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ABSTRACT

Construction theorems are presented for the solutions of certain
nonautonomous differential equations. Exponential series solutions are
given for a family of periodic solutions of a Ricatti equation with odd
periodic coefficients and finite Fourier series expansion. This result
is generalized to the existence of a first order quasi-periodic vector

differential equation which is odd in the independent variable. Applica-
tions are included.
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A FAMILY OF SOLUTIONS OF CERTAIN
NONAUTONOMOUS DIFFERENTIAL EQUATIONS BY SERIES
OF EXPONENTIAL FUNCTIONS

by T. G. Proctor and H. H. Suber

1. INTRODUCTION

We consider in this paper the construction of solutions
for certain nonautonomous differential equations. The first
result makes use of a technique developed by Golomb [5]
and Wasow [10] for constructing solutions of some non-
linear differential equations by means of series of
exponential functions. The technique as employed here
gives explicit formulae for:-a family of periodic solutions
of a Ricatti equation with odd periodilic coefficient and
finite Fourier series expansion.

Following this is a theorem concerning the existence
of a family of almost periodic soclutions of the vector

differential equation

y = g(t, y).

Here y is an m-vector; g(t, y) is quasi-periodic and odd in
t and satisfies certain other conditions. (A quasi-periodic
function is a function almost periodic in t with a finite
base of frequencles Wys Wo, °00 T, Wy .) The theorem is

a generalization of a result concerning periodic solutions
when g(t, y) is periodic in t [2], in particular, the

Ricatti case mentioned above. The proof of the theorem

utilizes a method devised by Kolmogorov [7] to overcome the



problem of arbitrarily small divisors and gives a method of
constructing approximations to the almost periodic solutions.
Since we assume that g has a finite base of frequencies we
can present the system of equations in an autonomous form by
considering a higher dimensional version of the differential
equation. The theorem is as follows:

Let x be an n vector, let y be an m vector and consider

the differential equations
X = w ., y = f(x, y) , (1.1)

where f(x, y) = -f(-x, y), and where the components of
f(x, y) are analytic for |y| < R, and |Imx| < R,, and
where f has period 2m in each of the components of x.
Suppose that the vector @ = (w

15 Wos * 0t wn) satisfies

an inequality

(1.2)

for some positive constants K and v and all vectors

k = (kl, k °, kn) with integer components where

2’
n n

keQ = .Z k;w, and | x| .Z ]ki[ # 0. Then if f(x, y)
i=1 i=1

is sufficiently small for |y| <R

1

and |Imx| < R,, there

1 2°
is a neighborhood of y = 0 such that all solutions of (1.1)
starting in this neighborhood are almost periodic with base

frequencies Q.



We note the requirement on £ (inequality (1.2)) is not
stringent. If VvV > n, such a constant K exists for almost
all € (in the sense of Lebesgue measure) [2]. The proof
of this theorem is given by constructing an infinite se-
quence of coordinate transformations so that in the limifing
set of coordinates the differential equations can be in-
tegrated in a neighborhood of y = 0.

The last section gives an application of the results

mentioned above.

2. THE PERIODIC CASE

Let I, denote the set of all k-tuples of non-negative

k

integers. The elements of Ik can be counted according to
the following technique. Let (nl, Ny, * 0 *y nk) e I, let

ng n, n; n,
m =2 "3 R N < where Ps is the ith prime
number 1 = 1, 2, « + -, k, then denote (nl, No, * 0 vy nk)
by Nm. Note that N1 = (0, 0, = - «, 0), N, = (1, 0, = -« -, 0),
etc. The natural ordering of the non-negative integers then
orders all the elements of Ik’ Nl’ N2, For
Nn’ Nm € Ik we make the following remarks:

i) m is prime iff N is of the form (0,0, *==-,1, ++- 0).
ii) Define addition in Ik component-wise. Then

Nn + Nm = N2 iff nm = %.

1ii) We say that Nn < Nm iff n < m and Nn < Nm

iff n < m. From ii) it is clear that

N + N = N, implies that Nn < N, and N < N

n m 2 2 m L



For w real let @ = (w, - w, 2w, =-2wW, * °* *, kuw, -kw). Now
for N = (nl, Noy, * %ty Nop 1 n2k) e I, let m”~ be the
integer so that Nm’ = (n2, Ny, * * %, Ngyp, n2k—1)‘ We
observe that Nm-Q = —Nm,-Q. Let Ok denote the class of
odd periodic functions of the real variable t with pericd
2mw which have finite Fourier series containing only terms
ijwt

*
of the type fje for j = 1, 2, - - -, k. Using

the above notation we may represent functilions in Ok in the

form
iNn-Qt
r(t)y = ) fe (2.1)
Nnel2k
n prime
where . = -f since f is odd.
n n

Theorem 2.1. For n > 0 sufficiently small the differ-

ential equation
g~ = n(alt) + b(t)y + c(t)y2), (2.2)

where a, b and ¢ € Ok’ has an even periodic solution y(t)
of the form
iN_*Qt
n

y(t) = ] y.e - (2.3)

Nn€I2k

Proof. Assume that (2.2) has a solution of the form

indicated. Then formally we have



1IN _-Qt

' n
a_+ b+ c_|e 2.4
n 2121{[ n mpZn Py mpzn Y Yo »  (2.)
p prime p prime

where aj, bj and Cj’ J prime are the coefficients of the
series representations (2.1) of a, b, and c respectively.

Now in case Nn-Q # 0 we write

WU.—Qan 3 n prime
n
v, = 3 (2.5)
Tﬁﬂﬁﬁ ) ymbp + ) Y nCp| D not prime
n mp=n 2mp=n ‘
L P prime P prime
and for N_+Q = 0,
n
Vo = 0 . (2.5a)
iNn'Qt
Suppose that the terms containing e on the right

side of (2.4) vanish whenever Nn-Q = 0, Then by remark iii)
above we see that (2.5) defines y, recursively so that (2.3)
will be a formal solution. To show that this is indeed the
case we present the followlng.

Lemma 2.2. Let {yh} be the sequence of numbers defined

by 2.5. Then In Y-




Proof. The proof is by induction. If Nn-Q = 0 then
clearly Vp = Yy~ and so in particular for n = 1. Now

suppose that Y = Y~ for all m < n. Then we may write

1
V, = T Yy b+ ) y.y.cC
n iN Q[mp=n m p gmp=n 2m”p

:TﬁjfTﬁ[ ) ym’(_bp’) + ) yl’ym’(—cp‘)}

n mp=n 2mp=n

where p is prime. But mp = n iff mp” = n”. So we see

that In = V- which proves the lemma.

Lemma 2.3. If Nn e 1 is such that NH-Q = 0 then

2k

D ygPp + 1 wygvpe, * L oypbo ot L yeype =0
mp=n © P Lmp=n . mp=n~ ™ P 2mp=n"~ 2 m p ’

where p 1s prime.

Proof. By Lemma 2.2 we have Y = Yp- for all n and

since b and ¢ € O we may write

k’
) y b= y,(—b,)=—2y
mp=n m P mpzn m P mp
and
) ¥y¥.C, = vy (e ) = = ] y,y.c
mp=n x p Lmp=n z P fmp=n % p

where p 1is prime.



Now in order to show that (2.2) is a solution of
equation (2.1) we will prove that formal series (2.3) with
Y, defined by (2.5) converges uniformly and absolutely for
all t and n sufficiently small. .

Let C represent the complex plane, for
2k

z = (Zl’ Z5s TN Z2k) e C and N e I, define
Nn- n, n, Noy .
z = 297250 0 tZoy and ]zl = m?xlzj]. A function f
mapping C2k into C is analytic in the polydisk
{z € C2k [zi[ < r} of radius r about the origin iff f

has the representation,

f(z) = ) a z

Nn€I2k

where the sum is uniformly and absolutely convergent in
the polydisk. 1In case f is analytic, Cauchy's inequality

gives for |z| < &

IN

n
la | < M/

where |an= n. +n, +° ° ° +n

1 5 and M = sup |f(z)].

2k

Now for z ¢ C2k let



a¥(z) = jzllajlzj ,
2k
o¥(z) = ) |b,l=z, , (2.6)
j=1 J J
2k
c¥(z) = ) le.lz. ;
j=1 *
and let u(z) = (a*¥(z), b¥(z), c¥(z)) where

[ 5 >
1-nb 1-nb 4n“ac
e - one [1 - z{:nb)2 > c # O:

f(a,b,c) = 3

l-nb °

Note that u 1s the solution of the equation

u(z) = n[c*u2(z) + b¥*u(z) + a¥*] (2.7)

which vanishes when a¥ = b¥ = ¢c¥ = 0. We see that u(z)
is an analytic function of 2z in any region which does not

include zeros of the function

(1-nb*(2))° - hna%*(z)c*(z).

g(z)

Now for & > 0 choose n_ > 0 so that |g(z)| > 0
whenever |z| < 1 + 8; e.g. for L = max{lajl,lbj|,|cjl},

J
1 1
let ng < grErisy o vhen ngla¥l, n |p*|, n fe*| <  and



"we see that in this case |g(z)| > 0. Now for all n,
0 < n <mn_  we have u analytic in the polydisk lz] <1 + 8.

Hence, in this polydisk u has the representation

N
u(z) = ) U,z n (2.8)
NnEIZK
where
IN,
lu_| < M/(1+6)
n —
with M =  sup lu(z)|.
lzj|=l+6

On the other hand, substituting from (2.8) into (2.7)

and using (2.6) we obtain

-~

nla,l n prime
u, =ﬁ (2.9)
n ) u b | +n ) u,u.c n not prime.
mp=n mop 2mp=n L m'p’
_ P prime p prime

Comparing this with the recursion formula (2.4), with

vy = 0, we see immedilately that

1
lynl < Elunl’ n=1, 2,
1Nn~Qt
Since |e | = 1 for all t we have



iN_<Qt
n

<t
0}
| A
e+
~1
o
-

| A

el=

e~
e

M (148
ia( )
which not only proves absolute and uniform convergence,
but also gives a bound for the solution y(t).

Remarks:
i) In the proof of Lemma 2.2 we showed that
Yp = Y,- for all Nn € IZk such that
Nn-Q # 0. From this we conclude that
the solution found above is even in t.
Note also that the sclution has zero

mean value.

ii) The particular order relation used here for
Ik 1s not essential to the proof. See
Golomb [5] and Wasow [10] for different

schemes.

iii) It is possible to use the result in this section
directly to obtain solutions with mean value other
than zero. Let £(t, y) represent the right side
of equation (2.1) and suppose that y(t) is the

solution of

10



iv)

V)

-

y =f(t: Y)

given above. PFor any fixed constant c, let
z =y + ¢ in (2.1). The theorem gives a
technique for obtaining a solution of the

new equation
z” = £¥(t, z),

where f¥(t, z) = f(t, 2z - c¢) with zero mean
value. This in turn gives a solution to the

original equatlion with mean value -c.

Let y be an n-vector, let pl(t) be an n-vector

with components pl(J)(t) e O j = 1,2,+--,n,

k’
L = 1,2,**+. Then the differential equation

N

yo=n 1 p,(f)y .

N2€I2k

L <
where the right side converges for |y| < r may

(2.10)

be solved using the techniques of this section.
The only essential difference occurs when one
attempts to find an analytic sclution of the
corresponding equation (2.8). Here one may use
the implicit function theorem to show existence

of such a solution for n sufficiently small.

The existence of periodic solutions of equations of
the form (2.10), for n small is shown by Hale
[6, p. 45].

11



3. THE QUASIPERIODIC CASE
For any positive integer n let Jn denote the set of

all n-tuples of integers, for a = (o, 0y, ° * °, an) e J

n
let |a| = i§1|ai[ and let C" be all m vectors (y,, " ',¥)

where each component is a complex number. For simplicity we

will treat only the case where y i1s a m = 1 vector.

We shall be concerned in this section with functions

1

defined and analytic on (x, y) subsets of ¢™ x ¢+ into

Cl which are periodic of period 2m in each component of x.

These subsets will be of the form

¢t |Imx| < o, |y| < r}

m

D(r, o) = {(x,y)

where the norm | | of the vector X denotes the maximum
of the absolute value of its components. We denote the class
of such functions by P(r, p) and note that any

g e P(r, p) has a Fourier-Taylor series representation

v ioex B
g n€ y
la],|8]=0 P ’

g(x, y)

where the gaB are complex numbers and where the sum is taken

over all o e J_ and B & I..
n 1

Several lemmas are listed below without proof. The

proofs are elementary and are similar to those given in [2].

12



Lemma 3.1. Let h € P(Ry, R,) and let |h(x,y)| < M,

M >0 in D(Rl, R2). The Fourier-Taylor coefficients, given
by
_ 1 e -io*x ..
haB = (2ﬂ)n JJ J hB(x)e dxldx2 dxn, o € Jn’ B e Il
where
B
1 9
hB(X) = 8—' 3_8— h(X, Y) >
y y=0
and where the jth integral is taken from Xj = 0 to xj = 2T,
satisfy the inequality
<
1
If h(-x, y) = -h(x, y) in the above we have
h—uB = —huB and conversely. If h(-x, y) = h(x, y) we
have h—aB = haB and conversely.
Lemma 3.2. If the elements of the sequence

{haB} aed , Be I, satisfy

-la|R
Me e

then

13



o)

ex B
h(x,y) = ) h e ™ ¥y
lo| 5 8]=0 *F

8

is analytic for |y| f-Rle_ , |Imx| < R, - & for any positive

§ < 1 such that R2 - 8§ > 0; and in this domain we have

22n+1M

|h(x, y)| < L

Lemma 3.3. For all positive numbers m, v, § we have
Y
v V e
m- < (g) 5

Lemma 3.4. (Cauchy's Inequality). If the complex

valued function h(z) is analytic and bounded by M for

lz| <R, M,R > 0, then for |z]| < Re_a, 0 < § <1, we have
dhi . 2M
dz| — R¢

The proof of the main result of this section depends
almost entirely on the following considerations.
Let £ € P(Ry, R,) and satisfy f(-x, y) = -f(x, y),

let £ satisfy

l£(x, y)] < M = §2(RFVIHT (3.1)

in D(Rl’ R2) where §is specified below, let w satisfy (1.2)
for some positive constants K and v and all o ¢ Jn with

o] # 0 and consider the differential equations

X = W, y = f(x, y). (3.2)

1h




Lemma 3.5. For each x in |Imx| < R, - 26 there exists
an invertible transformation U defined on a subset of C

into C, given by U(n) = y where

1=

y=n+ulx, n), [ulx, M| <= 0 - (3.3)

(o]

for |n] f_Rle_ua, |Imx| < R, - 28. Putting n = v~ (y)

in (3.3) we obtain the differential equations (3.2) in the

new coordinates

X=uw, n o= £¥(x, n); (3.4)
. -46
and in D(Rle , R2 - 28)
0% (x, n)| < m3/2, (3.5)
Further we have f¥(x, n) = -f¥(-x, n) and

-bs

f% ¢ P(Rle > Ry - 28). Here § is taken as a positive

number satisfying

: (Ri)l/n+“+” BE ey K eV 1,1/nEvis
[ < min 16, P R23 52—1’14‘3 ('\7) > ;ET(UJ > (é’]

Proof. a) Definition of u(x, n): Choose u(x, n) as

the solution with mean value zero of

By =rx, n) (3.6)

where %% is the vector with elements %%— in the ith row and
J

jth column. This gives

15




where

u - 0B o # 0, u = 0.

Since |f(x, n)| <M for lyl <Ry, |Imx| < R,, Lemma 3.1,

inequality (1.2) and the above imply

2 l“]v

Hence, using Lemma 3.2 we have u(x, n) defined and analytic

for |n| < Rpe™®, |Imx| < R, - 26 and bounded in this domain by

22n+1

Vv
luGe m < Sy x (3) - (3.7)

Thus, inequality (3.3) is valid and we note that

u(x, n) = u(-x, n) and u € P(Rle—s, R, - 28).

b) The transformation U : By equation (3.3) the

set D={necC : |n| < Rle_zs} is mapped into a set

containing A = {y e ¢ : |y| i_Rle_36}; i.e. U(D) o A.

Since

16




ou 1
m 2270
-26 -1 .
for |n| < Rie "7, |Imx| < R, - 28, we see that U~ is
-48

defined on A. Thus for |n| < Rje™'°, |Imx| < R, - 28,

2
u(x, n) is defined and (3.7) holds.

¢) The function f¥(x, n): Substituting from (3.3)

into (3.2) gives

(1 + ’g%‘)ﬁ = f(X, y) - f(X: T]):

so that

£E(x,n) = (14 52 (x,0))7H(EG,N + ulx,m) = £(x,m);  (3.8)

and we note here that -f¥(-x,n) = £¥(x,n).

Now we have

1
1+ 3D <2 (3.9)

hence
|£#(x, n)] < 2 |f(x,n + u(x, n)) - £(x, n)].
But
) aln+l Y
9 2 M
| £(x,n + u(x,n)) - f£(x,n)| < sup {|3£ |}6n+l+v e (§ >

17




where the supremum is taken over |y| < Rle_a, |Imx| < R,.

By Cauchy's inequality

of | . 2M
oy — Rld 2
thus
2n+3 v
2 ) 2 3/2
f¥(x, n) < —= 40 (Z) M° <M
KR16

and the proof of the lemma is complete.

Theorem 3.1. Let f be as in Lemma 3.5. Then if M

(and thus 8) is sufficiently small for each x in |Imx| < R2/2

there exists an invertible transformation, V, defined and
. . Ry m .
analytic on {n e C : [n| < R,e } into C, given by

V(n) = y where

y =n + v(x, n). (3.10)

Denoting the inverse transformation n = V_l(y) we obtain

the differential equations (3.3) in new coordinates
X = w, n = 0.

Furthermore we have v(-x, n) = v(x, n).

Proof'. Choose 61 > 0 so that for dj =

18



§. < .
I
. 1/n+v+4
5, < (R—gl) s® @, BT
1= 1 s 22n+3 v/, 2 22n+1 v/, 2 2

Apply Lemma 3.5 iteratively j times. Let ui(x, y) denote
the function in the transformation of coordinates at the
ith step and let fi(x, n) denote the corresponding right
side of the differential equation. We obtain the composite

map Fj(x, n) = y where
Fj(x,n) =n + uj(x,n) + uj_l(x,uj(x,n))+---+ ul(x,n + uj(x,n)+~-

ug(X,n + uj(X, n) + -+ + u3(x, n),

defined for |n| < Rjexpl-4 % 8,3, |Imx| < R, - 2 % 8.
-1 i=1 * -2 3t

where in the assoclated differential equations
)‘(=w s ﬁ=fj(x>n>>
the functions fj(x, n) satisfy

2(n+v)+7
|£5 (x5 )] < My = 8

We observe that the composite transformations are defined
-R

for all j in [n| < Rje 2, |Imx| < R,/2, and that

thus the limiting composite transformation

19



F(x, n) = 1lim Fj(x, n) = n + v(x, n), (3.11)

J’—)oo

will exist in the above domain. In the coordinates defined

by (3.11) the differential equation (3.3) becomes

e
1l
o

L]
X = w0 ,

4, APPLICATION
Adrianov [1] and Gelmand [4] outlined a procedure for
finding a transformation x = Z(t)y so a given differential
equation

ax _
a_t_ - Q(t)xg
where Z(t) Q(t) are almost periodic n x n matrices and where

P satisfies certaln conditions and x in an n-vector, becomes

§ = Ay, A constant

in the new coordinates. We shall follow this procedure and
use Theorem 3.6 to effect the same transformation in cir-
cumstances where the earlier work fails to apply.

Let H be the class of all functions

r(t) = g(wlt, wyb, ot wnt)
where g(ul, Usy, * 7 7 un) is real analytic and has
period 27 in each Uy s i=1, 2, * * *, n. Consider the

differential equations




o,
s

1 _
g = La(t) + nqqy(8)Ixq + ngq,(E)x,,
(4.1)
dx2
Te— = Ny (B)xq + [alt) + nay, (8) Ix,,
where n > 0 and q, a5 e H and qij(t) = —qij(—t), i,j =1, 2,
and where w = (wl, Wy, * ° s wn) satisfies inequality (1.2).
We make the change of coordlnates
Xy =¥y ¥ Wy, Xy = ¥y (4.2)

where T is any almost periodic solution of the differential

equation

T o= nlag, * @y - App)T - Ay Tl (4.3)

In the new coordinates (4.1) becomes

dy
=% = [a(t) + nlay; - Ta,)) 1y,
(4.4)
dy
2 _
aT— = Mp1¥y * nlapy T+ gy, T Ay,

Theorem 3.6 guarantees that for n small enough equation (4.3)
has almost periodic solutions, which belong to H. Equation
(4.4) may now be integrated to obtain

a t
a¥(t)e ° ¢

I1 1

aot bot
b¥(t)e cq + b¥*¥(t)e c

Yo 2

21



where a, and bo are the mean values of g + nq11 = NTdoq
and q + Nd,, * Ng,qT respectively and a¥, b¥ and b¥¥ ¢ H.
Reversing the change of coordinates (4.2) we obtain a

fundamental matrix solution of (4.1) of the form
a 0
At o)
o(t) = P(t)e™", A = [O bJ ;

where the elements of P(t) are almost periodic and belong
to H.

The change of coordinates

P(t)z

>
i

in (4.1) yields

Ne

= AZ

The case treated by Gelmand [4] required that the linear
term in the resulting differential equation for T have mean
value which dominates the other elements in order that there
exists an almost periodic solution of this equation. Thus
Theorem 3.6 permits us to consider a new situation.

If in 4.1 we require that q, d 5
section 2) i, jJ = 1, 2, then we may use Theorem 2.1 to obtain

> Ok (defined in

an explicit representation for periodic solutions of equation
(4.3) for n sufficiently small. Then we may integrate equa-
tions (4.4) and obtain explicit solutions of (4.1). Note

that if

22




o iNn 0t
™(t) = ) 1@
n=1
is the solution of (4.3) given by Theorem 2.1 and Ty = 0

we have periodic solution of (4.1). The existence of these

solutions was shown by Epstein [3].

23
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