@ https://ntrs.nasa.gov/search.jsp?R=19690007624 2020-03-12T07:18:52+00:00Z
MIDWEST RESEARCH INSTITUTE

DIFFERENTIAL-DIFFERENCE PROPERTIES OF

GENERALIZED JACOBI Pc@owg E F ' L
COPY

INTERIM REPQRT
15 January 1969

Contract No. NAS9~7641

MRI Project No. 3162-P

For
NASA Manned Spacecraft Center
General Research Procurement Branch

Houston, Texas 77058

Attn: J.W. Carlson/BG731(48)

MIDWEST RESEARCH INSTITUTE 425 VOLKER BOULEVARD, KANSAS CITY, MISSOURI 64110 = AREA 816 561-0202



NASA € G 2470

DIFFERENTIAL~DIFFERENCE FROPERTIES OF
GENERAILIZED JACOBI POLYNCOMIALS

by

Jet Wimp

INTERIM REPORT
15 January 1969

Contract No. NAS9-7641

MRI Project No. 3162-P

For
NASA Manned Spacecraft Center
General Research Procurement Branch

Houston, Texas 77058

Attn: J.W. Carlson/BG731(48)

B

MIDWEST RESEARCH INSTITUTE 425 VOLKER BOULEVARD, KANSAS CITY, MISSOURI 64110 = AREA 816 561-0202



PREFACE

This report, written by Jet Wimp, Analysis and Applied Mathe~
matics Section, Midwest Research Institute, covers work performed from
1 July 1968 to 17 January 1969 on Contract No. NAS9-7641.
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I. INTRODUCTION

In this paper we derive a differential-difference equation satis~
fied by the hypergeometric polynomials
%) ,n = 0,1,2,... - (1)

Throughout, we employ the shorthand ncotatlion

-n,n+x,al,a2,...,ap
Pp(x) = profy be,b b
l’ 2,---’

q

1Y
(ap+n) =17 (aj+n) , ete., (2)
J=l

see {l]. In general, where any variable 1s subscripted by a p or dq , it

is to be understood that the shorthand notation has been invoked.

II. RESULILS

Theorem
Let 1) A # L2yeee ;

ii) none of the quantities by, Ay Atl-b; be negative

J
integers or Zero, j = 1,2,...,4 ;
iii) no by =any ay , b =1,2,...,0 ;5 3 = 1,2,...,9 .

Then the polynomials P,(x) satisfy the differential-difference equation

aP, c
(ex-5x") dj(f) Z (A,*+xB,) )Py, (%) , (3)

where



5 = € = o = max {p+l,q} ; (4)

[l:P"'l 24, {O:P+l >4,
L,ptl £ g, )

0,p*l < q )

and no such equation of lower order o' < vy exists. The A,'s and By's
are unique and

-t | o+l
(-n)y, [(l-n-)\ )\,] (2v~2n-1) {(-)Y+le D

v!

v (fv)s(n-s)(bq+n-s-l) } Yo

AV=< ><

(5)

s=0 (vts-2n-1)

b _+n-1
ne_-(_Lfl__._z— ,V=O;
(ent+r-o)
g
o+l

-1
(n), [(1m-n),] (ev-20-2) { (-’ + 4

otl=v

\.

~

B. = ¢ v-1 (l‘\) )S(ap'i-n-s-l)
v X oo , v> 0,
520 (vs+Ll-)- n)c_v

=6n , v=0 .

(

k+1
Proof: By equating coefficients of x in (3) we find

(#1) { e(k-n)(aytK)p. 1 (k) = Sk(bgHe)Bo (k) }
o] ‘ | ) c
= (aptk) - Cyoyyq (KB, (K)+(kr1)(bgtk) 7~ Dye, (k)8 (k) (7)
v=0 v=0

where



e ] (=) (@n-),
2)-

Dy (-n), {Bv} > oy(k) = (kn), 5 By(k) = (@A+k-0), - (8)

The above can be considered an identity between polynomials in
the (generally complex-valued) variable k . If p+tl > q , (7) requires
that two polynomials of degree ptot2 be identical, and this condition
furnishes ptot+3 equations in 20+2 unknowns so we must have o £ ptl . .
If ptl = q , we similarly find o < p+tl , while if p+l < q , we find that
<49 . Thus

o < max {p+l, q} (9)

Now if we assume equality above, the A, and B, (if they exist) are
unique. Suppose there 1s another such recurrence relation with coefficients
Af and Bf . Subtracting these two, we have

0= 3 [(a,a%) + x(p,EN)| By, () (10)

v=0

but this is impossible, under the hypothesis (ii) and (iii), since Wimp has
shown that in this case any linear difference equation satisfied by Pn(x)
must be of order otl at least, see Eﬂ.

Now, if g = p+tl , (7) holds if and only if

o
(1) [Bo (k1 )e-(bgtk) | 2 3 Cyo (H1)B, (1) (11)
v=0
o)
(n#a+k-0) [-6k By (k+L}+(k-n)(ay#k) | = 3 Do (K)B,(x) . (12)
v=0

(Wote that a suitable linear combination of (L1) and (12) gives (7), i.e.,
multiply (11) by (k—n)(n+k+k—c)(ap+k) and (12) by (k+l)(bqfk) and add.)
To establish (11) for ptl = g , we observe that it asserts an identity be~-
tween two polynomisals in k , each of degree g+2 and each having two
identical factors. It only remains to show (11) holds for g+l distinct
values of k . Assume all the quantities -1, -bj, J=12,...,4 , are



distinct and let k have these values in (7). The result is (11) evaluated
at these values.

Likewise to show (12) for p+l = ¢ , we need only prove it holds
for the pt2 values (assumed distinct) n, o-n-i, -aj, J=12,.00,p . This

is true, since (7) and (12) for these values are the same.

(The requirement that the wvalues of‘ k chosen above hbe distinct
may be relaxed by continuity.)

Now replace x by x/a.,, j = p'+l, p'*2,...,9-1 in (3), where
p' < g-1 . This shows that

ar! (x

€ex

o

)
Z (Cy*+xD) )Py, (x) (=) (L-n-1)y/(-n),, (13)
where PA(x) is Py(x) with p replaced by p' and

D)= lim  Lim  co-lm [Dy/agepigeccay ], w= ', vo= ol . (14)

R T

The same limit process applied to (12) yields the following equa~
tion for the determination of D;

(k-n)(nﬂﬂ:—o)(a k) = Z Dla, (k)R (k) . (15)
v=0

The equation for C,, in this case is (1l) as it stands. But
(11) and (15) together are (11) and (12), respectively, written for
ptl< g .

Similarly, replacing =x by XbJ‘, g =a'tl, g'+2,...,ptL, ' =
and letting bJ—4>w in (3) gives

G.P"(X) ol

o2 B Z (G, JBY_ (x)(=)"(1-n-2),/(-n), - (16)



where

C, = lim Lim cee lhnA (Cv/bubu+l--ibv), u = q'+l, v = p+tl, (17)
b —® b > b —>®

and P/ (x) is P, (x) with q replaced by g¢' . This limit process ap-
plied to (11) gives

(kL) (b tk) = 2%2 Coay, (k+1)B, (k+1) (18)
v=0

and (12) is used unchanged for D, . These two equations, though, are just
(11) and (12) for p+tl > q .

Thus (11) and (12) are established for all p,q and we have suc-
ceeded in "uncoupling” Eg. (7) to give Egs. (11) and (12) which involve C,,
and D, alone, respectively.

Next, we solve these two equations.

In BEq. (11), let ktl-n = -s , s = 0,1,2,...,0 . The result can
be written

8 -V -5 - otk n-s)({ntb -s-
5 ()70, (=), _ c(as) + (-)" "(n-s)(n¥b,-s-1) ’
oo (s+l-2n—x)v (s+l-2n->x)0_S
§ = 0,1,2,000,0 (19)

But if 1-2n-A # 0,-1,-2,..., the above equation can be solved for C,, by

applying a Iemma of Wimp [1]. After some algebra and evaluation of gFl’s

of unit argument, one arrives at (5). To find the Dy's, let k-n = =g in
(12) and proceed in a similar fashion.



IIT. CONCLUDING REMARKS

If ptL=g and x =1 in (3), we get a recursion relation for
P,(1) of order max(ptl,q). Note that this is of order one less than that
cbtained by putting x = 1 in the homogeneous linear difference equation
satisfied by Pp(x) given in [1]. If p = L , the resulting recursion re-

lation for
1) (20)

1s that gilven by~Bailey{ﬁﬂ, which in turn 1s Watson's result [2] slightly
rewritten. For p+tl =g and x general, (3) of course provides a gener-
alization of the classical differential-difference formula for the Jacobi
polynomials, see [4, p. 170 (15)].

-n,nﬂ,al
3F2< bab
1252

A differential-difference relation for the polynomials

9 (21)

can be easily obtained from (3) by replacing x by x/A and letting
Ao,

;87,85 e 058y

Q (x) = +F<
n ptliq b1sbpseensby

We point out that the conditions of the theorem can be relaxed
considerably. If A 1is a positive integer m , we can write

(—n)v/(l-n-x)v = n!(n+l-v)m_l/F(n+m) (22)

which is well-defined for all n , so condition (i) is not essential to the
analysis. -

Also, if any of the quantities (ii) are negative integers or zero,
limits may be taken after the equation has been multiplied by a suitable
factor, see [l]. The quantity n can even be nonintegral when g > pt+l
or when ¢ = ptl and |arg(l-x)|< m , by the permanence principle for
functional equations. (It may be necessary in this case to multiply the
equation by a factor (r-n-A) to make the coefficients well-defined.)
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