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ABSTRACT

The addition of a certain fraction of ions to an otherwise stable
cloud of electrons can in certain circumstances result in an instability.
The case of a low density (q = w]i/wi « 1) electron cloud in which the
electron motions can be described by E +Lfe x B = 0 is considered in
detail, The condition for onset of the instability is that the unperturbed
ion orbits (which characteristically traverse the entire electron cloud)
should involve frequencies close to that of the diocotron wave that can
propagate on the electron cloud. This condition is equivalent to having
the ratio Zme/miq of the order of unity and is independent of the ion
density, When instability is present, the growth rate is of the order

of the ion plasma fréquency.
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I. INTRODUCTION

There are several devices présehtly being Stadied Ta whgH e T P
proposed to contain a grds sly non-neutral plasma in a magnetic field.
In particular, the containment of a relatively small nilmbz'e‘r’o‘f ions in a
background of electrons is attractive in various applicatic;)nsl"z’ 3 because
the assemblage of charged p‘arti‘cles as a whole has a charge to mass |
ratio much larger than the value appropriate to the ions alone. As a
result, it should in principle be possible to control such ensembles
with magnetic fields far weaker than would be required for control of -
the ions alone. A basic question relevant to each of these applications
concérns the number of ions that can be contained by a given electron
cloud. As the raﬁo of ion to electron charge density is generally small,
it is ﬂatural to begin by examining the containment (equilibrium, stabiiity, ‘
etc.) of the electron cloud by itself. When this is reasonably well
understood, one can imagine the ions to be slowly added to the electron
cloud and seek to define the point at which an instability can occur.

A very basic difference between neutral and non-neutral plasmas
is the presence of a strong (zefoth order) electric field, which is related
to the charge imbalance by Gauss' law. Since the gradient of the electric
field is non-vanishing, it is evident that there is no such thing as an
infinite homogeneous uniform non-neutral plasma. (An analagous
situation arises in the theory of 'gr‘av\ita‘;fidn.’) Another important
difference diétinguishing neutral and non-neutral plasmé.s is the implica-
tion of Earnshaw's theorem (for the ‘n6n4hei1t‘ra1 case) that there can be

no static equilibrium. The equilibria of electron clouds are therefore



necessarily dynamic, and will involve certain characteristic frequencies
(e. g., of rotation) of the electrons. The frequencies of importance
can be different in different devices, so that in one case3 the gyro-
frequency is basic to the equilibrium while in another casel’ 2 a frequency
of the order of E/BL may be of greater importance. (E, B and L
represent characteristic electric fields, magnetic fields, and dimensions.)
In the latter case the mass of the electron is unimportant.

Let us now imagine a single ion to be added to an electron cloud

contained in some way in a magnetic field. The ion is trapped by the

potential well of the electrons, and is also influenced by the magnetic
field. If the ion has charge Ze and mass m,, and if n_ is a characteristic
electron density, the ion motion will be characterized by two frequencies,
namely the gyrofrequency ZeB/ m,, and a frequency associated with
oscillation in the potential well which is roughly (Z n, ez/ 2¢ o mi)l/ 2
These two frequencies are both independent of the number of ions
present, and decrease with increasing values of mi/Z. If the ion is
very massive (mi/ Z large), the ion motion will involve frequencies far
below those characterizing the electron cloud, and the two systems can
be thought of as essentially decoupled. But as mi/Z gets smaller, we
will eventually arrive at a resonance, implying the possibility of an
instability. Such an instability could clearly occur even if there is only

a single ion, but in this case the growth rate would be small, Larger
numbers of ions could be expected to have a fairly small effect on the
stability limits of the parameters of the electron cloud, but the growth
rate will depend in some way on the ion density. These general state-

ments agree with the analytical results of the paper in suggesting that,
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for non-neutral plasmas, the critical number of ions that can be stably
contained depends more strongly on ratios independent of the ion density
than on ratios in which the ion density figures importantly.

The outline of the paper is as follows: the basic model is described
in Section II, along with the character of the equilibrium, and the zeroth
order electron and ion orbits., In this section, all the important
frequencies are defined. In Section III the drift approximation is
discussed. Sections IV and V respectively treat the equilibrium
ion distribution, the perturbed iony density in any mode number.

In Section VI these results are applied to the fundamental mode of
oscillation. Explicit dispersion relations for two special cases are
derived and discussed in Sections VII and VIII. The remaining

Sections are devoted to a general discussion of the results.






II., THE MODEL

The model used in this paper is intended to be representative of

?

some of the non-neutral plasma devices currently of interest. Its
basic features are sketched in Fig. 1. It consists of an infinite perfectly
conducting circular cylihder, of radius a, having a unifor‘m magnetic
field B along its axis, and containing a non-neutral cloud of electrons
and ions. We assume that the effect of currents in the plasma on the
applied magnetic field is negligible ('quasi-static approximation), and
that all quantities are at all times independent of the axial (z) coordinate.

A steady state equilibrium is assumed in which all quantities are
independent of the azimuthal (9 ) coordinate. Thus, for the zero-order
quantities (distinguished throughout by the subscript o):

dé
1 d o}l _ 1 d _ e
«a  dr (r dr) T T r dr (r Ero) - (neo - Znio)

*0

For simplicity only one species of ion is considered, and all the ions are

Z-fold ionized. A useful ratio is

a = Znio/neo (2.1)

representing the fractional neutralization of the electron cloud. All the
zero-order quantities listed so far are functions only of the radial (r)
coordinate. The motions of each charged particle will conserve both
energy and canonical angular momentum; it is assumed that there is no
motion in the z-direction.

In the devices to which this model is supposed to apply, the electrons



ELECTRON 2 :;:::::::::..

Fig. 1

A CONDUCTING
CYLINDER

Basic features of the model studied, showing typical electron

and ion orbits,

The electrons and ions occupy the region

0L r € b;theregion b < r < a is empty. The orbit of
each ion is fixed by the numbers d and s corresponding to

the minimum and maximum values of r .

The size of the

loops in the electron orbit is exaggerated.
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satisfy the condition that

2, 2 2
q = wp/wc = n__ me/eoB << 1 (2.2)

Furthermore, the kinetic energy of each electron is characteristically
much less than its potential energy. It follows that the electrons can be
considered as ''cold", their motions being governed by the equation

E+ Y, X B = 0. The electrons being cold, there is no need to

~

introduce directly an electronic distribution function. In equilibrium,

/B.

F . is radial and B is axial, so that v is azimuthal, and v = - E
~0 ~ ~e0 f eo ro
The electrons at radius r therefore rotate around the z-axis with the
angular velocity - Ero/rB' As indicated in the Introduction, this
quantity is independent of the electron mass. A typical electron orbit
having a small amount of thermal energy in addition to its drift energy
is shown in Fig. 1.

We now fix the equilibrium radial distributions of the electrons

and the ions in a very special manner. We choose them in such a way

that:

0<r = b)

I

eo
(r) = const.

n. n.
10 10

n (r) = n__ = const.
eo } (
(2. 3)
(b

Deo (r) nio (r) = 0

= r = a)

A narrow radial range will be allowed near r = b for continuous
transition of the density.

The analysis of this paper could be carried through using somewhat
less special electron and ion densities. This point is discussed in

Section I X. The choice (2.3) of the electron and ion densities makes

-7-



a a constant (for r < b) and determines the electric field as:

-n__ er (1 -a.)/Zeo (0<r=hb)

E =
ro

-n_ eb2 (1 - a)/ZrE0 b=r=< a)
and the potential as

$, (r) = n er’(l-a)/de, (0=<r=h) (2. 4a)

€0
o, B) [1 + Qn(rz/bz)] b =r=a) (2. 4b)

The electrons rotate about the axis as a solid body with the unique

angular velocity

w, = n e(l- c.)/ZEOB (2.5)

The ion distribution fuction is (for the present) not constrained beyond
the condition (2. 3).

This choice of electron and ion density profiles will be seen to
simplify the instability calculation to the point where useful results can
be obtained, but it also carries with it certain rather far reaching
implications. These follow from the special quality of the ion orbits in
a parabolic potential well., We shall first derive these orbits, and then
comment on the implications, We can define two significant frequencies

for the ions, as follows:

Qp = [Zn, e (1-a)/2 eomijl/z

(2. 6)
2
2 E /we

o)
f
N
o
o
~
B
n
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The first of these is the frequency with which an ion would
oscillate in the electric potential well defined by (2. 4a) if there were no
magnetic field. The second, 2, is just the ion gyrofrequency. The
combination of the electric and magnetic fields results in a frequency .
(SZ}%: + QZC /4)1/2 for the ion motion. An important ratio is

Q(Z:/Qé which may be related to q by:

2 /52
2 Q. /2% = 2Zm_/m, q (1 - a) (2.7

it

where q is defined in (2.2). Although the electron mass appears
explicitly in this expression, q is proportional to m_ so that A is
independent of it. The form (2. 7) is convenient, however, because it
compares the electron-ion mass ratio directly with q. In particular,

it is helpful to see the effect of varying the ion mass, all other quantities
being held fixed. The various frequencies introduced so far satisfy the

proportionality relations:
@ 10wt o = a2 i120-a) 2 2 (1ea) lg7! (20 8)

Since q << 1, it is clear that for massive ions (A << 1), the ion
frequencies are far below all the frequencies associated with the electrons,
amongst which the lowest are of the order wgs @ characteristic frequency
for "diocotron waves'l,

These waves are described in references 4, 5, 6, In the drift
approximation (ze =E x E/Bz) they are pure surface waves. Purely

azimuthal modes have the lowest frequencies, given by

oo = 0 - 1+ (b/a)L (2. 9)

e
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where { is the azimuthal mode number.

For very massive ions no electron-ion resonance is possible. As
progressively lighter ions are considered, )\ increases until, when A is
of the order of unity, a resonance can occur between the ion motions and
the electron rotation frequency we It is this resonance which we shall
examine in detail.

The motions of the ions can be understood most readily by viewing
them in the Larmor frame of reference which rotates with angular
velocity QC/Z and in which the Lorentz force is just cancelled by the
Coriolis force. A centrifugdl potential energy m (SZC/Z)ZrZ/Z, however,
must be added to the electrostatic potential energy m Qé r2/2 (see eq. 2.6).

The result is an effective parabolic potential well mrzﬂ 2/ 2 with

2 = (@ + Qi/4)1/2 (2. 10)

the frequency of oscillation of each Cartesian co-ordinate in this frame.

The orbits are ellipses, and with the appropriate choice of axes:
x = s cos & v = d sin &t (2.11)

We shall assume s to be the major semi-axis and take s always positive

while d, never larger than s in magnitude, can be positive or negative so

as to describe clockwise and anticlockwise orbits., Figure 1 illustrates

an elliptical orbit transformed back to the lab frame, ranging between

r = d and r = s, Unlike the electrons, the ions are not prevented by

the magnetic field from crossing a substantial part of the potential well.
A critical feature of these ion orbits is the fact that the frequencies

involved are independent of the amplitude of the motion. It follows that

-10-



after a time 2 7/Q the ions all have the same relative positions as they
had initially, although in the lab frame the picture as a whole has rotated
through the angle -7Q C/SZ . A vitally important consequence of this effect
is that no Landau damping can occur as a result of synchronism of some
of the ions with any wave. This result has been noted in other circumstances,
and represents a generalization of the well-known fact that Landau damping
does not occur in a cold plasma. Of course, the ions are not cold in

the sense that all the ions at any place share a common velocity. It is
therefore necessary to introduce a microscopic distribution function to
describe the ions. But the mutual synchronism of the ions suggests that
there is a sense in which the meaning of the word 'cold" can be extended
to cover our case. In this sense, our analysis aims at results analagous
to cold plasma theory. As in the cold plasma case, our results will
definitely need modifying for application to warm cases - ''warm' in this
context meaning a non-parabolic potential well. Although no analysis of
warm cases is presented, a discussion of some of the possibilities is
offered in Section IX. Theoretically, the situation is precisely analagous
to the use of plasma models with discrete structure, as treated, for
instance, by Stix8 and Dawsong. Such models cannot exhibit Landau
damping, but can and do exhibit gross instabilities associated with
resonances of one kind or another. The best known of these is the
two-~stream instability, and it therefore comes as no surprise that our
dispersion relations (Sections VII and VIII) are very similar in structure

to the dispersion relation describing the two stream instability.

-11-






IIl. THE DRIFT APPROXIMATION

For the electrons, it is adequate to describe the motion by the drift

approximation:

v. = E 0 /B (a perturbation only)
‘ (3. 1)
Vg = "Er/B (= rwg for unperturbed co'nditions)‘ |

This is the basis of some previous studies of the '"diocotron' moaes
(references 4, 5,6)., For the ions, (3.1) is a poor approximation, but
we shall find it a useful guide to what actually happens when a full
distribution function analysis is carried out.

Since E is curl-free and the velocity field is the E/ B-field turned
through a right angle, the velocity is divergence-free and the continuity

condition states that the particle density n is unchanged along the flow

lines:

3111 EB dn0 on ‘
3t t B 7ﬁf'+“e 50 =0 (3.2)

The subscripts "0" (unperturbed values) and '"1" (perturbations) may be
placed as shown since dn/8t and 9n/09 are only perturbations. With

exp (if @ -iwt) describing the ¢ th order mode, (3.2) leads to

iE . dn
0 o
j B (Lwg, - ») dr

(3.3)

a formula which is almost literally confirmed by the elaborate
distribution function analysis to be carried out in Sections IV = VI - at

least for the lowest order mode, f =1, and the case where the steady-
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state potential well is effectively parabolic.
From (3. 3) one sees that:
(i) over the interior range where n, is assumed constant (see
eq. 2.3) one has no density perturbation and the potential will
be Laplacian, proportional to r2 .

(ii) in the ''skin'' where n drops to zero one gets a surface charge
density wave

iEOpo

B(ﬂwe o) (3.4)

Each species, electrons and ions, will create a surface charge layer,
proportional to its unperturbed density in accordance with (3. 4), assuming
the drift approximation to be valid for both. In that case (3.4) can also
be taken to give the net surface charge density due to both species,
provided one interprets P, as the net charge density - en +Z en, ,
or (1 - a) Peo’ identifiable as ~ 2 eoBme in accordance with eq. (2.5).

On this basis one can now proceed to match the ratio iEr/E‘9 across
the boundary, using ¢; < r‘Q - (az/r)2 outside. The ratio jumps from
1 to (bzﬂ + a2l )/(bzl ~a%l ), and the difference must be equated to
i/EoEG times the surface charge density., This leads to the "diocotron"
dispersion formula (2. 9) which had previously been derived for electrons
only.

The ions seem to have no influence on dispersion. This is not
surprising since in the drift approximation the particle mass remains

irrelevant and the ions are just ''charges', like the electrons, scaling

all charge densities down to the factor 1 - a, To get significant ion

-14-



effects, one must improve on the drift approximation, at least for ion
dynamics. If one goes to the opposite extreme of the ions being
infinitely heavy rather than so light as to make the drift approximation
valid, then the surface wave is only that due to the electrons - meaning
that it is not partially neutralized. It is, in fact, a factor 1/(1 -a)
stronger than in the estimate above. One then finds, instead of (2. 9),

the dispersion formula:

ofo_ = 2 - (1 -0b/a)?t)/(1-a) (3. 5)

€
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IV, EQUILIBRIUM ION DISTRIBUTION

In calculating ion dynamics, ion orbits, the ion distribution function
and its perturbations, we follow the principles laid down in references
10, 11, 12, where cylindrically symmetrical configurations and their
stability analyses are discussed.

One classifies particles by their canonical momenta. One of these
is the total energy W. Two others, the canonical axial momemtum and
the canonical angular momentum are, like the energy, constants of
motion in the steady state. We have already pointed out that the most
competitive electron modes are those with no variation along the axis
and hence we restrict all further studies to axial uniformity, The axial
co-ordinate remains completely ignorable and axial momenta remain
irrelevant. In any distribution function to be recorded, we shall imply
that any axial momenta have been integrated over.

Regarding the canonical angular momentum, a simplifying feature
is the constancy and uniformity of the magnetic field. For one species
(namely the ions), one can transform away this constant magnetic field .
by doing the entire analysis in the Larmor frame in which the canonical
angular momentum becomes the ordinary angular momentum. Let
us now consider the manifold of all possible ion orbits of the type (2.11).

The total energy W,

2

1 2 !
W = 2:m(‘vr+v9) + Ze® (4. 1)

1
contains, in its effective electrostatic potential energy Ze®, the Larmor

centrifugal part mr2 Q i1/ 8, bringing the total potential energy to mrzﬂ 2/ 2

-17-



for the steady state. Substitution then gives:

W = ——%——mﬂz (s® + a% (4. 2)

The angular momentum L is reé,dily calculated to be

L = mrve = mf sd (4. 3)

Throughout this and the two subsequent sections, an unsubscripted "m"
will denote the species under study - primarily the ions in our case.
However, putting Z = -1, and going to the appropriate Larmor frame,
makes the analysis immediately applicable to electrons also.

One can use s and d as alternative variables to W and L for classifying
particles in a distribution. The most common variables used in a
distribution functio'n would be V. and v, or Ve and vy. The Jacobian

0
for passing from these to W and L is:

2 2 ! 2.1/2
58—(%%)5—) = m rvrzm[Zmr (W - Ze®) - L] / (4. 4)

In cylindrical polars, with § now measured in the Larmor frame, the

orbits (2.11) are given by:

2 = —é—(s2+d2) + —;— (s% - d%) cos20t
_wa w202 132 coszat (4. 5)
me 2
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and tan @ = (d/s) tanQt, or

w2 22 152 | weos2at
W+ (W2 -02 1L.51/2 os 20t

cos 20

(4. 6)

w —in[mrz
(WZ _QZ LZ)I/Z

1

The steady-state distribution function, fo (r, Vs VG ), should depend

only upon the constants of motion, W and L, or s and d:
£, (r, v vg) =g, (W, L) (4.7)

which leads to an ion density:

g, (W, L) dWdL

n, (r)=2 [f (4. 8)
to 1rn(2mr2 W - m2r4£22 - Lz) 1/2
the range of integration being the parabolic domain
2W z'mr2 ﬂz 4 Lz/mr2 (4. 9)

which insures a real V...

The factor 2 in (4. 8)is due to the ambiguity of sign of V. after specifying only

W and Vo i. e. whether g, counts ingoing or outgoing particles., In the

steady state these must be equally plentiful, but under perturbed

conditions we shall have to distinguish between two functions, g+ and g.
The function g, (W, L) could be determined from a knowledge of

the ionization process, One would have comparatively low initial

kinetic energies in the lab frame and hence W = -%— mrcz’ [ﬂz + (L2 c/2)2]

and L~ mr(z) Q C/2 in the Larmor frame where T, is the radius of creation,

with small spreads about these values. However, our analysis is

-19-



restricted by condition 2. 3, namely constant n. - To comply with this
condition, we ought to determine g, (W, L) by inverting the integral
equation (4. 8). Such an inversion is possible in principle, but it is not
unique since the kernel only depends on the square of L. and makes no
distinction between clockwise and anticlockwise orbits. One can distribute
a given total number of particles arbitrarily among these.

Fortunately, in most of the analysis that follows it will be
unnecessary to specify precisely the solutions g, (W, L) of the integral
equation which results from the condition (2. 3) on the total density.
But in Section VIII, we make use of an especially simple form for 8o
If we express W and L in terms of s and d by means of (4.2, 4.3) and

and choose

g (W, L) = Zio Lim o (s - |dl—€) s <b
° r2Y] e—0 €

1
V)

(4.10)
= 0 s >=b

ldl , that is, they are moving in circles

all ions have effectively s
around the origin. The ion cloud has constant density n. for 0 =r <b;
for b < r < a there are no ions. The ions are also divided into two
classes; and each class rotates as a solid body. The angular velocities
of the clockwise and anticlockwise classes are - -%— SZC + Q in the lab.
frame. For the plus sign, this angular speed is in the sense which makes
the Lorentz force Zey x B point radially outward, opposing the electric
force. For the minus sign, the vector v x B points radially inward,
adding to the electric force, and requiring a larger angular velocity to

provide the necessary outward centrifugal force. Any division of the ions

-20-



between these two classes may be chosen.

It may be seen that if we had retained the full equations of motion
for the electrons, as well as for the ions, we would have developed
essentially the same formalism for each case allowing only for the
differences in charge and mass. Since in our model the electrons are
actually moving in circles, the distribution function (4. 10) would be
appropriate for these as for the ions, with all the electrons in the class
for which the Lorentz force -e (v x B) opposes the electric force -eE.

The angular speed for this class is
2 2 1/2
ooc/Z - [wc/4 -(l-a) wp/Z] (4.11)

But we have assumed (2. 2) that wpz << mcz, so that this angular velocity

is approximately

1-a) mpz/ch= n, (1-a)/2e B= o (4.12)

as stated above. It will appear later that all our results are susceptible
of generalization by allowing the electrons to have a velo;:ity distribution
restricted by just those conditions which are imposed on the ions.
However, since it adds little to our understanding of the situation, this
permissible generalization is not carried through our analysis.

The other angular speed available to the electrons corresponds to
choosing the + sign for the square root in (4.11), and, for q << 1, is
about w _. These two angular speeds have been described as the slow and
fast solutions. 13

Since both in the constant density requirement (2. 3) and in any

comparison of the full theory with the drift approximation (3. 3) the radial
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density gradient is important, we develop here an expression for dnio/ dr
in terms of the distribution function g, from (4. 8). To remove the
variable r from the boundary condition 4. 9, we introduce dimensionless

energy and momentum variables:

W__ o, g= —L (4.13)

mrla? /2 mrlQ

vl
giving n,, in the form:

n, (1) = 2202 [] g, (umr?0?/2, £ mr%0) dtan/(u - 1 62172,

(4. 14)
peo>1+4 E,Z
now readily differentiated to give:
dn, og g
io _ 2 o o dédp
dr = rQ ff2[g0+§3€ +p'8|~1. ] (M-l-gz)]_/z (4.15)

The vanishing of the double integral constitutes condition (2. 3).
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V. THE PERTURBED ION DENSITY

We follow the principles outlined in references 10 and 11 for
calculating distribution perturbations for systems with planar or
cylindrical symmetry. The perturbed outward and inward distribution

functions, of the form

g, (W, L) + gt (r,w, L) &40 -3 (5.1)

must be constant along the (perturbed) orbits in phase-space. 0 and w
are implied to be measured in the Larmor frame, throughout this
section and section VI. Unperturbed orbits can be used in the second
(small) term of 5.1, but orbital changes A W and A L due to an

electrostatic potential perturbation A @ of the form
AD = ¢ (r) MO -t (5.2)

must be taken into account in the first term. We have the dynamical

equations:
dAL = -Ze ?-5‘(‘9—‘1’ dt =il ZeAd dt
(5. 3)
dAW = Ze %%9— dt = iwZeAd dt

which we integrate along the (unperturbed) orbits between an inner

turning point, A, (see Fig. 1), at radius }d}, and a point P at arbitrary
radius r. Because our‘ aim is to determine the (yet unknown) function QSI (r)
of (5.2), we use r rather thant as a parameter of integration, with

dt = dr/ V. The phase of the perturbations (¢ times the angle in the
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rotating wave frame),

Y (r) = L0 (r) -wt (r) (5. 4)

can be evaluated as a function of r by means of eqs. (4.5, 4.6).
Only the combination AL Bgo/a L + AWd go/a W of angular

momentum and energy changes is of interest; its orbital change is

given by:
ago d €o . !
d(ALTE— + AW W) = -1go Ze AD dr/vr (5. 5)
where
4 4
1
& = LTt ° 3w (5. 6)

The orbital constancy of the distribution function 5.1 yields:

g; ('d‘ ) ei‘l‘ ('dl ) +i g; {dli Zed)l (r') ei‘“l‘) dr'/vr (r')
(5.7)

We have omitted the '"+4'" superscript deliberately from g; ( Idl ) since
at the turning points r = ldl and r = s the inward and outward functions
g merge into each other and must be identical. The turning point
conditions are discussed in some detail in reference 10, as well as by
Ehrmann14 in studies of oscillations of a plasma in a potential well.
Let us indicate phase changes between the inner turning point A
atr= d anda general point P, or between any two positions P, P'

on an outward orbit, as follows:
bpa = ¥ @ -0 (), vpp' = b @) -4 @) (5. 8)
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Then (5. 7) becomes:

1

i“‘ ! ) ! "ilp 1 1
PA +ig0 fr Ze ¢y (r)e PP dr /vr (r) (5.9)

gf ) = g (la)e
1]
and for the inward function g; one obtains a similar formula by
integration of 5. 5 between r'=r and r = ‘dl . The fbllowing‘ differences
between what we have,don‘e for g-{ and what should be done for g-1 will
be noted:
(J:.) the integration runs backward in radius
(ii) V.= - lvrl on this leg of the orbit
(iii) the phase differences on an inward orbit are just opposite to
those on an outward orbit.
Thus one obtains, using Ypa and qJPP’ of (5. 8) as calculated along an
outward orbit and the definition v_ = lvrl which applies on an outward
orbit,
g (r) =g (Ja]) o Vpa Hep!

- ig; f‘l;i‘ Z eqSl(r')e dr'/vr (r" ' (5.10)

One obtains a condition on gl(ldl ) by identifying r with the outer
turning point B at r = s in both (5. 9) and (5. 10) and by equating g; with

g"1 there:
1

g ' ' ' '
g, (Jah = —550—4‘52 f‘:lZeqsl (r') cosypp dr'/v_ (x)  (5.11)

This value, inserted back into (5. 9) and (5, 10), leads to a combined
inward and outward density perturbation:
‘g'{ + gl" = —S-i—n%— [fr Ze ¢ (r') cosypntp COSLpBP dr'/vr (r')
BA L4 (5. 12)
+ fi Zeg, (r') cosy 5 coquBPr dr'/vr (r')] ,
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after some elementary trigonometrical manupulation for the first'term '

in the square bracket. ' The two integrals can be combined:

2 g' :
+ - _ ] 5 ! ) ! 1
g, t g = ‘sin'q;fB"‘A*f‘ al Ze ¢y (r)cosy P_A “°°VBp dr./v,(r) (5.13)

where P< 'is P or P'and P> is P or P ac‘éb‘rdinvg asr<r'orr>rt,
When calculating the total ion density perturbation at radius r, =~

i 9-iwt

Ani =1y, (‘r)vey ‘ (514)

one has, in addition to the integral o‘f‘g-{'(r) +g'1' (r) over Wand L, &
contribution from the ‘pérfur‘bé;ti‘o‘n of the Jacobian (4.4) which is used =

in the integral over g_ and which is susceptible to potential perturbations.

This contri’Bﬁtioﬁ i‘s,‘ f&i-"thébufwra;,rd"cla,ss,v" RN A
I Sl § I 2— Jawar  (5.15)
0@ m_ rv R

Since differentiation of the J’ac‘ob’ian with respect to,(zef@") is !;I%e negative
of c'iifferéntiation Wi:th respect to W, one can léonvert this éonffibution

by an integration by parts. -Taking into account both inward ahd outward
streams, as well‘as the natural requirement ‘g;’)‘-*-"o as W - co, one'gets -« "
no terminal contributions in this process and the total perturbation ~1‘1‘-“i.1¢f,'"j :

including what arises from g; + g'l', becomes:

- a gO oo

4 S T S SRS e KR S ARG NPT L VR TP
g 1
0 s 1 dr dWdlL,
—_ f Ze ¢, (r)cosy cosy - (5.16)
o o 204 e comtne | FT- G0
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The first term in the integrand - the one due to the perturbation in the
Jacobian - exemplifies the general occurrence of perturbations in the
displacement between ordinary and canonical momentum space, as
emphasized in reference 10. In pinches, one has found significant
marginally unstable modes which owe their existence purely to this
effect and in which the canonical momentum distribution g remains
unperturbed (references 15, 16 and 17).

Formula (5, 16) has quite general validity and is, as such, not
restricted to the parabolic well. The features of this well are contained
only in the nature of the unperturbed orbits, which enter into the relation
between the phase, ), and the radius, r, (see eqs. 4.5, 4.6, 5.4) as
well as into the dependence of the turning points s, d on W, L (see
eqs, 4.2, 4.3). Formula 5. 16 can even be used when there are axial
variations in the perturbations - it only means that in the definition 5. 4
of the phase one has to include a term kz (r). Also, if the steady-state
distribution function g_ depends on axial momentum P (the case of axial
drifts), one would add a term kd go/a P in 5. 6 and, of course, integrate
in 5. 16 over P as well as W and L.

Perhaps the most important feature in the application of 5. 16 to the
parabolic well lies in the universality of the resonances between the
particle motion and the wave, shown by the zeros of the denominator

sim};BA. For the parabolic well, these resonances,

3 = integer of same parity as {

(since 0 BA = (sgn L) #n/2, tBA = 7r/2S2)-do not depend upon W or L -
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they are univérsal for all ions. As explained in Section II, the resonant =
demoninator is’ of the ‘type associated with plasma models having a discrete
structure in which the ions are either all resonant or all non-resonant. =
If the unperturbed potential well had béen non-parabolic, the frequency
© would have ‘depended ‘on the orbit energy W and/or the angular momentum
L and, in general, ‘only a small fraction of the ions would have bees at’

or near to resonance. In that case, the poles sin ¢BA =0 inside the
integral would have to bé treateéd in the usudl way for Landau damping.

But it is the limited object of this paper to consider the "'quasi-cold'
case in order to establish a’ boundary for gross instability,” For this =
purpose’ the discréte resonatice model i§"adequate. However, wedo =
offer some general comments on the Landau damping questions in =

Section IX. ~
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VI. DENSITY PERTURBATIONS IN THE FUNDAMENTAL MODE

A complete perturbation theéi'ﬁr requires the insertion of the ion =
» With that of the electrons - en

(derived from ¢ | by appropriate methods, perhaps even in full analogy

charge density perturbation Zeni

with 5.16), into Poisson's equation. This results in an intégfai
equation for qbl. A common method of solution is iteration, starting
with some inspired guess.

In our case, one might start such an iteration with the known
results for the drift é.ppro:dmation, or for the case of ions which are’
unresponsive to the potential wave. With constant unperturbed densities
in the interior (condition 2.3), the potential ¢1 is then a solution of
Laplace's equation and ¢y *® rin the fundamental mode ¢ = 1. It turns
out - fortunately - that with such a d’l the integrals in (5. 16) can be
evaluated and that an equation like (3. 3) results for the ion density
perturbations. Using, again, the constancy of n, , as postulated by 2. 3,
the ions still behave incompressibly so that the Laplacian nature of the |
‘bl in the interior is confirmed and no further iteration is needed.

It cannot be claimed that this method of analysis - iteration with a
preconceived start - constitutes as exhaustive search for all electron-ion
interaction modes, but the most likely resoné,nce, and the 6he first
encountered as the proportions in (2. 8) close up, ié the one Whefe the
ions just begin to respond to the diocotron mode, and this case is
correctly covered by our verification that the Laplacian potential is.

self-consistent.
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To evaluate n, from (5.16) we first calculate the mtegrals in (5 12).
For the fundamental, q,a (s) 0 for the outward 1eg wh1ch begms at
t = -7r/29 and finishes at t = 0. Hence ¢ (ld) ). = -qJBA and with (bl (r) « r,

one has to integrate such expressions as

rcos (@ ~wt + LpBA) = scos Rtcos(wt - LJJBA) + d 51n52t sin (wt L]JBA)

and
rcos (-0 + wt) = s cosQtcoswt + dsinQtsinwt
with respect to t in order to get g'{ + g'"1 by equation 5.12. (Reverting

from r to t as variable of integration is expedient here.) After some

helpful cancellations, one finds

2¢g' Ze ¢, (r)
g (1) + g (r) = f;z — o+ —2) (6.1)
-w mr
and hence
2Ze ¢, (r) dg og
B g! 0 - L 0 2 wklL dwdL
nyy (1) = oz II V31 =)+ 55 @7+ =) =5—  (6.2)

- w mr mr” Jm"rv_

To facilitate the integration, we introduce the dimensionless
energy and angular momentum-variables p and § defined in (4. 13),
giving:

Zed, (r) 9°

og og
n,.(r) = —s——— [f [ 2 (& +E)+ 25— <1+—-§)]
il m(@°- sz)’ usT+ g2 °¢ 'Q ‘/p.—l-éz

which we can compare with the drift approximation (3. 3). Consider,

dEdp (6. 3)

first, the factor in front of the integral, ¢1 (r) can be replaced by

iE 0 r. In the denominator we use
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employing the definitions (2.5), (2.6) and (2.10). Regarding w, we have

to remember the distinction between the lab frame and the Larmor frame:

wLarmor - “1ab

+ szc/z | o (,675),

for the fundamental mode.  Combining (6.4) and (6. 5) the factor in
front of the integral in (6. 3) becomes:

iEGrQZ

2 .
B (g = 0pp =~ ©915,/@ )

(6.6)

and for the drift approximation, which implies wlal:; << QC , we shall have
achieved confifmatibn of (3.3), with substitution of dno/dr from (4. 15),
provided we can establish identity of the two integrals - that in (4. 15)
and that in (6. 3).

This identity is readily checked by obServihg that the integrands
differ only by a perfect divergence in §, p-space, namely of the vector
with

2

£ - component' = 2, Vp. -1- ¢ 9 [(—%— - g)go]/ap, (6.7

j = component = 2 p-1-§ (go+8[- & --—?2——) go]/ag)
(6. 8)
both vanishing on the boundaries u =1 + ng and g - 00.
Not only have we now checked the drift approximation as the large
gyrofrequency limit of the more general analysis, we have also found

how to correct it, namely by filling in the full denominator of 6.6, to
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replace the simple denomlnator B (w = (.o) in 3.3, The 1dent1ty of the

1ntegrals,‘ in (6.3) and (4 15) does not depend upon any app,:rommatlon
and one-deduces that, with ® as measured in the lab ifl?@ﬁ:a;;,;? by medd
RS o . co s 4 e iE ?MH:" \ i dn. e e

0 : : R I IIE IS T PRI
n, (r) = (6.9)
i B (we -w - coz/ﬂ C) dr

is theﬂ 7ce’rrect generalization on (3 3) to ’cé:sems where the drift
approximation is inadequate and where a full dynamical analysis is -
called for. This is a remarkably simple result in view of ﬂ«‘?e_;Wid?' S
variety of conditions under which it applies. It does depend on the
potential well being parabohc, and therefore on the constancy ofn_ -Zn,

eo 10

over the range O =r=<b, but not on the 1ndependent constancy of neo;
and Do However, l;ej a.ndrl Were as sumed in (2 3) to be 1ndependent1y\
constant over the range 0 =r=s b It then follows that the perturbed | |
ion den51ty vanishes 1dent1ca11y in the interior and the Laplac1an naturer
of qSl (r) exp (19 - 1w1:) 1s conf1rmed | — o

In the nelghborhood of r= b for the ions as for the electrons, therﬂe
is a surface charge layer. The electron surface charge dens1ty is
determlned by ”cold" lamlnar flow theory in the dmcotron analys:.s
(references 4, 5 6) or by the drift approxnnatmn (3 4) For the 1ohs,
1aminar,£10Witheor3’f is inadequate. Irlstead, ,{x{e apply a limiting process
to our t‘heory developed in sections IV - VI. We allow for a thin radial
range (thickness §) in which the total unperturbed charge density -
Zenio -.en_ slopes off to zero continuously (and differentiably) from
its full uniform interior value, Within this range the field that makes the

ions turn round and roll back into the interior is only changed by an

amount of the order 52. There will thus be phase delays of the order §,
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but over most of their orbits the ions that penetrate into the boundary
layer will oscillate harmonically in the perfect parabolic part of the
well,

The phase integrals preceeding the result (6. 1) are therefore
substantially unchanged and any deviations from 6.1 will go to zero with
8. The fact that the ion flow is not laminar and not purely peripheral,
but that most ions dip down into the unspoilt part of the well is an
advantage in this argument. The transport of perturbing field effects
by the particles does not occur in the skin itself, but mainly in the body
of the plasma.

The energy-momentum integrations 6.2 -~ 6.3 are, again, concerned
with the distribution function overall and not with particles that are
restricted to the "skin'., The nature of the function g, (W, L) which
produces the sloping ion density in the skin need not be known, and the
final result (6. 9) based on a Laplacian interior potential ¢1 (r) would
appear to be correct to the order '5'" even within the skin. This allows
us to integrate 6.3 through the thickness of the skin, to give the ion
surface charge density:

_iEG Pio
B (we -w - wz/ﬂ c)

(6.10)

as the valid generalization of (3. 4).
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VIil. THE DISPERSION RELATION

In this section we put together our previous results and find the
dispersion relation corresponding to the fundamental { = 1) wave
which has a surface charge layer of ions given by (6. 10) and a surface
charge layer of electroné given by (3.4). Matching iEr/Ee across the‘

combined layer leads to:

1 “e a Ce :
- - (7.1)

l-bz/a.Z (l-a) (we-c.o) (l-a) (we-w-wz/ﬂc)

This is the dispersion relation for the wave being examined. Before
studying the behavior of the dispersion relation in detail, we can simplify

its form by defining
X = w/oae
so that x is an unknown non-dimensional frequency. Next let
xp=1- (1-b%/a%) (1-a)7!

be the dimensionless frequency of the diocotron wave as it would be for
unresponsive ions (see Eq. 3.5). Recalling the definition (2.7) of A,

the dispersion relation (7. 1) reduces to:

(xp - 1)"1 = (x - 1)-1- ax (X2 +xA - 7&)-”1 - (7.2)

This dispersion relation is (for the reasons explained in Section II) similar
in character to the dispersion relation describing the two-stream

instability, We see that for given values of x

D %> and )\ there will be
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three values of x., The condition for stability is that all three values for
x be real, and in the marginal case two of these will coincide. The
geometry factor b2/ az enters only into Xpe

Preliminary conclusions that may be drawn from (7. 2) are that if
either a or )\ is sufficiently small, there are in general three real roots
which approach xp and the roots of xZ +xXx - A = 0. Butthis statement
will not be true if (xD2 + xDA - 1) is also small, or in other words,
if the diocotron wave is closely in resonance with one or the other
characteristic ion frequencies. In the absence of such a resonance
then, stability will follow if the ions are either sufficiently few (a << 1)
or sufficiently massive (A << 1). In either of these cases, the two species
are effectively uncoupled.

More precisely, suppose that xpy is a fixed positive number, and that

a is small, If we let

L =-A/2 - (A a2 a2
x, = -1/2 + (A +22/a)1/2

X

there will be a real negative root of (7.2) close to X This root can be
found as a power series ina, the term in a® being just x;. Itis then
possible to use this root to factor the cubic equation; we are left with

a quadratic equation of the form

x* + 2C, x +C, =0 (7. 3)
1 2
the coefficients C1 and C2 can be found as lower series in a; to lowest

order C1 = - (x2 + XD)/Z, C2 = X, X The stability condition is now
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simply Cf’ -G, = 0. On evaluation of the terms in a in the expansions

for C, and C,, we find the condition for instability is, approximately:

lXZ - XD‘ < 2 [a A (1 - xz)z/(xz— xl)] 1/2

Hence instability is present only when the diocotron frequency xp differs
from the ion frequency x, by a quantity of order a 1/ Z. ‘Furthermore,
when instability is prééent, the growth rate is of the qrder w, @ 1/22 
and this is proportional to ni(l)/ 2. This suggests that although .we is thg
nafural unit for measurement of the real part of the freqﬁency w, it is
more appropriate to refer the imaginary part of w, representing the

growth rate, to the ion plasma frequency Qp. W and 'Qp are ccwmnected‘-

by the relation

2 /o, = [zax/u.-a)]l/z

Using the standard theory of cubic equations, the stability boundary
associated with (7. 2) can be found. The equation for this boundary has
the form of a cubic in A, the coefficients depending on a and xb. The
boundary is shown in Fig. 2 (solid lines) for three valﬁes‘O:f thé
geometrical parameter b/a. For an}r‘b/a, points in (XA, a ) parameter
space above the curves are unstable, and vice vefsa. We note fhat 10%
neutralization of the electron cloud can be achieved without instability
for values of X up to 0.2 for b/a = 0.75 and up to 1.4 for b/a = 0.9.
Extending the electron cloud closer to the wall brings the charge
perturbation closer to its image and hence speeds the wave up. This in
turn makes it possible to contain lighter ions without approaching the

condition of resonance. The stable region below the solid curves but to
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Fig. 2 StaBility boundaries in A , a parameter space associated
with the dispersion relation (7.2). For three values of the
geometrical parameter b/a , the stability boundary is shown

as a solid line. Points above the boundary are unstable,
points below it are stable, The dashed lines connect points
which, for each a , maximize the ratio of the instability
growth rate to the ion plasma frequency. Absolute values of
this ratio are shown in Fig. 3.
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the right of the resonant point is of less physical interest,

In addition to finding the stability boundary, we can also solve (7.2)
directly for x = w/we. In the unstable region, the imaginary part of x
represents the growth rate. If we traverse the unstable range of values
of A at a fixed value of a.’,‘ the grovﬁh raté Wiil sté,rt at ‘zero," i’nc‘re‘ase‘ td
2 maximum, "and then decrease to zero. The location and value of thei
maximum growth rate will both depend on the normalization adopted.
kBut, as explained above, it is appropriate to normalize thé growth rafe
to the ion plasma frequency. With this normalization, the ‘da’shed lines
in Fig. 2 show the values of A which, for a fixed a, give the largest
growth rate. The absolute values of the maximum growth rates
corresponding to points on these dashed lines are shown in Fig. 3. It
may be seen that unless a is close to bz/az-, the peak growth rates are
numerically smaller than the ion plasma frequen'cy. When a —~ bz/ az,
the peak growth rate becomes a large multiple of the ion plasma
frequency, but this range is not of much physical interest since it
corresponds to small values of X = (bz/a,2 -a )/(1 - a)., Furthermore,
for a given a, the peak growth rate occurs at a value of A =~ 4 x%/27a
which is extremely small. We conclude that in most unstable cases
the growth rate will be comparable to or somewhat less than the ion'
plasma frequency. For very small a, and very close to resonance,
the growth rate is approximately

Im @) = @, [(1 - bz/az)s/ { 2 (2 - b%/a%) b%/a? }] : (7. 4)
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Fig, 3 Instability growth rate divided by the ion plasma frequency
at points corresponding to the dashed lines in Fig. 2.
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VIII. A SPECIAL ION DISTRIBUTION

The results given in the previous sections cover a wide variety of
zeroth order ion distribution functions, but are restricted to‘ the
fundamental niode of oscillation. In this section, we shall discuss a
special zeroth order ion distribution for which the dispersion relation
corresponding to any value of ¢ may be found. This is the distribution
of eq. (4,10) for which the ions are divided into two classes (+ and-)
each of which is in simple solid body rotation. The angular velocities
are, r.esPectively, + @ - —é— Q C). We could treat an arbitrary
division of the ions into these classes, but prefer, for simplicity, to
suppose that all the ions are in just one of these classes, having angular
velocity ﬂio' The ion density is again uniform for b=<r <b and
vanishes for b<r < a.

For this special choice of the ion distribution function the ions are
truly cold in the sense that all the ions at any place have precisely
the same velocity, and we can therefore treat the problem using the fluid
(Euler) equations. Let Ve % be the radial and tangential components
of the perturbed ion velocity. The first-order ion dynamics are then

determined by:

velo- 0 &) -ivy 2% +82) = - (SZC/B) idqs/dr\
(8.1)

v @R +Q ) -ivy (-09) = - (QC/B) if¢/r

As before, we seek a wave which involves no perturbation in the ion

density except in the neighborhood of r = b, It will turn out that the choice
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(3.4) of a Laplacian potential, ¢ « r¥

is consistent with such a wave.
For the region where there are ions (i.e., r <b),let ¢ (r) = (r/b)ﬂ ¢ (b).

Solving (8. 1) gives:
vy =iv, = (@./B) [Le(B)/r ] (/o {w- 00, ) + (20, + szc)}"l (8. 2)

Note that the divergence of the perturbed ion velocity (8. 2) vanishes.

The perturbed ion continuity equation is
n (0-28,)+iv, dnio/dr =0

and this equation shows that, as expected, n, vanishes except near r = b.

For the surface charge density we obtain:

by ® -0 k-2+27 [20€_a sz%E/bszz (1-a)] (8. 3)
where
K=, + 2w)/29

when 2, = (@ - >~ ©_). When 0 =-@ + =+ 2 _) the denominator of

the first part of (8. 3) becomes (k + £) (k + £ ~ 2). We can check that
when ¢ =1 this formula reduces (in either case) to (6.10), as indeed
it must. The dispersion relation for arbitrary ¢ is easily derived; its
general properties are just the same as those of the dispersion relation
(7. 1) discussed in Section VII. If we let x_ be w/we from the diocotron

D
relation (3. 5) and also

L= 0n/z 4+ -2) (0 +a /a2

o
i

—_an/2 4+ 0 (0 +aP/a)/?

N
(]
|
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The form equivalent to (7.2) is

(xp- )7 = (x-0) T men x-x)T! x-xy)7 (8. 4)

As for (7.2), when a and )\ are both small, there are three real
roots near x = Xy Xps and Xoe The last two correspond to k = { or
£ - 2 and in the other case occur at Kk = -¢ and -§¢ + 2. Instability
can occur for small a if X is such that one of the ion frequencies
X, or x, is close to the electron diocotron frequency Xy In keeping
‘With our general philosophy, we are principally concerned with conditions
such that the electron diocotron frequency is positive and not too much
smaller than W and such that the highest frequency available to the
ions approaches the electron diocotron frequency. The highest
frequency available to the ions is clearly X5, and it is therefore the
approach of x, to x ) that is the minimum condition for resonance. For
the case in which £, , is negative and for { = 2, resonance is impossible
for Xp > 0, which justifies our concentrating on the more dangerous
case for which Qio > 0.

For this case, then, the stability boundary is plotted in Fig., 4 as
a function of a and A, for a single value of the geometrical parameter
b/a, -and for ¢ =1, 2, 3 and 4. For the physically interesting range of
values of A (below the resonant value for the fundamental mode) we find
as expected that the fundamental mode is the most likely to be unstable.
This result therefore lends support to the claim that the stability
boundary associated with (7. 1), which is restrictedto f =1, is likely
to be the true stability boundary associated with any mode number ¢ .

However, no proof of this claim has been found, and the analysis of this
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Stability boundaries in )\ , a parameter space associated

with the dispersion relation (6,4). The geometrical parameter
b/a is fixed at 0. 75 and the different curves correspond to

the mode numbers l = 1,2,3 and 4. Points in the cross-
hatched region are stable against all mode numbers. For

N < 1, which is the range of physical interest, the fund-
amental mode is the most dangerous. For larger values of
b/a , the entire system of curves shifts to the right, enhanc-
ing stability for moderate values of \ .
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section is the only evidence in favor of its truth., For very small a, and
very close to the resonance between xn and X5, the growth rate

cor responding to (7. 4) is
Im () = 8 [g (1 - b2l /228)3; {12 - (1 - b2 722 }]1/2

For large { this approaches SZP (24 )-1/2.
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IX. DISCUSSION

We consider first various possible generalizations of the preceding
analysis. The advantage of having a parabolic potential well is that it
permits an analytical treatment similar to that used for plasma models
with discrete structure. A non-parabolic well would greatly complicate
the analysis, but should also throw some light on the question of Landau
damping., This is discussed briefly below. The potential well will be
parabolic provided that n__ - Zn, is constant from the axis (r = 0)
out to some radius; it is not necessary that o and n, be independent-
ly constant, The advantage of this further restriction is that it yields a
wave in which the derisity perturbation is all concentrated at a single
layer, which substantially simplifies fhe analysis. This approach is
frequently‘ used in problems of this type, and it is believed that results
obtained for step-function density profiles are not impo;'tantly different
from the results one would obtain from using somewhat smoother pro-
files. One generalization that has been tried is to have the steps in the
electron and ion density profiles occur at different radii. As might be
expected, the only effect of this is to reduce somewhat the coupling
between the species. In this sense, the case studied is the most critical.

Other possible generalizations include the addition of different species
of ions; as a special case, the electrons could also have been given a
full dynamic treatment as opposed to the guiding center description
actually used. This would have increased the complexity of the analysis

with little compensating increase in clarity of the results. As a practical
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matter, for small q , the electron plasma and gyro-frequencies are
too high to interact with the ions, while, if more species of ions were
included, one would inevitably concentrate on the species for which
Z/mi had the largést value,

It is interesting to note that the condition q <« 1 is believed 5 to be
important for the stability of the electron cloud. But we have shown that,
with ions present, stabiiity is enhanced if A < 1, These two conditions

can be written:

2 2 2
n, Mg <« B/,u,0 < ('l—a) D, mic/ZZ

Thus it is desirable to have the field strength B bracketed between two
limits whose ratio is approximately (mi / Z\Zme)l/2 . There is no
difficulty in satisfying these conditions in practical cases — in this
instance the large value of the mass ratio can be used to advantage.
Turning next to the question of non-parabolic wells, we observe that
such wells would produce an effective frequency spread in the ions.
This is suggestive of Landau damping or growth, but only when the cold
theory predicts a real (or nearly real) frequency. If the cold theory
predicts a gross instability, it is not likely that moderate frequency
spreads would be of much help. But stability for the type of dispersion
relation studied here means purely real frequencies and it is therefore
possible that spreads could produce small imaginary parts of the

frequency — of either sign.

-48-



Consider an ion oscillating in a potential well characterized by
¢ ~ 1‘2+6 . For ¢ = 0, the frequency is independent of the amplitude,
and therefore of the energy. For ¢ < 0, the frequency decreases with
increasing amplitude or energy, and for ¢ > 0 the frequency increases
with increasing amplitude or energy. Now consider an ion in the likely
situation of having an oscillation frequency just below that of a diocotron
wave. If the ion becomes trapped by the wave, its frequency will be
effectively raised, but, as we have seen, this can either increase or
decrease the energy. For € < 0 (the reasonable case of the electron
density decreasing with radius), trapping of a slightly slow ion will
decrease its energy. Now in the usual Landau damping situation, loss
of energy by a particle and absorption of the same energy by the wave
results in growth, but in the diocotron case this familiar result is not
valid. The diocotron wave has a negative energy in the sense that loss
of wave energy (for example, because of slightly resistive walls) causes
the wave to grow and vice versa. It therefore seems possible that if the
trapping of slow ions transfers energy from the ions to the wave, damp-
ing will result,

It will be recognized that these assertions are highly speculative, and
will remain so until a more appropriate analysis is forthcoming.

Finally, we have treated a cylindrical model, and would like to know
how things differ if the infinite cylinder were bent round into a torus.

18

‘The experiments reported by Daugherty et al” = agree well with the theory

19

of this paper, but were conducted in a torus. It is known™ ’ that the

-49-



electrons can be in equilibrium in a torus even without a rotational
transform, but the ion effects are u’nknowh. Although the ions must
remain trapped since the potential well is topologically closed, their
orbits are more complicated in that there is no known exact {or even
approximate) integral of the motion corresponding to the angular momen-
tum in a cylinder. Like the non-parabolic well, this is suggestive of

frequency spreads, but nothing concrete is known.
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X, CONCLUSIONS

Subject to a number of simplifying assumptions we have exhibited the
possibility of an instability associated with resonance between the dioco-
tron wave on a cylindrical crossed-field electron beam, and ion oscil-
lations in the potential well of the electrons. Onset of the instability is
associated with the occurrence of resonance which is largely independent
of the number of ions present. The condition

27¢€ B2 < m, (n - Zn, )
0 i “Veo io
favors stability. If resonance occurs, instability is possible with growth

rates of the order of the ion plasma frequency.
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