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ON THE FORMATION OF THE MOON BY ACCRETION

OF SOLAR OR PLANETARY MATERIAL

by

J. Anthony Burke

INTRODUCTION

A mechanism for the genesis of planetary systems pro-

posed by Burke (1968) also suggests the formation of satel-

lites associated with the protoplanets so that we are led

to consider this mechanism as a possible description of the,

development of our own "proto-moon". In Burke's picture

material lost from a collapsing proto-star flows more or

less radially outward until it impinges on the distant

ren_^ ;nts of the rotating disc shaped cloud of material from

which the star condensed. Accretion of thin ejected material

by the inner edge of the disc decreases the angular momentum

per unit mass of the latter, causing it to move inward.

Continued accretion and inward motion by this ring of

material increases its density until, exceeding a critical

value, it divides into an inner and an outer portion. The
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inner portion continues to accrete material and moves inwards,

until it divides again. Successive divisions in the same

fashion finally leave a series of concentric rings in the
plane of the original disc (and perpendicular to the proto-

star's axis of rotation) which may ultimately develop into

planets.

According to thi3 Picture, satellite formation could

proceed in an analogous.fashion beginning with a disc of

material left behind by a collapsing proto-planet. Here

the outward flow of material could either be provided by

centrifugal ejection from the proto-planet, or by focusing

of the stellar stream by the proto-planet.

If such a mechanism is actually viable, then it

provided a theory of the formatio• . -of our moon. The moon

would then be comprised of material derived from the original

disc around the proto-star and from material flowing out

from the star itself. The initial compositions of these

two supplies would be identical since they both ultimately

eerive from the same original collapsing cloud. However,

the final composition of the moon would be subject to at

least three separating processes; certain elements may be

preferentially ejected from the proto-star; certain elements

may be preferentially ejected from the proto-earth; of the

elements present in a ring-shaped pre-moon, only certain

ones may ultimately end up in the moon (for example, lighter

elements are lost in conventional evaporative processes, etc.).

In the development of such an evolutionary scheme it is



ne-cessary to evaluate the conditions in which material

would be accreted by a gravitating ring located in a fluid

stream. In order to obtain a more readily solvable problem,

we shall approximately represent the flow configuration by

a stream, uniform at large distances, impinging on a cylin-

drical gravitating body.

3
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II. ACCRETION FROM A FLUIL STREAM BY A GRAVITATING CYLINDER

In dealing with the problem of accretion of a fluid

by an infinite gravitating cylinder one is met with a

mathematically intractable and physically unrealistic

situation. The former difficulty derives from the logarith-

mic nature of the gravitational potential, while the latter

arises because, of course, in all physical situations the

cylinder must necessarily be finite. We are therefore led

to modify the problem and to consider the gravitational

potential to be truncated at some distance where other

forces may become dominant and where the effects of the

finite length become significant. Therefore, let us consider
a potential of the form,

2Galogr	r<r
=	 r 	 °	 (1)

0,	 r>ro

where r  is some cut-off distance. This simplification

permits us to treat the problem as two dimensional.

`

	

	 We shall further delimit the problem by presuming the

absence of any magnetic field strong enough to affect the

motion, and by taking the flow at distances greater than r 



to be approximately uniform in direction, speed (Vo), and

density (P 0).

1. Strong Field

Perhaps the simplest approach resembles the three

dimensional cases considered by Hoyle and Lyttleton (1939)

and Bondi and Hoyle (1944) where we neglect the internal

energy of the fluid in comparison with the kinetic and

gravitational energy and-obtain a characteristic accretion

radius r  by equating the latter two.. Thus, we write,

rh%2
= -2Galogr̂ 	 (2)

0

where X is the mass per unit length of the cylinder and G

is the gravitational constant. Then the accretion rate of

a cylinder of radius R is given by,

A-2rc po o'

If we take the effective cross section 2r c to be given

in terms of the geometric cross section by

r  = f sR,	 (3)

then equation (2) gives

rc = - = exp {- ( M2/4)/(GA/c 2
 } ,
	 (4)

0

where S = ro/R, c is the velocity of sound, c 2 = YPo/po'

5
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and M = Vo/c is the Mach number of the flow.

For this case of the strong field (GX/c 2 >1) and with

a small Mach number, equation (4) reduces to f s = S, so that

the accretion radius is determined entirely by the choice of

potential - cut-off distance, ro . If the Mach number is some-

what larger than one; the gravitational and kinetic energies

will dominate the internal energy, so that equation (4)

should give a reasonable estimate of accretion cross section.

Since we are neglecting the internal energy of the fluid,

we are consistent in not being concerned with the effects on

the flow caused by the formation of shock fronts.

2. Weak Field - Subsonic Flow

When the gravitational field is weak (GA/c 2<1), we

must account for the effects of pressure and presence of

shock waves, so that a more elaborate analysis is needed.

Fortunately, the less pronounced role of gravitation permits

us to adopt a perturbation technique. The unperturbed flow

will be taken to be entirely determined by pressure and

inertial forces, subsonic, and without accretion. The

gravitational field will be introduced . as a first order

effect, and the resultant flow modifications will permit us

to evaluate an accretion rate and effective accretion cross

section.

3. First Order Solution

We are thus treating the accretion problem as two

dimensional and subsonic. Lot the cylinder have radius



unity and be centered on the origin of the z-plane having

orthogonal axes ^ and n. Since the flow is symmetric about

the ^-axis, we need only concern ourselves with determining

it in the upper half plane. The solution for the unperturbed

flow of an inviscid, incompressible fluid is easily obtained

by the usual complex transformation

W1 = z ♦ 1z

(Milne-Thomson, 1960, for example) which maps the upper

half of the z-plane exterior to the unit circle into the

whole upper half of the w-plane (with coordinate axes x and

y). The complex flow potential in the w-plane is V  , so

that the vector velocity is simply V = V 0R. The perturbing

gravitational force will bend the streamlines somewhat, so

that a portion of the fluid will cross the x-axis in a

downward direction. The part of this fluid crossing the

line corresponding to the cylinder boundary we shall presume

to be accreted.

In the w-plane the conventional equations of conservation

of mass and momentum are, respectively,

V . (PV) = 0,	 (6)

(V • V)V = - vP- GO.	 (7)

Let us put

P = P0 +P 1

7
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and

V = V0+V1,

where the subscript zero refers to unperturbed quantities,

and the subscript one refers to small increments caused by

the introduction of the gravitational potential 4P. We also

presume the density and pressure to be related by a polytropic

law,

Po = (PO) Y .

With these suastitutions, and remembering that the unperturbed

quantities also obey equations (6) and (7), we obtain two

equations for the first order perturbations:

J	 -^
V. (Pa 1+ P 1Vo ) = 0,

9P 	 P OP
(Vo • 0)V1+(V1 . 0)V0 = -C2 

Pl 
+ ( Y-2)c2 P

1 
P° -04).

0	 0 0

Finally we put V0 = V0R, p0 = constant, and p l/po = p

to obtain

av	 av1 ( lx +--lyj+^= o,	 (8)
v° ax	 ay	 ax

aVlr	 2 3 _ a 'P	 (9)
Vo 3x = ^c ax ax '

8



V aVIY _ _c 2	 _ a^ ,	 (10)o ax	 By	 ay

where Vlx means the x component of V,	 Equation (9)

may be integrated with respect to x to obtain

oVlx - -c2p`(D+k(y)•	
(11)

The arbitrary function k(y) may be seen to be identically

zero since at large distances from the origin we require

the perturbations in the flow to vanish. If we differentiate

equation (11) by y and subtract it from equation (10) we

recover the curl -free flow condition:

avlx _ aVlY	
(12)

ay	 ax

If we use equation (11) to eliminate p from equation

(8), we have

3VlxU_M2) + aV
lY Vo a@ = 0

UK— 	BY - -Y ax

Differentiatic^ of this equation by y and use of equation (12)

yields,

2	 2	 2

a (l-M2 ) + a---lv - V  a 0	
0	 (13)

ax	 ay2	 cam` axay

The substitution X = (1-M2 ) hx changes the equation to the

form



-°-"'_x	 z

2	 2
a 21Y + a_ 21y _ V2 (1-M2 ) -^ a l t 	 0
DX	 ay	 c	 ax ay

which may be solved by a Green's function. We obtain

2

	Vly (S') = L . 
M2	 log^S-S'I aXay Xdy

(1-M )

where the integrals are taken to cover the entire X-y

plane, and

IS—S'1 2 = (X-X') 2 + (y-v')2

Two integrations by parts, remembering that 0 vanishes

at large X or y, gives

V1 (S') = 21	 M	 a a (log IS S'^)(D( X ,y)dXdy	 (14)y	 ( 1-M )	 X y

Ultimately we seek ;:he fluid flux across a line

corresponding to the cylinder boundary in the z-plane. This

flux defines the accretion rate A, so that

A = 2p oJ Vl (z) dl (z)
one

quadrant

where V,(z) is the velocity component perpendi-ular to the

cylinder boundary in the z-plane, and dl(z) is arc length

along the boundary. From the transformation equation (5)

10
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we find that Vj = 2nVly and 2ndl = dx so that

X 
A = 2p a Vly(S')dx' = 2po (1-M2 ) 0 Vly (S')dX' .	 (15)

where i2 = 2(1-M2 ) - 	we are presuming at this point that

in au actual situation where flow crossing the x-axis for

x>2 would be prohibited, the flow across the boundary

0<x<2 would not be enormously changed. Substitution of

equation (14) into equation (15), and integration with

respect to X'_, since aX	 aX, yields

X

A= - pA-C^	 jay(logjS S' j)O (X,y)dXdy1o2

Finally, lot us define a normalized potential f by

0 = 2Gllogr = 2G)4
0

(so that #(x,y) is simply the w-plane representation of

log(r/S), and let us express the accretion rate for a

cylinder of radius R (hitherto we have let R = 1). The

accretion rate is then

	

A = 2p  ac-lRMI(M,0)	 _16)

where

X2

I ( I"^,S) = -	 ^ay(log^-S' ^)^ (X,y) dXdy1 0	(17)
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As in equation (3), take the effective accretion cross

section to be related to the geometric cross section by a

parameter fw. Then,

A = 2fwV0p0R ,	 (18)

so that

fw = ( y) I (M,13)	 (19)
c

Values of the function I(M,B) are shown in Figure 1.

We note that I varies only slowly with M and B, so that

the accretion cross section is primarily dependent on the

ratio of the gravitational to internal energy, manifest as

Gl/c2 . Since the cut-off distance of the potential has	 =

only a relatively gentle effect on the accretion cross

section, we need not be unduly concerned with its precise

determination in any actualy physical situation.

4. Weak Field - Supersonic Flow

In many cases the uniform flow at large distances will

be supersonic. Since -the gravitational field is weak, and

if the Mach number is not excessive, a detached bow shock

front will form upstream of the cylinder. Its distance

from the cylinder will be of the order of the radius of

the cylinder, R (Liepmann and Roshko, 1957). The flow

downstream of the front must be subsonic. There will be

a transonic region in the flow near the n-axis, but this

is getting away from the part of the cylinder where

12
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accretion will occur and so should not affect the problem

too severely. Considering the otlier simplifications we

have introduced, it is probably not unreasonable to regard

the accretion in such a case to be roughly the same as for

the subsonic case where M, Vo l, po , and c correspond to the

values just behind the front. The fact that the flow was

initially supersonic will be reflected in the changed value

of c.
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III. CONCLUSIONS

It is immediately clear that if such an accretion

mechanism as described in section I is to be responsible for

the formation of the moon (or any satellite) then we may

have significant accretion only if Ga/c 2 is not too small,

which is to say that the temperature must not be too high.
If a ring-shaped proto-moon has mass per unit length

A-1016g/em (weak field corresponding to total ring mass

around three times the mass of the moon) then for significant

accretion to occur the temperature must be only in the

hundreds of degrees Kelvin. This is not likely to be the

case for a stellar wind mass flov focused by the earth.

Passage through a shock front is unlikely to help and will

only raise the temperature if the shock is at all adiabatic.

Therefore, we are led to believe that the flow must originate

at low temperature. It appears that only at a very early

era in the formation of the solar system would material be

available which both flows outward and is cold. And a

centrifugal loss from the proto-sun or proto-earth would

satisfy these requirements better than any coronal discharge

such as the solar wind. Thus, such a process would occur

at an epoch when the sun and earth were forming. Even

though subsequent condensation of the lunar ring might be

slow, at least its birth would be approximately-coeval with

that of the earth. This conclusion is further strengthened

if centrifugal ejection represents a relatively short phase

in the life of a proto-planet or proto-star.
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If the impinging gas stream is cool it is probably

unionized and will be unaffected by magnetic: fields, so

that this potential obstacle in the way of effective

accretion would not arise.

I
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