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The Librational Dynamics of Deformable Bodies

by

T.P, Mitchell gnd J. Lingerfelt

University of California, Santa Barbara, California

ABSTRACT

The volume average of the strain tensor in a body moving in an inverse-
square force field is evaluated. The calculation is carried out assuming the
satellite to be an isotropic elastic body whose center of mass moves in a
planar orbit. An approximate expression, in terms of its volume and elastic
properties, is presented for the strain energy in the satellite. Using this
expression the equation of planar librational motion is written explicity.
This equation is discussed for both circular and elliptic orbits and is
modified to include the effects of energy dissipation in the body. It is
shown that the concept of Adiabatic Invariants allows one to analyze fhe

influence of slow changes in the material volume and elasticity.

*
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I, INTRODUCTION

This paper aims to study the effects of material elasticity on the
librational motion of an arbitrary shaped satellite. 1In particular, the
influence of the elastic behavior on the librational frequency is determined.
The approach adopted i1s quite general in that the specific shape of the
satellite is not prescribed other than to assume that the orbit plane of its
center of mass coincides with a principal plane of the satellite. Thus the
in-plane librational motion is considered to be uncoupled from the out-of-
plane motions.

The elastic behavior is assumed to be describable within the context of
the classical theory of infinitesimal elasticity. Accordingly the body forces,
inertial and gravitational, to which the satellite material is subjected are
computed as if the satellite were rigid. However since the material is actually‘
deformable it contains sfrain energy of deformation which directly influences
the libration frequency.

The desire to avoid the specification of the shape of the satellite removes
the analysis of the elastic behavior from the normal class of boundary value
problems in the mathematical theory of elasticity. Therefore an averaging
method is used to éompute an approximate strain energy density the knowledge
of which enables one to write the differential equation for the librational
motion. This equation, whose form depends upon whether or not allowance is
made for energy dissipation, has been derived previously for perfectly elastic

materials in a special case [1a2] . For materials with significant internal

friction the decay time of the librational oscillation can be written in terms



of a guality factor, @, the elastic constants and the volume of the material.
Slow changes in the physical properties of the body can be examined by con-

structing an Adisbatic Invariant of the motion.

II., THE ENERGY OF DEFORMATION

Assuming the orbital and librational motions to be uncoupled one can
write the equation which determines the planar librational motion of a rigid

body in the form

2

)

d%p = 3K (B-A) . -d%e

—t 4+ == \=—==) S8in @ Cos @ = —5 (1)
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The angle of libration is denoted by ¢, the position of the center of mass

by (Rc,e) and the gravitational parameter by K. At the center of mass the
principal moments of inertia are A, about the line from which @ is measured,
B,and C about the axis normal to the orbit plane. This geometric configuration
is illustrated in Fig. 1. To modify equation (1) in order to make sllowance
for the elastic deformation of the orbiting body it is necessary to determine
the work done in this deformation by the body forces. It can be shown* that

the body force, per unit mass, acting at the position (x,y) is

= i(xP -yP,) + ;-vj\/(xP3+yPu) (2)
in which
. AV K 2

P, = (+0) + =3 (3 Cos™ @ - 1) (3)

R
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2‘R3 (o + 1) Sin © Cos @ (4)
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*
The details are presented in the Appendix



P3=§I§{(a-l) Sin ® Cos ® (5)
R
C
B, = (©+8)° + 55 (3s1a® 9+ 1) (6)
RS
(e}
and
a = (B -A)/C (7)

It follows from the theory of infinitesimal elasticity'[3] that the

strain energy density, W, in a homogeneous'isotropic body is

W = % A (e..)2 + e, e,. (8)

/
where the Lame Constants are represented by A and p and eij is the strain
tensor created by the body force distribution given by equation (2). An
exact evaluation of W would necessitate the specification of the geometric

shape of the body and the solution of the pertinent boundary Vaiue problem.

Since this specification is precisely what it is sought to avoid in the present

analysis one has to be content with an estimate of the density W. This es-
timate can be achieved by using the Betti Reciprocal Theorm [3] to obtain the
volume average of the strain tensor. A potentially awkward feature of the

application of the theorem - the evaluation of surface integrals - does not

arise here because the surface of the body is stress free. The volume averages

of the strain tensor components are found for symmetrical bodies to be

'éxx = [(B+C-A)Pl -0 (C+A-B)Ph] /2EV (9)
"e‘yy = [(C+A—B)Pu -0 (B+C-A)PJ /2EV (10)



= -0 [(B+c-A)Pl + (C+A—B)Ph] /2EV (11)

e
2z
exy = [(B+C—A)P3 - (C+A-B)P2] /v (12)
and
E&Z = sz =0 (13)

where V is the volume of the body. The well-known relationships

E = p(3h + 2u)/(X + )

]

and

o = A2(N + u)

have been used in the derivation of the averages in order to simplify their
final form. Direct substitution in equation (8) and considerable algebraic

reduction produces

W - Al('e+c°p)1L + A2(é+¢)2.+ A3 Sinhw + Ah Singw + A5(é%$)2 Sin2$ (k)

in which
A = (8% + ¥° - 28By0) /8EV° (15)
A, = K(28° - ¥* - 28v0) JUEVRS (16)
S [+ v%- Bro -8(240) 82v2/02] /8EVPR (17)
a, = 2 | 28%+ 3v°- 3By0 + 36(1+o)82y2/cé] /uEv2Ri (18)
£y = 3K(Y% - s%/mﬁf (19)



w
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B+C-A (20)

and

<
]

C+A-3B (21)

If the center of mass of the satellite is moving in an elliptic orbit of
semi-major axis a and eccentficity e, the parameter Ré entering in equations

(16), (17), (18) and (19) may be expressed in the form

2
R = a(l - e) (22)

¢ 1+ e Cos®

IITI. THE EQUATION OF LIBRATION

Adopting the form (14) for the strain energy density one can write the

Lagrangian of the motion as

= Dyx2 28y Ll e ke K gl
L = Z(Rc + R %) + 2(6 + Q) + R, o3 (B - 24)

+ §§§ (B -4) Coszm + VW (23)

2R
c

which leads, restricting the analysis to 0(®), to the basic libration equation

2
2 o ° 3 2K
&l é ag) (b + &) + [é ) - £ ar]e=o (21)
where
a = (28° - ¥* - 28y0) /uEV (25)
‘and
8, = [252 +3¥° - 3BY0 + 36(1 + @) 82‘{2/02] JUEV (26)



In writing the Lagrangian given by equation (23) it is assumed that the

kinetic energy of the elastic modes of deformation is negligible in comparison
with the orbital and librational energies. Furthermore it should be remarked‘
that in the rigid body limit, E — ©, both A6 and A7 tend to zero and hence
equation (24) becomes equation (1) to O(®p). It is convenient in some cases

to write equation (24) with © rather than t in the role of independent variable.

This transformation which can be made by invoking Kepler's Second Law
2 2\ B
R, 9 =|Ka(l ~¢e) (27)
results in the differential equation
3 d2 2 31 do
(1+eCosd) | C + 24 (22(l+eCose) ]—-“—p - 2e8ine | C + 54,07 (1+eCos®) ]—-
6 162 6 e

+ [3(B—A) - 2A702(l+e0039)3] ¢ = 2eSiné [C+5A6Q2(l+eCose)3] (28)

with
Q? - x {:a(l - B3 (29)

Equations (24) and (28) will be discussed separately for circular and elliptic

orbits respectively

IV. CIRCULAR ORBITS

In the case e = O equation (24) simplifies to

. 2

2, 4" 2 2

(¢ +24,0°) —= + Q°|3(B-A) - 280 |o=0 (30)
- [ A7 ]



which corresponds to a simple harmonic oscillator with a frequency, w,

determined by

o [ 20 BT =)

W =
2
Cc + 2A6Q

Equation (31) provides a simple easily applied formula for estimating the
frequency of planar libration of a homogeneous isotropic body of arbitrary
shape, volume V, principal moments of inertia A, B, and C, Lemé Constants
A, B and whose center of mass is moving in a circular orbit with orbital
angular velocity 1. The derivation of this formula was the primary purpose
for undertaking the present analysis. That ® should be less than the rigid
body frequency 3(B—A)/C] 3 is to be expected. 1In fact, by utilizing
equations (20), (21), (25) and (26) one can show that if B > A > C then Ag
and. A7 are both necessarily positive. Accordingly, it is clear that the
effect of the material’s elasticity is to decrease the frequency of libration
below the frequency attributed to the same body were it rigid. Two further
aspects of equation (30) may be remarked upon.

Firstly, if the body possesses appreciable internal friction the»decay
time of the libration can immediately be written, in terms of a material

quality factor Q, in the form 2Q/w. Here quality factor is defined, as usual,

to be

energy stored
energy lost per period

and w is given by equation (31). Estimates of § for natural satellites in
the Solar System are gvailable [H] . Secondly, if the analysis is to be
gpplied to natural satellites whose physical properties may change over long

time periods one‘can write that



E/w = constant (32)

where E represents the average energy in the libration. Equation (32)
reflects the fact that the action is an Adiabatic Invariant of the
librational motion for slow changes in the basic parameters. Explicitly,
in the present case one has

cpin2 [3(B—A) - 2A7Q2] (¢ + 2A6Q2) = Constant (33)

with R representing the amplitude of the oscillation.

V. ELLIPTIC ORBITS

The form of equation (28) as it stands is not particulary suited to a
discussion Qf the libration of a body in an elliptic orbit. The eqﬁation
can be cast into a more convenient form by introducing the transformation

Y= (1+eCos 0)p (34)
In terms of the new variable ¥ equation (28) becomes

2
[c + 2A602(1 + e 0039)3:] ax . 6eA602(1 + e Cos8)® sin 8 &

+

[C+2A602(l+e0039)3] (%) + 6e2A602(l+eCose) Sin°0

1 2 3
+ (m) [3(B-A) -2A7Q (1+eCos®) ] ¥

It

r 2, 37 .
2¢ C + 5AN(L + eCos®)” | 8ind (35)



The solution of this equation can be found as follows as a power series
in the eccentricity e (o< e < 1). Let

[e2)

Y = z ey (36)
n

n=o
and equate like powers of e on both sides of equation (35). This process
leads to a set of differential equations which can be solved in sequence.
The present discussion Wili be confined to the first two of these equations

nerely to demonstrate the method. One finds

dEYO
+(a, -a,) ¥ =0 (37)
de2 1 2 o)
and
2
Vv - 2 ay¥ =
i dYO . 0:
+ (a.-a,)¥. = =3a_ ; Cos® + Sin® ——
462 172 3L 462 a6 J
+ (al+2a2-l) ¥ Cos® + 2a) Sin® (38)
where
‘a, = 3(8-8)/(C + 28,07 (39)
2
a, = 24,0%/(c +A2A6QQ) (40)
8y = 2A6Q%/(C + 2A602) (41)
and
a = 2(C + 54 02)/(c + 2A 02) (42)
L 6 6
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The solution of equation (37) is

+
2

1
Y o= CQ Sin (al-ae)2 & + D Cos (al—az)' 9 (43)

o

The homogeneous solution of equation (38) is of similar form and its
particular solution, which may be found by the method of variation of

parameters, is

(al+2a2-l) ‘3
y 17 3 :} . e . ) ) .
N ™ +jagl | X (l+p)0081nr6 (1 q)0081nse (l+p)DOCosr9 +(1 q)D081ns6
3 _ S .
*t ey (1 p)0081nr + (l+q)0081nse + (l-p)DOCoer + (l+q)DoCos s0
234)_‘-
+——_—-—_— Sin © (hh)
a1 -8, 1
in which
-1
- 2 =
2(al a2) +1l=0p
1
X -1
e 2 - =
2(al ag) 1=gq
r=(1-p)/ep;r-1l=u
and
s =(1-q)/2q

This solution process may be continued step by step to the required degree
of accuraéy and the influence of the orbital eccentricity on the libration
subsequently analyzed. This further development will not be presented here

however.
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IV. CONCLUSIONS

The librational frequency of arbitrarily shaped elastic bodies can
be represented approximately in a relatively simple way. This represen-
tation, equation (31), is based upon a generalizabtion of the classic
McCullagh Formula, for the gravitational potential of a rigid body in a
Newtonian Force Field, to include deformation energy. The approximate
nature of the generalization arises bécause the non-specification of the
body's exact shape precludes an exact calculation of its elastic strain
energy. The modification necessary to allow for inelastic behavior is
immediate if a Quality Factor Q 1s available. Consequently both natural
and artificisl bodies may be treated. In the former case the effects of
slow changes in the physical parameters may be examined by constructing an
Adisbatic Invariant. In the latter, where conceptual sgtellite designs

vary widely in geometric shdpe, the generality of the formulas for the

libration frequency and the strain energy, though approximate, should prove

useful. The extension of the analysis to cover librational motion in the
field of two centers of force pfoceeds in a manner directly similar to that

for a single center of force presented in this paper.
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Fig. 2 Coordinate Systems to Determine Body Force.
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APPENDIX

This appendix is devoted to outlining the steps in the calculation
of the body force per unit mass acting on the satellite. The force is
composed of the gravitational force, and the reaction forces associated
with the accelerations of the satellite., Referring to Fig. 2, let XYZ
be an inertial coordinate system with origin at the focus of the orbit,
X-axis directed toward the pericenter and Z-axis normal to the orbit
plane, The xyz system of axes is fixed 1n the satellite with origin at
the center of mass and axes coinciding with the principal axes of inertia.

The z-axis is parallel to the Z- axis, Then:

R=R +7r a1)
~ ~C pen
with
£ Xl e 02 . ° .o
R, = (Rc - RCG ) SR, +.(2Rce + Rce) €o (a2)
and
r=wx (W x {) + (0 x 5) trotewx (A3)

in which R and r are calculated relative to the XYZ system, T and r

wC N w7 W
relative to the xyz system and W is the relative angular velocity of the
two systems. Thus

w=(8+0)k ()

On using the fact that the center of mass is moving in a Keplerian Orbit
and that the problem is being considered within Infinitesimal Elasticity

Theory one finds

15



o K . .2 .s .. . —2'
R = |- =5 Cos @ - (8 + @)°r Cos § - (9+CP)1"SH1§J1
~ R ~
c
+l:-£2- Sin o - (9 +c.p)2r Sin € + (6+Qp)r Cos 53 i (45)
R ~
e

where tan € = y/x. Substitution from the planar libration equation

.0 se

3K (B-A .
6+cp=-——-——>S:LnCpCoscp
Rg(c

produces the form

s Tk MY §§<B—A> ) ) T
,«I}« = [ R2 Ccospp - (¢ + 0)°r Cos € + 33 =/ Sin€ Sing Cosm_i i
C c ,
L 4 )2 g 3K (B-A , sl
+ - — Siny - (cp + 8)%r Sin & - 2= |===)r CosE Sin® Cos® | j (46)
c ¢ .

The gravitational force per unit mass is

f = - K
“g Be v 1)
|r+r|3 *°
: wC o w
=[__%COS@_%COS§+1§I—CostCOS (§+CP>:I}‘,
R R R
[&d [¢] : C
+[—%Sinm—%8in§-§-3gSimpCos (§+cp)] 3
R R R ~”
c C (o]
20 .
r
+O<;2-> (A7>
C
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The total body force per unit mass 1s accordingly

=1 [XPl - sz] * PLI:XP3 * yPuji (48)

Ar

where the notation

p= (6 +9)° + 5 (3 cos - 1)
1 =3
C

P, = 3k (o + 1) Singp Cosey

R3

C
P, = 3K (oo = 1) Sinep Coswp
3733 _

C
P = (c.p+ é)2 + X (3 Singcp+l)
I R3

and

a=(B-A)/C

is used. Equation (A8) coincides with equation (2) of the main text.
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