General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

THE DETERMINATION OF QUANTITATIVE MICROBIAL SAMPLING REQUIREMENTS FOR APOLLO MODULES

A. L. Roark, 1741

SANDIA LABOPATORIES

THE DETERMINATION OF QUANTITATIVE MICROBIAL SAMPLING
REQUIREMENTS FOR APOLLO MODULES
A. L. Roark*

Planetary Quarantine Department
Sandia Laboratories
Albuquerque, New Mexico

January 1969

[^0]
TABLE OF CONTENTS

Page
Introduction 3
The Model 3
Sampling Procedures 10
Conclusions 13
Further Remarks 14
References 23
TABLES
1 Surface Area of Apollo Module in Souare Feet 15
2 Values of x Correspondino to Various Values of θ 15
3 Maximum Microbial Loading on Apollo Modules 15
4 Number of Square Inches Required in Sampline of CM Interior 16
5 Number of Sauare Inches Penuired in Samplina LM Interior 17
6 Number of Souare Inches Required in Sampling of Exterior of 18
LM Ascent Stage
7 Number of Square Inches Required in Sampling of Exterior of 19
LM Nescent Stane
8 Number of Square inches Required in Samplino Enqine Eell on
8 Number of Square inches Required in Samplino Enqine Eell on 20 20 LM Descent Stage
9 Number of Square Inches Pequired in Samplino of Interior of SLA 21
10 Number of Samples for Various Modules 22

One of the main responsibilities which the United States Planetary Quarantine Officer has concerning Apollo is the estimation of the number of microorganisms which are on the surface of each Apollo spacecraft at launch. This problem is composed of two parts. The first is to estimate the bicloading on the hardware at a given sampling time. The second is to predict, on the basis of this estimate and environnental sampling, the number of microbes which will be on the surface at launch. The second of these models must deal with the problem of fall-out of microbes from the environment and with the transfer of microbes from the workmen and their equipment to the surfaces of the module. This prediction model will be dealt with in a later document. The present work is a possible approach to the first of these models. To be more precise, it deals with the problem of estimating the total number of microorganisms on the surface of an Apollo module based on samples taken from a relatively small percentage of the total area of the module. Another problem related to this which we shall discuss is the problem of establishing ahead of the sampling time the number of samples which will be needed to obtain various accuracies. In doing this, we shall consider both the cotton swab method of sampling which is now used [5] and the vacuum probe method of sampling [1] which is being considered for use. THE MODEL

When various investigators (for example, HicDade, et al [4]) have counted the number of microorganisms per unit area on a surface which sees a uniform environment, they have observed what they term the "plateau effect". This effect is defined to be the phenomenon which is observed as one records
the number of microorganisms per unit area as a function of time. They find that as time increases, the density of microorganisms on a surface asymptotically approaches an upper bound. If we wish to explain this plateau, we arrive at the assumption that the majority of microbes which are found on the surface are attached to larger ambient particles. The reason for this conclusion is that the plateau has been observed when spores are considered. If we assume that microbes are continually deposited, there must be removal of viable microorganisms from the surface in order to obtain the plateau. Since spores are very slow to die, it would seem that physical removal of the microorganisms is what produces the plateau since removal by death is unlikely in the time periods which are observed. The energies necessary to remove spores which are not attached to ambient particles from a surface are much higher than one would expect in a typical experimental (or assembly) environment [9]. Thus, the assumption that most microorganisms which are deposited on a surface are attached to ambient particles is consistent with observations.

The first part of the model which we shall develop deals with the attachment of microorganisms to ambient particles, restricting our attention to "large" particles which can be removed from surfaces under normal assembly conditions or to "naked" microorganisms which die. To do this, let us draw a particle at random from the environment. Let Y be the random variable representing the number of microorganisms which are attached to this particle. We wish to derive an expression for $P(Y=k)$ the probability that k microorganisms are attached to the particle.

We refer the reader to the work of Tukey [11] for many of the details which we shail omit. Assume that there exist microbes and \mathbb{N} ambient particies in the assembly facility where the Apollo module is located.

Let P_{i} be the probability that one of the microorganisms will attach itself to the $i^{\text {th }}$ particle. (We do not require $\sum_{i=1}^{N} P_{i}=1$. We only require $\left.\sum_{i=1}^{N} P_{i} \leq 1\right)$. Define the random variable X_{k} to be the number of particles in the assembly facility with k microorganisms attached to them. If we assume that $\mathrm{P}_{\mathbf{j}}$ does not change as microbes become attached to the $\boldsymbol{i}^{\text {th }}$ particle, then we see that $E\left(X_{k}\right)$, the expected value of X_{k} is given by

$$
\begin{equation*}
E\left(x_{k}\right)=\binom{m}{k} \sum_{i=1}^{N}\left(1-P_{i}\right)^{m}\left(\frac{P_{i}}{1-P_{i}}\right)^{k} \tag{1}
\end{equation*}
$$

The assumption that P_{i} is independent of the number of organisms on the particle is probably the most questionable of all those we shall make. We shall say more about it later.

Since the Apollo modules are not in a highly controlled microbial environment at Cape Kennedy, it is reasonable that m is very large. Also the attraction between ambient particles and microorganisms is probably very small. For these reasons let $m \rightarrow \infty$ and $P_{i} \rightarrow 0$ for $i=1,2, \ldots, N$ in such a way that $m P_{i}=\lambda_{i}$ where λ_{i} is a constant. The quantity λ_{i} here would represent the expected number of microorganisms on the $i^{\text {th }}$ particle. After taking these limits equation (1) becomes

$$
\begin{equation*}
E\left(x_{k}\right)=\sum_{i=i}^{N} \frac{\left(\lambda_{i}\right)^{k}}{k!} e^{-\lambda_{i}} . \tag{2}
\end{equation*}
$$

If a_{i} is determined so that $\lambda_{i}=\lambda\left(1+a_{i}\right)$ where λ is fixed, equation (2) can be rewritten as

$$
E\left(x_{k}\right)=\frac{\lambda^{k}}{k!} e^{-\lambda} \sum_{i=1}^{N}\left(1+a_{i}\right)^{k} e^{-\lambda a_{i}}
$$

A convenient choice of λ is the mean of the $;$'s. If we use this value for λ, we have $\sum_{i=1}^{N} a_{i}=0$. Define $A=\sum_{i=1}^{N} a_{i}^{2}$. Expanding the summation in (3) and collecting terms we obtain

$$
E\left(X_{k}\right)=\frac{\lambda^{k}}{k!} e^{-\lambda}\left\{N+\left[\frac{(k-\lambda)^{2}-k}{2}\right] \sum_{i=1}^{N} a_{i}^{2}+\left[\frac{(k-\lambda)^{3}}{6}-\frac{3 k-2}{6}+\frac{k \lambda}{2}\right] \sum_{i=1}^{N} a_{i}^{3}+\cdots\right\}
$$

Truncating after powers of a_{i}^{2}, this becomes

$$
\begin{equation*}
E\left(X_{k}\right)=\frac{\lambda}{k!} e^{-\lambda}\left\{N+\left[\frac{(k-\lambda)^{2}-k}{2}\right] A\right\} \tag{4}
\end{equation*}
$$

Again, relying on the fact that the environments which the Apollo modules see are relatively "dirty", we shall take N to be large. Thus, observing the fact that

$$
P(Y=k)=\frac{E\left(X_{k}\right)}{!!}=\frac{\lambda^{k}}{k!} e^{-\lambda}\left\{1+\frac{1}{N}\left[\frac{(k-\lambda)^{?}-k}{2}\right] A\right\}
$$

and letting $\mathbb{N} \rightarrow \infty$ we obtain

$$
\begin{equation*}
P(Y=k)=\frac{\lambda^{k}}{k!} e^{-\lambda} \tag{5}
\end{equation*}
$$

Before continuing with the other aspects of this model, there are two things which should be discussed and emphasized.

The assumption that the attractive forces between ambient particles and microorganisms does not change as microorganisms become attached is not as restrictive as we have indicated earlier since we only use the limic as P_{i} approaches zero. The second observation is that λ was chosen to be the mean number of microonganisms attached to a particle. This combination of the characteristics of all particles into this one parameter will be useful in our later work.

Tierney has described the use of a simple "Birth and neath" model for the fallout of particles from the environment onto surfaces [8]. What we shall attempt in the remainder of this section is to combine the concept of the attachment of microorganisms to ambient particles with the fallout of ambient particles onto surfaces.

Before proceeding we observe that microorganisms can also be deposited on the surfaces by contact from the workmen and their equipinent. We shall also say something about this later in this work.

Let us first assume that, considering onlv the fallout of the airborne microbial contamination, the surface of the Apollo module can be partitioned into subsections each of which sees a uniform environment. This is possible since the orientation of each nodule remains the same during its checkout procedures at Cape Ken::edy. (This is not true of many of the unmanned spacecraft). Divide the airborne particles into classes such that all of the particles in a given class have the same fallout and removal characteristics. With these conditions Tierney concludas that after a subsection of the module sees the same enviroment for a "long" period of time, the distribution of the random variable representing the number of particles of
a given class approaches a Poisson Distribution (see reference [3] for a more complete discussion of why this is true). Since the sum of a finite number of Poisson distributed random variables is Poisson distributed we see that if W is a random variable representing the number of ambient parcicles on the entire module after a sufficiently "long" time then

$$
\begin{equation*}
P(W=i)=\frac{e^{-\gamma_{\gamma} i}}{i!} \tag{6}
\end{equation*}
$$

where $\gamma=\frac{n}{\rho}, n$ is the average fallout rate of all particles on all sections of the module, and ρ is the average percent removal rate of all particles from all sections of the nodule by "death", physical removal, etc.

Let Z be the random variable representing the total number of microorganisms on the surface of the entire module. Then we conclude that

$$
\begin{equation*}
P(Z=k)=\sum_{i=n}^{\infty} P(Z=k \mid W=i) P(W=i) . \tag{7}
\end{equation*}
$$

Considering equation (5) we cbserve that the probability of k microorganisms on \mathfrak{i} particles is

$$
P(Z=k \mid W=i)=\frac{(i \lambda)^{k} e^{-\lambda i}}{k!}
$$

which when combined with equations (6) and (7) yields

$$
P(Z=k)=\sum_{i=0}^{\infty} \frac{(i \lambda)^{k} e^{-i \lambda} \gamma^{i} e^{-\gamma}}{k!}
$$

or

$$
\begin{equation*}
P(Z=k)=\frac{\lambda^{k} e^{-\gamma}}{k!} \sum_{i=n}^{\infty} \frac{i^{k}}{T!}\left(e^{-\lambda} r\right)^{i} . \tag{8}
\end{equation*}
$$

The probability of k microorganisms being deposited or a given module by fallout from the environment is thus given by (8). We see that this distributior is what is referred to in the literature as leyman's Contagious Distribution of Type A [2, 6$]$. Several authors have used a Poisson Distribution to estimate microbial loadings on spacecraft. We note that our model differs from this in the spread (i.e. variance) of the distribution. Equation (8) takes into account the fact that, because of the attachment of microorganisms to ambient particles, if we find one microorganism in a unit area the prolability is hiaher we will find another.

In order to discuss the deposition of microorganisms by the contact with the module of workmen or their equipmert we shall use a very naive approach. Let us assume that each type of contact is a special kind of particle. Then equation (5) would include these in estimating the numbers of microorqanisms deposited by each contact, equation (6) would estimate the number of contacts, and (8) would include this in estimating the total microbial loading. The author realizes this analogy is not accurate since it does not take into account the microbes which are generated by the workmen themselves. It is a good approximation in most cases since the workmen wear gloves [7] and we are mostly concerned quantitatively with spores which are not usually qenerated by humans.

If we wish to use the mathematical model given by equation (8) to establisn sampling protocol we note that the mean (μ) and the variance σ^{2} of the leyman Contagious Distribution of Type Λ are given by

$$
\begin{align*}
& \mu=\gamma \lambda \tag{9}\\
& \sigma^{2}=\mu(1+\lambda) . \tag{in}
\end{align*}
$$

In order to establish sampling requirements, it shall be necessary to use the Central Limit Theorem[3] to obtain confidence intervals.

Suppose we are given β and θ and we wish to determine the number of square inches n which must be sampled in order to insure that

$$
\begin{equation*}
\operatorname{Prob}\left\{\frac{(\bar{x}-\mu)^{2}}{\mu}<\beta\right\} \geq \theta \tag{11}
\end{equation*}
$$

where \bar{X} is the sample mean which is observed and μ is defined by (9) (and is not observed). Since we cannot sample exactly we shall assume that there is a sampling error ε due to either lack of removal, to the lack of recovery after they are removed or to our failure to grow the colony. The values \bar{X} and μ refer to the entire module. Thus when n inches are sampled with sampling error ε, the number of times m which we sample an area enual to that of the entire module is $\frac{n}{A}(1-\varepsilon)$ where A is the area of the module. Rewriting (11) we obtain

$$
\begin{equation*}
\operatorname{Prob}\left(\frac{|\bar{X}-\mu| \sqrt{m}}{\sigma} \leq \frac{\sqrt{\beta \mu m}}{\sigma}\right) \geq \theta \tag{12}
\end{equation*}
$$

where σ is defined by (10). Define x by the equation

$$
\psi(x)=\theta
$$

where

$$
\psi(y)=\phi(y)-\phi(-y)
$$

and ϕ is the standard normal distribution. Applying the Central l.imit Theorem we see that

$$
\operatorname{Prob}\left(\frac{|\bar{X}-\mu| \sqrt{m}}{\sigma} \leq \frac{\sqrt{\beta \mu m}}{\sigma}\right)=\psi\left(\frac{\sqrt{\beta \mu m}}{\sigma}\right) \geq \theta=\psi(x) .
$$

I'sing the monotonicity of ψ we obtain

$$
x \geq \frac{\sqrt{B \mu m}}{\sigma} .
$$

Squaring and substituting the definitions of m and σ^{2} given in equations (9) and (1?) this equation becomes

$$
x^{2} \geq \frac{\beta n(1-\varepsilon)}{(1+\lambda) A},
$$

or

$$
\begin{equation*}
n \leq \frac{A(1+\lambda) x^{2}}{B(1-\varepsilon)} . \tag{15}
\end{equation*}
$$

This is the result we shall use to establish our samolino protocol.
The modules on which we are intelested in estimating the microbial load are [19]

1. the interior of the command module (CM)
2. the exterior of the lunar module (LM) ascent and descent stages
3. the interior of the lunar module ascent stage
4. the interior of the spacecraft - lunar module adaptor (SLA). The areas of these and other modules are qiven in Table 1. Some representative values of X for various values of θ are aiven in Table 2.

One of the hardest parameters to determine is B since it is not obvious what its relationship is to reality. From eauation (11) we krow that

$$
\frac{(\bar{x}-\mu)^{2}}{\mu}<\beta
$$

This implies

$$
|\bar{X}-\mu|<\sqrt{\beta \mu} \leq \sqrt{\beta \mu_{\max }}
$$

where $\mu_{\max }$ is the maximum value which μ can assume. Thus, knowing the error we can accept in the determination of the mean of our distribution and knowing a maximum value for μ, we can determine a B to use. Table 3 lists maximum values which we may wish to use. These are hased on actual samples taken by the Public Health Service at rape Kennedy [7].

The samplinn error ε will vary depending on the method used. The methods we shall consider are the vacuum probe and the cotton swab. If we consider only the possibilities of either not removing the microbes in the area being samples or not recoverinn them from the sampling equipment
then an error of 5% appears reasonable for the vacuum prohe method of sampling. For the cotton swab method of sampling, there appears to be a large discreparizy in the data which is available. Thus, we shall use errors of 50% and 70% for this method.

The only other value we need is λ. This is the mean number of microorganisms per particle. Little information is known ahout what this value should be. We shall estimate that it lies between one and ten.

To aid in the establishment of sampling protocol, Tables q through ? contain representative data for the modules in which there appears to be an interest. All of these tables are based on a β of one and the entries represent the number of inches n which must be samnled. To obtain n when more realistic values of β are used; we must divide the table entries by β.

CONCLUSIONS
Since $1 n^{9}$ appears to be an upper bound on the loading on all of the modules except the SLA and, since heing within in ${ }^{6}$ apnears to be well within any stated qoals, a value of 10^{4} for β appears to be appropriate. A combination of other variahles which minht prove useful is

```
\lambda=4
\varepsilon=.5n
0=.8n or 0=.9n
```

This means that the cotton swab method is heinc used. If four square inches are defined to be a standard sample, then Tahle 10 gives the number of samples necessary to achieve the desired results on the various modules. All of these are within the sampling capabilities which exist.

The interior of the SLA appears to have a maximum loading of 1^{7}, and thus B can be chosen to be $1 n^{5}$ to obtain the same accuracy as we have on the other modules. If we adopt the same set of values for the other parameters, we ohtain the fact that only nine samples are needed to get the desired results.

FIIRTHEP. REMARKS

The model we have oresented yields a probability distribution which takes into account the fact that most microorganisms which are on the surface of spacecraft are attached to ambient particles. As Tierney nointer out, the "birth and death" fallout model is not adequate hecause it does not talo this fact into account. In order for the model to be predictive, Work still nee's to be done to extend the fallout concept to account for this fact. Hopefully, when this is done, it will he possihle to show that the solution of the equations approaches (8) asymptotically.

Some questions have been asked concerninq the attachment of microorganisms to particles and the number of microorganisms on surfaces in ultra clean areas such as one finds in laminar flow rooms. If we consider equation (1) and let

$$
P(Y=k)=\frac{E\left(X_{k}\right)}{!}
$$

we obtain a probability distribution for the number of microorganisms on a particle. By using Poisson mixing, as we have in (7), we obtain a distribution for microorganisms on surfaces. Ohserve that in this case more knowledge is required from the field of small particle physics. This is to be expecter. There are very fow particles, and thus one cannot look at the "aross" effects as we have in our model for "dirty" areas.

Table 1 - Surface Area of Apollo Module in Square Feet
Module
Number of Square Feet of Surface Area
Interior CM 549
Exterior LM ascent stage 69%
Exterior L^{M} descent stage 532
Interior L" ascent stage $28 n$
Interior SLA $150 n$
Enaine Bell on LM descent stage 103
Table 2 - Values of \times Corresponding to Various Values of θ

θ	\boldsymbol{x}
.99	2.58
.95	1.96
$.9 n$	1.64
.85	1.44
.90	1.28
.75	1.15
.70	1.04

Table 3 = Maximum Microbial Loading on Apollo "odules

Module

Interior CM
Exterior LM ascent stage
Exterior LM descent stage
Interior LM ascent stage
Interior SLA

Yumber of Microorganisms
7.56×17^{7}
3.59×10^{7}
$3.31 \times 1 n^{7}$
$4.67 \times 1{ }^{7}$
$6.21 \times 1 n^{6}$

Table 4 - Number of Square Inches Required in Sampling of CM Interior $B=1$

			number of θ
	λ	square inches	

Table 5 - Number of Sauare Inches Required in Sampling LM Interior $\beta=1$

			number of
	λ	e	square inches

Table 6 - Number of Square Inches Required in Sampling of Exterior of LM Ascent Stage $\mathrm{B}=1$
number of
square inches
489224
298016
240556
196737
1223060
745041
601389
491843
1712230
10430ヶn
241945
688581
2f9n73n
1639090
1323060
1082nan
929526
566231
$457 n 56$
373801
2323810
14155 n n
1142 Fan
$9345 n 2$
3253347
1291819
15907nn
13n93nก
511239n
$311427 n$
2513819
2055910
1549210
943718
7F17ヶn
623nn?
$3873 n 20$
$23593 n$
19n44กn
155750 n
5422230
3303010
2566160
2180510
852065n
$519045 n$ 418968 C 3426510

Table 7 - Number of Square Inches Reauired in Sampling of Exterior of LM nescent Stage $\beta=1$

θ	λ	ε	number of square inches
. 9	1	. 05	433779
. 8	,	. 05	264241
. 75	,	. 05	213293
. 7	1	. 05	174440
. 9	4	. 05	1784450
. 8	4	. n E	Ffncou
. 75	4	. 05	533232
. 7	4	.05	436701
. 9	K	. 05	$151823 n$
. 8	6	. 05	924814
. 75	F	. 05	746525
. 7	$\stackrel{\square}{6}$. 05	F.1n542
. 9	10	. 5	238578 n
. 8	11	. 05	1453337
. 75	10	. 05	1173119
. 7	10	. 05	950422
. 9	1	. 5	82.418
. 8	1	. 5	502ก58
. 75	1	. 5	ant25f.
. 7	1	. 5	331437
. 9	4	. 5	znanam
. 8	4	. 5	1255150
. 75	4	. 5	1013140
. 7	4	. 5	R28592
. 9	6	. 5	? 3 9, 5 ¢ 3 n
. 9	6	. 5	17572 n
. 75	6	. 5	14184n?
. 7	f	. 5	11 ¢0ก3ก
. 9	10	. 5	45320nn
. 9	10	. 5	276132 n
. 75	10	. 5	2228010
. 7	10	. 5	182290n
.?	1	. 7	1373F3n
. 8	1	. 7	8397fa
. 75	1	. 7	¢75427
. 7	1	. 7	552395
. 9	4	. 7	3434non
.?	4	. 7	2nopnin
. 75	4	. 7	$168857 n$
. 7	4	. 7	$1380 n \mathrm{n}$
. 9	6	. 7	4807710
. 8	6	. 7	2928670
. 75	6	. 7	2364000
. 7	6	. 7	193338 n
. 0	10	. 7	7554980
. 8	10	. 7	4fn22กn
. 75	10	. 7	3714850
. 7	10	. 7	3038170

$\begin{aligned} \text { Table } 8 \text { - } & \begin{array}{l}\text { Number of Square Inches Required in Sampling } \\ \\ \text { Engine Rell on LM Nescent Stage } \\ \beta=\text { ? }\end{array}\end{aligned}$

θ	λ	ε	number of scuare inches
. 9	1	. 05	839935
. 8	,	. 05	511505
. 75	1	. 05	412954
. 7	1	. 05	337732
. 9	4	. 05	20959
. 8	4	. 0.5	127809
. 75	4	. 75	1032.39
. 7	4	. 05	344331
. 9	6	. 05	293942
. 8	f	. 0.5	179059
. 75	6	. 05	144534
. 7	6	. 05	118206
. 9	10	. 05	461909
. 8	10	. 05	281377
. 75	10	. 05	227125
. 7	10	. 05	185753
. 9	1	. 5	159569
. 8	1	. 5	972 n3
. 75	1	. 5	784F13
. 7	1	. 5	641692
. 9	4	. 5	308921
. 8	4	. 5	243007
. 75	4	. 5	196153
. 7	4	. 5	160423
. 9	6	. 5	558499
. 8	f	. 5	$34 n 219$
. 75	6	. 5	274614
. 7	6	. 5	224502
. 9	10	. 5	877 F27
. 8	10	. 5	534615
. 75	10	. 5	431537
. 7	10	. 5	352930
. 9	1	. 7	265943
. 8	1	. 7	162005
. 75	1	. 7	130759
. 7	1	. 7	176949
. 9	4	. 7	664869
. 8	4	. 7	405012
. 75	4	. 7	326922
. 7	4	. 7	267372
. 9	6	. 7	930817
. 8	6	. 7	567017
. 75	6	. 7	457691
. 7	6	. 7	374320
. 9	10	. 7	1462710
. 8	10	. 7	891027
. 75	10	. 7	719228
. 7	10	. 7	588217

Table 9 - Number of Sauare Inches Required in Samplina

θ	λ	ε	numher of square inches
. 9	1	. 05	1223n¢ก
. 8	1	. 05	745041
. 75	1	. 05	601389
. 7	1	. 05	491843
. 9	4	. 05	3057 f0
. 8	4	. 05	136250n
. 75	4	. 05	1503470
. 7	4	. 05	1229610
. 9	6	. 05	4280710
. 8	6	. 05	2607 fan
. 75	6	. 05	210486n
. 7	6	. 05	1721450
. 9	10	. 05	672693 n
. 8	10	. 75	$409772 n$
. 75	10	. 05	
. 7	10	. 05	$270514 n$
. 9	1	. 5	2323810
. 8	1	. 5	141553n
. 75	1	. 5	1142640
. 7	1	. 5	934 ¢02
. 9	4	. 5	58no5an
. 8	4	. 5	3538®4ก
. 75	4	. 5	28566nn
. 7	4	. 5	233626n
. 9	6	. 5	P13335n
. 9	6	. 5	4954520
. 75	6	. 5	3009240
. 7	5	. 5	327076n
. 9	10	. 5	12781nnm
. 8	10	. 5	7795fon
. 75	10	. 5	6294520
. 7	10	. 5	5130760
. 9	,	. 7	3373 n2n
. 8	1	. 7	$23503 n 0$
. 75	1	. 7	100:4nn
. 7	1	. 7	1557500
. 9	4	. 7	9 ¢R2560
. 8	4	. 7	5809241)
. 75	4	. 7	47¢19nก
. 7	4	. 7	3893760
. 9	6	. 7	1355560n
. 8	6	. 7	8257540
. 75	6	. 7	66654nn
. 7	6	. 7	5451260
. 9	10	. 7	$213 n 160$ n
. 8	10	. 7	1297finn
. 75	10	. 7	1017aznn
. 7	10	. 7	8566270

Tabie 10 - Number of Samnles for Various Modules $\beta=1 n^{4}, \lambda=4, \varepsilon=.5 n$.
$\theta=0.8 \mathrm{n} \quad \theta=0$. 0 n

Module	Number of Samples	Numher of Samples
CM Interior	33	54
LM Interior	17	27
LM Exterior Descent	32	52
LM Exterior Ascent	36	59
Engine Pell-LM Descent	7	17

PEFFPENC:S

1. V. L. Nugan, et al, "A New Approach to the Microhial Sampling of Surfaces: The Vacuum Prohe Sampler," Sandia Laboratories Publication SC-RR-67-114, February, 1967.
2. William Feller, "On a Class of Contagious Distributions," Ann.Math. Stat., Vol. 14 (1943), pp. 389-400.
3.

,, An Introduction to Probability Theory and Its Applications, Vol. T, 2nd. Ed., John Wiley : Sons, Inc., New York, 196n.
4. J. J. McDade, M. S. Favero, G. S. Michaelsen, and I. Vestly, "Environmental Microbiology and the Control of Microbial Contaminantion," in Spacecraft Sterilization Technology, MASA Publication NASA SP-1n9, 1966.
5. National Aeroriautics and Space Administration, Standard Procedures for the Microbio logical Examination of Space Hardware, MASA Publication, jof6.
5. J. Neyman, "On a Class of Contagious Distributions, Applications in Entomology and Bacteriology," Ann. "ath.Stat.: Vol. 1n (103n), po. 35-57.
7. J. R. Puleo, Private Communication, 1n¢ァ.
3. M. S. Tierney, "The Chance of Retrieval of Viable Micruorganisms Deposited on the Moon by Unmanned Lunar Probes," Sandia Laboratories Publication SC-:1-58-539, 1968.
o. C. A. Trauth, Jr., Private Communication, 1969.
10. \qquad , Private Communication to L. l'all, Iulv 2r, 1963.
11. John W. Tukey, "Moments of Random Group Size Distributions," Ann. Math. Stat., Vol. 2^{n} (1949), pp. 523-539.

[^0]: *Currently Associate Professor of Mathematics at West Virginia University, Morgantown, West Virginia

 This work was conducted under Contract No. NASA-R-09-019-040, Bioscience Division, Office of Space Science Applications, NASA Headquarters, Washington, D. C.

