General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Text of a lecture to be given as a part of the CNES International Conferences : EVOLUTION D'ATTITUEE ET STABILISATION DES SATELLITES
to beheld in Paris, during October 8-11 1968.

The research reported in this document was conducted during an ESRO-NASA International Followship at the Univorsity of California, Los Angeles.

Abstract.

In this paper a general formulation for the dynanice of deformable bodies is derived. The attitute stability of deformable carth-pointing satellite is investigated in a general form and simple stability crizeria are obtainod.

Résumé.

Cet article propose une formulation générale de la dynamique des corps déformables. La stabilite d'attitude de satellitos déformables orientés sur orbite circulaire est étudiéc sous forme générale et des criteres simples de stabilité sont obtenus.

1. Introduction.

The dynamics of non-rigid bodies will be considered here in order to investigate the stability of attitude of space vehicles.

A spacecraft may sontain some instrumentation moving relatively to the mein structure and having then an influonce on the dynamics of the whole body. Also, as it is imosiative to maintain the weight of the payload as low as possiblef the rigidity will be affecred. Elastic and, sometimes, plastic deformations may occur and the structurc is subject to vibrations. With plastic or viscoclastic deformation is associated a dissipation of onergy which is a critical point of stability investigation.

Most of the ideas of this paper have been introduced in Buckens' papers [1][2]. The formulation, being rather general, does not depend on a particular configuration. As deformations are expressed in terms of normal modes, the applicability of this theory is generally limited to small deformations of elastic systems or viscoelastic systems with "classical damping".

The attitude stability of carth pointing satcllites will be investigated in the sense of Liapounov.

2. Normal Modes of Vibration.

The modes of vibration will be defined relatively to a state of minimal internal potential energy, the total momentum and total angular momentum of the system being equal to zero. The deformation of the systel. may bo described by a number of independent parameters equal to the number of degrees of freedom.

Only the quadratic terms in the independent parameters will. bc kept in the expansion of the potential energy in order to get the cquations of deformation in the form of a conservative system of linear differential equations for which oigenvalues may be determined.

The axes of reference centornd at the conter of mass arc coinciding with the principal axes of inertia of the body before deformation (Fig. 1).

The position vector p of the olement of mass dm relativo to the center of mass is equal to the sum of ti.e position vector \underline{x} of $d m$ in the undefcrmed body and the displacement vector \underline{u}

$$
\begin{equation*}
\underline{\underline{L}}=\underline{x}+\underline{u} \tag{2.1}
\end{equation*}
$$

From the conditions of zero total momentum and angular momentum the integrals over the mass of tho whole body (m) of \dot{f} and $\underline{\rho} \times \dot{p}$ are equal to zero :

$$
\begin{equation*}
\int_{m} \dot{\underline{g}} d m=\int_{m}(\underline{x}+\dot{u}) d m=\int_{m} \underline{\dot{u}} d n=0 \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{m} \underline{2} \times \underline{\underline{d}} \mathrm{~m}=\int_{m}(\underline{x}+\underline{u}) \times \underline{\dot{u}} d m=0 \tag{2.3}
\end{equation*}
$$

The centor of mass does not move. This obvious result may be obtainod by integration of (2.2).

If the components of the vector deformation \underline{u} are linear functions of the modes the relation (2.3) reduces, for every mode v with frequency ω_{v}, to:

$$
\begin{equation*}
\int_{m}\left(\underline{x} \times \underline{q}_{q}\right) d m=0 \tag{2.4}
\end{equation*}
$$

where ϕ_{v} is a vector relating the shape of the displacemfnt in the $v^{t h}$ mode and is a function of position only.

The displacement for this mode is equal to the product of ϕ_{V} by a harmonic function of time β_{V}.

When the components of \underline{u} are not linear functions of the modes but may be linearized, the relation (2.4) will hold in linear approximation.
3. Refernce Axes for Dynamic Investigation.

As stated before, the axes of reference are centered at the center of mass and are coinciding with the principal axes of inertia of the body before deformation. After deformation they will be diracted in such a manner that the following conditions are satisfied :

$$
\begin{align*}
& \int_{\underline{m}} \underline{\mathbf{u}} d m=0 \tag{3.1}\\
& \int_{\underline{m}} \underline{\mathbf{x}} \times \underline{\mathbf{u}} d m=0
\end{align*}
$$

Under these conditiohs the deformations may be expressed as a linear combination of normal modes and in linear approximation ${ }^{\dagger}$

$$
\begin{equation*}
\underline{u}=\beta_{v} \phi_{v} \tag{3.2}
\end{equation*}
$$

The rolation (2.4) being, a condition of orthogonality of the mode v with the rigid modes of translation and rotation, the above defined system of axes will follow the motions of translation and goneral rotation of the body.

Note that these axes of reference are not necessarily the principal axes of the deformed body, nor those for which the relative angular momentum vanishes, these latter axes being gonerally used in the study of deformable planets [3].

This frame will be called the D frame and will have a vector basis $\underline{\mathrm{a}}_{1} \underline{\mathrm{a}}_{2} \underline{\mathrm{a}}_{3}$.
4. Equations of motion.

The rotational equations are derived from the vectorial relation

$$
\begin{equation*}
\underline{\dot{H}}=\underline{L} \tag{4.1}
\end{equation*}
$$

[^0]where H is the angular momentum vector with respect to the center of mass,
\underline{L} is the applied torque acting about the center of mass, the dot (•) meaning time derivative in an inertial space, the index (0) being reserved for the time derivative with respect to some moving reference frame, here to the D frame. By definition H is equal to
\[

$$
\begin{equation*}
\underline{H}=\int_{m} \underline{e} \times \dot{\underline{p}} \mathrm{~d} m \tag{4.2}
\end{equation*}
$$

\]

or

$$
\begin{equation*}
\underline{H}=\int_{F} \underline{\rho} \times \stackrel{0}{\underline{L}}+\int_{m} \underline{\underline{L}} \times \underline{\omega} \times \underline{\rho} d m \tag{4.3}
\end{equation*}
$$

where ω is the angu'ar velocity of the D frame. Defining the incrtia dyadic \rfloor as

$$
\begin{equation*}
J=\int_{m}(\underline{\rho} \cdot \underline{\rho} E-\underline{\rho}) d m \tag{4.4}
\end{equation*}
$$

where E is the unit dyadic:

$$
\begin{align*}
& E=\delta_{\alpha \beta}{\underset{a}{\alpha}}^{a_{p}} \tag{4,5}\\
& \delta_{\alpha \beta} \begin{cases}=1 & \alpha=\beta \\
=0 & \alpha \neq \beta\end{cases} \tag{4,6}
\end{align*}
$$

the second integral of (4.3) is equal to

$$
\begin{aligned}
\int_{m} \underline{\underline{p}} \times \underline{\omega} \times \underline{\underline{d}} \mathrm{dm} & =\int_{m}[(\underline{\rho} \cdot \underline{\underline{\omega}} \underline{\underline{\omega}}-\underline{\underline{p}} \underline{\underline{\rho}} \cdot \underline{\omega})] \mathrm{dm} \\
& =\int \quad \underline{\omega}
\end{aligned}
$$

then

$$
\begin{equation*}
\underline{H}=\int \quad \underline{\underline{u}}+\int_{m} \underset{\underline{e}}{ } \times \stackrel{\circ}{\underline{\rho}} \mathrm{dm} \tag{4.8}
\end{equation*}
$$

Replacing $\dot{\underline{H}}$ by its value obtained from the time derivation of (4.8) and taking into consideration the fact that for every dadie T

$$
\begin{equation*}
\dot{T}=\dot{T}+\underline{\omega} \times T-T \times \underline{\underline{u}} \tag{4.9}
\end{equation*}
$$

the relation (4.1) may be written as :

$$
\begin{aligned}
\underline{L} & =j \cdot \underline{\dot{\omega}}+\underline{\omega} \times J \cdot \underline{\omega}+J \cdot \underline{\omega} \\
& +\int_{m} \underline{u} \times \underline{\sim} \underline{0} \mathrm{dm}+\underline{\omega} \times \int_{m} \underline{\underline{u}} \times \underline{\circ} \underline{\mathrm{u}} \mathrm{dm}
\end{aligned}
$$

All the vectors will be expressed in the D frame. For operational purposes let define the d "vector array" [4].

$$
\mathrm{d}=\left[\begin{array}{l}
\underline{\underline{a}}_{1} \tag{4.11}\\
\underline{\hat{a}}_{2} \\
\underline{\underline{a}}_{3}
\end{array}\right]
$$

a matrix with vector elements.
Any vector v if related to the 3×1 matrix

$$
v=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

of its components in the $\underline{a}_{1} \underline{a}_{2} \underline{a}_{3}$ - basis f the relation

$$
\begin{equation*}
\underline{v}=d^{T} v \tag{4.12}
\end{equation*}
$$

where the superscript T means that the matrix d is transposed. similarly any dyadic $T=t_{i j} \underline{a}_{i} \underline{a}_{j}$ may be expressed in terms of the matrix $T=\left(t_{i j}\right)$ as follows

$$
\begin{equation*}
T=d^{T} T d \tag{1.13}
\end{equation*}
$$

Further with any 3×1 matrix u is associated a 3×3 skewsymme-
tric matrix \tilde{u} dofinod as

$$
\begin{equation*}
\tilde{u}=\left[\tilde{u}_{i j}\right]=\left[\varepsilon_{i k j u k}\right] \tag{4.14}
\end{equation*}
$$

whoro $\varepsilon_{i k j}$ is the Levi-civita density defined to be zero if some indices are repeatod and oqual to +1 or -1 according as ikj is a cyclic permutation of 123 or 132.

Using the above conventions the equation (4.10) may bo written in matrix form as :

$$
\begin{align*}
L & =\dot{J} \omega+\tilde{\omega} J \omega+\dot{J} \omega \tag{4.15}\\
& +\int_{m} \tilde{u}^{00} \stackrel{0}{u} d m+\tilde{\omega} \int \tilde{u} \stackrel{0}{u} d m
\end{align*}
$$

In order to have a complete set of equations in ($3+n$) unknows n equations of deformation have to be derived.

The simplest way to do this is to derive the Lagrange's equations in the variables β_{ν} :

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial T}{\partial \dot{\beta}}=\frac{\partial T}{\partial \beta_{v}}+\frac{\partial U}{\partial \beta_{v}}+\frac{\partial H}{\partial \dot{\beta}}=N_{v} \tag{4.16}
\end{equation*}
$$

where T : the kinetic energy
U : the potential onergy
W : the Rayloighs dissipation function
N_{v} : the generalized force in the v th mode of deformation. By definition the kinetic energy is equal to :

$$
\begin{equation*}
T=\frac{1}{2} \int_{m}(\underline{v} \cdot \underline{v}) d m \tag{4.17}
\end{equation*}
$$

whero \underline{v} is the velocity of the element dm rolative to an inertial frame

$$
\begin{equation*}
\underline{v}=\dot{\underline{r}}+\dot{o}+\underline{w} \times \underline{\underline{p}} \tag{4.18}
\end{equation*}
$$

$\underline{\text { r }}$ being the voctor from the origin of the incrial frame to the conter of mass of tho body. Then the vector x being constant in
the D frame, the kinetic energy may be written :

$$
\begin{equation*}
T=\frac{1}{2} \int_{m}(\underline{\dot{r}}+\mu \times \underline{p}+\dot{0}) \cdot(\dot{\underline{r}}+\underline{\omega} \times \underline{\underline{p}}+\underline{0} \underline{\underline{u}}) \mathrm{d} m \tag{4.19}
\end{equation*}
$$

Noting from (4.7) that

$$
\begin{align*}
& \int_{m}(\underline{\omega} \times \underline{\rho}) \cdot(\underline{\omega} \times \underline{\varepsilon}) d m \\
& =\underline{\omega} \cdot \int_{m} \underline{\rho} \times \underline{\omega} \times \underline{\rho} d m \tag{4.20}\\
& =\underline{\omega} \cdot(J \cdot \underline{\omega})
\end{align*}
$$

T may be written

$$
\begin{align*}
& T=\frac{1}{2} m(\dot{\underline{x}} \cdot \dot{\underline{x}})+\underline{\omega} \cdot J \underline{\ddot{w}} \\
& +\frac{1}{2} \int_{m}^{\stackrel{\circ}{\mathbf{u}}} \stackrel{\stackrel{\circ}{\mathrm{u}}}{\underline{\mathrm{a}}} \mathrm{dm} \tag{4.21}\\
& +\underline{\omega} \cdot \int_{m} \underline{u} \times \stackrel{0}{\underline{u}} \mathrm{dm} \tag{4.22}
\end{align*}
$$

where $m=\int_{m} d m$
In matrix form

$$
\begin{align*}
T= & \frac{1}{2} m\left(\dot{r}^{T} r\right)+\frac{1}{2} \omega^{T} J \omega \\
& +\frac{1}{2} \int_{m}^{0} \dot{u}^{T} \stackrel{0}{u} d m \tag{4.23}\\
& +\omega^{T} \int_{m} \tilde{u}^{\circ 00} \stackrel{0}{u} d m
\end{align*}
$$

The potential energy of deformation U_{d} is, for purely linear and "elastic, deformation, given by

$$
\begin{equation*}
U_{d}=\frac{1}{2} m_{v} \beta_{v}^{2} \omega_{v}^{2} \tag{4,24}
\end{equation*}
$$

whore m_{v} is the generalized mast of the v th mode, i.e..

$$
\begin{equation*}
m_{v}=\int_{m}\left|\Phi_{v}\right|^{2} d m \tag{4.25}
\end{equation*}
$$

ω_{v} is the natural frequency of the $v^{\text {th }}$ mode.
The equations will now be written explicitly in terms of the deformation variables.

The formulation presented here is exact only when the displacements one linear functions in the variables B_{v} and is exact in linear approximation when the development in power of B_{ν} of the displacement does not, contain terms in β_{v}^{2}. In both cases the displacement will be equal to

$$
\begin{equation*}
\underline{u}=\beta_{v} \underline{\phi}_{v}=\beta_{v} \phi_{v_{i}} \underline{a}_{i} \tag{4.26}
\end{equation*}
$$

In terms of the matrices I, Δ, and U defined by

$$
\begin{align*}
& I=\int_{m}\left(x^{T} x E-x x^{T}\right) d m \\
& \Delta=\int_{m}\left(x^{T} u E-x u^{T}\right) d m \tag{4.27}\\
& U=\int_{m}\left(u^{T} u E-u u^{T}\right) d m
\end{align*}
$$

the J matrix is given by :

$$
\begin{equation*}
J=I+2 \Delta+U \tag{4.28}
\end{equation*}
$$

From the definitions (4.26) and (4.27), elements of Δ and U aro given by

$$
\begin{align*}
& \Delta_{i j}=\int_{m}\left(\beta_{v} x_{k} \phi_{v_{k}} \delta_{i j}-\beta_{v} x_{i} \phi_{v_{j}}\right) d m i \tag{4.29}\\
& U_{i j}=\int_{m}\left(\beta_{v} \beta_{\mu} \phi_{v_{k}} \phi_{\mu_{k}} \delta_{i j}-\beta_{v} \beta_{\mu} \phi_{v_{i}} \phi_{\mu_{j}}\right) d m \tag{4.30}
\end{align*}
$$

The $n \times 1$ matrix β is defined as :

$$
B=\left[\begin{array}{c}
\beta_{1} \tag{4.31}\\
\vdots \\
\beta_{n}
\end{array}\right]
$$

and the nil matrix \oint_{α} is the matrix with elements equal to the components along the a-axis of the shape of the different modes.

$$
\phi_{\alpha}=\left[\begin{array}{l}
\phi_{1} \tag{4.32}\\
\vdots \\
t_{\alpha} \\
n_{\alpha}
\end{array}\right]
$$

If further the nix matrix $\dot{A}_{i j}$ is defined as :

$$
\begin{equation*}
\Lambda_{i j}=\int_{m_{i}}\left(x_{k} \phi_{k} \delta_{i j}-x_{j} \phi_{i}\right) d m \tag{4.33}
\end{equation*}
$$

$\Delta_{i j}$ is equal to :

$$
\begin{equation*}
\Delta_{i j}=\beta^{T} A_{i j} \tag{4.34}
\end{equation*}
$$

Finally defining the 3nx3 matrix B by

$$
B=\left[\begin{array}{lll}
B & 0 & 0 \tag{4.35}\\
0 & B & 0 \\
0 & 0 & B
\end{array}\right]
$$

and the $3 n \times 3$ matrix A by

$$
\begin{align*}
& \Lambda=\left[\Lambda_{i j}\right] \text { the :matrix } \Delta \text { is equal to } \tag{4.36}\\
& \Delta=B^{T} \Lambda
\end{align*}
$$

Similarly

$$
\begin{align*}
u_{i j} & =\int_{m}\left(B^{T} \phi_{k} \phi_{k}^{T} B \delta_{i j}-B^{T} \phi_{i} \phi_{j}^{T}\right)^{T} d m \tag{4.37}\\
& =B^{T} \int_{m}\left(\phi_{k} \phi_{k}^{T} \delta_{i j}-\phi_{i} \phi_{j}^{T}\right) d m
\end{align*}
$$

Defining $r_{i j}$ as

$$
\begin{equation*}
r_{i j}=\int_{m}\left(\phi_{k} \phi_{k}^{T} \delta_{i j}-\phi_{i} \phi_{j}^{T}\right) d m \tag{4.38}
\end{equation*}
$$

$\mathbf{U}_{\mathbf{i j}}$ is equal to

$$
\begin{equation*}
U_{i j}=B^{T} r_{i j} \beta \tag{4.39}
\end{equation*}
$$

In terms of the matrix B and the $3 n x 3 n$ matrix r is defined by

$$
\begin{equation*}
r=\left(r_{i j}\right) \tag{4.40}
\end{equation*}
$$

the matrix U is finally equal to

$$
\begin{equation*}
U=B^{T} T B \tag{4.41}
\end{equation*}
$$

The 3×1 matrix

$$
\begin{equation*}
R=\int_{m} \tilde{\mathbf{u}} \stackrel{\circ}{\mathbf{u}} \mathrm{dm} \tag{4.42}
\end{equation*}
$$

may be expressed in terms of the elements of the 5 matrix, as follows :

$$
\begin{equation*}
\mathrm{R}=\mathrm{B}^{\mathrm{T}} \mathrm{C} \dot{B} \tag{4.43}
\end{equation*}
$$

where the $3 n x n$ matrix C is given by :

$$
C=\left[\begin{array}{ll}
\varepsilon_{\alpha 1 \beta} & r_{\alpha \beta} \tag{4.44}\\
\varepsilon_{\alpha 2 \beta} & r_{\alpha \beta} \\
\varepsilon_{\alpha 3 \beta} & r_{\alpha \beta}
\end{array}\right]
$$

with definitions given by (4.28) (4.36), (4.41), (4.43), the equation (4.15) may be written

$$
\begin{align*}
\mathrm{L} & =\dot{I} \dot{\omega}+\tilde{\omega} I \omega \\
& +2 B^{T} \dot{A} \dot{\omega}+2 \tilde{\omega} B^{T} A \omega+2 \dot{B}^{T} A \omega \tag{4.45}\\
& +B^{T} \Gamma \dot{r} \dot{\omega}+\tilde{\omega} B^{T} \Gamma B \omega+\dot{B}^{T} \Gamma B \omega \\
& +B^{T} \Gamma \dot{B} \omega+B^{T} C \dot{C}+\tilde{\omega} B B^{T} \dot{C} \dot{B}
\end{align*}
$$

In order to express the kinetic energy in B_{v} explicitly we need the expression for $\int_{m} u^{T}{ }_{u} d m$. This integral is equal to

$$
\begin{equation*}
\int_{m} u^{T} u d m=B^{T} \int_{m} \phi_{k} \phi_{k}^{T} d m \beta=\beta^{T} M_{d} B \tag{4.46}
\end{equation*}
$$

The matrix M_{d} is a diagonal matrix because of tha normality of the modes, namely by use of expression (4.25)

$$
u_{d}=\left[\begin{array}{lll}
\mathbf{m}_{1} & & 0 \tag{4.47}\\
& \ddots & \\
0 & & \\
& & m_{n}
\end{array}\right]
$$

For elastic and viscoelastic material the potential energy of deformation may be written

$$
\begin{equation*}
U_{d}=\frac{1}{2} \beta^{T} M_{d} \Omega^{2} B \tag{4.48}
\end{equation*}
$$

where the matrix Ω is a diagonal matrix given by

$$
\Omega=\left[\begin{array}{lll}
\infty_{1} & & \tag{4.49}\\
& \ddots & 0 \\
0 & \ddots & \\
& & \\
n
\end{array}\right]
$$

The dissipation function is

$$
\begin{equation*}
\mathrm{r}:=\frac{1}{2} \dot{B}^{T} Z B \tag{4,50}
\end{equation*}
$$

and the kinetic energy is given by

$$
\begin{align*}
T= & \frac{1}{2} m(\dot{r} T \dot{r})+\frac{1}{2} \omega{ }^{T} I \omega+\omega{ }^{T}{ }_{B} T_{A \omega} \tag{4.51}\\
& +\frac{1}{2} \omega^{T} T_{B} T^{r} B \omega+\omega{ }^{T}{ }_{B} T_{C \dot{B}}+\frac{1}{2} \dot{B}^{T} M_{d} \dot{B}
\end{align*}
$$

The matrices B_{9} and $B_{g_{k}}$ are defined by

$$
\begin{align*}
& B_{g_{k}}=\frac{d B}{d \beta_{k}} \tag{4.52}\\
& B_{g_{k}}=\frac{d \beta}{d \beta_{k}}
\end{align*}
$$

That is to say, $B_{9_{k}}\left(B_{9_{k}}\right)$ is equal to the $B(B)$ matrix in which all the β_{i}, with $i \neq k$, are equal to zero and β_{k} is equal to 1. With these definitions the Lagrange's equation in B_{v} is
where V is the potontial energy due to an external field.
When the devolopment of the displacenent contains quadratic terms in the variable B_{v} tho J matrix may be written, up to the second erder in B_{v}. as:

$$
\begin{equation*}
J=I+2 B^{T} A+B^{T} I B \tag{4.54}
\end{equation*}
$$

where the matrices I and A are defined in (4.27) and (4.35), respectively. The $3 n x 3 n$ matrix II may now differ from the matrix r .

The equations of the motion linearizod in β_{v} are now given by

$$
\begin{align*}
L= & I \dot{\dot{\omega}}+\dot{\omega} I \omega \\
& +2 B^{T} A \dot{\omega}+2 \bar{\omega} B^{T} A \omega \tag{4.55}\\
& +2 \dot{B}^{T} A \omega
\end{align*}
$$

and

$$
(v=1 \ldots . . a)
$$

The equations (4.55) and (4.56) form a complote set of (3+a)

$$
\begin{align*}
& -\omega{ }^{T}{ }_{B}{ }_{\varphi}{ }_{v} C \dot{B}+\frac{\partial V}{\partial \beta_{v}}+m_{v} E_{v \mu} B \mu=N_{v}
\end{align*}
$$

$$
\begin{aligned}
& (v=1 \ldots n)
\end{aligned}
$$

linear equation.
5. Torque and Potential Due to an Inverse Square Gravitational Field.

The force due to this ficld on the element of mass dim

$$
\begin{equation*}
\underline{d F}=-k \frac{\underline{x}+\underline{q}}{|\underline{\underline{r}+\underline{p}}|^{3}} d \underline{m} \tag{5.1}
\end{equation*}
$$

where k is the constant equal to the product of the gravitation constant G and the mass M of the attracting body (here the Earth).

The total torque arounc the center of mass of the body
will be

$$
\begin{equation*}
\underline{E}=\int_{\underline{m}} \underline{x} \times \mathbf{d f} \tag{5.2}
\end{equation*}
$$

Neglecting the terms in $(\rho / r)^{2}$ relative io ρ / r onc has

$$
\begin{equation*}
\left|\frac{1}{r+p}\right|^{3}=\frac{1}{r^{3}}\left(1-3 \frac{\rho \cdot \underline{E}}{r^{2}}\right. \tag{5,3}
\end{equation*}
$$

where r is the norm of r and

$$
\rho \text { the norm of } \rho_{0}
$$

and

$$
\begin{equation*}
\underline{M}=-\frac{k}{r^{3}} \int_{m}\left(1-3 \frac{\underline{\underline{L}} \cdot \underline{r}}{r^{2}}\right)[\underline{\rho} \times(\underline{r}+\underline{\rho})] d \underline{m} \tag{5.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\underline{M}=-\frac{3 k}{r^{5}} \int_{n t} \underline{r} \times \underline{p} \cdot \underline{\underline{c}} \mathrm{dm} \tag{5.5}
\end{equation*}
$$

 and with ${ }_{3}{ }_{3}$ perpendicular to the plane of the orbit and aligned along the angular momentum vector, the torque M ia

$$
\begin{equation*}
\underline{n}=-\frac{3 k}{r^{3}}{\underset{A}{1}} \times \int_{m} \underline{L} d \mathrm{dm} \cdot \underline{a}_{1} \tag{5.6}
\end{equation*}
$$

By virtue of the definition of J and as :

$$
\begin{align*}
& \text { a }_{1} x:-E \quad \mathbf{E}_{1}=0 \tag{5.7}\\
& M=\frac{3 k}{r^{3}} \mathbf{f}_{1} \times \mathrm{J} \text { •鲁 } \tag{5.8}
\end{align*}
$$

In order to express the equation (5.8) in matrix notation, the components of the vector $\mathbf{I}_{\mathbf{I}}$ in the D frame have to be determined. The orientation of the body-frame D relative to the orbiting reference frame A will be definer by the three angles of potation $\boldsymbol{\vartheta}_{1}, \theta_{2}, \theta_{3}$, Intermediate frames B and C will then be determined. A rotation θ_{1} about the axis \hat{a}_{1} of the frame A brings this frame into coincidonce with the frame B. Sinilarly a rotatior θ_{2} about the axis \boldsymbol{b}_{2} brings the frame B in coincidence with frame C and a rotation θ_{3} about the axis ${\underset{\sim}{3}}$ brings the C frame in coincidence with the body frame D (fig. 2).

The frame A is related to the frame D by the kinematical relation

$$
\left[\begin{array}{l}
a_{1} \tag{5.9}\\
a_{2} \\
a_{3}
\end{array}\right]=\theta\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]
$$

where the 3×3 matrix H is a function of θ_{1}, θ_{2} and θ_{3} g given by

$$
\theta=\left[\begin{array}{ccc}
c \theta_{2} c \theta_{3} & -c \theta_{2} s \theta_{3} & s \theta_{2} \\
c \theta_{1} s \theta_{3}+s \theta_{1} s \theta_{2} c \theta_{3} & c \theta_{1} c \theta_{3}-s \theta_{1} s \theta_{2} s \delta \theta_{3}-s \theta_{1} c \theta_{2} \\
s \theta_{1} s \theta_{3}-c \theta_{1} s \theta_{2} c \theta_{3} & s \theta_{1} c \theta_{3}+c \theta_{1} s \theta_{2} \delta \theta_{3} & c \theta_{1} c \theta_{2}
\end{array}\right] \text { (5.10) }
$$

where c stands for cosine, and
s stande for sine.

Then,

$$
\begin{equation*}
\underline{\underline{t}}_{1}=\theta_{11} \underline{a}_{1}+\theta_{12} \underline{a}_{2}+\theta_{13} \underline{\underline{a}}_{3} \tag{5.11}
\end{equation*}
$$

With the matrix θ_{1}

$$
\theta_{1}=\left[\begin{array}{l}
\theta_{11} \tag{5.12}\\
\theta_{12} \\
\theta_{13}
\end{array}\right]
$$

the vector ${ }^{\mathbf{a}} \mathbf{l}$ is written as

$$
\begin{equation*}
\underline{a}_{1}=d^{T} \theta_{1} \tag{5.13}
\end{equation*}
$$

Equation (5.8) becomes in matrix form :

$$
\begin{equation*}
M=\frac{3 k}{r^{3}} \dot{\theta}_{1} J \theta_{1} \tag{5.14}
\end{equation*}
$$

or

$$
H=\frac{3 k}{r^{3}} \tilde{\theta}_{1}\left(I+2 B^{T} A+B^{T} H B\right) \theta_{1}
$$

The gravity potential V is :

$$
\begin{equation*}
v=-k \int_{m} \frac{d m}{|r+\rho|} \tag{5.15}
\end{equation*}
$$

Developing $\frac{1}{\underline{S}+\rho}$ up to the second order in $\frac{\rho}{r}$ provides:

$$
\begin{align*}
v & =-\frac{k}{r} \int_{m}\left(1-\frac{\rho \cdot r}{r^{2}}-\frac{\rho^{2}}{2 r^{2}}+\frac{3}{2} \frac{(\underline{r} \cdot \rho)^{2}}{r^{4}}\right) d m \tag{5.16}\\
& =-\frac{k}{r} m+\frac{k}{r^{3}} \int_{m} \frac{\rho^{2}}{2} d m-\frac{3 k}{2 r^{3}} \underline{\mathrm{t}}_{1} \cdot \int_{m} \rho \rho d m \cdot \underline{a}_{1}
\end{align*}
$$

By using the definition of J and noting the relation

$$
\begin{equation*}
\mathbf{z}_{1} \cdot E \quad \cdot \mathbf{z}_{1}=1 \tag{5.17}
\end{equation*}
$$

V is finally given by :

$$
\begin{equation*}
v=\frac{k}{r} m-\frac{k}{r^{3}} \int_{m} \underline{\rho} \cdot \underline{\rho} d m+\frac{3}{2} \frac{k}{r^{3}} \underline{E}_{1} \cdot \int \quad \underline{a}_{l} \tag{5.18}
\end{equation*}
$$

\int g.og may be writton

$$
\begin{equation*}
\int_{m} g \cdot \underline{g} d m=\frac{1}{2} t r J=\frac{1}{2} J_{k k} \tag{5.19}
\end{equation*}
$$

where the symol tr means trace of the following matrix. From (5.18), the potential way be written in matrix forc as:

$$
\begin{equation*}
V=-\frac{k}{x} m-\frac{k}{2 r^{3}} \operatorname{tr} J+\frac{3 k}{2 r^{3}} \theta_{1}^{T} J \theta_{l} \tag{5.20}
\end{equation*}
$$

With the previous definitions, potential energy in the inverse square field may be written

$$
\begin{align*}
v=\frac{k}{r} m & -\frac{k}{2 r^{3}} \operatorname{trI}+\frac{3 k}{2 r^{3}} \theta_{l}^{T} I \theta_{1} \\
& -\frac{k}{r^{3}} \operatorname{tr}\left(B^{T} A\right)+\frac{3 k}{r^{3}} \theta_{1}^{T} B^{T} A \theta_{1} \tag{5.21}\\
& -\frac{k}{2 r^{3}} \operatorname{tr}\left(B^{T} r B\right)+\frac{3 k}{2 r^{3}} \theta_{1}^{T} B^{T} r \theta_{1}
\end{align*}
$$

and

$$
\begin{align*}
\frac{\partial V}{\partial B_{v}}= & -\frac{k}{r^{3}} \operatorname{tr}\left(B_{\bullet v}^{T} A\right)-\frac{k}{2 r^{3}} \operatorname{tr}\left(B_{\bullet v}^{T} \Gamma B+B^{T} \Gamma B_{v v}\right) \\
& +\frac{3 k}{r^{3}} \theta_{1}^{T} B_{: v}^{T} A \theta_{1} \tag{5.22}\\
& +\frac{3 k}{2 r^{3}} \theta_{1}^{T}\left(B_{\bullet v}^{T} \Gamma B+B^{T} \Gamma B_{\cdot v}\right) \theta_{1}
\end{align*}
$$

Equation (5.22) gives the influence of the grevity poteatial or the v th mode.
In the gravitational field the left-hand side of (4.15) is given by (5.14) and the value of U in exprassion (4.16) is equal to the sum of U_{d} and v.
6. Attitude stability of doformable earth-pointing satellites.

6.1 Determination of the ancular volocity.

The influence of the rotation of the body on the translational motion will be neglectod and the earth will be considered as a homogeneous sphere.

The rotating reference axes are the A-axes defined in part 5 and represented in figure 2 . The body "fixed"-axes are the D-axes defined in part 3 by the relations (3.1). These axes are directed in such a manner that the deformations are expressed as a sum of normal modes and are coinciding with the principal axes of the undoformed body. The angular position of the D-frame with respect to the reference frame A is $g i v e n$ by the three angles of rotation $\theta_{1}, \theta_{2}, \theta_{3}$.

The total angular velocity of the D-frame, ω, is given by the relation

$$
\begin{equation*}
\underline{\omega}=\dot{v} \underline{\underline{t}}_{3}+\dot{\theta}_{1} \underline{\hat{a}}_{1}+\dot{\theta}_{2} \underline{\underline{b}}_{2}+\dot{\theta}_{3} \underline{a}_{3} \tag{6.1}
\end{equation*}
$$

where v is the orbital angular velocity or in the D-frame

$$
\begin{equation*}
\underline{\omega}=\sum_{\alpha=1}^{3} \omega_{a}{\underset{\sim}{a}}_{\alpha} \tag{6.2}
\end{equation*}
$$

where the components ω_{a} are given by:
$\omega_{1}=\left(\dot{\theta}_{2}+\dot{v} \sin \theta_{1}\right) \sin \theta_{3}+\left(\dot{\theta}_{1} \cos \theta_{2}-\dot{v} \cos \theta_{1} \sin \theta_{2}\right) \cos \theta_{3}$ $\omega_{2}=\left(\dot{\theta}_{2}+\dot{v} \sin \theta_{1}\right) \cos \theta_{2}-\left(\dot{\theta}_{1} \cos \theta_{2}-\dot{v} \cos \theta_{1} \sin \theta_{2}\right) \sin \theta_{3}$ (6.3) $\omega_{3}=\dot{\theta}_{3}+\dot{\theta}_{1} \sin \theta_{2}+\dot{i} \cos \theta_{1} \cos \theta_{2}$

For oarth-pointing satellites the three angles $\theta_{1,} \theta_{2}, \theta_{3}$ will be considered as small angles and the equations will be linearized.

The inearizod components of $\underline{\omega}$ are then :

$$
\begin{align*}
& \omega_{1}=\dot{\theta}_{1}-\dot{v} \theta_{2} \\
& \omega_{2}=\dot{\theta}_{2}+\dot{v} \theta_{1} \tag{6.4}\\
& \omega_{3}=\dot{v}+\dot{\theta}_{3}
\end{align*}
$$

The vector $\dot{\dot{\omega}}$ is also expressed in the D frame

$$
\underline{\dot{\omega}}=\sum_{\alpha=1}^{3} \dot{\omega}_{\alpha} \dot{\underline{a}}_{\alpha}
$$

where the linearized components are

$$
\begin{align*}
& \dot{w}_{1}=\ddot{\theta}_{1}-\dot{v} \dot{\theta}_{2}-\ddot{v} \theta_{2} \\
& \dot{w}_{2}=\ddot{\theta}_{2}+\dot{v} \dot{\theta}_{1}+\ddot{v} \theta_{1} \tag{6.5}\\
& \dot{\omega}_{3}=\ddot{\theta}_{3}+\ddot{v}
\end{align*}
$$

The matrix is taen:

$$
\omega \quad\left[\begin{array}{ll}
\omega_{1} \tag{6,6}\\
\omega_{2} \\
\omega_{3}
\end{array}\right]
$$

and its dorivative $\dot{\omega}$ is simply given by

$$
\dot{\omega}=\left[\begin{array}{l}
\dot{\omega}_{1} \tag{6.7}\\
\dot{\omega}_{2} \\
\dot{\omega}_{3}
\end{array}\right]
$$

For convenienco, the mean anomaly t will be taken as new independent variable and the dot (") will mean, from now, derivativo with respect to τ.

6.2 Equilibrium Position on a circular Orbit.

This paragraph is developed from the concepts of ref. [4: where the equilibrium orientation of rigid bodies on circular on bit was investigated. A deformable satellite is in equilibrium
with respect to tho rotating frame A when the following conditins are satisfied :

1) the generalized coordinates of deformation, Bu. are equal to some constants ;
2) the body "fixed" frame D has the same angular velocity in inertial space as the reference frame A.

The normalized angular velocity of the frame A is a unit vector aligned with the axis $\mathbf{e n}_{3}$:

$$
\begin{equation*}
\underline{\omega}=\underline{\mathrm{a}}_{3} \tag{6.9}
\end{equation*}
$$

At equilibrium the rotational equations (4.10) reduce to

$$
\begin{equation*}
\underline{\omega} \times \mathrm{J} \quad \underline{\omega}=\underline{\underline{L}} \tag{6.10}
\end{equation*}
$$

or

The torque due to the inverse-square gravitational field is given by (5.6). On circular orbit the normalized equation (6.10) is then :

$$
\begin{equation*}
\underline{\underline{t}}_{3} \times \mathrm{J} \cdot \underline{\mathbf{a}}_{3}=3 \mathbf{a}_{1} \times \mathrm{J} \cdot \underline{\underline{\mathbf{a}}}_{1} \tag{6,12}
\end{equation*}
$$

The vectors $J .{\underset{\sim}{3}}_{3}$ and $J \quad \underline{\underline{a}}_{1}$ may be expressed in the A basis :

$$
\begin{align*}
& J \cdot \underline{\underline{a}}_{3}=a \underline{\underline{a}}_{1}+b \underline{\underline{a}}_{2}+\lambda \underline{\underline{a}}_{3} \\
& J \cdot \underline{\underline{a}}_{1}=c \underline{\underline{a}}_{3}+d \underline{\underline{t}}_{2}+\mu \underline{\underline{a}}_{1} \tag{6.13}
\end{align*}
$$

Substituting the relations (6.13) in (6.12) provides

$$
\begin{aligned}
& b=d=0 \\
& a=-3 c
\end{aligned}
$$

 relations :

$$
\begin{aligned}
& \underline{\mathbf{a}}_{1} \cdot \mathrm{~J} \cdot \underline{\mathbf{a}}_{3}=-3 c \\
& \underline{\mathbf{a}}_{3} \cdot \mathrm{~J} \cdot \underline{\mathbf{a}}_{1}=c
\end{aligned}
$$

From the dofinitions of the inertia dyadic thesc two quantities have to be equal and then $c=0$. Finally, one has :

$$
\begin{align*}
& \mathrm{J} \cdot \underline{\mathbf{a}}_{3}=\lambda \underline{\underline{a}}_{3} \tag{6.15}\\
& \mathrm{~J} \cdot \underline{\mathbf{a}}_{1}=\mu \underline{\underline{a}}_{1}
\end{align*}
$$

The two relations (6.15) imply that the axes ${\underset{\mathrm{a}}{1}}$ and ${ }_{\mathbf{\alpha}}^{3}$ are principal axes of inertia. Then in equilibrium the A-ares are the principal axes of the body.

The determination of the orientation of the body fixed axes in the frame turns out to be an eigeavalue problem as shown in [4].

6.3 Equations of Motion.

The rotational equations are given by (4.55) where the components of the vectors ω and $\dot{\omega}$ are given by (6.4) and (6.5) As only circular oribit is treatod the normalized orbital angular velocity i is equal to one. The gravizational torque is given by (5.14), where the normalized value of $3 \mathrm{k} / \mathrm{r}^{3}$ is 3 , \dot{i} being equal to k / r^{3}.

The linsarized rotational equations are then :

$$
\begin{align*}
& I_{1} \ddot{\theta}_{1}-\left(I_{1}+I_{2}-I_{3}\right) \dot{\theta}_{2}-\left(I_{2}-I_{3}\right) \theta_{1} \\
& \quad-2 \Lambda_{23}^{T} B+2 \Lambda_{13}^{T} \dot{\theta}=0 \\
& I_{2} \ddot{\theta}_{2}+\left(I_{1}+I_{2}-I_{3}\right) \dot{\theta}_{1}-4\left(I_{1}-I_{3}\right) \theta_{2} \tag{6.16}\\
& \quad+8 \Lambda_{31}^{T} B+2 \Lambda_{23}^{T} \dot{\theta}=0 \\
& I_{3} \ddot{\theta}_{3}-3\left(I_{1}-I_{2}\right) \theta_{3}+2 \Lambda_{33}^{T} \dot{B}-6 \Lambda_{2}^{T} B=0
\end{align*}
$$

The modal equationo are given by (4.56) and in the inverse square gravitational field, these linearized equations are in matrix form :

$$
\begin{align*}
& M_{d}{ }^{\ddot{\beta}}+M_{d}{ }^{2 \dot{B}}+M_{d} \Omega^{2} \beta \\
& +\left(\mathbb{H}_{11}+\mathbb{H}_{11}^{\mathrm{T}}-\mathbb{H}_{33}-\mathbb{H}_{3}^{\mathrm{T}}-\frac{1}{2} \mathbb{H}_{22}-\frac{1}{r_{2}} \mathbb{H}_{22}^{\mathrm{T}}\right) B \\
& +\left(\mathbb{H}_{2}^{\mathbf{I}}-\Pi_{12}^{T}+\mathbb{H}_{21}-\mathbb{H}_{12}\right) \dot{B} \\
& -2 \mathrm{~A}_{2} 3^{\theta_{1}}+8 \mathrm{~A}_{13} \theta_{2}-6 \mathrm{~A}_{12} \theta_{3} \tag{6.17}\\
& -2 A_{13} \dot{\theta}_{1}-2 A_{2}{ }_{3} \dot{\theta}_{2}-2 A_{3} \dot{\theta}_{3} \\
& =-2 A_{11}+A_{22}+2 A_{33}
\end{align*}
$$

It is seen that when the matrix il is equal to $r_{\text {, }}$ or more generally when II is a symetric matrix, the gyroscopic coupling between the modes disappears.

The right-hand side of (6.17) reflects the effect of centrifugal force on the deformation. In equilibrium, the coordinates $\theta_{1}, \theta_{2}, \theta_{3}$ and β_{v} will mot be necessarily equal to zero but It is assured that the new principal axes are oriented along the A-axes.

The generalized coordinates are then

$$
\begin{align*}
& \boldsymbol{\theta}_{i}=\hat{\theta}_{\mathbf{i 0}}+\delta \boldsymbol{\theta}_{\mathbf{i}} \tag{6,18}\\
& \boldsymbol{\beta}_{i}=\boldsymbol{\beta}_{\mathbf{v o}_{0}}+\delta \boldsymbol{\beta}_{\mathbf{v}}
\end{align*}
$$

where θ_{10} and $B_{v_{0}}$ are respectively the value of e_{i} and B_{ν} at equilibrius.

The $(n+3)$ vector n is defined as

$$
x=\left[\begin{array}{c}
\delta \theta_{1} \\
\delta \theta_{2} \\
\delta \theta_{3} \\
\delta B
\end{array}\right]
$$

The system formed of (6.16) and (6.17) may then be written in matrix form as :

$$
\begin{equation*}
M \ddot{x}+G \dot{x}+K x=\dot{x} \dot{x} \tag{6.20}
\end{equation*}
$$

where the $(3+n) \times(3+n)$ matrices $M, D_{2} G$, and K are given by $N=\left[\begin{array}{llll}I_{1} & 0 & 0 & 0 \\ 0 & I_{2} & 0 & 0 \\ 0 & 0 & I_{3} & 0 \\ 0 & 0 & 0 & M_{d}\end{array}\right] \quad D=\left[\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & Z\end{array}\right]$
$G=\left[\begin{array}{cccc}0 & -\left(I_{1}+I_{2}-I_{3}\right) & 0 & 2 A_{13}^{T} \\ I_{1}+I_{2}-I_{3} & 0 & 0 & 2 \Lambda_{23}^{T} \\ 0 & 0 & 0 & 2 A_{33}^{T} \\ -2 \Lambda_{13} & -2 \Lambda_{23} & -2 \Lambda_{33} & H_{21}^{T}-\Pi_{12}^{T}+\Pi_{21}-I_{12}\end{array}\right](6.21)$
$K=\left[\begin{array}{cccc}-\left(I_{2}-I_{3}\right) & 0 & 0 & -2 \Lambda_{23}^{T} \\ 0 & -4\left(I_{1}-I_{3}\right) & 0 & 8 \Lambda_{13}^{T} \\ 0 & 0 & -3\left(I_{1}-I_{2}\right) & -6 \Lambda_{21}^{T} \\ -2 \Lambda_{23} & 8 \Lambda_{13} & -6 \Lambda_{12} & H_{11}+\Pi_{11}^{T}-\Pi_{33}-I_{33}^{T} \\ & & \frac{\Pi_{22}}{2} \frac{\Pi_{22}^{T}}{2}+H_{d} \Omega^{2}\end{array}\right]$

The matrices $\Lambda_{12}, \Lambda_{23}$ and Λ_{13} aro equal to $\Lambda_{21}, \Lambda_{32}$ and Λ_{31}. ressectively ; it is seen that the matnices M, D and K are symmetric and that the matrix G is skew-symmetric.

The Hamiltonian of the system (6.20) is

$$
\begin{equation*}
H=\dot{x}^{T} M \dot{x}+x^{T} K x \tag{6.22}
\end{equation*}
$$

and its time derivative is

$$
\begin{equation*}
\dot{H}=-\dot{x}^{\mathbf{T}} \mathbf{D} \dot{X} \tag{6,23}
\end{equation*}
$$

From (6.20) it is seen that \dot{H} is a negative semi-infinite function.

The Hamiltonian is taken as Liapunov function, and its positiveness is a necessary and sufficient condition for stability when the damping is complete [5], [6], [7], which occurs when all the variables are compled.

The Hamiltonian is positire definite when the matrix K is positive definite. Frow Sylvester's criterion the deterninants of all the principal minors of K have to be positive.

It is seen imediately that the relations

$$
\begin{equation*}
I_{3} \geqslant I_{2} \geqslant I_{1} \tag{6.24}
\end{equation*}
$$

must hold to have stability.
This shows that the presence of energy dissipation destabilizes the so-called "Delp"-region [8] in the $K_{1} K_{2}-p l a n e, ~ t h e ~$ parameters $K_{1} K_{2} K_{3}$ being defined as

$$
\begin{align*}
& K_{1}=\frac{I_{2}-I_{3}}{I_{1}} \\
& K_{2}=\frac{I_{3}-I_{1}}{I_{2}} \tag{6.25}\\
& K_{3}=\frac{I_{1}-I_{2}}{I_{3}}
\end{align*}
$$

In this Delp-region for which

$$
I_{1} \geqslant I_{2} \geqslant I_{3}
$$

rigid orbiting satellites are stable.
Further, the relation (6.24) is a necesary condition for stability and the requiroment of positivencss for other minors of K may only decreasc the atability in the Lagrange region.

For completely damped systems the stability of aq.(6.20)
is the same as the stability of

$$
\begin{equation*}
\mathbf{H} \ddot{\mathbf{x}}+\mathbf{K x}=0 \tag{6.26}
\end{equation*}
$$

as seen in [5]. The eigenfrequencies of the system (6.26) are givon by the roots of

$$
\begin{equation*}
\left|K-u^{2} n\right|=0 \tag{6.27}
\end{equation*}
$$

There are $(3+n)$ real eigenvalues ω^{2} which satisfy (6.27). If these $3+n$ eigenvalues are ordered in the manner such that

$$
\begin{equation*}
\omega_{1}^{2} \leqslant \omega_{2}^{2} \leqslant \omega_{3}^{2} \ldots \leqslant \infty_{3+n}^{2} \tag{6.28}
\end{equation*}
$$

it is seen that if there exist n linearly independent constraints between the coordinates of the systems, the three eigeavalues w_{1}^{2} $\omega_{2}^{\prime 2}$ and $\omega_{3}^{\prime 2}$ of the restricted system are neither smaller than ω_{1}^{2} ω_{2}^{2} and ω_{3}^{2}, respectively, nor iarger than ω_{n+1}^{2}, ω_{n+2}^{2} and ω_{n+3}^{2}. This theorem given in [9] by Courant and Hilbert was already available from Cauchy's work [10].

Then, certainly

$$
\begin{equation*}
\omega_{1}^{2} \leqslant \omega_{1}^{2} \tag{6.29}
\end{equation*}
$$

When there exist n lineariy independent constraints botween the n coordinates of deformation, all the β_{v} are identically equal to zoro and the square of the frequencies m^{2} are the eigenvalues of the system (6.22) for rigid bodies.

To the boundarios of the Lagrange's region in the $K_{1}-K_{2}$ planc correspond frequencies ω^{\prime} equal to zoro. Then when deformations described by n independent coordinates occur, the system (6.26) may have up to n negative eigeavalues $\omega_{i}{ }^{2}$ which are leading to instability for this systen, and then also for the syen (6.20). Further, from a thenrea by Liapunov [11]. it is seen that the stability of the linear system is not modified when nonlinear
terms are considered, all the conditions of this theorem being satisfied.

6.4 Particular Exapple.

A particular example with one mode of deformation will now be investigated.

The satellite under consideration is composed of two rigid bodies B_{1} and B_{2} attached at their center of mase Tfig. 3 and 4). One hinge permits a relative motion between the two bodies. The axis of the hinge is directed along a comnon axis of principal moment of inertia, the \underline{a}_{2}-axis. When the system is in equilibrium in free space, the axis of principal monents of inertia of both bcdies are coinciding with the axes $\boldsymbol{I}_{1}, \boldsymbol{a}_{2}$ and \mathbf{a}_{3}. These moments of inertia are, respectively, $I_{1}, I_{2}^{\frac{1}{2}}$ and I_{3} for the body B_{1} and I_{1}^{2}, I_{2}^{2} and I_{3}^{2} for the body B_{2}. A inear torsional spring with constant k_{d} and a viscous damper wisi constant c resist the relative motion of the two bodies.

The motations of B_{1} and B_{2} about the \underline{a}_{2}-axis are described by the angle β and γ, respectively. These angles are defined with their sign in fig. 4.

When the composite body is freely vibrating in inertial space, the modal equation is :

$$
\begin{equation*}
\bar{\beta}+\omega_{v}{ }^{2} \beta \tag{6.30}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{v}^{2}=k_{d}\left(\frac{1}{I_{2}}+\frac{1}{I_{2}{ }^{2}}\right) \tag{6.31}
\end{equation*}
$$

and the angle γ is then related to B by

$$
\begin{equation*}
Y=\rho \beta \tag{6.32}
\end{equation*}
$$

where

$$
\begin{equation*}
p=\frac{I_{2}{ }^{1}}{I_{2}{ }^{2}} \tag{6.33}
\end{equation*}
$$

In the D-frace the componeyts of the position pector ρ of the eloment of mase dm relatively to the center of mass are oxpresed in terms of the components of the position vector dm in the undeformed body, $x_{\text {, }}$ and the generalized coordinate β as :

For $B_{1} \quad \rho_{1}^{1}=x_{1}^{1} \cos B+x_{3}^{\frac{1}{3}} \sin B$

$$
\begin{align*}
& \rho_{2}^{1}=x_{2}^{1} \tag{6.34}\\
& \rho_{3}^{\frac{1}{3}}=x_{3}^{\frac{1}{3} \cos B-x_{1}^{1} \operatorname{in} \theta}
\end{align*}
$$

for $B_{2} \quad p_{1}^{2}=x_{1}^{2} \cos \rho \theta-x_{3}^{2} \sin \rho \theta$

$$
\begin{align*}
& \rho_{2}^{2}=x_{2}^{2} \tag{6.35}\\
& \rho_{3}^{2}=x_{3}^{2} \cos \rho \theta+x_{1}^{2} \beta i n \rho \theta
\end{align*}
$$

Up to the second power in B the matrix J is then given by

$$
\begin{equation*}
J=I+2 A B+U B^{2} \tag{6,36}
\end{equation*}
$$

where the nonsero elements of I, A and $\begin{aligned} & \text { are } \\ & \text { a }\end{aligned}$

$$
\begin{align*}
& I_{1}=I_{1}^{1}+I_{1}^{2} \quad 1=1,2,3 \\
& A_{31}=\Lambda_{13}=\frac{1}{2}\left[\left(I_{3}^{1}-I_{1}^{1}\right)+R\left(I_{1}^{2}-I_{3}^{2}\right)\right] \\
& I_{11}=I_{3}^{1}-I_{1}^{1}+\theta^{2}\left(I_{3}^{2}-I_{3}^{2}\right) \tag{6.37}\\
& I_{22}=I_{1}^{1}-I_{3}^{1}+\theta^{2}\left(I_{1}^{2}-I_{3}^{2}\right)
\end{align*}
$$

Further the gonoralised mass of the code of 7 ibration, $m_{\nu} * 1 / 2 r_{\mu}$ is given by

$$
\varepsilon_{v}=\rho I_{2}
$$

On circular orbit one equilibrium is obtained when the frame D coincides with the A framo the compositive body is atable wkan the K matrix defined in $(6,21)$ in positive definite. The matrix H being positive definite, the matrix $H^{-1 K}$ has also to be posi-
tive definite to have srability.
Frow (6.21) and (6.32) this matrix is
$M^{-1} K=\left|\begin{array}{cccc}-K_{2} & 0 & 0 & 0 \\ 0 & 4 K_{2} & 0 & 4 \frac{p}{p+1}\left(X_{2}^{1}-K_{2}^{2}\right) \\ 0 & 0 & -3 K_{3} & 0 \\ 0 & \frac{4}{p+1}\left(X_{2}^{1}-K_{2}^{1}\right) & 0 & \omega_{v}^{2}+\frac{4}{p+1}\left(X_{2}^{1}+0 X_{2}^{2}\right)\end{array}\right|$
where K_{1}, K_{2}, K_{3} are defined in (6.26) and

$$
\begin{equation*}
K_{2}^{1}=\frac{I_{3}^{1}-I_{1}^{1}}{I_{2}^{I}} \quad(1=1,2) \tag{6.40}
\end{equation*}
$$

It must be noted that K_{2} is related to K_{2}^{1} and K_{2}^{2} by the relation

$$
\begin{equation*}
K_{2}=\frac{p}{p+1} K_{2}^{1}+\frac{i}{p+I} K_{2}^{2} \tag{6.41}
\end{equation*}
$$

The systen is stable if the following conditions are satisfied

$$
\begin{align*}
& x_{1} \leqslant 0 \\
& x_{2} \geqslant 0 \tag{6,42}\\
& x_{3} \leqslant 0
\end{align*}
$$

and

$$
\left|\begin{array}{cc}
4 X_{2} & \frac{0}{\rho+1}\left(x_{2}^{1}-x_{2}^{2}\right) \tag{6.43}\\
\frac{4}{\rho+1}\left(X_{2}^{1}-K_{2}^{2}\right) & \omega_{v}^{2}+\frac{4}{\rho+1}\left(X_{2}^{1}+\rho X_{2}^{2}\right)
\end{array}\right| \geqslant 0
$$

The first three conditione are natisfied in the so-called Lagrange's regions of the $K_{1}-K_{2}$ place. the Delp-region [8] being Liapunov unstable.

When $\varphi_{v}=0$ the condition (6,45) reduces to

$$
\begin{equation*}
x_{2}^{1} x_{2}^{2} \geqslant 0 \tag{6.44}
\end{equation*}
$$

Then, from the conditione (6.42) and the relation (6.41) this latter condition requires:

$$
\text { and } \quad K_{2}^{1} \geqslant 0
$$

When k_{d} is sero to have stability, the two bodies s_{1} and B_{2} have to be stable separately. This is an obvioun coaclusion.
7. Conclusions.

The formulation presented for the dyamice of deformable bodies is very powerful mainly whed the deformations are amall. in other words, when the equations may be linearised. The equations are presented in matrix form which has some advantages for nuaerical computation. Further the elomenta of the matrioes are easily determined by modal analysis of the eystem. This way be dene theoretically or realised experimentaliy in the laboratory. The Liapunor atability of earth-pointing ateliltes is deter mined for any equilibrium orientation. It is seen that, in equilibrium, on cirasias orbit the principal axes of the satellites are coinciding with the orbital referesce axes. When there is some energy dissipation. equilibrium may be obtalned only whoa the axea of larger and smaller moment of inertic are respec. ively perpeadtcular to the plane of the orbit and directed towards the center of the earth.

BIALIOGRA PHY

[1] Buckens. F. "The influence of elastic componsats on the attitude etnbility of a oatelilte". Procioof the Eifth Int. Syep, on Space Teoh, and Scismeet, 1963, Tokyo, Japan.
[2] Buckena. F. "On the influence of the elestiolty of components in apinaing eatellite on the ateblilty of lte motion". Eroc, of the $18^{\text {th }}$ Coprense of IAE, 1965, Athers, Greece.
[3] Munk, Maltor M. and G.J.F. MacDonald. Therotiation of the earth. Cambidge Univ. Prese. N. Y., 1960.
[4] RC ermon: Robert E. Dypelas and Control of Rotetine Dodies. Academic Prese, Mew York, to be published.
[5. Zajec. E.E. WThe Keivin-Tait-Chetaer theorem and extengiong". fingefitmonytient 8g. 11:46-49, Summer 1964.
rej tufac. E.E. "Comente on etablity of danped mehanical eys-
 1055.
[7] Pingit. 貝. Jw. MOn the gtablility of body with coanected moving parton. AIAA. $4: 1395-1404$, Aug. 1966.
[8] Deire, D. B. and R.H. Deip. Migid body attitude stability and natural frequenciee in a cireular orbit". Le of Aptro-

[9] Courant, Richard and David Milbert. Mothodn of momemathad phyigs. Intersciesce Pubilaheri Inc., M, T., 1953.
 ande. Eures Fr., Pamis. 1829.
 du mouveneat. Princeton Univ. Prese. Princeton, 1949.
[12] Coddington, Earl, A. ar: Morman Levison. Theory of ordinary difierential equations. McGrav-Hill. N. Y., 1955.
[13] Cesari, Lambreto, Asymptotic behavior and stability problems in ordinaxy differential equations, Academic Press. N. Y., 1963.

Fig. 1

Fig. 3

Fig. 4

[^0]: From hero, the repetition of one index implies summation on all the values of this index。

