View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by NASA Technical Reports Server

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)


https://core.ac.uk/display/85242141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Attitute Stability of Deformable

Satellites.
by

k P.Y. WILLENS

University of Louvain

Text of a lecture to be given as a part

of the CNES International Conferences :

EVOLUTION D'ATTITUDE ET STABILISATION
DES SATELLITES

to beheld in Paris, during October 8-11 1968,

The research reported in this document
was conducted during an ESRO-NASA Inter-
national Fellowship at the Uaiversity of
California, Los Angeles,




Abstract,

In this paper a general formulation for the dynamics of
deformable bodies is derived. The attitute stability of defor-
mable carth-pointing satellite is investigated in a general
form and simple stability cri:eria are obtainad.

Résumé.

Cet article propose une formulation générale de la dy-
namique des corps déformables. La stabilité d'attitude de sa-
tellites déformables orientés sur orbite circulaire est étu-

diéc sous forme générale et des critdres simples de stabilité
sont obtenus,

II




1. Introduction,

The dynamics of non-rigid bodies will be considered here in
order to investigate the stability of attitude of space vehicles.

A spacecraft may contain some instrumentation moving rela-
tively to the mein structurc and having then an influcnce on the
dynamics of the whole body. Also, as it is irvcrative to maintain
the weight of the payload as low as possible, the rigidity will
be affecied. Elastic and, sometimes, plastic deformations may oc-
cur and the structurc is subject to vibrations. With plastic or
viscoelastic deformation is associated a dissipation of onergy
which is a critical point of stability investigation.

Most of the ideas of this paper have been introduced in
Buckens' papers [1][2]. The formulation, being rather general,
does not depend on a particular configuration. As deformations are
expressed in terms of normal modes, the applicability of this
theory is generally limited to small deformations of elastic sys~
tems or viscoelastic systems with “classical damping'.

The attitude stability of earth pointing satcllites will be

investigated in the sense of Liapounov.

2. Normal Modes of Vibration.

The modes of vibration will be defined relatively to a sta-
te of minimal internal potential energy, the total momentum and
total angular momentum of the system being equal to zero. The de-
formatior. of the syster may be described by a number of indepen-
dent parameters equal to the number of degrees of freedomn.

Only the quadratic terms in the independent parameters will
be kept in the expansion of the potential cnergy in order to get
the equations of deformation in the form of a comservative system
of linear differential equations for which cigenvaluaes may be
dctermined.,

The axes of reference centered at the conter of mass are
coinciding with the principal axes of inertia of the body before
deformation (Fig, 1).
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The pusition vector p of the clement of mass dm relative
to the center of mass is equal to the sum of tiie position vector
x of dm in the undefcrmed bedy and the displacement vector u

g =X +u ) (2.1)

From the conditions of zero total momentum and angular momentum
the integrals over the mass of tho whole body (m) of é and p x p
are equal to szero :

Jédm=[(£&_+§_)dm=‘]édﬂ=o (2.2)
m m m
and

ngp_dmzj(g_t_+3)x_\;dm=0 (2.3)
) n

'The center of mass does not move., This obvious result may be ob-
tained by integration of (2.2).

If the components of the vector deformation u are linmear
functions of the modes the'relation (2.3) recduces, for every mode
v with frequency w,, to :

I (x x gw)dm =0 (2.4)
m

where ¢, is a vector relating the shape of the displacemsnt in
the vth mode and is a function of position only. -

The displacement for this mode is equal to the product
of ¢, by a harmonic function of time B8,.

When the components of u are not linear functions of the
modes but may be linearized, the relation (2.%) will hold in 1li-
near approximation,
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3, Refernce Axes for Dynamic Investigation.

As stated before, the axes of rofarence are centered at
the center of mass and are coinciding with the principal axes of
inertia of the body before deformation, After deformation they
will be dirocted in such a manner that the following conditions
are satisfied :

Ilg dm = O

» (3.1)
f.&” udm =0

m

Under these conditiohs the deaformaticns may be expressed as a 1li-

near combination of normal modes and in linear approximation t
u=8, 9 (3.2)

The relation (2.4) being, a condition of orthogonality of the mode
v with the rigid modes of translation and rotation, the above Je-
fined system of axes will follow the motions of translation and
general rotation of the body,

Note that these axes of reference are not necessarily the
princival axes of the deformed body, nor those for which the rela-
tive angular momentum vanishes, these latter axes being generally
used in the study of deformable planets [3].

This frame will be called the D frame and will have a vec-
tor basis 3, 3, 3.

4. Equations of motion.

The rotational equations are derived from the vectorial
relation
H=1 (4,1)

* From hero, the repetition of one index implies summation on all
the values of this index.




where H is the angular momentum vector with respect to the
center of mass ,
L 1is the applied torque acting about the center of mass,

_ the dot (+) meaning time derivative in an inertial space,
the index (o) being reserved for the time derivative with
respact to some moving reference frame, here to the D frame.
By definition H is equal to

§=ngédn (4.2)
)
or
[-]
_l!ajgxg-rjgxgxp_dm (4,3)
) m ,

where w is the angu’ar velocity of the D frame., Defining the iner-
tia dyadic J as

J= I-(g_ .o E - pplam (4.4)
m

where E is the unit dyadic :

E- Sa8 & 2, (4,5)
= 1 a =B

608 (&.6)
= 0 a # B

the second integral of (4.,3) is equal to

Ig*g_xgdm=J[(g_.g_)g_-g(g_._q_)]dm (4.7)
m m

=J .

then

I
1}
L.

ie

‘+I£i3_dm (“'8)




Replacing H by its valuc obtained from ths time dorivation of
(4.8) and taking into considoration the faect that for every dya-

die |
° [+
AT.-_T +.(£)( T - T x‘“_; (ucg)
the relation (4.1) may be written as :
L=J .;:_-rgx_].g_d-_] e w | (4.10)

00 o
+ {uxudm+w x | uxudn
m m

All the vectors will be expressed in the D frame., For operational

purposes let define the d "vector array" [u].

[a,
(4.11)

a matrix with vector clements.
Any vector v i+ related to the 3 x 1 matrix

vi
v = Va2
V3

of its components in the 8,3,33- basis ' the relation

al (4,12)

y = v
where the superscript T mecans that the matrix d is transposed.
Similarly any dyadic T = tig Qi.gj may be expressed in
toerms of the matrix T = (tij) as follows

T= aTra (1,13)

Further with any 3 x 1 matrix u is associated a 3 x 3 skewsymme-




tric matrix u defined as

u = [611] =z [e (4.14)

ikjuk]

where € is the Levi-Civita density defined to be zero If some

indicesizge repeated and equal to +1 or -1 according as ikj is a
cyclic permutation of 123 or 132,

Using the above conventions the equation (4.10) may be
written in matrix form as :

. ~

[+
L = Ju + wlow + Juw (4,15)
~ 00 -[. o
+ I uu dm ¢ m[u u dm
m

In order to have a complete set of equations in (3+n)
unknows n equations of deformation have to be derived,

The simplest way to do this is to derive the Lagrange's
equations in the variables B8, :

a4 AT AT U W
e st + BBv t — = Nv (4.16)

3, 8,

where T : the kinetic energy

c

the potential energy

=

the Rayleighs dissipation function
M, ¢ the generalized force in the vth mode of deformation.
By definition the kinetic energy is equal to :

1=} e (4.17)
m
vhere v is the velocity of the element dm relative to an iner-
tial frame

v=5‘:+E+9_xp_ (4.18)

r being the voctor from the origin of the inertial frame to the
center of mass of the body. Then the vector x being constant in




the D frame, the kinetic energy may be written :

T

i

-;-Im(_;;+y_xg_+:\).(_x.;+gxp_+§_) dm (4.19)

Noting from (4.7) that

f (w x p)e(w « ¢g) dm
» :

’ﬂijﬂxﬁ’.*.ﬁdm (u,20)
m
=w . (J . w)
T may be written
T=2n(z.2) +u . J @
2 .-.— —-. P
[+]
+ %- I u zx_ dm (4.21)
m
[+]
+m.J_\5x_\_x_dm
m
where majdm (4,22)
m
In matrix form
Tzé'm(!'Tr)i--l-uTJu
2 2
.} o
s I ur u dm (4,23)
2 Jn

. 00
+uTqudm
m

The potential cnergy of deformation Uy is, for purely
lincar and "elastic,deformation, given by

1l 2 .
Ug = ?mvav “y (4.2%)

where m, is the g-neralized mass of the vth mode, i.e.,




m, = miile dm (4,25)

w, is the natural frequency of the vtl mode.

The equations will now be written explicitly in terms of
the deformation variables, )

The formulation presented here is cexact only when the
displacements one linear functions in the variables B8, and is
exact in linear approximation when the development in power of
By
cases the displacement will be equal to

of the displacement does not, contain terms in 53. In beth

V, =
1

u=89¢ =896 3 (4.26)

In terms of the matrices I, A, and U defined by

I= [ (xTXE - xx7) dn
‘m
A = I xTuE - xu') dm (4,27)
: m
U = J (uTuE - wu?) dm

the J matrix is given by :
J=1+20 4+ U (u,28)

From the definitions (4,26) and (4,27), elements of A and U arec

given by
Aij = Im(svxk¢vk6ij - Bvxi¢vj) dm (4,29)
uij = Im(evsu¢vk¢ 14 - °v°u¢v1° j) dm (4,30)

The nxl matrix B8 is defined as :
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8, ,
8 .

and the nxl matrix ¢ 6 is the matrix with elements equal to the
compouents along the a-axis of the shape of the different modes.

. o _n] |
. I i - (8.32)

u L
* ’nQJ .

: If further thc nxl matrix Rij‘ié defined as :

<

hig = Jn(‘k’k‘ij<? xs6;) dm C (8.33)
;Aijfis-;qual to 3 - B
. . é
: _ T
' B55 = B A45 (4 .24)

‘Finally defining the 3nx3 matrix B by

+

. 8 0 O
B =" 0O B O (4,35)
i 0 8
and the 3nx3 matrix A by
A = (A, the .matrix A s equal to
[15] (4.36)
A =38Tr .
Similarly
)

(4,37)
T T T .o
8 Im(okokaij = 4;45) dm

Defining rij as
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- T T
cm
Uij is equal to

- al
Uij =8 rija (4.39)

In terms of the matrix B and the 3nx3n matrix I' is defined by

the matrix U is finally 2qual to
o ,
U=BTB (4.41)
The 3x1 watrix
- 0

m .
may bc expressed in terms of the elements of the T matrix; as
follows :
R = BICS (¥.43)

where the 3nxn natrix C is given by :

[euls Tas
C = ‘eazs PGB (“’."‘“)
Lfn38 raB

with definitions given by (u4.28), (4.36), (4.41), (4,43), the
equation (4,15) may be writtea

L = In + wlw : »

+ 2BTAw + 28BTAw + 2B TAuw

TrBw + ©BITBw + B I'Buw

(4.u5)
"+ B

.+ BTrBw + BTCB + @B ICH
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In order to express the kinetic energy in B, explicitly we need
the cxpression for InuTu dm. This integral is equal to

I ulu dm = 87 ] 44 dn 8 = BTMB (4.46)
» n '
" The matrix My is a diagonal matrix because of th: norma-

1ity of the modes, namely by use of expression (4.25)

m) 01

. (4.47)

[ ]
LO mn

For elastic and viscoelastic material the potential anergy of

deformation may be written

U T

1 2 :
a°3 8 !dﬂ e | {4.48)

where the matrix 2 is a diagonal matrix given by

Q = . ("’oug)
0 * ©
nj
The diésipation function is
t=28"28 (4.50)

and the kinetic energy is given by

T = -;- m (r'r) +-;-'-wTIu + w BT Aw
(4 .51)
1 T T, T.TA3 1l 2T, 2
tZ o B'I'Bw + w B'C8 +3 8 HdB
The matrices B,) and B,, are defined by
B - 38
*k d§k
(4,.52)
. d8
S’k - B
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That is to say, B, (8, ) is equal to the B(8) matrix in which
all the g3, with i # k, are equal to zero and 8) is equal to 1.
With these definitions the Lagrange's equation in 8, is

a 2 TsT o T

-va + 'v'vsv +ob CB, + wB Ca,v

- w3y Aw - 3 B rBe - % w'B'rB, » (4,53)
T, T

- B.VCB ’T * -ve\m o %

(v = 1,..n)

where V is the potontial energy due to an external field.

When the devolopment of the displacement contains quadratic
torms in the variable Bv.tho J matrix may be writtem, up to the
second erder in B,s a8 :

J=1I+27A+BTNB (4.58)
where the matrices I and A are defined in (%,27) and (4.35),
respectively. The 3nx3n matrix NI may now differ from the né-
trix T. '
The equations of the motionm linearized in B, are now gi-
ven by
L= Is + ele

+ 2BTA + 20BTAw (%,55)

+ 2BThe

and

Y 2 2T T
w8 +mwB +wBCB + wBCB,

- u"n'fvm -2 w8, IBu - 3 w'BNB, u (4.567

- w By CB t3g v |, € Bu = N

2

T.T 3V
35

(v = 1...0)

The equations (4.55) and (4.56) form a complote set of (3+a)
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linear equation.

5. Torque and Potential Due to an Inverse Square Gravitational
Field.

The force due to this field on the element of mass dm is

Tt
4r = - k'mlg dm : | (5.1)

vhere k is the constant equal to the product of the gravitatiom

constant G and the mass M of the attracting body (here the Earth).
The total torque around the center of mass of the body

will be '

-

.!=fn*§£ : (5.2)
n

Neglecting the terms in (p/r)? relative %o p/r one has

1 _1 2 -z ,
IT+ 53 -r3 Q1 37”2 (5.3)

where r is the norm of r and
p the norm of p,

and
, or
!=-:_3.I(1-3£T-)I£x(_r_+£)]dm (5.4)
n r .
or
!=--§§-I£xn.£dm (5.5)
. n .

Defining the rotating frame &, 8, 33, such that r = rd,
and with 33 perpendicular to the plane of the orbit and aligned
along the angular momentum vector, the torque M is

M= - %_&_1 x I‘gg dm . &, (5.6)

By virtue of the definition of J and as :
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1

él X, -~ E Y §1 z 0 (507)

3
r

x

E = §.l x J - il (508)

w

In order to express the equation (5.8) im matrix notation,
+he components of the vector 8, in the D frame have to be deter-
mined, The orientation of the body-fraime D relative to the or-
biting reference frame A will be defined by the three angles of
rotation 9;, 62, 03, Intermediate frames B and C will then be
determined. A rotation 6; about the axis 3; of the frame A .
brings this frame into coincidonce with the frame B. Similarly
a rotatior 6, about the axis gz brings the frame B in coinciden-
ce with frame C and a rotation 03 about the axis 83 brings the
C frame in coincidence with the body frame D (fig. 2).

The frame A is related to the frame D by the kinematical
relation 7

..al a
8, §)

where the 3x3 matrix H is a function of 9;, 62 and 83, given by

cfac3 -c62803 80
-] = | co;s03 + s83802c083 cO)c83 - 80;88,883 ~ 86;c62 | (5.10)

861803 - c0)802c63 808;c03 + c086280, c8;3c02

where c stands for cosine, and
s stands for sine,
Then, .

8, =0, 3, ¢+ 61232 + 6,3 Q3 (5.11)

With the matrix 0,
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01,
®13
the vector &; is written as
Equation (5.8) becomes in matrix form :
u = 2K 6,50, (5.14)
r
or
m=32Ko, (x+28T +3"mm)e,
r
The gravity potential Vv is :
dm
= -k —— . 5
v [m B (5.15)
Developing ;%E up to the second order in % provides :
2
gL 2 (z.p)
ve-k[p-F-2 ) an
m ¥ 2p2 "
(5.16)
k k ] g2 3k I
T = e b o dm"‘—!‘o P_e.dm.al
r rd /nm 2 2n8 m -
By using the definition of | and noting the relation
& . E &1 =12 (5.17)

V is finally given by :

k k[ 3 k
Veio-2|p.pcn+sEg,. 3 (5.18)
= 3 ) L2 758 J &
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Jg.g dm nay bs writton

Ig.g dm s-i‘-trJ "Jf.‘,kk (5.19)
m

where the symbol tr means trace of the following matrix. From
(5.18), the potential may be written in matrix forc as :

Ve -Kg oK ey 83J6, (5.20)
2r? 2r3

With the previous definitions, potential energy ian the
inverse square field may be written

V=§m-LtrI+2‘—6¥191
203  2p8
- ko erTa) + 3K 0T8The, (5.21)
- X +r(8TrB) + 2 oT8"rse,
2p3 2p3
and
- el ) - = er(aT r + 3718 )
v r ’ 2p3
+ 3% o787 pe, | (5.22)
3 v.
r
3k T ,oT T
ek (8] 18 + B7r8, )e,

Equation (5.22) gives the influence of the gravity potential
or the vth mode,
In the gravitational field the left-hand side of (4,15) is given

by (5.14) and the value of U in exprassion (4.16) is equal to
the sum of Uy and V,
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6. Attitude stability of doformable earth-pointing satellites.

6.1 Determination of the angular velocity.

The inflﬁence of the rotation of the body on the transla-
tional motion will be neglectod and the earth will be conside-
red as a homogeneous sphere.

The rotating reference axes are the A-axes defined in
part 5 and represented in Figure 2, The body "fixed"-axes are
the D-axes defined in part 3 by the relations (3.1). These axes
are directed in such a manner that the deformations are expres-
sed as a sum of normal modes and are coinciding with the prin-
cipal axes of the undoformed body. The angular position of the
D-frame with respect to the reference frame A is given by the
three angles of rotation 6,, 63, 03.

The total angular velocity of the D-frame, w, is given
by the relatiom
w=v 8 + 88 + 8,5, + 8,3, (6.1)

where v is the orbital angular velocity or in the D-frame

3
o= I w ga (662)
azl

where the compcnents w, are given by :

. [ ]
wy = (6, + v sine,;)sin6; + (6 co0s8; -

<.

cos918in6;)cos0;
wy = (82 + v 5in6))cose; = (Blcosez - cos818in6;y)sin6y (6,3)

. L ] *
w3 = 63 + 8)8in0; ¢ v co080,c086;

For carth-pointing satellites the three angles 6;, 62, 03
will bo considered as small angles and the equations will be li-
nearized.

The linearizod components of w are then :
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wz = 8, + v 8 (6.4)
w3 =V ¢+ é

The veétor‘é is also expressed in the D frame

e or g, g,
a=l

vwhere the linearized components are

w, = 91 -V 92 - Vv 8
w, = 8, + v 8, + Vv 0, (6.5)
wy = 03 + v
The mateix is taem @
o1
w = w2 (6.6)
w3
and its dorivative w is simply given by
z.,]
w = ®2 (6.7)

A

For convenienco, the mean anomaly t will be taken as new
independent variable and the dot (') will mean, from now, deri-
vative with respect to T,

6.2 Equilibrivm Position on a circular Orbit.

This paragraph ies developed from the concepts of ref, [4:
wvhere the equilibrium orientation of rigid bodies on circular o)
bit was investigated., A deformable satellite is in equilibrium
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with respect to the rotating frame A when the following condi-
tions are satisfied :
l) the generalized coordinates of deformation, B,, are equal to
some constants ; .
2) the body "fixed" frame D has the same angular velocity in
inortial space as the reference frame A,
The normalized angular velocity of the frame A is a unit
vector aligned with the axis &3 : |

2‘. = 33 (6.9)
At equilibrium the rotational equations (4,10) reduce to
u x J « W = L (6010)

or

! 83 J .8 =1L , (6.11)

The torque due to the inverse-square gravitational field is gi-
ven by (5,6), On circular orbit the normalized equation (6,10)
is then :

E3x J .8 =33x J .4 (6.12)
The vectors _J.§3 and J .3, may be expressed in the A-
basis : )

J.83=a3 +b 3 + 214

(6.13)

J. &

Substituting the relations (6.13) in (6.12) provides

c§3+d§2+u§1

b=24d4d=0

as - 3¢

Dot multiplying J .43 by 8, and J ,81 by 383 provides the
relations :
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(¢,10)

From the definitions of the inertia dyadic thesec two quantities
have to be equal and then ¢ = 0, Finally, one has :

J 8 =1 8; ( :
' 6.15
J. &1 =3 | |

The two relations (6,15) imply that the axes 8) and &3
are principal axes of inertia., Then in equilibrium the A-axes
are the principal axes of the body.

The determination of the orientation of the bod& fixed
axes in the frame iturns out to be an eigemvalue problem as shown
in [4],

6.3 Equations of Motion,

The rotational equations are given by (4.55) where the
components of the vectors w and w are given by (6.4) and (6.3)
As only circular orbit is treated the normalized orbital angular
velocity v is equal to one, The gravitational torque is given by
(5.14), where the normalized value of 3k/r3 is 3, v being equal
to k/r3,

The linearized rotational equations are then :

Il.él - (I; + I, - Ia)éz - (I -~ I3)6,

- 20338 + 20138 = O

I8 + (I + I, -~ I3)8; = 4(I, - I3)e, (6.16)

+ BAT1B + 20348 = O

1383 - 3(I, - I5)85 + 2A338 - 6A3,8 = O
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The modal equations are givenm by (4,.,56) and in the inversc square
gravitational field, these lineariszed equations are in matrix
forn : _ . '

a 2
M Q + HdZB + udn 8

d
T T 1 1 T ’
+ (O3, + By - O33 - N33 - 5 Np2 = 5 H22) 8
~

T T >
+ (B33 - My + W2y - My2) B

2A536) + 8A;30; - 6h;78;3 (6.17)

-~

2&1361 - 2A2352 - 2A3353

- 2A;;-¢ Aiz + 2ﬂ3§

It is seen that when the matrix I is equal to I', or more gemeral-
ly when I is a symmetric matrix, the gyroscopic coupling between
the modes disappears.

' The right-hand side of (6.17) reflects the effect of cen-
trifugal force on the deformation. In equilibrium, the coordina-
tes 8;, 62, 83 and B, will not be necessarily equal to zero but
it is assured that the new principal axes are oriented along the
A-axes,

" The generalized coordinates ars then

0. + 89, -
1 1

0.
io
\6,18)
By = By * -8,

ko]

where 834 ané Byo are respectively the value of €; and Bv at
equilibrium.
The (n+3) vector n is defined as

-~

80,

§6,
*= | 5o, (6.19)

| s8
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The system formed of (6.16) and (6.17) ‘may then be written in ma-
trix form as :

Mx + Gx + Kx = = Dx (6.20)

where the (3+n) x (3+n) matrices M, D, G, and K are given by

— s R — -
I, O o o | o 0 0 o
I, © o o o 0 0
M= D =
0 0 I3 O o 0 0 0
0 0 0 Hd 0 0 0 Z
= s | )
— T -
0 -(111'12-13) (4] 2A13
I1+I2-1, -0 o 2033
0 0 0 24733
T T
-2A,3 ~2433 ~2A3;3 Iy ,-RMjoellz -0
_ . -
-(I,-I3) 0 0 -2A33
0 -4(I4-13) 0 BA] 3
K = T
0 0 ‘3(11'12) ) -6A3,
T T
M)+l -Ti33-N33
a2 W22 2
B ——— i,

The matrices Ajp, A3 and A3 are equal to Az;, A3 and Aj3,,
respectively ; it is seen that the matrices M, D and K are sym-
" metric and that the matrix G is skew-symmetric.

The Hamiltonian of the system (6.,20) is

H = xTMX + X1Kx (6.22)

and its time derivative is
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T

H=-%Dx (6.23)

From (6.20) it is seen that H is a negative semi-infinite funec-
tion.

The Hamiltonian is taken as Liapunov function, and its
positiveness is a necessary and sufficient condition for sta-
bility when the damping 1§7¢0lplete (51, {61, [7], which occurs
when all the variables are coupled.

The Hamiltonian is positite definite when the matrix K
is positive Qefinite. From Sylveater'e criterion the determi-
nants of all the principal minors of K have to be positive.

It is seen immediately that the relations '

I3 2 I, 2 I, (6.24)

must hold to have stability.

This shows that the presence of energy dissipation desta-
bilizes the so-called "Delp"-region [8] in the K;Ks-plane, the
parameters lezka being defined as

K| B eett———

. I

X, (6.25)

K3=-——

In this Delp-region for which
Iy 312 313

rigid orbiting satellites are stable.

Further, the relation (6.24) is a necesaary condition for
stability and the requircoment of positiveness for other minors
of K may only decreasc the atability in the Lagrange region.

For completecly damped systems the stability of aq.(6.20)




24

is the same as the stability of
HX + Kx = 0 - (6.26)

as seen in [5]. The eigenfroquencies of the system (6.26) are
given by the roots of '

[k - w28} =0 7 {(6.27)

There are 73+n) real eigenvalues w? which satisfy (6.27). If
these 3+n eigenvalues are ordered in the manner such that

2 .
w) € a% £ -g ene £ u%fn (6.28)

it is seen that if there exist n linearly independent constraints
between the coordinates of the systems, the three eigeavalues uiz

w2 and .;2 of the rostricted system are neither smaller than u%

w2 and w2, respectively, wor iarger tham wls1, ®i42 and wie3,
This theorem given in [9] by Courant and Hilbert was already avai-
lable from Cauchy's work [10].

Then, ccrtainly
€ w'? (6.29)

Hhen there exist n linearliy independent constraints botween the

n coordinates of deformation, all the B8, are identically equal

to zoro and the square of the frequencies "32 are the eigenvalues
of the system (6.22) for rigid bodies.

To the boundarics of the Lagrange's region in the K,-K;
planec correspond frequencies w' equal to zero. Then when deforma-
tions described by n independent coordinates occur, the system
(6.26) may have up to n negative eigenvalues uiz which are lea-
ding to instability for this system, and then also for the systen
(6.20). Further, from a theorzm >y Liapunov [11], it is seen that
the stability of the linear system is not modified when nonlinear
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terms are coasidered, all the conditions of this theorem being
satisfied. A '

6.4 Particular Example.

‘A particular example with one node of deformation will
now be investigated.

The satellite under cons.deration is composed of two ri- -
gid bodies B; and B, attached at their center of mass (fig. 3
and 4}. One hinge permits a relative motion between the two bdbo-
dies, The axis of the hinge is directed along a common axis of
‘principal moment of inertia, the 3z-axis, When the systen is in
equilibrium in free space, the axis of prircipal moments of iner-
tia of both bcdies are coinciding with tle axes 3;, 3; and 33.
These moments of inertia are, respectively, I}, I} and 1} for
the body B; and I2, 12 and I2 for the body B;. A linear torsio-
pal spring with constant kg and a viscous damper wiia constant ¢
resist the relative motion of the two bodies.

The rotations of B; and Bz about the 3;-axis are descri-
bed by the angle 8 and y, respectively. These angles are definea
with their sign in fig. &.

When the composite body is freely vibrating in inertial
space, the modal equation is :

8 + w28 (6.30)
where
2 A SRS
02 = kg (= + 2) (6.31)
I Iz

and the angle vy is then related to 8 by

v = 08 (6.32)
where
Izl
p £ wsman (6.33)

1,2




28

In tho D-frase the componeats cof the position vactor p of the ele-
ment of mass dm relatively to the center of mass are expressed in
terms of the components of the position vector dm in the undefor-
med bbdy. x, and the generalized coordinate 8 as :

For B, o} = x}coss + x%sins
P2 = x32 {(6,38)
p§ = xgeoas - x}ainﬁ
For B, 03 = x3cosos - xisinps
2 2
02 & X2 (6035)

o§ = x3cospB + x33inp8

Up to the second power in 8 the matrix J is then given by

J = 14 208 ¢+ 182 (6.36)
where the nonsero elements of I, A and 1 are : |

I HIR 1 is1,2,8

Agy = A3 "% t(I;-I%) + &(I%-I%)]

(6.37)
By = 1) - 1} 4 p2(1d-1d)

1 1 2 2
N2 # I} - I3 + p2(17-13)

Further the gencralized mass of the rode of vibration, =, = 1/2r",
is given by

e, pla

On circular orbit one equilibrium is odtained when the frame D

"coincides with the A framo, the compositive body is stable wkan
the K matrix defined in (€,2)) is positive definite. The matrix
M being positive definite, the matrix H-1K has also to be posi-




tive definite to have stability.

From (6.21) and (6.32) this matrix is

B L
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-K3 0 0 o
1 2
- 0 ¥k, 0 4 =Le(Kz-K3)
o 0 -3K3 -0
4 ,.1 .1 2. W .1, 2.
0 m(xz-l(g) 0 wy +—D*I(K2+9K2)
where K;, K3, K3 are defined in (6.26) and
xi ..:i-;-ii (1 = 1,2) (6.40)
] .
I

It asust be noted that K; is related to K% and x% by the relation
1 i 2
Ky = -p-%r Kz + Yy K3 (6.41)

The system is stable if the following ccnditions are satisfied

Ky €0
K2 3 0 (6.,42)
Xy € 0
and ) ~
4Ky " ;%I(xé-xi)
20 (6.43)

) 1 &, 2 & i 2
m(l(z Kz} “ ¢ m(!(zﬂ)xz)

The first three conditions are satisfied in the so-called Lagran-
ge's regions of the K;-K; plaas, ths Delp-region [8] being Liapu-
nov unstable,

When w, = 0 the condition (6,43) reduces to

v

k3 x$ x0 (6.44)

Than, from the conditions (6.42) and the relation (8.41) this
latter condition requires :
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XKl 30
and
Ka 30

When ky is sero to have stability, the two bodies B, and
" Bz have to be stable separately. This is an obvious conclusion,

7. Conclusione,

The formulation presented for the dynamics of deformadble
bodies is very powerful mainly whep the deformations are small,
in other words, when the equations may be linearised. The equa-
tions are presented in matrix form which has sowme advantages for
nuaerical computation. Further the eloments of the smatrices are
casily determined by modal analysis of the system. This may be
dene theoretically or realised experimentally in the laboratory.

The Liapuaov stability of earth-pointing satellites i3 dete:
nined for any equilibrium orientation., It is seen that, ia equili-
brium, on cireuicz orbit the principal axes of the satellites are
coinciding with the orbital refersnce axes. When there is some a-
nergy dissipation, squilfbrium may be obtained only when the axes
of larger and smaller moment of inertic are respes.ively perpendi-
cular to the plane of the orbit and directed towirds the center
of the sarth,
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