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CYLINDRICAL AND SPHERICAL. SHELLS WITH CRACKS

by

F. Erdogan and J. Ki bler

SUMMARY

The symmetric problem for the cylindrical and spherical

shells containing a meridional crack is considered. The prob-

lem is solved for a uniform membrane load and a uniform bending

moment applied to the surface of the crack. The extensional

4.^
and bending components of the stress intensity factor ratio

are obtained as functions of shell parameter and are tabulated.

The results are also plotted in order to compare them with the

existing asymptotic solutions.
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INTRODUCTION

I meri di onal crack in cylindrical and spherical shells

subjected to internal pressure was considered by Folias [1,2].

After obtaining the respective systems of integral equations

for the cylinder and -the sphere, Fol i as gave asymptotic ex-

pressions for the stress intensity factors for both cases.

These expressions are valid only for small values of shell

parameter a, hence their range of application is limited. 	 In

this paper, the 4ntegral equations are solved numerically and

the stress intensity factors are evaluated for up to a = 8

in cylindrical shells and up to a = 5 in spherical shells.
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THE SOLUTION AND RESULTS

To analyze the stress singularities at the ends of merid-

Tonal cracks in isotropic and homogeneous thin shells, in [11
I

and [2], the following linearized shallowshell equations were

used, which are due to Marguerre [31 and Reissner [41

Eha2 92WW- + v 4 F = 0R	 ax

(1)

v 4 W - a2 a2F - q a4RD axe - D

for cylindrical shells, and

Eha2 
v2W + o 4 F = 0R

(2)

D 4 W + RD v 2 F - D a4

for spherical shells.	 In (1) and (2), X, Y, Z are the rec-

tangular coordinates with Z normal to the surface and X in

the plane of the crack, W is the displacement in Z direction,

x = X/a, y	 Y/a are dimensionless coordinates, a is the half-

crack length, R is the mean radius, h is the shell thickness,

F is the stress function, q is the normal traction acting on

the shell surface, E is the Young's modulus and D is the flex-

Ural rigidity, D Eh 3 /12(l- v 2 ), v being the Poisson's ratio.

In the usual manner, the components of bending moment M x , My,

M xy and transverse shear Q x , Q  are given in terms of W and
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the membrane forces N x , Ny , N xy are given in terms of F.

In general, the singular solution of the cracked shell

problem may be reduced to a perturbation problem in which

self-equilibrating forces and moments acting on the crack sur-

faces are the onl y external loads. Thus, in one class of im-

portant symmetric problems, the homogeneous systems obtained

From (1) and (2) will have to be solved with the following

boundaPy conditions on the crack surface

am
My = M o (x), vy = Qy + axy = o,

(3)

N 
	 NO W, N xy = 0, (-1<x<1, y = 0)

and vanishing stresses away from the crack. Due to the con-

ditions of symmetry, in [1] and [2], the functions F(x,y) and

W(x,y) are expressed in terms of ' Fourier cosine integrals, and

the resulting dual integral equations are reduced to a system

of singular integral equations of the following form*

.1 2

f
h
ij

(x,t)u
i
(t)dt = f i (x), (i	 1,2; -1<x<l)	 (4)

where the kernels 
hiJ 

contain Cauchy - type singularities^ul,

For details of the analysis and explicit forms of the kernels
h id , see [5] and [6].
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u2 are conveniently defined unknown functions cm4 f l , f 2 are

related to the external loads. For example, for constant My

and N 	 in (3), letting

m 
0 
D	 no

M o 7— , N o - a-T	 ( 5)

we have

2^rn
fl(x) 	

i fFD^i 
x, f 2 (x) =	 21Tm o x	 (G)

The kernels h ii (x,t) in (4) contain modified Bessel func-

tions of the form, K.(e 7Ti/4 jt-xjx/n), (i = 0,1), where n = 2

for cylindrical shells, n = 1 for spherical shells and a is

the shell parameter defined by

a - [ 12(1-v2)] 
1%4

a
Rh

Here v is the Poisson's ratio, a is the half crack length,

R is shell radius of curvature and h is the shell thickness.

Studying the asymptotic values of the kernels for small

arguments, it is easily shown that at t = x, 
hiJ 

are singular

and the leading terms are of the form a
iJ

/(t- x), where

a i a, (i,j = 1 , 2), are constant. For convenience in the numer-

ical analysis, we replace the modified Bessel functions having

complex arguments by the Kelvin functions with real arguments

by us i ng the foll owing relati on :

-5-
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e	 Kv(xe	 ) = ker v x + ikei v x
-^v7ri	 ^i /4 	

(7)

Around zero, the functions ker l and kei l behave like 1/x which

provide the singularity of the integral equations and may eas-

ily be separated. By using the polynomial approximations for

the functions kery and kei v ,	 (v	 =	 1,2)	 given	 in	 [7],	 (4)	 may

be put	 in	 the following form:

1 2	 1
aijuj(t) 

t-x +
	 kij(x,t)uj(t)dt = f i (x)	 (8)

i = 1 9 2 1 1xI<1

where the coefficients a ij are known constants and the kernels

k ij are bounded known functions.

From the definitions of the auxiliary functions u l and u2

as given in [1] and [2], it can be shown that u l and u 2 are

even functions and the index of the system of equations (8) is

-1, that is u 1 and u 2 may be expressed as

u j (x) =	 Aj(x2). ( j = 1,2)
	

(9)

where the functions A 1 , A 2 are regular. Again, referring to

[1] and [2] for details, we simply note that the extensional

and bending components of the stress intensity factors are

directly related to the values of the functions A  at x = 1.

Hence the solution of (8) is sufficient for the evaluation of

-6-
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stress intensity  factors .

The system of singular integral equations (8) may be regu-

larized by using the method of Muskhelishvili [8] or Carlemann

and Vekua [9]. However, because of the complexity of the

kernels k ii , the process is quite complicated and the solution

of the resulting system of i ntegral equations wi th weakly sin-

gular kernels can only be solved approximately. Therefore, to

solve (8), we use the method described in [10], which is based

on the observation that the fundamental function of the system

(8) is the weight of Chebishev polynomials. Thus, the singu-

larities of (8) may be removed by expressing the functions Ai

as infinite series in these orthogonal polynomials. The tech-

nique is rather easy to apply and allows introducing into the

program an automatic convergence scheme for a desired degree

of accuracy in the computed quantities ( by simply specifying

the number of significant digits in stress intensity ratios

which should be repeated as the number of terms in the series

is increased).

Here, we give the numerical results for four different

cases, namely the cylindrical and the spherical shells with

the loading conditions No ^ 0 9	
M 	 =

0 and N o =	 0,	 M 
	 ^ 0.

Let the stress	 intensity factors	 in shells be

k s = (Ae + Ab )k p (outer surface)

(10)
k s = (Ae	 A b )k p (inner surface)
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where k  is t'e stress intensity factor in the corresponding

flat plate and is given by

N
k p a 0 r, for N o ^ 0, M o X 0

6M
k p =	

p , fo r M o	 0, o	 0
(ll)

The constants A e and A b are the extensional and bending compo-
nents of the stress intensity factor and are given in Tables

I and 2, either directly ( Ae for N o ¢ 0, Mo = 0 and Ab for

N o = 0 9 M  # 0) or through the following relations

Ab =	 (3+v) — ab for No # 0, M 	 0
VTT_7TT7_S

(12)

Ae = V ( l_ v 3 a e for No = 0, M  # 0

Regarding the results gi ven by Tabl es l and 2, the follow-

ing should be noted: a) the Poisson's ratio v appears explic-

itly as well as through a in the e%pressions for k id . Thus

the numerical results are obtained for one value of v only,

which was selected to be v = 1/3. b) Because of the assump -

tion of Kirchhoff type boundary conditions in the formulation

of the problem, the angular distributions of extensional and

bending stresses.around the crack tip are not the same, hence

the superposition given by (10) is valid only for o = 0 9 that
is, along the prolongation of the crack. c) The numerical

NOW
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analysis is carried out by using polynomial approximations for

Kelvin functions which are valid in -8<x<8 with a residual

error of less than 10 -7 , x being the argument of the functions.

In the cylindrical shells, the argument x vari e,s in 0<x <a, and

in spherical shells, in 0<x<x/2. Since we required only four

significant digit accuracy in the calculated quantities, tech-

nically, we could obtain useful results for values of x some-

what larger than 8 in cylinders and 4 in spheres. To obtain

more	 reliable results	 for higher values	 of	 x,	 in addition to

polynomial	 approximations valid for small	 x,	 one can	 also in-

troduce the asymptotic expressions for the Kelvin functions

valid for jxj>8 (also given % qv, 71) .

The results given in Tables 1 and 2 are shown in Figures

1-8. The figures also include the results of the asymptotic

solutions obtained in [1] and [2].

Comparison of the two sets of curves

clearly indicates the inadequacy of the asymptotic solutions

for moderately lar

pected, all stress

Note also that thel

tensity factors is

jected to membrane

ge values of a. Note that at a	 0, as ex-

intensity ratio curves have zero slope.

effect of shell curvature on the stress in-

much more significant if the shell is sub-

loading rather than tending.
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'T?b1e 1 - Stress Intensity Factor Ratios For

N o ^ 0, m  = 0

CYLINDER SPHERE

A 
ab Ae a 

.2 1.0096 .00410 1.0112 .00611

.4 1.0371 .01124 1.0422 .01693

.6 1.0795 .01902 1.0887 .02919

.8 1.1344 .02659 1.1479 .04186

1.0 1.1993 .03359 1.2174 .05448

1.2 1.2723 .03985 1.2956 .06685

1.4 1.3519 .04529 1.3812 .07886

1.6 1.4367 .04990 1.4731 .09045

1.8 1.5256 .05368 1.5706 .10155

2.0 1.6177 .05664 1.6729 .11216

2..2 1.7122 .05883 1.7795 .12223

.4 1.8085 .06018 1.8899 .13172
2.6 1.9060 .06090 2.0038 .14058

2.8 2.0045 .06083 2.1208 .14879

3.0 2.1035 .06014 2.2408 .15630

3.25 2.2276 .05832 2.3947 .16463

3.50 2.3519 .05549 2.5526 .17172

3.75 2.4761 .05172 2.7143 .17751

4.00 2.5999 .04700 2.8796 .18194

4.25 2.7232 .04154 3.0485 .18483

4.50 2.8459 .03512 3.2208 .18644

5.00 3.0895 02012 3.5750 .18493

5.50 3.3303 .00234 3.9446 .17802

6.00 3.5681 .02222

6.50 3.8029 -.04130

7.00 4.0347 .06622

7.50 4.2637 -.09350

8.00 4.4895 -.12279
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Table 2 - Stress Intensity Factor Ratios For

N o = 0, M  ^ 0

CYLINDER SPHE RE

a a A a Ab

.2 .006161 .99816 .00842 1.0020

.4 .01695 .99340 .02249 1.0070

.6 .02897 .98660 .03749 1.0137

.8 .04107 .97846 .05202 1.0211

1.0 .05283 .96946 .06557 1.0287

1.2 .06406 .95986 .07799 1.0364

1.4 .07473 .94993 .08935 1.0439

1.6 .08482 .93976 .09964 1.0512

1.8 .09435 .92956 .10895 1.0583

2.0 .1033 .91936 .11740 1.0652

2.2 .1118 .90923 .12519 1.0718

2.4 .1198 .89926 .13228 1.0783

2.F .1273 .88940 .13876 1.0845

2.8 .1344 .87970 .14475 1.0905

3.0 .1410 .87023 .15030 1.0964

3.25 .1488 .85863 .15668 1.1035

3.50 .1551 .84740 .16260 1.1103

3.75 .1628 .83643 .1681 1.1170

4.00 .1691 .82440 .1732 1.1233

4.25 .1750 .81542 .1780 1.1297

4.50 .1803 .80539 .1826 1.1357

5.00 .1903 .78616 .1905' 1.1470

5.50 .2005 .76832 .2000 1.1580

6.00 .2068 .75079

6.50 .2137 .73446

7.00 .2200 .71879

7.50 .2255 .7080

8.00 .2306 .6897
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