTA 1GE $1 \times$ F6.2, // 10 X 14HTIME INTERVAL . F6.2, // 10 X 12HMIN. SIGNAL

607070
60 IF (BUFF(I).EQ.BLANK) 60 TO 70 BUFF(I) = BLANK 70 continue
C. Retranslate record. record now contains digits and blanks only, no slashes.
C.- SEE iF a new crcle is starting within last translated record, word (i). C. WORD(5) OR WORO(S) WILL EQUAL ZERO. . _.... 80 IF(L.EG.O.AND.KOUNT.EQ.1) GO.TO $\overline{\mathrm{I}}(\mathrm{N}, G T .4) 60 \mathrm{TO} 82$
$\mathrm{N}=4$
GO TO 85
82 IF(N.GT.B) 60 TO 84 $N=8$ 60. 7085

$$
84 N=12
$$

85 DO $90 K=4, N \circ 4$
95. $\quad . \quad J=K-3$.
IFiwORD(J)) 90, 120, 90 97. .. 90 continue
98. C... NO NEW CYCLE PLACE ALL WORDS INTO PROPER ARRAYS. JSAVE=0
$10000110 \mathrm{~J}=1 . \mathrm{N} 04$
102. C.. TEST FOR EXCEEDING RESERVED. STORAGE. IF(L.GT.100) GO TO 300 CHAN(L) $=$ WORD $(J)+.5$

96.
ล
100. 102. 102. 104.
SPLUSN(L) $=$ MORD(J+1) NOISE(L) $=$ WORD $(J+2)$ CURR(L) $=$ WORO(J+3) $E R R 1(L)=E R R O R(J)$ $\operatorname{ERR2}(L)=\operatorname{ERROR}(J+1)$ $\operatorname{ERR3}(L)=E R R O R(J+2)$ $110 \operatorname{ERR4}(\mathrm{~L}){ }_{2}=\operatorname{ERROR}(\mathrm{J}+3)$ -. 60 T0 40
113. ...C.. A. NEW CYCLE STARTS WITHIN LAST RECORD. 114. -... 120 1SWTCH $=0$ 115. JSAVE $=\downarrow$

[^1] $K=$ Jsave - 4
DO 130 J=1.K. 4
119. $L=L+1$
120. C. . test for exceeding reserved storage.
IF(L.GT.100) 60 TO 300
123. SPLUSN(L) $=$ WORD $(J+1)$ NOISE(L) $=$ WORD($\mathrm{N}+2$)
CURR(L) $=$ WORD(J+3)
$\operatorname{ERR1}(L)=E R R O R(J)$
$\operatorname{ERR2}(L)=\operatorname{ERROR}(\mathrm{J}+1)$
$E R R 3(L)=E R R O R(J+2)$
129. 130 ERR4(L) $=\operatorname{ERROR}(\mathrm{J}+3)$
130. C.. tEST EACH ERROR FLAG, IF CHAN(I) IS IN ERROR SUBSTITUTE I-1.
105.
106.
107.
108.
109.
-110.
111.
-12.
117.
interpolate for its value.
cuancl) $=1-1$

143.
145. 170 IF(ERR2(1).EQ.BLANK) 60 TO 272
134.
135. IF(ERR1:I).NE.BLANK) $\operatorname{CHAN(I)}=1-1$
IF(I.NE.1) 60 TO 150
145.
backspace ltape
60 TO 183
182 Call ntraniltape, 8, -1) Backspace LTAPE
IF(KOUNT.GT.1) 60 TO 185 183 LAST = 1
wRite (ltape) last
156. 184 HRITE(LTAPE) NUM, ITYPE, VAR, TIME. RES, DVOLT, VOLTST, TINT, * SIGMIN, SIGMAX, CURMIN, CURmAX, DATE (1), DATE(2) 168.- 60 To 186 WRITEILTAPE) (CHAN(I), SPLUSN(1), NOISE(1), EURR(1), $I=1, L$) LAST = 2 write (ltape) last
ENO FILE LTAPE
WRITE (LTAPE) LAST

186 WRITE(LTAPE) KOUNT. L

calculate signal value for plotting.
$x(1)=$ voltst
$x(L+2)=$ VOLTST + FLOAT(L-1) $*$ DVOLT
$Y(1)=$ SIGMIN
$r(L+2)=$ SIGmax
D0 190 I=1:L
$x(I+1)=$ VOLTST + FLOAT(I-1) $*$ OVOLT
SIG(I) $=\operatorname{SPLUSN}(I)-\operatorname{NOISE}(I)$
$\operatorname{SUM1}(1)=\operatorname{SUM1}(1)+\operatorname{SIG}(1)$
SUM2(I) $=\operatorname{SUM}$ 2(I) $+\operatorname{SPLUSN}(1)$
159.
160.
161.
162.
官 164.
165. 157. 169. 170. 171. 172. 173. j 175. 176. $\dot{+}$ 178. 179. 180. 181. 182. 183. 184.
$\operatorname{SUM} 3(I)=\operatorname{SUM} 3(I)+\operatorname{NOISE}(I)$
$\operatorname{SUM4}(I)=\operatorname{SUM} 4(I)+\operatorname{SIG}(I) / C U R R(I)$ $\operatorname{SUM5}(I)=\operatorname{SUM5}(I)+\operatorname{SPLUSN}(I) / C U R R(I)$ SUM6(I) $=\operatorname{SUMG(I)}+\operatorname{NCISE}(I) / \operatorname{CURR}(I)$
$190 \mathrm{Y}(1+1)=\operatorname{SIG}(1)$
201 FORMATC 3OX: 14 HPLOT OF SIGNAL $5 X$ 4HRUN AG. $5 \times$ 5HCYCLE, 13)
C.. PLOT VALUES OF SIGNAL.
CALL PLOTI $X, Y, L+2$,
C.. PLOT VALUES OF CURREMT.
200 WRITE\{6.201\} NUM, KOUNT
CALL PLOTI X, Y, L+2, 202, 46, 61
C.- PLOT VALUES OF CURRENT
WRITE($6 \cdot 31$)
WRITE(\$,202) NUM, KOUNT
202 FORMATS 30X, 15HPLOT OF CURRENT 5X 4HRUN A6, 5X 5HCYCLE, 13) $Y(1)=$ CURMIN $Y(L+2)=$ CURMAX

- DO 203 I=1.L
$203 Y(I+1)=\operatorname{CURR}(I)$
CALL PLOT X, Y, L+2, 102, 46,6)
C.. LIST ALL DATA FOR THIS CYCLE.
C.- LIST ALL DATA FOR THIS CYCLE.
WRITE(6.31$)$
WRITE(6.204) NUM, KOUNT

1 9X stiM, 10X. 1HI, 10X, 2HS /1
WRITE(6,206) (ERR1(I), CHAN(I), ERR2(I), SPLUSN(I): ERR3(I).
1 NOISE(I), ERR4(I), CURR(I), SIG(I), I=1.LL)
206 FORMAT(14K, A2, I3, 2X, AR, F7.0. 2X, A2, F7.0
 :
 190. 191. 192. . 194. 196. 197. 198. 199. 200. 201. 202. 203. 204. 205. 206. 207. $\stackrel{+}{\infty}$ 209. 210. 프N

$$
\text { WRITE }(6.208)
$$

C.- PREPARE FOR A NEW CYCLE ON PRESENT PAPER TAPE IMAGE.
C.. RESET INDEX COUNTER FOR CHAN, SPLUSN, NOISE AND CURR ARRAYS TO zERO. … $L=0$
IF(JSAVE.EQ.O) GO TO 30

$$
\text { DO } 210 \text { I=JSAVE,No } 4
$$

CURR(L). = WORD(I+3)
$\operatorname{ERRI}(L)=\operatorname{ERROR}(I)$ $\operatorname{ERR2}(L)=\operatorname{ERROR}(I+1)$ $\operatorname{ERR} 3(L)=\operatorname{ERROR}(I+2)$ $210 \operatorname{ERR} 4(L)=\operatorname{ERROR}(I+3)$
234. GO TO 30
235. C...END OF THIS PAPER TAPE IMAGE.
C.. PLOT VALUES FOR SUMMATION OF SIGNAL VS. VOLTS.
240 WRITE(6,31)
260 WRITE 6.261) NUM

$$
213
$$

214. 215. 216. 217. $\stackrel{\infty}{\sim}$ 219. 220. 221. 222. 223. 2.24. 225. 226. 227. N 229. 230. 231. 232. . 23. 236.

$$
208 \text { FORMATC } 6 X \text {. } 66 H \text { INDICATES THE VALUE TO THE RIGHT CONTAINED AN ILL }
$$

$$
\begin{aligned}
& \text { IEGAL CHARACTER. } / 8 X \text { 36HTHE NEW VALUE HAS BEEN INTERPOLATED. } \text {, } \\
& \text { C.. TEST FOR END OF PAPER TAPE IMAGE. } \\
& \text { IF(ISWTCH.NE.O) GO TO } 240
\end{aligned}
$$

$$
\begin{aligned}
& \text { EST FOR EXCEEDING RESERVED STORAGE. } \\
& \text { IF(L.GT.100) GO TO } 300
\end{aligned}
$$

$$
\operatorname{CHAN}(L)=W O R D(1)+.5
$$

$$
\begin{aligned}
& \operatorname{SHANL}(L)=W \operatorname{WRD}(I)+.5 \\
& \operatorname{WPR}(I+1)
\end{aligned}
$$

$$
\text { NOISE(L) }=\text { WORO }(I+2)
$$ $\stackrel{+}{N}$呙 239.

$$
L=L+1
$$

CALL PLOT (X, SUM1, L, $100,46,6$) WRITE(6.31)
PLot values for summation of signal/current vs. volts.
WRITE(6.291) NUM
291 FORMAT $30 X$ 35HPLOT OF SUMMATION OF SIGNAL/CURRENT $5 X$ 3HRUN A6 1
CALL PLOT (X, SUM4, L, 100. 46, 6) WRITE(6.31)
WRITE (6.292) NUM
292 FORMATC $50 X$ 3HFUN A6, $5 X$ 23HSUMMATION OF ALL CYCLES // $5 X$ 5HCHAN.

$211 \times 3 \mathrm{HN} / \mathrm{I} /$)
WRITE(6.293) (CHAN(I), $X(I+j), \operatorname{SUM1(I),~SUM2(1),~SUM3(I),~SUM4(I),~}$ $1 \operatorname{SUM5}(1), \operatorname{SUM}(1), I=1, L$)
j
240.
241.
242.
243.
244. 245.
246.
247.
248. 249. 250. 251. 252. 253. 254. 255. 256. 257. 258. GO TO 12
LISTING. ... O *DIAGNOSTIC* MESSAGE (S).

- FOR GINPUT, GINPUT
UNIVAC 1108 FORTRAN IH LEVEL 2201 0029 F4G148
THIS COMPILATION WAS DCNE ON O2 MAY 68 AT $10: 19: 11$

SUBROUTINE GINPUT ENTRY POINT 000314

SUBROUTINE GINPUT ENTRY POINT 000314

1. \quad SUGROUTINE GINPUT (WORD, N)
2. c.. this routine is a modsfied version
3. C.. this routine is a modified version of ginput.
4. ... C... 1) COL is NOW IN COMMON.
5. ... c... 2) statements 5 and 6 are now comments.
6..... C....the purpose of this routine is to read 72 columns of. free formated 7. C. information on a card, data must be seperated by a blank or comma. 8. C.. WORD IS THE ARRAY IN WHICH THIS ROUITINE STORES THE CARD INFORMATION. 9. C C IT MUST EE DIMENSION 72 IN THE MAIN PROGRAM FOR ALPHA-NUMERIC INFO. 10. C title cards are then written using 7zal format.
6. C.. N will indicate the following to the main program...
7. ... C.......... $11 \mathrm{~N}=72$. CARD WAS ALPHA-NUMERIC.
2) $N=-72$, CARD WAS ALL BLANK EXCEPT FOR AN EQUAL SIGN.
3) o<n<72 - card contained n floating point values, the first is STORED IN WORD(1), SECOND ONE IN WORD(2), ETC. 4) -72<n<0, same as 3) except an equal sign was found at least 5) $N=0 \quad$ one space beyound the last floating point number.
15. C.. IF a character other than a plus or minus sign, commar.blank, digit, 20. C decimal point or equal sign is detected on a card then the card is 21. C interpreted as alpha-numeric imediately.
16. C.. the purpose of the equal sign is to serve as a flag for whatever the
c USER WISHES.
17. C USER WISHES.
18. C.. THE FORTRAN E FORMAT IS NOT ALLOWED. THE LARGEST ALLOWABLE NUMBER IS
 40. C. FIND FIRST NON-BLANK CHARACTER.
19. $\quad 007 \mathrm{I}=1.72$ 42. IF(COL(I).NE.TESTWD(11)) GO TO 11 7 CONTINUE
$\mathrm{N}=0$
GO TO 16
C.. begin testing at start of new word.
20. 10 IFICOL(I), EQ.TESTWD(11)) GO TO 20

PLUS
DECIMAL
0 THRU 9
COMMA
EQUAL

$$
\begin{aligned}
& \text { IFICOL(I),EQ.TESTWD(16)) GO TO } 40 \\
& \text { IF(COL(I).EQ.TESTMO(13)) } 60 \text { TO } 50 \\
& 0012 \mathrm{~J}=1.10 \\
& \text { IFICOL(I).E日.TESTWD(J)) } 60 \text { TO } 60 \\
& 12 \text { CONTINUE } \\
& \begin{array}{l}
\text { IF(COL(I).EQ.TESTWO(121) } 60 \text { TO } 70 \\
15 \text { IF(COL(1).EQ.TESTWD(14)) } 60 \text { TO . } 80
\end{array} \\
& \begin{array}{l}
15 \text { IF(COL(I) EQ.TESTWD(14)) GO } \\
\text { C.- CHARACTER WAS ALPHA-NUMBERIC. } \\
N=72
\end{array} \\
& N=72 \\
& 60017 \quad 1=1.72 \\
& 17 \text { WORD(1) }=\text { FMORD(I) } \\
& 18 \text { RETURN } \\
& \text { 20. } 60 \text { TO(22, 18),I60 } \\
& \text { 22. } 1=1+1 \\
& \begin{array}{l}
53 . \\
54 . \\
55 .
\end{array} \\
& { }_{56}^{55} \\
& 57 . \\
& 58 . \\
& 59 . \\
& 69 . \\
& 70 . \\
& 71 . \\
& 72 . \\
& \begin{array}{l}
73 . \\
74 .
\end{array}
\end{aligned}
$$

KSAVE $=0$

35.

101. C. C. indicate entire record has been translated. 102. $105160=2$
103............ \quad TO 135
102. ... $11000112 \mathrm{~J}=1.10$
103. IF(COL(ì).EQ.TESTMO(J)) GO TO 120
104. ... 112 CONTINUE
105. IFiCOL(I).EO.TESTWO(13)) GO TO 130
106. IF(COL(I).EQ.TESTWD(121) GO TO 135
107. . IF(COL(I).EQ.TESTWD(11)) GO TO 135
GO TO 10

108. $130 \mathrm{KSAVE}=K+1$
109. C.. indicate that decimal was gound.
110. \quad DEC $=1.0$
Ge to 100
111. C.. ALTER Characteristic of floating point word for decimal point. 124. C. . SEE IF A DECIMAL POINT WAS FOUND. 125. 135 IF (DEC) $140,138,140$ 126. 138 KSAVE $=K+1$
112. C.. UPDATE WORD COUNTER.

UNIVAC 1108 FORTRAN IV LEVEL 22010029 F46148
THIS COMPILATION WAS CONE ON 02 MAY 6B AT 10:19:13

ENTRY POINT 000510
 subroutine plot

-diagnostic: the name or appears in a dimension or type statement but is never referenced. 1. SUBROUTINE PLOT(XIY,N.N1•N2•NOUT) PLOTOO10 PLOT0010 PLotoozo PLOT0030 PLOT0040 PLotooso PLot0060 PLotooto PLotooso PLotoogo PLOTOLOO PLotorio PLotoizo $0 ¢ 10107 \mathrm{~d}$
 PLotolso PLOT0160 PLot0170 PLotoiso PLotalgo PLotozoo
plotozio
 EQUIVALENCE (A,NA):(B,NB),(C,NC),(D,NC) Equivalence (B_{1}, NB), (B2.NB2),(B3.NB3) 6. ._. \quad. $X=A B C I S S A$ values to be plotted r=ordinate values to be plotted
8. C N=NUMBER of POINTS TO be PLotted (150 or Less) if n is negative the y array is in descending order N1= NUMBER OF PRINT wheels to be used (108 or Less) n_2enumber of lines to be used (recommend 50) nout=tape no. of output tape
13. C Restoration and heading of page is left to user

aLL blanks
DATA C/6H /
all negative signs - bottom line use DATA D/6H------1 Stars in various positions - blanks filled in (6) substitute octal equivalent of * in this statement

$\stackrel{0}{0}$

00.000
-17
$-0 t$
6

14.
15.
17.
18.
$\dot{\square}$
20.
21.
PLOT0220
PLOT0230
PLotoz40 PLotgaso
PLotoz60
PLotoz70
0820107 d PLOTO290 0080107 d 02c0107d 08E0107d 0nE0107d ploto350 0980107 d PLot0370 PLoto380 0680107 d 00t0107d 9th0107d 0ZHO107d PLoto430 PLoto440 0
0
0
0
0
0 8
0
0
0
0
0
0

MASK FOR PICKING OUT SECTOR
UATA B1/0770000000000,000770000000000000077000000, 10000000770000,0000000007700,0000000000077/ MASK FOR COMPARINS TO BLANK
 MASK FOR SUBTRACTING ONE
 dAtA LaRGE/0001000000000/ integer andoor
$\omega 3$
ม่
ม่ ถ่
${ }^{22}$. i ${ }^{26}$. \& s ${ }^{29}$.
 31. $\dot{\square}$ 34. 35. $\dot{\square}$ $\dot{\dot{n}} \dot{\operatorname{m}}$ $\dot{\oplus}$ 39. 40. \ddagger シ 43. 44. $\dot{9} 9$
PLOTO470 08\%2107d
0670107d 00S0107d ors0107d 02S0107d PLot0530 0nS0107d OSS0107d 0950107d 0<S0107d PLotosbo PLOTO590
PLota600 PLOTO610 PLoto620 PLot0630 PLot0640 PLoto6so PLot06so PLot0670 Pletofso PLOTE690 PLOTO700

15 DO $16 \mathrm{I}=1 \mathrm{~N}$

IF(IP(J).GE.LARGE) GO TO 22
DO $22 \mathrm{~J}=1, \mathrm{~N}$
DO 23 I=1.N
Ymax $=-1 . E 38$
21 continue
IP(I) $=1$
16 CONTINUE (T) $\mathrm{C}=\mathrm{xVHA}$

YMIN=Y(N)
60 то 25
N•T=I 220002
IP(1)=0
21
rmax $=\mathrm{r}(\mathrm{J})$
IF(Y(J).LE, YMAX) 60 TO 22

max=r(u)

22 CONTINUE

IP(1) $=I P(1)+K K$

DO 24 I=1,
IP(1)=IP(1)-LAPGE
24 CONTINUE
$1 \times 1=1 \mathrm{P}$ (1)
$1 \times 2=1 \mathrm{P}(\mathrm{N})$.
DIAGNOSTIC
シ் シ்
 65. 66 $\dot{6} \dot{8}$ $\dot{0}$ $\stackrel{\dot{\circ}}{i}$
PLOTO720
PLOTO730
PLOT0740
PLOTO750
PLOTO760
PLOTOF70
PLOTO780
PLOTO790
PLOT0800
PLOT0810
PLOT0820
PLOTOB40
PLotobso
0980107d
0480107d 0880107d 0680107d PLOTO900 0 0160107d 0260107 d 0860107d 0th60107d 0560107d \circ
$\stackrel{\circ}{\circ}$
0
0
0
0 \circ
$\stackrel{\circ}{\circ}$
0
0
0
0

\dot{i} 81. $\dot{\infty}$ 82. is 84. 85. $\dot{\Phi}$ $\dot{8} \dot{\infty}$ $\dot{\Phi}$ 89. 90. 91. 92. 94.
95.
96.
97.

60 то 101

100 NA(NSECT)=NA(NSECT)+NB(NF)
101 continue

105. 106. 107. 108. 109. 110. 111. $\stackrel{\square}{7}$ 113. 114. $\stackrel{7}{7}$ $\underset{-}{\dagger}$ 117. 118. 119. 120. 121. 122. 123.
PLOT1240 0S21107d \circ
$\stackrel{0}{N}$
$\stackrel{1}{2}$
$\stackrel{1}{2}$
a
呂

 $\stackrel{0}{9}$ 으N 0عET107d PLOT1340
 098T107d PLOT1370 PLOT 1380
PLOT 1390

$$
\begin{aligned}
& \text { SETS UP. * EVERY } 10 \text { PLACES FOR LOWER AXIS } \\
& \begin{array}{l}
\text { SETS UP. * EVERY } 10 \text { PLACES FOR LONER AX } \\
0045 \mathrm{I}=2.12 .5
\end{array} \\
& N A(I)=N A(I)+N B(4) \\
& \text { NA }(I+2)=N A(I+2)+N B(2) \\
& 45 \mathrm{NA}(1+3)=\mathrm{NA}(1+3)+\mathrm{NB}(6) \\
& N A(17)=N A(17)+N B(4) \\
& \operatorname{NA}(1)=N A(1)+N B(1) \\
& \begin{array}{l}
\text { WRITE (NOUT,43)(A(I),I=1,1B) } \\
\text { DELTAX=(}(X M A X-X M I N) / F L O A T(N 1)) * 10.0 \\
0046 I=1,11 \\
46 \text { A(I) }=X M I N+F L O A T(I-1) * D E L T A X \\
\text { WRITE (NOUT,47)(A(I),I=2,11) } \\
47 \text { FORMAT(16X.1P10E10.4) }
\end{array} \\
& \begin{array}{l}
\text { RETURN } \\
\text { END }
\end{array} \\
& \text { LISTING. } 2 \text { *DIAGNOSTIC* MESSAGE(S). } \\
& \text { END OF }
\end{aligned}
$$

STEP 3: TREAD

This program lists the contents of the data library tape as follows:

1. All the data on the TEDIT card except column 80
2. The cycle numbers in sequence for each experiment (data section) and the number of data blocks (points) that are in each cycle

A version of this program called TREAD LONG PRINT lists signal + noise, noise, and current values for each channel number.

Below is a typical TREAD deck setup.

A program iisting follows.
UNIVAC 1108 FORTRAN IV LEVEL 22010029 F4G148
THIS COMPILATION WAS DONE ON 02 MAY 68 AT 10:19:05

1. C. . the purpose of this routine is to read the library tape and list all 2. C data by run number and by cycle number.

$$
\dot{\exists} \dot{\dddot{y}} \dot{\underline{g}}
$$

$$
14 .
$$

integer chan
real noise
ENTRY POINT 000000
main program
$\dot{\sim} \dot{\sim} \dot{\cos } \dot{\square}$
DIMENSION CHAN(100), SPLUSN(100), NOISE (100), CURR(100), DATE (2) Parameter tape $=10$ Rewind tape
a read (tape) numb itype, var, time, res, ovolt, voltst, it nt, 1 sIgmin. SIGMAX. CURMIN, CURMAX, DATE (1). DATE (2) WRITE (6011) NUM WRITE (6,12) ITYPE
12 FORMAT (10 X, 3HGAS, 1 X, A 6,1 ,
WRITE(6,13) VAR
13 Formats 10x! 10 h WRITE (6.14) TIME
14 FORMAT(10X, 4HTIME, $i X$, AG, $/$,
WRITE (6,15) RES
15 FORMAT (10X, 4HRES. 1 X, FG.2, /)
WRITE $(6,16)$ VOLT
21. 16 FORMAT($10 X$, 17HVOLTAGE INCREMENT, $1 \mathrm{X}, \mathrm{F} 6.2,1$,
22. WRITE 6.17) VOLTS.

$$
\begin{aligned}
& \begin{array}{l}
\text { L. PRNT } \\
\text { L. } \\
\text { L. PRNT } \\
\text { L. PRNT }
\end{array}
\end{aligned}
$$

49. 31 FORMAT(1HI)
50.
51.

5F(LAST.EQ.1) GO TO 8
52.
53.

STEP 4: ABEAM4

Input for this program consists of the data library tape, as written by TEDIT, and a set of data cards. The purpose of the program is to per form various calculations based on data from different cycles of the same experiment or from different experiments.

The normal output from ABEAM4 is the following (see option 3, below):

1. Σ signal
2. Σ signal smoothed once
3. $\Sigma($ signal + noise)
4. Σ (signal + noise) smoothed once
5. $\boldsymbol{\Sigma}$ (signal/noise)
6. Σ noise
7. Σ current

Printer plots of the following are also given:

1. Σ signal
2. Σ signal smoothed once
3. Σ (signal + nuise)
4. $\quad \Sigma$ (signal + noise) smoothed once
5. Σ (signal/noise)
6. Σ noise

By the use of an option (see option 1, below), the additional information may be obtained along with a printer plot of each.

1. first derivative of $\boldsymbol{\Sigma}$ signal
2. first derivative of Σ signal smoothed once
3. first derivative of $\boldsymbol{\Sigma}$ signal smoothed twice
4. second derivative of Σ signal smoothed twice
5. first derivative of Σ (signal + noise) smoothed once

The input card formats are as follows:
Title Card: FORTRAN format is (12A6)

Column

1-72 Title (printed at top first page)
Option Card: FORTRAN format is (3I6)
Column
Option $1=0$ or blank: derivative output not desired
= 1: desire derivative output
12
Option $2=0$ or blank: parabolic least squares fit for smoothing
= 1: Fourier series smoothing
18 Option $3=0$ or blank: all output is calculated as shown below = 1: each term in the summation is divided by its respective value of current (i.e., Σ (signal/current) etc.)

Run No. Card: FORTRAN format is (A6, 216)

Column

1-6 Experiment number (IRUN)
7-12 Number of cycles (NCYC) requested from this experiment
18 ILAST $=0$ or blank: another Run No. card follows the Cycle No. card
= 1: another title card follows the next Cycle No, card
=2: no more cards follow the next Cycle No, card. The next Cycle No, card is the last to be summed and all processing is complete

Cycle No, Card: FORTRAN format is (1216)
Column
1-6 Cyc (1) = first requested cycle number
7-12 REFPNT (1)
13-18 Cyc (2) $=$ second requested cycle number
19-24 REFPNT (2)

25-66 Cyc (6) = sixth requested cycle number
67-72 REFPNT (6)
Two or more cards of this type may be used if the number of cycles (NCYC) requested exceeds six.

Below is an example deck setup for summing together cycles 3, 5 , and 6 from experiment I15; cycles 1 through 10 of experiment L25; and cycles 4 through 9 from experiment 145 .

Below is a diagram showing how the summing, Σ, takes place with reference to the channel numbers.

In the diagram, CYC(1) through CYC(4) are arbitiary cycles. The reference points, REFPNT(1) through REFPNT(4), are 3, 5, 1, 3, respectively. In this particular case $\mathrm{N}_{2}<\mathrm{N}_{1}<\mathrm{N}_{3}<\mathrm{N}_{4}$; therefore, it is meaningless to sum past N_{2}. The total number of sums that would be printed is $\left(\mathrm{N}_{2}-4\right)+1$.

A program listing follows.
WP FOH ABEAM4 OAGEAMY
URIVAL 1.108 FORTRAN I

ENTRY POINT 000000
 MAIN PROGRAM
 -
 maln tor

$$
\text { PAKAMETER LTAPE }=10
$$

INTEGER PCHAR, SLI
DIMENSION SPLUSN(100), NOISE(100): SIG(100). SIG1(100), SIG2(100), 1 SPN(100), SPN1(100), SIGDN(100), DSPN1(100), DSIG(100), IP(100), 2 OSIG1(100), DSIG2(100), D2SIG2(100), NUMTAB(ID), TITLEIL2), -" 3 CYC(10), REFFNT(ID), CURR(100), SNOISE(100), VOLT(100),
4 SUMCUR(100) DATA BLANK/GH CG:MMON DVOLT, KEY REWINO LTAPE DO 5 I=1,ID
5 numtab(I) $=0$ $\begin{aligned} 10 \text { IGB } & =1 \\ \dot{I G E} & =100\end{aligned}$ IGE $=100$ LLAST $=0$
20. $\operatorname{REAU}(5.11)$ (TiTLE (I), I=1.12)
OPT3, RFPNTI, OPT4
11 FORMAT（12A6）
WRIITE（6，13）（TITLE（I），I＝1，12）
13 FORMAT 1 1H1，30X．L2AG：／／40X 32HREQUESTED DATA FROM LIBRARY TAPE

$$
\begin{aligned}
& 1 \quad \\
& \text { VO } 14 I=1.100 \\
& \operatorname{SPN}(I)=0.0 \\
& \operatorname{SIG}(I)=0 \\
& \operatorname{SIGUN}(I)=0 \\
& \operatorname{SUMCUK}(I)=0.0
\end{aligned}
$$

14 SNOLSE（I）$=0.0$
REAU（5，15）OPT1，OPT2，OPT3，OPT4
15 FORMAT（ 1216 ）
16 IF（ILAST） $150,20,150$
20 KEAU（S，21）IRUN，NCYC，ILAST
21 FORMAT（ AG， 1116 ）．
KEAD（5，22）（CYC（I），REFPNT（I）．I＝1，NCYC）
22 FCRMAT（ 1216 ）
WRITE（6．24）（IRUN，CYC（I），REFPNT（I）．I＝1．NCYC）
 IF（ITIME．NE．O）GO TO 28
RFPNT1 $=$ REFPNT（1）
IGB＝REFPNT（1）
C．Check run number table to see tape data can be found by forward reading．
280030 I＝1．10
IF（IKUN．EQ．NUMTAB（I））GOTO 40
IF（NUMTÁB（I）．NE．O）GO TO 30
$\stackrel{-1}{\sim}$
ㄷN ́N ́N ㅊN
$\stackrel{5}{\circ}$
36. $\underset{i}{i}$ 33. i 品 $\dot{\oplus}$ 37. $\$$宛 $\stackrel{\circ}{9}$ 41. ジ $\stackrel{9}{3}$ j $\dot{9}$ $\stackrel{\circ}{9} \stackrel{+}{9}$
7.
72.
74.

$$
\text { IPOS }=1-1
$$

$$
\begin{gathered}
\text { G0 TO } 50 \\
30 \text { continue } \\
40 \text { REWIND LTA } \\
\text { DO } 45 \text { I }=1, \\
45 \text { NUMTAB(I) } \\
\text { IPOS }=0 \\
50 \text { RLAD(LTAPE }
\end{gathered}
$$

SO Read (ltape) numo dummy. dummy,dummy, dummy, dvolt, voltst

$$
\text { IPOS }=\text { IPOS }+1
$$

$$
\begin{array}{ll}
\text { 57. } & \text { NUMTAB(IPOS) }=\text { NUM } \\
\text { 58. } & \text { IF(NUM.EO.IRUN) GO TO } 70
\end{array}
$$

c.. POSItION TAPE TO READ NEXT RUN NUMBER ON TAPE.
60. S5 READ(LTAPE) DUMMY, L

$$
\text { READ(LTAPE) (DUMMY, UUMMY, DUMMY, DUMMY, } I=1, L \text {) }
$$

REAU(LTAPE) LAST

$$
\text { JF(LAST-1) } 55,50,60
$$

$$
60 \text { WRITE }(6,01) \text { IRUN }
$$

$$
01 \text { Formaty } 4 H \text { run age } 2_{\theta} H \text { is not on the Library tape.) }
$$

CALL REWI (LTAPE)
CALL EXIT
c.i requested run has been found. pick out requested cycles.
READ(LTAPE) (DUMMY, SPLUSN(I); NOISE(I), CURR(I), I=1,L)
reau(ltape) last
IF(ICYC.NE.CYC(J)).GO TO 130
c.. calc. begining and enuing subcripts based upon ref. point number.

SNOISE(IA) $=$ SNOISE(I)
SIGON(IA) $=$ SIGUNiI)
$\operatorname{VOLT}(I A)=\operatorname{VOLt}(I)$
$I P(I A)=:$
SUMCUR(IA) $=\operatorname{SUMCUR}(1)$ 162 continue
NUMPTS = IGE - 1 GBMI
KEY = 1
CALL SMT (SIG, SIG1, NUMPTS, OPT2) KEY $=2$
CALL SMT (SPN. SPN1, NUMPTS, OPT2)
IF(OPT3.EQ.0) 60 TO 169 WRITE (6,168)
 * $6 \times 12 \mathrm{H}$ S/(N*1) , aX $3 \mathrm{HN} / \mathrm{I}$ 13X 1 HI) 60 TO 1711
169 WKITE (6,170)
170 FORMAT 1 HI, 12 X SHVOLTS 12 X 1HS 14 X 2HS $1 \mathrm{X} 2(12 \mathrm{X} 3 \mathrm{HS}+\mathrm{N})$, 12 X

* 3H5/N 13 X 2HN $14 \times 1 \mathrm{HI}$)
1711 WRITE(6.171)
171 FCRMATS 20 X 2 (22X. 8H(SMTH 1$)$) ,
WKITE(6,172) (IP(1), VOLT(I), SIG(I), SIG1(1), SPN(I), SPN1(I), 1 SIGLIN(I), SNOISE(I), SUMCUR(I), I=1,NUMPTS)
172 FORMAT $3 X, 13,1$ PGE15.6)
C. . FLOT AGOVE ITEMS ON PRINTER.
PChar $=$ blanik
IFI CPT3.NE.O) PCHAR $=$ SLI
129.嵩 131. $\underset{\sim}{\underset{\sim}{7}}$ 133. 334. 135. $\stackrel{\circ}{0}$ 137. $\stackrel{\oplus}{\underset{\sim}{\oplus}}$ 134. 140. 243. シ 3 244. 9 9 147. 148. $\stackrel{3}{3}$ $\stackrel{\substack{0 \\ 0 \\ 0}}{0}$ $\stackrel{-1}{9}$ $\stackrel{\sim}{0}$

WKITE (6,173) PCHAR
173 FORMATS 1 H 1 , 20 X 9HPLOT OF S, A2 $)$

156.
157. 158. 159.

WRITE(6,174) PCHAK
CALL PLOT 1 VOLT, SIG, NUMPTS, $100,46,61$
175 FORMAT 1 1H1, 20 X 13HPLOT OF ($S+N$). A2 $)$
176 FORMAT (: $1 H 2,20 \mathrm{X}$ 23HPLnT OF ($\mathrm{S}+\mathrm{N}$). AZ. $5 \times 13 \mathrm{HSMOOTHED}$ ONCE)
IF(OPT3.EQ.0) 60 TO 177C
IF(OPT3.EQ.0) 60 TO 177 C
WRITE(6.1761)
CALL PLOT (VOLT. SPN, NUMPTS, 100. 46. 6)
WRITE(6.176) PCHAR
16U. 174 FOKMAT (1H1, $20 X$ 9HPLOT OF SO A20. 5 X 13HSMOOTHED ONCE ') CALL PLOT (VOLT. SIG1, NUMPTS, $100,46,6$) WRITE $(6,175)$ PCHAR
(176 FORMAT(IHI. 20X
169.
1\%. 1761 FORMAT $1 H 1,20 X, 25 H P L O T$ OF $S /(N * I)$,
171. GO TO 178
172." 1770 WRITE (6.177)
177 FORMATI 1HI, 2.0X, 11HPLOT OF S/N
178 CALL PLOT (VOLT. SIGDN: NUMPTS, 100, 46, 6)
175. WRITE (6,179) PCHAR
179 FORMAT 1 1H1, 20X, 9HPLOT OF N, AZ ,
IF(OPT1.EQ.0) GO TO 260
CALL UIFFI SIG, DSIG, NU
CALL PLOT :VOLT, SNOISE, NUMPTS, 100, 46, 61
CALL UIFF (SIG, DSIG, NUMPTS)
CALL UIFF S SIGI. DSIG1, NUMPTS)
KEY $=3$
CALL SMT (SIG1, 5IG2, NUMPTS, OPT2)

185.
184.
165.
180.
187.
188.
189.
190.
191.
192.
193.
194.

203.
204.
205.
206.

207.莈 209.
CALL PLOT (VOLT, OSIG2, NUMPTS, 100. 46. 6)
WRITE(6.241) PCHAR
241 FORMATS 1H1, $20 X, 19$

260 IF(OPT4.EA.O) GO TO 280
PUNCH 261, (TITLE(I), I=2,12)
-261 FORMAT(12A6)

- Punch 262,
262 FORMATI $5 \times$, 1HO, $5 \times$, 1HO)
- PUNCH 263, VOLT(1), VOLT(NUMPTS) DVVOLT
263 FORMATI 3F12.4)
GO TO (264, 2650,
- GO TO (264, 265, 266), J
-" 264 РUNCH 267, (SIG(I)., $1=1$.NUMPTS) G0 10270
265 PUNCH 267. (SPN(I), $1=1$, NUMPTS) G0 70270
266 PUNCH 267, (SNOLSE(I); I=1,NUMPTS) 267 FORMATI 6F:2.4) $27 c$ continue
250 IF(ILAST.EQ.1) 60 TO 10
CALL REWI (LTAPE)
Call exit

210.
211.
212.
213.
214.
215.
216.
217. 221. 22. 224 225
1. 228. 228. 230.
1. c32. 233. 234. 236.
0 *DIAGNOSTIC\# MESSAGE(S).
EFOR SMT, SMT
UNIVAC 2 LDE FO

$$
\begin{aligned}
& 205 \text { CONTINIJE } \\
& \text { IF (YMIN.LT.O) GO TO } 208 \\
& 00200 \mathrm{I}=1, N P \\
& Y C(I)=Y(I) \\
& 206 \text { continue } \\
& \text { GO TO } 210 \\
& 208 \text { DO } 209 I=1, N P \\
& Y C(I)=Y(I)-Y M I N \\
& 209 \text { CONTINUE. } \\
& 210 \mathrm{YI}=\operatorname{SQRT}(\mathrm{YC(1)}) \\
& Y F=(S O R T(Y C(N P))-Y I) / H_{L} \\
& Y C(I)=\operatorname{SQRT}(Y G(I))-Y I-Y F * X \\
& 211 X=X+O X \\
& \text { CALL FOUR (NP, YC, B) } \\
& \begin{array}{l}
\text { CALL FOUR (NP, YC, B) } \\
\text { NPM }=N P-1 \\
G 0 \text { TO (212. } 214,216 \text {), }
\end{array} \\
& \begin{array}{l}
\text { CALL FOUR (NP, YC, B) } \\
\text { NPM }=\text { NP-1 } \\
\text { GO TO (212. 214, 216), }
\end{array} \\
& 212 \text { WRITE(} 6,213 \text {) } \\
& 213 \text { FORMATI 1H1, } 20 X \text { 46MFOURIER COEFFICIENTS FOR SMOOTHING SIGNAL ANCE } \\
& \begin{array}{l}
\text { (23 FORMAT (LHI. } \\
\text { *) }
\end{array} \\
& \begin{array}{c}
\text { GO TO } 218 \\
214 \text { WRITE(6,215) }
\end{array} \\
& 215 \text { FORMAT } 1 \text { IHI, } 20 X \text { 54HFOURIER COEFFICIENTS FOR SMOOTHING SIGNAL + NO } \\
& \text { *ISE ONCE) } \\
& \begin{array}{l}
23 . \\
24 .
\end{array}
\end{aligned}
$$

250 IF（ $\mathrm{N}-2$ 2）260．260， 270
$200 \cdot \operatorname{NMAX}=N P / 10$
WRITE（6．261）
201 FORMAT $20 X$, 11HTEST FAILED ）．
GO TO 300
$270 K=K+1$
$B T=B T+8 E$
6070245
200 IF（N－25）290，270： 270
290 NMAX $=N+2$
300 WRITE（6．301）NMAX
301 FORMATI／2OX，22HSMOOTHING ROUTINE USED 13．13H COEFFICIENTE

$x=0$
$\stackrel{\sim}{i}$
か 77.
$\stackrel{\circ}{i}$
80.
－
IF（YMIN．LT．O）GO TO 320
RETURN

> 330 CONTINUE
> $Y C(I)=Y C(I)+Y M I N$
> RETURN

LISTING．
UNVAC 1 10U FORTRAV IV LEVEL 2201 OO29 F4G14B
THIS COMPILATION WAS DONE ON O1 MAY 68 AT 14:22:16

$$
\begin{aligned}
& \text { SUBROUTIIIE FOUR ENTRY POINT } 000127 \\
& \text { 1. SUZROUTINE FOUR(NP,Y,日) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. } \\
& \text { 2. }
\end{aligned}
$$

$$
3 .
$$

4.

$$
\text { DIMENSION } Y(1), \theta(1)
$$

$$
P I=3.142592653
$$

$$
C N P=N P
$$

$$
N P M=N P-1
$$

$$
\text { CNPM }=\text { NPM }
$$

$$
\text { PION }=\text { PI/CNPM }
$$

$$
\cos Z=\cos (\text { PION })
$$

$$
\operatorname{SS} \operatorname{SZ}=\operatorname{SIN}(P I O N)
$$

$$
\cos k=\cos z
$$

SInk $=$ sIivz
$0020 K=1, N P M$
$\mathrm{BK}=0.0$ $\cos K I=\cos K$ SINKI $=$ SiNK
DC $22 I=2$,NPM DO $22 I=2$ NPM
$B K=B K+Y(I) *$ SINKI $\operatorname{SINI}^{2}=\operatorname{SINKI}^{2} * \cos \dot{K}+\cos \mathrm{I}_{\mathrm{I}} * \mathrm{~S}_{\mathrm{NK}}$ $\cos I=\cos K I * \operatorname{Cos} K-\operatorname{SinkI}^{2} *$ Sink 2 SINKI $=$ SINI $^{\text {IN }}$
$22 \cos K I=\cos I$
 SINKI $=$ SiNK
DC $22 I=2$,NPM
SI $_{\text {NKI }}=$ SINK $^{\text {N }}$
COSKI $=\operatorname{COSK} * \operatorname{COSZ}-\operatorname{SINK} * \operatorname{SIN}_{2}$
$\operatorname{cosk}=\cos K 1$
SINK $=$ SINKI
$20 B(K)=2.0 * B K / C N P$
은
End OF LISTING. $\quad 0$ \#OIAGNOSTLC* MESSAgE(S).

a FOn FQuAIr FOURI
UNIVAC 120 FORTRA
UNIVAC 1200 FORTRAiC IV LEVEL 22010029 F4G248
this cumpilation kias done on oi may o8 at 14:22:17

SUBROUTINE FOURI - ENTRY.POINT 000142

1. SUBROUTINE FOURI (iNmAX, NP, B, Y) dIMENSION E(1), Y(1) WPM $=N P-1$

CNPM $=$ NPM
PI $=3.141592653$
PIOM $=$ PI/CNPM
$\cos Z=\cos ($ PIOM) SINZ $=$ SIN(PIOM)
$Y(1)=0.0$
$\cos k=\cos _{z}$
SINK $=$ Sint $_{7}$
DO $20 \mathrm{~K}=2 \mathrm{NP}$
$Y K=0.0$
PIK $=$ PIOM
$\cos K I=\operatorname{cosK}$ SINKI = SINK DO $221=1$, NMAX $Y K=Y K+B(I) * S I N K I$

YOK $=$ YDK + PIK*B(I) $=\operatorname{COSKI}$ PIK $=$ PIK+PIOM

XNISHIXSOOTYSOO*TYNIS $=$ INTS

ํ
$\cos K I=\cos I$
SINKI $=$ SINI . $\operatorname{Cos} K I=\cos K * \cos Z-S I N K * S I N Z$
SINKI $=\operatorname{cosk} * \operatorname{SINZ}+$ SINK*COSZ
cosk $=\cos K$ I
SINK $=$ SINKI
$20 \begin{aligned} & \mathrm{Y}(\mathrm{K})=\mathrm{YK} \\ & \text { RETURN }\end{aligned}$
END
END OF LISTING. $\quad 0$ \#OIAGNOSTIC* MESSAGE(S).

UP FUR D $1 F F$, OIFF
UNIVAC 1108 FORTR
THIS COMPILATION WAS DONE ÓN OL MAT 68 AT 14:22:18
teonoo iniod raing gatn zwitnomans

1. SUBROUTINE DIFF(Y, Yo,NP)
ROUTINE TO take differences
DIMENSION r(1) \quad YD(1)
-ror

WP FUR PLOT, PLGT
UNIVAC 120 FORTRAI IV LEVEL 2201 OU29 F F 4 G14B
THIS COMPILATION WAS DONE ON O2 MAY 68 AT $14: 22: 20$
oIagnostic the name or appears in a uimension or type statement but is ne, ber referenced.
pLOTOO10 PLOTNO2O pLOT0030 nLOTnO40 in
in
ㅇ
0
0
0 pLOTn060 plot0070 pLOTNORO plotnoao DLOTOLOO plotnl10 plotolzo 0\&:0107d
 PLOTn 150 oLotolito DLOTO160 plotinio dotnigo olotozno SUBROUTINE PLOT(X,Y,N,N1,N2,NOIJT)
 \section*{\section*{SUBROUTIIVE PLOT ENTRY POINT 000510
 \section*{\section*{SUBROUTIIVE PLOT ENTRY POINT 000510

 SUBROUTINE PLOT ENTRY POINT 000510}

 SUBROUTINE PLOT ENTRY POINT 000510}

OIMENSION $X(1), Y(1), I P(150), B(G), A(1 A), N B(6), N A(18)$

 OIMENSION B1 (6), B2(6),B3(6), NB1 (6), NB2(6),NB3(6) EGIIVALENCE (A,NA), (B,NB):(C,NC), (D,ND)EQUIVALENCE ($\left.B_{1}, N b 1\right),\left(B 2, N_{R} 2\right),(B 3, N B 3)$ X=AbCiSSA values 10 be plotted Y=ORDINATE VALUES TO BE PLOTtER n=number of points to be plotteo (150 or Less) if in is negative the Y arhay is in descending orde r $^{\prime}$ N1=NUMBER OF PRINT WHEELS TO BE USED (108 OR LESS) nz=numrer of Lines to bé used (recommenu So) NOUTETAPE NO. OF OUTPUT TAPE
restoration and heading of page is left to user all blanks
all negative signs - bottom line use DATA $\mathrm{C} / 6 \mathrm{H}$
DATA $\mathrm{U} / 6 \mathrm{H}=-=-\infty-/$ STARS IN VARIOUS POSITIONS - BLANKS FILLED IN (6) SUBSTITUTE OCTAL EQUIVALENT OF * IN THIS STATEMENT

19. 20.
$\dot{~ i}$ 22.
23.
24.
25.
26.
27.
20.
20.
30.

31. 32. | 32. |
| :--- |
| 33. |
| | 34. 35. 36.
1. $\stackrel{\circ}{\infty}$

DELTAX $=\left(X_{\text {MaX }}\right.$-XMIN)/(FLOAT(N1-1))
 42.
2.
3.
4.

DLOT＾460 oLOTn470
pLotn4．a －lotn4so ous0107d pLotn5？O oLotos30 pLotn540 oss41070 pLOTC560 0＜50107d Ous01070 oLOTn590 dLotingno pLOTOG10 nLOTO620 2LOTn630 －LOT0640邑
$\stackrel{0}{5}$
0
0 DLOTO650
DLOTN670 DLOTEGRO plotabogo IF（IP（J）．GE．LARGE）GO 1022 IF（Y（J）．LE，YMAX） 60 TO 22 Ymax＝Y（J） KK＝」 22 continue．

TP（1）$=1 P(1)+K K$

 IP（KK）$=$ IP（KK）liLarge23 CONTINUE IP（I）$=$ IP（I）－LARGE
24．CONTINUE 24. Continue

0024 I＝1／N $\gamma_{\text {max }}=-2$ ．E3 3_{a} DR $22 \mathrm{~J}=1 \mathrm{om}$ KK＝」 61. 62. 64. 65. $\stackrel{0}{0}$ 6.
69.
 PLOTOB4O

DLOTOB5O DLOTn860 pLOT0870 -lotobao | \circ |
| :--- |
| $\stackrel{\circ}{\infty}$ |
| $\stackrel{\circ}{\circ}$ |
| $\stackrel{1}{0}$ |

 $0160107 d$ 0264107d PLOTO930

 76. が 79. 30. 81. ${ }^{3}$. - ! 8.
87. $\stackrel{\circ}{\infty}$ 89. 90. 91.

NTSTTAND (NA (NSECTI ©NBL (NF))	pLOTn950
	PLOTO960
	DLOT0970
60 тO 101	مLOT09a\%
100 NA(NSECTI $=$ Na(NSECT) +NB (NF)	pLoto990
101 continue	olotiono
	-plot 1010
IF (K-N) $34,36,36$	-Lotiozo
repeats if $\mathrm{Y}(\mathrm{I})$ and $\mathrm{Y}(\mathrm{J})$ are closer than deltay	pLOTIO30
$34 \mathrm{IF}(\mathrm{Y}(\mathrm{J})=\mathrm{DE}$ LT+.001) 36, 35, 35	
$35 \mathrm{~L}=1$	plotioso
GO TO 41	pLOT1060
$36 \mathrm{~L}=0$	PLOT1070
printing routine	plotiogo
$s 7$ Continue	DLOT1090
WRITE (NOUT, 38)DELT, (A (IL), IL=1,18)	pLOT1100
38 Format (lpelo.3, 2H I, 18a6)	
IF (L) 31, 39,39	pLOT, 120
RESTORES FORMAT	-LOT1130
39 D0 40 IL=1.18	PLCTI 140
$40 \mathrm{~A}(\mathrm{IL})=\mathrm{C}$	plot1150
41 Continue	PLOT1160
DRAwS Botrom axis	oLOT1170
D0 $42 \mathrm{I}=1.18$	pLOT11R0
$42 \mathrm{~A}(1)=0$	-3LOT1900

STEP 5：COPY

The COPY program is used to make a backup tape for the data library tape．A backup tape is kept at all times．It is suggested that after every ten experiments，the library tape be copied onto the backup tape．

Below is a complete set of cards that comprise the COPY deck．

	Tibidl	Dit 4 d			T］${ }^{\text {and }}$	TE	5			［廌 ${ }^{\text {a }}$	$8{ }^{8169}$	
V．AsG	IA DAATA	LIBRA	Hey	E．numb	IER．				－			
7 ASG	bibalcs	UP JTAP	E Muma	E，								
Z．XGT：	Matical								\cdots			
Dule	A，$A_{\text {，}}$ ．											
LTEE	β_{1}											
TRiN	A，a_{1}											
CMP．	A_{1}, B_{2}											
UTRI	$A_{1} \mathrm{~B}_{1}$								－	－		
	L	．ـı」ـ	－m	1.1	！	：	¢ии	－		－1．1－1	上1－1	

After the backup tape is written，a comparison is made．If the two tapes do not match，the output listing from COPY will so indicate．

No listing is given for this program．

STEP 6: UPDATE

Using the UPDATE program, five types of changes can be made to the data library tape. These fives changes are described below.

Type Number	Description of Change
1	Allows the user to change any word of the data that was on the card for TEDIT
2	Allows the user to delete an entire experiment from the library tape
3	Causes an entire cycle to be deleted from an experiment and remaining cycles to be resequenced
4	Allows the signal + noise, noise, and current values for a particular channel number of a cycle to be changed
5	Allows any channel number, along with its signal + noise, noise, and current values, to be deleted from any cycle of an experiment

Card formats for the preceding changes are as follows:

Type 1

First Card

Column

6
7-12

Second Card

Punch one (1)
Experiment number
Identical to that used for TEDIT except for information to be changed

Type 2

Column

6

7-12

Punch two (2)
Experiment number

Type 3
Column
6
7-12
13-18
Punch three (3)
Experiment number
Cycle number
Type 4
Column

6
7-12
13-18
19-24
25-30
31-36
37-42

Punch four (4)
Experiment number
Cycle number
Channel number
Signal + noise value
Noise value
Current value

The last three items are always changed together; therefore, if no change is desired, the existing value must be entered.

Type 5
Column
6 Punch five (5)
7-12
13-18
19-24
Experimental number
Cycle number
Channel number
The different types of change cards for any one experiment should be in the following sequence: 2,3 , and 4 (in any sequence), 5 , and 1. If more than one type 5 change is to be made for any one cycle in any one experiment, cards should be in descending channel-number order, the largest first. This order eliminates the necessity of later change cards that reflect the changes made by previous change cards.

If more than one experiment is to be changed, then the individual groups of change cards must be in the same order as on the library tape (excluding experiments that are not to be changed).

Below is an example deck setup, where the data library tape consists of five experiments (I10, I11, I12, I13, and I14) and the following changes are to be made:

1. Change the signal + noise value of channel number 50 in cycle 6 of experiment I10. The values of noise and current were originally 34 and 18, respectively.
2. Delete cycle 7 of experiment I10.
3. Delete experiment I12.
4. Change run number from I13 to I13A.
5. Delete channel number 45 in cycle 3 of experiment I14.

A program listing follows.
O FOR UUATE, UPOATE
UNIVAC IJOB FORTRAN
THIS COMPILATION WAS
THIS COMPILATION WAS DONE ON 21 JUN 68 AT 17:09:44

MAIN PROGRAM ENTRY POINT 000000

Parameter ltape $=9$, ntape $=10$ integer chan, cyclé
COMMON IRUN, GAS, VAR, TIME, RES, DVOLT, VOLTST, TINT, SIGMIN. * SIGMAX, CURMIN, CURmax, DATE(2), CHAN(100,100), SPLUSN(100,100) * - NOLSE(100.200), CURR(100.200), CYCLE(100), L(100), LAST(100) * Nmax
RĒIND LTAPE REWIND NTAPE
CALL INRUN(LTAPE)
G.. READ a CHANGE TYPE CARD..
12. 10 READ (5,11) ITYPE, NRUN, NCYG, NCHAN, XSPN, XN, XCURR 12 FGRMATS 16, A6, I6, 16, 3F6.O
IF.(ITYPE.EO,O) 60 TO 80
20 IF(NRUN.EU.IRUN) 60 TO 25
G.. WRITE OUT RUN THAT IS IN MEM
16. G.. WRITE OUT RUN THAT IS IN MEMORY..
C.. Was this the last run on ltape? IF(last(nmax).Eg.2) GO TO 110
C.. READ IN A NEW RUN.. CALL INRUN (LTAPE)
2. 3. 5. 6. 8.
9.
10. 11 13.
14.
15. 16.
17. 16. 19. -
60 TO 20

CALL REWI (LTAPE)
RENIND NTAPE
CALL EXIT
110 WRITE(6,111) NRUN
111 furmate /, 33h requested change for run number o a6, 57h is net $2 n$ * Sequence or the run number itself is in error. ,)
60 to 100
130 WRITE(6.131) NCYC, NRUN
131 formati $/$ 14h cycle number, i6.25H is out of range for run ak 11 co 10100
Eno

UNVVAC 1108 FORTRAN IV LEVEL 22010029 F4G148
THIS COMPILATION WAS DONE ON 22 JUN 68 AT 17:09:46

SUbroutine inrun entry point doazo4

SUBROUTINE INRUN ILTAPE)
integer chan, cycle
REAL NOISE
COMMON IRUN, GAS, VAR, TIME, RES, OVOLT, VOLTST, TINT, SIGYIN,

* SIGmax, Curmin, CURmax, DATE(2), Chan(100,100), SPLUSN(100., On)
* - NOISE(100,100), CURR(100.10ej, CYCLE(100), L(100), bast(100)
réad (ltape) irun, gas, var, time, res, ovolt, voltst,tint, siguingo * sigmax, Curmin; turmax, date(1), date(2)

12.	$10 N=N \rightarrow 1$
13.	IF(N.GT. 100) 60 T0 30
14.	REAd(LTAPE) CYCLE(N), L(N)
25.	IMaX $=\mathrm{L}$ (N)
16.	READ(LTAPE) (Shan (I,N), SPLUSN(I,N), NOISE(I,N), CURR(I,N),I=9,
17.	* Imax)
28.	read (Ltape) Lastin)
19,	IF(LAST(N).EQ.0) 60 to 10
20.	NMAX $=\mathrm{N}$
21.	RETURN

22. G delete the remainder of this experiment, it exceeds 100 cyeles.

22.
23.

亏
25.
20.
20.
20
29.
29.
3.
${ }^{31 .}$ ${ }_{33} 32$.
4
品
a FOR OUTRUN OUTRUN
UNIVAC 1108 FOHTRAN IV LEVEL 22010029 F4G148
THIS COMPILATION WAS DONE ON 21 JUN 68 AT 17:09:48
SUBROUTINE OUTRUN ENTRY POINT 000142
SUBROUTINE OUTRUN(NTAPE)
INTEGER CHAN. CYCLE
REAL NOISE.
COMMON IRUN, GAS, VAR, TIME, RES, DVOLT, VOLTST, TINT, SIG:AIN,

* SIGmax, CURMIN, CURmax, DATE(2), CHAN(100.100), SPLUSN(100.100)
* $\cdot \operatorname{NOLSE}(100,100), \operatorname{CURR}(100,100), \operatorname{CYCLE}(100) \cdot \operatorname{L(100)}, \operatorname{LAST}(100)$
WRITE(NTAPE) IRUN, GAS, VAR, TIME, RES, OVOLT, VOLTST, TINT,
* SIGMIN, SIGMAX, CURMIN, CURMAX, DATE(1), DATE(2)
ICYC $=0$
$100020 \mathrm{~N}=1$
100020 N=1.Nmax
IF(CYCLE(N),EQ.O) 60 TO 20
ICYC $=$ ICYG +1
WRITE(NTAPE) ICYC, L(N)
IMAX $=L(N)$
WRITE(NTAPE) (GHAN(I,N), SPLUSN(I,N), NOISE(I,N), CURR(I,N), I=1,
* Imax)
WRITE(NTAPE) LAST(N)
co continue
backspace ntape
WRITE(NTAPE) LAST(NMAX)
RETURN
$\sum_{i=1}^{c}$

0
0

STEP 7: LEDF (List and End of File)

One input card, in FORTRAN format (A6, I6), is necessary for execution of this program.

Column
1-6
INUM = last valid experiment number
7-12
LCYCLE = last valid cycle number
After LEDF has encountered the last valid cycle number on the library tape, an end of file is written.

A program listing follows.
in FOK LEVFOLEOR
UNIVAC 110 FOKTR
UNIVAC 11GB FORTRAIN IV LEVGL 2201 OG2Y F4G148
THIS COMPILATIUN WAS DUINE UN 07 MAY 68 AT $11: 58: 51$

1. C.. the puftose of this routine is to read the library tape and list all c. C DATA BY RUI NUMBER and by cYCle number.
Parameter ltape $=10$
INTEGER CHAN
REAL nOISE
DIN:ENSION CHAN(100), SPLUSN(100), NOISE(100), CURR(100), DATE(2) REIVINO LTAPE
héad (5.7) INUM, LCYCLE
7:Fukmat (A6, 16)
8 READ (LTAPE) IVUM, ITYPE, VAR, TIME, RES, OVOLT, VOLTST, TINT, 1 SIGMIN, SIGMAX, CURMIN, CURMAX, DATE(1), DATE(2)
WKITE(G,11) NUM
11 FOP:MAT (10X. 1OHRUN NUMBER, 1 X, AG, , ,

mialin prutijRAin

ENTRY POINT 000000

is
4.
\because
6.
0.
j $\underset{-1}{-1}$ \div i 14. 15. 16.
17. ${ }_{18} 8$. 19. 20.
2.
2.

WIRITE(6,16) DVOLT
16 Furmat (10 X . 17 HVOLTAGE incremient. 1 X , FG.2. /) WKITE(6.17) VOLTST

17 FORMAT 1 10X. 17 HST WRITE(6.18) TINT

18 FORMATC 10X. 14 r,TIME WRITE $(6,19)$ SIGMIN 19 FORMAT 10 X . 12HMIN WRITE(6,20) SIGMAX

20 FORMATS 10X. 12 HMAX WRITE(Ó,21) CURMiIIV 21 FORMAT (10X, 13HMLN wirlte $(6,2 ́ 2)$ CURMAX 22 FORMAT 10 X, 13HMĂ̈, WRITE(0.23) UATE(1) e3 FORMAT 10X, 4HDATE 10 READ (LTAPE) KOUNT, L

WRITE(6.24) KOUNT
Wirlte (ó,2b) L
24 FURMAT (10 X , 12HCYCLE NUMBER, $1 \mathrm{X}, 13,1$)
25 FORMATS 10 X .
25 FOKMATS 10X, 16HNUMBER OF POINTS. I5. // , IF (NUM.EQ.INUM.AND.KOUNT.EQ.LCYCLE) 60 TO 40
u

N゙
$\stackrel{3}{2}$
REAU(LTAPE) LAST
IF(LAST.EO.0) GO TO 10
WHITE(G.31)
31 FOKMAT(1HI)
IF(LAST.EO.1) GO TO E
WKITE(6.28)
28 FORMAT(/ 12H END OF FILE)
28 FORMAT(/ 12H END OF FILE)
GaLL REWI(LTAPE)
CALL EXIT
40 LAST $=2$
WRITE(LTAPE) LAST
eivd file ltape
WRITC(6.28)
CALL NEWI (LTAPE)
CALL EXIT
른
END OF LISTING.

STEP 8: SM \varnothing ФTH

This program Fourier-smooths data, unfolds a given Gaussian electron energy distribution from the data, and gives the results for the derivative of the function in tabular form. The program is prepared to accept card input. The deck of cards needed is generated as one of the options in ABEAM4.

The normal output of this program, which in its present form was prepared for the study of autoionization in molecular gases, is:

1. Input data Fourier-smoothed
2. Derivative of Fourier-smoothed square root of the data
3. Derivative of Fourier-smoothed data
4. Derivative of Fourier-smoothed data with energy distribution unfolded for case 1
5. Derivative of Fourier-smoothed data with energy distribution unfolded for case 2
6. Derivative of Fourier-smoothed data with energy distribution unfolded for case 3

At present there is one graphic output, which gives the input data Fourier-smoothed once.

The input sequence and card formats are given below.
Title Card: FORTRAN format is (12A6)

Column

1-72 Title (printed at top of first page)
First Data Card: FORTRAN format is (3I6, 3F6.0, I6)
Column

6
IN $=0$: accept Y values as input
= 1: after reading in Y values below, read $Y T$ values and compute $Y=Y-Y T$

19-24

ISTOP $=0$: last problem
= 1: read in another title card for a new problem NDEL = number of delta (Δ) values to follow DEL (1) $=\Delta$ value(s) for unfolding

Second Data Card：FORTRAN format is（3F12－4）
Column

$1-12$	SI $=$ initial voltage
$13-24$	SF $=$ final voltage
$25-36$	DX $=$ voltage increment

Last Data Card：FORTRAN format is（6F12．4）
6 values per card：$\quad Y(i), i=1, N P \quad N P=$ total number of values

$$
=[(S F-S I) / D X]+1
$$

$\mathrm{YT}(\mathrm{i}), \mathrm{i}=1$ ， $\mathrm{NP} \quad$ omit if $\mathrm{IN}=0$ on first data card
If this deck has been punched from the ABEAM4 program，the user must finish punching the second card（first data card）（i．e．，NDEL，DEL（1）， DEL（2），DEL（3），NMAX）．

Below is an example deck setup．

							519646	9 $9^{5} 55_{1} 5_{2} 5$	$5{ }^{5} 5159$			
			（IN）	SE，RT S	Siamath	Pregr	HER	2－L			－	
		＋ـــ1		1	－1－u							
新	1	－	工功	The CA	RD FgR	EriRST	CASE	Lu	111	［	［1？	
IN	ISTfP	NPEL	DEL 4 （	（PEt（2）	DECS ${ }^{(3)}$	NMAX						
	I		F－us		\times							
\cdots	（1）		（1）		（3）		（4）		（5）		（6）	
	（7）－1．			$\xrightarrow{+}$	（ NP P）．							
${ }^{-17}$	（1）		（2）		（3）	Yr	（4）	\cdots	（5）	Y	（6）	
${ }^{Y}$	（7）	E	＋1－1		（ $\mathrm{P}_{\text {P }}$							
						－1	山－1		－1－	－1	\cdots	－
连		ANCITH	ERTTIT	LE CAR	D．FidR	NEXT，	AS发正F	ISTIUP	Abative	：	$\xrightarrow{-1}$	
									1		1	
											Lــ1	－1．1

GIMENSION Y(300), YT(300), O(300), YO(3n0), OYS(300.3), DEL(3), YOS(30n) OImENSIOH LABEL(12)
DIMENSEION VOLT(100)
12 WHITE(6,124)
$1<4$ FORMAT($1 \mathrm{H}_{1}$)

WRITE(6.101) (LABEL(I),I=1,12) 1S1 furmat (4X, 12AG) 17. READ (5.17)SI,SF, UX 17. FCRMAT $\left(3 F_{12.4)}\right.$
$H L=(S F-5 I)$
 $N P=\operatorname{NP}: 1+1$
KLAD(b,18)
Le Fünnat (6F12.4)
fF (IN)20.20;19
$0014 \mathrm{I}:=1 \mathrm{NP}$
$14 Y(I)=Y(1)-Y T(I)$

12.
12.
14.
15.
10.
17.
20.
19.
20.
21.
22.
23.
i
25.
27.
28.
29.
30.
3.
32.
10R DATA RANGE... $\mathrm{i} 4,1 \mathrm{X}, 1 \mathrm{H}(F 5.2,1 \mathrm{H} / \mathrm{F} 4,2,1 \mathrm{H} / F 5,2,5 \mathrm{H}) \mathrm{E}, \mathrm{V}$. WKITE(6.101)(Y(I),I=1,RPP)
181 FUKMAT (10x:10F8.0)
YidIN $=1 . \tilde{E}+37$
DU $205 I=1$, isp
YMIN = AMINI(YMIN, Y(I))
2us continut
ulndivestic the test fok equality befiween non-integers may not be meaningful. IF(YMIN.GE்.U) SO TO 210 UU $200 I=1, N P$
$Y(I)=Y(I)-$ YMIIV
zuó cuintinue
2.0 b.RITE(6,1H2)
laz Furmat (/2ux.4̇nfourier cozfficients of souare root. Signal n
$x=0.0$

PF $=3.141592653$
$C_{N P_{H}}=N_{\text {ii }}$
DO $180 \mathrm{I}=1$, NPM
$C I=I$

i品 40. \dot{j} $\underset{7}{\text { ® }}$ - シ 9 $\stackrel{9}{9}$ $\dot{9}$ 49. in in
$186 \mathrm{~B}(1)=\mathrm{B}(\mathrm{I}) * \operatorname{Cos}(\mathrm{P} 1 * \mathrm{Cl} /(2 . \mathrm{U}=\mathrm{CNP}(\mathrm{y})) * * 2$
WikITE:6.135) aKITE(6.183) (B(K),K=ะคNPM)
 B1 $=0.0$
Du $24 I=1.26$ NPI $=N P-i$
$\angle 4 \mathrm{BT}=3 \mathrm{~T}+8(\mathrm{NPI}) * * 2$
$K=20$
$201 N=n p-k$
ut $=B(N-1) * * 2$
$\mathrm{C}_{\mathrm{K}}=\kappa$
$B L T=B T / C K$
IF SBE/BET-10
27 IF (N-2)29.29.33
$29 \operatorname{tinAx}=\mathrm{NP} / 10$
WKITE 6,291$)$

シั $\dot{\sim}$

$\dot{\square}$ $\stackrel{0}{i}$
$\dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0}$ $\dot{\sim} \dot{\sim}$ \dot{N} i \dot{i} $\dot{\sim} \dot{\sim} \dot{\sim}$

$\stackrel{\pi}{4}$

＊oiggnostic：the test for equality aetween non－integers may not be meaningful． a7．IF（YMIN．GE．U） 60 to 44
a7．
80.
$Y(I)=Y(i)+Y_{M I N}$
43 continue
44 NPMT $=$ NP -2
． $0045 \mathrm{I}=1.2$
$45 \mathrm{ruS}(1)=0.0$
$\begin{aligned} \text { DO } 46 I & =3.11 \mathrm{PMT} \\ 46 \mathrm{KLS}(\mathrm{I}) & =0.10 * 1-2\end{aligned}$
$\mathrm{YLS}(I)=0.10 *(-2.0 * Y(I-2)-Y(I-1)+Y(I+1)+2.0 * Y(I+2))$
DO465 $I=N_{P} M_{0, N P}$
$\begin{aligned} \text { DO465 I } & =\text { NRMO．NP } \\ 405 \text { YUS（I）} & =0.0\end{aligned}$
－DO $60 J=1$ ，HDEL
CALL UNFSUR（NMAX，NP，HL，DEL（J），DX，YI，YF，B，YT）
D0 $40 \mathrm{I}=1.2$
$.40 \mathrm{DYS}(1.5)=0.0$
$\begin{aligned} \text { DO } 41 I & =3 . \mathrm{NPMT}^{2}\end{aligned}$
103． $41 \operatorname{DYS}(1 . J)=0.10 *(-2.0 * Y T(1-2)-Y T(I-1)+Y T(I+1)+2.0 * Y T(I+2))$
104．DU $42 I=:$ JPM，itP
90.
91.
92.
$\dot{8}$
ま $\dot{\circ}$
$\dot{\circ} \dot{\circ}$ が
$\dot{\square}$
5
100. $\stackrel{9}{9}$ 102.
403.
$42 \operatorname{DYS}(I, N)=0.0$ 60 cuntinue
WKITE（6．51）
SI FURHAT／ $20 \times 26 \mathrm{HS}=$＝INPUT DATA（5MOOTHED）．）
Wrilte (óbjé)

＊T jatal．j
WH：ITE（6．53）
S3 FORMAT $/ 20 \times 26 \mathrm{HLT}(0)=$ DERIVATIVE OF（ 5 ）．， WHITE（6．54）
54 FURMAT（／20X 37HDT（．x_{x} ）＝UERIVATIVE OF（INFFOLDED S）．， WKITE（ 6,61 ）（DEL（I），$I=1$ ，NDDEL）
DI FCRMAT，$/ 18 \mathrm{X}, 1 \mathrm{HX} 13 \mathrm{X}$ IHS 11 X 3HOSA 9 X 6H OT（O） $3(7 \times$ 3HOT！ 1．F4．2，1：i），，
OU $70 I=1 . N P$
WİITE $(6,63) \mathrm{X}, \mathrm{Y}(1), \mathrm{YO}(1), \mathrm{YDS}(1)$, （UYS（I，J），J＝1，NDEL）
GS FURMAT $(10 X, F 9.2,6 F 14,4)$
vOLTII）$=x$
WKITE（6．901）
9U1 FORMAT 101 ，S3HPLOT OF S SMOOTHED ONCE（FOURIER） CALL PLOT（ VOLT，Y，ISP，100．4h，6） … IF（ISTOP）22， $2 \mathrm{~K}, 12$ 72 CALL EXIT プレ，は，72． LISTING， 105.
106.
107.
10.
109. 110. $\underset{7}{7}$ i12． 214. $\stackrel{\bullet}{\square}$ 117. $\stackrel{\dot{-1}}{-1}$ 120. $\underset{\sim}{\underset{\sim}{7}}$ 123. 124. $\stackrel{(1}{3}$ 127. 12\％． 129.
130. END OF

$$
\begin{aligned}
& \text { DLKENSION Y(300), } 3(300), C(300), S(300), E X(300) \\
& P_{\perp}=3.141592653 \\
& \text { TLN }=0.69314718 \\
& \mathrm{CHI}=(P I * D L / H L) * * 2 /(1 G * * T L N) \\
& C U N=S I * S I-(S F * O L) * * 2 /(B .0 * T L P:) \\
& \text { CLOP }=2.0 * \text { CHI *FH/PI } \\
& \operatorname{SGN}=-1.0 \\
& \text { SU1 }=0.0 \\
& \text { SU2 }=0.0 \\
& \text { DU o OK }=1 . N C \\
& c_{n}=K \\
& \text { Su1 }=S U_{1}+C X * 0(n) \\
& \text { SUZ }=\text { SU2 }+ \text { SGN*CK*B(K). } \\
& 60 \text { SON }=- \text { SGN } \\
& \text { SU1 }=-2 . U * S F * C L O P * S U 1 \\
& \text { SU2 }=-2 . U * \text { SF*CLOP*SU2 } \\
& Y(1)=\text { CONTSUL } \\
& Y(\text { iNP })=(S F * \text { HLL }) * * 2+2.0 * S i * S F * H L+C O N+S U 2 \\
& N P H=N P-j \\
& x=0 x \\
& \operatorname{Sin} X=\operatorname{SIN}(P I * X / H L) \\
& -i \\
& \% \\
& \text { • } \\
& \text { o. } \\
& \stackrel{+}{+} \\
& \text { シ } \\
& 10 . \\
& 11 . \\
& \dot{-} \\
& 13 . \\
& 14 . \\
& 15 . \\
& 10 . \\
& 17 . \\
& 18 . \\
& 19 . \\
& \begin{array}{l}
21 . \\
21 .
\end{array} \\
& 22 .
\end{aligned}
$$

$\cos x=\cos (p 1 * x / H L)$
$E_{L}=E X P(C H I)$
$F C=E C * E C$
$S L N Z=S I N X$
$C U S Z=C O S X$
$N C N=N C-1$
$N T=N C+N C$
$E X P Z=1.0$
$D C 10 K=I, N T$
$E A P Z=E C * E X P L$
$E X(K)=E X P Z$
$E x(k)=\operatorname{EXPZ}$
$10 E C=F C * E C$
DU $50 \mathrm{M}=2$ ，NPM
$Y_{1 A}=(S F * X) * * 2+2,0 * S F * 5 I * X+C O N$
SIIvK $=\operatorname{sinv}$
$\cos k=\cos x$
DU $20 K=1, N T$
$S(k)=$ SINK
$c(k)=\cos K$
SINKP $=$ SINK $* \cos X+\cos K * S \operatorname{IiNX}$ XNIS＊XNIS－XSOJ＊YSOJ $=d$ SSOD S．$\because \mathrm{BK}=\mathrm{SI}$ IGKP
20 Cusk $=$ COSkP
i
志 㤩 ぶ N $\dot{\sim}$ Ni 30. 31. 3. 33. 34. 35. $\dot{\dot{m}} \stackrel{\dot{9}}{\dot{m}}$ $\dot{m} \dot{\mathbf{j}} \underset{\ddagger}{7}$ $\dot{子}$ $\stackrel{9}{9}$ ； $\dot{5}$

$$
\begin{aligned}
& \text { in }=0.0 \\
& K i r=K+1 \\
& \text { OU } 2 B N=K+\operatorname{Riv} \\
& \text { Nion }=N-K \\
& \text { iNK }=N+K
\end{aligned}
$$

subroutline four antay point 000127 SUBROUTINE FOUR(NP,Y,B)
DLAENSION Y(300),0(300)

$p_{1}=3.141592653$

CivP $=N P$
NPin $=$ NP-1

PLOiN $=$ PI/CINPM
$\operatorname{cosz}=\cos$ (hiun)
SAHz $=\operatorname{SIm}(\mathrm{PION})$
cusk $=\operatorname{COHz}$
Sink $=51: 3$
OU $20 K=1$, NPM
á $=0.0$.
$\operatorname{coskI}=\cos K$
SA:ixi $=$ si:Nk
OU $22 I=2, N P_{M}$
$\mathrm{BK}=\mathrm{BK}+\mathrm{Y}(\mathrm{I}) * 5 \mathrm{I} \mathrm{nk} \mathrm{I}$

CUSI $=\operatorname{Co}$ OKI*COSK-SIHKI*SIIKK
SInvinI $=$ Sini
n
3
11
n
n
N
$\therefore \quad i$
$\dot{\square}$
4.
0
\therefore
$\stackrel{\circ}{\circ}$
$=$
$\stackrel{\dot{v}}{*}$
$\stackrel{\oplus}{7}$
14. 15. 16. 10. $\stackrel{\circ}{9}$ 24.
21.
SLiNKI $=$ SiNK*COSZ $+\operatorname{COSK} *$ SINz
ccskI $=\operatorname{cusk} * \cos Z-\operatorname{SINK} * \operatorname{SINZ}$
CuSk $=\cos$ I I
SINK =SINriI $20 B(K)=2.0 * \Delta K / C$ NP
RETURN
$\underset{4}{2}$
END OF LISTING.
22.
23.
24.
26.
26.
27.
20.
END OF
UNIVAC 1103 FOKTKAN IV LEVEL <201 0029 F46148
THIS COMHILATION: BAS DLINE ON 29 APK 68 AT 13:17:15
subroutive fouki entry point gousts

HPM $=$ NP-1
CNPM $^{\prime}=$ NPM
$P_{1}=3.1415926 .63$
$P_{I O .1}=P I / C I \cdot P M$
$\operatorname{cus} \angle=\cos (p \tan)$
$\operatorname{SIN} 2=\operatorname{SITA}(P I O M)$
$Y(1)=0.0$
$\mathrm{Yu}(1)=0.0$
$\cos K=\cos z$
Sillk $=$ SINZ
$\mathrm{dNO}=X O 2 \mathrm{O}=$
$r k=0.0$
$\mathrm{r} K \mathrm{~K}=0.0$.
PIK $=$ PIO:I
cuski $=$ cusk
SINKI = SI!k
$00221=1 . \operatorname{rimax}$ $\gamma_{K}=Y_{K}+\bar{B}(T) *$ SINKI

1.
4.
4.
is 6.
\dot{m}° 9. 11. 13. 14.

STEP 9: SIMCUR

The program is designed to folu iatc any given analytic function a Gaussian function with specified full width at half maximum, Δ, in eV units:

$$
F^{\prime}(E)=\frac{1}{N} \int_{x_{0}}^{x_{L}} f\left(E^{\prime}\right) \exp \left[-\ln \frac{2}{(1 / 2 \Delta)^{2}}\left(E-E^{\prime}\right)^{2}\right] d E^{\prime}
$$

where the normalization function is

$$
N=\int_{x_{0}}^{x_{L}} \exp \left[-\ln \frac{2}{(1 / 2 \Delta)^{2}}\left(E-E^{\prime}\right)^{2}\right] d E^{\prime}
$$

In program notation the function is

$$
\operatorname{CS}(i)=\frac{\int_{x_{0}}^{x_{L}} \operatorname{CS}(x) * \exp \left[-\xi(E-x)^{2}\right] d x}{\int_{x_{0}}^{x_{L}} \exp \left[-\xi(E-x)^{2}\right] d x},
$$

where

$$
\begin{aligned}
& \zeta=\frac{L N(2)}{\left(\frac{1}{2} \Delta / 13.605\right)^{2}} \\
& E=\frac{E V(i)}{13.605} \\
& X_{0}=E-\text { LIMITS } \\
& X_{L}=E+\text { LIMITS } \\
& E V(i)=E V M I N+(i-1) \% \text { DELEV }
\end{aligned}
$$

The output of this program is in table form gi ing the energy scale in $£ V$ and Rydberg units. As an option the output can be given in graphic form.

In the case considered here, the form of the ionization cross section proposed by Omidvar is in the program. This equation can be replaced by any other. In its present form it is possible to obtain as an option the ratio of Omidvar's function to any requested power function. The input card formats are as follows:

First Card: FORTRAN format is (2E12.6, 316)
Column

$$
\text { 1-12 COE }=\text { coefficient of power function }
$$

13-24 POWER = power of the function
25-36 KLAST = 1: return for new run
= 2: exit; all job completed
Second Card: FORTRAN format is (2E12.6,316)
Column
1-12 L.IMITS = integration interval
13-24 DELTA = full width at half maximum of Gaussian distribution
25-30 IFOLD = 1: do not fold data
$=2$: fold data
31-36 IPLOT = 1: give plot
$=2$: do not give plot
37-42 ILAST = 1: return here for new set of options after processing this problem
$=2$: do not return here
Third Card: FORTRAN format is (3E12.6, I6)
Column
1-12 EVMIN $=$ the minimum value of the electron energy (eV) in the domain of the problem

13-24 EVMAX = the maximum value of the electron energy (eV) in the problem

25-36 DELEV = the step for output starting at EVMIN and going to EVMAX this problem

= 2: do not return here

Below is an example of the deck setup as it stands for the Omidvar equation. In this case we are comparing Omidvar's cross section first with the 1.127 power law and then with a 1.5 power law. A plot is not requested. The energy distributions requested are 0.06 eV and 0.08 eV .

A program listing follows.
GFOR SIMCUR:SIMCUK
UNIVAC $110 \pm$ FORTRAN
UNIVAC 110G FORTAN IV LEVEL 22010029 F46148
THIS COMPILATION WAS DONE ON 27 MAY 68 AT $11: 58: 03$

1. C PLot simple curve and fold simple curve. 2. DIMENSION CS(1000), EV(1000), ARRAY(20) COMMON /SIGMA/ COE, POWER COMMON /FUN/ XSEE, XK DATA INIT/ -1/0 EPEND/1/ REAL LIMITS

$I P=2$
B. C
2. C... GOE is not used in omidvaris function, input card is to be Entry Point 000000
mali. prugram 10. C... left' blank in this field.
400 READ 5,401) COE, POWER, KLAST
3. 401 format $2 E 12.6 .316$)
4. 410 READ (5,401) LIMITS, DELTA, IFOLD. IPLOT, ILAST
set line counter
$L C=60$
XSEE $=.69315 /(.5 * D E L T A / 13.605) * * 2$
5. C READ INTEGRATION GRIO DEFINITIONS.
6. 420 READ (5,421) EVMIN, delev, Evmax, Last
7. 421 FORMAT(3E12.6, 16)
GO TO (450, 550), IFOLD

$\dot{j} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim}$ $\dot{\dot{N}}$ $\dot{\text { ํ }}$

GO TO 507
$505 \operatorname{EV}(1)=E V(I-1)+$ DELEV
$507 \mathrm{xk}=\mathrm{EV}(\mathrm{I}) / 13.605$
CALL CROSS(XK, CS(I))
 IF(LC.LT.S4) GO TO 520
510 WRITE(6.511)
511 FORMATI 1H1,
// 54X 2HEV, 19X.
511 Format 1 1hi, 39x 25 h Simple curve - omidvar -
1 1HK, 18X, 2HCS)
CALL BCDCON(ARRAY)
WRITE(0,515)
525 FDRMAT(24HSIMPLE CURVE - OMIDVAR - 72X,
LC $=3$
520 WRITE(6,521) EV(I), XK, CS(I)
521 FORMAT $36 X, 3 E 20.8)$
LC $=$ LC +1
IF(ABS(EV(I)-EVMAX)-.001) 700. 700, 500
FOLDEO CURVE.........
550 YMAX $=1 . E-37$
$600 I=I+1$

IF(I.GT.1000) G0 TO 900

\dot{m}
$\dot{m} \dot{\dot{m}}$
ง४.
$\dot{8}$
$\dot{3}$
$\dot{\mathfrak{j}} \dot{\mathfrak{j}}$
\dot{y}
$\dot{9}$
44.
45.
40.
46.
48.

IF(I.GT.1) GO TO 605
$E V(1)=E V M I N$
6070607
$605 E V(I)=E V(I-1)+$ OELEV $607 \mathrm{XK}=\mathrm{EV}(\mathrm{I}) / 13.605$
$x 0=x K-$ LIMITS
$X L=X K+L I M I T S$
$N P=1$
REL $=.01$
CALL GAUSS(INIT, XO, XL, Y1, REL, NP, 1)
$N P=1$
REL $=.01$ $\operatorname{CS}(1)=Y 1 / Y_{2}$

YMAX $=$ AMAXI(YMAX.CS(I))
IF(LC.LT.54) GO TO 620
610 WRITE(6.611) DELTA, LIMITS
611 FORMAT(1H1, 9X, 25HFOLDED CURVE USING DELTA $=$, F10.5. 9H, LIMITS= 1 F10.5, 12H - OMIOVAR = // 54X, 2HEV, 19X, 1HK, 18X, 2HCS) CALL BCDCON(ARRAY)

WRITE(0,615) DELTA, LIMITS
615 FORMAT 1 25HFOLOED CURVE USING DELTAZ . F10.5. 8H LIMITS= . F10.5.
1 12H = OMIDVAR - $31 \times$,
620 WRITE(6.521) EV(I), XK, CS(I)
$L C=L C+1$
IF(ABS(EV(I)-EVMAX)-.001) 700, 700, 600
$\stackrel{-1}{-1}$
N 53.莈 i 50.
 ค. is 59. 60. $\stackrel{\rightharpoonup}{0}$ $\dot{\text { © }}$ 6. : ${ }_{0}^{0}$ i $\stackrel{\circ}{\circ}$ 66. io 09. \dot{R} 71. 72. 73.
74.
75. 70. 70.
77.
c THIS FOLO COMPLETE. CHECK FOR PLOT.
CALL OGA $123,766,0,900,13.45,14,45$, YMAX, 0.01
CALL OUTLIN
CALL ORG(5,7)
CALL SBLIN(5,9)
CALL SLLIN(7,9)
II $=1-1$
CALL OVR(II,1,EV.CS, 1$)$
C.... LABEL GRAPH

$\dot{\sim} \dot{\sim} \dot{\Phi} \dot{\circ}$ 71060 TO (720, 750). IPLOT 720 IF(FFETH.GT.1) 60 TO 730 CALL SETUP ($0.0,0,16$) IPEND $=2$
$I P=1$
730 CALL ADF THIS GRID COMPLETE. .
700 GO TO(420, 710), LAST $\stackrel{\square}{-0}$ シ் $\dot{\infty}$ © : : 67. 88. 0 o 89.
90. 91. 92. $\dot{\square} \dot{\sigma}$ 95. 96. 97.
98. 98. 99. 100. 101. 102. 103. 104.

CLOSE OUT PLOT ROUTINE
u
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.

END O
D FOR GAUSS GAUSS
UNIVAC 110 a FORTRA
UNIVAC 110 FORTRAN IV LEVEL $2201{ }^{00029}$ F4G148
THIS COMPILATION WAS OONE ON 27 MAY 68 AT 11:58:07
subrolitine gaussilinit, XO, XL, Y, rel, np, ifun)
OIMENSION AA(16), hH(16), YBAR(10), byb(10)
IF(INIT) 1, 1, 2
1 INIT: $=1$
$A A(1)=-.989400935$
$A A(2)=-.944575023$
$A A(3)=-.865631202$
$A A(4)=-.755404408$
$A A(5)=-.617876244$
$A A(6)=-.458016778$
$A A(7)=-.281603551$

$A A(8)=-.950125098 E-01$ $A A(9)=-A A(8)$ $A A(10)=-A A(7)$ $A A(11)=-A A(6)$ $A A(12)=-A A(5)$ $A A(13)=-A A(4)$ $A A(14)=-A A(3)$ $A A(15)=-A A(2)$ $A A(16)=-A A(1)$ | 11 |
| :--- |
| 퐃 |

SUBROUTINE gAUSS ENTRY POENT 000317
$\dot{\operatorname{N}} \dot{\operatorname{j}} \dot{\mathrm{j}}$
s
7.
$\dot{\infty}$
9.
$\dot{-} \ddagger$
$\underset{\sim}{~}$ 13. j $\dot{\square}$ $\stackrel{\vdots}{-}$ $\dot{\square}$ Э $\dot{\text { N }} \dot{\vec{N}}$

HH（2）$=.62253524 \mathrm{E}-01$ $\begin{aligned} \text { L6829t2t } & =(\text {（ ）HH } \\ \text { T0－32ts8sts6 } & =(\varepsilon) \text { HH }\end{aligned}$ 66S6S6ht $=(5) \mathrm{HH}$ 259ST697＊$=(9) \mathrm{HH}$ 2ヶع09て81．$=$（L）HH 190G768T ${ }^{\circ}=(8) \mathrm{HH}$ $H H(9)=H H(8)$ （L） $\mathrm{HH}=(\mathrm{OT}) \mathrm{HH}$ HH（11）$=$ HH（6） （S） $\mathrm{HH}=($（ح）$) \mathrm{HH}$ $H H(13)=H H(4)$ （ ε ） $\mathrm{HH}=(力 \tau) \mathrm{HH}$ （ट）HH＝（ST）HH $\begin{aligned} 9 \tau & =9 \mathrm{~N} \\ \text {（i）} \mathrm{HH} & =(9 \tau) \mathrm{HH}\end{aligned}$

 IF（XLGTH）201，105， 201 201 NPP $=$ NP $\dot{\sim} \stackrel{(1)}{\sim}$ 추N 소N $\dot{\min } \dot{\sim}$ $\dot{\sim} \dot{\sim}$ in in $\stackrel{\circ}{\circ}$ io i $\stackrel{-1}{9}$ ※ $\dot{7} \dot{7}$ \dot{f}

$Y=Y_{\text {taR }}(K)$
105 RETURN
$\underset{\sim}{0}$

- FOR FOFX, FOFX
UNIVAC 110 FORTRAN IV LEVEL 22010029 F46148
THIS COMPILATION WAS DONE ON 27 MAY 68 AT 11:58:11

[^2]O FOR CROSS PRROSS
UNIVAC 110s FORTRAN IV LEVEL 22010029 F4G148
THIS COMFILATION WAS DONE ON 27 MAY 68 AT 11:58:13
SUBROUTINE CROSS ENTRY POINT 000122
SUBROUTINE CROSS (E, CS)
COMMON /SIGMA/ COE, POWER
IF(VALUE) 100. 100. 200
$200 \mathrm{CS}=0.0$
RETURN
i
S. C.
4. C... omidvar
5. c
real nu
value $=E-1.0$
i5. $\quad C S=0.0 * N U * 1.0+3.0 *(F 2 * C U S(F 3)+F 1 * 5 I N(F 3)) /(F 2 * * 2+F 1 * * 2))$ 1 *VALUE**2.5/(TANH(3.14159265*NU) $=.014$)
IF(POMER) 210, 220, 210
210 CS $=$ CS/VALUE**POWER
210 CS = CS/VALUE**POWER
220 RETURN
19. 220 RETURN
20. END
ENS OF LISTING.

STEP 10: SIMTAB

This program is designed to fold a Gaussian function into any given function which has been prepared in table form. This program is identical to SIMCUR except the term CS(x) is inter polated from tabular data.

It is not necessary that the input be given in equal intervals. Within the program is an interpolation subroutine that can be as much as a ninthorder polynomial.

The input card formats are as follows:
First Card: FORTRAN format is (216)
Column

$$
\begin{aligned}
\text { 1-6 } & \text { NL }
\end{aligned}=\text { number of points in the table (max 100) }
$$

Table Cards: FORTRAN format is (6E12.6)
Column

$1-12$	$X X(1)=$ first energy value
$13-24$	$Y Y(1)=$ first cross section value
$25-36$	$X X(2)$
$37-48$	$Y Y(2)$
$49-60$	$X X(3)$
$61-72$	$Y Y(3)$

Continue with three pairs per card.
Next Card after Table: FORTRAN format is (2E12.6, 3I6)

Column

1-12 LIMITS
13-24 DEJ_TA
25-30 IFOLD
31-36 IPLOT
37-42 ILAST

Next Card: FORTRAN format is (3E12.6, I6)

Column

$$
\begin{array}{ll}
1-12 & \text { EVMIN } \\
13-24 & \text { DELEV } \\
25-36 & \text { EVMAX } \\
37-42 & \text { LAST }
\end{array}
$$

The last two cards are identical to cards two and three for the SIMCUR program.

A program listing follows.

main prograim Entry point 000000

1. 6 PLot simple curve and fold Simple curve dImENSION CS(1000), EV(1000), ARRAY(20) OIMENSION XX(100), YY(100)
COMMON /SIGMA/ NL, XX, YY
common /Fun/ xsee, xk
/t/ON3dI •/T- /IINI Vivo
REAL LIMITS
$\mathrm{IP}=2$
$I^{T} A B=0$
400 READ (b,406) NL, KLAST
406 FORMAT(216)
2. $R E_{A D(3,407)(X X(1), Y Y(I), I=1, N L)}$
407 FORMAT(6E12.6)
$I_{T A B}=I T A B+1$
DO $40 \mathrm{E} I=1, \mathrm{NL}$
$408 \times X(1)=X X(1) / 13.605$
3. 401 FORMAT($2 E 12.6$.316)
410 READ(5.401) LIMITS, DELTA, IFOLD. IPLOT, ILAST
SET Line counter
$L C=60$
XSEE $=.69315 /(.5 * D E L T A / 13.605) * * 2$
read integration grid definitions.
420 READ (5.421) EVMIN, deLEV, EVMaX, LaSt
0
$\dot{\sim}$ ㄹ
ㅊ
$\dot{\sim} \dot{\sim}$
$\dot{\mathrm{i}} \dot{\mathrm{i}}$
4. 30. 31. 32.

i 34. \dot{m} $\dot{8}$
 YMAX $=\operatorname{AMAXI}($ YMAX, $\operatorname{cs}(I))$ IF(LC.LT.54) 60 TO 520
510 WRITE(6.511) ITAB
511 formats 1h1, 39X 41H SImple curve Sigma = function of table i3 2 // 54X 2HEV 19X 1HK 18X 2HCS) Call bcdcon(akray)
WRITE(0.515) ITAB
 $L C=3$
520 WRITE(6.521) EV(I). XK. CS(I)
521 FORMATG 36X, 3E20.8)
$L C=L C+1$
IF(SEV(I) +DELEV).LT.EVMAX) GO TO 500
the test for equality between non-integers may not oe meaningful.

 diagnostic
50.
51. $5<$.

70.
77.
70.
79.
86.
81.
82.
83.
84.
60.
86.
67.
80.
89.
Diagnostic the test for equality between non-integers may not be meaningful.
IF(EV(I).GE.EVMAX) GO TO 700
IF((I+1).GT.1000) 60 TO 900
$I=1+1$
$\operatorname{Ev}(1)=\operatorname{EvMAX}$
GO TO 607
96. C THIS GRID COMPLETE..
70060 TO (420,710), LAST
71060 TO (720, 750). IPLOT
720 IF(IPEND.GT. 1) 60 TO 730
101. CALL SETUP($0.0,0,16)$

$$
\begin{aligned}
& \text { IPEND }=2 \\
& I P=1 \\
& 730 \text { CALL ADF } \\
& x_{1}=x x(1) * 13.605 \\
& X x_{N L}=X X(N L) * 13.605 \\
& \begin{array}{l}
\text { CALL DGAI 123, 766, 0, 900, XX1, XXNL, YMAX, } 0.01 \\
\text { CALL OUTLIN }
\end{array} \\
& \text { CALL DRG(5.7) } \\
& \text { CALL SBLIN(5,9) } \\
& \text { CALL SLLIN(7,9) } \\
& \text { II=1-1 } \\
& \text { CALL OVR(II,1.EV.CS.1) } \\
& \text { c... label graph } \\
& \text { CALL CONX (1, XPT) } \\
& \text { CALL CONY (1000, YPT) } \\
& \text { CALL TSP (XPT, YPT, AA } \\
& \text { C CHECK FOR NEXT IFOLD } \\
& \begin{array}{l}
75060 \text { TO (} 410,760 \text {), ILAST } \\
\text { c THIS CURVE COMPLETE }
\end{array} \\
& 76060 \text { TO } \mathbf{~ 4 0 0 , ~ 7 7 0) , ~ K L A S T ~} \\
& \begin{array}{l}
\text { c END OF JOB } \\
770 \text { GO TO (} 780,800 \text {), IP }
\end{array} \\
& \text { c close out plot routine } \\
& 780 \text { CALL FINISH } \\
& 500 \text { STOP } \\
& 900 \text { WRITE(6.901) } \\
& \text { 120. } 901 \text { formatitilih check input value for evmin. Evmax and delev, one of t }
\end{aligned}
$$

IHEM IS IN ERROR AND WILL CAUSE RESERVED STORAGE OVERFLOW.
IF (IPEND.EQ.1) STOP
$I P=2$
60 To 770
?
2 *DIAGNOSTIC* MESSAGE(S).
ENO OF LISTING.
Q FOR GAUSSIGAUSS
UNIVAC 110B FORTRAN IV LEVEL 22010029 F46148
THIS COMPILATION WAS DONE ON 27 MAY 68 AT 11:58:
subroutine gaussisnit, xO, XL, y, rel, np, IFun)
DIMENSION AA(16), HH(16), YBAR(10), BYB(10)
iF(INIT) 1, 1, 2
$A A(1)=-.989400935$
$A A(2)=0.944575023$
$A A(3)=-.865631202$
$A A(4)=-.755404408$
$A A(5)=-.617876244$ $A A(6)=-.458016778$ $A A(7)=-.281603551$
$A A(8)=-.950125098 E-01$ $A A(9)=-A A(8)$
$A A(10)=-A A(7)$ $A A(11)=-A A(6)$ $A A(12)=-A A(5)$ $A A(13)=-A A(4)$ $A A(24)=-A A(3)$ $A B(15)=-A A(2)$ $A A(16)=-A A(1)$ HH(1) $=.27152459 E-01$ HH(2) $=.62253524 \mathrm{E}=01$
 $\dot{\sim}$ 13. $\stackrel{\square}{9}$ $\stackrel{\oplus}{\circ}$ $\stackrel{\perp}{\dagger}$ 19.
20. ․ 22.

$$
\begin{aligned}
& \begin{array}{l}
H H(3)=.95158512 E-01 \\
H H(4)=.12462897 \\
H H(5)=.14959599 \\
H H(6)=.16915652 \\
H H(7)=.18260342 \\
H H(8)=.18945061 \\
H H(9)=H H(8) \\
H H(10)=H H(7) \\
H H(11)=H H(6) \\
H H(12)=H H(5) \\
H H(13)=H H(4) \\
H H(14)=H H(3) \\
H H(15)=H H(2) \\
H H(16)=H H(1) \\
N G=16
\end{array} \\
& \begin{array}{l}
2 Y=0.0 \\
X L G T H=X L-X 0 \\
I F(X L G T H) 201,105,201 \\
201 \mathrm{NPP}=N P \\
D O 103 \mathrm{~K}=1.10 \\
Y=0 . \\
E N P=N P \\
D O 200 \text { L=1.NP } \\
\text { AREA }=0.0 \\
\text { AL }=L
\end{array}
\end{aligned}
$$

X1PX2 $=(2.0 * A L-1.0) * X L G T H / E N P+2.0 * \times 0$ X2MX1 $=$ XLGTH/ENP
> $x=(X 1 P \times 2+A A(J) * X 2 M X 1) / 2 \cdot 0$ CALS FOFX(X. FX. IFUN) 100 AREA $=$ AREA + nitioj \ddagger FFX $r=r+\operatorname{AREA}$
200 CONTINUE $Y=X$ LGTH $/(2,0 * E N P) * Y$
$\operatorname{YBAR}(K)=Y$
$I F(K-1) 104,104,144$
144 BYB $(K-1)=$ ABS(YBAR(K-1)
$144 B Y B(K-1)=$ ABS (YBAR $(K-1)-Y)$
IF(BYB(K-1) - REL*ABS(Y)) 105, 105, 104
$104 N P=\Sigma * N P$
103 CONTINUE
DO 108 LE1. 10
$R E L=2.0 \% R E L$
DC $107 \mathrm{~K}=2,10$
IF(BYE(K-1) - REL\#ABSiYBAR(K))) 106. 106. 107 107 CONTINUE 108 CONTINUE
$K=10$
106 NP $=(2 * *(K-1)) * N P P$
$Y=\operatorname{YBAR}(K)$
105 RETURN
END
Listing.
49.
$\stackrel{\circ}{\circ}$
in in六 $\stackrel{\stackrel{3}{*}}{\Delta}$ in iे in今 59.
60. $\stackrel{i}{0}$ 62. 63.
64.
65. 65. 60.
67. $\dot{0}$ 09.
70. 2. 72. ${ }_{7}^{73}$. END OF
UNIVAC 110 F FONTRAN IV LEVEL 22010029 F4 4148
ITIS COMPILATION WSS DONE ON 27 MEAY 68 AT $11: 58$

G FOR CROSSO CROSS
UNIVAC 110 FOR FORRAN
THIS COMPILATION WA

Q FOR TERP, TERP
UNIVAC 11O\& FORTRAN IV LEVEL 2201 0029 F4G148
THIS COMPILATION WAS DONE ON 27 MAY 68 AT 11:58:29 TERP0010 terpoozo TERPOOSO 0700d831 0S00d831
 TERP0070 TERPu080

 TERP0110
 13. DIMENSION $X(2) \cdot Y(2)$ TERP0130 Ontodyel
 TERP0160 TERP0170 TERP0180 TERP0190 TERP0200
 17. C \quad NOT ENOUGH ENTRIES IN TABLES FOR THIS ORDER INTERPOLATION
13. 97 IL=NL
19.
18 L=1
20.
21. GO TO 112

TERP0470
0870d831 TERP0490
 0150C4키 N
N
O
空 0550 A 831 0ヶSOd벽 OSSOA831 09S0d831 0<S0dy31
 069048ㄱ 0090d831 0190d831
 0ع90dy31 TERP0640 0S90dy31 0990d831 TERP0670 TERP0580 0690dy 31 TERP0700 01L0 2 H31
TERP0720
TERP0730

 TERP0760 TERPOT70 TERP0780 06L0dA31 TERP0800 0180dA31 0280dy31

 0580d431 8
0
0
2
2
2
2

 0680d831 0060d831 TERP0910

10. OTHER COMPLEMENTARY ACTIVITIES

To promote a vigorous exchange of information on electron scattering between the theoretical and experimental communities, a city-wide series of colloquia was initiated with the support of Gulf General Atomic. The series has beenknown as CAMP (Colloquia on Atomic and Molecular Processes). During the contract period, the following CAMP colioquia have been of interest to this program:

March 8, $1967 \quad$| "Energetic Ions from Diatomic Molecules, " |
| :--- |
| |
| |
| |
| |
| |
| |
| |
| |
| Ar. Lee J. Keiffer, Joint Institute for Lab |
| Boulder, Colorado |

March 14, 1967 "Theory of Near Adiabatic Collisional Transitions," Professor K. M. Watson, University of California, Berkeley, Physics Department

March 31, 1967 "Atomic Scattering Spectroscopy: Analysis of Scattering of He^{+}by Ne and Ar," Dr. Felix T. Smith, Stanford Research Institute, Menlo Park, California

April 28, 1967 "Total Elastic and Inelastic Heavy Particle Collisions in the Energy Range 10 to 1000 eV. A: Elastic Scattering in the Alkali-Rare Gas System; B: Ionization Due to Rare Gas Metastable Collisions," Dr. Manfred Hollstein, Stanford Research Institute, Menlo Park, California

May 4, 1967 "The Importance of Polarization in Low Energy Electron Molecular Collisions - An Application to H_{2}, "Dr. Neil F. Lane, Department of Physics, Rice University, Houston, Texas

October 16, 1967 "The Excitation and Spectroscopy of H-like Atoms," Dr. Hans Kleinpoppen, Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder, Colorado

November 3, 1967 "Low Energy Rotational Excitation Cross Sections Derived from Spectroscopic Data, "Dr. Marvin Mittleman, Space Science Laboratory, University of California, Berkeley, California

December 11, 1967 "Protoa H-Atom Collisions," Professor M. R. C. McDowell, Goddard Space Flight Center, Greenbelt, Maryland
April 4, 1968 "Ionization Processes of Molecules at Low Energies," Professor R. Stephen Berry, Department of Chemistry, University of Chicago, Chicago, Illinois

May 17, 1968
"Polarization of Scattered Electrons," Professor E. Reichart, Department of Physics, University of Mainz, Mainz, Germany

Probably the most significant activity this year was the Working Session on Electron H-Atom Collisions. The text of the notice and the program for the meeting are presented below.

WORKING SESSION ON ELECTRON H-ATOM COLLISIONS

The detailed experimental and theoretical study of electron hydrogen atom collisions has developed to the point where our group at Gulf General Atomic, in conjunction with the group at the University of California, San Diego, plan to spend two days in a "working session" in order to examine what has been done, what is being done, and what can be done to most effectively study (e-H) collisions. The days we have in mind are Monday and Tuesday, April 8 and 9.

In particular, we plan to examine resonance and threshold problems since these areas have received the most extensive study of late. We have invited R. Damburg and A. Temkin to help organize discussion during our first day and to give colloquia on topics of particular interest. We plan to have several other talks by J. C. Y. Chen and ourselves, but for the most part our program will be informal and will stress the broadest possible exchange of ideas. We hope to spend one day together in an informal meeting while the second day (or part of the day) we are setting aside for the exchange of thoughts on a more individual basis. This will occur both here and at the University.

For those who would like to join us, arrangements will be made at a local hotel. We plan to get together for dinner Monday evening. Since time is already short, from those who will join us, we would appreciate word as soon as possible.

WORKSHOP ON ELECTRON HYDROGEN-ATOM COLLISIONS

Monday, April. 8, 1968

AM SESSION:	La Salle Room, La Jolla Beach \& Tennis Club
$9: 00-9: 30$	Business and Coffee
$9: 30-12: 30$	Elastic and Inelastic Electron Scattering

Chairman: Edward Gerjuoy

Review Experimental Measurements	J. William McGowan Atomic Physics Lab Gulf General Atomic
Excitation of the Hydrogen	R. Damburg Latvian Academy of Science
Atom by Electron Impact	J. C. Y. Chen
Solutions of the Faddeev	University of California San Diego

WORKSHOP ON ELECTRON HYDFOGEN-ATOM COLLISIONS

Tuesday, April 9, 1968
AM SESSION: La Salle Room, La Jolla Beach \& Tennis Club
9:00-12:00 Joint Experimental and Theoretical Workshop
Chairman: Marvin Mittleman
Possible Topics:
Polarization of Radiation
Polarized Electron and Atom Beams
Coincidence Experiments
Angular Correlation Experiments
The Application of Born Approximation
Lorentz Decay
Removal of Degeneracy
Definition of Threshold
Cascade of Radiation
Potential. Resonances
12:00
PM SESSION:
2:00

NOTE:
Lunch at La Jolla Beach \& Tennis Club Dining Room
IGPP Building, University of California, San Diego
Special Working Sessions
Visits to Gulf General Atomic and the University of California, San Diego

At 11:00 a.m. at Gulf General Atomic Professor Gregory H. Wannier will be speaking on "Stark Ladders in Solids?"

REFERENCES

1. Fite, W. L., and R. T. Brackmann, "Collisions of Electrons with Hydrogen Atoms. II. Excitation of Lyman-Alpha Radiation, " Phys. Rev. 112, 1151 (1958),
2. Burke, P. G., S. Ormonde, and W. Whitaker, "Low-Energy Electron Scattering by Atomic Hydrogen. I. The Close-Coupling Approximation," Proc. Phys. Soc. London 92, 319 (1967).
3. Chamberlain, G. E., S. J. Smith, and D. W. O. Heddle, "Excitation of the 2p State of Hydrogen by Electrons of Near Threshold Energy, " Phys. Rev. Letters 12, 647 (1964).
4. Damburg, R. J., and M. K. Gailitis, "Calculations in the Vicitity of the 2s, 2 p Threshold of the Cross Sections for the Excitation of Hydrogen Atoms by Electrons," Proc. Phys. Soc. London 82, 1068 (1963).
5. Taylor, A. J., and P. G. Burke, "Low-Energy Electron Scattering by Atomic Hydrogen. II. The Correlation Method, "Proc. Phys. Soc. London 92, 336 (1967).
6. Damburg, R. J., and S. Geltman, "Excitation of $n=2$ States in Hydrogen by Electron Impact," Phys, Rev. Letters 20, 485 (1968).
7. Lorig, R. L., D. M. Cox, and S. J. Smith, submitted for publication to NBS Journal of Research.
8. Fite, W. L., W. E. Kauppila, and W. R. Ott, "Polarization of Lyman-Alpha Radiation Emitted by H(2s) Atoms in Weak Electric Fields, " Phys. Rev, Letters 20, 409 (1968).
9. Kleinpoppen, H, and E. Kraiss, Phys. Rev, Letters 20, 361 (1968).
10. Watanabe, K., E. C. Y. Inn, and M. Zelikoff, "Absorption Coefficients of Oxygen in the Vacuum Ultraviolet," J, Chem. Phys. 21, 1026 (1953).
11. Platzman, R. L. , J. Phys. Radium 21, 853 (1960); "Some Remarks on the Nature of Ionization, Ionization Yields, and Isotope Effects in the Ionization of Molecules by Various Agencies," J. Chem. Phys. 38, 2775 (1963).
12. Burrows, K. M., and G. H. Dunn, "Isotope Effect in the Dissociative Excitation of $\mathrm{H}_{2}\left(\mathrm{D}_{2}\right)$, " paper presented at Twentieth Annual Gaseous Electronics Conference, October 1967, San Francisco.
13. Vroom, D. H., and F. J. de Heer, F. O. M. Instisute for Atomic and Molecular Physics, "Production of Excited Atoms by Impact of Fast Electrons on Molecular Hydrogen and Deuterium, " submitted for publication.

APPENDIX I

ABSTRACTS OF PAPERS GIVEN
AT SCIENTIFIC MEETINGS

LYMAN-ALPHA PRODUCTION AND POLARIZATION IN He ${ }^{+}$ COLLISIONS WITH H AND $\mathrm{H}_{2}{ }^{*}$

Robin A. Young, R. F. Stebbings, \dagger and J. Wm. McGowan
Presented at 20th Annual Gaseous Electronics Conference of the American Physical Society, San Francisco, October 1967.

Measurements of the Lyman-alpha production from $\mathrm{He}^{+}+\mathrm{H}(1 \mathrm{~s}) \rightarrow$ $\mathrm{He}^{+}+\mathrm{H}(2 \mathrm{p})$ collisions have been obtained over the energy range from 0.5 to 30 keV . At the lower ion energies the cross section remains large; this fact reflects the rotational interaction betv een states of the collision complex HeH^{+}. A similar result had been reported by Stebbings et al. (1) for the $\mathrm{H}^{+}-\mathrm{H}$ collision system. Also presented are measurements of the total cross section for Lyman-alpha production from $\mathrm{He}^{+}-\mathrm{H}_{2}$ collisions. Some values of the polarization have been obtained for emission of Lyman-alpha from the collisions of $\mathrm{He}^{+}, \mathrm{Ne}^{+}$, and Ar^{+}with atomic hydrogen.

[^3]1. R. F. Stebbings, R. A. Young, C. L. Oxley, and H. Ehrhardt, Phys. Rev. 138, A1312 (1965).

THRESHOLD BEHAVIOR OF ELECTRON EXCITATION

FUNCTIONS IN ATOMIC HYDROGEN*
J. F. Williams, E. K. Curley, and J. Wm. McGowan

Presented at 20th Annual Gaseous Electronics Conference of the American Physical Society, San Francisco, October 1967.

The excitation function, for electron impact, of the (1s - 2 p) transition in atomic hydrogen appears to be finite at the threshold. When electron energy distribution functions of from 240 to 100 meV (FWHM) are unfolded from the observed Lyman-alpha radiation versus electron energy curve, it appears that the excitation function reaches a significant value within several tens of meV of the threshold and then drops sharply to about 60% of its peak threshold value. A report is given of attempts made to observe the resonance in the $2 p$ excitation function, which is predicted by Burke et al. (1) to appear just beiow the $n=3$ level.

[^4](e-H) COMPOUND STATES REFLECTED IN THE H(2p) CHANNEL
IN THE VICINITY OF $n=3^{*}$
J. William McGowan and James F. Williams

Presented at American Physical Society Meeting,
Los Alamos Scientific Laboratory, June 1968.

High resolution electron impact studies of the $2 p$ excitation cross section of atomic hydrogen have been made in the vicinity of $n=3$. Prominent resonance structure has been observed below and above $n=3$. The structure below $n=3$ qualitatively is in agreement with the predictions of Burke et al., (1) but in detail there is some difference as to the breadth of the $(e-H)$ resonances. Above $n=3$ there is evidence that a shape resonance is present.

[^5]${ }^{1}$ P. G. Burke, S. Ormonde, and W. Whitaker, Proc. Phys. Soc. 92, 319 (1967).

COMPARISON OF THE CALCULATED AND OBSERVED RESONANCES IN THE (e-H) ELASTIC SCATTERING CHANNEL ABOVE $10.0 \mathrm{eV}^{*}$

J. William McGowan and S. Ormonde ${ }^{\dagger}$

Submitted to the Arnold Sommerfeld Centennial Memorial Meeting and International Symposium on the Physics of One and Two Electron Atoms, Munich, September 1968.

Recent measurements of the electron hydrogen atom elastic scattering cross section show a rather wide structure immediately below the $n=2$ threshold. (1) This structure has been attributed to the ${ }^{1} \mathrm{D}$ and ${ }^{3} \mathrm{~S}$ compound states of H^{-}, which have already been partially discussed in the literature. ${ }^{(2-4)}$ Since the observed effect of these states on the differential cross section appears to be considerably larger than expected from what we know of the resonances in the ${ }^{1} \mathrm{~S}$ series, it was decided to compare the experiment with the results of a detailed close-coupling calculation of the resonances just below the $\mathrm{n}=2$ threshold. Preliminary results for the ${ }^{1} \mathrm{D}$ resonance place it at an ene rgy of 10.15 eV with width $\Gamma=0.0073 \mathrm{eV}$. When the energy distribution of the electron beam is folded into the calculated cross section, the agreement between theory and experiment is reasonably good. The effects of including higher hydrogenic states as well as taking into account the considerations of Damberg and Geltman ${ }^{(5)}$ are presently being examined.

Work supported by DASA and the Air Force Special Weapons Center, Contract AF29601-68-C-0052, and by the National Aeronautics and Space Administration, Contract NAS 5-11025.
\dagger Quantum Systems, Incorporated, Albuquerque, New Mexico.

1. J. William McGowan, E. M. Clarke, and E. K. Curley, Phys. Rev. Letters 15, 917 (1965); 17, 66E (1966).
2. M. K. Gailitis and R. Damburg, Proc. Phys. Soc. 82, 192 (1963).
3. J. C. Y. Chen, Phys. Rev. 156, 150 ;1967).
4. A. J. Taylor and P. G. Burke, Proc. Phys. Soc. 92, 336, (1967).
5. R. J. Damburg and S. Geltman, Phys. Rev. Letters 20, 485 (1968).

A DETAILED COMPARISON OF THE THEORETICAL AND

EXPERIMENTAL RESULTS FOR THE 2p ELECTRONIMPACT EXCITATION CROSS SECTION OF HYDROGEN*

J. William McGowan and J. F. Williams
Submitted to the Arnold Sommerfeld Centennial Memorial Meeting and International Symposium on the Physics of One and Two Electron Atom, Munich, September 1968.

At first glance one is satisfied with the agreement between theory and experiment in the threshold region of the 2 p electron-impact excitation cross section of atomic hydrogen. However, when a detailed comparison is made in the region between the onset of the $n=2$ level and the $n=4$ level, one finds that there is much yet to be done with the theory. The measured value for the total cross section lies below the best theoretical value. For example, if we consider the interval between 0.2 and 1.5 eV above threshold, the measured cross section is only 80% of the value estimated by the correlation method. (1) Similar agreement between theory and experiment for 2s excitation was recently reported by Fite et al. (2) The shape resonance predicted in the ${ }^{1} P$ channel just above threshold and the finite threshold of excitation are approximately the magnitude suggested by the theory. However, following the first shape resonance are at least two other small structures which appear to be real and which may be part of a series of such shape resonances. Unfortunately, the calculations that have been performed thus far have not been done on a fine enough grid to identify in which channel these other resonances lie.

As predicted by the six-state approximation, ${ }^{(3)}$ there are a number of resonances just below the onset of the $n=3$ level. However, there is not good agreement between the theoretically predicted and the measured resonances. Provided the positions that have been predicted are correct, one is lead to the conclusion that the dominant resonance structure is in the ${ }^{1} \mathrm{P}$ channel while less prominent structure appears in the ${ }^{1} \mathrm{~S}$ channel. The theory, however, predicts that the principle resonance will be in the ${ }^{1} \mathrm{D}$ channel.

In our experimental results one of the most prominent features appars at the threshold of $n=3$. This no doubt reflects a large shape resonance at the threshold of the $n=3$ level. Part of the flux from this resonance will appear directly in the $2 p$ channel while another portion of it will arrive

[^6]there through cascade from the 3 s and 3 d states of the atom. Although detailed measurements of the resonance structure between $n=3$ and $n=4$ have not been completed, it is clear from our crude measurements that some measurable resonance structure does exist in this interval. One would hope that the calculations similar to those of Damburg and Geltman (4) will eventually be able to correct for the incompleteness in the original close-coupling approximation calculations.

1. A. J. Taylor and P. G. Burke, Proc. Phys. Soc. 92, 336 (1967).
2. W. L. Fite, W. E. Kauppila, and W. R. Ott, Phys. Rev. Letters 20, 409 (1968).
3. P. G. Burke, S. Ormonde, and W. Whitaker, Proc. Phys. Soc. 92. 319 (1967).
4. R. J. Damburg and S. Geltman, Phys. Rev. Letters 20, 485 (1968).

APPENDIX II

PAPERS RESULTING THIS YEAR FROM
THE PROGRAM

Faddeev Equations for Atomic Problems and Solutions for the (e,H) System*

James S. Ball ${ }^{\dagger}$
Department of Physics, University of Califomia, Los Angeles, California
and
Joseph C. Y. Chen
Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, California
and
David Y. Wong
Department of Physics,
University of California, San Diego, La Jolla, Califomia
(Received 1 April 1968)

Solutions of the Faddeev equations for Coulomb potentials are investigated. A method which is of practical use for solving the Faddeev cquations below the three-particle breakup threshold is cieveloped. As an example, the method is applied to the (e, H) system in which the H^{-} bound state and the lowest members of the resonances in both the singlet and the triplet $J=0$ series are calculated. The results are in good agreement with the experimental measurements and previous calculations which used conventional methods.

I. INTRODUCTION

The nonrelativistic three-body problem with twobody interactions has been formulated by Faddeev ${ }^{1,2}$ in a way that allows straightforward computations. For short-range forces, the Faddeev equations have been applied successfully to a number of problems. ${ }^{3-13}$ It is the purpose of this paper to show that the Faddeev equations are equally applicable to atomic problems as long as the total energy is below the three-body breakup threshold - for example, the calculation of three-body bound states and resonance energies and wave functions below the ionization energy. The significant advantage of the Faddeev equation over conven-
tional methods is that the wave functions are calculated systematically along with the energy levels, No trial wave function is needed in the computation. Although this paper only contains a few illustrative examples all dealing with the $e-H$ problem, we believe that the Faddeev equation has a considerably wider range of applicability. A brief account of this work was presented recently at the Leningrad Conference. ${ }^{14}$
In Sec. II, we give a simple derivation of the Faddeev equation, and revil w the method of reduction with respect to angular momentum. The method of solution is presented in Sec. III and applied to the H^{-}problem in Sec. IV. A discussion of possible extensions is given in Sec. V.

II. THE FADDEEV EQUATIONS

A. Formal Derivation

The scattering matrix $T(s)$ for the three-particle system with two-body interactions is a solution of the equation

$$
\begin{gather*}
T(s)=V+V G_{0}(s) T(s), \tag{2,1}\\
\text { with } V=\sum_{i} V_{i}\left(V_{i} \equiv V_{j k}\right), \\
G_{0}(s)=\left(s-H_{0}\right)^{-1}, \tag{2.3}
\end{gather*}
$$

where the three particles are labeled by i, j, and k, and $C_{0}(s)$ is the free three-particle Green's function. The "off-shell" scattering matrix $T_{i}(s)$ arising from the two-body potential V_{i} above is given by the Lippmann-Schwinger equation

$$
\begin{equation*}
T_{i}(s)=V_{i}+V_{i} G_{0}(s) T_{i}(s) \tag{2,4}
\end{equation*}
$$

Since V_{i} acts only on two particles, the third particle is therefore left as a spectator in Eq. (2.4). Equation (2,4), in effect, is equivalent to the equation for two-particle scattering matrix; the presence of the spectator particle gives rise to merely a shift in the energy scale.
Now we decompose the three-particle scattering mairix $T(s)$ into three components

$$
\begin{equation*}
T(s)=T^{(1)}(s)+T^{(2)}(s)+T^{(3)}(s) \tag{2.5}
\end{equation*}
$$

where $T^{(i)}(s)=V_{i}+V_{i} G_{0}(s) T(s)$.
As it stands, Eq. (2,6) is a set of integral equations with each $T^{(i)}$ coupled to all three operators $T^{(j)}, j=1,2$, and 3 . The main difference between these equations and the Faddeev equations is that, in the latter, each $T(i)$ is only coupled to two $T(j)$'s with $j \neq i$, and as a result, the kernel of the integral equation is less singular. We give here a simple derivation of the Faddeev equations:
Define the expression

$$
\begin{equation*}
\Omega=T^{(i)}(s)-T_{i}(s)-\sum_{j \neq i} T_{i}(s) G_{0}(s) T^{(j)}(s) \tag{2,7}
\end{equation*}
$$

One can readily show by utilizing Eqs. (2.4)-(2.6) that

$$
\begin{equation*}
\Omega=V_{i}+\sum_{j=1}^{3} V_{i} G_{0} T^{(j)}-V_{i}-V_{i} G_{0} T_{i}-\sum_{j \neq i}^{3} V_{i} G_{0} T^{(j)}-\sum_{j \neq i}^{3} V_{i} G_{0} T_{i} G_{0} T^{(j)}=V_{i} G_{0} \Omega \tag{2,8}
\end{equation*}
$$

Since $V_{i} G_{0}(s)$ is not the identity operator, Eq. (2.8) implies that $\Omega=0$ for each i. We then obtain for $T^{(i)}(s)$ the equations

$$
\begin{equation*}
T^{(i)}(s)=T_{i}(s)+\sum_{j \neq i} T_{i}(s) G_{0}(s) T^{(j)}(s), \quad i=1,2,3 \tag{2,9}
\end{equation*}
$$

which are the well-known Faddeev equations. ${ }^{1}$ In the matrix form:

$$
\left(\begin{array}{c}
T^{(1)}(s) \tag{2.10}\\
T^{(2)}(s) \\
T^{(s)}(s)
\end{array}\right)=\left(\begin{array}{c}
T_{1}(s) \\
T_{2}(s) \\
T_{3}(s)
\end{array}\right)+\left(\begin{array}{ccc}
0 & T_{1}(s) & T_{2}(s) \\
T_{2}(s) & 0 & T_{2}(s) \\
T_{3}(s) & T_{3}(s) & 0
\end{array}\right) G_{0}(s)\left(\begin{array}{c}
T^{(1)}(s) \\
T^{(2)}(s) \\
T^{(s)}(s)
\end{array}\right)
$$

This is a coupled set of integral equations in five variables. Since no approximation is made on this formal transformation, the solution of Eq. (2.10) yields $T^{(1)}, T^{(2)}$, and $T^{(3)}$ whose sum is the exact solution of the original equation (2,1).
The Faddeev equations can also be interpreted diagrammatically. Let us represent T_{1} by the sum of the diagrams as shown in Fig. 1 and similarly for T_{2} and T_{3}. For the T 's with a superscript, we use the symbols shown in Fig. 2. The Faddeev equations are then given by Fig. 3. One can easily see that the iterative solution of the three equations in Fig. 3 using the equation in Fig. 1 reproduces all the diagrams in perturbation theory. Our formal derivation given earlier simply shows that the Eqs. in Fig. 3 are valid even if the perturbation series fails to converge. In the diagrammatic representation, it is physically evident that $T^{(1)}$ is that part of the full three-body T matrix where particles 2 and 3 undergo a final-state interaction. Since T_{i} already represent a complete sequence of two-body interactions, each $T^{(i)}$ can only couple to $T^{(j)}, j \neq i$. As mentioned earlier, this decoupling of $T^{(i)}$ from itself results in a less singular kernel as compared to the original equation (2,6). This is due to the fact that each T_{i} is associated with 2δ function corresponding to the momentum conservation of the i th particle, and the decoupling removes the repeated δ functions.

B. Three-Body Kinematics

To reduce the Faddeev equations, a suitable set of basis variables must first be chosen, For this purpose, the momentum representation is adopted, Let the masses and asymptotic mon, enta of the three particles be denoted by m_{1}, m_{2}, and m_{3}, and \vec{k}_{1}, \vec{k}_{2}, and \vec{k}_{3}, respectively. An appropriate set of basis variables may be constructed by taking certain combinations of the momenta in the center-of-mass system of the three particlen, for $T^{(1)}$, the suitable basis variables are the pair of independent raomentum

FIG. 1 Diagrams for the two-body scattering matrix T_{i}. The wavy lines represent the two-particle potential V_{1}.

FIG. 2 Symbols representing the threc-body scattering matrix $\boldsymbol{T}^{()^{()}}$with a pair of partisles undergoes a final-state interaction.

FIG. 3 Diagrammatical representation of the Faddeev equations. The gap between two diagrams represents a a noninteracting three-body Green's function.
variables. ${ }^{3}$

$$
\vec{p}_{1}=\left[m_{3} \vec{k}_{2}-m_{2} \vec{k}_{3}\right] /\left[2 m_{2} m_{3}\left(m_{2}+m_{3}\right)\right]^{1 / 2}, \quad \vec{q}_{1}=\left[m_{1}\left(\vec{k}_{2}+\vec{k}_{3}\right)-\left(m_{2}+m_{3}\right) \vec{k}_{2}\right] /\left[2 m_{1}\left(m_{2}+m_{3}\right)\left(m_{1}+m_{2}+m_{3}\right)\right]^{1 / 2}, \text { (2.11) }
$$

and their conjugated pairs $\vec{\phi}_{2} \vec{q}_{2}$ and $\vec{\phi}_{3} \vec{q}_{3}$ which are obtained by a cyclic interchange of subscripts in Eqs. (2,11) are the appropriate sets for $T^{(3)}$ and $T^{(s)}$ respectively.
The nonrelativistic kinetic energy in the center-of-mass frame may be written in any pair of basis variables;

$$
\begin{equation*}
H_{0}=p_{1}^{2}+q_{1}^{2}=p_{2}^{2}+q_{2}^{2}=p_{3}^{2}+q_{3}^{2} . \tag{2.12}
\end{equation*}
$$

Consequently, the corresponding state vector $\left|k_{1} k_{2} k_{2}\right\rangle$ may be represented in several equivalent forms

$$
\begin{equation*}
\left|\vec{k}_{1} \vec{k}_{2} \vec{k}_{3}\right\rangle=\left|\vec{p}_{1} \vec{q}_{1}\right\rangle_{2}=\left|\vec{p}_{2} \vec{q}_{2}\right\rangle_{2}=\left|p_{3} q_{3}\right\rangle_{3}, \tag{2,13}
\end{equation*}
$$

Where the extra subscript keeps track of the proper pair of basis variables.
These sets of basis momentum variables are linearly dependent on each other. The relations are summarized below.

$$
\begin{align*}
& \overrightarrow{\mathrm{p}}_{2}=-\alpha_{21} \vec{p}_{1}+\beta_{21} \vec{q}_{1}=-\alpha_{23} \vec{p}_{3}-\beta_{23} \vec{q}_{3}, \quad \vec{q}_{2}=-\beta_{21} \vec{p}_{1}-\alpha_{21} \bar{q}_{1}=\beta_{23} \vec{p}_{3} \sim \alpha_{23} \bar{q}_{3}, \tag{2.14b}\\
& \vec{p}_{3}=-\alpha_{32} \vec{p}_{2}+\beta_{32} \vec{q}_{2}=-\alpha_{3} \vec{p}_{1}-\beta_{3} \bar{q}_{1}, \quad \vec{q}_{4}=-\beta_{32} \vec{p}_{2}-\alpha_{32} \vec{q}_{2}=\beta_{3} \vec{p}_{1}-\alpha_{51} \dot{q}_{1}, \tag{2.14c}\\
& \text { where } \alpha_{i j}=\left[m_{i} m_{j} /\left(m_{i}+m_{k}\right)\left(m_{j}+m_{k}\right)\right]^{1 / 2}, \beta_{i j} \equiv\left(1-\alpha_{i j}^{2}\right)^{1 / 2} \tag{2,15}
\end{align*}
$$

We will frequently interchange these basis momentum variables among different sets for convenience.

C. Separation of Angular Momentum

A separation of the angular momentum states in the Faddeev equations can be carried out using the relative angular momentum of two particles, which is combined with the angular momentum of the third particle in the over-all center-of-mass system. ${ }^{0,15}$ In this decoupling scheme, the state vector $\left[\vec{p}_{i}, \vec{q}_{i}\right\rangle_{i}$ may be expanded in terms of a set of orthonormal partial-wave states $\left|p_{i} l m_{l}, q_{i} L m_{L}\right\rangle_{i}$. Since the total angular momentum J is conserved, we may in general consider the states to be diagonal in J. These states are given by
with

$$
\begin{align*}
& |p q J M l L\rangle_{i}=(-)^{\left.L-l-M_{(2 J+1}\right)^{\frac{1}{2}}} \sum_{m_{l} m_{L}}\left(\begin{array}{ccc}
J & l & L \\
-M & m_{l} & m_{L}
\end{array}\right)\left|p l m_{l}, q L m_{L}\right\rangle_{i}, \tag{2,16}\\
& \left|p l m_{l}, q L m_{L}\right\rangle_{i}=Y_{l m_{l}}(\hat{\rho}) Y_{L m_{L}}(\vec{q}) \mid \bar{p}, \Phi_{i}, \\
& { }_{i}\left\langle\phi m_{l}, q L m_{L} \mid p^{\prime} l^{\prime} m_{l^{\prime}}, q^{\prime} L^{\prime} m_{L^{\prime}}\right\rangle_{i}=(p q)^{-2} \delta\left(p-p^{\prime}\right) \delta\left(q-q^{\prime}\right) \delta_{l l^{\prime}}^{\delta} L L^{\prime} \delta_{m_{l} m_{l^{\prime}}} \delta^{\delta} L^{m_{L^{\prime}}}, \tag{2,18}
\end{align*}
$$

where the Wigner $3 j$ symbol is adopted for the Clebsch-Gordan coefficients.

The Faddeev equations [Eqs. (2.9)] may be written in this representation as

$$
\begin{gather*}
\Psi_{\alpha}^{(i)}(p ; \beta ; s)=\Phi_{\alpha}{ }^{(i)}(p, q, s)+\frac{1}{4} \sum_{\alpha_{j}} \sum_{j \neq i} \int_{0}^{\infty} d p_{j}^{2} \int_{0}^{\infty} d q_{j}^{2 s r_{j}{ }^{(i)}\left(p q \alpha \mid p_{j} q_{j} \alpha_{j}\right)\left[p_{j} q_{j} /\left(p_{j}^{2}+q_{j}^{2}-s\right)\right]} \\
\times \Psi_{\alpha_{j}}{ }^{(j)}\left(p_{j}, q_{j}, s\right) \tag{2.19}
\end{gather*}
$$

$$
\begin{array}{r}
\text { with } \Psi_{\alpha}{ }^{(i)}(p, q, s) \equiv_{i}\langle p q \alpha| T^{(i)}(s)\left|\vec{k}_{1} \vec{k}_{2} \vec{k}_{j}\right\rangle, \\
\Phi_{\alpha}{ }^{(i)}(p, q, s) \equiv_{i}\langle p q \alpha| T_{i}(s)\left|\vec{k}_{1} \bar{k}_{2} \vec{k}_{j}\right\rangle, \\
x_{j}{ }^{(i)}\left(p q \alpha \mid p_{j} q_{j} \alpha_{j}\right)={ }_{i}\langle p q \alpha| T_{i}(s)\left|p_{j} q_{j} \alpha_{j}\right\rangle_{j}, \tag{2.22}
\end{array}
$$

 interpretation of the equations is straightforward. The quantity $\Psi_{\alpha_{i}}(i)\left(p_{i} q_{i} s\right)$ represents the contribution to the three-particle scattering amplitude in which particles j and $k(j \neq k \neq i)$ undergo final-state interaction with relative angular momentum l_{i}. The quantity $\Phi_{\alpha_{i}}{ }^{(i)}\left(p_{i} q_{i} s\right)$ represents the scattering amplitude in which particle i acts as 2 spectator. The initial state which is denoted by $\mid \vec{k}_{2} \vec{k}_{2} \vec{k}_{3}$) is arbitrary. The quantity p is projortional to the magnitude of the relative momentum between particles j and k, and the quantity q is proportional to the magnitude of the momentum of particle i in the three-particle center-ofmass frame.
mass frame.
Utilizing Eqs. (2.16)-(2.18), we obtain for the kernel $x_{j}{ }_{j}{ }^{(i)}$ [defined in Eq. (2.22)] the expression

$$
\begin{align*}
& x_{j}^{(i)}\left(p q \alpha \mid p_{j} a_{j} \alpha_{j}\right)=(-)^{L+L^{\prime}-l-l^{\prime}} \sum_{m_{l} m_{L}}\left(\begin{array}{ccc}
J & l & L \\
-M & m_{l} & m_{L}
\end{array}\right)\left(\begin{array}{ccc}
J & l^{\prime} & L^{\prime} \\
-M & m_{l^{\prime}} & m_{L^{\prime}}
\end{array}\right) \\
& \times \int d \hat{\phi}_{j} d \hat{q}_{j} d \hat{\phi}_{i} d \hat{q}_{i,}\left(\bar{p} q\left|T_{i}(s)\right| \hat{p}_{j} \Phi_{j}\right)_{j}(2 J+1) Y_{l m_{l}}^{*}\left(\hat{\phi}_{i}\right) Y_{L m_{L}}\left(\hat{q}_{i}\right) Y_{l^{\prime} m_{l^{\prime}}}\left(\hat{\phi}_{j}\right) \\
& \times Y_{L^{\prime} m_{L^{\prime}}}\left(\hat{q}_{j}\right) . \tag{2.23}
\end{align*}
$$

Since T_{i} involves only two-body potentsal V_{i} [see Eq. (2.4)], the matrix element $\left.i\langle\vec{p} \vec{q}| T_{i}(s) \mid \vec{p}_{j} \vec{q}_{j}\right)_{j}$ in Eq. (2.23) may be reduced to a two-particle matrix element. According to Eqs. (2.3), (2.12), and (2,13), we have

$$
\begin{equation*}
{ }_{i}\langle\vec{p} \vec{q}| T_{i}(s)\left|\vec{p}_{j} \stackrel{\rightharpoonup}{q}_{j}\right\rangle_{j}==_{i}\langle\vec{p}| T_{i}(s)\left|p_{i} q_{i}\right\rangle_{i}=\delta\left(t-\Phi_{i}\right)\langle\vec{p}| \bar{T}_{i}\left(\varepsilon-q^{0}\right)\left|\vec{p}_{i}\right\rangle, \tag{2,24}
\end{equation*}
$$

with $\delta\left(\Phi_{q}-\Phi_{i}\right)=2 q^{-1} \delta\left(q^{2}-q_{i}{ }^{2}\right) \delta\left(\cos \theta \Phi_{q}-\cos \theta \tau_{i}\right) \delta\left(\varphi_{\Phi}-\varphi_{\Phi_{i}}\right)$,
where \bar{T}_{i} is the two-particle scattering matrix in the Hilbert space of the two-particle states, We may make use of the decomposition

$$
\begin{equation*}
\left.\langle\vec{p}| \tilde{T}_{i}\left(s-q^{2}\right) \mid \bar{p}_{i}\right)=-\frac{1}{2 \pi^{2}} \sum_{l=0}^{\infty}(2 l+1) P_{l}\left(\cos \theta_{\bar{p} \vec{p}_{i}}\right) t_{l}^{(i)}\left(p, p_{i} ; s-q^{2}\right), \tag{2,26}
\end{equation*}
$$

where the scattering amplitude between particles j and k with angular momentum l is normalized according to the equation

$$
\begin{equation*}
t_{l}^{(i)}\left(p, p ; p^{2}\right)=e^{i \delta_{l}}\left(\sin \delta_{l}\right) / p . \tag{2,27}
\end{equation*}
$$

Here p^{2} is the two-body center-of-mass energy.

When Eqs. (2.24) $-(3.26$) are stulised, the kernel in the Faddeev equations may be written as"

$$
\begin{equation*}
x_{j}{ }^{(i)}\left(p q \alpha \mid p_{j} q_{j} \alpha_{j}\right)=\int_{-2}^{1} d \cos \theta_{q_{j} p_{j}} A_{\alpha \alpha_{j}}\left(\theta_{\left.D_{i} \bar{p}_{j}, \theta_{q_{i} p_{j}}, \theta_{\Phi_{j} D_{j}}\right) \delta\left(q^{2}-q_{i}^{2}\right) t_{l}^{(i)}\left(p, p_{. j} ; s-q^{2}\right)}\right. \tag{2,28}
\end{equation*}
$$

with $A_{\alpha \alpha^{\prime}}\left(\theta_{\overline{\mathrm{a}}_{j} \mathrm{~J}_{j}}\right)=\frac{(-)^{L+L^{\prime}-l-l^{\prime+1}}}{q} 16 \pi^{\frac{1}{2}}\left(2 l^{\prime}+1\right)^{\frac{1}{2}} \delta_{J J^{\prime}} \delta_{M M^{\prime}} \bar{m}_{l^{m} L^{\bar{m}} L^{\prime}}\left(\begin{array}{ccc}l & L & J \\ m_{l} & m_{L} & -m_{L^{\prime}}\end{array}\right)\left(\begin{array}{lll}l^{\prime} & L^{\prime} & J^{\prime} \\ 0 & \bar{m}_{L^{\prime}} & -\bar{m}_{L^{\prime}}\end{array}\right)$

$$
\begin{equation*}
\times Y_{l \bar{m}_{l}}^{*}\left(\theta_{\stackrel{\mathrm{p}}{i} \vec{p}_{j}^{\prime}}, 0\right) Y_{L \bar{m}_{L}}^{*}\left(\theta_{\overrightarrow{\mathrm{q}}_{i}, \mathrm{p}_{j}}, 0\right) Y_{L^{\prime} \bar{m}_{L^{\prime}}^{\prime}}\left(\theta_{\stackrel{\mathrm{q}}{j}^{\mathrm{p}_{j}}}, 0\right), \tag{2.29}
\end{equation*}
$$

where $\theta_{\mathrm{q}}^{\mathrm{j}} \mathrm{j}{ }_{j}$, for example, is the angle between momentum variables \vec{q}_{j} and \vec{p}_{j}. It should be noted that these angles are related through the relations between different sets of pair momentum variables [see Eqs. (2.14)].
The above result was derived for any angular momentum state J of the three-particle system. For convenience, we will consider explicitly only states corresponding to zero total angular momentum. For this $J=0$ case, $\alpha=(001 l) \equiv l$, and Eq. (2.29) becomes
with $p_{i}^{2}=p_{j}^{2}+q_{j}^{2}-q^{2}$ and

$$
\begin{align*}
& \cos \theta_{\dot{q}_{i} ఫ_{i}}=(i j) \frac{\left[\alpha_{i j}{ }^{2}\left(q_{j}^{2}-q^{2}\right)+\beta_{i j}{ }^{2}\left(\alpha^{2}-p_{j}{ }^{2}\right)\right]}{2 \alpha_{i j} \beta_{i j} q p_{i}}, \tag{2.31}\\
& \cos \theta_{\stackrel{p}{j} ఫ_{j}}=(i j) \frac{\left[\beta_{i j}{ }^{2} p_{j}{ }^{2}+\alpha_{i j}{ }^{2} q_{j}^{2}-q^{2}\right]}{2 \alpha_{i j} \beta_{i j} j_{j} q_{j}}, \tag{2.32}
\end{align*}
$$

where $(i j)$ denotes that $(12)=(23)=(31)=1$ and $(21)=(32)=(13)=-1$.
Substituting Eq. (2.28) with $A_{l l^{\prime}}$ given by Eq. (2.30) back into Eq. (2.19), and integrating over the angles, we obtain for the Faddeev equations

$$
\begin{align*}
& \Psi_{l}^{(i)}(p, q, s)=\Phi_{l}^{(i)}(p, q, s)+\sum_{j \neq i} \sum_{l^{\prime}=0} \int_{0}^{\infty} d q_{j}^{2} \int_{L_{i j}}^{U_{i j}} d p_{j}^{2} \\
& \times \frac{(-)^{l+l^{\prime}}\left((2 l+1)\left(2 l^{\prime}+1\right)\right]^{\frac{1}{2}} P_{l}\left(\cos \theta_{p_{i}}\right) \mathcal{q}_{i} P_{l}^{\prime}\left(\cos \theta_{\vec{p}_{j} \sigma_{j}}\right)}{4 \pi \alpha_{i j} \beta_{i j} q\left({ }_{j}{ }_{j}{ }^{2}+q_{j}^{2}-s\right)} \\
& \times t_{l}^{(i)}\left(p, p_{i} ; s-q^{2}\right) \Psi_{l}{ }^{(j)}\left(p_{j} ; q_{j}, s\right), \quad i=1,2,3 \tag{2.33}
\end{align*}
$$

with $U_{i j}=\left(\alpha_{i j} q_{j}+q\right)^{2} / \beta_{i j}{ }^{2}, \quad L_{i j}=\left(\alpha_{i j} q_{j}-q\right)^{2} / \beta_{i j}{ }^{2}$.
It is clear. that if $t_{l}{ }^{(i)}\left(p, p_{i} ; s-\psi^{2}\right)$ is expanded in a sum of terms separable in p and p_{i}, then the p dependence of $\Psi_{l}(i)(\phi, q, s)$ becomes explicit (p does not appear in the kinematic functions or the limits of integrations), and the coupled integral equations in two variables [Eq. (2,33)] can be reduced to equations of one variable. ${ }^{10,12}$ We will consider the application of these equations to three-particle atomic systems in which the interaction proceeds through two-body Coulomb potentials between each pair of particles.

III. THE METHOD OF SOLUTION

A. Eigenfunction Expansion for "Off-Shell" Amplitude

As mentioned before, the partial-wave Faddeev equations of two variables may be reduced to equations of one variable if the "off-shell" two-body scattering amplitudes t_{l} are represented in sums of separable terms. In general, if the two-body potentials $V_{l}{ }^{(i)}$ for a system are given, the two-body amplitude $t_{l}{ }^{(i)}$ can be obtained from the solution of the Lippmanin-Schwinger equation

$$
\begin{equation*}
t_{l}^{(i)}\left(t, p^{\prime} ; E\right)=V_{l}^{(i)}\left(\hat{p}, p^{\prime}\right)+\pi^{-1} \int_{0}^{\infty} d p^{\prime \prime 2} p^{\prime \prime} V_{l}^{(i)}\left(p, p^{\prime \prime}\right) t_{l}^{(i)}\left(p^{\prime \prime}, p^{\prime} ; E\right) /\left(p^{\prime \prime 2}-E\right) . \tag{3.1}
\end{equation*}
$$

Since the argument E is replaced by $\left(s-q^{2}\right)$ in the Faddeev equations, it is negative-definite provided the three-particle energy s is below the three-particle threshold ($s=0$). For negative values of E, the $\left(\phi^{\prime 2 / 2}-E\right)^{m!}$ term in Eq. (3.1) is nonsingular, und it is well known that the solution for $t_{l}(i)$ can be expressed
in terms of eigenfunctions of the homogeneous portion of Eq. (3.1).
The solution $\phi_{n l}{ }^{(i)}$ of the homogeneous Lippmann-Schwinger equation and the corresponding eigenvalues $\lambda_{n l}{ }^{(i)}$ are defined by

$$
\begin{equation*}
\lambda_{n l}^{(i)}(E) \phi_{n l}(i)(p, E)=\pi^{-1} \int_{0}^{\infty} d_{1}^{\prime \prime / n}\left[p^{\prime \prime} V^{(i)}\left(p, p^{\prime \prime}\right) /\left(p^{\prime \prime 2}-E\right)\right] \phi_{n l}^{(i)}\left(p^{\prime \prime}, E\right) \tag{3.2}
\end{equation*}
$$

with the orthonormality property

$$
\begin{equation*}
\pi^{-1} \int_{0}^{\infty} d p^{\prime \prime 2} p^{\prime \prime} \phi_{n l}{ }^{(i)}\left(p^{\prime \prime}, E\right) \phi_{m l}{ }^{(i)}\left(p^{\prime \prime}, E\right) /\left(p^{\prime \prime 2}-E\right)=\delta_{n m} \tag{3.3}
\end{equation*}
$$

Since $\phi_{n l}{ }^{(i)}$ constitutes a complete set, the two-body amplitude $t_{l}{ }^{(i)}$ can be expanded in the form

$$
\begin{equation*}
t_{l}^{(i)}\left(p, p^{\prime} ; E\right)=\sum_{n=0}^{\infty} c_{n l}^{(i)}\left(p^{\prime}, E\right) \phi_{n l}^{(i)}(p, E) \tag{3.4}
\end{equation*}
$$

Substitution of (3.4) into Eq. (3.1) yields, with the help of Eqs. (3.2) and (3.3),

$$
\begin{equation*}
t_{l}^{(i)}\left(p, p^{\prime} ; E\right)=\sum_{n=0}^{\infty}\left\{\lambda_{n l}^{(i)}(E) /\left[1-\lambda_{n l}{ }^{(i)}(E)\right]\right\} \phi_{n l}{ }^{(i)}(p, E) \phi_{n l}{ }^{(i)}\left(p^{\prime}, E\right) \tag{3.5}
\end{equation*}
$$

This is the desired representation for $t_{l}{ }^{(i)}$ in the sums of separable terms. In momentum representation, the Coulomb potential is

$$
\begin{equation*}
V_{l}^{(i)}\left(p, p^{\prime}\right)=-\left(z_{i} \mu_{i}^{\frac{1}{2}} / \sqrt{2} p p^{\prime}\right) Q_{l}\left(p^{2}+p^{2}\right) / 2 p p^{\prime} \tag{3.6}
\end{equation*}
$$

where the Q_{l} 's are the Legendre functions of the second kind, μ_{i} is the reduced mass, and Z_{i} is the product of the chajges (i. e., $z_{j} Z_{k}$) of the two particles. For this potential the eigenfunction $\phi_{n l}{ }^{(i)}$ and the eigenvalue $\lambda_{n l}{ }^{(1)}$ are both known analytically. ${ }^{16}$ We have

$$
\begin{equation*}
\phi_{n l} l^{i i}(p, E)=\left[N_{n l}(E) p^{l} /\left(p^{2}-E\right)^{l+1}\right] C_{n-l-1}{ }^{l+1}\left[\left(p^{2}+E\right) /\left(p^{2}-E\right)\right], \quad n>l \tag{3.7}
\end{equation*}
$$

and $\lambda_{n l}{ }^{(i)}(E)=-Z_{i} \mu_{i}{ }^{\frac{1}{2}} / n \sqrt{-2 E}$,
where $n>l$ and the normalization constant is

$$
\begin{equation*}
N_{n l}(E)=\left[2^{4 l+3} n(n-l-1) l / \Gamma(n+l+1)\right]^{\frac{1}{2}} l l(-E)^{(2 l+3) / 4} \tag{3.9}
\end{equation*}
$$

The $C_{m-1}{ }^{l+1}(x)$'s in Eq. (3.7) are the Gegenhauer polynomials ${ }^{17}$

$$
\begin{equation*}
c_{m-1}^{l+1}(x)=\frac{\Gamma(m+2 l+1)}{\Gamma(m) \Gamma(2 l+3)} F\left(m+2 l+1,1-m ; l+\frac{3}{2} ; \frac{1}{2}(1-x)\right)=\sum_{\gamma=0}^{m-1} a_{\gamma}^{(l+1)}(m)\left(\frac{x-1^{\gamma}}{2}\right) \tag{3,10}
\end{equation*}
$$

with $a_{\gamma}{ }^{(l+1)}(m)=[2(m+2 l+\gamma)(m-\gamma) / \gamma(2 l+2 \gamma+1)] a_{\gamma-1}^{(l+1)}(m)$,
where the recursion relation for the a 's starts with

$$
\begin{equation*}
a_{0}^{(l+1)}(m) \equiv(m+2 l) l /(2 l+1)!(m-1)! \tag{3.12}
\end{equation*}
$$

B. Coupled Single-Variable Integral Equations

Utilizing the separable representation [Eq. (3.5)] for the off-shell two-particie amplitude, the p dependence of $\Psi_{\alpha}(i)(p, q, s)$ can now be made explicit. Let us return to the Faddeev equations for total $J=0$. From Eq. (2.33), it is clear with the help of Eq. (3.5) that $\Psi_{l}^{(i)}(p, q, s)$ can be expressed as

$$
\begin{equation*}
\Psi_{l}^{(i)}(p, q, s)=\Phi_{l}^{(i)}(p, q, s)+\sum_{n}\left\{\lambda_{n l}^{(i)}\left(s-q^{2}\right) /\left[1-\lambda_{n l}^{(i)}\left(s-q^{2}\right)\right]\right\} \phi_{n l}^{(i)}\left(p, s-q^{2}\right) X_{n l}^{(i)}(q, s) \tag{3.13}
\end{equation*}
$$

Substituting Eq．（3．13）into Eq．（2．33），we obtain a set of coupled single－variable integral equations for $\chi_{n l}{ }^{(i)}(q, s)$ ：

$$
\begin{equation*}
\chi_{n l}^{(i)}(q, s)=\eta_{n l}^{(i)}(q, s)+\sum_{n^{\prime}, l^{\prime} ; j \neq i} \int_{0}^{\infty} d q_{j}^{2} 火_{n l, n l^{\prime}}^{(i, j)}\left(q, q_{j} ; s\right) x_{n^{\prime} l^{\prime}}^{(j)}\left(q_{j}, s\right), \quad i=1,2,3 \tag{3,14}
\end{equation*}
$$

$$
\begin{align*}
& \text { with } r_{n l}^{(i)}(q, s)=\sum_{l^{\prime}, j \neq i} \int_{0}^{\infty} d q_{j}{ }^{2} \int_{L_{i j}}^{U_{i j}} d p_{j}{ }^{2} \frac{(-)^{l+l^{\prime}}\left[(2 l+1)\left(2 l^{\prime}+1\right)\right]^{\frac{1}{2}}}{4 \pi \alpha_{i j} \beta_{i j} q\left(p_{j}^{2}+q_{j}^{2}-s\right)} P_{l}\left(\cos \theta_{\vec{p}_{i} \vec{q}_{i}}\right) P_{l^{\prime}}\left(\cos \theta_{\vec{p}_{j} \vec{q}_{j}}\right) \\
& \times \phi_{n l}^{(i)}\left(p_{i}, s-q^{2}\right) \phi_{l^{\prime}}^{(j)}\left(p_{j}, q_{j}\right), \tag{3.15}\\
& \underset{n l, n^{\prime} l^{\prime}}{火^{(i, j)}}\left(q, q_{j} ; s\right)=\int_{L_{i j}}^{U_{i j}} d p_{j}^{2} \frac{(-)^{l+l^{\prime}}\left[(2 l+1)\left(2 l^{\prime}+1\right)\right]^{\frac{1}{2}} P_{l}\left(\cos \theta_{\vec{p}_{i} \mathbb{q}_{i}}\right) P_{l^{\prime}}\left(\cos \theta_{\vec{p}_{i}, \mathrm{q}_{j}}\right)}{4 \pi \alpha_{i j} \beta_{i j} q\left(p_{j}^{2}+q_{j}^{2}-s\right)\left[1-\lambda_{n^{\prime} l^{\prime}}^{(j)}\left(s-q_{j}^{2}\right)\right]} \\
& \times \phi_{n l}^{(i)}\left(\phi_{i}, s-q^{2}\right) \lambda_{n}{ }^{(j)}\left(s-q_{j}{ }^{2}\right) \phi_{n^{\prime} l^{\prime}}^{(j)}\left(P_{j}, s-q_{j}{ }^{2}\right) . \tag{3.16}
\end{align*}
$$

Equations（3．14）are the basic working equations．We will now examine their physical implications．
Let us first examine the singularities of the kernel \mathbb{K} given by Eq．（2．16）．For negative values of s ， two－particle bound states of the system（if they exist）play an important role in the analytic structure of the kernel κ ．Denote the two－particle bound－state energy by $-\epsilon$ ．For each such two－particle state， there is a corresponding eigenvalue λ which equals to unity at $-\epsilon$ ．The denominator $\left.1-\lambda_{p^{\prime}}^{\prime}\right\}^{\prime}(j)\left(s-q^{2}\right)$ in the kernel then vanishes at $q^{2}=s+\epsilon$ for $s>-\epsilon$ ，therefore creating a branch point for $\chi_{n l}{ }^{(i)}(q, s)$ at $s=-\epsilon$ ． Three－particle bound states can only occur below the branch points．The region between the lowest and the next branch points is the energy region for purely elastic scattering of a particle by a two－particle system in its ground state．A single inelastic process occurs above the second threshold，and so forth． By solving the Faddeev equations，we can obtain bound－state and resonance energies and wave functions below the three－particle breakup threshold．
Now if there is no two－particle bound state between any pair of particles in the tiree－particle system， the behavior of the kernel \mathcal{K} becomes less complicated，since in this case the kernel is pure real below $s=0$ ．Again，Eqs．（3．14）can be solved in a straightforward manner for both the energies and wave functions of any possible three－particle bound states．
It should be noted，however，that if the total energy s is positive（i．e．，above the three－particle breakup threshold），then there is a region $0<q^{2}<s$ where the two－particle energy $s-q^{2}$ is positive and the expansion for the off－shell two－particle amplitude［Eq．（3．5）］in general fails to converge．The method discussed above becomes unsuitable．This includes the problems of three－particle breakup such as，for example， the ionization of hydrogen atoms by electron impact．
We remark here that，for the Coulomb interaction，the two－body T matrix $t_{l}\left(p, p^{\prime}, E\right)$ is singular at $p^{2}=E, p^{\prime 2}=E$ or $p=p^{\prime}$ for all E ．The first two regions are inaccessible below the three－particle threshold （ionization energy），because E is negative－definite while p and p^{\prime} are positive．The region $p=p^{\prime}$ is accessible but the kernel $x_{n l, n^{\prime} l^{\prime}}\left(q, q_{j} ; s\right)$ is already the result of an integration over $p_{j}{ }^{2}$ ．Since the singularity at $p=p^{\prime}$ is only logarithmatic，the kernel no longer contains such a logarithmatic singularity． This，we believe，is the reason why the three particle atomic problem can be handled by the Faddeev equations without further modification，as long as the total energy is below the three－particle breakup threshold．

So far the initial states of the three－particle system are left unspecified．This is possible because the kernel of the integral equation is independent of the initial state，and the energy spectrum of the three－ body system is determined entirely by the kernel．The specification of the initial state and the corre－ sponding inhomogeneous terms are，however，of importance for the wave function of the scattering problem．We now show how this term may be calculated．
For a physical scattering process，one usually has an initial state consisting of two interacting sub－ systems；in the present case，a particle plus a two－particle subsystem in certain bound state．For definiteness，we consider an initial state consisting of particle 1 and a bound state of $(2,3)$ with energy s_{0} and angular momentum l_{0} ．The corresponding inhomogeneous term takes the form［see Eqs．（2．21）， （2．24），and（2．26）］

$$
\begin{equation*}
\Phi_{t_{0}}^{(1)}(p, q, s)_{q_{0}^{2}-\left(s-s_{0}\right)}=\frac{4}{\pi q} t_{t_{0}}^{(1)}\left(p, p_{0}, s-q_{0}^{2}\right) \delta\left(q^{2}-q_{0}^{2}\right), \tag{3.17}
\end{equation*}
$$

where p_{0} and q_{0} are the p and q of the initial state. Since $t_{l_{0}}{ }^{(1)}$ häs a pole at $s-q_{0}{ }^{2}=s_{0}, \Phi_{l_{0}}{ }^{(1)}(p, q, s)$
can be rewritten as

$$
\begin{equation*}
\Phi_{l_{0}}{ }^{(1)}(p, q, s)_{q_{0}^{2}-\left(s-s_{0}\right)}=\frac{4}{\pi q}\left[\delta\left(q^{2}-s+s_{0}\right) / \lambda_{n_{0} l_{0}}^{(1) \prime}\left(s_{0}\right)\left(s-q_{0}^{2}-s_{0}\right)\right] \phi_{n_{0} l_{0}}^{(1)}\left(p, s_{0}\right) \phi_{n_{0} l_{0}}^{(1)}\left(p_{0}, s_{0}\right), \tag{3,18}
\end{equation*}
$$

where λ^{\prime} is the derivative of λ with respect to s.
Now multiply both sides of Eq. (2.33) by $\left(s-q_{0}^{2}-s_{0}\right) / \phi_{n_{0}}^{(1)}\left(p_{0}, s_{0}\right)$ and then take the limit $q_{0}^{2} \rightarrow s-s_{0}$. It is easily seen that all the inhomogeneous terms vanish except for $\Phi_{l}{ }^{(1)}$ and that the wave function of the initial (2,3) bound state $\phi_{n_{0}} l_{0}^{(1)}\left(p_{0}, s_{0}\right)$ is factored out of the equation. Substitution of $\Phi_{l_{0}}{ }^{(1)}$ from Eq. (3.18) into Eq. (3.15) gives an^{0} explicit inhomogeneous term $\eta_{n l}{ }^{(i)}$. Equation (3.14) can now be solved by standard numerical methods. For s above the lowest branch point the kernel must be taken as the limit of s approaching the real axis from above. One can either use numerical methods for complex arithematics or the Fredholm reduction given by Noyes ${ }^{28}$ and by Kowalski. ${ }^{19}$

C. Spin and Identical Particles

So far, we have not considered spin in this formulation of the Faddeev equations. For nonrelativistic atomic problems, there is no spin-orbit coupling and the effect of the spin simply appears as a multiplicative factor in the kernel ${ }^{8}$:

$$
\begin{align*}
& x_{n l, n^{\prime} l^{\prime}\left(q, q_{j} ; s\right)-x_{n l S, n^{\prime} l^{\prime} S^{\prime}}^{(i, j)}\left(q, q_{j} ; s, s_{0}\right)=(-1)^{(i, j)} S_{i}+S_{j}+S_{k}+S_{0}}^{\left[(2 S+1)\left(2 S^{\prime}+1\right)\right]^{\frac{1}{2}}}\left\{\begin{array}{lll}
s_{j} & s_{k} & s \\
s_{i} & s_{0} & s^{\prime}
\end{array}\right\} \\
& \times x_{n l, n^{\prime} l^{\prime}}^{(i, j)}\left(q, q_{j}, s\right), \tag{3.19}
\end{align*}
$$

where S_{0} is the total spin of the three-particle system; S the spin of the pair $(j, k) ; S^{\prime}$ the spin of the pair (k, i); S_{i}, S_{j}, and S_{k} the spins of the individual particles; and $\}$ denotes the $6 j$ symbol. Of course, the T-matrix elements $\chi_{n l}{ }^{(i)}$ should now carry an additional spin index S denoting the spin of the pair (j, k).
As for identical particles, the statistics require that the two-body partial wave T matrix $t_{l}{ }^{(i)}\left(p, p^{\prime} ; E, S\right)$ be identically zero for certain l. In particular, for two spin- $\frac{1}{2}$ identical fermions, t is zero for even l if $S=1$ and for odd l if $S=0$. As long as all the two-body T-matrix elements satisfy the requirement of statistics, the solution of the Faddeev equations also satisfies the statistic. The number of equations is reduced because some of the kernels become equivalent.

IV. APPLICATION TO THE (e,H) SYSTEM

It is well-known that for the (e, H) system, there exists only one three-particle bound state corresponding to the ground ${ }^{2} S \mathrm{H}^{-}$state. All the other three-particle states are unstable. They correspond to the resonant states which may be generated in the laboratory in an electron-hydrogen (atom) scattering experiment. ${ }^{20,21}$ Theoretically it can be shown ${ }^{22,23}$ that associated with each excited two-particle threshold (corresponding to the excited states of H atom) there exist a number of resonances supported by a potential which asymptotically goes to zero primarily as $\boldsymbol{r}^{\mathbf{- 2}}$. Reasonably accurate determinations of the position and the width of a few of the lower members of the resonances have been recently carried out both theoretically ${ }^{24-29}$ and experimentally. ${ }^{21}$ For the bound H^{-}state on the other hand, an accurate value for the H^{-}detachment potential has been known for some time. A calculation of this singlet H^{-}state and the lowest members of the resonances in both the singlet and the triplet $J=0$ series would therefore provide some insight into the feasibility of the methed outlined in Sec. II.

A. The ${ }^{1} S \mathrm{H}^{-}$Bound State

Since the ${ }^{2} S \mathrm{H}^{-}$state has a zero total angular momentum (i. e. , $J=0$), Eq. (3.4) may be used for the calculation of this state. One can readily show for singlet spin multiplicity that the electron-proton interaction amplitudes for electrons 1 and 2 must satisfy the relation

$$
\begin{equation*}
\chi_{n l^{(1)}(q, s)=(-)^{l} \chi_{n l}^{(2)}(q, s), ~}^{\text {, }} \tag{4.1}
\end{equation*}
$$

and the electron-electron amplitude the relation

$$
\begin{equation*}
x_{n l}^{(s)}(q, s)=0 \text { for odd } l \text {. } \tag{4.2}
\end{equation*}
$$

Equation (4.2) is simply the statement of the Pauli principle which excludes the possibility for two electrons in the singlet spin state to have odd parity. Equation (4.1) allows for the reduction of the coupled equations [Eq. (3.14)] into a pair of coupled equations. The spin factor for the kernel is unity in this case.

We write Eq. (3.14) in the matrix notation

$$
\begin{gather*}
\qquad \chi(q, s)=\eta(q, s)+\int_{0}^{\infty} d q_{j}^{2} \underset{\sim}{\mathcal{K}}\left(q, q_{j} ; s\right) \underset{\sim}{\chi}\left(q_{j}, s\right), \tag{4.3}\\
\text { with } \underline{X}^{\dagger}(q, s)=\left[\chi_{0}^{(1)}(q, s), \chi_{0}^{(3)}(q, s), \chi_{1}^{(1)}(q, s), \chi_{1}^{(3)}(q, s), \chi_{2}^{(1)}(q, s), \chi_{2}^{(s)}(q, s), \ldots\right],
\end{gather*}
$$

where each element $\chi_{l}{ }^{(i)}(q, s)$ is a row with a dimension which equals the number of terms included in the off-shell two-particle amplitude $t_{l}{ }^{(i)}$ [see Eq. (3,5)]. Equation (4,3) may be solved for $\chi(s)$ by digitizing the continuous variables q and q_{j} and inverting the matrix $(I-\underline{K} \mathcal{C})$

$$
\begin{equation*}
\underline{x}(s)=[I-\underline{x}(s)]^{-1} \underline{\eta}(s) \tag{4.5}
\end{equation*}
$$

To calculate the bound H^{-}state, we need to determine the pole in the inverse operator $[I-\underset{\sim}{x}(s)]^{-1}$. The pole may be located by locating the energy s at which the determinant of the $I-\mathscr{K}(s)$ matrix is zero.

For Coulomb interactions, the matrix elements in $\$ \mathbb{C}$ may be obtained analytically since both the eigenfunctions $\phi_{n l}^{(i)}$ and eigenvalues $\lambda_{n} l^{(i)}$ of the homogeneous Lippmann-Schwinger equation [Eq. (3.2)] are known explicitly [see Eqs. (3.7) and (3.8)]. It can be shown that when these explicit expressions are utilized with the help of Eq. (3.10), all the integrals needed for the evaluation of the matrix element in f can be expressed in terms of the basic integrals

$$
\begin{equation*}
I_{n}\left(q, q_{i}, s\right) \equiv \int_{\left(\sqrt{2} q-q_{i}\right)^{2}}^{\left(\sqrt{2} q+q_{i}\right)^{2}} \frac{d p_{i}^{2}}{\left(p_{i}^{2}+q_{i}^{2}-s\right)^{n+1}} \tag{4,6}
\end{equation*}
$$

where we have made use of the large disparity between the electron and proton masses (i.e., m_{1} / m_{3} $=m_{2} / m_{3} \cong 0$). These integrals satisfy the recursion relation

$$
\begin{equation*}
I_{n+1}=[n /(n+1)]\left\{\left[(\xi+\zeta)^{n+1}-(\xi-\zeta)^{n+1}\right] /\left[(\xi+\zeta)^{n}-(\xi-\zeta)^{n}\right]\right\}\left[I_{n} /\left(\xi-\xi^{2}\right)\right], n \geq 1 \tag{4.7}
\end{equation*}
$$

with $\xi=\left(2 q^{2}+2 q_{i}^{2}-s\right), \quad \zeta=2 \sqrt{2} q q_{i}$,
where the recursion relation for the I's starts with

$$
\begin{equation*}
I_{1}=4 \sqrt{2} g q_{i} /\left[\left(2 q^{2}+2 q_{i}^{2}-s\right)^{2}-8 q^{2} q_{i}^{2}\right] \tag{4.9}
\end{equation*}
$$

As discussed before, the three-particle bound states can only occur below the branch point corresponding to the elastic threshold. In this energy region $s<-1 \mathrm{Ry}(-13.605 \mathrm{eV})$, the matrix ($I-\pi \mathcal{K}$) is pure real. After Eqs. (4.1) and (4.2) are utilized in Eqs. (4.3), the resultant matrix integral equations are then solved by matrix inversion [Eq. (4.5)]. By taking only the first term in the $t_{l}{ }^{(2)}$ expansions [Eq. (3.5)], we found that the H^{-}state appears at -1.0516 Ry below the three-particle breakup threshold. This corresponds to a detachment potential of $-0.0516 \mathrm{Ry}\left(\mathrm{i}, \mathrm{e}_{\mathrm{i}}, 0.702 \mathrm{eV}\right.$) for H^{-}in comparison with the accurate value of -0.0555 Ry of Peheris. ${ }^{30}$ The agreement is most remarkable in view of the fact that only a singie is term in the $t l^{(i)}$ expansion is used in the calculation. This then implies that all the remaining terms contribute less than 7%.

To demonstrate that all the remaining terms in the $t_{l}(i)$ expansion contribute less than 7% is, however, a somewhat difficult task. The expansion converges in an oscillatory manner and involves large cancellations. For example, the addition of the $2 s$ term pushes the H^{-}state up very close to the elastic threshold. The $2 s$ term effect is cancelled by the $3 s$ term. The net result due to the inclusion of the $2 s$ and $3 s$ terms is to move the H^{-}state down to $-1,061 \mathrm{Ry}$. On the other hand, the addition of $2 p$ and $3 p$ terms would lower further the H^{-}state to -1.064 Ry , and the addition of a $3 d$ and $4 s$ terms then pushes the H^{-} state up to - 1.063 Ry. It is clear from the numerical result that the oscillations become smaller for higher terms in the $t_{l}{ }^{(i)}$ expansion. However, our results seem to converge to a value lower than the accepted value. This is probably due to systematic errors in our numerical calculations. We will return to the convergence problem in Sec. V. Perhaps it is worthwhile to note that there is a substantial continuum component in each term of the $t_{l}{ }^{(i)}$ expansion because this is a Stermian function expansion, so that the symbols $1 s, 2 s, 2 p$, etc. should be interpreted accordingly.

Recently, a calculation of the H^{-}bound state has been carried out by Vesselova. ${ }^{31}$ In this calculation the two-body interaction amplitude between the electrons $t_{l}{ }^{(s)}$ was taken to be zero. As a test of our program we have considered the $t_{l}{ }^{(3)}=0$ case and obtained, as expected, an energy spectrum which is simply the superposition of two sets of hydrogenic levels.

B. The Resenant \boldsymbol{H}^{-}States

As the total energy s of the s, stem moves above the elastic threshold, we encounter the electron-hydrogen scattering problem. The corresponding matrix ($I-\underline{\mathcal{S}}$) now becomes complex and contains branch points arising from bound states of H atom. These branch points must be treated properly in solving Eq. (4.3) for resonant states and in calculating the complex poles in $(I-\underline{X})^{-1}$. As an example, we will determine the two lowest $J=0$ resonances with singlet and triplet spin states in the elastic region. We choose this example for simplicity since in the elastic energy region the branch point of concern is reduced to just the one associated with the ground hydrogen state.

For the calculation of the singlet $J=0$ resonances, one may again solve Eq. (4.3) numerically. Due to the presence of the branch points, it is difficult to maintain a desired accuracy by the standard numerical method of complex integration. However, the accuracy may be significantly improved by the Fredholm reduction method ${ }^{18,19}$ in which the branch points are removed from the matrix to be inverted. For the present problem, the only branch point of concern is that associated with the ground H state in $\chi_{0}{ }^{(1)}(q, s)$ [Eq. (4.4)]. We will now show how such a method may be adopted for the present problem.
Write for $\underline{\chi}(q, s)$ the expression

$$
\begin{equation*}
\underline{\chi}(q, s)=u(s)_{\underline{Y}}(q, s) \tag{4.10}
\end{equation*}
$$

where $u(s)=\chi\left(\sqrt{s_{0}}, s\right)$ and

$$
\begin{equation*}
\underline{r}^{\dagger}(s)=\left[r_{0}^{(1) \dagger}(q, s), r_{0}^{(3) \dagger}(q, s), r_{1}^{(1) \dagger}(q, s), r_{1}^{(3) \dagger}(q, s), r_{2}^{(1) \dagger}(q, s), r_{2}^{(3) \dagger}(q, s), \ldots\right] \tag{4.11}
\end{equation*}
$$

where $s_{0} \equiv s+1, u\left(s_{0}\right)$ is a scalar function, and the $\Gamma_{l^{(i)}}(q, s)^{\prime}$ s are columns with elements $r_{n l}{ }^{(i)}(q, s)$. For the purpose of calculating resonance poles, we may replace Eq. (4.3) by

$$
\begin{equation*}
u(s) \underline{Y}(q, s)=\underline{x}_{10}{ }^{(1)}\left(q, \sqrt{s_{0}}, s\right)+u(s) \int_{0}^{\infty} d q_{j}^{2} \underline{\mathcal{K}}\left(q, q_{j}, s\right) \underline{\Upsilon}\left(q_{j}, s\right) \tag{4.12}
\end{equation*}
$$

where we have replaced $\eta(q, s)$ [see Eq. (4.3)] by $\underline{x}_{10}{ }^{(1)}\left(q, s_{0} ; s\right)$ since poles in $\chi(s)$ are independent of the inhomogeneous term $\eta(q, s)\left[\right.$ see Eq. (4.5)]. The symbol $\mathcal{X C}_{10}{ }^{(1)}$ stands for $\mathcal{K}_{10}, n l^{(1, i)}$ where i, n, and l are the suppressed indices of T. This quantity ${ }_{10}{ }^{(1)}\left(q, \bar{s}_{0} ; s\right)$ in Eq. (4.12) is chosen to make the kernel of the integral equation for τ nonsingular at $q^{2}=s_{0}$. By definition of $u, \gamma_{10}{ }^{(1)}\left(\sqrt{s_{0}}, s\right)$ is normalized to unity. Solving Eq. (4.12) for $u(s)$ at $q^{2}=s_{0}$, we obtain

$$
\begin{equation*}
u(s)=x_{10,10}^{(1,1)}\left(\sqrt{s_{0}}, \sqrt{s_{0}} ; s\right) /\left(1-\sum_{\substack{j, n, l \\ n>l}} \int_{0}^{\infty} d q_{j}^{2} \kappa_{10, n l}^{(l, j)}\left(\sqrt{s}_{0}, q_{j} ; s\right) r_{n l}{ }^{(j)}\left(q_{j}, s\right)\right) \tag{4.13}
\end{equation*}
$$

Substitution of $u(s)$ from Eq. (4.13) back into Eq. (4.12) yields

$$
\begin{equation*}
\underline{r}(q, s)=\frac{\mathcal{K}_{10}^{(1)}\left(q, \sqrt{s}_{0}, s\right)}{x_{10,10}^{(2,1)}\left(\sqrt{s_{0}}, \sqrt{s_{0}} ; s\right)}+\int_{0}^{\infty} d q_{2}^{2}\left\{x\left(q, q_{j} ; s\right)-\frac{\mathcal{K}_{20}^{(1)}\left(q_{2} \sqrt{s_{0}} ; s\right)}{x_{10,10}^{(1,1)}\left(\sqrt{s_{0}}, \sqrt{s_{0}} ; s\right)} \mathfrak{x}_{20}^{(1) \dagger}\left(\sqrt[s]{s}_{0}, q_{j} ; s\right)\right\} \underline{T}\left(q_{j}, s\right) . \tag{4.14}
\end{equation*}
$$

Now, the kernel does not have a pole at $q_{j}{ }^{2}=s_{0}$, and Eq. (4.14) contains no branch point for $s<-0.25 \mathrm{Ry}$. It may be solved in a straightforward manner for $\tau(q, s)$. Having obtained $\tau(q, s), u(s)$ can be calculated by evaluating the principal part integral in Eq. (4.13), and the poles of $u(s)$ are then poles of x.
Unlike the case for the bound state, retaining only the $1 s$ term in the $t_{l}{ }^{(i)}$ expansion [Eq. (3.5)] fails to give any resonance. A resonance pole is found when either the $2 s$ or the $2 p$ term is included in the $t_{l}{ }^{(i)}$ expansion. This is expected since the H^{-}resonances are closed-channel resonances ${ }^{22}$ lying very close to the excitation threshold. The positions of the pole obtained in the $1 s-2 s$ and $1 s-2 p$ expansions are at -0.286 and -0.291 Ry below the three-particle breakup threshold, respectively. The position of the lowest H^{-}resonance in the $J=0$ singlet series has been found to be at -0.2973 Ry both experimentally ${ }^{21}$ and theoretically. ${ }^{22-29}$ This seems to indicate that neither the $2 s$ nor the $2 p$ term alone is sufficiently attractive to lower the pole to -0.2973 Ry . From these results one may also çonclude that the $2 p$ term is more attractive than the $2 s$ term.
The combined effect of the $2 s$ and $2 p$ terms, on the other hand, is much too attractive. The pole is lowered in the $1 s-2 s-2 p$ approximation to $-0,326 \mathrm{Ry}$. It requires the $3 s$ term to push the pole up to -0.3004 Ry . The addition of the $3 p$ and $3 d$ terms move the pole further up to -0.298 Ry , which is closer to the value of $\mathbf{- 0 , 2 9 7 3}$. Ry calculated in the closed-coupling approximation with correlated wave functions. Though there is a definite indication of convergence towards the value of -0.2973 Ry , the convergence is again oscillatory and not rapid. It is perhaps worthwhile to emphasize that the present calculation is term-by-term exact. No variational or stationary parameters were used in the calculation.
The calculated width for the lowest $J=0$ singlet resonance in the $1 s-2 s-2 p-3 s$ approximation is 0.0025 Ry (0.034 eV) which is in reasonable agreement with previous calculations. $24,25,20,20$ The measured width for this resonance is $0,043 \mathrm{eV},{ }^{1}$ In Fig. 4 the profile of the elastic scattering cross section in the neigh-

FIG. 4 Energy dependence of the singlet $J=0$ elastic scattering cross section in the neighborhood of the resonance in the $1 s-2 s-2 p-3 s$ approximation.

borhood of the $J=0$ singlet resonance is given. It is seen that the interference between direct and resonance scattering is important. Due to the absence of other channels, the cross section actually dips through zero at $s=-0.2997$ Ry.
For the triplet case, the electron-proton interaction amplitudes for electrons 1 and 2 must satisfy, instead of Eq. (4.1), the relation

$$
\begin{equation*}
x_{n l}^{(1)}(q, s)=(-)^{l+1} x_{n l}^{(2)}(q, s) \tag{4.15}
\end{equation*}
$$

and the electron-electron interaction must satisfy, instead of Eq. (4.2), the relation

$$
\begin{equation*}
x_{n l}^{(s)}(q, s)=0, \text { for even } l \tag{4.16}
\end{equation*}
$$

Equation (4.16) is again the statement of the Pauli principle which excludes the possibility for two electrons in the triplet spin state to have even parity. Equation (4.15) allows for the reduction of Eq. (3.14) into a different pair of coupled equations for the tr:iplet case. The spin factor for the kernel is again unity.

The behavior of the solution for the triplet case is similar in nature to the singlet case. We obtain in the $1 s-2 s-2 \dot{p}-3 s-3 p$ approximation a resonance pole at -0.257 Ry below the three-particle breakup threshold with a width of $\sim 2 \times 10^{-5}$ Ry ($2.72 \times 10^{-4} \mathrm{eV}$) which are in reasonable agreement with the previously calculated values. ${ }^{25,29}$

v. CONCLUDING REMARKS

The method presented in Sec. III provides a practical way of solving the Faddeev equation for Coulomb potentials below three-particle breakup threshold. It is seen, from the example in Sec. IV, that by retaining only a few leading terms in the series a reasonably accurate value is obtained. The interesting problem is then to investigate the convergence of the remaining terms in the series. This is, however, a somewhat difficult task, since, as was pointed out in Sec. IV, the expansion converges in an oscillatory manner and involves large cancellations. The net sum of all the terms, considered as a whole, constitutes, nevertheless, a small correction. It is then feasible that a perturbation scheme in which the sum of the contribution of the remaining terms is treated as a perturbation may be developed. In this concluding section, we outline such a perturbative scheme.
Let us consider the problem of determining the poles in the inverse operator in Eq. (4.5) by examining the energy dependence of the determinant Det $\{I-\mathscr{C}(s)\}$. We can partition the matrix as

$$
\begin{equation*}
I-\underline{\widetilde{C}}(s)=\underline{B}+\underline{\mathcal{E}}=\underline{B}\left\{I+\underline{B}^{-1} \underline{\mathcal{E}}\right\}, \tag{5.1}
\end{equation*}
$$

where B is a square matrix consisting of elements obtained in a truncated expansion including the leading terms in the series $: \operatorname{di} \mathcal{E}$ is the remainder, Utilizing the relation between the determinant and the trace of the logarithm of the corresponding matrix,

$$
\begin{equation*}
\operatorname{Det} \underline{A}=\exp \{\operatorname{Tr}(\ln \underline{A})\}, \tag{5,2}
\end{equation*}
$$

we have

$$
\begin{equation*}
\operatorname{Det}\{I-\underline{S}(s)\}=\operatorname{Det} \underline{B} \exp \left\{\operatorname{Tr}\left[\ln \left(1+\underline{B}^{-1} \underline{\delta}\right)\right]\right\}=\operatorname{Det} \underline{B}\left\{1+\operatorname{Tr} \underline{B}^{-1} \underline{\delta}-\frac{1}{2} \operatorname{Tr}\left(\underline{B}^{-1} \underline{\delta} \underline{B}^{-1} \underline{\delta}\right)+\cdots\right\} \tag{5.3}
\end{equation*}
$$

Defining $C=B^{-1}$, we have

$$
\begin{align*}
& \operatorname{Det}\{I-\underset{\sim}{ }(s)\}=\operatorname{Det} B\left[1+\sum_{\alpha=m+1}^{n} \epsilon_{\alpha \alpha}-\sum_{\alpha=1}^{m} \sum_{\beta=1}^{m} \sum_{\gamma=m+1}^{n} c_{\alpha \beta} \epsilon_{\beta \gamma} \epsilon_{\gamma \alpha}-\frac{1}{2} \sum_{\alpha=m+1}^{n} \sum_{\lambda=m+1}^{n} \epsilon_{\lambda \alpha} \epsilon_{\alpha \lambda}\right. \\
&\left.+\frac{1}{2}\left(\sum_{\alpha=m+1}^{n} \epsilon_{\alpha \alpha}\right)^{2}+\cdots\right], \tag{5.4}
\end{align*}
$$

where $\epsilon_{i j}$ and $c_{i j}$ are the elements of matrices \mathcal{E} and \underline{C} respectively, n is the order of the matrix while m is the order of the submatrix corresponding to the truncated expansion. This then provides a systematic way of investigating the convergence problem.
-This rescarch was supported in part by the Advanced Research Projects Agency (Project DEFENDER) and was monitored by the U.S. Army Research Office Durham under Contract DA-31-124-ARO-D-257, .by the U.S. Atomic Energy Commission, and Dy NASA under contract NAS 5-9321 through Gulf General Atomic Inc.

[^7]Proceedings of the Fifth International Conference on the Physics of Electronic and Atomic Collisions (Nauka, Leningrad, 1967), p. 20.
${ }^{15}$ The same results for the partial wave reduction are also obtained by T. Osborn and H. P. Noyes, phys. Rev. Letters 17, 215 (1966).
${ }^{16}$ H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Academic Press Inc., New York, 1957).

- ${ }^{17}$ Bateman Manuscript Project - Higher Transcendental

Functions edited by A. Erdelyi et al.; (McGraw-Hill
Book Co., Inc., New York, 1953), Vol. I, p. 175.
${ }^{18}$ H. P. Noyes, Phys. Rev. Letters 15, 538 (1965).
${ }^{18}$ K. L. Kowalski, Phys. Rev. Letters 15,798 (1965).
${ }^{20}$ G. J. Schulz, Phys. Rev. Letters 13, 583 (1964); H. Kleinpopen and V. Raihle, Phys. Rev. Letters 18 , 24 (1965); J. W. McGowan, E. M. Clarke, and E. K. Curley, Phys. Rev. Letters 15, 917 (1965); 17, 66 (1966).
${ }^{21}$ J. W. McGowan, Phys, Rev, 156, 165 (1967).
${ }^{22}$ M. Gailitis and R. Damburg, Proc. Phys. Soc.
(London) 82, 192 (1963).
${ }^{23}$ p. G. Burke, Advan. Phys. 14, 521 (1965); M. H. Mittleman, Phys. Rev. 147, 73 (1966).
${ }^{24}$ P. G. Burke and H. M. Schey, Phys. Rev. 126, 149 (1962).
${ }^{25}$ P. G. Burke and A. J. Taylor, Proc. Phys. Soc. (London) 88, 549 (1966).
${ }^{26}$ T. F. \bar{O}^{\prime} Malley and S. Geltman, Phys, Rev. 137, A1344 (1965); A. K. Bhatia, A. Temkin, and J. F. Perkins, Phys. Rev. 153, 177 (1967).
${ }^{27}$ E. Høloien and J. Midtdal, J. Chem. Phys. 45, 2209 (1966).
${ }^{28}$ J. C. Y. Chen, Phys, Rev. 156, 150 (1967).
${ }^{29}$ J. C. Y. Chen and M. Rotenberg, Plys. Rev. 166 , 7 (1968).
${ }^{30}$ C. L. Pekerie, Phys. Rev. 112, 1649 (1958) ; 115, 1216 (1959).
${ }^{31}$ A. M. Veselova, Phys. Letters 11, 594 (1967).

H(2p) EXCITATION RESONANCES IN ($e-H$) SYSTEM NEAR THRESHOLD*

J. F. Williame \dagger and J. William McGowan
Gulf General Atomic Incorporated, John Jay Hopkins Laboratory for Pure and Applied Science, San Diego, California
(Recelved 5 August 1968)

High-resolution electron-impact measurements reveal that just above the threshold for excitation of the $2 p$ level of atomic hydrogen there is a complicated resonance structure, part of which had not previously been predicted or observed.

In this note we discuss our recent measurements of the resonance structure found in the total cross section for the production of Lyman- α from the reaction

$$
e+H(1 s)=e+{ }^{H(2 p)}
$$

The observed structure is associated with the temporary formation of one or more H^{-}compound states in the ($2 s)^{2},(2 p)^{2}$, or ($2 s, 2 p$) doubly excited configurations. These "potential" resonances are of the same configurations as the resonances previously studied in the elastic channel below the first inelastic threshold. ${ }^{1}$
It has previously been observed, both theoretically ${ }^{\mathbf{2 - 4}}$ and experimentally, ${ }^{5}$ that the excitation cross section does not follow what is normally considered Wigner's law. The most recent calcualtions have demonstrated that near threshold there is at least one resonance. However, a major point of this report will be to show that the resonance structure in the threshold region is more complicated than has been suggested thus far by theory. In the paper which follows, a par-
tial explanation of this observation is given by Marriott and Rotenberg. ${ }^{\text {© }}$ In a subsequent experimental paper, the details of our experimental technique, our total cross-section measurements, and cur measurements of the resonances below and above the $n=3$ level will be discussed.

A modulated rectangular beam of \mathbf{H} atoms (more than 85% pure) is crossed with a rectangular beam of electrons with an energy distribution (the width of the Gaussian energy distribution at half-maximum) of 0.07 eV . Electrons from a 127° electron-energy selector enter a magneticand electric-field free region, cross the modulated H -atom beam from below, and then pass into a collector in which a crossed electric field can be applied to collect all the electrons in the beam. When this field is removed the electrons pass through the collector region into a second, rotatable, electrostatic energy analyzer which measures the energy and angular distribution of the electrons. Photons from the interaction of the electron and hydrogen atoms are detected at an angle of 54.5° with respect to the direction of the electrous. At this angle the observed signal
is proportional to the total $2 p$-excitation cross section. ${ }^{7}$

Ions from the interaction region are accelerated along the atomic-beam axis into a Paul mass filter. As in previous experiments ${ }^{1,8}$ the linear extrapolation of the ionization efficiency curve to its energy axis is used as a calibration reference point for the electron energy scale. As has already been shown, this point is approximately 0.03 eV above the real ionization threshold. ${ }^{\text {b }}$

For each experimental run, data were collected automatically over a period which often exceeded 100 h . The instrument was programmed to step through a prescribed energy interval which in this experiment is usually 0.90 eV taken in 0.015 eV steps. The residence time for each energy stej, was normally 60 sec . The data were collected digitally, i.e., for each energy interval, the signal plus background, the background, and the electron current were recorded on punched tape to be processed later by the computer. Every 12 to 15 h the process was interrupted and an ionization efficiency curve for the collision

$$
\mathbf{H}(1 s)+e=\mathbf{H}^{+}+2 e
$$

was taken to make sure that the electron energy scale for excitation remained constant. Through all of our experiments the ionization reference point remained constant to within $\pm 0.015 \mathrm{eV}$.

Because particular attention was to be focused upon the details of the structure which appeared in our excitation curves, it was necessary to make certain that none of the structure observed was due to radiation from the collisions of the electrons with H_{3} molecules residual in our H atom beam or with H_{2} which formed part of the background gas. It has already been recognized ${ }^{7}$ that the oxygen gas filter which is normally placed in front of the Lyman- α detector, although transparent to Lyman- α, also passes some molecular radiation. However, it has now been verified by our experiments that the electron energy threshold for production of this molecular radiation is in the vicinity of 11.3 eV , well above the range of interest for this report. Consequently, such radiation cannot have affected our results.

In Fig. 1(a), we give a comparison of our data with the earlier low-resolution experimental results of Chamberlain, Smith, and Heddle ${ }^{5}$ and with two calculations on this system, both by Taylor and Burke. In Fig. 1(b), the results of Taylor and Burke are shown as modified by folding into their correlation calculation our experimental electron energy distribution. The experi-

FIG, 1. (a) Our data for the excitation of $\mathrm{H}(2 p)$ (this work), together with earlier measurements by Chamberlain, Smith, and Heddle (CSH) of the Lyman- α excitation cross section (for radiation observed at 90° to the direction of the bombarding electrons). Also shown are two theoretical calculations: the three-stage closecoupling calculations of Taylor and Burke [TB (3 state)] and the three-state-plus-correlation calculation of Taylor and Burke [TB (correlation)]. (b) Comparison of our data with the calculated cross section of Taylor and Burke into which has been iolded our experimental energy distribution 0.07 eV .
mental data reported here have been normalized to the Born approximation at high energies by a procedure to be discussed in detail in a later paper. ${ }^{\circ}$ The results of Chamberlain, Smith, and Heddle are also normalized to theory near threshold in the manner given by Burke, Taylor, and Ormonde.

The sharp rise in the excitation cross section at threshold has been predicted by Damburg and Gailitis ${ }^{2}$ from a close-coupling approximation calculation which includes the lowest three states of the H atom, $i, e .$, the $1 s, 2 s$, and $2 p$ states. Subsequent three-state close-coupling calcuiations by Taylor and Burke, ${ }^{3}$ shown as TB (3state) in Fig. 1(a), have used a finer energy grid to show that within 0.03 eV of the threshold, there is a siuarp resonance in the ${ }^{1} P$ channel of
the temporary H^{-}doubly excited compound state. A modified calculation, in which the interaction potential contains an additional term to describe the electron-electron interaction (correlation), shown as TB (correlation) in Fig. 1(a), lowers the total cross-section value, shifts the position of the resonance closer to threshold, and considerably reduces its width.
The results of Chamberlain, Smith, and Heddle using an electron beam with a resolution of 0.35 eV , and observing Lyman- α emitted at 90° to the direction of the electron beam, show that the cross section near threshold is finite as predicted. By assuming various shapes for the excitation cross section into which they folded their knnwn electron-energy distribution, they were able to suggest that the cross section near throshold contained a peak. Subsequently, Burke, Taylor, and Ormonde ${ }^{4}$ theoretically identified this peak and showed that their calculations were consistent with the measurements. With our measurements, which have been made with an eler:-tron-energy resolution of 0.07 eV , the predicted sharp onset at threshold and the ${ }^{2} P$ potential resonance near threshold are clearly defined. Now, however, our data reveal the presence of second and third maxima which have not previously been reported. This second maximum is statistically real, its height being approximately twice the rms error, while the third maximum is not yet statistically sound although its presence has been observed in all our data.
In Fig. 1(b) we show our data in comparison with the three-state close-coupling-plus-correlation calculation of Taylor and Burke ${ }^{3}$ into which we have folded our electron energy distribution. The agreement at threshold and over the first peak is good, thus giving credence to the calculated position of the resonance at 10.214 eV ; however, the discrepancy in widths is large enough so that we suggest that the width of their resonance should be slightly in excess of the suggested $0.015 \mathrm{eV} .{ }^{10}$

What is the second peak which appears in our data? One possible explanation is that there is more than one potential resonance in the ${ }^{2} P$ channel. Another possible explanation, which is discussed in the following paper by Marriott and Rotenberg, ${ }^{6}$ is that the second peak is part of the first resonance and is not really a separate resonance at all.

One possible explanation for the conjectured third peak is that it, too, is part of a series of potential resonances. Another, and perhaps a more reasonable explanation, is that this is structure which appears in some channel other than the ${ }^{1 P} P$.

It is with pleasure that we acknowledge the help of Professor E. M. Clarke who participated in the early stages of this work and of E. K. Curley who has continuously assisted our program.

[^8]
[^0]: ${ }^{*} \Sigma$ is defined as the summing of each respective channel number over all cycles.

[^1]: 116. IF(JSAVE.EQ.1) 60 TO 140 ...
[^2]:
 eno of listing. o odiagnestic* messagels: .

[^3]: *Work supported by the National Aeronautics and Space Administration, Goddard Space Flight Center, Contract NAS 5-11025.
 \dagger On leave from University College London, London, England.

[^4]: *Work supported by the National Aeronautics and Space Administration, Goddard Space Flight Center, Contract NAS-5-11025.

 1. P. G. Burke, S. Ormonde, and W. Whitaker, Phys. Rev. Letters 17, 800 (1966).
[^5]: Work supported by the National Aeronautics and Space Administration, Goddard Space Flight Center, Contract NAS-5-11025.

[^6]: *Work supported by the National Aeronautics and Space Administration, Contract NAS 5-11025, and by Gulf General Atomic Incorporated private research funds.

[^7]: \dagger Alfred P. Sloan Fellow.
 ${ }^{1}$ L. D,Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960) |English transl.: Soviet Phys, -JETP 12, 1014 (1961)]; Dokl. Akad, Nauk SSSR 138, 565 (1961)
 [English transl.; Soviet Phys. -Doklady 6, 384 (1961)];
 Dokl. Akad. Nauk SSSR 14S, 301 (1962) TEnglish transl.:
 Soviet Phys, -Doklady 7, 600 (1963)].
 ${ }^{2}$ L. D. Faddeev, Mathematical Problems of the Quantum Theory of Scattering for a Threc-Particle System (Steklov Mathematical Institute, Leningrad, 1965), No. 69. [English transl.: H. M. Stationary iffice (Harwell, 1964)].
 ${ }^{3}$ C. Lovelace, Phys. Rev. 135, B1225 (1964).
 ${ }^{4}$ R. L. Omnes, Phys. Rev. 134, B1358 (1964) ;
 R. L. Omnes and V. A. Alessandrini, Phys. Rev. 136,

 B1137 (1964) ; V. A. Alessandrini and R. L. Omnes,
 Phys. Rev. 137, B681 (1965); 139, B167 (1965).
 ${ }^{5}$ R. Aaron, R. D. Amado and Y. Y. Yam, Phys. Rev. 140, B1291 (1965).
 ${ }^{6}$ M. Bander, Phys. Rev. 138, B322 (1965).
 ${ }^{7}$ J. L. Basdevant, Phys. Rev: 138, B892 (1965).
 ${ }^{8}$ A. Ahmadzadeh and J. A. Tjon, Phys. Rev. 139, B1085 (1965).
 ${ }^{9}$ R. E. Kreps and P. Nath, Phys, Rev. 152, 1475 (1966).
 ${ }^{10}$ D. Y. Wong and G. Zambetti, Phys. Rev. 154, 1050 (1967).
 ${ }^{11}$ T. A. Osborn, private communication.
 ${ }^{12} \mathrm{~J}$, S. Ball and D. Y, Wong, to be published.
 ${ }^{13}$ J. R. Fulco and D. Y. Wong, to be published.
 ${ }^{14}$ J. S. Ball, J. C. Y. Chen, and D. Y. Wong, in

[^8]: *Work supported in part by the National Aeronautics and Space Administration under Contract No, NAS511025 and in part by Gulf General Atomic Private Research Funds.
 \dagger Gulf General Atomic Associate Scientist.
 ${ }^{1}$ J. Wm. McGowan, E. M. Clarke, and E. K. Curley, Phys, Rev. Letters 15, 917 (1965), and 17, 66(E) (1966); J. Wm. McGowan, Phys, Rev. 156, 165 (1967).
 ${ }^{2}$ R. Damburg and M. K. Gailitis, Froc. Phys. Soc. (London) 82, 1068 (1963).
 ${ }^{3}$ A. J. Taylor and P. G. Burke, Proc. Phys, Soc. (London) 92, 336 (1967).
 ${ }^{4}$ P. G, Burke, , J. Taylor, and S. Ormonde, Proc. Phys. Soc. (London) 92, 345 (1967).
 ${ }^{5}$ G. Chamberlain, S. Smith, and D. W. D. Heddle, Phys. Rev, Lctters 12, 647 (1964).
 ${ }^{6}$ R. Marriott and \bar{M}. Rotenberg, following Letter (Phys, Rev. Letters 12, 722 (1968).
 ${ }^{7}$ W. L. Fite and R. T. Brackmann, Phys. Rev, 112, 1151 (1958).
 ${ }^{8}$ J. Wm. McGowan and E. M. Clarke, Phys. Rev. 167 , 43 (1968).
 ${ }^{9}$ J. Wm. McGowan, J. F. Williams, and E. K. Curley, to be published.
 ${ }^{\text {to }}$ J. Macek and P, G. Burke, Proc. Phys. Soc, (London) 92, 351 (1967).

