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Abstract.

In this paper a general formulation for the dynamics of

deformable bodies is derived. The attitute stability of defor-

mable earth-pointing satellite is investigated in a ganeraL

form and simple stability cril-aria are obtained.

Re sump .

Cot article propose une formulation generale de la dy-

namique des corps d6formables. La stability d'attitude de sa-

tellitos deformables orientes sur orbite circulaire est etu-

diee sous forme g6nerale et des critdres simples de stability

sont obtenus.

II



1. Introduction.

The dynamics of non-rigid bodies will be considered here in

order to investigate the stability of attitude of space vehicles.

A spacecraft may contain some instrumentation moving rela-

tively to the main structure and having then an influence on the

dynamics of the whole body. also, as it is ivnr.ilativo to maintain

the weifht of the payload as low as possible, tho rigidity will

be affeexed. Elastic and, sometimes $ plastic deformations may oc-

cur and the structure is subject to vibrations. With plastic or

viscoelastic deformation is associated a dissipation of energy

which is a critical point of stability investigation.

Most of the ideas of this paper have been introduced in

Buckens • papers [1][2]. The formulation, being rather general,

does not depend on a particular configuration. As deformations are

expressed in terms of normal modes, tho applicability of this

theory is generally limited to small deformations of elastic sys-

tems or viscoelastic systems with "classical damping''.

The attitude stability of earth pointing satellites will be

investigated in the sense of Liapounov.

2. Normal Lodes of Vibration.

The modes of vibration will be defined relatively to a sta-

te of minimal internal potential energy, the total momentum and

total angular momentum of the system being equal to zero. The de-

formation of the systev may be described by a number- of indepen-

dent parameters equal to the number of degrees of freedom.

Only the quadratic terms in the independent parameters will

be kept in the expansion of the potential energy in order to get

the equations of deformation in the form of a conservative system

of linear differential equations for which aigenvalues may be

determined.

The axes of reference centered at the canter of mass are

coinciding with the principal axes of inertia of the body before

deformation (Fig. 1).
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The position vector p of the clemen t. of mass dm relativo

to the center of mass is equal to the sum of tLe position vector

X of dm in the undefcrmed body and the displacement vector u

E=xt u	 (2.1)

From the conditions of zero total momentum and angular momentum

the integrals over the mass of the Whole-body (m) of i and E x u

are equal to zero :

Ii dM	 1 (x ♦ u)dm =
Im e

udo x 0 	(2.2)

m	 m 

and -

fm
x u dm =- I (x t u) x u dm = 0	 (2.3)
 m

The center of mass does not move. This obvious result may be ob-

tained by integration of (2.2).

If the components of the vector deformation u are linear

functions of the modes the relation (2.3) reduces, for every mode

v with frequency ov, to :

1 (x x	 )dm = 0	 (2.4)
m

where dv is a vector relating the shape of the displacement in

the with mode and is a function of position only.

The displacement for this mode is equal to the product

of 4v by a harmonic function of time Bv.

When the components of u are not linear functions of tha

modes but may be linearized, the relation (2.4) will hold in li-

near approximation.
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3, Refernee Axes for Dynamic Investigation.

As stated - before, the axes of reference are centered at

the center of mass and are coinciding with the principal axes of

inertia of the body before deformation. After deformation they

will be dirocted in such a manner that the following conditions

are satisfied :

I udm= 0
m	 (3.1)

x x u dm = 0
m

Under these conditiobs the deformations may be expressed as a li-

near .;ombination of normal modes and in linear approximation t

u = By IV	 (3.2)

The relation (2.4) being, a condition of orthogonality of the mode

v with the rigid modes of translation and rotation, the above de-

fined system of axes will follow the motions of translation and

general rotation of the body.

Note that these axes of reference are not necessarily the

principal axes of the deformed body, nor those for which the rela-

tive angular momentum vanishes, these latter axes being generally

used in the study of deformable planets [3].

This frame will be called the D frame and will have a vec-

tor basis S 1 a2 d3.

4. Equations of motion.

The rotational equations are derived from the vectorial

rolation

H = L
	

(4.1)

t From hero, the repetition of one index implies summation on all

the values of this index,
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where H is the angular momentum vector with respect to the

center of mass ,

L is the applied torque acting about the center of mass,

the dot (•) meaning time derivative in an inertial space,

the index ( o) being reserved for the time derivative with

respect to some movJng reference frame v here to the D frame.

By definition H is equal to

H
 = 1P 

x ; dm	 (4.2)
m

or

H=

	

j 
P X i + ( E x w x 	 dm	 (4.3)

r:	 m

where w is the analu'ar velocity of the D frame. Defining the iner-

tia dyadic J as

J x f (P. 2. 	 - gk) dm	 (4.4)
m

where E is the unit dyadic

E= a as a« a	 (4.5)

= 1	 a = B
(4.6)

aas	 = 0	 a ¢ S

the second integral of (4.3) is equal to

	

1 
P x w x P dm = J [(g . ,e)^ - P(P . w)I dm	 (4.7)

m	 m

then
0

H= J	 u t P x P dm	 (4.8)

Im
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Re±lacinq H by its value obtained from tha time derivation of

(4.8) and taking into consideration the fact that for ovary dya-

dic I
T

.	 o

- T= T + A x T - T xw	 (4.9)

the relation (4.1) may be written as

I. = j	 w+ W x J	 W+ J	 v►	 (4,10)

+ u x u dm + u x 
fm

u x u dm
m 

All the vectors will be expressed in the D frame. For operational

purposes let define the d "vector array" [4].

tai
d

 = [
-'a

2 	 (4.11)

3

a matrix with vector elements.

Any vector v is related to the 3 x 1 matrix

vi

V =	 v2

V3

of its components in the 8112a3- basis I; the relation

v = d T v	 (4.12)

where the superscript T moans that the matrix d is transposed.

Similarly any dyadic T = t ij ai aj may be expressed in
terms of the matrix ,T = (t ij ) as follows

T= d TTd	 («.13)

Further with any 3 x 1 matrix u is associated a 3 x 3 skewsymme



6

tric matrix u defined as

u = [ u il ] a 
[s ik juk1	

(4.14)

whero E ikj is the Levi-Civita density defined to be zero if some

indices are repeated and equal to +1 or -1 according as ikj is a

cyclic permutation of 123 or 132.

Using the above conventions the oquation (4.10) may be

written in matrix form as :

L = J; t WJW + JW	 (4.15)

+ 1 u ue dm + w 1 u u dm
m

In order to have a complete set of equations in (3+n)

unknows n equations of deformation have to be derived.

The simplest way to do this is to derive the Lagrange's

equations in the variables B y :

8T -	 + 6 + eW 
= Nv	 (4.16)dt

asp	 v	 v	 asv

where T : the kinetic energy

U : the Potential energy

W : the Rayleighs dissipation function

NV : the generalized force in the 
with mode of deformation.

By definition the kinetic energy is equal to :

T = 2 
fm

(v.v)dm
	

(4.17)

where v is the velocity of'the element dm relative to an iner-

tial frame

0
v=rr+v+	 x 
	

(4.18)

r being the vector from the origin of the inertial frame to the

conter of mass of tho body. Then the vector k being constant in



7

the D frame, the kinetic energy may be Written

T= 2 1 (r t yL x	 t u).(r t w x P, + u) dm	 (4.19)
M

Noting from (4.7) that

1 (w x P).(w A L) dm
m

a	

im

	

x w X P dm	 (4.20)

w . ( j . w)

T may be written

.	 •

	

T =-21m (r .r) +w	 J

+ 2 1 u . u dm	 (4.21)
m

0
+ w	 u x u dm

m

where m = 1 dm	 (4.22)
m

In matrix form

T= Z n (r T r) t Z w T J w

+ z f
m

	u T u dm	 (4.23)

 f - 00
+w T uudm

m

The potential energy of deformation Ud is, for purely

linear and "elastic deformation, given by

	

U d s -11 0 2 wv	 (4,24)

whore mv in the generalized mane of the yth mode, i.e.,
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my = 
j^ itv 1 

2 dm	 (4.25)
m

my is the natural frequency of the wi th mode.

The equations will now be written explicitly in terms of

the deformation variables.

The formulation presented here is exact only when the

displacements one linear functions in the variables B y and is

exact in linear approximation when the development in power of

By of the displacement does not,eontain terms in BV . In both

cases the displacement will be equal to

u = ^V = B y ^v. 3 i	 (4.26)i
In terms of the matrices I. A. and U defined by

I = ( (x TxE - xx T ) dm
arM

A
 = 1(x

TuE - xuT ) dm	 (4.27)
m

U =	 (uTuE - uu T ) dm
m

the J matrix is given by :

J = I + 2A + U	 (4.25)

From the definitions (4.26) and (4.27). elements of A and U arc

given by

Aij
 = f m  

(avxk0v 
k 
8 i - 0vx1 j0v ) dm	 (4.29)

U i = f
m  
(B v 0 u O

vk 
m
uk 

a
ij

-Bv 0 u Q
vi 

m u dm	 (4.30)jj
The nxl matrix 0 is defined as :
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s
(4.31)

\ ns,

and the Axl matrix Oa is the matrix with elements equal to the

components along the a-axis of the shape of the different modes.

•	 - 41

♦a ,

a _ (4.32)

-

Ana

i

If further the nal matrix Aii` is defined as

Ai, = fm4X k k a ij _- 
X1 # i

) do (4.33)

-
hij is equal to	 -

s ib 	 .gTA
i]

(4.34)

Finally defining the 3nx3 matri-X B by

S 0 d

B = 0 6	 0 (4.35)

0 0	 B

and the 3nx3 matrix A 4

A = - CA iij the : matrix 0 I.s equal to
(4.36 )

A = BTA
_

Similarly

tlij =	 (s^^k #ksa i3
- B T #i¢ia) dm

m (4,37)

= BT
(
I	 (^k pkd ii - #i 3 ) dm

m

Defining T i j as
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r ij = f (#k #kd ij - Yj) dm	 (4.38)

U i j is equal to

Uij = B Tr ij 0 	 (4.39)

In terms of the matrix B and the 3nx3n matrix r is defined by

r = ( r ij }	 (4.40)

the matrix U is finally equal to

U	 B TrB	 (4.41)

The 3xl matrix
o

R =	 u u dm	 (4.42)
m

may be expressed in terms of the elements of the r matrix, as

follows

R = B TC;	 (4.43)

where the 3nxn matrix C is given by

Fe e ig	 ' as

C	 (ea2s	 rag	
(4.44)

Le c3 0 	 rag

with definitions given by ( 4.28)y (4.36 ) 9 ( 4.41) 9 (4.43), the

equation (4.15) may be written

L = I. + wIw	 ^►

+ 2B TAw + 2WB TAw + 2BTAw	 (4.45)

t B TrBw + wB TrBw + BTrBw

•+ B TTBw + B TCg t wBTCO
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In order to express the kinetic energy in 8v explicitly we need

the expression for I muTu dm. This integral is equal to

JmuTu dm = 
0  

Im'k°k dm 6 = s
TMdB	 (4.46)

The matrix Md is a diagonal matrix because of tha norma-

lity of the modes, namely by use of expression (4.25)

NJ 0 ^

gd =
	 (4.47)

LO
	 muJ

For elastic and viscoelastic material the potential energy of

deformation may be written

Ud = 2 B T .4 0 2 6	 (4.48)

where the matrix 9 is a d agonal matrix given by

wi

Q =	 •, 0
	

(4.49)
0 W jn

'i'ho dissipation function is

[: =  2 B T Z 8
	

(4.50)

and the kinetic energy is given by

T= 2 m (rTr) t 2 w TIw t wTBTAN
X4.51)

+ 2 w TB TTBw t wTBTC6 +1 BTKds

The matrices B, k and B, k are defined by

dB
B, k = dT

(4.52)
_ da

S 'k - d6
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That is to say, B ,k (ask ) is equal to the B(a) matrix in which

all the Si, with i $ k, are equal to zero and 8k is equal to 1.

With these definitions the Lagrange ' s equation in By is

%;V + %"2 0V + U%TCR,V + mBTCRry

m T9T Am - I m TB rBm - I m TB TTB,vm	 (4.5z)

- mrB;vCO +— + 
aV{VY81^ 

s qv
v

(v 2 10000

•	 where V is the potential enerr► due to an external field.
When the development of the displacement contains quadratic

terms in the variable 0 Vstho J matrix may be written, up to the

second order in 8v , as

J = I + 22 TA + BTAD
	

(4.54)

Where the matrices I and A are defined in (4.27) and (4.36),

respectively. The 3nx3n matrix A may now differ from the ma-

trix r.
The equations of the motion linearized in B V are now gi-

ven by

L = Im + WI;

• 2B TA; + 2;B TAN	 (4.55)

• 28TAW

and

mV0V+ m 
V 
m 
V 

0 V + w TBTCB, V + mB T CO, v

WTB;v AN - 2 aT 9T 11Bw - 2 ;TBT IIB,v w	 (4.561

- WTB;vC6 + aQ + MV C Oil s Nv
V

(v = l...n)

The equations ( 4.55) and (4.56) form a complete set of (3+n)
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linear equation.

5. Torque and Potential Due to an Inverse Square Gravitational

Field.

The force due to this field on the element of mass dm is

r t P
dF = - k jr	 1

3 dm	 (5.1)

vhere k is the constant equal to the product of the gravitation

constant G and the mass d of the attracting body (here the Earth).

The total torque around the center of mass of the body

will be

N= f
m
ExdF	 (5.2)

Neglecting the terms in (p/0 2 relative to p/r one has

Ir— p^1 3 = 3 (1 - 3 —	 (5,3)

where r is the norm of r and

p the norm of

and

K = - r3 
r 

U - 3 L ) ip x ( r t p)] dm	 (5.4)

or

Defining the rotating frame $1 $2 $3, such that r = rdl
and with 43 perpendicular to the plans of-the orbit and aligned

along the angular momentum vector, the torque K is

M s - 3 dl x I^ p dm 8 l	(5.6)

By virtue of the definition of	 J and as
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$ 1 x, .E	 .$ 1 =0	 (5.7)

M = 3 ^1 x J	 $1
	 (5.8)

r

In order to express the equation ( 5.8) in matrix notation,

the components of the vector 8 1 in the D frame have to be deter-

mined. The orientation of the body-fr;me D relative to the or-

biting reference frame A will be defined by the three angles of

rotation 31, e2 9 83, Intermediate frames B and C will then be

determined. A rotation e1 about the axis $1 of the frame A

brings this frame into coincidence with the frame B. Similarly

a rotation 82 about the axis S brings the frame B in coinciden-
ce with frame C and_a rotation 8 3 about the axis 8 3 brings the

C frame in coincidence with the body frame D (fig. 2).
The frame A is related to the frame D by the kinematical

relation

	

-•^ l	
al

	

22	 _	 e	 a2	 (5.9)

	

IL 3	 L a3

Where the 3x3 matrix H is a function of 8 1 s 82 and 8 3 e given by

ce2ce3	 -ce28e3	 set

0	 =	 celse3 t s816e2ce3 CO I c83 - 3 8 1 89 2 8d 3 - s81c82 (5.10)

80 1893 - ce 1s 82 ce 3 selce3 + ce1s82sej	 C81 ce 2

where c stands for cosine, and

s stands for sine.

Then.

Al = e ll al + 8 12.a2 + 013 13	 (5.11)

With the matrix 01
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811

8 1 _	 812	 (5.12)

e13

the vector 9 1 is Written as

d l : Al	 (5.13)

Equation - (5.8) becomes in matrix form

K = 3 81Je1	 (5,14)
r

or

If s 3 8 1 (I t 2B TA t B TIIB ) 8 l
r

The gravity potential V is :

V = -k
Im m

(5.15)

Developing	 --&-
	

up to the second order in P	 provides

V = - —r

r	 - Q.r -
^=

2	 2
P — t

(r•p)2
-=-=—) dm1 

m
11

^ 2r2 r4
( 5.16 )

m t k
2

^..

2
dm - 3 k

Im
k a 1	 . P.Q 

dm
r 3 m 2r.^

By using the definition of J	 and noting the relation

l E 1 (5.17)

V is finally given by :

V= r 	 Im
m- 3gdmt3&

r 	r

3



1E.o dm may be written

lE.^ dm = ^ trJ . T Jkk
m

16

(5119)

where the symbol tr means trace of the following matrix. From

(5.18) 0 the potential may be written in matrix form as

V = - k m - = trJ + 3s- 9TZ
r	 2ra	 20

(5.20)

With the previous definitionso potential energy in the

inverse square field may be written

V = rm-=-trI t 3= 9^I91
20	 20

r3 tr(B TA) t	 9IBTA91	 (5.21)

- k tr(B T I'B) + !k_ 9T9 'rrB9,
2r 3 	20

and

av

as ° - 
k

3 t	 vr( B^A) - -k3

	

	 ^vt r(B T rB + BTrB)
V	 r	 2r

t 
33 

9JB ;vA8 1 	(5.22)
r

+ 3k- 6i	 TrB(B^v rB + B^ )9iV2r3

Equation (5.22) gives the influence of the gravity potential

or the with mode.
In the gravitational field the left-hand side of (4.15) is given

by (5.14) and the value of U in expression (4.16) is equal to

the sum of U d and V.
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6. Attitude stability of doformable earth-pointing satellites.

6.1 Determination of the angular velocity.

The influence of the rotation of the body on the transla-

tional motion will be neglected and the earth will be conside-

red as a homogeneous sphere.

The rotating reference axes are the A-axes defined in

part 5 and represented in Figure 2. The body "fixed"-axes arc

the D-axes defined in part 3 by the relations (3.1). These axes

are directed in such a manner that the deformations are expres-

sed as a sum of normal modes and are coinciding with the prin-

cipal axes of the undoformed body. The angular position of the

D-frame with respect to the reference frame A is given by the

three angles of rotation e ) , 024 e3.

The total angular velocity of the D-frame, 1, is given

by the relation

0 = v 1-1 3 + ' Al t 9 25 2 + 6 313	 (6.1)

where v is the orbital angular velocity or in the D-frame

3
W = E W 8	 (6.2)

a =1 a --a

where the compcnents Wa are given by :

wl = ( 9 2 + v sine l )3ine 3 + (8lc05e2 - v coselsine2)cose3

W2 = 62 + V sinel)cose2 - (8lcose2 - v co3elsine2)sine3 (6.3)

W3 = 83 + e l Rine 2 + v C08e1cose2

For earth-pointing satellites the three angles el, e2 9 33

will be considered as small angles and the equations will be li-

nearized.

The linearized components of w are then
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wl a 9 1 - v e2

W 2 = 0 2 + V 6 1	 (6.4)

w 3 = v + 93

The vector	 is also expressed in the D frame

3
E ; a

a=1 a —a

where the linearized components are

•	 M	 . •	 -
w l = e l - W e 2 - v e2

^2 = e2 + v 8 1 + v 8 1	 (6.5)

•	 M	 M
w 3 = 8 3 + v

The matrix is taea

rw 1

w s	 w2	 (6.6)

W3

and its derivative v► is simply given by

•	 wl

w =	 w2	 (6.7)

w3

For convenienco, the mean anomaly T will be taken as new

independent variable and the dot (•) will mean, from now, dori-

vativo with respect to T.

6.2 E- uuilibriv® Position on a circular Orbit.

This paragraph is developed from the concepts of ref. [4;

where the equilibrium orientation of rigid bodies on circular of

bit was investigated. A deformable satellite is in equilibrium
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with respect to the rotating frame A when the following condi-

tions are satisf ied :

1) the generalized coordinates of deformation * Sv9 are equal to
some constants ;

2) the body "fixed" frame D has the same angular velocity in

inertial space as the reference frame A.

The normalized angular velocity of the frame A is a unit

vector aligned with the axis 13

3 3 	(6.9)
At equilibrium the rotational equations (4.10) reduce to

w x J	 . w= L
	

(6.10)

or

$ 3 x J	 13 = L	 (6111)

The torque due to the inverse-square gravitational field is gi-

ven by (5.6). On circular orbit the normalized equation (6.10)

is then :

fi3 x	 J	 I3 = 31[ 1 x J . 11	 (6,12)

The vectors	 J .13 and J .$1 may be expressed in the A-
basis

83 = a al + b d2 + A 93
(6.13)

11 = c $3 + d $2 ♦ u $1

Substituting the relations (6.13) in (6.12) provides

b	 d = 0

a s - 3c

Dot multiplying J .13 by $1 and	 J ,dl by 13 provides the
relations :
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1 . J	 . 13 - - 3c	
tF.lL&)

13 . J . $ 1 a c

From the definitions of the inertia dyadic these two quantities

have to be equal and then , c = 0. Finally, one has :

J 13 =	 3	
(6.15)

The two relations ( 6.15) imply that the axes 91 and 93

are principal axes of. inertia. Then in equilibrium the A-aces

are the principal axes of the body.

The determination of the orientation of the body fixed

axes in the frame turns out to be an eigenvalue problem as shown

in [4].

6.3 Equations of Motion.

The rotational equations are given by (4.55) where the

components of the vectors w and L are given by (6.4) and (6.3)

As only circular orbit is treatod the normalized orbital angular

velocity v is equal to one. The gravitRtional torque is given by

( 5.14) 9 where the normalized value of 3k/r 3 is 3, v being equal

to k /r 3 .

The linearized rotational equations are then

I 1 5 1 - ( I 1 + I 2 - i3 ) i2 - (I2'- I3)61

2A238 + 2A1 3 S = 0

I 2 g2 + ( I 1 + 1 2 - 13);1 - 4(1 1 - 1 3 ) 8 2	 (6.16)

+ 8A3 1 0 + 2A2 3 1 - 0

I 3 8 3 - 301 - I2)03 + 2A33^ - 6A 2 1 0 = 0
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The modal equationo are given by (4.56) and in the inverse square

gravitational field, these linearized equations are in matrix

form	 .

MdR + itdZ6 + hdU2 B

t (1111 # IIII - 11 33 - 1133 - 2 1122 -, 1122) B

t	 2i- II12+1121-112)

- 2A230I + 8A1382 - 6A l2 e 3	 (6.17)

- 2A 1 38I - 2A23@2 - 2A3353

= - 2AII-+ A 2 2 + 2A33

It is seen that When the matrix H is equal to r, or more general-

ly when H is a symmetric matrix, the gyroscopic coupling between

the modes disappears.

Th6 right-hand side of (6.17) reflects the effect of cen-

trifugal force on the deformation. In equilibrium, the coordina-

tes 0 1 , 92 9 8 3 and By Will not be necessarily equal to zero but

it is assured that the new principal axes are oriented along the
A-axes.

The generalized coordinates are then

9.- b. + 69.1 - 10	 1	 s.6,18)
sv = 0 V + 8u

where 810 and Bvo are respectively the value of e i and BV at

equilibrium.

The (n+3) vector n is defined as

691

602
X =	 f a9	 (6.19)

!	 3
Lae
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The system formed of (6.16) and (6 . 17) = may then be written in mat-
,

trix form as

Mx + Gx + Kx =--- Dx 	 (6.20)

where the ( 3+n) X-(3+n) matrices M, D I G. and K are given by

I 1	 0 0	 0 0 0	 0	 0
0	 I2 0	 0 0 0	 0	 0

N
0	 0 I3	 0

D
0 0	 0	 0

LO
	 0 0	

M

L 0	 0	 Z

0 -(I1+I2 -I3) 0 2A13

i I1+I 2-I 3 0 0 T
2A23

x(6.21)

0 0 0 2A33

-2A 13 -2A23 -2A33 821-nit♦1121-812

-(I2-I3) 0 0 T-2A23

0 -4(I1-I3) 0 BA13
K =

0 0 -3(I1-I2) -6A21

T	 T
1111+811-833-833

-2A23 8A13 -6Al2 T
U 22
2 - 8̂  ttidi22

The matrices A l2, A23 and A13 are equal to A21, A32 and A31,

resaectively ; it is seen that the matrices M. D and K are sym-

metric and that the matrix G is skew -symmetric.

The Hamiltonian of the system ( 6.20) is

H = xTMx - + xTKx	 (6.22)

and its time derivative is
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H = - TDa	 (6.23)

From (6.20) it is seen that H is a negative semi-infinite func-

tion.

The Hamiltonian is taken as Liapunov function, and its

positiveness is a necessary and sufficient condition for sta-

bility when the damping is complete [5], [6] 9 [7], which occurs

when all the variables are coupled.

The Hamiltonian is positive definite when the matrix K

Is positive definite. From Sylvester's criterion the determi-

nants of all the principal minors of K have to be positive.

It is seen immediately that the relations

I 3 : I2 3 I1	 (6.24)

must hold to have stability.

This shows that the presence of energy dissipation desta-

bilizes the so-called "Delp"-region [8] in the K1K 2-plane, the

parameters K 1 K2 K3 being defined as

I2 - I3

1

K2 = I33 	 (6.25)
2

K 
3 - I 1 - I2

In this Delp-region for which

1 1 3 1 2 3 13

rigid orbiting satellites are stable.

Further, the relation (6.24) is a necessary condition for

stability and the requirement of positiveness for other minors

of K may only decrease the stability in the Lagrange region.

For completely damped systems the stability of eq.(6.20)



24

is the same as the stability of

K;Hx t Kx = 0
	

(6.26)

as seen in [5].  The eigenfrequencies of the system (6.26)  are

given by the roots of

IK - M INI =0
	 (6.27)

There are ;3+n) real eigenvalues m2 which satisfy (6.27). If

these. 3±n eigenvalues are ordered in the manner such that

wi % +r2% 	 M 3
2 	 f m3 +n	 (6.28)

it is seen that if there exist n linearly independent constraints

between the coordinates of the systems, the three eigenvalues mil
tl2 2 and r32 of the restricted system are neither smaller than wi

^2 and d3, respoctively, nor larger than an+1 s 05+2 and a2n+3•

This theorem given in [9] by Courant and Hilbert was already avai-
lable from Cauchy's work [10].

Then, certainly

wi	 wi t 	(6.29)

When there exist n linearly independent constraints between the

n coordinates of deformation, all the sv are identically equal

to zero and the square of the frequencies Mt2 are the eigenvalues

of the system (6.22) for rigid bodies.

To the boundaries of the Lagrange ' s region in the Kl-K2

plane correspond frequencies a t equal to zero. Then when deforma-

tions described by n independent coordinates occur, the system

(6.26) may have up to n negative eigenvalues wi t which are lea-

ding to instability for this system, and then also for the system

(6.20). Further, from a thenrz: by Liapunov [ 11], it is seen that

the stability of the linear system is not modified when nonlinear
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terns are considered, all the conditions of this theorem being

satisfied.

6.4 Particular &xanle:.

A particular example with one node of deformation will

now be investigated.

The satellite under consideration is composed of two ri-

gid bodies B 1 and 32 attached at their center of ease l fig. 3

and 4). One hinge permits a relative notion between the two bo-
dies. The axis of the hinge is directed along a common axis of

principal moment of inertia, the a2 -axis. When the system is in

equilibrium in free space, the axis of principal moments of iner-

tia of both bcdies are coinciding with the axes al. A and a3.

These moments of inertia are, respectively, Ii, I1 and I1 for
the body B 1 and 12 , I2a nd I 2 for the body B 2 . A linear torsio-

nal spring with constant k d and a viscous damper wises constant c

resist the relative motion of the two bodies.

The rotations of B1 and B2 about the a2-axis are descri-

bed by the angle 6 and y, respectively. These angles are defined

with their sign in fig. 4.

When the composite body is freely vibrating in inertial

space, the modal equation is :

B t ay 2 S	 (6.30)

where

	

a 2 s 
k(721 

t a•)	 (6.31)
V	 d 	 122

and the angle y is then related to B by

Y s 06	 (6.32)

where
12 1

p ;2	 (6.33)
IZ
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In the D-frame the components of the position vector B of the ale-

ment of mass du relatively to the center of mass are expressed in

terse of the components of the position vector dm in the undefor-

sed bodys xq and the generalized coordinate S as :

For B 1	 01 = x1coso t x3sin8

p3 = x3	 (6.34) 

3 = x3coas - x iP S

for 82	 01
2
	 x1cospa - x=sinpB

pZ = xz	 (6.35)

0 3
2 	 x3cospo t x1linp8

Up to the second power in B the matrix J is then given by

J = I + 2A8 + 102	(6.36)

where the nonzero elements of I. A and 1 are :

Ii = I1 t 12 	 i = 192&3

{s.3^3
1 11 = Ij - I1 t p2 (13-ii)

122 s I1 - I3 t p2 ( Ii-Ig)

Further the generalised mass of the mode of sibrationg sv 1J2Pyl

is given by

C  = PI2

on circular orbit one equilibrium is obtained when the frame D

coincides with the A frame, the compositive body is stable when

the K matrix defined in ( 6.21) is positive definite. The matrix

N being positive definite, the matrix N-1K has also to be posi-
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tive definite to have stability.

From (6.21) and (6.32) this matrix is

-K 1	0	 0	 0

	

M-1 K  : 
0	 4K2	 0	 4p^( KZ-K!)	

(6.39)

	

0	 0	 -3K3	 0

	

0	 p- Z	 -KZ )	 0	 m^ t ^( K2+p K2 )

where K1s K29 K S are defined in (6.26) and

Ii - Ii
K2 s .^.^ 1	 (L s 1 9 2)	 (6.40)

I2

It must be noted that K 2 is related to K2 and K2 by the relation

2	 1K s p 1* K2 + p+T K22 (6.41)

The system is stable if the following conditions are satisfied

K 1 	0

K2 ; 0	 (6.42)

KS 6 0

and

4K2	 4 +'K2-KZ)

p+ (K2-KZ:	 ry + ate(K2+0K2) 
i 

3 0	 (6.43)

The first three conditions are satisfied in the so -called Lagran-

ge's regions of the K 1-K2 plaee, t*_s Delp -region C8] being Liapu-

nov unstable.

When eV = 0 the condition (6.43) reduces to

K2 K2 ; 0
	

16.44)

Then, from the conditions ( 6.42) and the relation (6.41) this

latter condition requires :
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K2 ; 0
and	

K2 0

When kd is zero to have stabilitys the two bodies D, and

BZ have to be stable separately. This is an obvious conclusion.

7. Conclusions.

The formulation presented for the dynamics of defor*able

bodies is very powerful mainly when the deformations are small,

in other words, when the equations may be ltnearised. The equa-

tions are presented in matrix form which has soma advantages for

nUAsrical computation. Further the elements of the matrices are

easily determined by modal analysis of the system. This may be

done theoretically or realised experimentally In the laboratory,
The Liapunov stability of earth-pointing satellites is dotal

mined for any equilibrium orientation. it is seen thatq is equili-

brium, on cirw4la:• orbit the principal axes of the satellites are
coinciding with the orbital reference axes. When there is some e-

nergy dissipation, equilibrium may be obtained only whom the aces
of larger and smaller moment of inortiL are respec 3vely perpendi-
cular to the Vlaue of the orbit and directed towards the center
of the earth.
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