
STRUCTURE THEORY FOR THE REALIZATION OF' FINITE STATE AUTOMATA

NASA GRANT N

C . L . Coates

Final Repor t

N o v e m b e r 1 , 1 9 6 6 - October 3 1 , 1 9 6 8

ELECTRONICS RESEARCH CENTER

THE UNIVERSITY OF TEXAS AT AUSTIN

AUSTIN, TEXAS 78712

https://ntrs.nasa.gov/search.jsp?R=19690007592 2020-03-12T07:23:54+00:00Z

FINAL REPORT

STRUCTURE THEORY FOR THE REALIZATION OF FINITE STATE AUTOMATA
NASA Grant NGR-4 4-0 12 -04 9

November 1 1966 - October 3 1 1968

I. SUMMARY

The results of the investigations that received support from this grant

are described in research papers that have been prepared for publication. Copies

of these papers constitute Section 11 of this report and represent the technical

description of the results of the research. Each paper is l isted below and

summarized in regard t o technical content.

1 . C . Harlow and C . L. Coates "Feedback in Sequential Machine Realiza-

t ions, I' Submitted for publication to the IEEE Transactions on Computers.

A condensed version appears i n the Proceedings of the Second Annual

Princeton Conference, Princeton University 1968 pp. 96-98 under the

title "On Feedback and Memory Elements.

Summary. This investigation considered the effect the fnemory element

has on the feedback in a Sequential Machine. Three different memory

elements are studied - the unit delay, trigger flip-flop and set-reset flip-

flop. Methods are given for determining when a sequential machine can

be realized using trigger or set-reset flip-flop memory elements, such

that the amount of feedback in the machine is given by a function f . In

addition, it is shown that i f a machine can be realized with unit delay

memory elements with feedback -function f then the machine can be realized

with set-reset flip-flop memory elements where f is the feedback in the

1

2

machine. Also i t is shown that i f a sequential machine can be realized

without feedback using trigger flip-flop memory elements then i t cannot

be realized without feedback using unit delay memory elements. The

converse statement is also true. The above results imply that the

feedback in a sequential machine depends on the memory element used

to realize the machine.

2. C. Harlow and C. L. Coates, "Inessential Errors in Sequential Machines, I'

Submitted to the IEEE Transac'tions on Computers. Condensed version

appears in the Proceedings of the Hawaii International Conference on

Systems Sciences, University of Hawaii, 1968, pp. 616-618.

Summary.

Hartmanis and Stearns a s temporary and permanent. A subclass of the

permanent errors is called inessential and is defined a s follows:

State errors in sequential machines have been classified by

A t some t i m e the machine is supposed to enter state a but enters

state b instead due to a temporary malfunction. After this the s ta te behavior

of the machine is error free. The error is inessential if any infinite input

sequence yields only a finite number of outputs that are different from

those that would have occurred had the state error not taken place.

a b State errors a s described above are denoted by state partitions T

It has been a b * where a and b are the only two states in the s a m e block of T

shown by Hartmanis and Stearns that for a Moore machine the state partition

% = 1 { T ~ ~ 1~~~ is a n inessential error] has the substitution property and
. . (.

3

that every T~~ is a n inessential error i f and only if T

a l s o shown that state partition pairs do not characterize inessential errors.

c ne. They have ab -

The partition 5 is of interest since it contains all s ta te errors that

cause only a finite number of faulty outputs. The definition given above

however, does not constitute a n effective way to compute l7

presents several results concerning n
computation. An algorithm for determining is stated and illustrated by

means of a n example.

This paper E '

which imply a method for i t s E

!E

3 . F. 0. Hadlock and C . L. Coates, "Realization of Sequential Machines

with Threshold 'Elements, 'I accepted for publication IEEE Transactions on

Electronic Computers, 1969.

Summary. This paper presents a n algorithm which, given a synchronous

sequential machine with completely specified state and output tables, yields

all code assignments for which the state variable and output variable func-

tions are 2-assumable .. Since the condition of 2-assumability is necessaky

and sufficient for linearly separability for completely specified functions of

fewer than eight variables, the algorithm yields all code assignments for

which the corresponding threshold gate realizations are one-level. For

other functions 2-assumability is a necessary condition. In these cases

the se t of code assignments, i f any, that yield one-level threshold gate

realizations are contained in the set provided by the algorithm.

A. B. Howe and C. L. Coates , "Hazards in Threshold Networks," IEEE 4 .

Transactions on Computers, vol. C-17, March 1968, pp. 233-251.

4

Summary.

threshold gate networks. Eichelberger has proved that logic hazards are

not present in a sum-of-product (product-of- sum) realization which realizes

This paper is concerned with the study of logic hazards in

a l l of the l (0) prime implicants of the given Boolean function. Logic

ga tes of the AND or NOR (OR or NAND) variety realize single l (0) prime

implicants; therefore, a gate is required for each l (0) prime implicant to

be realized, and the problem of eliminating logic hazards is straightforward.

A single-thre shold gate, however, realizes a number of prime impli-

cants . Moreover, the number of prime implicants realized by a network

that incorporates more than a single-threshold gate is not uniquely determined

either by the Boolean function being realized or by the number of gates

involved. A s a result , it is often possible to control the prime implicants

and hence the hazards without greatly increasing the number of gates

required. In fac t , in some cases no additional ga tes are required.

Three methods are presented for determining if a given threshold

realization contains any logic hazards, the first of which is an extension

of McCluskey ' s work. Two methods are then presented for synthesizing

logic hazard-free threshold realizations. The first method is based on the

tree method of synthesizing threshold gate networks, whereas the second

method is based on expressing the given Boolean function as a sum of

threshold functions.

11. TECHNICAL RESULTS

FEEDBACK IN SEQUENTIAL MACHINE REALIZATIONS

INTRODUCTION

In this paper we shall study feedback in sequential machines that

are realized with either trigger or set-reset flip-flop memory elements.

Previous studies (Reference 3) of feedback have tacitly assumed that the

memory elements were unit delays. The results in this paper show that

the different memory elements affect the feedback in the machine.

Before we proceed we need to state the following preliminary

d concepts,

Definition 1. A sequential machine is a five tuple

M = ((S L { X ~ , { O] ~ ~ ~ ~) . Where

1.

2.

3 .

4.

{SI is a finite set called the states of M.

{x] is a finite set called the inputs to M.

01 is a finite set called the outputs of M.

6 is a function with the domain of 6 a subset of C s] x {x]

and range a subset of { s’) . That is, 6 : { S I X {x] -+ { S J .
5. h is a function with domain a subset of { s j x {x] and

range 10’). Thus k:{s]x{xj -+ io’) .

5

6
I

P
1 0

2 0

2 1

1 1 + -

For our purposes h and { O] are not important and we suppose

the inputs to be n-tuples of { O , 13. Frequently, we d iscuss partitions

on the states of a machine M. These partitions will be denoted by

Greek letters. A definition and a n example of this concept follows.

Definition 2 . A partition p on a set { s] is a collection of sub-

sets of { s] such that

1. U A =
A€ P

2 . If A and B are in p , then AnB = 9 .

Example. If { s] = [1 , 2 , 3,4 ,5] , then a partition p is given by

p = ~ [1 1 2] 1 { 3 , 4] , { 5]] . It i3 more convenient, however, to use the

notation p = (1 , 2;3,4;5) a The subsets of p are often called blocks of
-

p . For example, 1 I 2 is a block of p When we d iscuss partitions we

L frequently need to d iscuss their blocks. If p is a partition on a set {SI
and i f as { s] , then p [a] will denote the block of p which contains a . In

the above example p [31 = 3,4 .
-

A trigger flip-flop is the two state sequential machine specified

in Figure 1. A particular input to a trigger flip-flop will be denoted by T.

s T 6 (s , T) h (s , T)
1 0

1 1

2 0

2 1

{ s] = { l , 2] states

{x] = { O , l] inputs

EO] = {O, l] output

Figure 1

7

If we are discussing more than one trigger flip-flop, we will index them

with integers and refer to the ith flip-flop with inpyt T. where i is a n

integer.

1

A set-reset flip-flop is the two state machine specified in Figure

2. A set-reset flip-flop has 2 inputs. A particular input will be denoted

by (S ,R) where S is called the set input and R is called the reset input.

Again if we are discussing more than one set-reset flip-flop, we shall

index them with integers and refer to the i

S, where i is a n integer.

th flip-flop with inputs R. and
1

1

s s k
1 0 0

1 0 1

1 1 0

2 0 0

2 0 1

2 1 0

6 (s , S, R) h (s , S , R)

Figure 2

In order to realize a machine M, it is necessary to code the

states of M into n tuples of { O , 11. The coding function will be called

h and h:{s] 3 { O , 13 is a 1-1 function. The ith projection of h will be n

y d
called h.; that is, for every state h.(s) = y. where h(s) = (y 1' * . . I Y i l ... I

1 1 1

and y. is in {O, 13. It should be noted that our concept of a realization

and that of Reference 3 are not the same in that we do not expand the

1

machine.

8
n

We are often interested in subspaces of { O , l] . To be specific,

5 let n = 5. (y l , . . . , y) = (O , l , O , 1,1) is in { O , I] . We want a general

y), say coordinates 3 way to refer t o specific coordinates of (y

2 and 5 where (y , y) = (0 , l) a n element of EO, 13 , We will use the

following formalism t o do th i s ,

where j i s t h e n u m b e r o f e l e m e n t s i n A . I f y = (y l , . . . , y) s[O,l] , we

denote by y the j tuple (y , . . . , yi ,) s t 0,1] where il < i2 < e .<i, and

i , i , . . . , i. are all i n A . In the above example A = {3,5] I EO, 13 =io, l]

and when y = (y l , . . . , y) = (0 , 1 , 0 , 1 , 11, then yA = (0 , l) c ~ O , 15 .

n

1'"' n

3 5
A j If A 5 {l, . . , n], we let { O , 11 be {O, l]

n
n

A
A il 1 I

A 2
1 2 I

A
n

n If we are given a coding function h: { s] + { 0,1] for a machine

M, we can associate the following partitions with it. For every

i c { 1 I . . . , n] we define the partition p by p .[a] = p , [b] iff hi(a) = hi(b).

We call p , the partition associated with h. . Conversely, given a two

i 1 1

1 1

' block partition p . on a machine M we can define a function h. on { s]
1 1

such that h.(a) = 1 if a is in block 1 of p . and h.(a) = 0 if a is in block

2 of p This h . will be called the function associated with p

1 1 1

If there
i' 1 i'

n
11

are n such p then h(a) = (hl(a) , . . . , h (a)) is 1-1 if II p . = ,d the zero
i' n 1 1

partition. Often we are given A - < {l , . . . , n] and we want t o d iscuss

hA(a) for a e { s] . It should be noted that if T = II p , then T [a] = T [b]

implies that h (b) = h (a).
A 1

A A
n

If we code a machine by h into {O, 13 , then h need not be onto.

We denote by Y. a function such that Y.:{O, ljnx{x] 3 {O, 1) a,nd

Yi(h(a),x) = hi(6(a,x)) for every a ~ { s] and xc{x] Thus, Y. is a n ex-

tension of the ith next s ta te function to all of {0,1] n.

1 1

1

9

A problem in many of our results is filling in the "don' t care"

t e r m s properly. In the results pertaining to unit delay realizations this

is fairly easy. But when one considers flip-flop realizations, the

situation is more complicated. This is the reason for much of the com-

plexity in some of our proofs relating to reduced dependence. With this

i n mind we state some results given in Reference 3.

Definition 3 . L e t M = ({ s] , 1x3 , {O] , 6 , 1) be a sequential

machine. L e t 7 and p be s ta te partitions and let f:{s]x {x] 3 D be

some function where D is a set. We say ~ ' ' p f ' l p iff for every two states

a b such that T [a] = T [b] and for every input x such that 6 (a, x) and

6 (b, x) are specified and f(a x) = f(b, x) then p [6(a, x)] = p h (b , x)].

The next theorem relates the relation pf to unit delay realizations.

' Result 1 (Theorem),

n
Let M be a machine coded by h into {0 , 13 . Also, let 7 = ll p

A i
wheref l< { l ,...,n] a n d l e t p = p w h e r e g s t l , ..., n]. Then7"pf"p

g

iff Y (h(a),x) = F (h (a), f(a,x),x) when 6(a,x) is specified.

-

g g n

Proof.

i) Suppose 7 " p f ' ' p . Define F as follows. For every (y , d, x)

where d B D and y. e [O, l] for every i in Atlet F (y , d, x) = h [6(a, x)] if
1 g A g

there exists a c i s] such that 6(a,x) is specified and (h (a), f(a,x))

g A

n
= (yA, d) . Show F

6(a,x) and 6(b,x) a re specified, ~ [a] =r [b] and f(a,x) = f(b,x) then

is well defined. If there exists a , b s { SI such that
g

p [6(aJx)] = p [6(b,x)] which impl ies h [6(a,x)l = h [s(b,x)l . Hence,
g g g g

' 10

F is well defined; For all (y , d , x) such that there is no a c i s] and

input x such that (h (a) I f(a, x)) = (yA, d) then F (y , d , x) can be speci-

fied in any manner.

g h

h g A

ii) Suppose h [6(a,x)l = F (h (a), f(a,x),x). Le t a , b c { s] such
g g h

that tj(a,x) and s(b,x) are specified, ~ [a] = ~ [b l and f(a,x) = f(b,x).

Since 7 [a] = T [b] implies hi(a) = hi(b) for every i s A , th i s implies from the

hypothesis that h [6(a,x)] = h [6(b,x)] which implies p[fj(a,x)] = p[6(brx)2. 11
g g

Definition 4. L e t M be a machine and T a state partition of M,

1 i+ 1 1 i then m (7) = n(p I T "pf"p) and m
Pf Pf (1-1 = mpf(mpf(T)).

is the same a s the m operator of Hartmanis and Stearns. Our m
Pf

We now give the result of Hartmanis and Stearns on feedback which we

shall not prove. We do not use this result except to relate flip-flop

realizations to delay realizations.

Result 2 (Theorem).

L e t M be a q state sequential machine and let f: { s] x {x] 3 D.

Then M can be realized using f for feedback iff rnq-l(I) = a(. I is the

unit partitions.

Pf

Feedback and Trigger Flip-Flop Realizations

In order to determine when a function f can be used as feedback

in a machine M realized with trigger flip-flops, we define the following

relation. The definition of what we mean by the expression "using f for

feedback" will be given later.

11

Definition 5 . L e t I- and p be state partitions on machine M and

f:{s] x {x) 3 { O , l) ' where & is a positive integer. Then ~ " t f l ' p i f f

1. p is a two block partition

2 . I- - p " p f " p

3 . For every 2 states a , b and for every input x such that 6 (a, x)

and 6(b,x) a re specified, 1-[a1 = 1-fb1, p[al # p[bl, and. f (a Ix) = f (b ,x)

then p [6 (a I x)] # p [6 (b, x)] .

If we have a machine M and a function f: { s) x {x) -+ { 0,1)& and

if we code M with h into { O , 1 j n , then we can define a function f ' on

{ O , 1)
n by f ' (h(a),x)= f(a,x). If h is not onto { O , 1In, then we extend

n f ' in any manner to a l l of { O , 1) . We make no distinction between f

& and f ' . It might be noted that we use the set { O , 1) rather than D for

the range of f . We do this because we are interested in a realization

which can be realized in a practical since. In other words the output

of f will be fed into logical gates , hence, it is convenient to consider

the outputs a s n tuples of {0 , 13. It is necessary to prove the next two

results before we can characterize feedback in trigger flip-flop reali-

zations.

Result 3 (Lemma).

L e t machine M be realized with the gth memory element a trigger

is the coding function and g c { 1 , . . . , n]. n flip-flop where h: { s]

If

{ 0 , l)

a n d A L { l , . . . , n] withgfA. i) f:{s) x {x] -+ {O, l)
t

' 1 2

ii) F (yl x) = y M(yAI f(y, x) , x) f N(yA , f (yl x) , x) for every
g g g

n x c{x] and ye{O, 1 3 with M = E.

Then T (y I x) = G (y f(y, x) , x).
9 g A'

Proof.

n
Since T (y, x) = y y (y, x) + 7 Y (y, x) for every y e { 0 , 1] and

for every x e {x] , if we substitute for Y and simplify we get that

T (y, x) = ygG(yIz' f(y, x) , x) + Gg N(yA I f (yf x) x) . Since M = G I this

implies T (y,x) = N(y

g g g g g

g

g

f(y,x) ,x) . 11 g A '

Result 4 (Lemma).

Le t machine M be coded by h into { 0 , 1] n , L e t T = Il p , where
A 1

.t A 5 { 1, . . . , n] , let p = p

If 7 " t f " p r then T (yIx) = G (y f (y ,x) ,x) .

where g c { 1 , . . . , n] and let f: { s] x {x] - { O f 13 .
g

g g

l Proof.

Since ~ " t f " p , we know that T -p"pf"p and from Result 1 this

implies that Y (y, x) = F (y , y , f (y ,x) ,x) for every y in { O , 13 . n
9 g A g

i) Suppose geA. Then since T (y,x) = y 9 (y lx) + 5 Y (y,x) ,
g g g g g

we deduce that T (y ,x) = y (y , y , f (y ,x) ,x) f ? F (y , y f(y, x),x)
g g g A 9 g g h g'

= G (Y * I f (Y I X) f X) .

ii) Suppose g $A. Then Y (y, x) = ygM(yA, f(y, x) , x)
g

+

d s { O , l]

certain freedoms on F . Namely, F (h (a) , h (a), f(h(a). x),x) = h Ida, x)]
g g A g g

.t
i f 6(a,x) is specified. Otherwise, F (y , y , d , x) where d e { O , l] is

N(yA, f(y, x) , x) where M(y , d , x) = F (y , y = 1, d, x) for every

and N(yA,d,x) = F (y , y = O , d , x) . Recall that there are
g A g f l g

4
g A g

g A g

I

! 13 I
I

arbitrary. Specify F as follows. If F (y , y , d , x) is not determined

a s above, let F (y , y , d , x) = T (y , y , d , x) where d g{O, l]', y B [O , l j n

and x c[x]. Show F (y , y , d ,x) # F (y ,? , d , x) for all y , [O, l]n ,

x e {x] and d B { 0,1] . We m u s t only consider the case where there

exists a , b , c { s] , x c{x] such that h (a) = hA(b), h (a) # h (b), f (a ,x)

= f(b,x) and 6(a ,x) and 6(b,x) are specified. In this case F (h (a) , h (a),
g A g

f(h(a), x), x) = h 16 (a , x)]. But h (a) = h (b) implies that ~ [a] = ~ [b] and

h (a) # h (b) implies that p[al # p[bl. Since f(a, x) = f (b ,x) , tj(a,x) and

6(b,x) are specified and ~ " t f ' I p , th is implies that p [6 (a f x)] # p[6(b,x)]

and therefore that h b(a ,x) l # h [s(b,x)l. Thus, F (h (a), h (a), f(h(a),x),x)

F (h (b), h (b), f(h(b), x) I x) .

Show M = E i f F

g g

g A 9- g n g

g A g g A g
G

A g g

g A A

g g

g g g A g

g A 9

is so specified. This is clear since M(y , d , x)
g A

= F (y , y = l , d , x) # F (y ,y = O , d , x) = N (y , d , x) f o r e v e r y y with

y. s[O, 1)

implies the theorem. 11

g n 9 g A g A A
G 4 for every ieA, x c[x] and d c { O , l] . From Result 3 this

1

Result 5 (Theorem).

n If machine M is coded by h into [O , 13 and realized with trigger

flip-flop memory elements such that T (y, x) = G (y

A k [l , . . . l n] a n d g e [l , ..., n] andf :{s] x {x]

where T = II p . and p = p .

f(y, x), x) where

{O,l] ' ; thenTI'tf''p

9- g A '

A 1 g

Proof.

i) Suppose gcA. Then T " t f " p is equivalent to ~ " p f " p since

from Result 1 ~ ' ' p f l ' p .

14
ii) Suppose g$A. Then again Y (y,x) = y G (y , f (y ,x) ,x)

g g g A
+ 5 G (y , f (y ,x) ,x) = F (y , y , f (y ,x) ,x) and therefore from Result 1

T *p"pf"p . L e t a , b e [s] and x c{x] such that ~ [a] = ~ [b] , p[al # p[b],

f(a,x) = f (b ,x) , and 6(a,x) and 6(b,x) are specified. ~ [a] = ~ [b l implies

that h.(a) = h.(b) for every i d and p [a] # p[b] implies that h (a) # h (b) .
Assume h (a) = 1 which implies h (b) = 0. Then Y (h(a),x) = G (h (a),

f(h(a) x) I x) and Y (h(b) I x) = G (y , f (y , x) , x) . But since (hA(a) , f(h(a) I x), x)

= (hA(b) , f(h(b) , x) , x) , th i s implies that Y (h(a), x) = ? (h(b) I x) . Since

6(a,x) and 6(b,x) are specified, this means that h [6(a,x)] # h [6(b,x)l
g g

which implies that p[6(a, x)] # p[6(b, x)] , The same argument yields the

same result assuming h (a) = 0 which implies h (b) = 1. Therefore ~ ' ' t f l ' p .)I

S S A g A g

1 1 g g

g g g

g g A

g g

g g

With these results out of the way we can consider feedback in

machines realized with trigger flip-flop memory elements. First we

mus t define this concept. The basic idea is to lay the machine out from

left to right in such a way that the input function to the ith flip-flop can

be computed from f and the state of that portion of the machine which lies

to the left of the ith flip-flop. This is shown in Figure 3 . It should be

noted in the figure that the set of A -Ar

flip-flops i such that ish -Ar 1.

flip-flops consis ts of those r -

r -

G Definition 6, Let M be a machine and f: { s] x {XI 4 0,1] .
Then M can be realized with trigger flip-flop memory elements using f

for feedback iff M can be coded by h into EO, l j n such that

! 15

1. There exists { A l , . . . ,Ak] a set of positive integers such

that u e v implies A < A v .
U

n 2 . If i g A l , then T.(y,x) = G.(f(y,x),x) for every ye{O, 1)
1 1

and X G ~ X] .

3 . If ieAr-Ar - where 1 < r 5 k I Ti(y I x) = G i (~ ~ r - t f (Y I X> I X> .
4. n p i = ,d where p is the partition associated with h

i i '

-Irf,o;.tJ.

.- C . L . denotes combinational l o g i c
F igu re 3

It should be noticed that our definition of feedback depends on

the memory element used. In order to prove the important theorem of this

section we define the following quantity and prove a property about it.

Definition 7 .

1 i+ 1 l i

L e t M be a machine and 7 be a state partition of M .

Then mtf(7) = n{p 1 7 " t f " p] and m (7) = m (m (7)) for every integer i.

If {p (7 " t f " p] = 'p the empty set, we define mtf(7) = I the unit partition.

t f t f t f
1

1
We frequently designate m (7) by m (7). It should be observed tf t f

that T and m (7) a re not in the relation " t f " . t f

16
I

Result 6 (Lemma).

If T . T and p are state partitions such that T < I- and T "tf" p

then T l l l t f l l p .

1-
.e where f:{s) x[x) 4 [0 , 1)

Proof.

L e t ~ ~ [a] = 'rl[bl. Then ~ [a] = ~ [b l . s i n c e T L T If p[a] = p[b], 1'

f (a ,x) = f(b,x) and tj(a,x) and tj(b,x) are specified then p[tj(a,x)

= p[&(b,x)] since T.p'Ipf"p. If p[al #p[bl, f (a ,x) = f (b ,x) and tj(a,x)

and tj(b,x) are specified then p[tj(a,x)I # p[6(b,x)] since ~ - " t f "p . I]

Result 7 .
.e Let M be a machine and f: 1 s] x {x] 3 {O , l] . If T and T are 1

state partitions such that I- 5 T then m (I-) < m (7). t f 1 - t f

Proof.

L e t p be such that ~ " t f " p then ~ ~ " t f ' l p from Result 6. This

implies mtf(I- 1) 5 m t f (~) .

Result 8.

8 i+ 1 L e t M be a machine and f:[s] x{x) -f 10, 1') . Then mtf (1) L

i
t f m (7) for every is { 1 , 2 , . . . I .

Proof.

2 1 1 1
i) mtf(I) L mtf(I). Clearly mtf(I) - < I . Thus mtf[mtf(I)] 2

2 m (I) from Result 7 which implies mtf(I) 5 m (I). tf tf

i+ 1 i i+ 1 i
ii) Suppose mtf (1) 5 mtf(I). Then m tf [m tf (I)] 5 mtf[mtf(I)]

i+ 2 i+ 2 from Result 7 and therefore mtf (I) 5 mtf (I).

17
i i+ 1 i+ 2 i

It is clear that if m (I) = m tf tf (I) then mtf (I) = mtf(I). Therefore

since I can be refined at most q-1 t i m e s if M is a q state machine we

know that mq-'(I) = mtf(I). q
tf

I t should be noticed that m (7) is a fairly difficult quantity t o tf

calculate. A t this point we must consider every two block partition p

and see if ~ " t f l ' p and multiply these p together. Later we will give a

better method. But first we prove a major result and then give a n

example of some of these concepts.

Result 9 (Theorem).

4, L e t M be a machine and f: [s] x {x] 3 [0,1] . M can be realized

with trigger flip-flops using f for feedback iff mqel(I) = $ where q is the

number of states of M.

tf

Proof.

Suppose M can be realized with trigger flip-flops using f for

n feedback. Then M can be coded by h into [O , 13 such that Definition 6

is satisfied. Let T~ = 9, p j . .

1. From 2 of Definition 6 and Result 5 1 " t f " p . when isA and
1 r

1
p . is the partition associated with h.. This impl ies that mtf(I) < n p
1 1 A i j

" t f " p . for every
' j 1

2 . From 3 of Definition 6 and Result 5 n
'r- 1

isAr-Ar This together with Result 6 implies that Tz p , l ' t f "p ; that - Ar-1 J i

r ' is, T "tf '!p. for every i d
r- 1 1

18
r- 1 3 . From 1 we know m (I) 5 T Assume mtf (I) 5 T ~ - ~ for every

r such that 2 - < r < k where k is given by Definition 6. Show mtf(I) 5 T ~ .

From 2

t f 1'
r

-
mtf(-rr-l)(n p i - T ~ . From the inductive hypothesis T > rnr-l(I) r-1 - tf 'r

and therefore, from Result 7 we deduce that m [mr-'(1)] - < T~ or equivalently
tf tf

4. Show rnq-l(l) = 8. From 4 of Definition 6 II p - Tk = 8.
Ak tf

k k Hence mtf(I) 5 -rk = 8. Therefore mtf(I) = 8. From the comments a f t e r

Result 8 this implies that rnq-l(I) = 8. tf

Suppose rnq-'(I) = 8. L e t k be the first integer such that tf
k
t f m (I)=ld. T h e n k L q - 1 .

1. L e t El = [p i / ieA 3 be a set of partitions with the properties
1

that 1 " t f " p . for every ieA and I'l p i = mtf(I). Such a set ex is t s since
A 1

1 1

[p IIfitfi 'p] has these properties. However, it should be noted that one

1' may not need to include all of these partitions in E

2 . L e t E = [p i I isA 3 be a set of partitions with the properties

m (1)" t f"p . for every i s A 2 and Y 2 p i = mtf(I). Again such

2 2
2 that E2 > E 1' t f 1

a set exists since E = [p l m (I) " t f "p] has the required properties. 2 tf
2
tf tf This follows from the fact that m (I) < m (I).

3 . L e t E = [p i \ icA] be a set of partitions with the properties k k

k that E > Ek 1, mk-l(I) i i t f"p. for every isA a i d 17 p i = mtf(I). The set

Ek = {p lmtf (I)"tf"p] satisfies these properties since m (I) < m (I).

Ak k - tf 1 k
k- 1 k k- 1

tf tf

Again it should be noted that one may not need t o include all these

k' partitions in E

19

4. For every i such that isA let h,(a) = h.(b) - pi[a] = p .[b];

i.e. let h . be the function implies by p Since II p i = mtf(I) = 6, h

is 1-1. Note that the range of h is E O , 1] jk . Thus if we let n be the

number of elements in A

k' 1 1 1

hk

k
I i'

n to be consistent in notation, then h:{ SI
we know that

{O, 13 . k'

5. From Result 4 since 1 " t f " p . for every ish
1 1

n
T.(y,x) = G.(f(y,x),x) for every y s { O , 11 . Also from Result 4, since
1 1

r- 1 r- 1 Il
hr- 1

p i = mtf (I) and m (I) " t f " p i when i d , we know that T,(y, x) tf r 1

= G (Y , f(y, x), x) for every ieAr, Therefore, Definition 6 is satisfied
i Ar-1

and M can be realized with trigger flip-flop using f for feedback. 11

An example of this result is given in Figure 4 by machine A.

{ s> = { 1 , 2 , 3,4,S] and 6 is given in the figure. Also a function
-- €:{SI ~ { X I 3 { O , 13 is given in Figure 4 . In machine A 1"tf1'(1,2;3,4,5)

_c

~ and m (I) = (1 , 2;3 , 4,s) since th i s is the only partition with this property. t f - -- - -
(1,2;3,4,5)"tf"p iff p is one of (1,2;3,4,5) , (1 ,4;2,3,5) or (2,4;1,3,5)

---- ---- 2
tf and therefore m (I) = (1;2;3,5;4). (1;2;3,5;4)"tf"p for every two block

3
tf partition p and therefore m (I) = jf which implies p can be realized with

--
trigger flip-flops using f for feedback. L e t p = (1 , 2;3,4,5), 1

.__ -
= (1 ,4;2,3,5) and p 3 = (1 ,2 ,3 ,4;5) . ThenAl = [l], A2 = { 1 , 2) and p 2

satisfies the properties given in the proof of Result 9 . h3 - {1,2,33 -

A coding In this case E = {p,], E2 - [p l , p 2] and E = {pl ,p2 ,p3-) . 1 3

function h corresponding to p

-

and p is given in Figure 4.
1' p2 3

If a machine can be realized using f for feedback and f is a con-

stant, then we say f can be realized without feedback. Machine B in

20

Figure 5 gives a machine which can be realized without feedback using

trigger flip-flops when f is any constant function. Note that 1"tf" p iff

p = (1,2;3,4,5) and (1,2;3,4,5)"tf"p iff p = (1 ,3,4;2,5) , (1,5;2,3,4) or
- - -

1

2

3

4

5

- -_--
(1,2;3,4,5) and finally (1;2;3,4;5)"tf"p for every p which is a two block

partition. Therefore m (I) = (1 ,2;3,4,5) , m (I) = (1;2;3,4;5) and m tf (I) =$. 2 ---- 3 1 -
tf . tf

L.

000 000 110 000 110 0 0

010 110 100 100 110 1 0

110 100 000 010 110 0 1

100 111 010 01 1 110 0 1

111 000 010 111 101 1 0
P-

1

2

States 3

4

5

Inputs

0 1

6

States

Inputs

~~ 4 3

5

f

1

0

0

1

1

0

-

-

Machine A

2 1

100

111

d

000

010

Inputs

0 1

010 100 010

000 101 010

110 d 001

111 110 001

100 110 000

1

2

States 3

4

5

000

010

111

110

100

Machine B.

Inputs Inputs

0 1 0 1

Figure 5.

Now we relate feedback for the unit delay case to feedback with

trigger flip-flop memory elements. One result we get is that the set of

machines which can b e realized without feedback using unit delays and

the set of machines which can be realized without feedback using trigger

flip-flops are disjoint when the machines are completely specified.

Before we prove this result we consider a l emma.

Result 1 0 (Lemma).

G L e t M be a machine, f :{sJx {x] -+ { O , 13 and ~ " t f " p . Le t

a, b 6 { sJ such that T [a] = ~-[b l . If there exists x c ~ X J such that f(a, x)

Proof.

Consider any p such that I- " t f " p . If p[a] f p [b] then p[S (a, x)]

p[S(a,x)] which is impossible since S(a,x) = S(b,x). Thus p[a] = p[b]

which implies mtf(T) [a] = mtf(I-) [b] .
n

1 1
If ~ :CsJx{x] -, f s] and {x.] is a sequence in {x],we define

n n s(a, {xi],) = a if n = 0 , s(a,{xi]l) = s (a ,x l) i f n = 1 and if n > 1 we

inductively define s (a, {xi] 1) = 6 16 (a, {xi] n n- 1 xn] . With this notation

we can prove the following result.

Result 11 (Lemma).

c L e t M be a completely specified machine and f:{s] x 1x1 4 { O , 11 .
Let there exist a, b c { s] with a # b and a sequence {x jq-' with q 2 2

in [x] such that s(al {x.]) and 6(b, [xi],) are specified when 1 < j < q-1

and, in addition, f[s(a, {x.]'-'),x,] = f[6(b, {x]j-l),x.] for every j such

that 1 < j < q-1. Then mqml(I) = ,d implies that mq-l(I) #,d.

Proof.

i 1

- - j j
1 1

1 1 3 i 1 J

Pf tf - -

j Since I[al = ICbI, the hypothesis implies that m j (I)[a] = m (1)fb'l
Pf Pf

for all j e q-1. Thus mq-l(I) = $and the hypothesis implies that &(a, {xi];-')

= 6(b, {x.J'-~). L e t r be the first integer such that s(a, {xi];) = 6(b, {xi],).

Then 1 < re q-1 and if a = &(a, [xi]f-', and bl = 6(b; Ex.]) then a l # bl

Pf -
r

1 1
r- 1

1 1 1 - -

23 ,
I _ _ . -

that j is a positive integer. Clearly I[al] = I[b 1 and since f(a

== f(b , x) and 6(al,xJ = S(b

m (I)[a 1 = m (I)[b 1, Suppose m (11th 1 = m (I) [b 1. Again from

x) 1 1‘ r

x) from Result 10 th i s implies that 1 r 1’ r
k k

tf 1 tf 1 tf 1 tf 1
k k k+ 1

Result 10 this implies that m (m (I))[a 1 = m (m (I))[b 1 or m (I)[al] t f tf 1 tf tf 1 tf
k-t- 1

= m tf (I)[bll. If we let j = q-1 then mq-’(I)[a1] tf = mq-l(I)[bl] tf where

a l # b l . Therefore mqw1(I) tf # 8.]I

From Result 11 we get the following result on feedback free

machines .

Result 1 2 (Corollary).

Le t M be a completely specified sequential machine with q

states and q > 1.

i) If mq-’(I) Pf = a(, then mq-l(I) t f # ,d.

ii) If m:il(I) = 8, then mq-l(I) Pf #a(.

In particular, the set of machines which can be realized without

feedback using unit delays is disjoint from the set of machines that can

be realized without feedback using trigger flip-flop memory elements.

Proof.

i) Since q > 1 there exists a , b CIS] such that a # b. Let

{xi]:-’ be any sequence in 1x1. Since f is a constant, Result 11 holds

and mq-l(I) #8. t f

ii) Suppose mq-l(I) = 8, then from i) mqel(I) t f fl which is a
Pf

contradiction. Therefore rnqm1(I) = 8.
Pf

The last statemenf follows from Results 9 and 2 . I /

I 24
It is clear Result 1 2 does not necessarily hold if the machine

-is not completely specified. For example, one could consider a machine

where 6(a,x) is not specified for any state a and input x. We now turn

our consideration to the computation of m (7) . t f

4 4 Definition 8. Le t M be a machine and f: { s) x {x) -+ { O , 1) .
Let be a s ta te partition.

1. Let A h) = i (b , c) 11- [bl = I- [c] and there exists x such that

f(c,x) = f(b,x) and 6(b,x) = ~ (c , x)) U {(b,c)I there exists a c i s] and

input x such that f(a, x) = f(b, x) , I- [a] = I- [b] and c = 6(a , x) while

a = 6(b,x) or 6(a,x) = a and 6(b,x) = c) .

2 . L e t A (I-) be the smallest equivalence c l a s s which contains

A(7) and let p be the s ta te partition implied by A (7) . 1

~ Result 1 3 .

If T and p are defined as in Definition 8 then p < m (7) . 1 1- t f

Proof.

L e t b , c e { s] such that (3 [b] = (3 ,[c] L e t p be a partition such

that I- tf I t p .
i) Suppose (b, c) E:A(I-). If ~ [b] = T [c] and there exists x such

that f(c, x) = f(b, x) and 6 (c, x) = 6 (b, x) then p [b] = p [c] from Result 10.

If there exists a CIS] and x s[xJ such that f(a,x) = f(b,x), ~ [a] = ~ [b l

and c = 6 (a, x) while a = 6 (b, x) , then if p [a] = p [b] we have that

pb(a,x)] = p[6(b,x)l since I-.pl'pf"p or p[cl = p[a] = p[bl. If p [a l

p [bl , then p [6 (a, x)] # p [S (b, x)] or p [cl # p [a] which implies p [bl = p [cl

25

since p h a s only two blocks, Therefore p [b] = p [c] . The proof for the

case a = 6(b,x) and 6(b,x) = c is identical.

ii) Suppose b = a c = a k+ 1 0,
k - > 0 and (ao.al), (a l , a2 , . . .

(ak,ak+l) are all in A (T) . Then from i) p[a.] = p[a

0 < i < k. Since p is a partition, this implies p [b]= p [a 1 = p [a

1 for every i
1 i+ 1

1 = p [cl .
0 k+ 1 - -

Cases i, ii cover all cases f o r b and c such that p [b] = pl[c] 1

except when b = c which is obvious. Thus p [b] = p ,[c] implies

p[bl = PIC] for every p such that ~ ' ' p f ' ' p . Therefore m (~) [b l = mtf(T)[cl.

This implies that @ < m (T). 11

1

tf

1- t f

It should be noted that A(T) can be determined by inspection.

Ope has only to observe that (b,c) E: A(T) i f 6(b,x) = 6(crx) for some x

when T [a] = T [b] and f(a, x) = f(b, x) then the other two are a pair in A(T) .

Definition 9 . L e t M be a machine and let T , p , be state partitions
1

such that m (T) > p . where i2 1. t f - 1

1. L e t B (p .) [(p.[b], p . [c]) l~[b] = T[C] and there exists input x
1 1 1

= pi[6(a,x)l and p.[al 1 = pi[6(b,x)l or pi[al = p.[6(alx)l 1 and pi[cl = pi[6(btx)l

for a r b s{s] and x s{x] such that ~ [a] = ~ [b] , f(a,x) = f(b,x)].

2. Le t B (p,) be the smallest equivalence relation which contains
1

B (p i) . L e t fj be a partition on { s] defined by $ i+ 1 i+ 1 [a] = pi+,[b] iff

(pi[al, p.[bl) E: B # (p i) .
1

, 2 6

L e t b , c s { s] such that p [b] = pi+l[c] which implies that i+ 1
(p .[c], p.[b]) c B (p i) . Let p be a partition such that ~ " p f l ' p .

1 1

i) Suppose (p1[clr pl[bl) s "'a,'. If ~ [b] = T[C] and there exis ts

x such that f (b ,x) = f (c ,x) and p,[s(b,x)l = pl[6(c ,x) l , then pb (b ,x)]

= p[6(c,x)] since p 2 pl, Because ~ I ' t f ' ' p , p[b] # p[cI implies

p [6 (b, x)] # p [6(c, x)] , which is a contradiction, thus p[b] = p [c] . If

there exis ts a c { s] , x c {x] such that T [a] = T [bl , f(a , x) = f(b, x) and

p,[cl = pi[6(a,x)l while pi[al = @.[6(b,x) l ; then p[al = p[6(b,x)l and

p[c l = p[S(a,x)] since p > p If p[al = p[bl then p[6(a,x)l = p[6(b,x)l

since T p " p f " p which implies p[aI = p[6(a,x)l = p[c]. Therefore p[bf

= PIC]. If p[a] # p[bl then p[6(a,x)] = p[6(b,x)] since ~ " t f l ' p . This

implies p[cl # p[a] and therefore p [b] = p[c] since p has only two blocks.

1

i' -

Therefore (p i[c] , p i[bl) s B (p .) implies p [bl = p [cl . The case when pi[al

= pi[s(a,x)] and p.[c'l = pi[6(b,x)] is proved in a similar manner.

1

1

ii) Suppose p 1 .[cl = @,[a$, p i b l = pi[ak+ll and (pi[aJ. pi[all),

(Bi[all, pi[a21). . .(pi[akl, pi[ak+ll) are such that (p.[a.l, pi[aj+ll E: B(pi)

when 0 < j c k. Then from i) p [a .] = p [aj+ll for every j such that
1

0 < j < k. Therefore p[cl = p[a 1 = p[a

1 1

- -

1 = p[b].
0 k+ 1 - -

' # Parts i , ii imply that if (p.[cl, pi[bl) E: B (pi), then p[b] = PIC]

tf tf

1

i+l which implies that m (~) [b] = mtf (~) [c] . Therefore m (T) 2 p

2 7

Results 13 and 14 imply a way to compute m (7). First compute tf

as in Definition 8. Then using p compute fj as in Definition 9 . 81 1 2

Continue until f? = p. for some i - > 1. This must happen since i+l 1

> p . for every i. and {SI is finite. L e t e (T) = p i . One must then
@i+l- 1

consider only those p > O (T) to see if ~ " t f ' ' p when one computes m (T) . t f -

For a n example of this consider machine A in Figure 4. Here

it is seen by inspection that A(1) = {(3,4) , (4 ,5) , (3,5)] which implies

A (1) = {(I I 1) I (2 I 21, (3,3), (4,4), (5,5), (3,4), (4,5) I (3,5), (5,3), (5,4),

(4,313 and p = (1;2;3,4,5). p could have been easi ly determined

from A(1). Now compute p Again by inspection of Figure 4 B(6) 2 ' 1

= {(1;2)] and B (p l) = {(1;2), (3 ,4 ,5;3,4,5) , (2;1), (1;1), (2;2). Therefore

--
1 1

-- -- -- -- # --

= (1 , 2 ; 3 , 4 , 5) Compute p By inspection B (p) = cp and therefore 3' 2
I__I_

8 2

B (p

therefore e(I) = p,. From Results 13, 14 we know that @(I) 5 mtf(I).

Hence to compute m (I), we need only consider all 2 block state

partitions p such that p-> e(1) and a n easy check shows I"tf''e(1) and

= { (1 , 2 , 1 , 2) , (3 , 4 , 5 , 3 , 4 , 5)) . Hence p = (1 ,2 ;3 ,4 ,5) = 8 , and 2 3

tf

c__

hence m (I) = (1 , 2;3,4 , 5). We have made this computation longer than

needed. B (p .) can be written down by inspection of the state table and

tf

1

can be written down directly from B (p ,) without looking at B (p .) . @i+1 1 1

L e t u s again consider machine A in Figure 4. We have already
--

determined that when we begin with I then e(I) = (1,2;3,4,5). Repeat the

calculations this t i m e beginning with T = €I (I). Then by inspection A(T)

= {(3,5)] and fj = (1;2;3,5;4). Continuing B(p) = cp and therefore p

= @,. Thus when we begin with T = e(1) we get (&-I = Q(e(1)) = (1;2;3,5;4)

--.__-

2 1 1

28

2 2 2
tf

which we label as 8 (I). 8 (I) must be less than m (I). Repeat the

2
process letting T = 8 (I). By inspection of Figure 14

2 3 therefore p = p2 = (1;2;3;4;5). Thus e(T) = e(e (I)) = 8 (I) = (1;2;3;4;5).

A(T) = 9 and

1
3 3 1 2 2 3 And 8 (I) 5 mtf(I). In this case e (I) = mtf(I), 8 (I) = m (I) and 8 (I)

tf
3 = mtf(I) T o check a machine for feedback, one should do a computation

a s above. If one does not end up with the 6 partition, the machine

cannot be realized with trigger flip-flops using f for feedback. If one

does end up with the a! partition, then he must continue to investigate

by, for example, considering those two block partitions p - > e(I) to see

if I" tf 'I p .

Feedback in Set-Re set Flip-Flop Realizations

In order to determine when a function f can be used a s feedback

L in a machine M realized with set-reset memory elements we define the

following relations.

Definition 10.

44

L e t T and p be state partitions in machine M and

f:{s] x 1x1 4 {O, 1j where 4 is a positive integer. Then ~ ' ' r f l ' p iff

1. p is a 2 block partition.

2 . 7 .p"pf"p . '

3 . For every two states a , b and every input x such that S (a, x)

and 6(b,x) are specified, ~ [a l = ~ [b] , p[al # p[b] and f (a ,x) = f(b,x);

then p[~(a,x)] = p[6(b,x)] or S(a,x) 6 p[a] and s (b ,x) 6 p[b].

Before we consider the subject of feedback in set-reset realiza-

tions we must prove the next results which are similar to the ones proved

in the trigger flip-flop development.

29

Let R (y, x) = z(yn , f(y, x) I x) and S (y, x) = W(yA I f (y , x) I XI. Show
g g

that this is allowable. That is, show that if y = 1 and Y (y,x) = 0 then

R (y,x) = 1 and if y = 0 and Y (y,x) = 1 then S (y,x) = 1. In addition, one

must show that R and S are not both one for any (y, x). Suppose Y (y, x) = 0.

Then if y = 1, U(y,, f (y ,x) ,x) = 0. Thus u(yn, f (y ,x) ,x) = 1 = R (y , ~) .

Suppose Y (y,x) = 1 and y = 0. Then W(y,, f(y,x)) = 1 = S (y,x). If
g 9- 4

R (y, x) = 1 then U(yA, f(y, x), x) = 0 and since U I > W

g g

g 9 g g

g g g

g 9-

W(yA, f(y,x) , x) =O
g

which implies S (y, x) = 0. If S (y, x) = 1, then W(y, I f(y, x) I x) = 1 and

since U > W

g g

U(yA, f(y,x),x) = 1 which implies R (y,x) = 0. 11
g -

Result 16 (Theorem).

& L e t M be a machine and k { s] x {x] 3 [O, 13 . L e t M be coded

n
b y h i n t o {0,1] . L e t T = n p . w h e r e A r { l , ..., n] a n d p = p where

g e { l , . . . , n] . 1 f T " r f " p thenR (y , x) = I (y

= H (Y f (Y , X) / X) .

A 1 g

f(y, x) I x) and Sg(y, x)
g . g A'

Proof.

i) Suppose gsA. Then p - > T and since 7 "rf"p implies 7 , p"pf"p

we deduce that T "pf"p. Therefore Y (y, x) = F (y f(y, x), x) from Result 1.
g g A '

Define R (y,x) = F (y f(y, x) I x) and S (Y, x) = F (y *' f(yrx),x).
g g A' B

30

ii) Suppose g@. Then again T . p"pf"p and from Result 1

Y (y,x) = F (y , y I f (y ,x) ,x) . If we let U(y , d , x) = F (y , y = l , d , x)

.e .e for every d s{O,1] and W(y , d , x) = F (y , y = O,d,x) for every d s{O, l j A g A g
then Y (y, x) = yg U(yA I f(y, x) , x) + yg W(yA , f(y, x), x) . Recall that there

are freedoms on F in the proof of Result 1. Namely, F (h (a) , h (a),

f (h(a) ,x) ,x) = hg[6(a,x)] if 6(a,x) is specified. For every other (y , y , d , x)

with d s{O, 11 and yA s { O , l I A F can be specified in any manner. We

g g A g

g

g g A g

A g
.e

g
specify it as follows:

For every (y ,y , d , x) define F (y , y , d ,x) = F (y , y , d ,x) when
A g g n g g A g

there is no a E { S ~ , X E{X] such that f(a,x) = d, h (a) = y and s(a,x) is

specified. Show when F is so specified that U > W. Suppose W(y , d, x) =1.

Then F (y , y = O,d,x) = 1. Claim F (y , y = 1,d ,x) = 1. Th i s clearly is

true from the above statements unless there exists a , b s{s] and x E{X]

A A

A - g

g g A g

such tha t (y I y = 0) = (hA(a), hg(a)); 'yA , yg = 1) = (hA(b) , h (b)); f(a, x)
h g g

= f(b,x) = d and s (a ,x) and 6(b,x) are specified. But hA(b) implies ~ [a]

= ~ i b l and h (a) = h (b) implies p [a] # p [b] . Since h (b) = 1 from

F (h (a) ,h (a), f (h(a) ,x) ,x) = F (y , y = O,d,x) = 1 we infer that

h [6(a,x)l = 1 or s(a,x) E p[bl. But s ince~l l r f l 'p , this implies 6(b,x) 6 p[b]

and h [s(b,x)] = F (h (b) ,h (b), f(h(a),x),x) = F (y , y = l , d , x) = 1.

Therefore W(y ,d ,x) = 1 implies that F '(y , y = l , d , x) = 1 which implies

U(y,,d,x) = 1. Therefore U - > W. From Result 15 this implies the theorem.11

g g g

g h 9 g f l g

g

g g A g g A g

h g n g

31

Result 1 7 (Theorem) .
Let M be a sequential machine coded by h into 10, l I n . Le t

f:{s] x {x] 3 {O, 11 , If M is realized by set-reset flip-flops such 4

Proof.

From Result 1 this implies 7 . p"pf"p and since gsA implies

> P, this implies ~ " p f l ' p and ~ I ' t f ' l p .

ii) Suppose @A. Then, as before, Y (y,x) = y (y f(y,x)
g g 9- A'

+ 5 H (y

T .p"pf"p. L e t a , b c { s] and x s{x] such that 7[a1 = ~ [b l . p[a] # p[b],

and f(a,x) = f (b ,x) . No te that ~ [a] = ~ [b] implies h (a) = h (b) and

pral # p [bl implies h [a] # h [b] . Suppose &(a, x) s p [b] and a l s o suppose

h [a] = 1. Then h [6(a,x)] = 0 which implies Y (h(a) ,x) = 0 =I (h (a),

f (y ,x) ,x) = F (y , y , f (y ,x) ,x) . From Result 1 this implies
g g A' g f l g

n n

g g

g g g g n

f(h(a) , x), x) or, equivalently, I (h (a) , f(h(a) , x) , x) = 1 Since I = R
g f l g g

and R = 1 implies S = 0, we must have S = H (h (a), f (h(a) ,x) ,x) = 0
g g g

which in turn equals H (h (b) , f(h(b) , x), x) . Therefore Y (h(b) , x) = 0

which implies that 6(b,x) 6 p[b]. Suppose h [a] = 0. Then h [S(a,x)] = 1

which implies Y (h(a) , x) = 1 = H (h (a) , f(h(a) , x), x) . This implies that

S (h(a) , x) = 1 and therefore R (h(a) , x) = 0 = I (h (a) , f(h(a) , x) , x) . Since

Ig(hn(a), f (h(a) ,x) = I (h (b), f (h(b) ,x) ,x) and h (b) = 1, this implies that

Y (h(b),x) = 1. Therefore h [6(b,x)l = 1 and s (b ,x) E p[bl. Hence ~ " r f " p .

g A g

g g

g g n

g g g n

g A g

g . g

32

With these results out of the way we are ready to define the con-

cept of feedback in machines realized with set-reset memory elements.

This definition is similar to Definition 6.

6 Definition 11. L e t M be a machine and f:{ s] x {x] 3 { O , 13 .
M can be realized with set-reset flip-flops-using f for feedback iff M

can be coded by h into { O , l I n such that

1. There exists { A l , . . . , A] a set of positive integers such k
that u < v implies A < A u v.

2 . If ieA1 then R.(y,x) = I .(f(y,x),x) and Si(yrx) = Hi(f(YfX),x)
1 1

for every y s(O,l]" and x s{x].

4. I3 p i = 6 where p is the partition associated with h. .
i 1 Ak

Again we define the m operator this t i m e with respect to "rf",

and then prove s o m e results concerning it.

4 Definition 1 2 . Let M be a machine and f:{s] x { x j -+ { O , 13 .
Let T be a state partition.

i) mtf(T) =
1 1

tf ~ ' ' r f ' ' p] . If {PIT "rf"p] = c p , then define m (7) = I.
1 We frequently call mrf(T) by m (7) deleting the 1. rf

i+ 1 i
rf ii) m (7) = mrf(mrf(T)) for i in { 1 , 2 , . . .] .

Result 18.

Let T ,T I and p be state partitions in a machine M and

33

Proof.

L e t a , b s { s] such that ~ ~ [a] = ~ ~ [b l , f(a,x) = f(b,x), and tj(a,x)

- 1'
and s(b,x) are specified. ~ , [a] = ~ ~ [b l implies ~ [a l = ~ [b] since T > T

Suppose p[al = p[bl, then p[s(a,x)I = p[tj(b,x)l since l - l . p ' l p f " p . Suppose

p[a] # p[b] then tj(a,x) c p[b] implies tj(b,x) c p[b] since ~ " r f l ' p .I1

Result 19.

Let T and T be s ta te partitions. If T 2 T then m (7) > m (7) .
1 rf - rf 1

Proof.

<et p be such that ~ " r f ' l p . Then T " r f " p from Result 18 which 1

implies m (7) 2 mrf(T 1) .I1 rf

Result 2 0.

c i+ 1 Le t M be a machine and f: { s] x {x] 4 { 0,1] . Then mrf (I) 5
l i rn (I) f o r e v e r y i c { 1 , 2 , . . . I . rf

Proof.

2
i) Show mrf(I) < m (I). Clearly mrf(I) 5 I. Therefore m (m (I)) - rf rf rf

2 < m (I) from Result 19. Thus mrf(I) 5 m (I). - rf rf
j j ii) Suppose m (I) < mj-'(I) with 2 5 j . Then m rf (m rf (I)) - < rf - rf

(I)) from Result 19 . Thus mrf '+'(I) I < m:f(I).II

If M is a q state machine then since I can be refined at most

q-1 t i m e s mq-l(I) = m,gf(I). With this we are ready to state and prove rf

the main result of this section.

34

Result 2 1 (Theorem).

4 L e t M be a q state machine and f:{s] x 1x3 -, {0 , 11 . M can

be realized using set-reset flip-flop memory elements for feedback iff

m'-l(I) rf = 8.

Proof.

Suppose M can be realized using f for feedback. Then M can

be coded by h into {0, 1 j n such that Definition 11 is satisfied. Le t

= I T p
T r A, j *

1 1. From 2 of Definition 11 and Result 1 7 1"rf"p. when i s A

and p , is the partition associated with h. . Therefore, m (I) < ITp = T 1.
1 1 rf - - ~ i

1

2 . From 3 of Definition 11 and Result 17 (I3 p.)"rf"pi for
Ar- 1 1

every i cAh,-A,-l. This together with Result 18 implies that IT

1 r'

p , " t f " p ;
3 i 'r- 1

L that is, ~ ~ - ~ " t f " p . for every ish

r- 1
3 . From 1 we know m (I) < T Assume m (I) 5 ~ ~ - ~ for rf - 1' rf

every r such that 2 - < r < k where k is given by Definition 11. Show

mrf(I) 5 T ~ . From 2 m (T

and Result 19 m [m (I)15m (T) < T Thus m f f (I) s T r . rf rf rf r-1 - re

- r
) 5 Il p i - T ~ . From the inductive hypothesis

flr rf r-1
r- 1

4. Show mq-'(1) = 8. From 4 of Definition 11 IT p i = 8. From
Ak rf

mrf(I) <
k k 3 of definition 11

20 this implies mq-'(I) = 8.

= n pi=$. Therefore mrf(I) =8. From Result
--7k Ak

rf

We now consider the converse. Suppose m'-l(I) = 8. Let k rf
k
rf be the first integer such that m (I) = 8. Then 1 - - < k < q-1.

1. L e t E l = {p i l isA] be a set of partitions with the properties 1

that 1"rf"p. for every iehl and Is p i = mrf(I). Such a set exists since

the set { p II"rf"p] has these properties.
A 1 1

35

2 . L e t E2 = {pi(isA] be a set of partitions with the properties

m (1)"rf"p for every isA and rJ p i = mrf(I). Again, such

2
2 that E2 > E

a set exists since {p Im (I)"rf"p] has the desired properties.

follows from Result 18 and the fact that mrf(I) < mrf(I).

'2 1' rf i 2

rf This

2

3. L e t Ek = {pit is/\] be a set of partitions with the properties k
k that E > Ek 1, mk-l(I)"tf"p. for every isAk and rJ p i = mrf(I). The set

C P Imrf (1)"rf"p] has these properties. This follows from Result 18 and
'k k - rf 1

k- 1

k k- 1
rf rf the fact that m (I) < m (I).

4 . For every isA let h . be the function associated with p ., i.e. I k 1 1

h is a 1-1 coding function. N o t e that the range of h is {O, l I A k . Thus

i f we let n be the number of elements in A

then h:{s] -+ 10, 1ln.

to be consistent in notation, k'

5 . From Result 16 since 1"rf"p. for every i in A R.(y,x)
1 1 1

n
= I.(f(y,x),x) and S . (y , x) = H.(f(y,x),x) for every y s {O, 11 . Also, from

1 1 1

r- 1 r- 1
rf rf 1

Result 1 6 since B p i = m (I) and m (I) ' lrf l lp,I when i eAr-Ar-l and
'r- 1

2 < r < k, then R.(y,x) = Ii(yA I f(y, x) I x) and Si(yI x) = Hi(y' I f (Y / X) / X) .
1 r- 1 r- 1 - -

Thus Definition 11 is satisfied and M can be realized with set-reset

flip-flops using f for feedback. 11

For a n example of the previous results consider machine C in

Figure 6. This machine can be realized without feedback using set-

reset flip-flops. This can be seen a s follows. L e t f be a constant.
-

The only partitions p such that 1"rf I f p are (1 , 2 , 3 , 5;;) and (1 , 2 ; 3 , 4 , 5).

3 6 '
- ---

Thus m (I) = (1,2;3,5;4). If p is one of (1,2,3,5;4),(1,2;3,4,5), rf
2 - ---

(1 , 2 , 3 , 4 ; ~) , (1 , 4 , 5 ; 2 , 3) then (1,2;3,5;4)"rf"p. Thus mr$I) = $and

machine C can be realized without feedback. This is done in Figure 6.
-

Let p = (1,2;3,4,5), p = (1 , 2 , 3 , 5 2) and p = (1 ,4,5;2,3) . Then

h l = { 1 , 2] and h2 = { 3) satisfies the properties given in the proof of

Result 2 1 , In this case E = {pl, p ,) and E2 = { p 3] . A coding function

h corresponding to p

1 2 3

1

and p is given in Figure 6. 1% 3

The following resul ts relate set-reset feedback realizations to

unit delay feedback realizations.

Result 2 2 .

4
L e t M b e a machine and f:Cs) x [x) -f { O , l] . L e t 7 and be

state partitions such that ~ " p f l ' y . If p is a two block state partition

' such that p - > y then 7 " r f " p .

Proof.

L e t a r b , e { s] and let x s fx] such that ~ [a] = ~ [b l , f(a,x) = f(b,x)

Since T"pf"y, this implies y[6(a,x)] and s(a,x) and s(b,x) are specified.

= y[6 (b, x)] and since p - > y this means p [s(a, x)] = p [6 (b, x)] . Therefore

T "rf'ly. I]

Observe that any s ta te partition y = II{ p I p - > y and p is a two

block partition). With this in mind we can easily prove the next result.

37

f = constant

m (I) = (1, 2;3,5;4)
--- 1

rf
----- m 2 (I) = (1;2;3;4;5).

rf

Machine C

0 1 0 1 0 1

I 1 000

2 001

3 101

4 110

5 100

Result 23.

c Let M be a machine and f:{s] x {x] -+ EO, 13 . L e t 7 be a state

partition. Then m (7) 2 mrf(7).
Pf

38 '

Proof.

L e t y be a partition such that ~ " p f " y . L e t p be a 2 block parti-

tion greater than y. Then T1lrfl'p from Result 2 2 , which implies

This implies immediately a result relating set-reset flip-flop

realizations to unit delay realizations. Results 19 and 23 imply immediately

i i
Pf Pf - rf that for every i in 11, 2 , . . .] that m (7) 2 mrf(Tf because m (7) > m (T)

i- 1 i- 1 i- 1 from Result 2 3 and, if m (7) 2 mrf (7) then m [m (T)] 2 mrf[mi- l (~) l 2 P f Pf Pf Pf
i- 1 mrf(mrf (T)) from Results 19 and 23. This implies the following result.

Result 24 (Theorem).

If machine M can be realized with unit delays using f for feedback,

then M can be realized with set-reset flip-flop using f for feedback.

Proof.

The hypothesis implies from Result 3 that mq-l(I) = ,d where q is
Pf

the number of states. But this implies mq-l(I) = 8. From Result 2 1 this

implies the theorem. 11
rf

It should be noticed in Figure 6 that machine C cannot be

realized with unit delays using f = constant for feedback. To determine

if a machine M can be realized using f for feedback, it is necessary to

compute m (7) for various T which is not a n easy problem. In general rf

one must consider all two block partitions p to see if 7 'Irf"p. For a q

state machine there are 2'-l-1 such partitions. It is wise to compute

m (T) first. From Result 23 we know that m (7) < m (T), therefore, it

is not necessary to consider these p such that p > m (7) .

Pf rf - pf

- Pf

39

In this paper we have developed a method for determining when

a machine can be realized using a function f for feedback with either set-

reset or trigger flip-flop memory elements. This method is more difficult

to apply than the one given in Reference 3 for the unit delay case. We

have also shown in Results 1 2 and 24 that for a given machine its feed-

back properties will be different for trigger, set-reset and unit delay

type realizations.

memory element he wants to use before making a study of the feedback

characteristics of a machine.

Thus in general one must first decide the type of

RE FE RE NCE S

E11

E21

E 31

C41

E51

[61

E 81

E91

Ginzburg, A , , and Yoeli, M. , "Products of Automata and the Pro-
blem of Covering", Technion, Report No. 15 (July 1963).

Hartmanis, J , , "On the State Assignment Problem for Sequential
Machines, I. ' I , IRE Trans, on Electronic Computers, EC- 10,
pp. 157-165 (1961).

Hartmanis, J . , and Stearns, R . E . , Algebraic Structure Theory
of Sequential Machines, Prentice-Hall, 19 66 .
Hartmanis, J . , and Stearns, R. E . , "A Study of Feedback and
Errors i n Sequential Machines' ' , IRE Trans. on Electronic Com-
puters , EC-12 (June 1963).

Harlow, C . A . and Coates , C . L . , "On the Structure of Realiza-
t ions Using Flip-Flop Memory Elements", Information & Control,
vol. 10, pp. 159-174 (February 1967).

Harlow, C . A . and Coates , C . L . , ''On the Structure of Sequential
Machine Realizations", Technical Report No . 27, Laboratories for
Electronics and Related Science Research, The University of Texas,
Austin, Texas (July 19, 1967).

Liu, C . L . , "Some Memory Aspects of Finite Automata", MIT
Research Laboratory of Electronics, Report 4 11 (May 19 63).

Stearns, R. E . , and Hartmanis, J . , "On the State Assignment
Problem for Sequential Machines, 11. ' I , IRE Trans. on Electronic
Computers, EC-10, pp. 593-603 (December 1961).

Yoeli, M., "The Cascade Decomposition of Sequential Machines",
IRE Trans. on Electronic Computers, EC-10, pp. 587-592
(December 19 61) .

40

INESSENTIAL ERRORS IN SEQUENTIAL MACHINES*

In papers by Hartmanis and Stearns (Reference 1 and 2) the con-

cept of a n inessential error is defined and some of the properties of in-

essent ia l errors are derived. An error partition I'I

gated. However, it is not shown in these papers how to calculate rl[

is defined and investi- E

E '

The purpose of this paper is to give a n algorithm for determining lip.

First we shall

Definition 1

fi

review some concepts that are given in Reference 1.

A Moore type sequential machine is a quintuple M = ([s] , Ex] , { O] ,

6 , h) , { s] is a finite set called the set of states, {x] is the set of inputs,

{O] is the set of outputs, 6 : { s] x {x] 3 { s] and h : f s] 3 {O].

In th i s paper the only machines we will consider are Moore

machines which are completely specified; that is, the domain of 6 is all

of [s] x 1x1. The next definition extends the function 6 to all sequences

of inputs.

Definition 2

j
1 1

Let M be a sequential machine. Let fx .] be a sequence of inputs

of length j 2 0. We define a function a s follows. Let a,{ s]

--
I

I

41

Definition 3

j Let M be a sequential machine. L e t j 2 0, {xi] b e a sequence

j of inputs and let a s [SI. Then we define h(a, {x,] ') = A(s(a, {x 3)).
1 1 i 1

Definition 4

Let M be a sequence machine.

i) L e t 7 be a partition on { s] . If a , bc { s] , [a] = T [b] means a

and b are in the same set, sometimes called a block, of 7 . Moreover

ACT means A is a block of T .

Example 1. If I s] = {1 ,2 ,3 ,4 ,5] and 7 = (1,2;3,4,5) then

~ [3 1 = 7141 = ~ [5 1 and 7121 # &I.

--

ii) An S. P. partition 7 is a partition in { s] such that for every

a , bs { s] with 7 [a] = T [b] then T 16 (a, x)] = T [6 (b, x)] for every input x.

Definition 5 .

Let M be a machine. An error is a partition 7 where a , bs{s] a b

and a and b are the only two states in the same block of 7

Example 2 . If {SI = { 1 , 2 , 3 / 4 , 5] thenT13 = (1,2;2;4;5).
ab' -__-

Definition 6

An error 7 is a n inessential error iff there exists a finite set

k
1 1 i 1

a b

A s { 1 , 2 , . . .] for every input sequence {x.]" such that h(a, {x]) #
- k h(b, {x.]) if and only if ksA

1 1

I

1 43

Definition 7

L e t nE = 1 {Tab1Tab is a n inessential error].

It is proved in Reference 1 that i f 7 and 7 are inessential

is a n inessential error. This impl ies the next result.

a b bc

error, then T ac

Result 1 (Theorem)

< II then 7 is a n inessential I f T a b - E a b L e t M be a machine.

a b L 'E' error and conversely i f 7 is a n inessential error then 7 a b

We conclude the introductory concepts with a brief discussion

of set systems. It turns out that the set system is the principal con-

E ' cept to be used in determining a n algorithm for computing n

Definition 8

A set system on { s] is a collection p = { A . 1 isA] where A is a
1

finite index set and A . < { s] for every ieA. Also
1-

i) U A = { s]

ii) A . > A . implies that A . = A . for every i , j cA .

A i

1- 3 1 3

Given a set system p I we say p [a] = p[b] for two states a , b if a and b

are both in s o m e set of p . It should be observed that a partition is a

set system.

Definition 9

Le t M be a Moore machine

i) L e t E = {[aIb] la,be{s] and h(a) # l i b)]

ii) L e t K = {[a,b] (a ,bc{s] with a # b]

44
,

Definition 10

i) If 7 and p are set systems on { s] such that 6 (A, x) - < B for

every A s 7 and XG{X] where B is some number of p, then we say 7''p"p.

ii) We say 7 is a n S. P. set system if 7"p1'7.

iii) If 7 is a set system on { s] , we define m (I-) = rZ{p 1 ~ " p " p] . s s

Note that i f Bsm

and XC{X].

(7) and B is not a singleton, B = 6(A,x) for some A G T
s s

i+ 1 i iv) m (7) = m (m (7)) for every integer i - > 1.
ss s s s s

Result 2

If 7 is a n S. P. set system on Is] , then m (7) 5 7 and s s
i+ 1 i m (7) 5 mss(7) for every i - > 1. s s

Proof:

Since 7 has S .P . , 7''p1'7 which implies 7 - < Il{p\7"pt 'p]. This

implies m (7) 5 7. The second part of the result is easi ly proved by s s

induction.

Figure 1 contains an example of these concepts. In Figure 1 7

has S. P. and the m

E = {[l, 21, [l, 41, [Z, 31, [Z, 51,[3,41, [4,Sl) .
operators on 7 are computed. For th i s example

s s

A t this point we turn to the problem of computing fi Thus far E '

all we know is that Il

not a good characterization as far as its computation is concerned.

is a sum of inessential error partitions which is E

45

0 1 x I

4 2 1 cp
1 4 0

Figure 1. Machine A

Result 3 which follows is one of the principal results of th i s paper in

that it gives a necessary condition that II

results when we write [a, b] = [c, d] this means a = c and b = d or a = d

must satisfy. In the following E

and b = c.

Result 3 (Theorem)

q
2 L e t M be a q state machine where q > 2 . L e t p = () the com-

< II and T

-
bination coefficient. If T is a partition of { s] such that

E -
' has S. P . , then for every [a, b] €E such that ~ [a] = ~ [b] we have that

i i
ss ab ss ab

m (T)[a] # m (7)[b] for every i such that 1 5 is p .

Pro0 f:

Suppose there exists [a,bl g E such that ~ [a] = ~ [b] and a n integer

i i
(T ss ab

with 1 < i < p where m)[a] = mss(~ab)[al . This implies that there - -
i- 1 i- 1 exists states a i-1' 'i-1, and a n x. 1 such that m s s (Tab) La i- 1 =

ss (Tab) Lbi- 11
and [s(ai l ,x.) , 6(bi - ,,x,)3 = [a,bl . Continue in this fashion until we have

a b such that m s s (~ a b) [a l] = m (7)[bl]. This implies that there

exists x

{xj] such that [;(a, [x.]), S (~ , { X ,] ~)] = [a,b]. Form the sequence { y Irn 1 1 1 1 i 1

- 1
1 1

1' 1 ss ab

such that [a , b 1 = [6(a,x1), tj(b,xl)l. Thus we have a sequence 1 1 1
i i

as follows.

46

y n = x i f l c n t i -

= x i f n > i 'n n-i

n

L e t A = { r l r = ni, n a positive integer] . If kcA then k = ni which

ni implies [;(a, {x.lni) , ;(b, Ex,])I = [a,b]. Which in turn implies that

- ni h(a, {xi]) = h(a) andh(b,{x Ini) = h(b) . Since [a,b] €E , this implies
1 1

i 1
k k

1 1 h(a, {xi] 1) # x(b, {x.]) for every kcA. Since A is a n infinite set, this

means 7 is not a n inessential error. Thus from Result 1 7 is not a b a b

less than HE, But since ~ [a] = ~ [b] and II > 7 , this is a contradiction

which proves the theorem. \\
E -

The remainder of this paper will be concerned with proving the

converse of Result 3 which is stated in Result 6. The proof of the con-

verse is fairly involved. For this reason we will isolate certain parts of

the proof with the following lemmas.

Result 4 (Lemma)

L e t M be a machine. If a , b e { s] and HE[a] # llE[b] then there

exists a sequence of inputs {x]" and [a , b 1 CE such that [ao,bo] =

[s(a, {xiI1), tj(b,ExiJ1)l for every kcJ where J is a n infinite subset

i 1 0 0

k k
0 0

of {1,2,. . .].
Proof:

Since HE[a] # ll,[bl, we know that 7 is not a n inessential a b
k error from Result 1. This impl ies there exists Ex IO3 such that h (a , Ex,] 1) #

h (b , Ex.]) for every kcJ' where J' is a n infinite subset of {1,2,. .],

i 1
k

1 1

= {ksJ' \[c,d'l =
- k - k L e t a = s (a ,{x i] l) and b k = 6(b,{xi11). L e t J [c, dl k

' 47

[a , b 1 = [c,d] cE. This implies ks J

Since J ' is infinite, this means J

Thus [a , b 1 = [ak,bkl = [6(a,{xi],), 6(b,{x])I for every keJ which is

a n infinite set.

which implies that ks " J
k k [c, dl [c, dIcE [c, dI.

is infinite for s o m e [a , b 1 &. [ao,bol = '0 0 0

k k
0 0 i 1 0

Result 5 (Lemma)

Let M be a q state machine with q - > 2 . Le t p = (;). Further

k suppose there exists {xi] a sequence of inputs with k - > 1 such that

k k [a , b 1 = [6(a,{xi]1), 6(b,{xi]1)1 where a , b ,a, and b are states of

G M . Then there exists a sequence of inputs Cy.] 1 1

1 < G < k a n d - - [aorb,]=[6(a,{yi]1), 6(b,{yi]1)1.

0 0 0 0

where 1 - - < 8 < p and

.t G

Proof:

i) If k - c p then the theorem is satisfied. Suppose k > p. For n

L such that 0 5 n 5 k l e t B n = [[c , d] I c # d , [crd1 = h(a,{xi];) , 6(b,{xi];)l

for s o m e j such that 0 < j 5 n] . Clearly B

O < - - n < k-1 and [6(a,{x.] 1 1

for s o m e j such that 0 < j < n.

cardinality of K is p. This implies that there exists integer r such that

>Bn . AlsoBn+l = B iff

11 = [s(a,{x,],). 6(b,Cxi];)1

n+l - n -
n+ 1 n+ 1 j 1, 6(b,{xiJ1

N o t e that for every n B < K and the
n- - -

= B where 0 < r < p- 1. L e t r be the minimum such r and let m in - - Br+l r

d l = r + 1. T h e n l < t l S p a n d B G = B This implies that there
m in - 1 &,-I*

Note that p - 1 > L1 - j 1- 1 1

k l = k -(Al-j1), Then k > kl 2 1. Form the sequence {x i, 1 jkl 1 as

follows. L e t

> 1 and k - (4, - j) > p -(Ll-j l) 2 j , 2 0. Le t -

, 48

Thus {xi, l)F1 is a sequence of inputs such that 1 < k < k and
- 1

ii) If k l 5 p, then the l e m m a is satisfied. If not, repeat step i)

and get a sequence {x
k

6(b, { X ~ , ~] ~ ~) I = [a , b 1. Continue in this manner until for s o m e k . we

have k . < p. L e t & = k , . Then the sequence {xi, j)!’il = {yi]i=l satisfies

the lemma. 11

jk2 where 1 < k < kl and [6(at {xi,2]p2)l i , 2 1 - 2

0 0 1

1- I

The next result is the converse of Result 3. I t s proof follows

easi ly from the two preceeding l e m m a s .

Result 6 (Theorem)

L e t M be a q state Moore Machine where q - > 2 . If T is. a S. P.

partition on { s] and if for every [a, b] e E such that T [a] = T [bl we have

49
I

i i
E '

that m s s (~ a b) [a l # mss(~ab)[b] for every i such that 1 - - < i < p then - <

Proof:

Suppose 7 is not less than n Then there exists a , b such that E '

~ [a] = ~ [b l and llE[al # nE[bl. From Result 4 this implies that there

exists a sequence of inputs { x

k k
[6(al {x.]), 6(b, {x.])I for every ksJo a n infinite subset of { 1 , 2 , 3 , , . . I , 1 1 1 1

Let k be the minimum element of J 1 0' ss 0

mk1(7)[b 1 which implies T[a 1 = T[b 1 since 7 > m k l (T) from Result 2 .

L e t k be the minimum element of J - {kl], Then [aOl bo] = [6 (a, {xi] 12),

and [a , b 1 s E such that [ao,bo] = i 1 0 0

This means that mkl(T)[a 1 =

s s - s s 0 0 0

k
2 0

of length k2-kl such that [aorbJ = [6(ao, { x ~] ~ : + ~) , k 6(bor { ~ ~] ~ ~ + ~) l .

L
i 1 i 1 ' From Result 5 there exists { y]' such that [ao.bo] = [6(ao,{y]),

L L

E and ~ [a 1 = ~ [b] this is a contradiction. 11
6(bo,{yi]l)l and 1 cts p. This implies [a ,bo] m (T 1. Since

[a ,b 1
0 ss aobo

0 0 0 0

Results 3 and 6 imply the following Theorem which is a n algorithm

E ' for finding IT

Result 7 (Theorem)

L e t M be a q state machine with q - > 2 . L e t F = {T 17 satisfies

i and ii below].

i) 7 i s a n S . P . partitionof { s] .

50

ii) For every [a,b] CE such that ~ [a l = ~ [b] mi (I-

)[bl when 15 i - < p. Then there is a largest partition in F and

>[a] # ss a b
i
ss a b m (I-

th i s partition is ll

Proof:

E '

From Result 3 llE eF . If T C F , then I- I3 from 6. 11 E

Therefore to compute II: examine the S. P. partitions of [s] beginning E

with the largest ones. Nex t check these partitions for property ii)

E '
above. The largest partition which sat isf ies ii) is ll

We conclude th i s paper with some examples of Result 7 . Con-

sider machine A in Figure 1. The only s. P. partitions are those in the

figure. We compute F. Clearly ,d the zero partition is in F. Consider
---- 1 -

I- = (1 ,2,4,5;3) . No te that [1,21 G E and 1-11] = 1-12]. rnss(Tl2) = (1;2;3;4,5),

4 ---_ 3 ---_ 2 m (I - ~ ~) = (1,4;2,4;3;5), m (T ~ ~) = (2,4;2,5;3;1) and m (I - ~ ~) = ss ss s s
5 4 l -----

(3;2,4;2,5;1,2;4,5). Since p = (2) = 1 0 and [1,21 E m (I - ~ ~) , th is ss

implies T B F . Thus F = [$] and ll = 8.

Consider machine B in Figure 2 . A l l the S. P. partitions are given

E

1
ss 45

in the figure. We again want to compute F. Since [4,5l s E and m (I-)C41 =

m (I-)[SI, clearly IcF. Consider I- The only states a , b such that

1-,[a1 = ~ [b l and [a,bl €E are [[1,31,[2,31,[3,41]. Consider these pairs.

1
ss 45 1'

1 i m (7 3) = ,d which implies that m (7) = 8 for every i. m (7) = ss ss 13 ss 23
2
ss 23 ss 23

--__ ----
() = (1,2;1,3;4;5). Since m (I-) = m (7), (1,2;1,3;4;5), mss I-23

we can stop. m ss (I- 34 =.(2,4;1,3,5) , mss(I-,,) = (1,4,2;3;5), m ss (I- 34) =

2

3 -__- 2 ---

(2,4;1,3;5) and again we can stop. By noting that state pairs [1 ,3] , [2 ,3]

Inputs output

0 1

2 1 0

1 3 0

2 1 1

4 3 0

5 2 1

Figure 2 .

-
T 2 = (1 ,2 ,3 ,5 ;4)

T 3 -__
T 4 = (L2 ,3 ;4 ;5)

= L 2 , 3;4,5)

Machine B

i i i and {3 ,4] are not i n the same block of m (I- 13) , m (7) and m (T) s s s s 2 3 s s 34

respectively for any i we conclude that T eF. Since there can be no

other partitions larger than T

1

1 1 in F , th i s implies that T = RE.

Reference s

111 J. Hartmanis and R. E . Stearns (1966), Algebraic Structure Theory
of Sequential Machines, Prentice-Hall.

E21 J. Hartmanis and R . E . Stearns (1963), "A Study of Feedback and
Errors in Sequential Machines , IRE Trans. on Electronic Computers,
EC- 12.

E31 J . Hartmanis (1961) I "On the State Assignment Problem for Sequential
Machines, I" , IRE Trans. on Electronic Computers, EC- 10 .

REALIZATION OF SEQUENTIAL MACHINES

WITH THRESHOLD ELEMENTS

INTRODUCTION

Sequential Machines

A finjte- s ta te , synchronous, sequential machine consis ts of three

finite s e t s and two functions, The three sets are the input set I, the state

set S, and the output set 0. The two functions are the next-state function

fs and the output function f . Both functions are defined on the set of 0

state-input pairs, SxI. Their ranges are respectively S and 0.

In order to realize a machine, binary codes are f i rs t assigned

to each of the inputs, states and outputs. The functions which ass ign

the binary codes a re called assignment functions. They are one-one.

The assignment function for the input set is denoted by A . Thus we I

I n
have A : I 4 {0 , 13

the assignment functions As: S 4 {0 , 11 n2 and A': 0 3 {O, 11 n3. The

set&= (A , A , A] is called a n assignment.

1. Similarly, for the s ta te and output sets, we have

I S 0

Two functions are induced by the assignment of binary codes.

As The coded next-state function, f , maps the ordered pair consisting of

S the codes for S . and I , onto the code for f (S , , I ,) , This s a m e pair is

0 A0 mapped onto the code for f (S. ,I ,) by f , the coded output function.
1 3 . 1 1

1 1

The induced functions are defined forrnally by the following two equations:

A S *O S The tables for f and f are obtained from the tables for f and

0 f by replacing the inputs, states and outputs by their codes.

AS T h e component f u n c t i o n fk of t h e coded next -state f u n c t i o n

i s c a l l e d t h e k-th s t a t e - v a r i a b l e f u n c t i o n . The . componen t
4 01

' f u n c t i o n f i s c a l l e d t h e k t h o u t p u t - v a r i a b l e f u n c t i o n . k . .

Of primary concern is the behavior of a sequential machine; ' The '

behavior is the response or output sequence due to some initial state and

a n input sequence, L e t x , y , z be respectively variables over the code

I S 0 0 sets A (I), A (S) and A (0). If y

x is the code for (t)th term of the input sequence, then the (t)th terms of

is the code for the initial s ta te and

t

the corresponding state and output sequences are given by:

t - 5 3 t-1 t-1
Y - f (Y I x), t L 1 and

t A O t t
= f (Y I X) , tzo.

Objective

In this paper, we are concerned with finding the one-level as-

signments A f o r a sequential machine. Here A is one-level i f every

component function of i" and f is threshold. T o illustrate this, two

threshold gate realizations fo; a sequential machine M I corresponding

40

to two different assignments, a re presented in Example 1.

' 54 i

EXAMPLE 1 - A finite-state,

I = CI,. 12' 13, I&

o= CO,, 02, 03' 04]

fS

s1

-~ s2 s2

s4 s3 ~

I2 I3 I4

Assignment 4,
.%-

f i S ;
f r o o 01 10 11

State-
variable
functions

Output-
variable
functions

synchronous sequential machine M.
/

S =

f0

s1

S2

. s3

- . sq

I1 I2

O,l

O4

O1

O4

O 2 IO3

S A (Sj)

-
00

01

10

11

I3 I4

I A (Ij)

00 01 10 11
SO(ol) =oo

t t A t t-t-t t - t t ,t t-t ,t t-t
i ' y (y , x) = z l = y y 1 2 1 x + y 1 1 2 x x " y 1 1 2 x x + y 2 1 2 x x

, 5 5

00

AS(Sj) 11

01

10

2
-2
-1
-1 !ss& t

1 z 2
- I

' 0 0 000 000 0 0 1 011
I I 11 01 00

.--._ _ _ ._..

11 11 00 ' 101 &.) 11 l o 0 0 000 001 011

10 j 11 10 ; 1 0 :

I s J J
11 0 1 00 ; 1 0 1 01 100 100 001 011

10 011 001 011. 011
- !

!
I

.- --

t
2

:
1

Z

2
0
- I

- t

1'
Figure 1. Realization of M for Assignment A

2 Assignment A

q o o 01 ;o 11 p0I 00 01 11 10

...

L. .
. I

A o (0 3) = 001

Ao(O,) = 100

State-
variable
functions

Output-
variable
functions

- t ,t t -t - z l = y y x 1 2 1

- t t-t t ,t ’ t ,t - z2 = Y1Y2 (x1+x2) -+ x 1 2 x

= z3=YlY2 1
t ,t t

4- x t

t
2 I X

t

-I y 1

56 I
I

2 ’ Figure 2 . Realization for M for Assignment 4

* 0, The obstacle confronted in attempting to force the 7s ’ s and f s
1 j

to be threshold functions is that of characterization. By definition, a

Boolean

ponents

F(P) = 1

function F

and a real

is threshold iff there exist a n n-tuple 2 with real com-

number Tr such that for every point P of the n-cube,

iff 2 - P 2Tr, The gate having the parameters S I Tr then realizes

F. Determination of 2 and ‘f requires use of a lengthy algorithm [l] , 131- 114).

' 5 7
\

Thus the definition implies no characteristics of a Boolean function which

make it readily recognizable as being a threshold function. Because of

this , the following approach s e e m s a reasonable one.

An algorithm is developed which yields all code assignments for

which the state-variable and output-variable functions satisfy a neces-

' sary condition that they be threshold functions, This set of code assign-

ments will contain the set of one-level assignments.
> - _ - . e . - -

A necessary condition that a Boolean function F*be a threshold

L e t F be defined on {0,1] ,
n

function is that of domain 2-asummability.

Then F is 2-asummable i f f for every pair of points P P which map onto 1' 2

zero and every pair of points P P which m a p onto one, the pairs are 3' 4

unequal in sum (i.e. , PI -t P2 # P -t- P 4) , It is well known that if F is

2 defined on the n-cube with n - < 7 , F is threshold iff F is 2-asummable.

3

For n > 7 , it is a necessary condition.

An incompletely specified function defined on the n-cube

is domain 2-asummable if, over its domain, no pair of points which map

onto zero is equal in sum to a pair which map onto one. Clearly this is.

necessary in order that it have a 2-asummable extension to the n-cube.
\

If it does have such an extension, we will call the incompletely speci- '

fied function 2-asummable,

I s 0 . . If A = {A , A , A] is a n assignment for s o m e machine, then A

will be called a n acceptable assignment if each state-variable and

output-variable is domain 2-asummable,

I1

CHARACTERIZATION OF THE ACCEPTABLE

CODE ASSIGNMENTS

. Assiqnment of Codes Accordins to Partition Sets

In this paper a partition of a set T will mean a two block partition

of the set, If a n element t

some other element t

the pair { t l , t 2] . A partition set {n 3
pair of elements of T is separated by some partition nk in Ink]

is contained in one block of a partition n and 1

is contained in the other block of n , then n separates

on a set T has zero-product if every

2
n

k 1
n . If 2 " 2

#(T), where # (T) is the number of elements in T , then a unique binary code

of n digits may be assigned t o each element of T according to a zero-product

partition set {n . For each n define a function A from T into {O, 13

which maps one block of onto 0 and the other block onto 1. Consider

the function A: T -, [O, 13 defined by A (t) = (Al(t), , . . , A (t)).

k] k' k

nk
n

n

That A is one-one may be verified by letting t # t 1 2 '

has zero-product, and s o A (t) # A (t).

Then some

- n
separates {t , t 3 , s ince { n 3 ?tk 1 2 k l k 1 k 2

It follows that A(tl) # A(t2). Hence A is a n assignment function for T &-

fined according to a zero-product partition set {n 3 n
k l of T.

Since for each k, A may be defined in.2 ways according t o n k k' A

n n ways according to {n 3
n

may be defined in 2

1 n
G= {cui] ,@ = { p j] a n d c = {yk] are zero-product partition sets of

I, S, and 0 respectively, An assignment A= {A , A , A 3 is defined

Let d>= {a) @,e] where k 1'
3

n 2

I S 0

58

3 3 - . ' 0
- -. - . - . -. . - - - - . . . - . 'I -AS according to Q = {Q,@,C] i f A , , and A are defined according to a)

@ and e respectively.

n 1' n2' n3 There are 2

to *p, The question a r i ses as t o whether the threshold property of the state-

assignments 4 which may be defined according

variable and output-variable functions is inherent in the set @ of 'zero-pro-

duct partition sets or whether it depends also on the assigrment 4 defined

according to p , The answer is given by the following theorem.

FUNDAMENTAL THEOREM, Let M b e a machine & $= {a, @, e]

. . , . . . i ' :

where a,@3& are zero-product partition sets of I, S a n d 0 respectively.

If 4 1, a& A are two assiqnments for M, both defined accordinq t o

and if 2 k-

4,

*S & ?' are respectively the kth state-variable functions for

* S A S
- 2 k A2, then If & threshold iff f 5 threshold .

PfOOF: It i s e a s i l y shown %hat, t h o
i.

I *

I i ,i' ~. i ' .
algebraic expression for T S is 'obtained fr that for ?' b

2 k 1 k

complementing certain of the variables or else by complementing certain

A S of the variables and then Complementing the result . It follows that If

is threshold i f f F S is threshold '[Z] 2 k

A similar result holds for the output-variable functions. For this

reason, w e may narrow the pfoblem of looking for the acceptable assign-

ments, for some given machine, down to the problem of looking for the

acceptable sets !@ of zero-product partition sets on I, S and 0. Here @

is acceptable if some, and thus any, assignment 4 , defined according

to @, is acceptable.

Accordingly we adopt the convention of calling @ = f CiJa@) 3 , where

@ and

assiqnment.

acceptable assignments.

a re zero-product partition sets on I, S and 0 respectively, a n

Literally, then, we are still concerned with finding the set of
.'

60
Decompos it ion of 2-a summability

In order t o characterize the acceptable assignments .@ , it is expe-

dient t o first decompose the condition of 2-asummability into its three con-

stituent parts. Again, a function F is 2-asummable if no pair of points which

map onto zero is equal. in sum t o a pair of poi'nts which map onto one. The

first constituent of the 2-asummability condition is a pair of sets, each set

being a pair of points. This sfructure will be encountered in situations when

the parent set is other than the n-cube. Variations of the structure, such as

that in which the points are not all dist inct , are a l s o encountered. The

following definition, concerning the first constituent of 2-asummability, is

thus necessarily vague as t o the parent set and as t o the relationship between

the components of the structure.

61

DEFINITION I. Le t T be any set with tk in T , k = 1, . . ,
4. The pair of sets, h = { f t l I t 2] , {t3,t43) , will be called a T set-pair

and denoted by (t lI t2;t3,t4).

The notation is not unique in that there are eight such symbols,

all representing A. The modifier T is used to indicate the parent s e t . The

sets { t l I t2] and Et3, t4] are called the blocks of h while the points t l , t2,

t and t are called the components of A , Each block of a set-pair always

has two distinct components even though they may not be distinct elements

o f T . Forexample, { { 0] , { 0 , 2] } maybewri t ten (0 ,0 ;0 ,2) (or i n a n y of

the other three permutations: (0,2; 0,O) , etc.) or may be abbreviated by

3 4

(0; 0,2). Regardless of how it is written, we will speak of it as having

fourcomponents . t 1 l . 2 t , t 3 , t 4 where’{{tl,tz],{t3,t4]}={ {O]t{Ot2]} A

set-pair whose blocks are not disjoint will be called trivial.

We proceed with the decomposition of 2-asummability by making a

definition concerning its second constituent, the equal sum property,

DEFINITION 11. If T C_ { O , l j n , i.e. if T is a’ subset of the n-cube,

and if h = (t , t ;t , t) is a T set-pair for which t I- t = t -t- t then h is

said to be a, (equal sum).

1 2 3 4 1 2 3 . 4‘

An example is obtained from M , the machine of our example. For
* A1 S I Assignment A of Example 1 I i f T = A (S) x A (I) , the T set-pair 0 = ((00, 00),

(00,11); (00 ,Ol) (00,lO)) is ES since in summing over either block, we

obtain (0 0 , l l) .

Finally, there is involved in the condition of 2-asummability the

62

-
idea of a function mapping one block of a set-pair onto zero while mapping

the other block onto one. This third constituent of 2-asummability is for-
~.

mdlized in the following definition.

DEFINITION 111. Let F be a function, F: T 3 { O , 13. F induces a

A s a n illustration, consider the example, 8 = ((0 0 , 00), (00, 11);

(00, O l) , (00, l o)) , given of a n ES set-pair, From Example 1, for Assign-

4
mentA it is seen that the state-variable function?' induces 8 A s a remark 2

in passing, i t-will be noted that a necessary condition that a set-pair be

induced by a function is that the set-pair be non-trivial. For example,

P S could not map one block of 8 onto zero and the other onto one if the two t 2

blocks intersected. From the following definition, it will be seen that be-

cause ?' induces the ES set-pair e , it fails to be 2-asummable. Again,

the three constituent parts of the 2-asummability condition are: the set-

2

pair structure, the ES (Equal Sum) property, and the concept of a function

inducing a set-pair. Reuniting these three parts, we have a n obviously

equivalent definition of domain 2 - asummability:

DEFINITION IV, A Boolean function F is domain 2-asummable iff

F induces no ES set-pairs,

The advantage of th i s definition over the first one is that this

definition isolates each of the three constituents of the 2-asummability

63

condition. T o each constituent corresponds a question; the answers will

enable us to effectively characterize the acceptable assignments . .

Three Questions

We adopt the convention of reserving the symbol p for SxI set-

I S pairs. Once a n a s s ignmen tp is chosen and assignment functions A , A

are defined according to zero-product partition sets G,@ on I and S re-

S I spectively, we will talk about the A (S) x A (I) set-pair A(p) as being

the one obtained from i ~ 1 by replacing states and inputs by their codes.

Thus, if -

then

S ' I Given a n A (S) x A (I) set-pair 8 , since the assignment functions are

one-one, there will be a unique SxI set-pair 1.1 such that A(p) = 8. i ~ 1 is

called the pre-image of 8 in this instance.

Question I roughly corresponds to the first constituent of 2-asum-

mability, the set-pair structure over the domain of the function. The

S I . domain of the state-variable and output-variable functions is A (S)xA (I).

Accordingly, we must concern ourselves with set-pairs over this set.

Our concern extends to their pre-images as set forth in the following

question.

I .

QUESTION I. What are the possible pie-imaqes of non-trivial

, 64

S I ES set-pairs over A (S)xA (I)? That is, for what SxI set-pairs p do there

S I exist assignment functions A and A such that A(p) is non-trivial ES?

Question I1 corresponds t o the second constituent of Z-asumma-

bility, the ES property. A function fails to bk domain 2-asummable only

if one of the induced set-pairs is ES. Accordingly, we are concerned

S I only with those set-pairs over A (S)xA (I) which are ES. The first question
. . , . . s i . I - . -

dealt with their pre-images; the next question deals with the assignments

@ involved.
.

QUESTION 11. Given that p 2 possible pre-imaqe of a non-

trivial ES set-pair, for which a s s i q n m e n t s g & A(p) actually ES?

Question I11 corresponds t o the third constituent of Z-asummabi-

lity, the induction of a set-pair by a function. While there may be set-

pairs over the domain of the function which are ES, the function fai ls to

be domain 2-asummable only if it induces one of them, Accordingly, we
s .

must concern ourselves with the induction of set-pairs by state-variable

and output-variable functions.

QUESTION III. Given a n SxI set-pair p , for which assiqnments

@ does one of the state-variable functions induce A(p)?

T o deal with these questions requires some preliminary defini-

t ions and several l e m m a s . The answers to the questions will then take

I the form of three theorems.

Three Theorems

DEFINITION V. Let T, T* be sets with F a function from T into

65

T* and h = (t , t : t , t } a T set-pair. Then h impl ies F(A) with respect

t o F where F(h) = (F(t l) , F(t2); F(t), F(t4)}. Thus F(h) is obtained from

A by replacing each component of h by its image under F.

1 2 3 4

3

There are several instances in which we will have occasion to

employ this definition. In one instance, T is SxI, T* is S (or 0) and F

S 0 is f

(S1 I Iz) t (S I 1,) } for which ?(p,) = (S 1, S3: S2 , S4}

Assignment A , A(p) = ((00, O O) , (0 0 , l l) ; (00, Ol), (00 , lO)) is the A (S)xA (I)

(or f) * An example from Example 1 would be p, = ((S l , I l) , (Sl,14):

Incidentally, for

A1 S I

set-pair 8 which was given earlier as a n example of a n ES set-pair. In the

other instance in which this definition is employed, T is S (or I), T* is

S I { O , l] , a n d F i s A (orA) , A n e x a m p l e w o u l d b e h = (S , S ; S S } .
k k 1 1 3 2 ' 4

dl s From Example 1, we see that for Assignment/\, A (h) = (0,1; 0 , l) which is, 1
incidentally, ES .

DEFINITION VI. Given a n SxI set-pair p, = ((SI , I), (S, , I):
i m I n

(Sk'Io), (St,lp)),the s set-pair, p (p ,) = (sits.; s , S } is the s ta te pro-

iection of p, while the I set-pair p (p,) = (I , I ; I , I) is the input projec-

-- tion of ~1

S 3 k t

I m n o p

Be.fore stating the first l e m m a , it is necessary t o categorize the

different ways in which the components t of a T set-pair h = (t

can be distributed with.respect to the blocks of a partition

t t t) k 1' 2' 3' 4

of T. By the

definition of a set-pair, t . and t . will be regarded as different components

of h even though they may be the s a m e element of T (i. e. t = t.) ,
1 I

i l

66

One and only one of the following must characterize the distribution

of the components t with respect t o the blocks of n. k
. ,

C a s e I. One block of ~f contains all four components t of h ,

Case 11. Each block of n contains a component from each block of h ,

k

Case 111. One block of contains one block of h while the other

block of n contains the other block of h . This distribution is particularly

significant and will be indicated by writing h 5 n.

Case IV. One block of n contains three components of h while the

other block of 75 contains the fourth component of A.

To give examples of each case, let T = {I, 2 ,3 ,4 ,5 ,6] and n =
. .

(2 ,3 ; 4 , 5) are respectively examples of cases I , 11, I11 and IV.

DEFINITION VII. If either Case I11 or Case IV characterize the

distribution of the components of h with respect t o the blocks of n, then

n cancels h . Here again, h is a T set-pair while n is a partition of the

set T.

In the last example, { { 1 , 2 , 3 / 4 1 , 'C5 , 63) cancels both the set-

pairs (3,4;' 5 ,6) and (2 , 3; 4 , 5) . The significance of this definition lies

with the following l e m m a .

LEMMA I. _Let T de a set, F S function from T into {o , 11 a d

- - - . I 0,1] a p a r t i t i o n .of T induced b ~ , F. That .is, 0 is the subset of T con-
- -

taining those elements which F maps onto 0; 1 is the complement of 0).

- -
Then if A = (t , t ;t , t) @ a n y T set-pair, F(X) & ESiff {0 , 13does not 1 2 3 4

cancel A .

PROOF: F(X) is ES i f f F(tl) 3. F(t2) = F(t3) + F(t4) i f f either 1) or 2)

are true as follows:

1) 0 = F(tl)+ F(t2) = F(t) + F(t) or

2 = F(T1) + F(t2) = F(t3) + F(t4) so

3 4

- - 4 that { t 3 k l

of the t with respect to the blocks of { O , 11 . k

is contained in 0 or 1 and Case I characterizes the distribution
- -

2) 1 = F(tl) + F(t 2 = F(t 3) +'F(t 4) so

that {F(tl), F(t2)] = {F(t3), F(t4)] = { 0 , 13 which is the case iff each block
- -

of { 0,1] contains a n element from each block of h = (t l , t2; t3, t4) . That

is, 1 = F(tl) + F(t2) = F(t3) -I- F(t4) iff Case I1 characterizes the distribution
- - . .

of the t with respect to the blocks of E O , 13. k
Thus F(A) is ES iff either C a s e I or Case I1 characterizes the distri-

. . * . ' . . i .,- - - - -
bution of the components of A with respect to the blocks of {0 , 13 iff {0,1]

does not cancel h .

LEMMA 11. Let T be a set and A an assisnment function, A:T+{O, 1In,

where the kth component function ofA & denoted b j A

tion of T i n d u c e d b A

cancels A .

Let fi be the parti- k --

k

k' . _ . .

Then for any T set-pair A, A(h) 3 ES iff no n k" -- --

PROOF: A(X) is ES iff Ak(A) is ES for every k . Apply Lemma I.

Consider now the different relationships which m a y exist between

the components of a set-pair h = (t , t ; t , t) . Writing t = t , i f t , and t
1 2 3 4 i j i j

68

are the s a m e element of T, we may categorize some of them as follows.

4
Case-c. One of the cross-over relationships t = t3 # t2 = t 1

o r t = t 4 # t 2 = t 'hold. E.G., T = { 1 , 2 , 3 , 4] , h = (1 , 3 ; 1 , 3) . 1 3

Case-d. The four components of h are all distinct elements of

T .

Case-s . The four components of h are all the same element of

T. E.G., h = (1,l; 1 , l) or simply (1; 1).

A set-pair h will be called Type-c, Type-d or Type-s depending

on whether Case-c, Case-d, or Case-s , respectively, is the case for

the relationship between the components of h .

LEMMA 111. a h = (tl,t2; t3 , t4) some T set-pair_, then a

necessary a n d sufficient condition that there exist a n assiqnment func-

. - tion A --- for the set T -- such that A(h) i . ES & that h beType-c, Type-d or

Type-s. Moreover, A(h) e ES for every assiqnment function A if h i .

either Type-c o r Type- s ,

PROOF:. The necessity may be shown by supposing that h is

not one of these three types

three of the components are the same element of T. In either case, the

Then either tl = t2 # t3 = t or exactly' ' I F *' 4

four components of h represent two distinct elements, say t and t*, of T .

Le t A be any assignment function. If nk is induced by A it is k'

eas i ly seen that A ' s being one-one implies that [n 3 has zero-product.

Then necessarily 77 separates I t , t*] for s o m e 7~ This s a m e n then

k

k k' . k

63

cancels h and consequently A(),) is not ES. This shows the necessity.

That A (h) is ES for every A if h is either Type-s or Type-c is

immediate. So is the existence of a n A for which A(h) is ES if h is Type-d.

This es tabl ishes the sufficiency.

We are now in a position to deal with the three questions, T o

answer the first , we have:

THEOREM I. A necessary a& sufficient condition that, qiven a n

I S SxI set-pair ,,, , there exist assiqnment functions A a& A such that A (p)

- is non-trivial ES is that

(d, s) , (c, d) , (s, d) , (c, c). (Here the letter in the first position is respec-

be one of the followinq types: (d, d) , (d ,c) ,

tively c, d , or s depending on whether p (p) is Type-c, Type-d or Type-s.

In l ike fashion, the letter in the second position tells what type of set-

pair p,(ci) is .)

S

I S PROOF: Obviously, A(p) is ES iff both A (pI(p)) and A (p (p)) are ES. By

Lemma 111, there exist assignment functions A and A such that A (p (p)) and

A (pI(p)) a r e ES iff ps(p) and p (p) are each one of Type-c, Type-d or Type-s.

S I Thus there exist A and A such that A(p) is ES iff

S
S I S

S
I

I

is one of the following

types: (d d I ‘ (d ; s) , (S A) , (c,d), (d;c), (c ,c) , (s , ~) , (c,s), .or

(s, s). It is easi ly verified that A(p) is trivial if p is one of the last three

types, thus leaving only the f i rs t six.

Theorem I characterizes the possible pre-images of ES set-pairs,

thereby answering the first question. T o answer the second question we

have:

70

THEOREM 11, Given an SxI set-pair p , A (p) & ES for some choice

S I
a&A iff no a . cancels p (p) and no 8 . cancels of assiqnment functions A

I 1 I -- -

I PROOF: The input assignment function A is defined according t o

the zero-product partition set { a 3 on I. Then its component functions

I Ai , induce the set { a 3 . By Lemma 11, A (p (p)) is ES iff no a cancels k I k

pI(p). Likewise, A (ps(p)) is ES iff no p . cancels p' (p) Thus A(w) is

ES iff no a cancels p (p) and no p , cancels p (p) .

k

S
I S

k I 3 S

Given a n SxI set-pair the question of which assignments =

{~,@,e 3 is A(p) a n ES set-pair for is answered by Theorem 11. By Theorem

I1 it can be asser ted that A(IJ>) is ES as long as a contains no a which

cancels p (p) and,@ no fj which cancels p (p) . To answer the third
I S

question we have:

THEOREM 111. Suppose ?(p) 5 pk for some SxI set-pair p and '

S some partition fj of S . Then for every pair of assignment functions A k - -
I S

k and A such that A defined according t_o pk, the kth state-variable - --
" S

k function f induces A (p) .

PROOF: From the definition of the state-variable functions, it

b . S s s A S A S follows that f (A(p)) = Ak (f . (1 1 1)) . Now f induces A(p) iff f k(A(4) k
s s = (O i l) iff Ak (f (p)) = (o i l) .

S
k k k

- -
Now write p = { O , 1 3 where -d is the block of p which A maps

s s -
onto zero and 1 is the block mapped onto one. Ak (f (p)) = (0; 1). i f f , .

7 1

- - S one block of f (p) is contained in 0 and the other block in 1. But this is

indicated by writing f (p) 5 { O , 1] = p, induces A(p) iff f (p)
S - - S Thus f k'

5 pk*

An identical result holds for the output-code functions, i. e , ,
0 f

ment @' = {cx,B)C] for which.@ contains p, 2 f (p) one of the state-variable

functions induces A (p) where As is defined according to p . Thus the third

induces A(p) iff f (p) 5 yk. Given a n SxI set-pair p, for any assign- k
S

k

question is answered.

A Theorem Characterizinq the Acceptable Assiqnments

Let u s extend the notion of set-pairs implying other set-pairs to

set-pairs implying partitions. Let h , cr be respectively I and S set-pairs;

let pI y be respectively partitions of S and 0. Then h 3 p (h 3 y) iff there

exists some SxI set-pair p which is (s, d) or (c, d) and for which h = pI(p)

and ?(p) 5 p (f (p) 5 y) .
p which is (d , s) or (d ,c) and for which D = p (p) and f (p) 5 p, (f (p) ~ v) ,

Finally, (0, h) 3 p, ((~ , h) 3 y) iff there exists some SxI set-pair p which is

'(dl.d) and for which 0: = p,(p) and h = pI(p) while ?(p) 5 p, (f (p)

S i i n i l a r l y , 0
3 p, (U 3 y) iff there exists some SxI set-pair

S 0
S

0
y).

The following theorem characterizes the acceptable assignments,

s o THEOREM IV, Let M = (I, S , 0 , f I f) be a machine. Then a n

assiqnment = {a,@,e] & a i a c c e p t a b l e assiqnment for M iff 1) for

0
every p , &I @

set-pair which & (c , c) . 2) For every 8. b k 3 Z d y in I k -

y i . I neither ?(p) < p , nor f (p) s y i for'any SxI

, X 3 pj g-
I k J-

72

A 3 y for some I set-pair h o n l y i f a c o n t a i n s some a. which cancels h . k - - 1-

3) for every p . i n B a n d y h e I (sG* p j - or 0 3 yk&r some S set-pair 6
3 -

only if &3 contains some p . which cancels 0. 4) for every p , in@ a&
1- 3

in t , (a l l) 3 p . gr (a l l) * yk&r some S set-pair 5 and some I a-
yk - 3

pa i r h only if either contains an a which cancels h gr LfB contains 2 h-

p , which cancels a.
1-

PROOF: To show the necessity, let @ be acceptable and show

that 1) I 2) , 3) and 4) must hold. Since @ is acceptable, each state-

variable function f , and output-variable function f
A S A0

3 k is domain 2-asumm-

able and thus induces no ES set-pairs.

T o show that 1) holds, let p be (c, c) . Then ps(p) and p,(p) are

S I both Type-c and so A (ps(p) and A (p (p) are both ES. Consequently A (p) I

is ES and thus induced by no state-variable or output-variable function.

0 By Theorem 111, this happens iff ?(p) 4 p j and f (p) # yk for every p , in

k 1 k

3

and y i n t. Thus, i f p is (c,c), for every p . in and y in e ,
S 0 neither f (p) 5 p . nor f (p) 5 yk.

3

TO show that 2) holds, let h be any I set-pair. Suppose that

A 3 p j or

some SxI set-pair p which is (s, d) or (c, d) and for which A = p (rl) and

either fs(p) 5 p . or f (p) 5 yk. Since ps(p) is Type-s or Type-, A (pS(p)

is ES. By Theorem 111, either f or?O induces A(p) . Then A(p) must not j k

be ES. Since A (ps(p)) is ES, A (pI(p)) must not be ES. By Theorem 11,

* yk for some p . in Jj'3 or for some y i n e . Then there exists
3 k

I
0 S

3
r - S

S I

then, a cancels pI(p) = A for some CY, in Q. Thus, if h is ,some I set-pair, i 1

I

- 7 3

for every p , in @ and y in C I h 3 p j or 1- yk only if ci contains some 01 1 k i

which cancels h .

Part 3) may be shown t o hold by a n argument which is the

dual of that for 2) while the argument for 4) is a composite of those

for 2) and 3).

To show the sufficiency, let l), 23, 3) and 4) hold and show that

must be acceptable. is acceptable iff each state-variable and

output-variable function is domain 2-asummable iff none of these functions

induce an ES set-pair. Let B be a non-trivia1 ES set-pair over the domain of

these functions. Then, by Theorem I , there exists a n SxI set-pair p which

is one of (d ,d) , (d, s),' (d ,c) , (c ,d) , (s ,d) or (c,c) and for which A(p) = 8 .

. s
If p is (c,c), then by l), for every B , in j$ and y k in C , neither f (p) 5 p j

3

1
If p is (c,d) or (s ,d) , l e t A = pI(p). Since A(p) is ES, A (A) is ES.

By Theorem 11, no QJ cancels A . Then by 2) , neither h 3 B , nor X 3 y k for
i 3

Thus, no matter what type of SxI set-pair p I neither ?(,) 5 p j
0 A0

k
nor f (p) 5 yk for any p , or y

induces A (p) = 8 for any f

variable function induces a n ES set-pair; hence each is domain 2-asumm-

By Theorem 111, neither fS nor f
3 k' j
-s A0

or f k . Thus no state-variable or output-
j

able and f? is acceptable.

Having characterized .the acceptable assignments P , we now

-- _-_ - outline a procedure for finding them.

AN ALGORITHM YIELDING THE ACCEPTABLE ASSIGNMENTS

The algorithm consis ts of the following steps.

S 0 Step 1. Compute the implicants f (p) and f (p) for each (c , ~) , (d , d) ~

(d,c), (c,d), (d , s) or (s ,d) SxI set-pair p .

Step 2 . Compute the set of acceptable partitions,
c

D = {n is a 2-block partition of S or of 0 such that

0 or f (p) for any (c, c) S ~ I set-pair pj
\

Step 3.

a' s , and (0,X)' s implying n (here

Compute L for each ~r in D where L is the list of all A' s l
IT Tr

and Q are respectively type-d

I and S set-pairs.)

Step 4 . Compute K for each type-d I set-pair where K is the

list of all input partitions 01 which cancel 1.
x x

Compute K for each type-d S set-pair 0 where K is the l i s t
a CT

of a l l state partitions p in D which cancel g.

Step 5. Compute M for each pair p of inputs where M is the list

of all input partitions a which separate p.

P P

Compute M for each pair p of states where M
P P

is the list of

all state partitions fj in D which separate p.

Compute M for each pair p of outputs where M
.P P

is the list of

all output partitions y in D which separate p.

Step 6.

Ais 1. The discriminant function is defined as follows. Le t @ =

Compute the points p for which the discriminant function

74

75

{a e] where a is a set of input partitions, E3 is a set of state

partitions in D, and e is a set of output partitions in D . Let y be

) /

t h e s e t o f a l l s u c h p . DefineX : y + { O , l] b y X (p) = l i f f a i n
cy (Y

Q . Do this for each input partition cy. Similarly, for each state

partition p in D and for each output partition y in D, define Y :y-+{O, l]

and Z :y-+iO, 13 by Y (p) = 1 iff fj i n & and Z (p) = 1 i f fy in e .
l.3

Y B Y
Let P P P be as follows: 1' 2 ' 3

(CX,) where the product is taken over n
""' = cy in M all pairs p of inputs I I J k

P1 =

P * . j' k '

where the product is taken over
all pairs p of states S . , S

n
J

P =
2 {S.,Sk] = P

P 3 k '

(C +) where the product is taken over - II
y in M a11 pairs p of outputs O. , 0

P I k '
p3 - COj,Ok] = p

Let P q , l-r P5, l-r Prr be as follows for each in D.

(C X ,) where the product is taken over n
in L P i =

'IT cy in K(A) all I set-pairs in L .
l-r

(C Y p) where the product is taken over n
all S set-pairs 0 in L . "; = 0 in L

Tr
l-r p in K(o)

I C X, 3- C Y p where the product
cy in K (i) p i n K(o) is taken over all

n P; =
(otx) in L

l-r
(Q , X) ' S i n L .

l-r

Define Al, 02, and A all from y into lO,l] by:

, 76

To show that the algorithm actually yields the acceptable

assignments, it is sufficient to show that A (p) = 1 iff @ is a n

acceptable assignment. It is eas i ly shown that A , (p) = 1 iff @

is a n assignment (i.e., iff a,B,G have zero-product).

T o see that A,(83) = 1 iff @ sat isf ies the terms of Theorem

IV, suppose that A (P) = 1. Since & UeL_ D, part 1) of Theorem 2

IV is automatically satisfied. If 3 fj in b, is in L . A2(D) =1

means? -t P' Pp Pp = 1. u = 0 s ince p in & . Thus P:= 1 and

so

B

p 4 5 6 B ' = 1. Thus CL contains a n 01 which cancels A. Together
CY in K (i)

with a dual result for the output partitions, this means part 2) of

Theorem IV is satisfied. The argument that part 3) holds is analagous

while the argument that part 4) holds is a composite of those for 2)

and 3).

Conversely, i f 6) satisfies the terms of Theorem I V , A,(p)

m a y be shown to be equal to 1. This may be done by showing

Tr -
Y + PI * P y * P to be equal t o 1 for every 7~ in D. If is not in

Tr 6

63 Uc , P = 1. Otherwise 6) ' s satisfying parts 2) , 3), and 4) of

4, P:, and P" are each equal t o 1, Theorem IV imply respectively that P"

Since A,(p) = 1 iff P is a n assignment and A (6 >) = 1 iff @

Ti

6

2

satisfies the terms of Theorem IV, A (p) = 1 iff is a n acceptable
*

assignment. The algorithm' then does indeed yield the acceptable

assignments.

Execution of the algorithm is partially illustrated in Example 2 ,

using the machine of Example 1. Being rather lengthy, the first three

s teps are omitted here. However a n example appears in [21 which

i l lustrates execution of the algorithm for this same machine. More-

over, the three s teps are now discussed here in greater detail and

from this discussion, it is hoped that the reader will be able to con-

struct these steps for himself.

Step I) may be most efficiently accomplished by first computing

the images of the blocks b where a block is a pair of elements of SxI.

The images f (b) ol the blocks are then combined to obtain the impli-

and p = {b b 3 are two SxI set-pairs, can ts f (p). If pl = {bl , b2]

f (pl) can be obtained by combining f (b) with f (b2) while f (p) can

be obtained by combining f (b) with f (b). In this way computation
1 3

of f (b) twice is avoided.

S

S
2 1' 3

S S S S
1 2

S S

S
1

S 0
It is convenient t o display the implicants f (p) and f (p) i n

tables , a table for each type of set-pair 1.1. L e t t and t . belong to

ccr d , s] . Then the (t , t .) implicant table has a column for each

Type-ti I set-pair and a row for each Type-t S set-pair 0. The

entry in column and row is a list of all non-trivia1 f (p)' s and

f (p) ' s such that p (p) = 0 and p,(p) = A . Thus the (t , t .) table

displays all nan-trivial implicants of (t , t.) set-pairs p.

S 1

s 1

S
S

0
S s 1

s 1

Step 2) is accomplished simply by l ist ing all state and output

partitions. Each partition n is then compared with each implicant s

in the (c, c) implicant table. n is rejected i f - > 6 for some 6 . The

remaining partitions make up the set D of acceptable partitions.

Step 3) is accomplished most easi ly by first making a list for each

Type-d I set-pair of all partitions in D implied by A. The list for is

formed by comparing each partition in D with implicants in column 1 of

the (c, d) and (s, d) implicant tables formed in step 1. A list for each

type-d S set-pair 0 of all partitions in D implied by is formed in like

fashion. That is, each partition in D is compared with the implicants i n

row 0 o€ the (d, c) and (d, s) implicant tables. Finally, a similar list is

formed for each pair (0,X) by comparing the partitions in D with the im-

plicants in row 0 and column of the (d, d) implicant table.

The lists for the A ' s , 0' s, and (0 , ~) ' s are then inverted to form

the L ' s, that is, A is in L

implied by A .

iff appeared in the list of partitions n n

Example 2 illustrates partially the execution of the algorithm,

Again, the machine is that of Example 1. The input partitions, the set

D obtained in Step 2 , and the lists L obtained in Step 3 are first l isted. n
EXAMPLE 2

Input Partitions

Acceptable Output Partitions

Type-d I set-pairs

“1 = ~slIs2;s3/s4)

O2 = (.S1 I s3;s2 / S4)
“3 = (s11s4;s2/s3)

80
I

The L i s t s K(X) Constructed for Each Type-d Set-Pair 1 And Containing

all Input Partitions a Vvhich Cancel And The L i s t s K(B) Constructed

For Each Type-d Set-pair 5 And Containing A l l State Partitions B Which

Cancel p .

'1'3 '1'4 '2'3 -- '2'4 I3'4 - '1I2 -
2

3

CY

CY

CY4

5 CY

3 CY

CY4

6 CY

'

2

5

6

CY

CY

CY

2

4

7

CY

a

CY

2.

3 3

5 CY6

7 7

CY

Q CY

Q

CY CY

'2'3 - '2'4 - ' gS4 - ' lS2 - ' 1'3 1'4 -

T h e D i s c r i m i n a n t F u n c t i o n 81
I

= I (x +x +x +x) (x +x +x +x)(x +x +x +x) (x +x +x +x)
2 3 4 5 1 3 4 6 1 2 4 7 1 2 5 6

, I

Using the Boolean Law, X (X+Y) = X, we can simplify the product of sums

expression for to read:

T h i s t y p e of s i m p l i f i c a t i o n c a n be a c h i e v e d for A,

by ornitrifig the €actor corresponding t o (D., h .) if the list for B . (or Y) con;

tains, also, either 0 . or h Thus we have:

1 1 J k

1 j '

A 2 = rY 1+ (yl+y3+y4+y5) (x3+x4-+x5+x 6 + ~ 7) I c yZ+ (X 1 + ~ 4 + ~ 5 + ~ I

c Yq + (Y +Y $Y4+Y5 11 c Y5 + (X1+X4+X5+X6+X71 (X3+X4+X5+X6+X7) 1

c Z 1 + (~ 1 + ~ 4 + ~ 5 + ~ 6 + ~ 7) ~ . r Z 2 + (~ 1 + ~ 4 + ~ 5 + ~ 6 + ~ 7) (Y 3 + ~ 4 + ~ 5) ~

cz + (x +x +x +x +x) (x +x +x +x +x)IcE4+(x1+x4+x5+x6+x7)1 3 1 4 5 6 7 3 4 5 6 7

, 8 2

Forming the product A= A A2, and simplifying we obtain: 1

3.x 3-x -t-x e x)(x 3-x 3.x x +x x +x x 3.x x >(x 3.x +x x ('1 3 4 5 6 1 2 4 5 4 6 5 7 6 7 3 7 1 2 A=

L e t 5 be the set of all combinations of values Q for the X.(@)' s,
1

Y.(@)f s and Z k (p) ' s such tha t A(@') = 1, If Q is in 1 , writ6 W(Q) for
3

the total number of Y. ' s and Z ' s which equal 1 for Q. If Y.(p) = 1 for

Q, then @ contains p , and if 4 , defined according to ,@, is one level,
3 k 3

3

there will be a threshold gate in the corresponding realization for M which

computes the jth digit of the next state for M . Similarly, i f Zk(p) = 1 for

Q, t h e n c contains,

there will be a threshold gate in 'the corresponding realization for M

which computes the kth digit of the present output. Thus W(Q) equals

the number of gates in the realization for M if4 is one-level where 4 is

and if4 , defined according t o e , is one level,

any assignment defined according t o p and Q = (X 1 , . , . ,Yl(p),. , .Z(p), 1

To find the minimum one-level realization, it is clear that the
-

optimal procedure from this point is to exhaust 1,the search process " . '

ordered by the rule: Q, is considered before Q iff W(Q1) 5 W(Q2), 2 -
- /

Whenever a point Q of 1 is encountered for w h i c h 4 , defined according to

one-level realization will have been obtained for M ,

The most expedient form for A , then, is that form from which the

., a3

-
2 points of 1 may be m o s t readily obtained in serial fashion, Q before Q 1

iff W(Ql) _< W(Q2) . This, in general, may be the minimum-sum-of-pro-

ducts form, obtained by expanding the product-of-sums form and applying

the Quine-McCluskey Procedure. For the discriminant function of Example

16, it is unnecessary to proceed this far. The form given in Example 3

is adequate.

EXAMPLE 3 A Terminal Form for A

A (P) = [X1X3+X1X6+X2X3X4+X3X4X5 + X3X4X6+X2X3X5+X3X5X7+X2X3X6

+X2X3X7+X3X6X7+X2.x4X7+X4X6X7 + x4x5x7+x5x6x7+x1x2x4
+x1x2x5+x2x4x5+x2x5x6+x4x5x6] z3 cz l.zzz3Y 1Y2+(z 1z2
+z1z4+z2z4) (Y1Y2Y3+Y2Y3Y4+Y1Y2Y4+YlY2Y5+Y2Y4Y5+YlY3Y5

-t Y1Y4Y5+Y3Y4Y5)l

From Example 3 , it can be seen that if Q is the combination of

= x = y l = y =zl = Z = Z = 1 with the remaining variables values: X 1 3 2 3 4
0, then Q c 1 and W(Q) W(Q'> for every Q' E 1. I f p is 'the assignment

employs as few gates as possible. Hence = [[al,a3] , {p,, p 2] , {yl,

y3, y,] 3 , is acceptable and may as well be considered f i rs t . It has a

one-level assignment defined according to it as evidenced by Assignment

&of Example 1 . Should s o m e other assignment, defined according to p,
, . ,. .. i ...-

have been chosen, nothing would be lost . By the Fundamental Theorem, -

it is also one-level; moreover, it results in the same number of gates.

IV

A D D I T I O N A L C O N S I D E R A T I O N S

This paper concerns itself with finding the minimum one-

level code assignment for a sequential machine. To illustrate the

s i z e of the problem, there a re 140

ments A for the machine M of Example 1.

3 different irredundant assign-

(An assignment func-

tion A: T->{O,l)n is redundant i f there exists k , 16 k < n , such tha t ,

while masking the kth component, A (t) 4 A (t) for every t -$ t 1 2 1 2 '

Thus the component function A is redundant, An assignment 4 k
I S 0

is redundant i f any of A I A , or A a re redundant .)

The Fundamental Theorem greatly reduces the s i z e of the

problem a s follows. Define a r e l a t ioneby 4,%A2 i f f both Al, 4,
same

induce thebset p= { G ,@,e). The Fundamental Theorem s ta tes that

hie f i2 implies that is one-level i f f A is one-level. Accord-

ingly we may look instead for @ for which a n arbitrary 4 defined

according to Q', is one-level.

formidable. There a re 19 different assignments for the machine

The s i z e of the problem remains

3

M of Example 1.

The algorithm further reduces the problem. The discrimi-

nant func t ionA yields the set of acceptable assignments . To

il lustrate how this reduces the number of assignments which must be
. .

considered, consider the discriminant function for the machine M in

84

85

its form given by Example 3 . The first factor has 19 terms; the second

can be expanded to 2 5 terms. Thus the number of points for which A i s 1

and the number of acceptable assignments is 19.25 = 475. Moreover,

having the minimurn-sum-of-products form allows us to order our search

process so that, ingeneral , all the acceptable assignments will not have

t o be tried.

Domain 2-asummability, 2-asummability, and linear separa-

bility are synonymous in a very special c a s e . L e t n n be positive 1' 2
s o integers with n 3. n < 7 . Consider a machine M = (I, S, 0, f , f) . 1 2 -

If the cardinalities of I and S are n and n respectively, then the state- 1 2

variable and output-variable functions are fully specified for any

{a @ for which the cardinalities of a a n d a are n and n respec-
I J 1 2

=

tively. Since they are fully specified, domain 2-asummability and 2-

asummability coincide. Since they are functions of n 3. n 5 7 vari-

ab les , 2-asummability and linear separability coincide.

1 2

Thus @ is

acceptable iff is one-level, This situation characterizes the machine

M of Example 1 and the assignment

fined .
by which Assignment ALwas de-

State Splittinq

In closing, it seems reasonable to comment on the s ize of the

class of machines having one-level realizations. It appears impossible

to give a positive characterization. However, it is easy to characterize

a certain subclass of those machines which do- have a one-level

86

s1

s2

s3

s o realization. L e t M = (I, S, 0 , f , f) . If for some i, j , m, n we have S = k

-

2
II s1

S S S S
f (sitIm) = f @ . , I # f (Sit’ln) = f. (S. , I) = S then M has no one-level I n J m 6

realization. To see this , let p, = ((S . , I)(S ,I); (S . , I), (S , , I)) . Then

p is (c, c) and f (p,) = (S ;S } . Since Sk # S some state partition p in

i m j n i n I m
S.

k 6 6,

@ will have to separate S and S for any assignment.
k 6

- s Then f (p) 5 p and so @ is not acceptable by Theorem IV, part 1).

Thus M has no acceptable assignments and thus no one-level assignments.

There is a way around this difficulty if we are willing to accept, in

lieu of the original machine, a machine internally different but with identi-

cal external behavior. To illustrate, consider the machines of Example 4 a

EXAMPLE 4 - Two Equivalent Machines

M ,

I2

M2

2 f 0 I I1 I2

s1

s2

s3

It may be shown that M and M are outwardly equivalent.

Inwardly they differ as evidenced by the assignment in Example 5.

1 2

EXAMPLE 5 1 - An Assignment for M and the Resulting Realization
/ - 2

F S I 0 1

2,S(y’ ,Xt) = x t 3- y1 t - t y 2

t
X

yo/ 0 1

2 ”
Figure 3 A one-level realization of M

From this example it is seen that M, has a one-level threshold
L

realization. For any assignment for M there must be some p 1
S which separates [S S 3 . Then B 2 (S ;S) = f (p,) where p, is 1‘ 2 1 2

in

the

of

8 7

Theorem IV,

zation; thus

@ fails to be acceptable and so M has no one-level reali- . .
1 .

M and M differ internally in this very significant respect. 1 2

88

M is said to be equivalent t o M and is said to be derived from 2 1
\ S M1 by splittinq s ta te f (S I) . The origin of the term state-splittinq 1 2' 2

becomes more obvious when viewing machine behavior in terms of s ta te

graphs. It is easi ly seen that by successively splitting s ta tes , starting
- _

with any machine M a machine M equivalent to M may be obtained 1' n 1

which enjoys the following property. N o s ta te occurs in more than one

column of M I s state table, The significance of this observation lies n

in the following Theorem.

s o THEOREM V . Le t M = (I ,S ,O, f , f) be a machine for which

- I&. (i.e. no s ta te appears in more than f (~ " 1 ,) = f (s ~ , I &) only if I - S S
1 1

one column of M ' s state table.) Let p k be the partition { $3 k],S -Es,] 3
of S and let @ = {pk l Sk in S I . If U and 'c are any zero-product pariition-

sets of I and 0, and 4 is defined according to @' = { G,B,e] I then the

state-variable functions for 4 are each domain 2-asummable.

PROOF: Show t h z t a s a t i s f i e s t h e t e r x s o f Theorem IV.

The importance of this theorem is not in that it offers a practical

alternative when the algorithm fails (A=_O). Instead the theorem merely

1'
makes it possible t o asser t that if the algorithm fails for a machine M

89

a n equivalent machine M may always be found for which there exists a n

assignment which is acceptable with respect to the feedback logic. Un-

2

fortunately nothing can be done about the output logic in the event that

f"(p) = (oj:ok)# 0. # Ok'
3

gained by splitting outputs

for some (c, c) p . There is nothing to be

since then logic must be included to identify

outputs with same origin,

It i s hoped t h a t some s t a t e - s p l i t t i n g p r o c e d u r e

might be f o r m a l i z e d which c r e a t e s a minimal number o f new

s t a t e s 2nd which y i e l d s an e ' qu iva len t machine f o r which

t h e s e e x i s t s a o n e - l e v e l t h r e s h o l d r e a l i z a t i o n .

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support for this work from

the National Science Foundation under Grant GP-2724 and from the Joint

Services EIectronics Program under Grant AF-AFOSR-7 66- 66 .

VI

REFERENCES

C. L . Coates and P . M . Lewis, 11, "Linearly Separable Switching
Functions," J. Franklin Inst. V o l . 272, pp. 366-410, Nov. 1961.

F 0. Hadlock, "Realization of Sequential Machines with Thres-
hold Elements, I' Ph ., D. Dissertation, The University of Texas ,
August 1966. Also available a s Technical Report No. 17 , Labora-
tories for Electronics and Related Science Research, Electrical
Engineering Department, The University of Texas.

R . 0. Winder, "Threshold Logic, 'I Ph, D. Dissertation, Princeton
University, May 1962.

S. B . Akers, "Threshold Logic and Two-Person, Zero-Sum Games , I t

Switching Circuit Theory and Logical Design - AIEE (1961) pp.
27-33, September 1961.

S. H. Cameron, "The Generation of Minimal Threshold N e t s by
a n Integer Program, " IEEE Trans. on Electronic Computers , Vol.
EC-13, pp. 299-302, June 1964.

C K. Chow, "Boolean Functions Realizable with Single Threshold
Devices, 'I IRE Proceedings, Vol. 39, pp. 370-371, January 1961.

M . Dertouzos, "An Approach to Single Threshold Element Synthesis, I'

IRE Trans. on Electronic Computers , Vol EC-

C C . Elgot, "Truth Functions Realizable by Single Threshold
Organs, I' Switching Circuit Theory and Logical Design - AIEE
S-134, pp. 225-245, September 1961.

I. J . Gabelman, "The Synthesis of Boolean Functions Using A
Single Threshold Element, I t IRE Trans. on Electronic Computers,
V o l . EC-11, pp. 639-643, October 1962.

C . A I Gaston, "A Simple T e s t for Linear Separability, I' IEEE Trans.
on Electronic Computers, Vo l . EC-12, pp. 134, April 1963.

[ll] R . C . Minnick, "Linear Input Logic, I' IRE Trans. on Electronic
Computers, V o l . EC-10, pp. 6-17, March 1961.

S. Muroga, I. Toda, and S. Takasu, "Theory of Majority Decision
Elements, 'I J. Franklin Inst . , Vol. 271, pp. 376-418, May 1961.

1121

[13] C . L. Sheng, "A Method for Testing and Realization of Threshold
Functions, I' IEEE Trans. on Electronic Computers I
pp. 232-240, June 1964.

Vol . EC- 13,

[14] H . C Torng, "An Approach for the Realization of Linearly-
Separable Switching Functions (" IEEE Trans. on Electronic
Computers, V o l . EC-15, pp. 14-21, February 1966.

'838 IEEE TRANSACTIONS. OIL' COMI'U'I'I<RS, VOL. 6-17, KO. 3, IMSRCII 1968

Absfracf-This paper is concerned with the study of logic hazaids
in threshold gate networks. Eichelberger has proved that logic haz-
ards are not present in a sum-of-product (product-of-sum) realiza-
tion which realizes all of the l(0) prime implicants of the given
Boolean function.['] Logic gates of the AND or NOR (OR or NAND)
variety realize single l(0) prime implicants; therefore, a gate is re-
quired for each l(0) prime knplicant to be realized, and the problem
of eliminating logic hazards is straightforward.

A single-threshold gale, however, realizes a number of prime
implicants. Moreover, the number of prinie implicants realized by a
network that incorporates more than a single-threshold gate is not
uniquely determined either by the Boolean function being realized
or by the number of gates involved. As a result, it is often possible to
control the prime implicants and hence the hazards without greatly
increasing the number of gates required. In fact, in some cases no
additional gates are required.

Three methods are presented for determining if a given threshold
realization contains any logic hazards, the first of which is an exten-
sion of McCluskey's work.f51 Two methods are then presented for
synthesizing logic hazard-free threshold realizations. The first
method is based on the tree method of synthesizing threshold gate
networks, whereas the second method is based on expressing the
given Boolean function as a sum of threshold functions.

Index Terms-Combinational logic, logic hazards, static hazards,
threshold networks.

THRKSIIOLD DEFINITIOXS AND THEOREMS
\HE. NOTATION of Lewis and Coates['l will be
used and will be briefly reviewed here.

A threshold gate has binary inputs X I , . I Xn
T
and a binary output y. The threshold gate has an internal
threshold T , and each binary input has an internal
weight ai. Let { 0, 1] denote the collection of 2" n-tuples
of XI, - * , xn. Associated with each gate is a function f
which is defined on { 0, 1] as

n

f (P) = c a i x m
f l

where $E { 0, 1] ", xl(p) is the value of xI at p , and where
normal arithmetic operations are used. The functionf is
called the separating function.

If F is a Boolean function defined on { 0 , 1] n, then F is
linearly separable if and only if there exist numbers
U l , * - ,a, and T such that f(p)>T-F(p)=l and
f (#I < T* F(p) = 0.

Manuscript received May 11, 1967; revised November 13, 1967.
This work was supported by NSF under Grants GP-2724 and GK-
1146X, by NASA under Grant NGR-44-012-049, and by the Joint
Services Program under Grants AF-AFOSR-766-66 and AF-AFOSR-

A. B. Howe was with the University of Texas, Austin, Tex. He is
now with the Sys t em Development Div., IBAI Corporation, Pough-
keepsie, N. Y .

C. L. Coates is with the Laboratorie5 for Electronics and Related
Science Research, University of Texas, Austin, Tex.

766-61.

The 13001e:tn function 17, nhich is realized 1 1 ~ 7 a thresh-
old gate \\.it11 threshold 1' and separating function j ,
can be represented as

F(x1, * . . , x,,) =: (f(n.1, * * . , X,J)T

r- (ulxl + . 4- a, ,x , ,)T .

The collection { F (p) , f(p)] is called the map of F.
Let ZL denote the smallest f(p) such that F (p) = 1 and 1
the largest f(p) such that F (p) = 0. A map of F is sepa-
rated if l <u. The gap for a separated map is the set of
real numbers z such that 1 < z < u and is denoted by u:1.
If F is linearly separable, then for sonief it follows that
Z<T<u. In terms of this f, the previous expression can
be written as

F(x1, * . . , xtJ = (a1x1-I- - . 4- a,,xn),:z -- (f>u:l.

Obviously, all Boolean functions are not linearly
separable; hence, they cannot be realized with one thresh-
old gate. When such a case occurs, the multigate reali-
zation can be represented as

/ R L \

where u:Z is the gap of the output gate, y l the Boolean
function realized by the ith input, and.P, the associated
ueight.

When using the reconstruction technique of Lewis
and Coates,[Il the addition of a gate is accomplished by
using the follonkg theorem.

Theorem A :

I<f>u:zI = [(I + a*O),:r] = [(f + u-l)u+a:z+a]

where 0 and 1 represent constant Boolean functions.
' The constant functions, in Theorem A, represent
gates which have been added. I t has been s l i 0 ~ ~ n [~ 1 that
the separating functions for these can be 0 = (O),:o and

Lewis and Coates['l give a step-by-step procedure for
the tree realization technique and numerous examples.
Examples 3 and 4 also will illustrate this technique.

1 = (O)O:--.

DEFINITIONS CONCERNING THE BOOIXAN
FUNCTION I; AND ITS R&AI,IZATION

Let p represent a variable on (0, 1] n, where the i th
component of p is the variable x:. In this space x: can
be represented by either the literal x i or 2, since x , = 1 if
and only i f ~i = 0.

A subcube K of f0, 11" is denoted by (p/x:=bt,
x,* = bs, * , x:= b,, 1, where b,E [0, 1 1. For a Boolean

*- IIQWE AND C6ATES: LOGIC HAZARDS IN TIIRESIIOLI) NETWORKS
93

function I;: I O , I]~- - -) [O, 1 1 , 1 and o s u ~ ~ c u ~ J e s are de- xJ=0 j of (0 , I):$. ~ i e cori’esponding iiiiage SLiltctil)e is
noted by ~1 and K O , respcctively, and n .~ ien these are S= I Q I - T ~ = ~ , X : = O , X ~ = O , ~ ~ = ~) .
prime iinplicants they are denoted Ly 1’1 and 1’0, respec- Obviouslj-, i f a suI~ciiI~e K contains 21t-rf1 points, the
tively. image sul)ciil)e S \vi11 contain 22(fd-Jll) points aiitl 2“-’“ of

McCluskeyf5J has shown that for: detecting logic these points]rill Ije the image points of the points of K.
hazards it is necessary to draw a distinction bctn-een the Note that since the inpitis x, and A-: in a renlizntioii
literals of the Boolean function and the literals of the may not change simultaneously, it is possiIJe for the
realization , the distinction being that in the realization two to lie teniporarily the same. I Ience the realization
the literal xi and its complement m u s t be treated inde- (f>..I is actually defined on the space YO, 1] ? ? I . I11 fact,
pendently of each other, whereas in llie Boolean func- no\\- that an iiiiage point and output lunction have I m n
tion F this is not true. The necessity of this distinction defined, a realization can Ijc redefined ;E follo\\s.
is based on the fact that during an input state change it Dejinifion 3: Let I: be an arlitrnry I3ooIcan function
is possible fur the input lines x, and 8, to be temporarily and I;‘ the output function of an arljitrary realizatioii
the same and, as shown in I-Iuffmanf41 and i\lcCluskey,[51 (f). I of I;, where F and F’ arc defined on [0, 1 1 and
i t is exactly this property that causes a hazard. Hence- 10, 1] 2n , respectively. Let p be an arbitrary point of
forth let F‘denote the transient or output fzinction that is (0 , 1] and q p the corresponding image point. Then
realized by a given realization when xi and its comple- (f).:~ is said to realize F if and only i f for every

’ When considering the Boolean functionF, the“barred”
literal Ri will be used to denote the complement of xi.
The literals x1 and 8i are not independent of each other,
whereas when considering the realization of F, the
“primed” literal xf will be used to denote the input literal
lvhic]1 is independent of xi but -\\rhich ijrould be the coin- Note that Definition 3 does not place any require-
plement of x L if an input state change is not occurring ment upon the noninlage poillts of {o , 1] ”*. Hence
(i.e., the input literals corresponding to 2i are repre- F‘(q), for the Ilonilnage points, can be either 1 or 0. These
sented as xi). points, however, do deterniine the hazard conditions of

For a given realization, FL can be obtained by replac- the realization.
ing all colnp:en1ent (-) variables and operations by De$nition 4: Let F‘ be the transient function Of a11

the corresponding prime (’) variables and operations arbitrary threshold realization (f > 1 4 . ~ . A 1(0) sirbczibe 0s
where the only allo.wable identities are (x ’) ’ = x , F’ is a subcube of {o, such that F ‘ (g) = l (0) for
(x+y+ . t . . +z)’=x’.y’ . . . z’, (x.y . . . z)’ all gEs.
=x’+y’+ * - +z’. A logic hazard, first defined by Eichelberger,f21 can be

lnay contain both x, and x:, the domain of the defined in the following equivalent iiianner in terms Of

transient function is { O , 1 f *“. Hence, when studying F‘-
hazards the problem becoIlles that of distinguishing De$nition 5 : A’realization cf)u I of F contains a logic
between the properties of F and the properties of Ft. 1(0) hazard within the l(0) subcube K1(Ko) of F’if and
Before continuing, note that since xl= zL for the steady only if the CorrespoIlding image subcube Si (30) of
state condition, it fo]lo\\-s that if x: is replaced by zi in f 0, 1) 2 n is not a 1(0) subcube of Ff, where F‘ is the tran-
the function F’, and if the usual Boolean operations are sient function of (f>u.t-

used, then F can be obtained from Ft.

represent a variable on 10, 1] 2n, \vhere the (2i-l)th
CoInponent is xi and the 2ith component is xi, and Iyhere
x i and X: are considered as independent of each other.
Thus 4 is a function of XI, xi, X Z , xi, -

Dfjinition 1.- For each point p of lo , 11 n sLlc~l that
p = (xT = bl, . - . , x: = bn), there is point g p of { 0, 1] 2 n ,

called the image point of p , such that qp= (x: = bl, x:‘
= E l , -

For example, consider the point p = (XI = 1 , x2 = 0,
x3= 1) of the space { O r 1 j3 . The image point is q p
= (a= 1, x; = 0, x2= 0, xi= 1, x,= 1, xi=O).

Dejinifion 2: For each subcube K of { 0, 1] such that
K = {P(xT=bl , - - , xz=b,), there is an image subcube

=b,, x?=6,).

inent are treated as independent variables. P E b , 1) ”

F (p) = 1 @ f (q p) 2 T

F (p) = OH&) < T

(Le.> FL(q,) = 1)

(i.e.,F :(qJ = 0).

and

Since

Consider the function F‘(x1: xi, - . * , xn, xl) and the

The function which results when X, and X: are set equal
to bi and 6i, respectively, in the function F‘, is referred
to as a reduced filnction of F‘ and is denoted by Ff(S).
P (S) = l(0) implies that the reduced function P (S) is
the constant function 1(0). By using the idea of reduced
functions, Definition 5 can also be expressed in the fol-
loxsing equivalent manner-

DeJinition 6: A realization (f)..* of F contains a logic
1(0) lzazard within the l(0) subcube k’i(K0) of F if arid
only if F‘(Si)fl (F‘(So)fO), where si(so) is the i l~lage
subcube of K1(Ko), and F1 the transient function of
Cf>u z.

Consider now the relations between Ft and F. Let q subcube S= (qlx i=bi , x:=6i, - - , xn, = b,, x:, = 6,].

* , X n , x:.

- , x;=b,, ~,*’=6,).

DETECTION OF LOGIC HAZARDS--~~ETHOD 1

The following theorem will now give a method for
determining i f a realization (f)U:l of Fcontxins any logic

S o f { O , 1)2nsuch that S={qIxT=bl, xz’=61, - - 1 x911 *

For example, consider the subcube K = ($ 1 x1= 1,

IEEE TRANSACTIONS ON COMPUTERS, MARC11 1968

00

01

11

10

X l X 2

00 01 11 10

1

2 x - 1

,x x 3 - l ~ - 1
-

5

1

x - 2 - 3

x1 -
x 4 - - 2

x x-2p3 2 1 - - I

x -1 3

Fig. 1. Karriaugh map and realization for Example 1.

hazards. The proof follows directly from Definitions 2
and 6.

Theorem 1: Let {P;] ({ P h)) denote the set of l(0)
prime iiriplicants of F and { S, f ({ .!$,]) the correspond-
ing set of image subcubes in the space { 0, 1] 2n. A realiza-
tion (f)u:~ of F will not contain any logic l(0) hazards if
and only if F ~ (s :) = I, (P(S;) =o) for all $E ($1,
($,E (So)) , wherc Ft is the transient function of (f)u:~.

Summarizing, Theorem 1 can be used to determine if
a given realization contains a logic hazard. If i t does,
then Definition 5 or 6 can be used to determine the sub-
cube within which the logic hazard occurred. The fol-
lowing procedure can be used to determine if a realiza-
tion contains any logic l(0) hazards.

Procedure 1:
1) Determine the transient function F' of cf).:~.
2) Determine the set of l(0) prime implicants

3) Determine FI($), (FL(.!$,)) for all $($), where
$(S,) is the image subcube of P:(PA).

4) The realization (f).:~ does not contain a logic
l(0) hazard within P:(Ph) if and only if F'($)
= 1 (F t (S ,) = 0).

(P : l ((p :) > of F.

The following example will illustrate Procedure 1.
Example 1: Consider the Boolean function

F(xl, x2, x3, x4) = Xlxz23 + x1x3x4 + 9132x3 + 2133x4. (1)

The Karnaugh map and a realization are given in Fig. 1.
The problem is to determine if the given realization

contains any logic hazards. From Procedure 1, the first
step is to obtain FI. In this case, F L is given by

F' = xlxix/ + X: X; ~4 + X: X; ~3

f - x: x: n'4 + x i x/ 2 3 + xlX3x4. (2)

Table I contains the set of l(0) prime implicants
(Pi) ({Pi)) of F and the corresponding set of reduced
functions f F ~ (s :) 1, ({ F~(s!J f >.

For example, from Table I , e= fpIxz=O, z3=l ,
x d = 1) ; then $= { q l x 2 = 0 , x;=l, x3==1, 3 c i = O , x4=1,

94

.9 ; 1 1 1 0 - 1 6 - - 1 1 0
2 0 0 1 - 1
3 0 - 0 1 1 5 1 0 0 - 0 3
4 - 0 1 1 x1-tx; 4 - 0 0 0 0 4

0 4 5 1 - 1 1 1
6 0 0 - 1 1 5 1 - 1 0 0 3
7 1 1 - 1 x,+x', 3 1 0 - 0 0 3
8 - 1 0 1 XI+;, 2 0 - 0 ' 3 0 3

5 0 1 -- 0 X1Y;.Y3

5 0 1 1 -

___ --

x : = O) . Hence the reduced function Ft(.S:) is F t (x 2 = 0 ,

Referring to Table I, F1($) # 1 , F'(S1) #l, Ft(:) f l ,
and Ft(Sg) $0. [For the present, disregard the columns
labeled f (q i) and 1. From Definition 6, the realiza-
tion will contain a logic 3 hazard in P:, Pi, and P! and a
logic 0 hazard in 1';.

Procedure 1 requires the calculation of the transient
function Ft and the calculation of all of the prime iinpli-
cants of F. McCi~skey[~1 has presented several alternate
methods for determining if a given realization contains
any static hazards, all of which require the calculation of
Ft. These methods can be readily extended to include
logic hazards and for further detail see McCluskey.f51

Before continuing, note that if the realization con-
tains negative weights and/or inverting gates, one can-
not determine F L by successively applying the 22n pos-
sible combinations of (0, 1) 2n as inputs to the realiza-
tion and determining the value of the output for each.
In terms of the separating function this gives the sur-
prising result that

d = l , x3=l, x;=o, xq=1, x : = O) = x ; - t x l .

F'(d = 1(0) +m 2 4 A q) 5 0

m 2 z4m 5 0 + F'(q) = 1(0)

or

where qE (0, 1] 2n.

95 'a HOWE AND CCLATES: LOGIC NAZAHDS IN THRESI-IOED NETWORKS

For example, consider the point p = (XI = 0, XI = 0,
x2=0, x;=1, x3=l, xi=0, xq=1, x:=O). Referring to
Fig. l (b) , fl(q) = O ; hence, the output of G1 is 0. Also,
fi(q) = 1; hence, the output of Gz is 1. Lilwn.ise,fo(q) =5;
thus, the output of the realization is 1. Now referring to
(2), F f (q) = 0. Hence P (q) = 0, i\-herensf(q) > 21.

The next section will be concerned with modifying the
given realization if).:z in such a manner that 121 can
always be obtained by considering only the 2271 possible
input states. This niodification will, in many cases, give
an easier method for determining F'. I t will also yield a
method for determining if a realization contains any
logic hazards which does not require the calculation of F'.
But even more important, it will develop the funda-
mentals which will be needed to synthesize hazard-free
threshold gate networks.

DETECTION OF LOGIC I-IAZARDS-METHOD 2

Lemma 1 concerns the niodification of a given realiza-
tion Gp)u:l and Theorem 2 provides the desired results.
Proof of each are given in Hou7e and C0ates.1~1

Definition 7: A threshold realization which does not
contain any negative weights or inverting gates will be
called a posiiive threshold realization and will be denoted

Lemma I : For each realization c f) u : l of F there exists
a unique corresponding positive realization U),:i of F
such that the transient functions of the two are the
same.

Because of Leinnia 1 no loss of generality results by
considering only positive realizations. Moreover, Howe
and C o a t e ~ [~] give a procedure for converting a given
realization (f)u: 2 to the corresponding positive realiza-
tion (j) g : l .

Dejinition 8: Consider the subcube S= (pl x1= bl,
1- - 6 1, * . - , x,=b, , x A ~ = ~ ~ [of the space (0, 1 12,.

Define q1 as the element (XI =bl, x: = 61, e * a , x, = b,, x6
=a,, x,+1= 1, * - * , x, = 1, x:= 1) and po as the element

- e , x,
=0, x:=O). The elements qo and 41 will be called the
minimum and maximum elements of S, respectively.
A theorem can now be given by which i t can be deter-

nlined, without the calculation of FL, if a given realiza-
tion contains a logic hazard within a specific subcube.
The proof is given in Howe and Coates.r71

Theorem 2: Let cf)u:l be an arbitrary realization of F,
and (&.j the corresponding positive realization. Let
Pi) ((Pi)) be the set of l(0) prinie implicants of F , 1 .$) ({ $,]) the corresponding set of image subcubes,

and [p i] ((4:) the corresponding set of minimum (niaxi-
mum) elements. The realization (f)u: will not contain
any logic l(0) hazards if and only if y(qi) 2 zzg(q:) 52) for

The following procedure will outline a method for
determining if a given realization contains any logic
l(0) hazards.

by (f h -

(X.l=b:, X:=al, * * , xm=3, , &=6,, xm+1=0,

all P i € {dj (si€ {d)) .

I'rocedrirc 2:

1) Determine the set of I(0) prime impIic;~ll~5

2) Obtain the corresponding positive realiz;ttioll

3) Determine j (q ~) ~ (q :)) for all qk(q:), where qh(y: j
is the corresponding minimum (maximum) image poiill

4) The realization (f).:~ will not contain a 'Ioxic

(P i) ((I J k)) of F.

(iiil i of (f>u.z.

of P:(P;).

l(0) hazard within Pt(P6) if and only if f(q',)<fi,
Ukf) 5 2).

Suppose that we appiy Procedure 2 to (1). The set
prime implicants are given in Table I and the coi-rc.
sponding positive realization is given by

(x1 + 2x3 3. 2x4 + S(X1 + 2 2 + 4 3 : 2

+3(221 -I- %3)3:2)6:4. (3)

Now consider step 3). For example, consider the 1 prinie
iniplicant P f . The corresponding image subcube is
$= (p1x2=0, x;=l, x3=1, x;=o, X ~ = I , x:=o]. Hence
the corresponding minimum image point is q: = (xl = 0,
x{=O, x:! = 0, x;= 1, x3= 1, xi=O, xq= 1, x:=O). From (3) ,
j(q(0) =4. Since a= 5, i t follows from Theorem 2 that the
realization will contain a logic 1 hazard in P:.

Table I contains](pi) for each PiEF and j(qi) for
each P(0EF. As can be seen, the results of Procedure 2
agree with those of Procedure 1.

DETECTION OF LOGIC HAZAIIDS-I'IETIIOD 3

I\iIethods 1 and 2 for detecting logic hazards ~ e r c
based on either F' or the input-output relations of tlic
realization. A method will now be given which will IN.
based on the structure of the realization. As will be seen,
this latter method is inferior to the previous t\vo for
detecting logic hazards; however, the results obtained
from this method are needed to obtain a theorem for-
synthesizing a hazard-free threshold network.

DeJinition 9 : Let (f)u:l denote an arbitrary realizatioil
of the Boolean function F, and B a set of gates containttl
in cf>.:t. The set of gates B will be defined as an orrtpllf

connected subset of gates if B contains the output gate of
(f}..~ and, excluding the output gate of (f) u : z , the output
of each gate in B is an input to another gate in 23.

I

are output-connected subsets of (f) ,s . l , \\fiereas the st't
(GI, GZ] isnot.

Lkfinitiorz 10: Let Gi denote an arbitrar>- gate in tllc
positive realization q)il:g, and B* an arbitrary ouf/l"(-
coniiected subset of (f)a:i. Also, let S be an arbitrary s ~ I ~ I -

cube in the space { 0, I] 2n with minimuni eleluent 4 0 J I ~

maximum element 41. The set B* is defined as
branch of (f)g,~ zohiclt realizes S i f , \\-hen (j)ic:l is nrodili~~rl
such that all gates not in B* have O(1) output, thcll t h '
value of fZ(po), uz(pl)) for the modified renlizntiorl saris-
fies the condition f,(qo) 2 E,, cfl(ql) <?*) for d l G,EB".

For example, in Fig. l(b) the sets {GI, Go] and

*,2-12 Ik:EE TRziNSACTIOKS ON CORII'UTERS, MARCH 1968

96
Kost consider iin arbitrary input gate of the branch.

Since for the niodilied renlizatioii (i.e., a l l gates not
coil tained i n 131 have 0 outputs) the gate contains orlly
independent inputs, and since it does not contain 1)oth
xi and xi, i t follows by the prer-ding reasoning that
Lemma 2 is true for all input gates of Ul. T h u s i t follows
from induction thatj(qo) 2 2 .

Next i t will be proved that j(40) 2 113 implies that ;dl
qp€ { qp f I. are realized by the snnie 1 branch.

First, assumef(qo)>z?; hence, the output of (f } c j is a
1 at qo. Let B* be the largest output-connected subset of
gates that have unit output at go. Clearly thi- 9 IS . now
empty. Since all coelficients are positive and n o iiiverters
exist in the realization, then the gates of B* will have
unit output for all qES1, where SI is the image subcuhe
of K1, independent of the outputs of the gates not in F".
Hence B*' is a 1 branch which realizes all qES1, and
hence all qpf { q p 11.

The proof concerning the inequalityj(q1) 51 is similar
and will be oniitted.

For cx:iiiiple, consider the rcnlizntion of (3) , I\ Iiicli is

Gz

+3(221 + fz + %3)3:2)5.4.

Suppose one wishes to determine if the set of gates
{Go, GI) is a 1 lx-anch which realizes the subcube S
= { q (q = l , x:=O, x ~ = l , xi=O, x3=0, x i = l) . Accord-
ing to Definition 10, in order for {Go, GI] to be a 1
branch which realizes S the condition fl(qo) 221 and
j ~ (q o) > L i i o must exist when the output of G, is 0. Under
the condition G2 = 0, the modified realization becomes

GO GI
~ (Z I + x2 (21 + 2% + 2 x 4 3 3) 3 : 2 + 0)5:4.

The point qo is (x l = l , xi=O, x.,=l, xZ;=O, x3=0, x j = l ,
xq=O, xi=O). From the preceding equation, %(PO) = 3
andjo(qo) = 6. Thus from Definition 10, the set {Go, GI]
is a 1 branch which realizes S.

The following lemma ~ i l l give a relationship between
the termf(qo), U(q1)) and a l(0) branch.

tioii of F. Also let KI(Ko) be an arbitrary l(0) subcube
of F, the set { q p] I({ q p] 0) the corresponding set of image
points of Kl(K,), and qo(q1) the corresponding rnininiuni
(maximum) element of &(KO). Then J(qo) 2 Q, (f(ql) 51)
if and only if there exists a l(0) branch B1(Bo) of (&:I
which realizes all qpE (q ,) l ((q p) o) .

Proof: First we will prove that all qpE {q,jl are
realized by a particular 1 branch BI implies that
f(q0) 21%. This result will be proved by induction.

Let Gj be an arbitrary gate of B, which is on the r logic
level of (~) E : J . Let G, be an arbitrary gate of B1 such that
its output is an input to Gj (Le., Gi must be on the r + l
or greater logic level). Let K I = {pJxT=bl , - ,
xz = b, 1 be an arbitrary 1 subcube of F.

Assume that Lemma 2 is true for all Gi (;.e., assume
f&O)>ul). Thus the output of G, is not a function of

Now consider the independent inputs to Gj. Let zi
denote an independent input to G,. Assume that Gj docs
not have both ?i and its complement 2; as inputs, which
is true for all gates. From the hypothesis of Lemma 2, it
is known that the output of Gj is a 1 for all qpE (q p] l .

and some other qp for which &+,+1=0, . 1 - , f n = O such
that the output of Gj is 1 for both. Thus the output of
Gj is not a function of f + l , * - - , f. Nom since the
corresponding complements fir+l, - - - ,*A are not inputs
to Gj and since the output of Gi is not a function of
Xrn+lt &+I, * * , x,, x:, it follows that the output of Gj is
not a function of X,+~,X~,+~, * * , x,, xi. Thusfj(q0) 2 17,.
Hence we have proved that if Lemma 2 is true for all Gi,
i t is true for Gj.

Lemma 2 : Let (&., be an arbitrary positive re a I ' 1za-

%+I, Xh+h - - * , x,, x;.

Hence there exists a qp for which ?,,,+I= 1, * * - , & = 1

Theorem 3 follo~rs directly from Lernnia 7- and the
proof of Theorem 2.

Theorem 3 : Let (f) L , : l be an arbitrary realization of F ,
and (&.j the corresponding positive rea!ization. Also,
let Kl(K0) be an arbitrary l(0) subcube of F , and the
set { q p] 1({ q p 0) t h e corresponding set of image points
for all PfK1(Ko) . The realization (f)..I ivili nol coritain
a logic l(0) hazard in K,(Ko) if and only if there exists a
l(0) branch &(Bo) of Q}%.j which realizes a11 q p € { q p
({ PP 1 0).
Summarizing, we have proved the following facts,

Let ICa be an arbitrary l(0) subcube of F, and 5'0 and
q:(qy) the corresponding image subcube and niinimiixn
(maximum) element, respectively. An arbitrary 1 e' '1 1- 1La-

tion (f).-~ of Fwill not contain a logic l(0) hazard within
K"-F(S") = I (~)+=+f(g;) 2 ii, (f(qC;) st), if and oriiy if
there exists a l(0) branch &(Bo) of (f}~ j which realizes
all of the image points of ICa, where (7)a.i is the corre-
sponding positive ralization.

As in the preceding cases, a theorem can now be given
for determining if a given realization contains any logic
hazards. The proof follows from Theorems 2 and 3.

Theoreru 4: Let QU: I be an arbitrary realization of F,
and (j)?' z the corresponding positive realization. Also let
(Pi 1 ({.?'A 1) be the set of all l(0) prime implicants of F,
arid { { qp]] (f { q p] i ttie corresponding collection of
sets of image points. The realization {f)..l \vi11 not con-
tain any logic l(0) hazards if and only if there exists a
l(0) branch B;(B,") of i which realizes all qpE f qp f :

Example 2 will illustrate the application of Theo-

Example 2: Again consider the realization of Fig. l(b).

' (M J forall { L I P] : € { (a P 1 : L (I q P] A f { k 7 P] A]) .

rein 4.

Froin (3) the positive realization is

(j)a:J = (a1 + 2 x 3 + 2a* + S(Sl + .I'? + .i.3)3:2

+3(2.Tl + .Fz + .C3)3:2)5:4. (4

IIOWE AND COA’FES: LOGIC IPAZARDS IN THRESHOLD NET\VORKS
97

1
2
3
4
5
6
7
8

1 1 0 0
1 1 0 1
1 1 1 1
1 0 1 1
0 1 0 1
0 0 0 1
0 0 1 1
0 0 1 0

1 0 1 0 0 1 0 1
1 0 1 0 0 1 1 0
1 0 1 0 1 0 1 0
1 0 0 1 1 0 1 0
O l l O 0 l l 0
0 1 0 1 0 1 1 0
0 l O l l O l O
0 1 0 1 1 0 0 1

Only the logic 1 hazards]vi11 be considered. Therefore,
rratAe I I will contain only the points p j of (0 , I 1% sur11
that F (p j) = 1, the corresponding image points q;, and
the set of 1 branches which realize each q;. Actually, in
this example each point qi is realized by only one 1
branch.

In Table 11, the pointsp,E { O , 1). such that F(p j) = 1
can be obtained from Fig. 1 (a), whereas the correspond-
ing 1 branch can be obtained from (4).

Consider the 1 prime implicant {pIx1=1, x ~ = I ,
3t3 = 0 1. The corresponding image points are q i = (XI = 1,
xi=O, x2=1, xi=O, x3=0, ?:;=I, x4=0, x;=l) and

x4=l ,

x:-O). Referring to Table 11, both image points are
realized by the 1 branch { G1, Go 1. Therefore, by Theo-
xem 3, the realization will not con tairi a logic 1 hazard
within { p 1 X I = 1, x2 = 1 x3 = 0 f .

Next cor!sider the 1 prime implicant (p i X I = 1, x2 = I ,
x 4 = 1 1. The corresponding image points are q; and q i .
Referring to Table 11, qi and q i are realized by the 1
branches (G1, Go 1 and {Go 1 , respectively. Hence from
Theorem 3, the realization \vi11 contain a logic 1 hazard
wit~iin { f i [x L = I , x ~ = = l , x ~ = l) .

Likewise, i t can be determined that the realization
will contain a logic 1 hazard within ’the 1 prime impli-
cants (pIxZ=1, x3=0, x4=1) and {pIx2=0, x3=1,
x p l) .

As previously mentioned, the application of Theorem
3 or 4 to determine if a given realization contains any
logic hazards is considerably more involved than Proce-
dure 2. Hence i t is doubtful if Theorem 3 or 4 v;ould be
used to detect logic hazards. However, Theorem 4 will
be used, in conjunction with a later lemma, to derive a
theorem for synthesizing a hazard-free threshold net-
a-ork directly from the Boolean function I;. How this is
accomplished is the subject of the next section.

q;=(xl=l, x:=o, x2=1, x;=o, xa=o, z;=1,

SYNTHESIS O F HAZARD-FREE THKESIIOLD N E T n . O R K S

This section will be concerned xi-ith synthesizing posi-
tive threshold gate realizations xhich are hazard free,
As previously mentioned, however, positive \\.eights can
be changed to negative weights, noninverting gates can

tions will also be hazard free. Hence one can obtain any
be changed to inverting gates and the resulting re a 1’ 1za-

type of desired hnzard-free threshold realizatioii. The
folloiving synthcsis tecliiiic~~ie \\ i l l I x priinaril>~ linsetl 011

the multigate realization techniclue of Len.is a i d
Coates.rll €Io\vever, a t the end of this section, an alter-
nate method is given for obtaining a t\\ o-level hazard-
free threshold realization.

Since the material u-ill be Inrgely concerned \Tit11 the
n level of the function tree, the follon-ing terms are
needed. Let { q p] be the subset of { O , 1 I z n such that q p
is the image point of p for each P E { O , 1) %. Consider a
function tree for a 13oulean function F. A given position
011 the 77 level of the tree corresponds to a specific p of
{ o , 1] n , in t ~ i a t each position corresponds to a unique
reduced function ~ (p) , o-here p is the subculie of { 0, 1 1 %
consisting of the single point p . AIoreover, any realiza-
tion of F (p) must have an output function Ft such that
P(q ,) = F (p) . Thus the position corresponding to p also
corresponds to qp.

Kow consider the reconstruction procedure of Lewis
and Coates.[’J A separating f~ inc t iony is selected which,
with appropriate gaps un:Zn, will realize the n-level re-
duced function F’(q,) = p@). Unless specifically indi-
cated, such n-level realizatioiis Cfn)un.ln will not contain
negative weights or inverters. Appendix I gives several
possible n-level re:dizc d t‘ 1ons.

Consider some n-level realization (fn)un:ln. If Gi de-
notes an arbitrary gate of (fn)zLn.p, then let y: denote the
Boolean function realized by Gi. Note that y’ is a con-
stant function of either 1 or 0. Referring to Appendix I ,
an example of an n-level realization and the correspond-
ing Boolean functions is

where y:=O, y;= 1, and y:=l.
The following definition n-ill define a set of constants

which can be associated with an n-level realization.
Dej’i?zition I I : Consider an arbitrary n-level realiza-

tion (f”)un:~n. Let G; and c;i denote arbitrary gates of
(f n) u n lll such that the outputsof Gi is an input to Gj.
Define Cj as

m

Cj = Pi; + kj
b l

where pi is the weight of input y: to G,, and K j the weight
of a constant input to Gj.

For instance, consider (5). The set of constants is
c,=o, c1=0, C,=B1.

The follo\~ing definition will define a branch which
corresponds to the 91 level of the tree. The definition is
similar to the previous definition of a branch except
that it is defined for an n-level realization (f“),,n In.

Definition 12: Let Gi denote an arbitrary gpte in
cf”)un in and R” an arbitrary oiitPiit coiiiiectcd szibsct of
(f”)un.ln. The set B* is defined as an d e v e l l(0) branch
B;(Rg) and is said to realize the constant function l(0)

544 IEEE TRANSACTIONS ON COMPUTERS, MARCH 1968 9 8

if, when (f ") a n . is modified such that al l the gates not
contained in B* have 0 (1) output, then C; for the modi-
fied n-level realization satisfies the condition C,ku';

As an example of an n-IeveI 0 branch, consiclcr the
following n-level realization, which can be obtained from
Appendix I.

(CiS.QWGiEJ3 *.

Go GI G2

(fn>u": In = (0 + Pl(0 + P 2 (o) o : - - m ~ o c : 8 2) ' a : o .

Consider the set { G I , G o) as a possilde n-level 0 branch.
According to Definition 1 2 , the condition Co<ll; and
C,<l; must exist when the output of Gz is a 1. For this
condition, the modified n-level realization becomes

(0 + Pl(0 + P2)m:8*)m:o.
Hence Cl=Pzand Co=O. SincelI=pzand la=0, it follows
that the set {GI, Go is an n-level 0 branch.

The following lemma will now give a relationship
between n-level branches arid branches of a positive
realization. The lemma assumes a configuration of gates
for the n-level realization such that no void ranges OCCLIS

during reconstruction (i.e., no additional gates are ncc-
essary during reconstruction).

Lemnza 3: Consider an arbitrary point ppE {O, 1 I z n
such that P (q ,) = l (0) . Assume that no void ranges
occur during reconstruction. Given that a set of gates
B* is an n-level l (0) branch B;(Bgj which realizes
P (q ,) on the '12 level of the tree, then B* is a l (0) branch
B1(Bo) which realizes pp in the final realization.

Proof: We will prove this result by induction. Let
Gj be an arbitrary gate of B* which is on the r logic level
of C f ") u n : z n , and hence of (f)~:j. Let Gi be one of the m
arbitrary gates whose output is an input to Gj (i.e., G;
must be on the r+1 or greater logic level). Then the
n-level realizati.on for Gj can be expressed as

where 1 <i<nt'wG,EB': and m'+1 <i<mwG&B:.
Referring to the previous equation, when all G,GBT
have 0 output, then

m'

Cj = PI.
G 1

Since B* is an n-level 1 branch, i t follows from Defini-
tion 12 that

(6)
m'

cj = pi 2 u;.
i=l

From properties of reconstruction it is known that it
F'(q,) = 1, then

k-1

\vhcre ~20,~s: is n literal of xh, and iij is the upper gap
for G, in the final realization.

Assume that Leriima 3 is true for all G,, ivhcrc
l<i<nz'. Thus all G; for 1 <ism' are elenlents of B1 for
the point pp in the final realization. Therefore,

t-1 i= 1

when ail G,@Bl have 0 output.
From (6) , (7), and (8) i t follows t!iat

f j (q p) 2 E j

when all G&B1 have 0 output. IIence Gj is an element
of B1 for the point pp in the final realization.

Now corisider an arbitrary input gate G, of 13:. For
this case, ZL;=O. I t follows from the preceding reasoning
that the gate will be an element of B1 for the point q p in
the final realization. Thus, it follows from induction that
B1 will be a I branch for the point p p in the final re a 1' iza-
tion.

The proof concerning 0 branches is similar and will be
omitted.

Definition 13: Let denote an arbitrary re a 1' 1z3-

tion of the Boolean function F. Consider tlic real nuni-
bers d and 1' such that u>u'>1'>1. The gaps ~ : l ' ,
ZL' : I , or ii' : 1' are defined as rcduccd gap3 of u : 1.

Consider a realization (f>.:Z of the BOOIeal l functioil F.
Obviously, u : l can be replaced by a reduced gap and the
Boolean function F is still realized, provided II' is prop-
erly selected. For instance, consider the gate Go of (§)
which has an n-level gap of /?I: - m . A possible reduced
gap is 0: - a. The d e v e l realization then bc'conies

Go Gi Gi
(0 + Pl(0 + P2(0)m:o)o:-m)o:--m. (9)

This still realizes the Boolean function 1 and {GI, Go is
still an n-level 1 branch. However, now by Ilefinition 12
the gate Go is also an n-level 1 branch, wliere before i t
was not. Hence by Lemma 3, if (9j is used to realize .I
specific P (p p) on the n Ievel of the tree, then the 1
branches {Go] and {Go, G I) will both realize p p in the
final realization. Thus, reduced n-level gaps provide a
means for obtaining a final realization such that the
point 4p will be realized by more than one branch.

The value of a point p p being realized by more t h a n
one branch follows from Theorem 3 . For example, let
Ka and K O be two 1 subcubes of F which have the set of
points (p i) in common, and (4 ;) the corresponding set
of image points. Let Sa and Sa be the corresponding
nage subcubes. Clearly { p i 1 belongs to the set of points

common to Sa and SB. Assume that for some positive
realization Sa and Ss are realized by the 1 branches Ba
and BO, respectively, where Ba#BB. I t follows from
Theorem 3 that the realization will not contain a logic 1

(7)

IIOWE AND COATES: LOGIC &CZARDS IN TIIRESIIOEU NETWORKS , 99

hazard 11 i thin K a and KO. Iloivcver, note that the
points of f qi) we realized b>- both 13" and 13s.

Once the set of n-lcvcl gaps is c1iosei1, the reconstruc-
tion process of I,e\vis and Coatesf'l is a technique for
o1)taining the cocfficien ts of the indepcndcnt iiiput vari-
ables for each gate of the iietuork. I n some realizations
the restricted n-level rnngc, caused by using a reduced
fz-level gap for sonic arbitrary P (q P) , will not have any
effect upon the coefficients. When such a case occurs,
the reduced n-level g;ip is referred to as an zLnnecessary
reduced n-level gap. Ilo\\-ever, i f the reduced n-level gap
does effect tlie final coefficient, it is referred to as a
neccssary reduced n-level gap. Example 3 illustrates
both types of reduced n-level gaps.

The following theorem can now be used for synthe-
sizing a logic hazard-free threshold network directly
from the Boolean function F.

I'heorein 5 : Let (Pi)(Pi)) be the set of l(0) prime
iniplicants of F , { { q ,) ; i (({g,);)) tlie corresponding
collection of sets of image points, and { { F'(q,) I:},
({ { F'(q,) the corresponding collection of sets of
n-level reduced functions. A final realization (f)a : j of F
will not contain any logic i (0) hazards if the 72-level gaps
are assigned such that there exists at least one rc-level
l(0) branch which realiLes all F'(q,) E { FL(q,)) :,
E { { Ff(q ,) 1:)) and rcconstriictioii is possible without
adding any additional gates.

Proof: Let Pi be an arbitrary 1 prime irnplicant of
F, { q ,] : the Corresponding set of image points, and
{ P(q,) 1 the corresponding set of n-level reduced func-
tions. Assume that the n-level gaps are assigned such
that all FL(q,) E { F f (q p)) are realized by the same
n-level 1 branch, and that reconstruction is possible
without void ranges. By Lemma 3 , all qpE (q ,] [will be
realized by the same 1 branch in the final realization.
IIence by Theorem 3 , Pi will not contain any logic 1
hazards.

The proof concerning 0 prime iniplicants is similar
and will be omitted.

t{FL(q,)ld) for all {m&Jl:€ { fF'k7,)j:L (fF'(q,)],'

Examples 3 and 4 will illustrate the application of
Theorem 5. However, several additional facts must be
considered first.

In general, a set of n-level gaps, which will yield a
hazard-free solution, will not be known. Therefore,
suppose that while trying to obtain a hazard-free solu-
tion, the first condition of Theorem 5 is satisfied but the
second condition is not. Two alternatives exist: either a
procedure analogous to Reconstruction I11 of Lewis and
Coates['] can be used, or an additional threshold gate or
gates can be added in such a way as to remedy the
situ a t' ion.

Only the secorid alternative will be considered here.
Assume that an inconsistency occurs for a gate Gj on the
K level of the tree. Nornially one determines the incon-

sistcncy, uses l'heorem A to add the necessary gate or
gates so that the inconsistent?- is removed (see Lewis
and Coatesl'l), and then continues on up the tree. Mow-
ever, i f the final realization is to be logic hazard free,
'l'heoreln 4 ii i i ist also be satisfied; hence, the application
of 'Theorcm A is restricted in the folloiving nianner.

The set of 12-level gaps consisting of the n-level gaps
for the additional gate(s) plus the changed n-level gaps
for the previously chosen gates niust satisfy the first
condition of Theorem 5. I n practice, the most straight-
for\\-ard procedure for satisf>.ing this restriction of
Theorom A is the. following.

Determine the inconsistency on the k level of the tree
arid then, instead of adding gates on the k level of the
tree, add the gates on the n le-,-el of the tree so that the
inconsistency is removed from the k level of the tree and
the first condition of Theorem 5 is satisfied. The gates
that need to be added on the n level of the tree to re-
move the inconsistency of the k level can easily be de-
termined by tracing the gaps that caused the inconsis-
tency to the bottom of the tree. Example 4 will illustrate
this.

Assume that all additional gates are added in th is
manner. I t is proved in I-Iowe and C0ates[~1 that a final
realization can always be obtained with this restriction
on Theorem A. Clearly the final realization will be
hazard free.

The next fact conceriis the application of Theorem 5.
To apply Theorem 5 it is necessary to associate each '12-

level reduced function F (p) = FL(qp) with a specific set
of prime irnplicants of F, viz., the set for which the cor-
responding point p is an element. For example, assume
p is an element of the 1 prime impIieants P;, P!, and
PI. Hence Ft(q,) intist be associated with P;, P:,
and PI, in which case, F'(q,) = 1 can be labeled 13, le,
and l7 on the IZ level of the trce. A similar statement
exists for 0 prime implicants. Now from Theorem 5 the
final realization will be hazard free if 1) all n-level points
bearing the same label are realized by the same n-level
branch and 2) reconstruction is possible without addi-
tional gates. Examples 3 and 4 will illustrate this pro-
cedure. Also, Chapter 6 of H o i ~ e and C0ates[~1 gives an
algorithm for identifying the points a t the bottoni of
the tree.

The last fact to be considered is concerned with in-
complete functions. A function is said to be inconipfete
if for some ~ I E { 0, 1] n, F (p) is not specified as either 1
or 0. Such p's are called don' t i-c:rrs. This type of Boolean
function should also be considered when studying haz-
ards in threshold gate netu orks. -4 method has been
presented for synthesizing incoiiiplete logical functions
by thresliold gate net\\-orks.['! The niethod, in effect,
assigns the n-level gaps of the do^'! c(zrc points to be
00 : - 0 0 . Thcrcfore, \\-lien assigning the rz-level gaps
in accordance n.ith Theoreni 5 (Le., such that a logic
hazard \\-ill not: occur) the n - I c ~ d gaps of the doii't cure

i246 IEEE TRANSACTIONS ON CORIPUTERS, MARCH 1968
1

points are assigiicd as : - =. UnforLunatcly,]io\\.-
e \ w , by this niethocl one has no control of the logic
hazards associatcd \sit11 the clon'l cure points.

I n suniiiiary, tlie follo\\-ing proccclure is outlined for
obtaining a hazard-free :hreshold netu ork.

Procedure 3:

1) Using the function tree, decompose F in the
usual manner.

2) Using the method previously described, identify
the reduced functions Ff(g,) a t the bottoni of thc tree
with their associated prime implicants.

3) Referring to Theorem 5, assign the n-level gaps
such that there exists a t least one n-level branch which
realizes all of the reduced functions Ff(p,) ivhicli bear
the same label.

4) Reconstruct in the noriiial way. If no void coni-
mon ranges occur, the final realization is hazard free;
if a void common range occurs, go to step 5).

5) Using Theorem A, add a sufficient number of
gates to eliminate the void coinnion range. I-Iowever,
the set of n-level gaps consisting of the n-level gaps for
the additional gates plus the changed n-level gaps for
the previously chosen gates must satisfy step 3).

6) Repeat steps 3) , 4), and 5) until a final realiza-
tion is obtained.

The following two examples mill illustrate Pro-

Example 3: Consider the Boolean function
cedure 3.

F = ~ 1 x 2 + 32x3 3- ~ 3 x 4 .

The Karnaugh map is shown in Fig. 2. The probIem is
to obtain a hazard-free threshold realization directly
from the Boolean function F by application of Theorem
5. The first step is to obtain the prime implicants of F.
These are obtained from Fig. 2(a) and are given in
Fig. 2(b).

Decompose F by removing XI, X Z , xa, and xa, respec-
tively. :'he resulting function tree is shown in Fig. 3.
The prime implicants that each n-level reduced function
corresponds to are identified a t the bottom of the tree.
For example the reduced function Ff (x1= 1, xi = 0,
x z = l , x i=O, x 3 = l , &=O, ? c l = l , xi=O) , henceforth to
be denoted by Ff(lO, 10, 10, lo), corresponds to Pi,
P:, and 2':.

The next step is to assign the n-level gaps according
to step 3) of Procedure 3. Referring to Fig. 3, all of the
points labeled ll(0,) should be realized by the same n-
level l(0) branch, etc. Disregarding the terms in
parentheses, one such assignment is given in Fig. 3.

For example, consider the four reduced functions
labeled 1 4 . The n-level reduced function F f (l O , 10, 10,
01) is realized by the n-level realization (0+2(0)w.0)0.-m,
whereas the other three reduced functions labeled 14
are realized by the n-level realization (0 - ~ 2 (0) 0 : ~ ~ } 0 . ~ w .
Hence P(10, 10, 10, 01) is realized by the n-level 1
branch consisting of the gate { G o] , whereas the other

(9)

r -- -__---__- , 100

(4 (b) (4 1
--

Fig. 2. ICarnqugh map, prime implicant list, and tr-level branch
assignment for Exainple 3.

three are realized by the n-level 1 branches consisting
of both {Go] and { G I , Go 1 . T h u s all four are realized by
the n-level branch (Ga 1 . Similarly the n-level branch
which correspoiids to each prime iniplicant of F is
shown in Fig. 2(c).

Fig. 3 shows that reconstruction is possible, and that
the final realization is

(f>u:i = (z3 + 3 2 f 2x1 + 2(Q 4 2x3 %)3:2)3:?.

Thus the second condition of Theorem 5 is satisfied.
Therefore, the final realization will not contai:i any
logic hazards.

Consider the realization which results when
P (l 0 , 10, 10, lo), F1(lO, 01, 10, lo), arid F f ((l O , O 1 , 10,Ol)
are assigned normal n-level gays (see Fig. 3). This
assignment arid the reconstruction changes caused by
this assignment are enclosed in parentheses in Fig. 3,
the final realization being

= (xZ + x1 + 2(x4 + 2x3 .Jr z2j3:ajz:1.

Kote that the 1 prime implicant (p l x l = 1, x3= 11 is
not contained in the latter realization. I t n.ill therefore
contain a logic 1 hazard. Also note that 011 comparhg
the two realizations, the prinie iniplicant can be realized
without requiring any additional gates. This is not
possible with conventional eieinents such as XSD, OR,

NAND, NOR, or relays (i.e., a conventional element can
only realize one prime iniplicant).

By comparing the two previous reconstructions, i t
can be determined that the reduced n-level gap for
F'(10, 10, 10, 10) is an unnecessary reduced n-level gap,
whereas the reduced n-level gaps for P(10, 01, 10, 10)
and Ff(lO,O1, 10,Ol) are necessarj? reduced n-level gaps.
By definition., if a gap is an unnecessary reduced n-level
gap, the normal gap could be used and the final realiza-
tion would be the same. However, when the n-level gaps
are being assigned i t is not known whether or not a re-
duced n-level gap is an unnecessary reduced d e v e l gap.
Therefore, to obtain a logic hazard-free realization, the
best approach is to apply Theorem 5 and assume all
reduced n-level gaps are necessary reduced n-level gaps.

Example 3: Consider the Boolean function

L

fJQWE AND CQATES : LOGIC I-lhZARDS IN TBRESPIO1,D NETWOKICS

-t
m

x + "
IXN +
N

x

x
-

II
LL

H
-0
?
-0
a

n

I,
N O

N O
a

Y

N

%

I,

Ne-

10 1

I

Y
I

8

N

t t
9

, 5 4 8 IKEE TRANSACTIONS ON COMPUTERS, MARCH 1968

The I<arnaugh map is shown i n Fig. 4. Again the
problem is to obtain a hazard-free threshold realization
directly from the Boolean function I; by application of
Theorern 5. The first step is to obtain the prime itnpli-
cants of I;. Referring to Fig. 4(a), it is obvious that a
logic 0 hazard can not occur; hence only the 1 prime
implican ts of F need be considered.

Decompose I; by removing XI, x2, x3, and X I , in that
order. The resulting function tree is sho\vn in Fig. 5. The
prime implican ts that each I"(q,) correspond to are
identified a t the bottom of the tree.

'The next step is to obtain n-level realizations and to
assign n-level gaps according to step 3) of Procedure 3.
Since I; is not unate, the initikl n.-level realization must
contain at least two gates. Consider the n-level assign-
ment labeled A in Fig. 5, where ihe n-level realization is

Go G I

Referring to Definition 12 and assigntnent A t the n-
level reduced functions labeled 11 are realized by the
n-level 1 branch { Go 1 , whereas the other n-level reduced
functions which are 1 are realized by the wlevel 1
branch {GI, Go 1. Hence a hazard-free threshold realiza-
tion will be obtained if reconstruction is possible. €low-
ever, a void common range occurs for G1 on the third
level of reconstruction. Therefore, an additional thresti-
old gate, or gates, must be added to complete reconstruc-
tion. However, before considering the addition of a gate
or gates to correct the void range for GI, further recon-
struction 'for Go will be considered. Referring to Fig. 5,
i t is seen t h a t reconstruction of Go can be completed
without any void common range.

Now consider the inconsistency which caused the void
common range for GI on the third level of the tree. Re-
ferring to Fig. 5, if the gaps identified by A are increased
by more than 2 the void common range will not occur.
Hence the n-level gaps for Ff(O1, 10, 10, lo),
F'(O1, IO, iO,OI), P(OI,OI, 10, IO), and F'(Ol,OI, IO, 01)
must be increased by more than 2. Therefore, change
these n-level gaps from 0: - co to 4: - a by adding the
gate G2 as input to G1, where & = 4 . The n-level assign-
ment for G1 and G2 labeled R is shown in Fig. 5. The
n-level realization is now

Or,)un:~- = (0 + 2(0 + 4(0)u;:q)qq)~;:~.

Referring to assignment B and the previous assign-
ment for Go, the z-level reduced functions labeled 11
and 12 are realized by the n-level 1 branch {Go] and
{GI, G o] , respectively, whereas the other n-level re-
duced functions which are 1 are realized by the n-level 1
branch (G2, GI, Go] . By Theorem 5, if reconstruction is
possible, the final realization will not contain any logic

I prime implicaii/J
PI* = ID xz =1. x, =01
PI* = (0 XI = 1 . x3 =0 I
P I a = IP X I =0. X3 = 1)
P I + = [p X I =O. X(= 1]

xaxa
00 01 11 10

00

01

I I

10

XIXZ

(4 (b) 4

Fig. 4. Karnaugh map for Example 4.

Before continuing, note the following.

1) Since reconstruction was complete for Go, the
image points of Pt will be realized hy the 1 branch con-
sisting of Go regardless of which gates are added.

2) In this example when the inconsistency is removed
from the third level of GI, i t so happens that the first
condition of Theorem 5 is also saiisfied. This is not true
in general, and in such cases some additional n-level gaps
for GI must be changed.

The process of reconstruction will now be continued.
Referring to Fig. 5, reconstruction of GI can now be
completed without any void conimon ranges. Next con-
sider the reconstruction for G2- A void coninion range
occurs for G2 on the third level of the tree. If the gap,
identified by 6, is increased by an \ - positive amount , the
inconsistency will not occur. Hence the n-leve! gap of
Ft(lO, 01, 01, 10) is increased from 0: - to 2: - 03 by
adding G3 as an input to Gz, where p3=2. The n-level
assignment for Gz and Ga labeled C is shown in Fig. 5.
The corrcsponding n-level realization is also shown in
Fig. 5. Reconstruction is now possible, the final iealjza-
tion being

{f)*: I = ($81 + Z2-k 3 3 3 + 24-1- 2 (2x2 $ f 2 $ 2 3 3 + X4

$4(2f i+ f2$2n.3- t r ,+2(~2+.z4)2: 1)4:3)4:3)2:1+.

Hence from Theorem 5 , the realization will not contain
any logic hazards.

Theorem 5 gives a means for obtaining a general
threshold realization which is hazard free. However,
the following special realizations are also of interest.

1) Obviously, if the desired realization can contain
logic 0 hazards, but r,ot logic I hazards, then only the 1
prime impficants of F must be contained in the realiza-
tion. Hence in Theorem 5, the n-level reduced functions
Ff(qp) whicli are 0 can be chosen arbitrarily. A similar
statement exists i f the realization can contain logic 1
hazards, hut not 0 hazards.

2) Ei~helbergerf~l has proved that a sum-of-product
(product-of-sum) realization will not contain any logic
hazards if each l(0) prime implicant of F is realized by

102

hazards. a unique AND (OR) gate. Consider the case where the

- ’?. :::.]i N N

I -

- N O
/ A m -

/
/

1

2 - O N ;; - 0

/
/
I

0 - N r O
o w G - , N o w @ @ e
8 3 0 0 0 0

8 8 8 8

*-
8

8
0

? 0
O . 0

8 -
t1 *I
0

0 0 _ -

? -
6 8

?.s!
a 8

8 8
N O

I I
?!!
N O

0 2 0 0
8 8 8 8

I I I I

rd N

rj
...
E
7)

cd
W E
c-’

c
0 ...
c-’

E s .- c4
0

103

250 IEEE TRANSACTIONS ON COMPUTERS, MARC11 1968

3) 'I'heorcms 5 and G give nienns for synthesizing
threshold net\vorl<s lvhich do not contain any logic
hazards. I I O U ever, from another point of vie\\., they
also enal~lc one to design threshold iiet\vorl;s jvhich
contain certain specified logic ~~~~~~~~CIS and onl-,. those
specified. The utilization of such nttii orks a n d their
design \,-ith conventional-t) pc gales has been considered
hy E ic l i e l l~e rg~r .~~J

4) One of the most coniiiion applications of hazard-
free coiiibinationnl circuits is in the design of as-,.nchro-
nous systems. lIoreover, in most as-,-iichronous systems
the assumption is made that only one input variable can
change at a time. When such an assumption is niadc, it
has been shon-n that it is riot necessary to realize all of
the 1 and 0 prime implicants of F.fi1ffsI In such a case,
'Theorem 5 can be changed accordingll. in that the set of
necessary 1 m d 0 priiiie iinplicants -\vi11 be a subset of
{ P: 1 and { P:] , respectively.

104 iiuiiilxr of 0 priiiie iiiiplic:ltits of I: is less t h a n the iiuii i-

I)cr of 1 prinic iiiil)lic;ults of I ; (i.e., the n u i i i h of 1
priiiie implicants of F is less t h i i n the nuiiiI)cr of 1 priiiie
iniplicnnts of I ;) . Froiii the pre\.ious st; i tcnie~it , the
product-of-sum hazard-frcc rcaliz,lt ion requires feller
gates thaii the suiii-of-prodiict h;izard-frce realization.
I f tlie n t r ~ ~ ~ l) e r of 1 priiiie i~iiplicants is less, tlie suiii-of-
product rcalization \vould require fc\\ er gates.

l'hcorciii 6 \ \ i l l sIio\v t ha t a siiiiilar situation exists for
the fctllo\\.ing t) p of tu 0-level threshold realization.

7'heorcm 6: Let [P i] he the set of 1 pririir implicants
of the Booleall function F, and sf tlie product Boolrnn
function \vhicli realizes the 1 1)rime implicant 1';. Then
the 13001ean function F can I)e expressed as

i F = s: + . . . + SI+ . . * + s';
here 15i57a. If (10) can lie expressed as a s u m of 771

~oolean t h reshold f LI I K t ioiis

then it can be realized by the t\vo-level positive thresh-
old realization

where/3,=zi, for 1 5 j 5 m - I and (nlxl*+ . . . +anx:)zO1:za
realizes FT,,,. JIoreover, (j,)u,.~O1 will riot contain any
logic hazards.

Proo]: Since p, = ua1 i t foilom tha t (1 1) and hence
F can be realized with m gates. Now consider the logic
hazards.

All of the reduced fuiictions such that Ft(qp) = O are
realized by the same 0 branch; namely, the 0 branch
which consists of all of the gates contained in (f a) a , . ~ , .

Thus from Theorem 4, (fa)u,:~n will not contain any logic
0 hazards. Obviously, (fa)ua.~a will not contain any logic
1 hazards.

The realization c fa)uO1: la is equivalent to a sum-of-
product realization.

Now consider the complement Boolean function 7
and express i t in the form of (10) and (ll), respectively.
Let m* denote the number of Boolean threshold func-
tions obtained in the latter expression. From Sheng,[61
nz* will not necessarily equal nz; it may be greater or less.
From Theorem 6, there exists a realization ('j:),&f. ~f
which contains m* gates, realizes 7, and does not contain
any logic hazards. There exists a corresponding comple-
ment realization (]z),,<.iz which realizes F 11 ith nz*
gates. Obviously, (] ~) z l * , 2: \vi11 not contain any logic
hazards.

Thercforc, if nz* <wz, the realization (]:),*,.J*, \vi11
require fewer gates than (fcI),LLI z,, \\-hereas if ni*>nz,
the realization (fa),c :z requires fe\ver gates.

APPEYDIS I
This appendix contains the possible ?i-level separating

functions with n-level gaps for til;o gate and three gate
three-level realizations. The parameters ,B pan be se-
lected equal to any number greater than unity. They
should be selected equal to 2 or greater if it is desired
not to decrease the gap le i~gt l i .~~l For Table 111, the 72-

level realizat-ions are

2 gate

TABLE I11
NORMAL GAPS _- - _ _ _ ~ _ _ _ _ _

n-level separating function n-level branch

REDVCED GAPS ---
n-level branches n-level separating furwtion

1 =
1 =
1=
1=
O=
O =
O=
O =

MARCH 1968 10 5

