CASE FILE COPY

THE THEORY OF EXCEEDANCES

Prepared under Contract No. NAS 8-20082 by N. E. Rich

LOCKHEED MISSILES AND SPACE COMPANY

For
NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER Marshall Space Flight Center, Alabama

THE THEORY OF EXCEEDANCES

By
N. E. Rich
> Prepared under Contract No. NAS 8-20082 by
> LOCKHEED MISSILES AND SPACE COMPANY 4800 Bradford Blvd. Huntsville, Alabama
> For
> Aero-Astrodynamics Laboratory

Distribution of this report is provided in the interest of information exchange. Responsibility for the contents resides in the author or organization that prepared it.

FOREWORD

This report presents the results of work performed by Lockheed's Huntsville Research \& Engineering Center while under subcontract to Northrop Nortronics (NSL PO 5-09287) for Marshall Space Flight Center (MSFC), Contract NAS8-20082. This task was conducted in response to the requirement of Appendix A-1, Schedule Order No. 23.

The NASA technical coordinator for this study is O. E. Smith of the Aerospace Environment Division of the Aero-Astrodynamics Laboratory.

SUMMARY

In this document the probability that the $\mathrm{m}^{\text {th }}$ largest of the past L observations will be exceeded k times in N future trials is derived. The expected number of exceedances and the variance are also found. An interpolative scheme is presented for defining probabilities associated with values not actually observed.

The EDNE computer program, which calculates the probabilities of exceedances and plots the interpolative solution, is discussed. A user's manual and listing of this program is also included.

Several asymptotic distributions for large future sample sizes are developed.

CONTENTS

Section Page
FOREWORD ii
SUMMARY iii
I INTRODUCTION 1
2 THEORETICAL DERIVATION OF THE DISTRIBUTION OF THE NUMBER OF EXCEEDANCES 2
2.1 The Probability Density of the Number of Exceedances as a Function of the Initial Distribution 2
2.2 The Probability Density of the Number of Exceedances Free of the Initial Distribution 6
2.3 The Mean and Variance of the Number of Exceedances 9
3 PRACTICAL TECHNIQUES FOR REAL DATA 14
3.1 Displaying the Probabilities 15
3.2 Repetitions in the Initial Sample 15
3. 3 Interpolative Procedure for Values Between the Given Observations 17
THE EDNE PROGRAM 24
4. 1 Input 25
4.2 Output 25
4.3 Sample Case 26
4.4 Listing of the EDNE Program 46
SOME ASYMPTOTIC DISTRIBUTIONS 51
5. 1 Initial Sample Small as Compared with Future Sample 51
5.2 Initial Sample and Future Sample Both Large 54
6 CONCLUSIONS 57

Section 1
 INTRODUCTION

In many situations, past observations or results are used to predict future events. If a variable, such as wind speed, has been observed L times in the past, it is often desirable to make probability statements about the values it will assume in N future observations. At times it is sufficient to study the number of times a given value is surpassed in the future trials. For instance, if the wind is great enough to blow over a building or a vehicle erect on the launch pad, the exact strength of the wind is not important. For such cases the theory of exceedances has been developed.

This document is intended to be a basic treatment of the theory of exceedances. The theoretical development is quite complete, and a practical example is included. For a more authoritative treatise of the subject, the reader is referred to Chapter 2 of E.J. Gumbel's Statistics of Extremes, Columbia University Press, New York, 1958.

Section 2

THEORETICAL DERIVATION OF THE DISTRIBUTION OF THE NUMBER OF EXCEEDANCES

A set of L observations $-x_{1}, x_{2}, \ldots, x_{L}$ - has been obtained in such a manner that the observations comprise a random sample; that is, the observations are independent random variables drawn from the same probability space with cumulative distribution function $F[F(x)=\operatorname{Pr}(a n$ observation $\leq x)]$. The random variables are assumed to be continuous. The distribution function F, however, need not be known. The observations are arranged in descending order and written $x_{(1)}, x_{(2)}, \ldots, x_{(L)}$, where. $x_{(1)} \geq x_{(2)} \geq \ldots \geq x_{(L)}$. Thus, $x_{(1)}$ is the largest observation, $x_{(2)}$ is the second largest, and $x_{(m)}$ is the $m^{\text {th }}$ largest.

In the future a new set of N observations $-y_{1}, \ldots, y_{N}-$ will be drawn from the same population. Of these N observations, k of them will be greater than $x_{(m)}$, the $m^{\text {th }}$ largest of the past L observations $(k=0,1, \ldots, N ; m=1$, $2, \ldots, L)$. The probability density function of $k[p(L, m, N, k)=$ probability that k observations out of N will exceed the $m^{\text {th }}$ largest of L past observations] is derived below.

2.1 THE PROBABILITY DENSITY OF THE NUMBER OF EXCEEDANCES AS A FUNCTION OF THE INITIAL DISTRIBUTION

The $m^{\text {th }}$ largest of the L values, $x_{(m)}$, partitions the real line into two sections. For any number y, either $y \leq x_{(m)}$ or $y>x_{(m)}$. If y is drawn from the underlying probability distribution of the observations, then

$$
\begin{aligned}
& \operatorname{Pr}\left(y \leq x_{(m)}\right)=F\left(x_{(m)}\right)=F_{m} \\
& \operatorname{Pr}\left(y>x_{(m)}\right)=1-F\left(x_{(m)}\right)=1-F_{m}
\end{aligned}
$$

where F_{m} is the distribution function for $x_{(m)}$. Thus, if one value is drawn in the new sample $(N=1)$, the probability that it does not or does exceed $x_{(m)}$ is

$$
\begin{aligned}
& \operatorname{Pr}\left(x_{(m)} \text { exceeded } 0 \text { times } \mid N=1\right)=F_{m} \\
& \operatorname{Pr}\left(x_{(m)} \text { exceeded } 1 \text { time } \mid N=1\right)=1-F_{m}
\end{aligned}
$$

where $\operatorname{Pr}(A \mid B)$ denotes the conditional probability of A given B.

If two independent observations y_{1} and y_{2} are made $(N=2)$, then the following hold:

$$
\begin{aligned}
\operatorname{Pr}\left(x_{(m)} \text { exceeded } 0 \text { times } \mid N=2\right) & =\operatorname{Pr}\left(y_{1} \leq x_{(m)} \text { and } y_{2} \leq x_{(m)}\right) \\
& =\operatorname{Pr}\left(y_{1} \leq x_{(m)}\right) \operatorname{Pr}\left(y_{2} \leq x_{(m)}\right)=F_{m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left(x_{(m)} \text { exceeded } 1 \text { time } \mid N=2\right) & =\operatorname{Pr}\left(y_{1} \leq x_{(m)} \text { and } y_{2}>x_{(m)}\right) \\
& +\operatorname{Pr}\left(y_{1}>x_{(m)} \text { and } y_{2} \leq x_{(m)}\right) \\
& =F_{m}\left(1-F_{m}\right)+\left(1-F_{m}\right) F_{m} \\
& =2\left(1-F_{m}\right) F_{m}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Pr}\left(x_{(m)} \text { exceeded } 2 \text { times } \mid N=2\right) & =\operatorname{Pr}\left(y_{1}>x_{(m)} \text { and } y_{2}>x_{(m)}\right) \\
& =\left(1-F_{m}\right)^{2}
\end{aligned}
$$

Extending this procedure to N future observations,

$$
\begin{aligned}
& \left.\operatorname{Pr}_{\left(x_{(m)}\right)} \text { exceeded } 0 \text { times } \mid N\right)=\operatorname{Pr}_{1}\left(y_{1} \leq X_{(m)}, \cdots, y_{N} \leq X_{(m)}\right) \\
& =F_{m}^{N} \\
& \operatorname{Pr}\left(x_{(m)} \text { exceeded } 1 \text { time } \mid N\right)=\sum_{i=1}^{N} \operatorname{Pr}\left(y_{i}>x_{(m)} \text { and all others } \leq x_{(m)}\right) \\
& =N\left(1-F_{m}\right) F_{m}^{N-1} \\
& \operatorname{Pr}\left(x_{(m)} \text { exceeded } N-1 \text { times } \mid N\right)=\sum_{i=1}^{N} \operatorname{Pr}\left(y_{i} \leq x_{(m)} \text { and all others }>x_{(m)}\right) \\
& =N\left(1-F_{m}\right)^{N-1} F_{m} \\
& \operatorname{Pr}\left(x_{(m)} \text { exceeded } N \text { times } \mid N\right)=\operatorname{Pr}\left(y_{1}>x_{(m)}^{\prime}, \ldots, y_{N}>x_{(m)}\right) \\
& =\left(1-F_{m}\right)^{N}
\end{aligned}
$$

This can be written
$\operatorname{Pr}\left(\mathbf{x}_{(\mathrm{m})}\right.$ exceeded k times $\left.\mid \mathrm{N}\right)=\binom{\mathrm{N}}{\mathrm{k}}\left(1-\mathrm{F}_{\mathrm{m}}\right)^{\mathrm{k}} \mathrm{F}_{\mathrm{m}}^{\mathrm{N}-\mathrm{k}}, \quad \mathrm{k}=0,1, \ldots, \mathrm{~N}$
where

$$
\binom{N}{k}=\frac{N!}{k!(N-k)!}
$$

A random variable which follows the above density function is said to have a binomial distribution.

As the form given in Equation (2.1-1) depends upon the value F_{m}, the probability should be written as a conditional probability. The probability that the $\mathrm{m}^{\text {th }}$ largest of L past observations will be exceeded k times in N future observations, given the distribution F_{m}, is

$$
\begin{equation*}
p\left(L, m, N, k \mid F_{m}\right)=\binom{N}{k}\left(1-F_{m}\right)^{k} F_{m}^{N-k} \tag{2.1-2}
\end{equation*}
$$

${ }^{*}$ The expression $\binom{A}{B}\left(1-F_{m}\right)^{B} F_{m}^{A-B}$ is the $(k+1)$ term in the expansion of $\left(\left[1-F_{m}\right]+F_{m}\right)^{A}$. Thus,

$$
\binom{A}{B}=\frac{A!}{B!(A-B)!}
$$

is called a binomial coefficient. The following identities are used repeatedly in the theoretical development:

$$
\begin{aligned}
\binom{A}{B} & =\binom{A}{A-B} \\
\binom{A+1}{B} & =\frac{A+1}{A-B+1}\binom{A}{B} \\
\binom{A}{B+1} & =\frac{A-B}{B+1}\binom{A}{B} \\
\binom{A+1}{B+1} & =\frac{A+1}{B+1}\binom{A}{B}
\end{aligned}
$$

2.2 THE PROBABILITY DENSITY OF THE NUMBER OF EXCEEDANCES FREE OF THE INITIAL DISTRIBUTION

In many cases the value F_{m} is unknown and a form must be found that is independent of the distribution F_{m}. To accomplish this, the density function of $F_{m}, g\left(F_{m}\right)$, is derived. The marginal density function is then

$$
\begin{equation*}
p(L, m, N, k)=\int_{0}^{1} p\left(L, m, N, k \mid F_{m}\right) g\left(F_{m}\right) d F_{m} \tag{2.2-1}
\end{equation*}
$$

The previous sample has been drawn and arranged in descending order $-x_{(1)}, \ldots, x_{(L)}$; these values are known and considered constant. Therefore, the sequence $F_{1}, \ldots, F_{L}=F\left(x_{(1)}\right), \ldots, F\left(x_{(L)}\right)$ is also fixed. Consider taking a new sample and arranging it in descending order $-y_{(1)}, \ldots, y_{(L)}$. The probability distribution of F_{m} is computed as the probability that the $m^{\text {th }}$ largest value in the new sample will not be greater than the $\mathrm{m}^{\text {th }}$ largest in the past sample.

Since $F\left(x_{(m)}\right)$ is a distribution function, it is a nondecreasing function of $\mathbf{x}_{(\mathrm{m})}$ and is bounded by 0 and 1 . Thus, the distribution function of F_{m} is

$$
\begin{aligned}
& G\left(F_{m}\right)=\operatorname{Pr}\left[F\left(y_{(m)}\right) \leq F\left(x_{(m)}\right)\right]=\operatorname{Pr}\left(y_{(m)} \leq x_{(m)}\right) \\
& G\left(F_{m}\right)=\operatorname{Pr}\left(\text { at least } L-m+1 \text { values of } L \text { are } \leq x_{(m)}\right) \\
& G\left(F_{m}\right)=\operatorname{Pr}\left(\text { at most m-1 of } L \text { exceed } x_{(m)}\right) \\
& G\left(F_{m}\right)=\sum_{k=0}^{m-1} \operatorname{Pr}\left(x_{(m)} \text { exceeded } k \text { times } \mid N=L\right)
\end{aligned}
$$

By Equation (2.1-1), this is

$$
G\left(F_{m}\right)=\sum_{k=0}^{m-1}\binom{L}{k}\left(1-F_{m}\right)^{k} F_{m}^{L-k}
$$

The density function of F_{m} is thus

$$
\begin{aligned}
g\left(F_{m}\right)= & \frac{d}{d F_{m}} G\left(F_{m}\right)=\frac{d}{d F_{m}}\left[\sum_{k=0}^{m-1}\binom{L}{k}\left(1-F_{m}\right)^{k} F_{m}^{L-k}\right] \\
g\left(F_{m}\right)= & \frac{d}{d F_{m}}\left[F_{m}^{L}+\sum_{k=1}^{m-1}\binom{L}{k}\left(1-F_{m}\right)^{k} F_{m}^{L-k}\right]_{m} \\
g\left(F_{m}\right)= & L F_{m}^{L-1}+\sum_{k=1}^{m-1}\binom{L}{k}(-k)\left(1-F_{m}\right)^{k-1} F_{m}^{L-k} \\
& +\sum_{k=1}^{m-1}\binom{L}{k}(L-k)\left(1-F_{m}\right)^{k} F_{m}^{L-k} \\
g\left(F_{m}\right)= & -\sum_{k=1}^{m-1}\binom{L}{k-1}(L-[k-1])\left(1-F_{m}\right)^{k-1} F_{m}^{L-k} \\
& +\binom{L}{0} L\left(1-F_{m}\right)^{0} F_{m}^{L-0-1} \\
& +\sum_{k=1}^{m-1}\binom{L}{k}(L-k)\left(1-F_{m}\right)^{k} F_{m}^{L-k-1}
\end{aligned}
$$

$$
\begin{align*}
g\left(F_{m}\right)= & -\sum_{\substack{j=0 \\
j=k-1}}^{m-2}\binom{L}{j}(L-j)\left(1-F_{m}\right)^{j} F_{m}^{L-j-1} \\
& +\sum_{\substack{j=0 \\
j=k}}^{m-1}\binom{L}{j}(L-j)\left(1-F_{m}\right)^{j} F_{m}^{L-j-1} \\
g\left(F_{m}\right)= & \binom{L}{m-1}(L-m+1)\left(1-F_{m}\right)^{m-1} F_{m}^{L-m} \\
g\left(F_{m}\right)= & \binom{L}{m} m\left(1-F_{m}\right)^{m-1} F_{m}^{L-m}, \quad 0 \leq F_{m} \leq 1 \tag{2.2-2}
\end{align*}
$$

Substituting Equation (2.1-2) and Equation (2.2-2) into Equation (2.2-1), the marginal density function becomes

$$
\begin{align*}
& p(L, m, N, k)=\int_{0}^{1} p\left(L, m, N, k \mid F_{m}\right) g\left(F_{m}\right) d F_{m} \\
& p(L, m, N, k)=\int_{0}^{1}\binom{N}{k}\left(1-F_{m}\right)^{k} F_{m}^{N-k}\binom{L}{m} m\left(1-F_{m}\right)^{m-1} F_{m}^{L-m} d F_{m} \\
& p(L, m, N, k)=\binom{N}{k}\binom{L}{m} m \int_{0}^{1}\left(1-F_{m}\right)^{m+k-1} F_{m}^{N+L-(m+k)} d F_{m} \\
& p(L, m, N, k)=\frac{\binom{N}{k}\binom{L}{m} m}{(i J+L)\binom{N+L-1}{k+m-1}} \tag{2.2-3}
\end{align*}
$$

The above equation gives the probability that the $m^{\text {th }}$ largest among L past observations will be exceeded k times in N future trials. This formula is distribution free; i.e., it does not depend upon the underlying distribution function F.

Equation (2.2-3) can be written as

$$
\begin{equation*}
p(L, m, N, k)=\frac{\binom{N+L-m-k}{L-m}\binom{k+m-1}{m-1}}{\binom{N+L}{L}} \tag{2.2-4}
\end{equation*}
$$

2. 3 THE MEAN AND VARIANCE OF THE NUMBER OF EXCEEDANCES

Given m, L, and N , the expected or mean number of exceedances is computed as

$$
\begin{aligned}
& E(k)=\sum_{k=0}^{N} k p(L, m, N, k)=\sum_{k=1}^{N} \frac{k\binom{N+L-m-k}{L-m}\binom{k+m-1}{m-1}}{\binom{N+L}{L}} \\
&\binom{N+L}{L} E(k)= \sum_{\substack{j=0 \\
j=k-1}}^{N-1}(j+1)\binom{[N-1]+[L+1]-[m+1]-j}{[L+1]-[m+1]}\binom{j+[m+1]-1}{[m+1]-2} \\
&\binom{N+L}{L} E(k)=\sum_{j=0}^{N-1}(j+1)\binom{[N-1]+[L+1]-[m+1]-j}{[L+1]-[m+1]}\binom{j+[m+1]-1}{[m+1]-1}\left(\frac{[m+1]-1}{j+1}\right) \\
&\binom{N+L}{L} E(k)\left.=m\binom{[N-1]+[L+1]}{[L+1]} \sum_{j=0}^{N-1} \frac{\binom{[N+1]+[L+1]-[m+1]-j}{[L+1]-[m+1]}(j+[m+1]-1}{[m+1]-1}\right)
\end{aligned}
$$

By Equation (2.2-4), this is

$$
\begin{aligned}
& \binom{N+L}{L} E(k)=m\binom{N+L}{L+1} \sum_{j=0}^{N-1} p(L+1, m+1, N-1, j) \\
& \binom{N+L}{L} E(k)=m\binom{N+L}{L+1}=m \frac{N}{L+1}\binom{N+L}{L}
\end{aligned}
$$

Therefore, the mean number of exceedances is

$$
\begin{equation*}
\mathrm{E}(\mathrm{k})=\frac{\mathrm{mN}}{\mathrm{~L}+1} \tag{2.3-1}
\end{equation*}
$$

As would be expected, the mean number of exceedances increases with m .

The second central moment is computed as

$$
E\left(k^{2}\right)=\sum_{k=0}^{N} k^{2} \frac{\binom{N+L-m-k}{L-m}\binom{k+m-1}{m-1}}{\binom{N+L}{L}}
$$

For values of N greater than one, this can be expanded as
$\binom{N+L}{L} E\left(k^{2}\right)=\sum_{k=2}^{N} k(k-1)\binom{N+L-m-k}{L-m}\binom{k+m-1}{m-1}+\sum_{k=0}^{N} k\binom{N+L-m-k}{L-m}\binom{k+m-1}{m-1}$

$$
\begin{aligned}
&\binom{N+L}{L} E\left(k^{2}\right)= \sum_{\substack{j=0 \\
j=k-2}}^{N-2}(j+2)(j+1)\binom{[N-2]+[L+2]-[m+2]-j}{[L+2]-[m+2]}\binom{j+[m+2]-1}{[m+2]-3} \\
&+\binom{N+L}{L} E(k) \\
&\binom{N+L}{L} E\left(k^{2}\right)= \sum_{j=0}^{N-2}\left\{(j+2)(j+1)\binom{[N-2]+[L+2]-[m+2]-j}{[L+2]-[m+2]}\binom{j+[m+2]-1}{[m+2]-1}\right. \\
&\left.\frac{([m+2]-2)([m+2]-1)}{(j+2)(j+1)}\right\}+\binom{N+L}{L} \frac{m N}{L+1}, \\
&\binom{N+L}{L} E\left(k^{2}\right)=(m+1) m\binom{[N-2]+[L+2]}{[L+2]} \sum_{j=0}^{N-2} p(L+2, m+2, N-2, j)+\binom{N+L}{L} \frac{m N}{L+1} \\
&\binom{N+L}{L} E\left(k^{2}\right)=(m+1) m\binom{L+1}{L+2}+\binom{N+L}{L} \frac{m N}{L+1} \\
&\left(\begin{array}{l}
N+1
\end{array}\right.
\end{aligned}
$$

$$
E\left(k^{2}\right)=\frac{(m+1) m N(N-1)}{(L+1)(L+2)}+\frac{m N}{L+1}
$$

The variance is, therefore,

$$
\begin{aligned}
& \operatorname{var}(k)=E\left(k^{2}\right)-[E(k)]^{2} \\
& \operatorname{var}(k)=\frac{m N(N+L+1)(L-m+1)}{(L+1)^{2}(L+2)}, N>1
\end{aligned}
$$

For the case in which $N=1$, the density function is

$$
p(L, m, N, k)=\frac{\binom{L+1-m-k}{L-m}\binom{k+m-1}{m-1}}{L+1}, \quad k=0,1, \quad N=1
$$

The variance is

$$
\begin{aligned}
& \operatorname{var}(k)=E\left(k^{2}\right)-[E(k)]^{2}=0^{2} \cdot p(L, m, 1,0)+1^{2} \cdot p(L, m, 1,1)-\frac{1}{(L+1)^{2}} \\
& \operatorname{var}(k)=\frac{1}{L+1}-\frac{1}{(L+1)^{2}}=\frac{L}{(L+1)^{2}}, \quad N=1
\end{aligned}
$$

Thus, the form given below holds for all positive integers N .

$$
\begin{equation*}
\operatorname{var}(\mathrm{k})=\frac{\mathrm{mN}(\mathrm{~N}+\mathrm{L}+1)(\mathrm{L}-\mathrm{m}+1)}{(\mathrm{L}+1)^{2}(\mathrm{~L}+2)} \tag{2.3-2}
\end{equation*}
$$

Actually, Equations (2.3-1) and (2.3-2) should be written in the conditional form.

$$
\begin{gather*}
E(k \mid L, m, N)=\frac{m N}{L \cdot+1} \tag{2.3-3}\\
\operatorname{var}(k \mid L, m, N)=\frac{m N(N+L+1)(L-m+1)}{(L+1)^{2}(L+2)} \tag{2.3-4}
\end{gather*}
$$

It can be shown that $\operatorname{var}(k \mid L, m, N)=\operatorname{var}(k \mid L, L-m+1, N)$; i.e., the variance of the $\mathrm{m}^{\text {th }}$ largest is also the variance of the ($\mathrm{m}-1$) smallest observation. Note that if L and N are held constant, the variance is smaller for small or large values of m than it is for values near $N / 2$. In fact, the variance is at a minimum for $m=1$ or $m=L$. This is contrary to what one would at first expect.

In summary, the probability of having k values in N future observations exceed the $\mathrm{m}^{\text {th }}$ largest among L past observations is given by:

$$
p(L, m, N, k)=\frac{m\binom{L}{m}\binom{N}{k}}{(N+k)\binom{N+L-1}{k+m-1}}=\frac{\binom{N+L-m-k}{L-m}\binom{k+m-1}{m-1}}{\binom{N+L}{L}}
$$

The expected number of exceedances and the variance are

$$
\begin{aligned}
E(k) & =\frac{m N}{L+1} \\
\operatorname{var}(k) & =\frac{m N(N+L+1)(L-m+1)}{(L+1)^{2}(L+2)}
\end{aligned}
$$

Section 3

PRACTICAL TECHNIQUES FOR REAL DATA

Several questions that arise when the theory is applied to real data must be considered. For instance, a convenient method of displaying the probabilities must be found; the difficulty in interpretation caused by repeated values in the initial sample must be overcome; and a procedure should be developed for estimating the probability of exceeding a value that was not actually obtained in the past sample. Suggested solutions to these problems are presented in terms of the example below.

The annual peak winds, in knots, at 10 meters above the ground at Cape Kennedy, Florida, for the years 1950 through 1966, are the following:

Year	150	'51	'52	'53	'54	'55	'56	'57	'58	' 59	160
Wind Speed	58	43	59	62	53	43	60	47	43	44	46
Year	161	162	163	164	165	166					
Wind Speed	42	39	43	53	48	48					

Arranged in descending order, the past sample is:

m	1	2	3	4	5	6	7	8	9	10	11
Wind Speed	62	60	59	58	53	53	48	48	47	46	44
m	12	13	14	15	16	17					
Wind Speed	43	43	43	43	42	39					

In this case the size of the past sample, L, is 17 . If four future years are of interest, then N is equal to 4.

3.1 DISPLAYING THE PROBABILITIES

A convenient way to present the probability density function is in the form of a table, which for the above example is shown in Table l. Thus, the probability that in four future years the peak wind for exactly one year will exceed 60 knots, found in the column $m=2$ and the row $k=1$, is 0.273 . The probability of at most 2 exceedances over 59 knots is the sum of the probabilities of 0,1 and 2 exceedances over the third largest observation $(0.511+0.341+0.120=0.972)$. The expected number of exceedances over the smallest value of 39 knots is 3.78 . Each column (exclusive of mean and standard deviation) adds to one, since it is a true probability density of k, the number of exceedances.

Note that the table depends only upon the sample sizes L and N and not upon the actual observations themselves. In this sense, the exceedances approach is "probabilistic" and not "statistical."

3.2 REPETITIONS IN THE INITIAL SAMPLE

A problem arises in determining the probability that 53 knots will be exceeded k times in the future. This is because both the fifth and sixth largest observations are equal to 53 knots.

In the example given, as well as in most practical situations, the assumption that each observation is drawn from a continuous distribution is not valid. If the underlying distribution is truly continuous, the probability of obtaining two equal observations is zero. However, because of the limits of the precision of the measuring device, the observation is actually a discrete variable. The two observations of 53 knots would, with probability one, not be equal if a sufficiently accurate measuring instrument were used.

Table 1 THE PROBABILITY THAT THE MTH LARGEST AMONG 17 PAST OBSERVATIONS WILL BE EXCEEDED K TIMES IN 4 FUTURE TRIALS

K	1	2	3	4
0	0.80952381 E 00	$0.64761904 E 00$	0.51127818 E 00	6．397tEC8LE CC
1	0.16190476 E 00	0.27268170 E 00	$0.34085212 E C 0$	6．3742tE9つE OC
2	0．25563909E－01	0．68170425E－01	0.12 C 30 C 75 E 00	0.17543859 EC
3	0．28404343E－02	$0.10693400 \mathrm{E}-01$	$0.25 C 62655 E-01$	C：46783623E－31
4.	0．16708437E－03	0．83542186E－03	$0.25 C 62655 E-02$	6．58475529E－O2
MEAN	$0.22222222 E 00$	0.44444444 E 00	C．66666E66E 00	C．838を8を89E 00
SDEV	0.49296546 EO	$0.67634303 E 00$	$0.80204417 E 00$	0．89471772E OC
K	5	6	7	\＆
0	$0.30409355 E 00$	0.22807017 E 00	0.16725145 E 00	C．1194E532E OC
1	$0.38011694 E 00$	$0.36491226 E 00$	$0.33450251 E 00$	C．2940tersm OC
2	$0.22807016 E 00$	$0.27368420 E$ OC	C．30877191E 00	C．33UE2704t JC
3	$0.76023387 \mathrm{E}-01$	0.11228069 E 0	C．15438595E 00	$0.2005 C 123 t 00$
4	$0.11695905 \mathrm{E}-01$	0．21052630E－01	C． $35087716 \mathrm{E}-01$	6：55137839E－01
MEAN	0.12111111201	C．13333333E 01	0.15555556 E 01	C．17777778E 01
SOEV	$0.96393713 E 00$	$0.10145146 E 01$	$0.10491495 E 01$	O．106s．3922E 01
K	9	10	11	1.2
0	0．82706761E－01	0．55137839E－01	$0.35 C 87716 \mathrm{E}-01$	C：21052t30E－01
1	0.24812028 E 00	0.20050123 E 00	$0.15438595 E 00$	G：1122．eC69E OC
2	0.33834584 E 00	C．33082704E 00	C．30877191E 00	C．2736E420E OC
3	0.24812028 E 00	0.2940684 甘E 00	$0.33450291 E 00$	$0.36451226 E 00$
4	0．82706759E－01	C．11946532E 00	0.16725145 E 00	6．228C7CI7E OC
MEAN	$0.20000000 E 01$	0.22222222 E O1	0.24444444 El	G：26EEEEG7E 01
SOEV	0.10760552 E O1	0.10693922 El	0.10491495 E 01	C：10145146E 01
K	13	14	15	16
0	$0.11695905 \mathrm{E}-01$	$0.58479529 \mathrm{E}-02$	C． 25062 E55E－02	C． $83542186 \mathrm{E}-03$
	$0.76023387 E-01$	$0.46783623 \mathrm{E}-01$	C． 25062 ¢55E－01	0．10693400t－01
2	$0.22807016 E 00$	0.17543859 E 00	0.12 C 30 C 75 E 00	$0.68176425 E-01$
3	0.38011694 E 00	0.37426899 E 00	0.34085212 E 00	G．272tEITOE OC
4	$0.30409355 E 00$	$0.39766081 E 00$	0.51127818 CO	0．647E1SO4E OC
MEAN	0．28888889E 01	0.31111111201	C． 33333233 E 01	$0.35555556 E 01$
SDEV	0.96393713 EO	0.89471772 O	C．802C4417E 00	C．67634303E 0
κ	17			
0	0．16708437E－03			
1	$0.28404343 \mathrm{E}-02$			
－ 2	0．25563909E－01			
3	0.1619047 EE 00			
4	$0.80952381 E 00$			
NEAN	0.3777777 Ee 01			
SDEV	$0.49296546 E 00$			

The safest way of quoting the probability of all four future values being less than $53(k=0)$ is "between 0.228 and 0.304."

3.3 INTERPOLATIVE PROCEDURE FOR VALUES BETWEEN THE GIVEN OBSERVATIONS

Suppose that the probability of not exceeding $61 \mathrm{knots}(k=0)$ is desired. Since 61 knots was not actually observed, the probability cannot be read from the table. If L, N and k are held constant, $p(L, m, N, k)$ can be considered as a function of m . This is not a probability density function on m , since it does not total one.

As 61 lies between the largest and the second largest observations, the probability of not exceeding 61 knots would logically lie between 0.648 and 0.810 . The rank of $m=1 \frac{1}{2}$ could artificially be assigned to 61 knots. For purposes of interpolation, the author suggests

$$
\mathrm{p}(\mathrm{~L}, \mathrm{~m}, \mathrm{~N}, \mathrm{k})=\frac{1}{\binom{\mathrm{~N}+\mathrm{L}}{\mathrm{~L}}} \frac{\Gamma(\mathrm{~N}+\mathrm{L}-\mathrm{m}-\mathrm{k}+1) \Gamma(\mathrm{k}+\mathrm{m})}{\Gamma(\mathrm{L}-\mathrm{m}+1) \Gamma(\mathrm{N}-\mathrm{k}+1) \Gamma(\mathrm{m}) \Gamma(\mathrm{k}+1)}, \quad 1 \leq \mathrm{m} \leq \mathrm{L}
$$

Here the gamma function is defined

$$
\Gamma(u)=\int_{0}^{\infty} t^{u-1} e^{-t} d t=\int_{0}^{1}\left(\ln \frac{1}{t}\right)^{u-1} d t
$$

Also, $\Gamma(u+1)=u \Gamma(u)$ and, if u is an integer, $\Gamma(u+1)=u$!

The advantages of this approximation is that a smooth curve is obtained that matches the values for which m is exactly an integer. The five curves ($k=0,1,2,3,4$) for this example ($L=17, N=4$) are shown in Figures 1 through 5.
Figure 1-Interpolative Approximation, $L=17, \mathrm{~N}=4, \mathrm{~K}=0$

Figure 2 - Inte rpolative Approximation, $L=17, N=4, k=2$

Figure 3 - Interpolative Approximation, $L=17, N=4, k=2$

Figure 4 - Interpolative Approximation, $L=17, N=4, k=3$

The interpolative scheme cannot be used for values greater than the largest observation or less than the smallest observation. However, it can be said, for example, that the probability that the annual peak wind will not exceed 63 knots in four years is at least 0.810 .

Note that this approximation is the author's own invention and, as far as she knows, has not been developed by others.

Section 4
 THE EDNE PROGRAM

The Exact Distribution of the Number of Exceedances (EDNE) computer program calculates the probability that the $m^{\text {th }}$ largest among L past observations will be exceeded k times in N future trials. The mean number of exceedances and the standard deviation of the number of exceedances is deter mined for each value of m. The means and the standard deviations are computed by the formulas:

$$
\begin{aligned}
E(k) & =\frac{m N}{L+I} \\
\text { s. } \operatorname{dev} .(k)=[\operatorname{var}(k)]^{1 / 2} & =\left[\frac{m N(N+L+1)(L-m+1)}{(L+1)^{2}(L+2)}\right]^{1 / 2}
\end{aligned}
$$

The probabilities are based upon the equation:

$$
p(L, m, N, k)=\frac{m\binom{L}{m}\binom{N}{k}}{(N+L)\binom{N+L-1}{k+m-1}}
$$

To avoid overflow in the computer, however, the following set of relationships is utilized:

$$
\begin{aligned}
p(L, 1, N, 0) & =\frac{L}{N+L} \\
p(L, m+1, N, k) & =\frac{(L-m)(k+m)}{m(N+L-m-k)} p(L, m, N, k)
\end{aligned}
$$

$$
\begin{aligned}
p(L, m, N, k+1) & =\frac{(k+m)(N-k)}{(N+L-m-k)(k+1)} p(L, m, N, k) \\
p(L, L-m+1, N, N-k) & =p(L, m, N, k)
\end{aligned}
$$

The program will also, upon request, supply plots of the approximating function discussion in Section 3.3. The probability is plotted as a function of m, where m varies from 1 to L in increments of Δm, an input quantity.

The program was written for the IBM 7094 digital computer and the IBM 4020 plotter.

4.1 INP UT

The first data card contains the four positive integers L1, L2, N1 and N2 in a 413 format. These are the bounds on L and N. For each pair L and N , where $\mathrm{L} 1 \leq \mathrm{L} \leq \mathrm{L} 2$ and $\mathrm{N} 1 \leq \mathrm{N} \leq \mathrm{N} 2$, the program will output the corresponding table and/or set of plots. The second card contains the real numbers OPT1, OPT2, DELM in a 3E12.8 format. The tables will be output only if $\mathrm{OPTl}=1$, and the plots will be given only if $\mathrm{OPT}=1$. The value DELM determines the increment of m for the plots.

After a set of data, the program reads another card under an 13 format. If this card has an integer greater than zero, the program will read another case; if this field is blank, the program will exit.

4.2 OUTPUT

For a given pair of positive integers L and N and for $O P T 1=1$., the output is a $(N+3)$ by L table. The columns are identified by the rank m of the past L observations. The last two rows list the mean and standard deviation of the number of exceedances for the respective value of m. The first $N+1$ rows are identified by the number of exceedances, k. Thus, the
number in the $(k+1)^{\text {st }}$ row and $m^{\text {th }}$ column is $p(L, m, N, k)$, the probability that k values of N will exceed the $m^{\text {th }}$ largest of L past observations.

If $O P T 2=1 ., N+1$ plots will be made for each pair L and N. Each plot corresponds to a value of k between 0 and N. The number of points on each plot is ($L-1$)/DELM +1 ; this should not exceed 1024 .

4.3 SAMPLE CASE

Shown in Tables 2 through 5 and Figures 6 through 16 is a sample case from the EDNE program. For this case, the data consists of the five cards below, followed by a blank card:

Data for Sample Case

Table 2
THE PROBABILITY THAT THE M ${ }^{\text {TH }}$ LARGEST AMONG 16 PAST OBSERVATIONS WILL BE EXCEEDED K TIMES IN 4 FUTURE TRIALS

M

K	1	2	3	4
0	U．SOUOCUCOE UO	0.631578945 CO	$0.49122 .06 E 00$	0.37564499 E 00
1	C．16542105E 00	0.29070175 E C0	$0.34674721 E 00$	$0.37564499 \% 00$
2	0．2807C175c－01	$0.74303403 \mathrm{E}-01$	0.13003095 E 00	U．10752249F 00
$=$	$0.33022735 E-02$	$0.12383900 \mathrm{C}-01$	0．25सY5．67E－01	0．53663569E－U1
4	U．20635E34E－03	$0.10 ; 14917 \mathrm{t}-12$	0．30959750E－02	$0.722394195-0$ ？
MEA＇：	0.23529412 E 00．	$0.47058623 E 00$	0.70552235000	0.74117647500
SDEV	U．jUR2S33RE 00	0.69600938 CO	0．d2352941t 00	0.91033894 f 00

K

2

MEAN SDEV
$\begin{array}{lll}0 & 0.2017 \equiv 374 E & 00 \\ 1 & 0.37564498 \mathrm{E} & 00 \\ 2 & 0.2414 E 606 E & 00 \\ 3 & 0.86687301 E-01 \\ 4 & 0.14447883 E-01\end{array}$
$\begin{array}{lll}0 & 0.2017 \equiv 374 E & 00 \\ 1 & 0.375644985 & 00 \\ 2 & 0.24145606 E & 00 \\ 3 & 0.86687301 E-01 \\ 4 & 0.14447883 E-01\end{array}$
5
$0.11764706 E$ U1 $0.9843 C 591 E 00$

6
0.20660474 EO $0.35417955 E 60$ 0.2 こ606809E CO 0.12714137 t 00 0.2600 C190E－01
$0.1+117647 \mathrm{Cl}$ $0.1032348 B F 01$

7
0.14757461700 $0.31785344 E 00$ 0.31785344 E OC 0.17337460 E OO $0.43343650 E-01$
0.1643 C 582 E 01 0.10631719 E 01

11

0.25882353501
0.1032248 只 01

15
$0.10319917 E-02$
0.123 ล2 900 E－01
$0.7430 \equiv 403 \mathrm{c}$－01
0.2907 C 175 E 00
0.63157844 E 00
$0.35274117 \mathrm{E} 01 \quad 0.37647059 \mathrm{r} 01$
$0.59500438 t 00$

12
$0.14447683 i-11$
$0.066873015-01$ $0.24143606 t 00$ $0.37564498 t 00$ 0.2 か173374F 00
0.20235294 E 01 $0.46430591=00$

16

$0.20034534 \mathrm{c}-0=$
$0.3,023735-0{ }^{\circ}$
$0.28070175 \mathrm{~F}-01$
0.16842105100
0.10000000 O 0
0.37647059501
0.30829338%

12
U．72235419E－02
1）．53662559E－01
0． $15792249 E \quad 00$
U． 37564499 E 00
$0.37564494 E 00$
MEAT：0．3058E235E 01
SDEV $0.91632394 E 00$

14
$0.30959750 \mathrm{E}-\mathrm{C} 2$
$0.25 \div 95767 F-01$
$0.13003045 E$ CO
$0.34674921 E$ LO
$0.44122806 E 00$
0.32441176501
0.82352941 EO

Table 3
THE PROBABILITY THAT THE M ${ }^{\text {TH }}$ LARGEST AMONG 16 PAST OBSERVATIONS WILL BE EXCEEDED K TIMES IN 5 FUTURE TRIALS

M

k	1	2	2	4
0	0．7619C476E 00	$0.57142857 E$ U0	0．42105263E 00	0.30409356 E 00
1	0.19047019 O	0.300751 d7E 00	0．35081716E 00	0.35775712 E 00
2	0．4010C250E－01	0.10025062 E UO	$0.15511867 E 00$	0．22359820t OU
3	0．65833750E－02	0．23583382E－01	$0.51595585 \mathrm{E}-01$	0．89439279ト－UL
4	0．72627940E－03	$0.36856846 \mathrm{E}-\mathrm{C} 2$	$0.10314917 t-01$	0．22359820E－O1
5	0．47142463E－04	$0.244 \mathrm{~d} 477 \mathrm{~T}-03$	$0.10319417 E-02$	$0.27519778=-02$
MEAPi	0．24411764E 00	0．5d523529E 00	0．83235293E 00	$0.11764706 t 01$
SCEV	$0.58 .16 t 263 t 00$	0.79047435 CO	0．9424L116t 00	0.10486072 O1

K	5	
i	$0.21465427 E$	00
1	$0.3353573 O E$	00
2	$0.26231784 E$	00
3	$0.13415872 E$	00
4	$0.41274007 E-01$	
5	$0.61915499 E-02$	

MEAN $0.14705982 E 01$ SDEV $0.11263848 E 01$

c	7
0.147574 t1t 00	$0.933 \mathrm{Ez207E-01}$
0.24514902 ECO	$0.24545902 E 00$
0.29514962 CO	$0.30271756 t 00$
0.18103034 ECO	0.227 U3317E 00
0．63111450E－C1	U．10319＋17E 00
0．12383900E－01	0．22703f16t－01
0.17647059 OL	0．20530235t 01
0.11613624 El	$0.12166347 E 01$

8
$0.632463475-01$
$0.19460414 t 00$
0.29190622400
0.26536928 －0
0.14595311 E 00
0.38920329 上－01
$0.23529412 \% 01$
0.12338928 E OL

MEAI $0.2547 C 58 R E O L$ SOEV O．1233E928E 01

10
$0.227036165-01$
$0.10319917 E \mathrm{CO}$ $0.22703817 E 00$
$0.30271756 E \quad 00$
$0.24595802 E \quad 00$
0．93353207E－01
0.244117 64E C1
0.12166347 E 01

11

0.12332900 t－01 $0.63111450 \mathrm{E}-01$ 0.13103054 t 0 $0.29514962 E 00$ 0.24514762 E 00 $0.14757481 t 00$
$0.3235<441 E O 1$ 0．11813624E OL

12
$0.61919499=-02$ $0.41279667 \mathrm{E}-01$ 0.13415892 E OC 0.26831784 E 00 0.33539730 t 00 0.21465427 E OO
0.35294117 E 01 0.1126384 月E 01

15

$0.29485477 \mathrm{E}-03$
0．36856：346t－02
0.235 a $362 \mathrm{E}-01$
0.10025062 K 00 C． 30075187 C 0 0.57142 E57E 00
$0.44117646 E 01$ 0.79647435 E 00

16

$0.441424631-04$
$0.706277401 \mathrm{~F}-03$
$0.50333750:-0 /$
$0.401002501-01$ 0.14047519 E 0 0．70170476F 00

$$
0.47058823 r 01
$$

$$
0 . j 0156263 t \quad 00
$$

MEAN $0.3 E 235294 E 01$
$0.10319917 \mathrm{E}-\mathrm{UZ}$
$0.10319917 \mathrm{E}-\mathrm{U1}$
$0.51599585 \mathrm{E}-01$
0.16511807 F
0.3500
0.42105263 E OO
$0.10319917 \mathrm{E}-\mathrm{UZ}$
$0.10319917 \mathrm{E}-\mathrm{U1}$
$0.51599585 \mathrm{E}-01$
0.16511807 F
0.00
0.35007718 E 00 O
14

Table 4
the probabillity that the m ${ }^{\text {TH }}$ largest among 100 PASt OBSERVATIONS WILL BE EXCEEDED K TIMES IN 1 FUTURE TRIAL

M

K	1	2	3	4
0	$0.99009901 E 00$	$0.90019800 E 00$	0．97029701E 00	0.90039601500
1	0．9900Sd99E－02	$0.19801920 t-C 1$	0．29702969E－01	$0.39603759 \mathrm{E}-01$
MEAN	0．9э00ч901E－02	$0.19601980 E-C 1$	0.29702970 E－01	0．34603960E－01
SDEV	$0.99009700 E-01$	0.13931928 CO	0.1697 EGG1E 00	0．19502689E 00
k	ミ	6	7	8
0	0.95049502 E 00	0.94059402 E 00	$0.93069302 t 00$	$0.92079202 \leq 00$
1	0．47504448E－01	0．54405938E－C1	0．0y30E426E－0	0．74207715E－01
MEAN	0．49504950E－01	0．59405340E－01	$0.09306930 E-01$	0．74207920［－01
SOEV	$0.21691932 E$ UO	0.23638290500	0.25397535100	$0.27005300 E D 0$
k	s	10	11	12
c	U．9108S103E 00	0.90099003 E 0	$0.89100903 E 00$	$0.86118803 E 00$
1	$0.39106904 \mathrm{E}-01$	$0.990095935-01$	0.10991088 E OO	0．118811A7t 00
MSAV	0．69108910E－01	0．99009900E－C1	$0.10391089 E 00$	0.11881189 EO
STEV	U．2949C038E 00	0．292675，1E CO	0.3115273 EE 00	$0.32356702 t$ OO

k	$1 亏$	14	15	16
0	0．8712E．03E 60	0.86130604500	U． 8514 E 504 t 00	0．34158405E 00
1	0.12571286 E 00	0．13F61384t 00	$0.14351463 E 00$	0.15841582 E 00
MEA	0.12871287 E 00	$0.13801396[\mathrm{CO}$	0.14851485 EE 00	0.15341504 E OU
SDEV	U．33482137E 00	0.34554313 ECO	$0.3556 C 960 E 00$	0.30513047 t 0

17
$0.8316 E=05 E 00$ 0．16E316J1E 00

MEAS SDEV

12
0.821732 Cot co 0．17E゙217：9t co
$0.17 f 217 E 2 E 00$
0.32269600 t U

19
0．bllselo7e 00 0．10el197Rt 00
$0.28911981 E 00$
0．3HOBCTOLE 00

20
0．Sul96007E 00 0.1 YE01477E 00
0.19801930 E 00 $0.3+950716 \mathrm{E} 0$

K
$0.7+207 \rightarrow 09 E 00$ 0．2077CUTSE 00

MEAN O．207920TGE UU SDEV 0．40581333E 0O

\[

\]

$$
23
$$

$$
0.7722 i 7 U 9 E 00
$$

$$
0.22772273+00
$$

$$
0.22772277 E 00
$$

$$
0.41+3 \in 274[00
$$

24
0.75237604500
$0.7 う 752372$ 0 0
0.23762376500
$0.42562743=00$

Table 4 （Continued）

k	25		20		27		26	
0	0.75247510 E	00	0.74257410 L	U0	0.73201214 L	00	0．722772115	00
1	0.24752470 E	00	0．25742568F	00	0.20732 万67E	00	0．27722765：	00
MEAiv	0．2475＜475E	00	0．25742574E	co	0.2073 －673E	00	$0.27722772 t$	00
SCEV	0.43157415 E	00	0.43721588 F	00	$0.44256429 E$	00	0.44762988 E	00
K	29		30		31		32	
0	0.71287112 E	00	0.70291012 E	00	0.693 U6．13E．	00	0.00316814 L	00
1	0.26712864 E	00	0.247029035	00	0．j0692061E	00	0.31693160 C	00
MEAN	$0.28712071 E$	U0	0.297 U2970F	CO	$0.30693069 t$	00	0.316831605	00
SUEV	$0.45242216 E$	00	$0.45694973 E$	LO	0.46122033 E	00	0.465241195	00
K	$3 \equiv$		34		35		36	
0	0．6732t714E	00	$0.66336615 \ddot{\circ}$	cu	$0.65340515 t$	00	$0.64356416=$	00
1	0.326732536	u0	0.3350 .3356 E	00	0.34652454 E	00	U．35643553t	00
MEAII	0．32672267t	00	0.330033065	00	$0.3465 \pm 405 \mathrm{E}$	00	0． $32643564 \dot{C}$	00
SOEV	0．46901859E	00	$0.47255839 t$	00	0.47586543 E	00	0.478946005	00
K	37		36		39		40	
0	$0.63366316 E$	00	$0.62376218 E$	00	$0.61386118 E$	00	U．5U396019F	00
1	0.36533051 E	00	0.37623750 F	co	0.34613 ¢ 48 E	00	0.39603946 F	00
MEAid	0.36533663 F	00	0.37023762 F	00	$0.33613551 E$	00	$0.39603960 E$	00
SOEV	$0.48180297 E$	00	0.484440785	CO	0.4868 e 30 Ue	00	0.459072835	00
K	41		42		42		44	
0	U．59405919E	00	0.58415820 F	U0	$0.57425720 E$	00	0.564356216	00
1	0.410594044 E	co	$0.41534143{ }^{\circ}$	CO	0.42574740 L	00	$0.43564339 E$	U0
MEAV	0.40594053 E	00	0.41534158	co	0.425742575	00	$0.43564356 t$	00
SDEV	0.49107314 E	00	$0.492866 \div 7 E$	00	0．4944550』E	00	0．44584095t．	00
K	45		46		47		48	
0	C． 55445522 E	00	0.54455423 E	co	$0.53465323 E$	00	$0.54475224 t$	00
1	$0.44554437 E$	00	0.45544535 c	00	0.40534 E33E	00	0.47524730 E	00
MEAV	0．44554455E	00	0.45544554 E	co	0.465346534	00	0． 47524752 E	00
SDEV	$0.49702575 E$	00	$0.49901094 E$	00	0．44379769E	00	$0.49935694 t$	00
K	44		う0		51		52	
0	$0.51485125 E$	CO	0.504950266	00	0.445044261	00	0.40514829 F	00
1	0.48514829 E	00	0.49504926 E	00	0.50495026 E	00	0.51485125%	00
NEAV	0．4H514851E	co	0.44504950 E	co	0.50495049 E	00	0.71485148 r	00
SOEV	O．49977438E	00	0.49947549%	co	$0.49997549[$	00	$0.49977938 t$	00

Table 4 (Continued)

K	$5 \vdots$		
0	$0.47524730 E$	00	
1	$0.52475224 E$	00	

MEAP:
SOEV

54
$0.46334633 \mathrm{t} 00 \quad 0.45544535 \mathrm{E} \quad 00$
0.53405323 L CO 0.54455423 E 00
0.53405346 CO $0.54455445 E 00$
0.49679769 ECO
$0.49 E 01094 E 00$
0.55445544 E 00
0.4970257500

57
meati SDEV
$0.52475247 E 00$ $0.49936694 E 00$
$0.43564339 E 00$ $0.56435621 E 00$

$$
\begin{aligned}
& 0.5642 \equiv 643 E \quad 00 \\
& 0.49534095 E \quad 00
\end{aligned}
$$

56	59	60
0.42574240800.	0.41584143E 00	-0.40594044EDO
0.57425720E LO	0.58415 E 20 E 0	0.5サ405919F 00
0.57425742 O	0.594153411 OU	0.59405940: UU
0.49445508E LO	0.49286047500	$0.49107314 t 00$

61
$0.3760 \leq 746 \mathrm{E} 00$

MEAN SOEV

K	$6 E$			
0	$0.35643553 E$	00		
1	$0.64356416 E$	00		
MEAN	$0.64356435 E$	00		
SOEV	$0.47894600 E$	00		

66	
$0.34653454 E$	$C O$
$0.65346515 E$	00
$0.65346534 E$	00
$0.47585593 E$	$C O$

67
0.33663356 E 00
0.6Ó33ESL5E 00
$0.32673258 E 00$
0.67326714 F 00
$0.66336633 E 00$
$0.47255539 E 00$
$0.57326732 E 00$
0.4090185 EE 00

71
$0.30693061 E$ CO 0.69306913 U UO
0.2970 296シE 00 0.30297012 F 00
$0.20712864 t 00$ 0.71257112 E 00
0.69306930 E CO
$0.70297024 E 00$
$0.71227129 t 00$
$0.45242216^{5} 00$

69
$\begin{array}{ll}0.31683160 \Sigma & 00 \\ 0.58316314 E & 00\end{array}$
$0.68316831 E 00$
0.40524119 E 0

73
$0.27722766 E 00$ $0.72271211 E 00$
$0.72277227 E$ CO 0.44762938 E Q

74
$0.20732607 E$ CO
$0.73207311 E 00$
0.73267326 CO
0.44256429 t 0

7 E
$0.25742568 E 00$
$0.74251410 E 00$
$0.74251425 E$ OU $0.43721588 E 00 \quad 0.43151415 \div 00$
k

MEATH SOEV

78
0.22772273 E CO $0.77227709 E$ CO
0.77227722 E CO 0.41936274 E 0

79
0.21782174 [00 $0.78217808 E 00$
$0.78217 t 21 E 00$
$0.4127 \in 56$ IE OO

60
$0.20792076 E 00$ $0.7+207906 \mathrm{~F} 00$
0.79207920 E 00 0.40581983 t 00

Table 4 （Concluded）

K	81	＊ 2	$8 ?$	£ 4
0	0．19901977E U0	$0.10811878 t \mathrm{co}$	0.17921779100	0.108315915 UC
1	0．gOl9EUU7E 00		0．b217E206E OO	0． 23163305 t 00
MEAT	$0.30195019 E 00$	0.9116 cill 00	0．8217EPI7E 90	0．，3168316： 00
SEEV	0．ごきらし715E00	$0.3908 G 7 U 1 \mathrm{CO}$	$0.332656001 ~ J U ~$	$0.31414739+$（0）
k	习	É	87	93
u	C．15241532E 00	$0.14 \mathrm{cE1423E}$ Co	0.13361334500	0.12871280100
1	$0.8415 c 405 E$ U0	0．85140504\％CO	$0.8013 \mathrm{ct045} 00$	$0.27123703 F C 0$
MEA＇	0.3415 E415t 00	$0.3514 \mathrm{ci514t} \mathrm{CO}$	0．tal3tolje OO	0．－ 0 12e712\％UC
juEV	U．こっ512U47E 00	0.35560960 O CO	$0.34554313 E 00$	C．33488187E OC
K	99	90	91	42
0	$0.1188119^{\text {PE }} 00$	0．10．910est．Co	0．99009：93E－01	$0 . \pm 9108904 \pm ー$ じ1
1	O．Etilceole OO	0.89108903 F ． 00	$0.700 Y 400$ JE OU	0．71089103t 00
meain	O．belleglle un	0.89103910500	$0.90094009 E 00$	$0.91089108 E$ OU
SUEV	0．3235c702E UO	0.31152738 t 0	O．ご801うjlt 00	0．20490088E 00
k	± 1	44	95	75
0	0．79207915E－01	0．6yコ0t9こもE－01	0．54405930こ－01	0．4450494bs－01
1	U．9207y202t 00	$0.93069302 t \mathrm{CO}$	$0.9 \rightarrow 059402 \mathrm{EO}$	0．＇5049502t 60
meaid	0．92079207e OU	0.93069300 \％ 60	0．44059405［ 00	0.75049504500
SUEV	$0.2700 \in 300 E 00$	0.25397535 S － 00	0.2303 czat 00	0.216919 E2： 00
k	9：	40	95	100
$\stackrel{1}{ }$	0．3460ことう9t－Cl	0．29702769E－01	0．1）dul950t－01	
1	0．9tu39601E UO	$0.97029701 E$ UO	U．9J015ROUF OU	$0.94009901 く$ しく
MEATi	0．90039603E 00	0.97029702 E 0	0.73015 UULE 00	$0.99009901 r ~ c u$
SDEV	$0.1950<639 E 00$	0.16970501 F Co	0．13）3il2ie 00	0．99007900こ－01

Table 5
THE PROBABILITY THAT THE MTH LARGEST AMONG 17 PAST OBSERVATIONS WILL BE EXCEEDEDK TIMES IN 5 FUTURE TRIALS

M

K	1
0	$0.77272727 E 00$
1	$U .1539 E 269 E \quad 00$
2	$0.3679 E 535 E-01$
3	$0.54 C 95792 t-62$
4	$0.64555324 E-03$
5	$0.37972720 \mathrm{~F}-04$

$$
\begin{aligned}
& 2 \\
& 0.58374458 \mathrm{E} \text { CO } \\
& 0.24437229 E \quad 00 \\
& 0.42459609 E-01 \\
& 0.20657704 \mathrm{E}-01 \\
& 0.30578976 \mathrm{E}-02 \\
& 0.22784232 \mathrm{E}-03
\end{aligned}
$$

| $0.4415=244 E$ | 00 |
| :--- | :--- | :--- |
| $0.34 R 5 G: 76 E$ | 00 |
| $0.15493275 E$ | 00 |
| $0.4556 E 465 E-01$ | |
| $0 . E 544 C 3715-02$ | |
| $0.79744012 t-03$ | |

52650982552831$4412 E-$71232$52932-$11111	

i
$\begin{array}{ll}0.11405308 E & 00 \\ 0.2660 E 155 E & 00 \\ 0.30409354 E & 00 \\ 0.21055630 E & 00 \\ 0.87719240 E & -01 \\ 0.17543558 E & -01 \\ 0.19444444 t & 01 \\ 0.11993473 E & 01\end{array}$

0

MEA: SDEV
0.27777775 E 00 0.56353413 F 00
0.55555555 t 00
$0.77315920 t 20$
0.63332323 F 00 0.91636000 O
0.10228069 : 01
k
0
1
$?$
3
4
5
E
$0.2349 E 139 E \quad 00$
$0.34556086 E$
$0.25917064 E$
0.1200
$0.34556080 E$
0.30
$0.47846 R 85 E-02$

6
$0.16586921 t$ UO
$0.31104477 E 00$
$0.29027111 E 00$
$0.165569<1 E 00$
$0.574152 .3 \mathrm{E}-01$
$0.95643771 E-C 2$
$0.1368 \mathrm{EBO9E} 01$ 0.11015358 E Ul

```
0.16666667 E 01 0.1154i5,9E Cl
```

10
$0.300751 \cdot 5 \bar{c}-01$
0.12531327 (00
0.25062655 E CO
$0.30075186 E 00$
0.21720408 E 00
0.700233 万8E-Cl
0.27777778 E U $0.122248: 0 \mathrm{Cl}$

11
$0.1754: 956 \mathrm{~L}-01$
0.d7719290t-01
$0.2105 z o 30 t$ 00
0.30404354500
0.2600 E1J5E 00
$0.11403508 E 00$
$0.30555555 t 01$
$0.1179 \equiv 473101$

12
$0.95693771=-0 \mathrm{C}$
$0.57410263+-01$
0.16586921F O 0.29027111400 0.31100477 .00 0.10586721 C 06
$0.33333333 t 01$ 0.115975391 .01

K	$1 Z$	
0	$0.47840585 E-02$	
1	$0.34556084 E-01$	
2	$0.12094030 E$	00
5	0.25417064 F	00
4	$0.34555036 E$	$C O$
5	0.2349 .137 E	00

15

U.74744312k-03
0.0544 CR71t-02
0.4556 E465i-01
$0.1544 \equiv 278 \mathrm{c}$ no $0.34355: 26 t$ OO 0.44155 .44 t 00
$0.41066 .266 i 01$ 0.416defoot OO

16
$0.22734232 \mathrm{~F}-0$?
$0.303789765-02$
$0.20657704 t-01$
$0 .+24546691-01$
$0.2+437224 \mathrm{~F} 00$ 0. 50374458100
0.44444444 L O1
0.77316430 t 0

Table 5 (Continued)

```
    K 17
    u U.3T9?2720E-04
    1 U.6455 =324C-03
    2 U.53075792E-02
    z 0.30776j35E-01
    4 0.14.2026BE 00
    5 U.T727ET27E dO
MFA:, 0.47222221t OL
SOEV 0.56353.13E 00
```

M

Figure 6 - Interpolative Approximation, $L=16, N=4, k=0$
4TGESi

Figure 7 - Interpolative Approximation, $L=16, N=4, k=1$

Figure 8 - Interpolative Approximation, $L=16, N=4, k=2$

Figure 9 - Interpolative Approximation, $L=16, N=4, k=3$

Figure 10 - Interpolative Approximation, $L=16, N=4, k=4$

Figure 11 - Interpolative Approximation, $L=16, N=5, k=0$

Figure 12 - Interpolative Approximation, $L=16, N=5, k=1$

Figure 13 - Interpolative Approximation, $L=16, N=5, k=2$
18

Figure 14 - Interpolative Approximation, $L=16, N=5, k=3$

Figure 15 - Interpolative Approximation, $L=16, \mathrm{~N}=5, \mathrm{k}=4$
470634
580

Figure 16 - Interpolative Approximation, $L=16, N=5, k=5$

4.4 LISTING OF THE EDNE PROGRAM

```
$JOB LMSC CARTER BIN202.470650.00.12.140CE
$EXECUTE IBJOB
$1BJOB
$IBFTC MAIN
C
C THE EONE PROGRAM
C
C
C COMPUTER PROGRAM CALCULATES THE PROBABILITY THAT THE MITH LARGEST
C AMONG L PAST OBSERVATIONS WILL BE EXCEEDED K TIMES IN N FUTURE
C TRIALS. THE MEAN NUMBER OF EXCEEDANCES AND THE STANDARO UEVIATIUN
C
C
C PROGRAMMER - M. M. HANSING
C STATISTICIAN - N.E. RICH
C
    DIMENSION P(200.51), XMEAN(200), STDEV(200). VAR(200)
    DIMENSION X(1000) Y(1000)
    DIMENSION BTIL(12),STIL(12)
    DATA BTIL/GHM •11*6H
    DATA STIL/GHP •11*6H
C
    10 REAO(5.11O) L1•L2.N1•N2
    READ(5,111) OPT1,OPT2.DELM
C
    IF(OPT1.NE.1.) GO TO 8O1
C
    DO 800 L=L1.L2
    DO 800 N=N1.N2
    RL=L
    RN=N
    RLPN=L+N
    RNDLP1=RN/(RL+1\bullet)
    RNDLP2=RN/((RL+1.)**2*(RL+2.))
        L12=(L+1)/2
        NP1=N+1
        L. 12P1=L12+1
C
```

c

```
    DO 30 M=1.L12
    RM=M
    XMEAN(M) =RM*RNDLP1
    VAR (M) =RM*(RL-RM+1\bullet)*(RLPN+1•) *RNDLP2
    STDEV(M)=SGRT(VAR(M))
    DO 20 K=1.N
    RK=K-1
    2c P(M*K+1)=(RK+RM)*(RN-RK)/((RLPN-RM-RK)*(RK+1\bullet))*P(M*K)
    3C P(M+1•1)=(RL-RM)/(RLPN-RM)*P(M-1)
        DO 40 J=1,NP1
        K2=NP1-J+1
        40 P(I|J)=P(K1.K2)
    WRITE STATEMENTS FOR CONTROLLED OUTPUT
    WRITE(6.700)
    WRITE(6.720) L.N
    IF(L.GT.4) GO TO 400
    WRITE(6.730) (ICOL.ICOL=1.L)
    DO 300 1=1 NP1
    IROW=I-1
3UC WRITE(6.740) IROW,(P(J.I):J=1•L)
    WRITE(6.750) (XMEAN(J):J=1:L)
    WR!TE(6.760) (STDEV(J)\cdotJ=1/L)
    GO TO BOO
```

c
c
c
c
C
C
C
C

```
C
    400 I COUNT = 1
        DO 510 KFIR=1.L.4
            KLAST=KFIR+3
            IF(KLAST.GT.L) KLAST=L
            WRITE(6,730) (ICOL.ICOL=KFIR.KLAST)
C
    DO 500 I=1.NPI
    IROW=1-1
    5UO WRITE(6.740) IROW.(P(J.I),J=KFIR.KLAST)
C
    WRITE(6.750) (XMEAN(J),J=KFIR.KLAST)
    WRITE(6,760) (STDEV(J),J=KFIR,KLAST)
            IF(KLAST.EQ.L) G) TO 800
            WRITE(6.710)
            I COUNT = I COUNT +1
            ICUT =(NP1+6)*ICOUNT
            IF(ICUT.LT.57) GO TO 510
            WRITE(6,700)
            WRITE(6.72O) L.N
            1COUNT=1
    510 CONTINUE
C
    800 CONT INUE
C
    801 IF(OPT2.NE.1.) GO TO 9999
            CALL CAMRAV(9)
            DO 900 L=L1.L2
            DO 900 N=N1.N2
            RL=L
            RN=N
            RLPN=L+N
            NP1=N+1
            NUMPTS = (RL-1\bullet)/DELM +1.
            DO 1000 KP1 = 1.NP1
            K=KP1 - 1
            RK = K
            DO 1010 I =1.NUMPTS
```

```
    RI = I
    X(I)=1\bullet+(RI-1\bullet)*DELM
    IF(K.EQ.N) GO TO 102O
    IF(K.EQ.O) GO TO 1030
    FAC1 = 1.
    DO 1040 J = 14K
    RJ = J
1040 FAC1 = ((RN-RJ+1\bullet)*(X(1)+RJ-1\bullet))/(RJ*(RLPN-RJ+1\bullet))*FAC1
    NMK = N-K
    FAC2 = 1.
    A = RLPN-X(1)-RK+1.
    B = RLPN-RK+1.
    DO 1050 J = 1.NMK
    RJ = J
105C FAC2 = ((A-RJ)/(B-RJ))*FAC2
    Y(1) = FAC1 * FAC2
    GO TO 1010
1020 IF (N.NE.1) GO TO 1021
    Y(I) = X(I)/(RL+10)
    GO TO 101O
1021 Y(1) = 1.
    DO 1022 J = 1.N
    RJ = J
1022 Y(I) = Y(I)*(RN+X(I)-RJ)/(RLPN-RJ+1*)
    GO TO 1010
1030 Y(1) = 1.
    DO 1031 J = 1•N
    RJ = J - I
1031 Y(I) = Y(I)*(RLPN-X(I)-RJ)/(RLPN-RJ)
1010 CONTINUE
    WR1TE(6.770) (X(I),Y(I),I=1,NUMPTS)
    770 FORMAT(6E17.B)
    CALL QUIK3V(-1,42•BTIL.STIL.-NUMPTS.X:Y)
10OO CONTINUE
    9UO CONTINUE
    700 FORMAT(1H1)
    70 FORMAT //)
    72O FORMAT\1H •11X.43HTHE PROBABILITY THAT THE MOTH LARGEST AMONG.IZ.
```

```
            118H PAST OBSERVATIONS//22X:27HWILL BE EXCEEDED K TIMES IN.l3.
            214H FUTURE TRIALS///46X.1HM)
        730 FORMAT(1HO.11X.1HK.I10.7X.110.7X.110.7X.110/)
        740 FORMAT(1H .9X.13,4E17.8)
        750 FORMAT(1HO, BX,4HMEAN,4E17.8)
        760 FORMAT(1H •8X:4HSDEV.4E17.8)
C
    9999 REAO(5.110) ICASE
        IF(ICASE•GT.O) GO TO 1O
        STOP
    110 FORMAT(413)
    111 FORMAT(3E12.8)
        END
mDATA
    16 16 4 5
        1. 1.
    -1
    2
100100 1 1
        1.
```


Section 5

SOME ASYMPTOTIC DISTRIBUTIONS

There are occasions when quick estimates are needed of the probabilities of the number of exceedances. The exact distribution is always superior; however, if a computer is not convenient, the necessary calculations may be forbidding. Io this end, several asymptotic distributions have been derived. In this section are discussed the distributions of the number of exceedances over the larger past values (small m) for two cases. In the first case, the initial sample is small in comparison to the future sample ($L \ll N$). In the second case, both samples are large.

5.1 INITIAL SAMPLE SMALL AS COMPARED WITH FUTURE SAMPLE

Frequently, the past sample is quite small as compared to the future sample, $L \ll N$. Since N is large, the number of exceedances k and the proportion of exceedances $q=k / N \quad(0 \leq q \leq 1)$ can be considered as continuous variables. The density function of k, from Equation (2.2-3), is

$$
p(L, m, N, k)=\frac{\binom{N}{k}\binom{L}{m} m}{(N+L)\binom{N+L-1}{k+m-1}}
$$

The density function of q then becomes

$$
\begin{aligned}
& h(q)=\left[\frac{d k}{d q}\right] p(L, m, N, N q)=\frac{N\binom{N}{k}\binom{L}{m} m}{(N+L)\binom{N+L-1}{k+m-1}} \\
& h(q)=\frac{N m\binom{L}{m}(N+1):(N q+m-1):(N-N q+L-m)!}{(N+1)(N+L)!(N q)!(N-N q)!}
\end{aligned}
$$

Substituting Stirling's formula,

$$
J!\approx e^{-J} J^{J} \sqrt{2 \pi J}
$$

and combining terms leads to

$$
\begin{aligned}
h(q) \approx & \frac{m\binom{L}{m} N(N+1)^{N+1}(N q+m-1)^{N q+m-1}(N-N q+L-m)^{N-N q+L-m}}{(N+L)^{N+L}(N q)^{N q}(N-N q)^{N-N q}} \\
& \cdot\left[\frac{(N+1)(N q+m-1)(N-N q+L-m)}{(N+L)(N q)(N-N q)}\right]^{1 / 2}
\end{aligned}
$$

Dividing numerator and denominator by $N^{2 N+L}\left(N^{3}\right)^{1 / 2}$ leads to

$$
\begin{aligned}
h(q) & \approx \frac{m\binom{L}{m}\left(1+\frac{1}{N}\right)^{N}\left(q+\frac{m-1}{N}\right)^{N q+m-1}\left(1-q+\frac{L-m}{N}\right)^{N-N q+L-m}}{\left(1+\frac{L}{N}\right)^{N+L} q^{N q}(1-q)^{N-N q}} \\
& \cdot\left[\frac{\left(1+\frac{1}{N}\right)\left(q-\frac{m-1}{N}\right)\left(1-q+\frac{L-m}{N}\right)}{\left(1+\frac{L}{N}\right) q(1-q)}\right]^{1 / 2}
\end{aligned}
$$

As N becomes large, this tends to a form independent of N ;

$$
\begin{equation*}
h(q)=m\binom{L}{m} q^{m-1}(1-q)^{L-m}, \quad 0 \leq q \leq 1, \quad N \gg L \tag{5.1-1}
\end{equation*}
$$

Note that this is the same distribution as that of F_{m}, as discussed in Section 2.2.

The expected value and the variance of q are

$$
\begin{align*}
& E(q)=\int_{0}^{1} q m\binom{L}{m} g^{m-1}(1-q)^{L-m} d q=\frac{m\binom{L}{m} m!(L-m)!}{(L+1)!} \\
& E(q)=\frac{m}{L+1} \tag{5.1-2}
\end{align*}
$$

$$
\begin{aligned}
\operatorname{var}(q)=E\left(q^{2}\right)-[E(q)]^{2} & =\int_{0}^{1} q^{2} m\binom{L}{m} q^{m-1}(1-q)^{L-m} d q-\left(\frac{m}{L+1}\right)^{2} \\
& =\frac{m\binom{L}{m}(m+1)!(L-m)!}{(L+2)!}-\frac{m^{2}}{(L+1)^{2}}
\end{aligned}
$$

$\operatorname{var}(q)=\frac{m(L-m+1)}{(L+1)^{2}(L+2)}$

Thus, the asymptotic density of the smallest values ($m=L$) is

$$
\begin{equation*}
h(q)=L q^{L-1}, \quad \dot{m}=L \tag{5.1-4}
\end{equation*}
$$

The distribution function

$$
\begin{equation*}
H(q)=q^{L}, \quad m=L \tag{5.1-5}
\end{equation*}
$$

gives the probability that up to $q \cdot 100 \%$ of a future large sample will exceed the smallest value of the L past observations.

For the largest value, $m=1$, the asymptotic density and distribution function are

$$
\begin{array}{ll}
h(q)=L(1-q)^{L-1}, & m=1 \\
H(q)=1-(1-q)^{L}, & m=1 \tag{5.1-7}
\end{array}
$$

Thus, the above formula gives the probability that at most a fraction q of a future large sample will be greater than the largest or less than the smallest of a past sample of size L.

5.2 INITIAL SAMPLE AND FUTURE SAMPLE BOTH LARGE

At times both the past and the future samples are large. A different asymptotic formula must be derived for this case.

The probability density from Equation (2.2-4)

$$
p(L, m, N, k)=\frac{\binom{N+L-m-k}{L-m}\binom{k+m-1}{m-1}}{\binom{N+L}{L}}
$$

can be written as

$$
p(L, m, N, k)=\binom{k+m-1}{m-1} \frac{(N+L-m-k)!L!N!}{(L-m)!(N-k)!(N+L)!}
$$

By Stirling's formula,

$$
J!\approx J^{J} e^{-J} \sqrt{2 \pi J}
$$

the density is approximated by
$p(L, m, N, k) \approx\binom{k+m-1}{m-1} \frac{(N+L-m-k)^{N+L-m-k} L^{L} N^{N}}{(L-m)^{L-m}(N-k)^{N-k}(N+L)^{N+L}} \cdot\left[\frac{(N+L-m-k) L N}{(L-m)(N-k)(N+L)}\right]^{1 / 2}$

As N and L become large, the last factor goes to one. Thus, after a bit of rearranging,
$p(L, m, N, k) \approx\left[\binom{k+m-1}{m-1} \frac{L^{m} N^{k}}{(L+N)^{m+k}}\right]\left[\frac{L^{L-m} N^{N-k}(N+L-m-k)^{N+L-m-k}}{(L-m)^{L-m}(N-k)^{N-k}(N+L)^{N+L-m-k}}\right]$.

If m and k are kept smaii L and N increase, the density approaches

$$
\begin{equation*}
p(L, m, N, k) \approx\binom{k+m-1}{m-1} \frac{L^{m} N^{k}}{(L+N)^{m+k}} \tag{5.2-1}
\end{equation*}
$$

Note that this formula should be used only for small values of m.
The probability that the $\mathrm{m}^{\text {th }}$ largest value is never exceeded ($k=0$) in N future observations is

$$
\begin{equation*}
\mathrm{p}(\mathrm{~L}, \mathrm{~m}, \mathrm{~N}, 0) \approx\left(\frac{\mathrm{N}}{\mathrm{~N}+\mathrm{L}}\right)^{\mathrm{m}} \tag{5.2-2}
\end{equation*}
$$

The probability that the largest value ($\mathrm{m}=1$) will be exceeded k times is

$$
\begin{equation*}
p(L, 1, N, k) \approx \frac{L}{N+L}\left(\frac{N}{N+L}\right)^{k} \tag{5.2-3}
\end{equation*}
$$

In the case of equal sample sizes, $N=L$, Equation (4.2-1) becomes

$$
\begin{equation*}
\mathrm{p}(\mathrm{~L}, \mathrm{~m}, \mathrm{~L}, \mathrm{k}) \approx\binom{\mathrm{k}+\mathrm{m}-1}{\mathrm{~m}-1}\left(\frac{1}{2}\right)^{\mathrm{m}+\mathrm{k}} \tag{5.2-4}
\end{equation*}
$$

Since m is small compared to L, this is called the law of rare exceedances. For $L=N$, the probability that the $m^{\text {th }}$ largest value will never be exceeded ($k=0$) is

$$
\begin{equation*}
p(L, m, L, 0) \approx\left(\frac{1}{2}\right)^{m} \tag{5.2-5}
\end{equation*}
$$

The probability that the largest value ($m=1$) will be exceeded \mathbf{k} times is

$$
\begin{equation*}
\mathrm{p}(\mathrm{~L}, 1, \mathrm{~L}, \mathrm{k}) \approx\left(\frac{1}{2}\right)^{\mathrm{k}+1} \tag{5.2-6}
\end{equation*}
$$

By procedures similar to those used in the derivation of Equation (2.3-1) and Equation (2.3-2), it can be shown that for $N=L$ the mean and variance are

$$
\begin{align*}
E(k) & =m \tag{5.2-7}\\
\operatorname{var}(k) & =2 m \tag{5.2-8}
\end{align*}
$$

Section 6

CONCLUSIONS

The theory of exceedances should be applied in cases in which the probability of surpassing a previously attained value is of importance. If, in the example discussed in Section 2, the value of 60 knots was considered as critical, exceedances theory could be used to give the probability of exceeding the critical value in future events.

As another example, in a study done by the Systems Optimization Section of LMSC/HREC ior INASA, R-A도O-DAP, the amount of flight propellant reserve ($F P R$) to be carried by a future Saturn missile was to be decided. One hundred flights with different values of perturbations in flight parameters were simulated on a high-speed computer and the necessary $F P R$ for each flight was calculated. The largest of these was taken as a conservative estimate of the amount of reserve fuel needed for any one future flight. According to Table 4 in Section 4.3, the probability of exceeding the largest of the 100 FPR values in a future run is .0099 .

The theory of exceedances can thus be waed ior botly real and simulated data. It should not, however, be applied to cases in which the population distribution is of importance, e.g., for estimating the population mean or variance.

```
R-DIR
    Mr. H. K. Weidner
R-AERO
    Dr. Geissler
    Mr. Cummings
    Mr. Dahm
    Mr. Dalton
    Mr. Baker
    Dr. Heybey
    Mr. Horn
    Mr. Jean
    Dr. Krause
    Mr. Deaton
    Mr. Reed
    Mr. Rheinfurth
    Mr. C. Brown
    Mr. O. Smith (25)
    Mr. R. Smith
    Mr. Lindberg
    Mr. Vaughan (3)
    Mr. Daniels
    Mr. L. Falls (25)
    Mr. Mabry
    Mr. Murphree
    Mr. Lavender
    Mr. Ryan
    Mr. Lester
R-ASTR
    Director
    Mr. Hosenthien
    Mr. Hoberg
R-ASD
    Director
R-P&VE
    Scientific & Technical Information Facility (25)
    P. O. Box 33
    Mr. Heimburg College Park, Maryland 20740
    Mr. Goerner
    Mr. Hellebrand
    Mr. Hunt
    Mr. Kroll
    Mr. Moore
```NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
NASA Headquarters
Federal Office Building No. 6
Washington 25, D. C. 20546
Attn: Technical Information Division (2)
Office of Advanced Research \& TechnoloryDirectorMr. D. A. GilstadMr. R. V. Rhode
Dr. R. H. Wilson (2)
Office of Manned Space FlightDirectorAdvanced Manned Mission OfficeApollo Program OfficeGemini Program Office
Office of Space Science and Applications
Director
Dr. H. Newell
Dr. M. Tepper
Mr. M. Dubin
Mr: W. Spreen
Langley Rescarch Center
Hampton, Virginia 23365
Director
Mr. V. A ley
Mr. R. E. Henry
Mr. H. B. Tolefson
Mr. W. Reed, III
Technical Library
John F. Kennedy Space Center
Cape Kennedy, Florida 32899
Col. A. H. Bagnulo
Mr. J. P. Claybourne
Mr. J. H. Deese
Dr. H. F. Gruene
Mr. R. E. Jones
Dr. A. H. Knothe
Dr. P. Ricca
Mr. K. Sendler
Mr. A. J. Taiani
Technical Library
```

                EXTERNAL DISTRIBUTION (Continued)
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (Continued)
Lewis Research Center
Cleveland, Ohio 44135
Director
Mr. C. Wentworth
Technical Library
Manned Spacecraft Center
Houston, Texas 77058
Director
Mr. J. D. Dodge
Mr. C. R. Huss
Mr. M. V. Jenkins
Mr. J. N. Kotanchik
Mr. C. C. Kraft, Jr.
Mr. W. A. Lee
Mr. C. W. Matthews
Mr. D. K. Slayton
Mr. R. F. Thompson
Goddard Space Flight Center
Greenbelt, Maryland 20771
Director
Technical Library
Ames Research Center
Moffett Field, California 94035
Director
Library
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California }9110
Library

```
```

Dr. Sidney Addelman
Statistical Research Division
Research Triangle Institute
P. O. Box }49
Durham, North Carolina 27702
Air Force Cambridge Research Laboratories
Bedford, Massachusetts 01730
Attn: Mr. I. I. Gringorten
Dr. D. A. Haugen
Mr. N. Sissenwine
Technical Library
Air Weather Service
U. S. Air Force
Scott AFB, Illinois 61475
Attn: Dr. R. D. Fletcher, Director, Aerospace Sciences
Technical Library
Dr. T. A. Bancioft
Head, Department of Statistics
Iowa State University
Ames, Iowa 50010
Dr. Gerald D. Berndt
Operations Analysis Office
SAC Headquarters
Offutt AFB, Nebraska 68861
Mr. Jerold Bidwell
Mail Number A-43
The Martin Company
P. O. Box }17
Denver, Colorado 80201
Dr. Ralph A. Bradley
Head, Department of Statistics
Florida State University
Tallahassee, Florida 32306
Dr. C. E. Buel1
Kaman Nuclear
Garden of the Gods Road
Colorado Springs, Colorado 80900

```

University of Georgia
Dept. of Statistics
Athens, Ga. 30601
Attn: Dr. C. F. Kossack (2)
Dr. W. O. Williford
Dr. B. J. Williams
Dr. A. C. Cohen

Dr. C. C. Craig
Director, Statistical Research Laboratory
University of Michigan
Ann Arbor, Michigan 48104
Dr. Harold L. Crutcher
National Weather Records Center
Federal Building
Asheville, North Carolina 28801
Dr. Herbert A. David
Department of Biostatistics
University of North Carolina
Chapel Hill, North Carolina 27515
Dr. Paul S. Dwyer
Department of Mathematics
University of Michigan
106 Rockham Building
Ann Arbor, Michigan 48104
\(\chi\) Dr. Churchill Eisenhart, Senior Res. Fellow
Admintstration Bldg. A-1000s
National \(\operatorname{iburctau}\) of Standards:
Washington, D, C. 20234
Mr. William Elam
Bell Communications, Inc.
1100 17th Street, N. W.
Washington, D. C.
Dr. O. M. Essenwanger
AOMC Research Laboratory
ORDMX-RRA
Redstone Arsenal, Alabama 35812
Dr. Arnold Court
17168 Septo Street
Northridge, California
Dr. A. L. Finkner
Department of Experimental Statistics
North Carolina State College
Durham, North Carolina 27702
Dr. Thomas A. Gleeson
Department of Meteorology
Florida State University
Tallahassee, Florida 32306
Dr. Bernard G. Greenberg
Department of Biostatistics
School of Public Health
University of North Carolina
Chapel Hill, North Carolina 27515
Dr. Frank E. Grubbs
Assoc. Technical Director
Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland 21005
Dr. S. B. Littaver
Industrial and Management Engineering
Columbia University
320 Seeley W. Mudd Building
New York 27, New York 13625
Dr. Boyd Harshbarger
Head, Department of Statistics
Virginia Polytechnic Institute
Blacksburg, Virginia 24061
Dr. H. O. Hartley
Director, Institute of Statistics
Texas AdM University
College Station, Texas 77843
Headquarters DCAS (DCLW)
AF Unit Post Office
Los Angeles 45, California 90000

\section*{EXIERNAL DISTRIBUTION (Continued)}
Dr. Luctan M. Lecam
Department of StatisticsUniveralty of CallforniaBerkeley, California 94720
Mr. Richard Martin
General Dynamics/Astronautica
P. O. Box 1128
San Diego, California 92112
Dr. Paul R. Merry
Director, OA Standby Unit
Univeraity of Denver
Denver, Colorado 80202
Meteorological and Geoastrophyaical Abstracts
P. O. Box 1736
Washington 13, D. C.
Dr. Frederick Mosteller
Department of Statistics
Harvard Univeralty
Room 311, 2 Divinity Avenue
Cambridge, Massachusetts 02138
Dr. George E. Nicholson, Jr.
Chariman, Department of Statistics
University of North Carolina
Chapel Hill, North Carolina 27515
North American Aviation, Inc.
Space and Information Division
Downey, California 90240
Attn: Mr. Ahmin Ali
Mr. Clyde D. Martin
Office of Staff Meteorologist
AFSC (SCWTS)
Andrews Air Force Base
Washington, D. C. 20331
Pan American World Airways
Patrick AFB, Florida 32925
Attn: Mr. Gerald Finger
Mr. O. H. Daniel

\section*{EXTERNAL DISTRIBUTION (Continued)}
```

Pennsylvania State Univ.
Dept. of Meteorology
State College, Pa. 16801
Attn: Dr. Hans Panofsky
Dr. C. Kreitzburg
Redstone Sci. Tech. Info. Center (2)
Redstone Arsena1, Ala. }3581
Staff Meteorologist
Eastern Test Range
Det. 11, 4th Weather Group
Patrick AFB, Fla. }3292
Mr. Clement Schmidt
Flight Rynamics Iab.
Aeron. Sys. Div.
Wright-Patterson AFB, Ohio 45433
U. S. Weather Bureau
Washington 25, D. C.
Attn: Dr. R. M. White, Chief
Office of Climatology
Dr. G. Barger
Mír. H. C. S. Thom
Spaceflight Meteorology Group
Mr. K. Nagler
Technical Library
Mr. Marvin White
Space Technology Labs.
Structures Dept.
One Space Park
Redondo Beach, Calif. 90277
Lockheed Co.
Research Park
Huntsville, Ala.
Attn: Dr. D. McDonald
Mr. E. A. Carter
Miss J. L. Wood
Dr. W. A. Bolman

```
```

