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NOTATTON

Panel chord or beam length
Modal amplitude for transverse displacement

Dimengionless modal amplitude, e

Amplitude parameter
Modal amplitudes for in-plane displacement

Amplitude parameter

Eh3

12(1-v)
Beam shear modulus

Plate modulus,

Modulus of elasticity

Generalized force associated with kth in-plane mode
h

Generalized force associated with kt transverse mode

Panel thickness

Beam area moment of inertia about neutral axis

Running spring constant, panel in-plane restraint spring

Free-stream Mach number

Number of assumed modes for transverse displacement
Pressure

Free-stream pressure

Static pressure difference across panel; positive if

cavity pressure exceeds free-stream pressure

Dimensionless static pressure difference, Z%éﬁa
oU°
2

Shear-force amplitude: Q(x,t) = a(x)eymt

Free-stream dynamic pressure,

Applied in-plane load - 2
R a

Dimensionless applied in-plane load, 'é

Time
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T Kinetic energy

T In-plane displacement
U Free-stream speed
W Transverse displacement
7 Amplitude of transverse displacement: W(x,t) = ﬁ(x)e:Lmt
w Potential energy
X In-plane (axial) coordinate
Z Transverse coordinate
. Ka
o In-plane restraint parameter, 5
[Eh+Ka(1-v7)]
Y Gas constant for free strean
A Dimensionless dynamic-pressure parameter, 2%;
v Dimensionless mass ratio, éﬁ%
m
v Poisson's ratio
o] Free-stream mass density
Py Panel or beam mass density
1
F)
T Dimensionless time, t( D )
pmha
w Frequency
(%) Derivative of dimensional quantity with respect to t
(*) Derivative of dimensionless quantity with respect to =

iv



I. INTRODUCTION

This report presents a summary of the second year's research
activity under NASA Grant NGR 05-020-102, monitored technically by
the Nonsteady Phenomena Branch of Ames Research Center. The purpose
of this research program is to study in a systematic manner the effects
on panel response and stability of nonlinear (nonviscous) aerodynamic
loading at hypersonic Mach numbers. It is of particular interest to
determine whether or not nonlinear aerodynamic effects will provide
a theoretical explanation for experimentally observed nonlinear

behavior, as discussed below in Section III.

The equations of motion for a panel (plate-column) on hinged
supports, with both aserodynamic and panel geometric nonlinearities,
are derived and discussed in detalil. Representative solutions for
: various.cases are then presented, including an unanticipated diversion
into the problem of interpreting results for zero system damping.
Additional sections deal briefly with the work performed on a clamped
panel and on methods of analysis, and a final section discusses topics

. of research to be considered during the next year.



II. PANEL ON HINGED SUPPORTS

2.1 Equations of Motion

Consider the two-dimensional panel, or plate-column, illustrated
in Fig. 1. The supports are hinged, and the in-plane motion at one end
is resisted by a distributed spring whose running spring constant is K.
Free-stream paremeters shown are the Mach number M and the dimension-
less dynamic-pressure parameter A. The panel is loaded by an applied
in~plane load ﬁ#, a static pressure difference 55, and an unsteady
pressure difference p-~ P, The unsteady pressure is approximated in

hypersonic flow by the second-order piston-theory expression

- = -l =, 2
SN JEE A e CE R N (2.1)

Here W(x,t) is the middle-surface transverse displacement of the
panel, and g is the free-stream dynamic pressure. Since the pressure
acts normal fo the instantaneous panel surface, there arise in a rigor-
ous sense both transverse and in-plane aerodynamic loads when the panel
deflection is finite. Order-of-magnitude consistency then dictates
including both a transverse aerodynamic and P-P, +Op and an in-
plane aerodynamic load [(p-;gm)L + Ap]%%, where the ‘subscript L
denotes the linear part of the unsteady pressure expression in Eq.
(2.1).

The panel transverse displacement is represented as a series of
assumed modes satisfying the geometric boundary conditions of zero
slope and curvature %t each end:

knx

W(x,t) = z 'e'k(t) sin— (2.2)

k=1

A consistent assumed-mode expression for the in-plane displacement is

given by
o
- - = x - )
W(x,t) = [By + By(6)1Z + z B (t) sinlX (2.3)
k=1

Here Eﬁ is the initial panel in-plane displacement at x = a due to

the application of the in-plane load ﬁ%, and Eb(t) is the in-plane

2



displacement at x = a resulting from the subsequent unsteady panel
motion. The reasons for dividing the displacement into these two
terms will be discussed below.

Following the proéedure outlined in Ref. 1, we now wish to derive
from Hamilton's principle the Euler-Lagrange equations of motion, the
unknowns being the generalized coordinates Ei(t), Bﬁ, Bb(t), Ek(t) -—
3N + 2 1in all. The potential energy of the system is given by

a

~ - - 2.2 2 2
0312 E )T o (S e
- IR (5, + 5,) -%—K'sg]. (2.14)

This expression represents physically the strain energy of the panel
less the potential of any conservative external loads. In this case

the applied in-plane load ﬁg and the load resulting from the spring
restraint at x = a both possess potentials. The potential due to
ﬁg is positive because a positive ﬁ% produces a positive in-plane
end displacement, as defined herein; thus RX always does & positive
amount of work on the panel. Conversely, the potential due to the
restraint spring is negative because the incremental load due to the
spring always acts in opposition to the in-plane end displacement. It
has been assumed in the formulation above that the spring is not
attached until after the load Eg is applied; this is a mechanism for
allowing in-plane loading to be present in the system even when K = o,
Thus Eﬁ represents the end displacement resulting when ﬁ% is
applied, and bo represents the subsequent in-plane end displacement.
It has also been assumed that the panel is initially restrained from
buckling if supercritical compressive in-plane loading is applied.

The kinetic energy is given simply by

AL = 2
. =%‘°th0 (5£) e (2.5)

Here the kinetic energy associated with both in-plane motion and rotary
inertia has been neglected. Since one end of the panel is always firmly
fixed, one would expect by far the greater part of the kinetic energy

to be associated with transverse motion. In addition, Mindlin (Ref. 2)



has demonstrated that the effects of rotary inertia on flexural
motions of a plate are unimportant unless the wavelength of the
flexural mode is comparable in magnitude to the thickness of the
plate. Wavelengths associated with the critical flutier modes of a
panel are generally much larger than the panel thickness, so rotary-
inertia effects are safely ignored here.

Finally, the generalized forces are calculated. The generalized

force assocliated with transverse panel displacement is given by
/ re —_—— . _knx 6
(Fz)k =~/o [- (p-pm) + Op ] sim—= dx, k = 1,2,~,N (2.6)

The unsteady pressure difference is obtained from Eq. (2.1). The static
pressure difference ZE is also included; it is positive when the pres-
sure in the undisturbed cavity below the panel exceeds the free-stream
static pressure P,- The sign convention used for writing the potential
of congervative external loads is also applied here. That is, a positive
pressure difference p-p, on the exposed surface of the panel opposes
motion of the panel in the positive direction, so a minus sign is re-
quired where this difference appears. Unsteady cavity effects are not
included; in the experiments of interest the panels were mounted so as

to eliminate these effects as much as possible. Egs. (2.6) become then

~ 5 — ., 2
(Fz)k="212q'Jo[il‘yg‘wE+ +$1,+—l)—(%g-"g+%> ]sin%}sdx
41/n825'singg£ dx, k = 1,2,.,N (2.7)

The generalized force associated with in-plane panel displacement is

then found from the linear portion of Eq; (2.1), multiplied by %%

and weighted with the proper assumed mode:

(FX)k = k/ [% <%§) ] s:‘Ln-}—:E-}E dx - \/ A@ = 31nE£— dx,

k =1,2,.,2N (2.8)



The assumed-mode series for U and W are then inserted in the
expressions for potential energy, kinetic energy, and generalized
forces. The Euler-Lagrange differential equations (see Egs. (7.39) of

Ref. l) then becomne, after considerable manipulation,

oW Eh =

- S— = O = -R- - E——C— b (2'9)
abR x a(l-va) R
- = N
M _0-F -K5 - (B *+ Bo) _ _x’m z n°5>  (2.10)
9% 0 1A k(1) n

n=1

(continued next page)
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In these equations multiple summations are indicated by a single
summation sign, with upper and lower limits of all summation indices
given. Exceptions to this convention occur when the upper limits are
not equal, in particular in the summations involving products of the
5£ with the Ek. When the indices are such that the terms give zero
divided by zero, the terms are to be taken as zero.

Eq. (2.9) is seen to give the relationship between the axial
elongation or contraction of a plate-column under axial load, with the
constraint that no transverse displacement be permitted. Eq. (2.10)
is therefore simplified and rearranged to give b. in terms of the

0
transverse-~displacement modal amplitudes:

) N
By = - — 22 e (2.13)
ha[En+Ka(1l-v=)]

n=1

In similar fashion, Egs. (2.11) can be rearranged to give the Ek in

terms of the Ek. Substituting in Egs. (2.12) for Eb and the Ek
and rewriting in nondimensional variables produces finally a single set
of N gquasi-linear, second-order, ordinary differential equations for

the N modal amplitudes ak(f):

(see next page)
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With the exception of a slight difference in the definition of Q,

the terms up to and Including the first appearance of XAp are the

same as those derived by Dowell (Ref. 3). As was pointed out in Ref. 3,
system parameters for this set of equations are A, %, a(l-vz), Op,
and RX. Furthermore, the equations can be recast so as to eliminate
the appearance of a(l-ve), so that only one value of a(l—vg) need be
congidered. With the addition of the nonlinear aerodynamic terms, the
situation becomes more complicated. A new parameter, %, appears
explicitly, and u and M must be specified separately. AlLso,

the explicit dependence on the parameter a(l-vg) can no longer be
eliminated. The nonlinear aerodynamic terms appear in the following
order: first, those arising from the terms in (F )
(%%)2, gg %% » and (%%)2, respectively; secondiy? those arising

. 5%)2 v oW — W
from the terms in (Fx)k dependent on <5§ » S wd e

respectively. DNote also that the terms due to the nonlinesr part of

dependent on

(FZ)k depend linearly on % and are quadratic in the &, while
those due to (Fx)k depend quadratically on % and are cubic in the
3

Egs. (2.14) are integrated numerically with respect to the dimen-
sionless time 1 from given initial conditions. The calculations are
performed on an IBM 360/67 computer. A subroutine based on the Kutta-
Merson procedure is used, and the step size is varied in order to keep
the relative error within given bounds. Provision is also made for
including or excluding in the computation any of the nonlinear aero-

dynamic terms, as desired.

2.2 Comparison with Previous Results

In order to check the numerical integration, a few test cases
were run with linear aerodynamic loading, and the results were com-
pared with those from Ref. 3. PFigs. 2 and 3 show the dimensionless
panel displacement at the three-quarter chord vs. dimensionless time
for values of system parameters noted on the figures. Fig. 2 corre-
sponds directly to Fig. 2 of Ref. 3, and the limit-cycle amplitude
taken from Fig. 3 checks that given in Fig. 5 of Ref. 3. All the

other test cases showed similar good agreement.

the



2.3 Behavior with Zero System Damping

Some interesting and unanticipated problems were encountered
when the equations with linear aerodynamic loading were solved for zero
system damping. Figs. 4 and 5 show the panel response for the same set
of initial conditions and system parameters used for Figs. 2 and 3,
except that B = 0. After an initial transient shown in Fig. 4, the
response becomes periodic but not simple harmonic, as is evidenced in
Fig. 5. The response curve illustrated in Fig. 5 continues indefinitely
without change, and the peak amplitude is different from that shown in
Fig. 3. That the system does demonstrate instability for this set of
parameters is illustrated in Fig. 6. Here the initial displacement at
the three-quarter chord is smaller than that in Figs. 2-5 by a factor
of approximately four, and the amplitude clearly grows with time. It
then decreases, and the same process is repeated again (but is not
shown here). Note also that the maximum amplitudes are different for
the different initial conditions. This does not mean, however, that a
unique limit-cycle amplitude and frequency are not associated with a
given set of (supercritical) system parameters. In Fig. 7, the panel
regponse is shown for N = 2 and for supercritical system parameters.
The initial conditions in this case were obtained from a harmonic-
balance solution. It is seen that there is no initial transient, and
the panel response continues at the same amplitude. Solutions for
other values of system parameters exhibit the same behavior, and it can
therefore be concluded that the method of calculating the panel motion
with time will produce a limit cycle of constant amplitude for zero
system damping only if the initial conditions correspond exactly to the
limit-cycle modal amplitudes. For any other initial conditions, the
panel oscillates between stable and unstable states. If, on the other
hand, the system parsmeters are subcritical, the panel will oscillate
without decaying, and the peak amplitude is determined by the initial
conditions. Figs. 8 and 9 show the panel displacement at the three-
quarter chord for a subcritical value of A and different initial con-
ditions. Here it will be observed that the peak amplitudes never exceed
the initial amplitudes, although the motion is not simple harmonic.

10



These results can also be interpreted with the aid of some general
stability considerations for autonomous systems (Ref. 4). The panel
equations for zero system damping describe a system whose state is
uniquely determined by the 2N modal amplitudes and velocities 8y ék’
k = 1,2,~,N, or in other words by a point in the 2N-dimensional space
Ein. The origin of this space is clearly an equilibrium point — it
corresponds to the panel in a flat, undisturbed state — and it is
desired to examine the stability of the panel in the neighborhood of
this state. In brief, the origin is stable if for any sphere S(R)
of radius R in Ei?, centered on the origin, there exists another
sphere S(r) of radius r £ R such that any motion originating in
8(r) remains in S(R) ever after. This stable behavior is exhibited
in Figs. 8 and 9. Reducing the initial amplitude reduces the maximum
resultant amplitude, so for any given bound on the amplitude the initial
amplitude can be reduced to keep the resultant motion within the bound.
On the other hand, if such a sphere S(r) cannot be found, the origin
is unstablé. Figs. 4, 5, and 6 illustrate this unstable situation.

It is evident that there is an amplitude that the resultant motion will
exceed, no matter how small (but finite) the initial amplitude is.
These same conclusions can be drawn when the initial conditions are
broadened to include nonzero initial velocities, and the reader is
referred to Ref. 4 for the full, precise definitions of stability and
instability.

11



2.4 Effects of Aerodynamic Nonlinearities

As has been pointed out many times in the past, the geometric
panel nonlinearity is a stabilizing factor, in that the increase of
in-plane tension with tranverse displacement serves to limit the super-
critical response amplitudes. On the other hand, aerodynamic nonlin-
earities are in general destabilizing, in the sense that they act to
increase supercritical response amplitudes and in extreme cases can
even lead to panel instabilities for values of system parameters that
would be subcritical on the basis of a theory with linear aerodynamic
relations. Refs. 5 and 6 are typical examples of other studies of
the effects of aerodynamic nonlinearities. Ref. 5 presents results
for a panel (plate-column) on hinged supports with variable in-plane
restraint. Third-order piston theory is used for the aerodynamic
loads, and the flow is taken over both sides of the panel, so that
the only aerodynamic nonlinear term is the cubic one. It was demon-
strated with a two-mode harmonic-balance solution that for certain
values of in-plane restraint (intermediate between no restraint at
all and infinte restraint) an instability could occur below the linear
stability boundary if the initial amplitude were large enough. However,
the parameter values used in these calculations give for an aluminum
panel at sea level a thickness-to-chord ratio g of 0.0131 and a
Mach number of 28.4. These values, coupled with the assumption of
two-sided flow, give a rather unrealistic situation. On the other
hand, Ref. 6 gives results for much more reasonable physical constants —
a steel plate at sea level, with a length-to-width ratio of three, a
thicknegs-to-chord ratio of E%ﬁ’ and critical Mach numbers from two
to four. One-sided flow is assumed, and second-order piston theory is
used for the aerodynamic loads. The calculations, though, show that
the region of stgbility is increased as the initial disturbance in-
creases, so that the critical speed goes from 952 meters per second
for the linear theory to 1600 meters per second for al(O) = - a2(0)
= 1.0. The transverse displacement is approximated with two chordwise
modes and one spanwise mode, and the supports are hinged. Solutions
are found by direct integration over time of the equations for the modal
amplitudes. In both Ref. 5 and Ref. 6 the panel geometric nonlinearity

is taken into account with the K&rmén approximation.

12



In this investigation the effects of aerodynamic nonlinearities
were first intrg%pged by considering only the term from (Fz)k pro-
portional to (5§) . A single new system parameter, = is required.
Figs. 10 and 11 illustrate the effect of this term. The value of A
chosen is subcritical from the viewpoint of linear theory, and O is
set equal to zero, so that the stabilizing effect of the panel geo-~
metric nonlinearity is not present. In Fig. 10, the panel is observed
to be stable for a.l(O) = - a2(0) = 1.71, while in Fig. 11 a divergent
instability occurs for al(O) = - aE(O) = 1.72. Aside from stability
considerations, another important effect observed with this quadratic
nonlinearity is its impact on transient panel motion. Figs. 12 and
13 illustrate the marked difference in panel response caused by the
introduction of this nonlinear term; in both cases the panel 1s stable,
but with the aerodynamic nonlinearity in the equations the response
peaks are higher, and the shape of the curve in spots differs greatly

from that obtained with linear aerodynamic terms.

13



IIT. PANEL ON CLAMPED SUPPORTS

In‘Ref. 7 are described some high-Mach-number panel-flutter
experiments, where in-plane tension was used to stabilize a clanped
panel in a wind tunnel until stable flow conditions were established.
Then the tension was reduced until the panel fluttered. As soon as
the onset of flutter was perceived, the tension was increased again
until the flutter stopped. The tension at which the flutter stopped
was greater than the tension required to stsbilize the panel initially.
In an attempt to duplicate this "hysteresis" phenomenon theoretically,
the equations of motion for a clamped panel, with both aerodynamic and
geometric nonlinearities, have been derived in a manner similar to
that described in Section II. The in-plane applied load ﬁg is an
arbitrary function of time. Temperature effects are also taken into
account by including a temperature-difference term with both temporal
and spatial variation, and a distributed mass is placed at one end to
account for any inertial effects from the tensioning mechanism.

Inasmuch as numerical results are not yet available, a detailed
discussion of this problem will be deferred until there are some

specific data on which to comment.
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Iv. METHODS OF SOLUTION

In accordance with the research proposal, a specific pilot problem
has been investigated that demonstrates an inherent weskness of the
Galerkin procedure when it is applied to the solution of differentigl
equations in a purely mathematical sense. Consider the clamped Timo-
shenko beam (Ref. 8) illustrated in Fig. 14%. The equation for harmonic

lateral vibrations, without rotary-inertia effects, can be written as

Iy Do

EI§-§v+ %l pﬁw2 é—% - pﬁm2ﬁ =0 (4.1)
dx Q dx

The lateral deflection has been written as

W(x,t) = ?i(x)eiwG (k.2)
Tet

w(x) = A(1l-cos 2%5) (4.3)

so\that all boundary conditions (in this case all geometric in nature)
are satisfied. The Galerkin integfal for determining the existence of
the amplitude parameter A is found by substituting Eq. (4.5) into
Eq. (4.1), weighting the resultant equation with the assumed mode in
Eq. (4.3), and integrating over the length of the beam:

a o\b  opx  EI 2<2ﬂ 2 onx
Af [ - EI(—a-) cos Py + T Py® a) cos =
0

Q

- pmwg(l-COS 2%5)] (1-cos 2&5) dx = 0 (k1)

If A exists, the eigenvalue is

l6nuEI/5p o™

2 m

®

= (4.5)
1+ lmeEI/SDQa2

Now, if the same problem is approached via the potential-energy
method, the total potential of the system includes the energy of bending,

the energy of shearing, and the kinetic energy of vibration. Thus,

15
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The direct method of the calculus of variations (the Rayleigh-Ritz
method) requires that assumed modes satisfying the geometric boundary
conditions be selected when the functional to be minimized is the total

potential energy, so the assumed modes are taken as

%(x) = A(1l-cos E’g (4.7)
Q(x) = B sin 2%5 (4.8)

The shear-force amplitude Q is used here instead of the shear-angle
amplitude, since the shear-angle amplitude is simply %L, and a direct
proportion exists. Q

Enforcement of the condition &(W-T) = O with respect to both
A and B yields two simultaneous equations for ensuring the existence
of A and B. The resulting characteristic equation gives the eigen-
value

L L
2 16m EI/3pma

= (&.9)
1+ lszI/DQa2

Note that this result, which represents a minimum-energy soluﬁion, is
different from the Galerkin solution, Eq. (4.5), which represents only
an approximate solution to a differential equation. The resson for this
discrepancy is that the Timoshenko-beam equation, Eq. (h.l), is not an
Euler equation. Actually, variation of Eq. (4.6) with respect to both
¥ and a produces two Euler equations. Eliminating Q in these
equations leads to a single governing equation in %, Eq. (4.1).
Interestingly enough, in the case of simple supports, no difference
exists between the two methods of solution; however, for clamped

supports, a Galerkin solution producing the same results as the mini-

mum-energy solution can only be obtained if the two Euler equations
governing the problem are utilized. In the present problem, the dis-

crepancy is serious, since the Galerkin solution underestimates the

effect of transverse shear. This problem is more serious in the case of

16



sandwich beams, where the transverse shear is extremely important. It
is also interesting to note that a similar problem, with similar con-
clusions, was considered independently by Yu and Lai (Ref. 9).

The foregoing pilot problem indicates that continuing results on
more complicated problems may lead to reevaluation of the methods and
results associated with nonconservative nonlinear problems on panels

having curvature and boundary restraints other than simple supports.

17



V. CONCLUDING REMARKS

Further research activity will be concentrated in the following
areas:

(l) Work begun with the panel on hinged supports will be contin-
ued in an effort to assess systematically the effects of aerodynamic
nonlinearities on panel response and stgbility.

(2) Numerical results for the clamped panel will be obtained for
a varying in-plane load and temperature'difference corresponding as
closely as possible to the environment of the panels used in the exper-
iments of Ref. 7. Additional studies on the order of those discussed
above for the panel on hinged supports will also be performed.

(3) The methods developed for analyzing the infinite-span panel
will be extended to take into account finite-span effects, and the
influence of such additional system parameters as aspect ratio, span-
wise curvature, and finite-edge boundary conditions will be determined.

(4) Experience with the results from the method of analysis de-
scribed herein has shown that they are very useful for studying in
detall the panel motion for a particular case but often inefficient in
providing information for, say, a parameter survey. New and potentially
valuable approaches based on examining the energy of the system (Ref. 10,
for example) show promise in alleviating this problem. Further effort
will therefore be devoted to examining in detail the energy interchange
between panel and airstream as a means of testing these new idess.

(5) One important aerodynamic nonlinear effect, that of the
unsteady boundary lsyer at the panel surface, has heretofore been
neglected in this research program. Approximate means'of taking into
account the effects of a boundary layer on an oscillating surface have
been developed for infinite-span panels of both infinite and finite
chord (Ref. 11, for example). This work will be reviewed, and improved
methods of analysis for the two-dimensional and the three-dimensional

problem will be sought.
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