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ABSTRACT

This report is concerned with the application of transformation groups
to the solution of systems of ordinary differential equations and, in particu-
lar, partial differential equations, These groups are Lie groups in the usual
sense, but it 1s the transformation properties rather than the group structure
that is used.

The principal tool used here, referred to as Lie's theorem, gives a
method for finding an integrating factor for a system of ordinary differential
equations when the appropriate invariance group or groups can be found. Lie's
theorem is extended to partial differential equations by considering a partial
differential equation as a continuously infinite system of coupled ordinary
differential equations., For a system of ordinary differential equations the
integrating factor ié a matrix., For a partial differential equation the inte=-
grating factor is a continuously infinite matrix.

The proof of tie's theorem and its use for partial differential equations
depends on constructing an adequate theory of continuously infinite matrices;

this is done here through the use of distributions or generalized functions.
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I. INTRODUCTION
This report is concerned with the application of transformation grcups to
the solution of systems of ordinary differential equations and in particular

partial differential equations. These groups are Lie groups in the usual

sense, but it is the transformation properties rather than the group structure

that 1s used.

|
The principal theorem, referred to as Lie's theorem, gives a method for éf

finding an integrating factor for a éystem of ordinary differential equations
when the appropriate invariance group or groups can be found., Lie's theorem
can be extended to partial differential equations by considering a partial
differential equation as a continuously infinite system of coupled ordinary
differential equations. For a systém of ordinary differential equations the
integrating factor is matrix. For a partial differential equation the inte-

grating factor is then a continuously infinite matrix.,

The proof of Lie's theorem and its use for partial differential equations

depends on having an adequate theory of continuously infinite matrices; this is

done here through the use of distributions ox generalized functions.

Chapter II treats systems of ordinary differential equations. Lie's
theorem is derived in such a way that it can be readily applied to the discrete
approximation of a partial differential equation. Examples given are the
discrete approximation to the heat flow and wave equations considered as initial
value problems, and it is shown that the limiting form of the solutions obtained
are those given by other more familiar techniques.

In Chapter III Lie's theorem is derived for and applied directly to par-
tial differeantial equations without the necessity of using a discrete approxi-

mation. ‘The heat flow equation is again used as an example.




w Ao

While the examples given are linear equations, there is nothing in the
method that restricts it to linear problems. Lie's theorem can in principle
be applied to non-Lirear partial differential equations, but in practice it
has been difficult to find a non-linear example.

Chapters II and III are oriented towaxrds the engineer, physicist or
chemist whose prime interest is application and the practical solution of
problems. The proofs or derivations here would not be considered satis-
factory by standards of the mathematics of this century,

In the Appendix, however, an effort was made to achieve rigor in the
proofs given, It is here that the foundations of a theory of continuously
infinite matrices based on distribution theory and generalized functions[29-
33] is given.

It will be noted that the notation of Chapters II and III and of the
Appendix are not always consistent with each other. Where differences occur
it is usually due to an effort to maintain a notation consistent with that
of the reference from which the material was obtained,

While we have not been éble to find in the literature Lie's theorem for
partial differential equations (ur even for systems of ordinary differential

equations), it seems unlikely that the work here is completely new.

Notation

The notation used in connection with matrices in Chapter II is as follows:
A doubly indexed quantity will be called a matrix. If Aij are the elements of
a matrix, then the matrix is referred to as A, Singly indexed quantities will
be called vectors so that Bi are the elements of the vector called B. The
transpoée of A and B will be denoted AT and BT respectively. The inverse of A

is AI and its elements written as Aij'




The summation convention will be used so that any repeated index is

understood to be summed unless stated otherwise., For example, if A and C
are matrices, the product AC will be written as Aimpmj' The index m is
understood to be summed. The product A?C is written as Amicmji etc, These
sums run over the entire range for which the index is defined.

To shorten notation when partial derivatives are used, the comma nota-
tion will be used. That is g% (x,t) and %ﬁ (x,t) will be written as ¢’t and

¢’x respectively, If a quantity is a function of a set of indexed variables,

for example
Yy sYpi¥qs + ¢ ) =¥, then

its partial derivatives %% will be written as Y’k' For example
' k

-C(ll_tQ(yl(t)’ y2(t)a ceoey £) = Q’t +Q’i }.'i

where

. dy, ()
Y1 = Tat -

In the chapter dealing with the application of continuously infinite
matrices to the solution of partial differential equations, the notation caa
become quite complex and under some circumstances ambiguous. Some of the
conventions and notations used there will be described as follows.

The partial derivative will have its usual meaning. That is, if ¢ =

¢(x,t,z) for example, then




|

ox ~ dx and Ll

t = constant

X = constant
z = constant

zZ = constant.

I1f z happens to be a function of x and t, that is z = z(x,t) then

¢ = g(x,t,z2(x,t)) E ¥(x,t)

and
N .00, 0 22 4y W20, 22
ox " ax T oz ax ™ 3 T3t 3z ae *ob)
The comma notation will also be used for the partial derivatives, i.e.
¢,taat’¢’x§5§%, and

g 56-):1 £QysYga¥g v 0 ¢ )

. £,

Where this will cause no confusion, the prime and dot notation will also be

used for partial or total derivatives with respect to x and t respectively.

That is

.2 : 2
- se . O Y - QY - O Y
¥ = %% (x,t), y E atz ’ Y' = gx (x:t)’ y" = axz s etc,

A functional notation will also be used., Parentheses will be used to

indicate parameters of functions or distributions and square brackets indicate

functional parameters. Thus ¢ (x)[y] = ¢ (x,z) with

+ . - o
Z = I £(x,y(x),y',y" . . . )dx,

Q0

.
D,




where £ is some function of the indicated parameters, That is, ¢ can be
regarded as a function (or distribution) in the variable x and as a functional
in the quantity y.

The variational derivative* will indicate a derivative with respect to a

functional parameter. That is

4o
3%?:;[}'] az (x,2) ’ 'g;,'(s) J; :Y(x)»y AT ')dx
M - -
z= [ £&y@),y', . . .)dx
=00
and
6 bv(x) .-
5},(8) f f(xs}’(x):y » oo -)dx" J‘ a f(x zo;y y o e w) . %&% dx
zo =y (X)
T GG 8 y'(x)dx
+:rm-a';; f(x_,y(x),zl. v v ) ) . E;(S)
2y = y' (%)
+ etc.
and
8Y(X) = o S_y'(x) _ d8(2)
TS IR T T R ’
z=X - 8
*frechét derivatiye

e

i\
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S y"(x) - .d...z.... 6 (z)

5y (s) dzz ’ ete,
Zm X = B
so that

s8(x)[y] _ 38 (x,2) ) (.4_;)“ BE(8,20,21)29) + + +)
6y (s) 9z ‘4 \ds/ 9z .
o<k
<o m_ .
Z = f £dx z = dx(e) :
- Mmoo gs" s
Here §(x) is the Dirac delta distribution or generalized function. The pa- g

rentheses designate either function or distribution parameters; no distinction

gz SRR L

betweet. function or distribution parameters will be made. However, it is under-

stood that in any integration associated with a matrix multiplication, one of

the occurrences of the variable is a distribution and the other a fairly good

function (in the sense of Lighthill [297]).

Distributions, the general theory of continuously infinite matrices,
definitions, and theorems associated with these topics are given in the
appendices, It should be noted that a functional parameter can also be a func-
tion (or distribution) in some variable. In that case, account must be taken

in expressing the total and partial derivatives, Thus if

m

? = ¢(t)ly] = (t,2)
<

z = J‘ f(x:}’(x;t)s}"(‘x,t),}’"(",t) ' . ')dx

=00

then




t ot and

]
z= [ f dx
=0

d
v 38 J EGY G0,y (x,0), L . L )dx
+“ =0
z= [ f dx

_ 2, 5 e(0y] 3y (x,tydx
t :Jm 6y (x,t) ot

T 3]
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IT. LIE'S THEOREM FOR A FINITE SYSTEM
OF ORDINARY DIFFERENTIAL EQUATIONS
Lie developed the theory of one parameter continuous transformation

groups for the purpose of studying ordinary differential equations [1]. This
technique has become a standard éool for the solution cf first order ordinary
differential equations and is derived and discussed in most text books on the
subject [2-4]. For some reason, not too apparent, the extension of Lie's
theorem to systems of first order differential equations seems to have been
neglected. This extension is made in the first report on this contract [26]
where Lie's theorem is proved for systems of equations and examples.given.
The proofs will be repeated here in ‘this report in a slightly altered form,
one that is more easily extended to partial differential equations and more
examples given, However, we will not repeat here many of the definitions and
elementary concepts of group and transformation theory discussed in the first

report but will refer the reader to this report [26] or to the standard text

books on these subjects.

A, Lie's Theorem for Systems of Ordinary Differential Equations

Consider the system of M (total) differential equations in M + 1 variables

P, (¥ys v o o ¥ ) dy, + Q. (V15 Y05 o « « ¥ t)dt = 0, (I1-1)
jk ™1 M k i1 2 M

j=1, 2, . . . M. The summation convention for repeated indexes is used here.
Let ¢j (yl, Yoo o o o By t) = cy (constants) j=1, 2, . . . M, be a family of

solutions to II-1l. That is i




a¢.

By 1 " a—yi= MyaPai (11-2a)
o

Pyt " 51 = MgQy (11-2b)

where the Aji may be functions of the y and t but are independent of the index
k., A is called an integrating factor and is an M by M matrix. Thus if an
integration factor exists that satisfies IJ-2, each ¢J must satisfy the partial

i differential equation

¢J,kP1kiQi = ¢j,t =0, (II'B )

where PIk is the k,i element of the inverse of the matrix P provided PI exists,

i

Assume that the ¢j = cj are invariant as a family under the groups Un, n

=1, 2, « ..M,

ny S 9
Un - ank(yl’}'z, o e 0 yM"')') a&k + Bn(Yl’YZ’ ¢ o . YM’t) at
that is
- TI-

for n=1, 2, ; « +M, and =1, 2, . . . M, where the gnj are some functions

of the ¢'s. Introduce ¢ defined as

e = [ol, @ g, L s

I
N




so that Qs = Cs is identical with the family, ¢j = cj. The notation here is
~ I
that g is is the 1, s component of the inverse of the matrix g(¢), assuming

that this inverse exists, The right hand side of II-5 is meant to indicate a

line integral in ¢ sp.-e, 1, e,

X 1y
Je g 98, = R, B 1s(RpRy o v

¢2 I ¢3 I
+ 8 28 (¢1JwiR3’R4’ LA )dW"' g 38 (¢1’¢2’WDR4’ LA | )dw
R R
2 3
+ etc.,,
so that
By T
a¢i is
Here the Ri are arbitrary constants.
Then
% 1
Umés - Um¢i s:—'" Omi & is ~ 6ms ’ (I1-6)
/Wi

where 6 = 1if m= s or 0 if m # s. It is also seen that the §_ obey the

same partial differential equation II-4 as do the ¢i’ that is

I
Qs,kP kiQi - Qs,t =0, (II-?)

afan ol oo e

R Sk X

i S i o e A R




Equation II~-6 and II-7 can be combined to solve for Qs | and Qs " in
» ]
terms P, Q, o and B giving
ad
= 5 _ T T.1I
and
9%
= 8 _ T T, 1 ’
b, S3ro= (P + QB ,Q, (1I-6b)

Here the notation (PafT + QBT)ISi refers to the s, i component of the inverse of

the sum of the matrix products P with the transpose of o and Q with the trans-

pose of B, provided this inverse exists. (Note that QBT is a square matrix).
From equation II-7 it is seen that under the assumptinns made, an inte-

T + QBT)I

tion with equation II-1 gives a perfect differential in the sense that

gration factor or matrix exists of the form (Px , and matrix multiplica-

of od

dé_ = = dy, + — de

—S )1
- ayk k * ot

T T, I T T
= (Pe” + Q) s ij dy, + (Po” + QB g Qj dt.
The function ¢ can be found by a line integral ir the y, t space along

some convenient path, represented by

5 - fdcps f(PaT + QBT)ISj P & * I(paT + QBT)ISJ Q, dt

=K S=1’29vtoM' (11-9)

where the KS are constants. The equations Qs(yliyZ’ . e ey t) = KS represent

then the general solution to the set of eqdations II-1.

i




There are two points to be noted in connection with this result. The

first is that instead of the matrix equation P %{' + Q= 0, it would be just
as general to have used the equation '?i% + fz = 0, where 6: PI Q since a
necessary and sufficient condition for the existence of a solution to the first

is that P I exist,

The second point to note is that there 1s no need to consider transforma-

‘_5
i 1
1 &
H
£
i
K
iR Y
Uy
:
b
F
b
iy
4
&
T
"3
;]
x

tions of the variable t, That is the transformation

te~t +eBn

is exactly the same transformation (as far as the équation dy/dt + Q(y,t) = 0

is concerned) as the transformation

. ykh yk. (t - eﬁn) since

Vi (t = eB ) ~y (t) - e%% Bo = ¥ t €QB, -

Thus the transformations

d ) ! 1
+Bn ot

Un = %k ayk

are identical to the transformations

)
u'n = (ank + len) ayk,

with respect to the equation dy/dt + { = 0.

12




The remainder of this chapter will be concerned with the equation
dy/dt + Q = 0 and transformation y «~ y + ex only.

A formal statement of the theorem used in this report for the solution of
differential equations, which we will refey to as Lie's Theorem, then, is as
follows:

" ' dy(t)

If the differential equation It + Q(y(t), t) = 0, where y and Q are
vectors, and t a scalar,is invariantwith respect to the set of transformations

specified by
_ d
U, = dns(y’t)ays

d o
where o 1s a square matrix and s; a vector operator, then provided aTI exist,

the general solution:to the differential equation i%

o L (dy + Qdt) = K

where the integral is understood as a line integral in y, t space along any
convenient path, and K is an arbitrary vector constant."

The paragraphs in this chapter leading up to a statement of this theorem
can, in fact, be considered a proof of the theorem, but an alternate form of
the proof will now be given.

The differential equation to be integrated is
‘—j—‘é +QGy,t) = 0 . (1I-10)

If this equation is to be invariant with reSpect to the transformation specified

by




= -
Un = ank ayk (11'11)

for all n it must be invariant with respect to the infinitesimal transformations

. b
Ye © Ve t eank(y.ta

(1I-12)
Qk(y’t) - Qk(yj + eanj’t)

to first order in ¢ for all k and n, Here € is an infinitesimal parameter.

Making this transformation gives

v d 2 ,
Tt t e{az @t o Qk,m} +e°(...)=0 (II-13)

This equation is invariant up to first order in ¢ if an only if

%g oznk(y(t),t) = -a o Q (II-14)

nm ‘k,m

Letting aEn =0 and dTI be the inverse of dT, II-14 gives

T d_ TI

%n dt %ns = %,s (I11-15)
The left side of this equation is the right Volterra derivative* of aTI.

It will now be shown that every solution to II-15 is an integrating factor

of II-10. Let A, be an integrating factor of II-10 for each k; that is

km

*ﬁacDuffie, C. C., The Theory of Matrices, Chelsea Publishing Co., New York,
(1946) page 103. p

e SHTNTE S R, oL & L T




d¢k = )‘km dym + Akm Qm dt

where d¢k is a perfect differential for each k.

Then

Akm = ¢k,m and

Mem % = Py
Thus ¢k is a solution of the partial differential equation

¢k,t = Qm ¢k,m =0 . (II"l6>

Differentiating (II-16) with vespect to yg 8ives the partinl differential

equation for A,

st,t ) Qm Aks,m = Akm Qm,s

or

I |3 )

Akn dt Qm 5;; Ans = Qk,s .

The operator in square brackets is the total derivative with respect to

t, so that A satisfies the equation

I d - -
Akn dt Ans B Qk,s * (11-17)

Now if C is an invertible constant matrix, then

an cnp dt (Cpq Aqs) - Qk,s and

15 -

. TRTUREL R B T e TS

63

= it

T e

R L s e

it A A S
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Coq Mqs * Cpq 95

so that C\ is both an integrating factor and a solution to II-17 for every
invertible constant C,
Suppose two invertible matrices R(t) and S(t) have equal Volterra

derivatives, that is

Then

R g+ ‘d—sI) =0,

dt dt
provided %E SI exists, Multiplying on the left by R and on the right by SI
gives '
dn 1 Rast o
dt dt - oF
d I
£ [ut) - o
Then
RSI = C

where C is some invertible constant matrix. That is, if two matrices have
the same Volterra derivative, they are proportional to each other through

some invertible constant matrix.

16
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In this way it is shown that every solution of II-17 (or II-15a) is j

Shask:
. S0 et

proportional to every other solution through some invertible constant m&trix,

B2

B i

Thus if some solution is an integrating factor, every solution is an integra-
ting factor, The matrix aTI(y(t),t) 1s then an integrating factor of the fﬁ
matrix equation
dy(t
'a%( ) + Q(y,t) = 0 . k¢ 4
Then since ;
3¢ 3¢
T —_— - TI - Y
d¢m - 5>'k dyk + St dt amj(dyj + Qj de) , (II-18)
the line integral in y, t space ?é
!
¢ = J'o,mj(dyj +Q db) = K (11-19) 1
i
is a solution to the system of differential equations II-10 for each constant «
vector K, That is, the Km are the constants of integration.

This completes the proof of Lie's theorem for systems of differential
equations, the basic theorem on which the methods and results of this report
are based.

We note at this point that the Lie's theorem is proved here for a finite
system of equations. The extension to countably infinite systems depends on an

adequate theory of countably infinite matrices, The proof would be unchanged

for a system of countably infinite matrices that form an algebra, that is, a

gystem which is closed under addition andvmultiplication.* The extension to

*C. C. MacDuffie (op. cit.) page 106.




continuously infinite matrices which foxms the basis of the application to

partial differential equations will be discussed in a later chapter,

L]

B, Ex es

1. The One-Dimensional Heat Flow Equation

As an example of the use of Lie's theorem to solve systems of ordinary
differential equations, the method will be applied to the discrete foxrm of the
one~dimensional heat flow equation.

Consider the partial differential equation

2
lg-%(x’t) - -a—-é- y(x’t) =0 ) (II’“ZO)
ox

with initial conditions

y(x,0) = y°(x)

and the periodic boundary conditions

y(x + 2L,t) = y(x,t) .

Using the lowest order difference approximation for the derivative with respect

to x gives the system of equations

Ynbl = 2Yp ¥ Yp.
dy () ‘mbl _"n  ‘n-l_ n=0, tl, 2 .. N (11-21)
dt o2

Here yn(t) = y(nh,t) where h is the discretization interval (Nh = L). There are

only 2N independent equations aince yn(t) = Yo 4 2N(t) by virtue of the periodic




™~

RN, U

g o TS

el s

R = S S

boundary conditions. The initial conditions are

y,€0) = y° .

Considered as a system of coupled differential equations, II-21 is of the

form

ey, + Q) =0

dt ’n n? ‘
where

Q(v,t) = (v, - 2y_+y__)/h2
n*’? n+l n n-1 )
Equation II-21 is invariant with respect to the transformation
Yp(t) = yp () + ey, (t)

for n=0, *1, . . Nand j= 0, £#1, 2, . . N, The cperators characterizing

the set of transformation are

el

U5 = Vs 3y,

This is of the form

= S s / with
s

o
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The matrix o/, whose elements are yj+s, is called an anticirculant matrix.
Much is knoyn about anticirculants, In particular, the inverse of an anticircu-
lant is an anticirculant, if it exists, It is straightforward to show that if
9,4 8re the elements of tlie inverse of the matrix whose elements are ym+j(=a§;
= dmj)’ so that

TI T
%k Yim = Yk Yk = Oky ?

then

. __l_enikB/N
k 2N enijs/Ny

: 3
(Note here that the summation convention is used on all repeated indices, the

sums running from =N+1 to N, and % is periodic with period 2N.) This inverse

can be obtained in a wvariety of ways. It can be obtained from the theory of iﬂ; i

finite Fourier expansions. Also, by showing that powers of the Nth roots of

unity form a unitary matrix that diagonaiizes every N by N anticirculant,
this inverse can be obtained from the reciprocal of the eigenvalues of ym+j'

With this inverse, then, the integration factor is

aTI ) 1 eTTi(k+m)s/N i ?; |
mk = Imbk T 2N “mijs/N ) .
There exist, then, perfect differentials, déﬁ . Q;E Qakg

de ='§m,k dyk'+ Qm dt ”f;k i

,t ) #




such that
Pn_gn Fm_ omr
dy,  ‘mk ’ 3t - %mk “k
__m . 2 2
Pt = T Opr - Wt )/ = -6, - 26 0+ 8 ) /BT

The functions Qm(y-N+l’ Yongare ¢ Ygre o oy t) can then be calculated by
integrating dém along some convenient path in the 2N + 1 dimensional space of

the y's and t. A convenient path of integration is as follows:

(1) Vi = 6k0 along t from t = 0 to t
(2) t=t,y =0k # 0) along y, fromy =1 toy (t)
(3 t=t,y =0k # 0,1) y, =y (t), along y; fromy, = 0 to v (£)

(4) t=t, yk = 0(k 7£ 0,1,-1) yo = yo (t), yl = yl(t)a along Y_l from
Y= 0toy_,(t)

etc. Written out with the summation signs, this is

2

t
- J‘odt(sml - 28 48 .)/h

;T (04m) s/N

1L ¥ Yo 0l
N -‘NJESN {.f I

mijs/N mi0s/N
1 0<§<1 e yj + e w
+ Iyl dw 2"1(1:232;2 mils/N
0 _-l<§<1 e Yy +e "W
21
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eni(-bhn)s/N

mijs/N yj + eni(-l)s/Nw

+ fy-l dw
0 1<k ©

T (N4m) 8/N

mijs/N
-N<I<n © Yy *

y
N

+ f dw } .
0 eniNs/Nw

This particular path of integrai:ion gives

mims/N

e mijs/N
. (yst) = ¢

In(e yj) Ut (8 = 26,0+ 8 1) . (11-22)

That this is in fact Qm(y,t) can be ‘'readily verified by calculating that

TI

m and

Qm,k = @

2
ém,t = "'(6m1 - 26m0 + 6m-1>/h .

A completely genergl solution to equation II-21 is given by Qm = Km where the
Km are arbitrary coastants.,

While this solution does not look particularly useful, it can be solved
explicitly for the yj by introducing new integration constants MS where 1n MS

_ gmims/N

—

K.
m

Then taking (discrete) Fourier transforms of both sides of

l -
g TN 1‘( Tt/ Y3 ) Sh 6 -2 +6 )=
2N 12 Cml mo * °m-1

|
~

e s s B

oiinid,




gives

mijs/N

1n(e yj) + 4t sinz(ns/ZN)/hz = In M, or

(=mijs/N - 4t sinz(ﬂ8/2N)/h2)M
yy(8) = 95 °

The constants M8 can then be related to initial conditions by noting that at

t=20

1 e-nijs/N M

Yj (0) = 2N 5 or
M =‘enims/N v .
s m
In terms of the initial conditions then, the solution to II-21 is
e fen e w 2, 2 ,
e-lﬁ(n-m)s/N e-4t sin“(ms/2N)/h” ,
y, () = 3= Ym (1I-23)

(Note the sum over both the repeated indices m and s.)
While this solution to the one-dimensional heat flow equation may not
look familiar, by passing to the limits h = 0, N = «» with Nh = L it can be seen

that this is the usual solution for the initial value problem.

Introducing the notation

T .




and writing out the summation signs explicitly,

- "y ' - 2 2
e 2ni(xh X m)s/ZL e 4t sin“(ms/2N)/h y°

y(x,t) = lim Ax! m
B N)‘ssu A

h=0

(Nh=L)

[ ek Dy R S L R L L SIS
L .
-1, -

If the limit L = « is now taken one obtaings the solution to the heat flow
equation valid over the entire real axis for the initial value problem, Intro-

the notation

p, = 8/2L , fp = 1/2L

gives

+L 2
lim j' dxv@l Ap e'ZTTi(x-x’)PS - 4t(TTPS) y(x',0)
L "L B~
(4p—0)
+o + . _ 2
e [ e - o )

This is the usual Fourier transform solution for the infinite interval. The
integration over p can be carried out and gives

. ' 2

o o~ (x=x")/4/t

y(x,t) = f dx' 57%% - y(x',0). (1I-24)

-0

This is the standard solution to the initial value problem for the infinite

interval.

e




1l.1 Discussion

The above technique for using Lie's theorem to solve the heat flow
equation is quite complicated and gives well-known solutions that are much
more easily obtained in other ways. It is used here only to illustrate this
method. The equation II-20 1s linear, but Lie's theorem can be applied to
the non-linear problems. The technique of discretization of the partial
differential equation, followed by the application of Lie's theorem to a
finite system of ordinaxry differential equations, followed in turn by taking
the limit back to the continuous system, can be applied to other partial

differential equations but is an extremely awkward way of proceeding. A more

desirable method would be to obtain a form of Lie's theorem applicable directly

to partial differential equations without introducing the discrete approxima-

tion. This subject will be taken up in later chapters of this report.

2. The Wave Equation

The second example given here will be the application to a second

order partial differential equation, the wave equation

732 az - | e
Syt - 5yt =0 , {1i-25)
ot ox

with initial values y(x,0) = y°(x) and %E y(x,t)lt -0°= yo(x) .

Since Lie's theorem is applicable to first order differential equatiocmy, it
will be necessary to reduce II-25 to a’pair of first order differential equa-
tions. This can be done by introducing two new variables y and y' defined as

y = %% (x,t), y' = %ﬁ (x,t). Then the single second order partial differential

s A N T T D L L e M e ety e e o L 3L g o e e O
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equation II-25 can be written as a pair of first order coupled differential

equations

-

2y - %; y' = 0 (I11-26a)
g-g g! - g-; y=0. (I11-26b)

This pair of coupled equations can be

reduced to a pailr of uncoupled equations

defining

which satisfy the equations

cvlw
(a8 [
'
ollcv
L [
It
o

(I1-27a)

01'0)
ti<
+
%<
It
o

(II-27b)

The solution of II-25 is related to the solution of II-27 by

t
y(x,t) = y(x,0) + & f {ux,t) + v(x,t)}dt .
0

Equations II-27 represent a pair of uncoupled first order partial differ-

k]

ential equations equivalent to II-25. These can be solved separately and the

equation for u only will be solved here since that for v can be obtained by

reversing the sign of t in the solution for u.




The discrete version of II-27a is

: u - u
: d n+l n-1
| dt “n ~ 2h =0
|
I If the periodic boundary conditions U, = Y4y OF€ used, this equation is
|
. invariant with respect to the set of infinitesimal transformations
|
i u, < uy + €U i k=0, 1, 22, . . N,

characterized by the operator

Equation II-28 is in the form

%n+q=o,

(a4

and U is in the form

Since « a aT and afI = C‘{TI, the T superscript will be dropped from .

¥
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The mstrix o, whose elements are U ? is called an anticirculant matrix,
The inverse of an anticirculant is an anticirculant, if it exists. It is
straightforward to show that if qj+k are the elements of the inverse of the

matrix whose elements are u so that

k+n

Uk Ygen = ©

n’? then
1 eﬂiks/N

9 = 2§ enijs/Nu ’ and
]

I 1 eni(k+m)s/N

Yxm ™ Y4m = 2N mijs/N '
e ll1

(Note the summation over both repeated indexes s and j, and that q is periodie

with period 2N.) 'There exists then a function

Qm(u-N+1’ v U3y Uy, Ugy uN,t) such that
od
du, = Yedm’ and

of
m_ ) L }
dt lm+n(un~+1 un-l)/2h - (6m1 f)m-l)/2h ’

@m can be obtained from a line integral ir the 2N + 1 dimensional space of
u and t. A convenient path of integréaion is the same used above for the heat

flow problem, (page 21). This can be written

.




bz

. w{ v T (ktm) 8/N \ |
ZN & L gmijs/N . miks/N ) §
0<k<N ko N<s<N ~k<j<k 3 |
e-ni(kﬁm)s/N §
+ Z f d"{zu z; T JTLIs/N nniks/N‘}
, =N<k<-1 ~N<s<N k<j<=k+l ] '
t
+ fo de(s o =6 _)/2h .
Integrating along this path gives
mims/N |
3 (u,6) = & 1n(eMHI8/N wg) - (6 - 8 ) /2

It is readily verified that this ¢ gives the correct aém/auk and a@m/ac. The

relations

8 (u,6) = K T

give the general solutions to equations II-28, where the Km are the 2N arbitrary

constants. Introducing new constants Ms such that

e-nims/N K

m ’

In Ms =

one can solve for uj as

o ~(miis/N + itsin(ms/N)/h),
uj(t)=-2-§ s .

The M, are related to the initial values of u(u(x,t) =

M = emirs/N u®, where u° =
5 r j

%g,y(x,t) + %; y(x,t)) by

uj(O) is the value of u at t = 0. The M_ are the

et L e ikt Wk



discrete Fourier transforms of the initial uye In terms of the u? then

e “TL(3-K)8/N  -itsin(ms/N)/h o

uj(t)a'é'ﬁ k °

Taking the limit as h = 0, N = », with hN = L gives the continuous solution to
II1-28 for periodic boundary conditions witi period 2L. Introducing the nota-
tion

=
xj Jh
xé =z kh

Ax'= h ,

and writing in the summations explicitly, we have

- ~mi(x; - x')s/hN -itsin(mhs/hN)/h o
u(x,t) = lim }_‘ Z Ax! %FN— ] k € Yk
h =0 '
N e “N<SSN  -N<kgN
(Nh=L)

z 1 J:H" en:i,(x' - x+t)s/L @© (x')
= — dX' .
2L

-oo(sSm -L
Taking the limit as L — « with
p = 8/2L, Ap = 1/2L , gives

e oo 2mi(x' - x+t)p
u(x,t) - f dp I dX' e uo (xl)
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fo e :
f dp I dx! e?TiX'P (%' + x-t)
-0 -0

X u® (x-t) .

1

The solution for v(s,t) is similar to the solution for u, except with the sign

of t reversed, and can be worked out to give v(x,t) = v° (x+t). Since

u(x,t) = y(x,t) + y'(x,t)
v(x,t) = y(x,t) - y'(x,t)
and
t >
y,8) = y(x,00 + [ # {uGD + vx,Dar
. | 0
} wgwhava
*f t
y(x,t) = y(x,0) +f ¥ {§(x47,0) + y(x-T,0) + y'(x+7,0) - y'(x-T,0)}dT
0
xtt -
= & {y(e+t,0) + yG-t,0) + [ y(r,00a1} .
x~-t
This is the usual form of d' Alembert's solution to the wave equation. } L O
N : d 7 |
Again this is a long and inyolved way of finding a well known solution that ?i =
) is much more easily obtained by other methods. The purpose here is to illus- " ?g . | 1
trate the method and principles invelved'in applying Lie's theorem. gf :
: e [ ! : ‘
t’ !
31 ‘ ;

0y . ‘ C 8 : . =
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In treating second order differential equations by Lie's method it is
necessary to first reduce the problem to a pair of first order equations. If
these two equations can then be uncoupled as was done above,the mechanics of

the solution become much simpler, but the method still applies even if the

equations remain coupled.




| e I - .
! I11. LIE'S THEOREM FOR
PARTIAL DIFFERENTIAL EQUATIONS
This chapter deals with the extension of Lie's theorem directly to
partial differential equations without the need for the discretization intro-
duced in Chapter II. The extension of theorems for finite matrices to con-
/ tinuously infinite matrices is given in the appendix.

A, Lie's Theorem

A statement of Lie's theorem for use with partial differential equations

is as fullows:

"If the partial differential equation

L) 4 qex, £)[y) = 0

is invariant with respect to the transformations

y(x,t) « y(x,t) + ex{x,x,t)[y]

for all rélev@ﬁt X, x and t, and provided an aI(i,x,t)[y] exists such that

f dx al(i,x,t) q(x,i,é) = @(i - i), then

aTI(x,i,t) = aI(i,x,t)

is an integrating factor of the partial difféfential equation, That is, there.

exists a ¢{x,t)[y] such that

2—y(i)¢ (x,t) [}'] = Q’TI (X,;!, t) , and

Lx,00] = [ & o™ %, 0 o0




Lo et

The proof can be constructed along the lines of the discrete version given in
the previous chapter. Such a proof depends on the construction of a satis-
factory theory of continuously infinite matrices, This theory is outlined in
the appendixes and the reader will be referred to there for the necessary
definitions and theorems as needed.

Proof: The differential equation to be integrated,

%y(x,t) + Q(x,t)[y] = 0 ’ (III-]'>

is to be invariant with respect to the infinitesimal transformation
y(x,t) « y(x,t) + ex(x,x,t)[y] (I1I-2a)

Q(x,t)[y] ~ Q(x,t)[y + €] (I1I-2b)

to first order in ¢ for all relevant x and x. Making this transformation gives

_%Ey(x:t) + Q(x’t)[y] 4+ € %E d(;{,x,t)[}'J

+[ @k g5 et ] &R0} +e2¢ . 0+ = 0.

_ For the coefficient of ¢ to be zero,

S e@xnlb] = -f & &5 e nly] aGx ol

Considering a(i,x) as a matrix in the parameters x and x, and provided that the
inverse of its transpose exists as specified in the statement of the theorem,

then

34
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[ ax & ot x,%,0) o™ E R L) = -—(;‘) Q(x,t) .

Here aT(x,i) = a(x,x) and QTI is the inverse of aT. From the properties of

]
the matrices

f dx -—'a (x x t) a (x X,t) = f dx o (x X, t)'g; d (x X,t) ,
and

J dx o (x X, t) a ( X,X, t) ) Q(x,t) . (I1I-3)

S_
6y(x
(The functional depezndence on y is understood here, and will not be written
where this would cause no confusion.)

The left side of equation III-3 is the right Volterra derivative of the
matrix aTI. It is straightforward® to show that if twe matrices have the
same Volterra derivative, they are proportional to each other through a non-
singular (matrix) constant. It is also clear that if a matrix is an integra-
tion factor, a constant matrix, multiplied by the integration factor, is also
an integration factor. Thus it only needs to be proven that the integration

factor, A, also satisfies the equation
§ - ‘
f dx K (x,x t) K(x X,t) = g;xi) Q(x,t) . (I1I-4)

To show this we note that an integration factor for equation III-1 is defined

so that

A(x, X,t) =

5y(x)¢(x’ t) [}’] ’ ) (III‘Sa?

*See Appendix, Section ¥, page 86,
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and

[ ek a@x,%,8) Q) = & g x,0)[y] (111-5b)

and A(x,i,t)[y] is nonsingular. Taking a partial derivative with respect to

t of the first of these two equations and substituting d¢/dt from the second

gives
3 \ (x5 ) - - -
Dt (x,x,t) = '5"5,'(5}_) fdx A(x,x,t) Q(x,t)
= [k BEDD o0 + [ daeko Lo ey
and

F AR = AmKD + [ & e @i, &y,
= - ) - .
= [ dx A(x,%,t) TG W . (I1I-6)

Multiplying Yy the inverse of A on both sides gives

Iz d - § =
f d» A7 (x,x,t) T A{x,x,t) = by (%) GQ(x,t) ,
showing that the integration factor and aTI have the same Volterra derivative.
They are then proportional to each other through a nonsingular constant® matrix
and thus aTI is also an integration factor, completing the proof.
In comparing this version of Lie's Theorem with the discrete version, we

note no mention is made here of obtaining a solution to the differential

%*
See Appendix, Section F, page 86,
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equation by performing the line integral in y, t space, The theorem for the !
continuous case only gives an integrating factor and not ¢ directly. While :
a line integral in a discrete (even infinite) vector space is a straightforward 3

concept, a line integral in a continuously infinite-dimensional vector space ¥

is not so readily achieved. In practice to perform a line integral in a ;
continuously infinite vector space, one would discretize the problem, apply
the line integral to the finite (or countable) dimensional vector space and if 4
then perform a limiting process.

In the absence of a solution by a line integral it appears that the theorem
is not very powerful. In fact, Lie's theorem only allows one to change the | |

partial differential equation into an equivalent variational equation. That

T T SO |

is, the partial differential equation

eI

& y,t) + Q0 [y] = 0

and the variational equation

%{ 8(x,t)ly] - I dx Q(x) %;(i) 3(x,t)[y] = 0

are equivalent to each other. It may or may not be more convenient to solve

the variational equation by a '"pseudo line integral" than to attack the ori-
ginal equation. The following sections examine the heat flow equation and

others in view of the continuous form of the Lie Theorem. : §f

B. Examples

1. The one-dimensional heat flow equation

Here the heat-~flow equation will be analyzed again, this time using the

continuous form of the Lie theorem stated in the previous section of this chapter.

&




The partial differential equation to be solved is

3 3
3¢ V(% t) - ;7 y(x,t) = 0, (I1I-10)
X

with initial conditions
}’(X,O) = yo (X) ’

defined everywhere on the real x axis. (This is equivalent to setting

2
Q(x,t)[y] = - di—:—§ 6(x - %) y(X,t) )
X

Equation III-10 is invariant with respect to the transformation
y(X,t) « y(x,t) + ey(x + x, t)
for all x and x. That is, o for the transformation is given by
@(X,%,t) = y(x + x,t) .

o is symmetric (aT = @) and is an anticirculant continuous matrix. Its inverse

is also an anticirculant. It is scraightforward to show that if

+ .
e2m.xp
q(th) = I dp -’0) ’ (III‘].]-)

2mixp -
® J‘ dx e Y<x’t)
-0

+4<0
f dX q(x + x) y(E + %) = 6(% - x) .

-0




Thus we have

8§ o(x,t) TL, - L oG+ op
'g'; (;(:t) = 0 T (X,X,t) = q(x + x) = f dp+°° = - (II1-12a)
BT TRy (3, 6)
dx
-00
and
to 4w )
2000 L ek [ ek o™ 566G - B y&Eo
ox
-0 -0
\2
=70 (III-12b)
ox

The general solution to the partial differential equation then is

B(x,t)[y] = R(x)

where K is an arbitrary "constant" vector. (K(x) is a constant in the sense

S _ S K(x) _
that St K(x) = 0 and 5y (x) = 0.)

Finding ¢(x,t)[y] from 8¢/6y and d¢/dt is something of a problem. In this

particular case it is possible to look at the discrete version of this problem

" and figiree out what ¢ ought to be in the continuous case. The discrete case

can be solved by taking a line integral in a finite-dimensional space. 1In the
continuous case one must essentially guess the integral and verify by substitu-
tion in III-12, While this may appeaf crude, it is, nevertheless, the way all
quadrature is done, the problem here being more complex in that it is the entire
line integral that must be guessed, rather than the individual components of a

line integral.

S B

e B e e




By inspectior of IIX-12 it is not difficult to see that

oo +x

I 2
3 (x,t)[y] = f dp e*™*® 1n¢ f ak ¥ y&,6)) - t 2= 6(x) (111-13)

ox

-0 w00

gives the correct 6@/6y and d¢/dt. The general solution is ¢(x,t) = K(x)

where K is independent of y and t, but can depend on x, To relate this solu-

tion to the initial value problem where
y(x,0) = y°(x) ,
<0
InM(p)) = f dx e 2mipX K (x)

-0

and take the Fourier transform of both sides of

4o oo - 2

f dp o 2TTLP ln(f dx e?mixP y(&,t)) -t 'a—’f 6 (%) = K(x)
ox

-0 =00

giving

o
1n(f & 2T (% t)) - t(2mip)? = 1n M(p) .

-C0

Solving for y:

let

(I11~14)




M(p) then, is the Fourier transform of y° (x),

o s W S e S0 s, Ty T sty

o
M) = [ ax ¥ 2 (5) ;
so that y(x,t) in terms of y° (x) is |
o .
} - - 3 - Y
| y(x,t) = f dp f dk e 2mi.(x - X)p - (21p) ty°(5'<) ‘ (II1-15)
-Q) [« 0]

Doing the p integration first gives the usual form of the solution to the

initial value problem:

+o =\ 2 A
y(x,t) = [ ax %——-T(r_:———x— iy (I11-16)

It will be noted here in comparing with the procedure for solving the

discrete form of the heat flow equation, that there is a one-to-one corres-

pondence between the steps in each. The discrete solution can be used as a

model or guide in following the continuous case or vice versa, The continuous

case 1s possibly easier to follow because of the absences of the discretization
and limiting processes. One notes that all the discrete Fourier transforms are
replaced by the corresponding continuous transformation and these are only

introduced to relate the general solution ¢ = K to the initial value type

e
solution.
E
3
!
I
? 3
-
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The one point in the continuous case that is possibly more complex than

R . 1.

the discrete case 1is relating the _radients of ¢ (with vespect to y and t) to
¢, dtself, In the discrete case this can be done by a line integral in a
finite-dimensional space; the analog in the continuous case would be a line

integral in a continuously infinite-dimensional space -- a rather difficult |

vt N s 1,

concept, Ir. any event, Lie's theorem reduces the problem of integrating a
differ2ntial equation to finding a quadrature or set of quadratures, provided
the appropriate invariance group can be found.

The wave equation example given in the preceding chapter can be worked
out in a manner similar to the heat flow equation without recourse to dis-

cretizing, The two treatments are so similar that this will not be done here, %

2. A class of linear problems

From the heat-flow and wave equations it can be seen that there is 5;

a general class of first order lineay initial value problems that can be

solved by use of the same transformation. Consider the partial differential

equation of the form

9. L} t) = i}

{Bt + f(t,kx) y(x,t) = 0 (I1I-20)

where £(t,z) is integrable in t and a fairly good function”™ of z., This pqua- 35
tion is invariant with respect to the infinitesimal transformation 7@‘
y(x,t) ~ y(x,t) + ey(x + x,t) ; )

thus

a(i,x,t) = y(x + x,t) , and

*In the sense of Lighthill [30]
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T . = eZﬂip(i + &)
@ (X, R, t) = dp ;5 . ~ (I11-21)
-cd f ds eZnips (s,t)
-0
The functional ¢ is given by
o+ 4
#(x,0)y] = [ dp e*T*P 1n( [ ak *MP¥ y(x,¢))
-0 =@
¢ 3
+j at £(8,8) 6(x) (111-22)
0
and the general solution to III-20 is
¢(x,t)[}'] = K(X) ’
In te¢rms of the initial cbndifions, y(x,t) is given by
4o 4o i £ .
y(x,t) = J' dp j dx e2Mi(x - x)p - fo de £(5,2mip) o2 oy . (11I-23)
=00 - 00

4

"3, Partial differential equations in more than two indepeéndent variables

Lie's theorgm is also applicable to partial differential equations
that are first order in t and have seweral independent variables X1s ¥gs Xg
s e e a in this case, the statement of the theorem is modifiéd so as to re-
place x by the vector X Qy xi,xz,x3 o .}=;,and dx by the volume element,;n X

Space, dx = dxl, dxz, dx‘3 e e @
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The family of partial differential equations mentioned above in Section

2 of this chapter can then be generalized to

3 &+ e, D} yGEo = 0 (11-24)

where S/ax is the gradient operation with respect to the components of X .

This equation is invariant with respect to the transformaticn

_'
- —d -
y(x,t) - y(x,t) + ey(x + x,t) .

The integrating factor is

= - e '
) = fdp_'_oo . (1II-25)

o

-0

The functional ¢ is given by

oo o : t

- - - — =3 - - - ° -
p, 00y = [ ap 2T P in( ax ¥ ° Xy &, + fodt £(E,2) 66
- -

!

and Fhe solution to III-24 is

¢, t)[y] = KE) .

In terms of the initial conditions, y(x,t) is given by

<4l
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t

t +°° g - -t - - -
y(%,t) = f dp f 7 e2Mi(x - x) - p - fodt £(t,2mip) o3 0) . (111-26)
=00 =00

—p
| The notation used here in that d?, dp represent volume elements in X and 3

p—p

space respectively, X ; is the scalar product, i.e, X o P = X,Pq + X,P, +

.« « « , and 6(;) is the multi-dimensional delta (generalized) function

§(x) = 8(x)) 6(x,) 8(x,) « .+ . .

All of the results derived with a scalar x can be carried over to the

case where X is a vector.




IV. RESULTS AND CONCLUSIONS

A, Results

st e

The main result of this investigation is that it is possible to apply

i O B o

Lie's theorem to the integration of partial differential equations. This
! can be done in two ways.
The first method is to discretize the partial differential equation so
that it is approximated by a system of coupled ordinary differential equa- %2 i
tions and then apply the form of Lie's theorem for a system of ordinary
differential equations., A limiting process can then be used to get from
the solution of the discrete appreximation back to the continuous case. This

is an awkward procedure but has certain advantages. The main advantage is

e T

that in the discrete case, Lie's theorem gives a prescription both for the

el ey

e

S D

ol ek s SRR

construction of an integrating factor and for integrating the resulting equa-

tion by way of a line integral in a finite dimensional space.

The second method uses a form of Lie's theorem applicable directly to the

partial differential equation without introducing a discrete approximation.

But here one obtains a prescription for constructiwg the integrating factor

cnly. The actual integration becomes a line integral in a continuously infi-

nite dimensional space. BSuch line integrals are not as obvious as in the dis- %;
crete case;
Lie's theorem for systems of coupled ordinary differential equations is
as follows:
" : ) ;. ) . _éx(t) i:‘
If the differential equation ac + &(y(t),t) = 0, where y and Q are
vectors, and t a scalar, is invariant with respect to the set of transforma- ~ ¥ \ [

tions specified by

)
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Un = a’ns(}'»t)ays ’

where o is a square matrix and o a vector operator, then provided aTI exists,

oy
the general solution to the differential equation is

[ o™y + qat) = &

where the integral is understood as a line integral in y, t space along any
convenient path, and K is an arbitrary vector constant." (Summation over
repeated indexes is understood.)

Lie's theorem for partial differential equations is as follows:

"If the partial differential equation

%Ey(x’t) + Q(x,t)[y] = 0

is invariant with respect to the transformations

y(x,%) « y(x,t) + 601(;(,X,t)[}']
for all relevant x, x, and t, and provided an aI(i,x,t)[y] exists such that

I,~ = - =
f dx o” (x,x,t) o(x,x,t) = 6(x - x) ,
TI - o I. - \ N . . o Sug e .

then o~ (x,x,t) = o (x,%x,t) is an integrating factor of the partial differential
equation. That is, there exists a ¢(x,t)[y] such that

g_i’-%)-{) (x,t) EYJ = CVTI (X,i, t) | and

)
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'g-g¢(x,t)[y3 = [ ak o' Tx,%,0) Q)]

Proof of the first version is straightforward. Proof of the second

involves a theory of continuously infinite matrices. A development of continu-

ous matrices based on distribution theory or generalized functions is given in
the Appendix.

The examples given here (heat flow equation and wave equation) are all of
linear partial differential equations. There is nothing in Lie's theorem that
restricts it to linear problems but no example of non-linear equations, solva-

ble using Lie's theorem, have been found.

B. Conclusions

The method of scdlution of partial differential equations by use of Lie's
theorem has both advantages and diszsdvantages. Among the advantages are the
following:

1. Where it can be applied, Lie's theorem gives a completely general

solution to the differential equation. It is general enough so that, in

principle, any boundary conditions can be accommodated.
2. The method as given here applies to single first order partial
differential equations, but can be extended both to higher order equations
and systems of partial differential equations.
3. While a knowledge of group theory would be useful, the method does
‘ﬁot depend on the general theory of Lie groups or the structures of the Lie
‘algebras for its use.

The disadvantages are as follows:

1. It is not clear what class of partial differential equations can be

solved by Lie's theorem and which cannot. There is probably a large class of

differential equations that cannot be solved in this manner.

ot i -

O
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2. It is not usually easy to find an appropriate transformation neces-

sary to apply Lie's theorem to a particular differential equation. There is

no straightforward prescription for finding such a transformation. There

are undoubtedly many equations for which the required kind of transformation ;
does not exist. j

3. Even when a suitable transformation group can be found it is not
always easy to find the inverse matrix that is the integrating factor.

4, If the inverse matrix is found, it may still be difficult to actually
do the necessary line integral.

5. Finally, if the line integral can be done, the solution may be in an ?
awkward form (possibly as an integral relation) that is not easy to use or

for applying initial conditions.

C. Recommendations for Further Study

Several improvements and extensions of Lie's theorem, and the application 3

of group theory to partial differential equations can be suggested.

1. Lie's theorem as stated here applies to a single first order partial

differential equation of the form

&y, + Q0[] = 0 . (1v-1)

While it is straightforwérd to extend this method fo higher order partial
differential equations or systems of equations, it is difficult to use these
~extensions. Work remains to be done on examples of the higher order énd sys-
tems of partial differential equations. ;1 |

2. Iﬁ should also be possible to find an extension of Lie's theorem in ‘

such a way as to allow its application to systems of equations of the form

h\
\

S k-
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This would eliminate the necessity of bringing equations in to the form IV-1
above before solving.

3. Lie's method is applicable to non-linear partial differential equa-
tions but so far no such examples have been found, It ought to be possible,
for example, to set up transformations and then find rather general forms of
partial differential equations that are invariant with respect to these
transformations., In this way, tables of equations and transformationscould
be made, and used (much as tables of integrals are used) for finding integra-
tion factors. Here, one would expect that classical group theory and the
structure of Lie grbups would be useful in classifying and correlating the
equations and integrating factors,

4. In the case of a single ordinary (or total) differential equatiom,
if two distinct integrating factors can be found, their ratio (set equal to
a constant) represents a solution. There should be similar theorems for
systems of ordinary differential equations and for partial differential equa-
tions but these are not known,

Respectfully submitted,

L. J. Gallaher
Project Director
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A. Mathematical Background

Notation; N will denote the set (0,1,2, . . .) of natural numbers, 2

S e i s L

the set (0,%1,%2, . . ,) of integers, l. the field of real numbers, and C the
/ field of complex numbers., If K is any of the sets above, then K* will denote f;
the same set without the zero element, §
Dfn: A non-empty set E is said to be a vector space over the field C of
complex numbers if there is a binary operation 4+ from E x E into E and a bi-
nary operation * from C x E into E such that if x, y, z€E, a, beC,
WD x+y=y+x. B
2) (x+y)+z=x+ (y+2).
(3) There exists an element OcE such that x + 0= 0 + x = x .

(4) There exists an element -x¢E such that x + -x = =x + x = 0.

(5 a+» x+y)=a.x+a.y, .

(6) (a+b) - x=a+x+b -+ x, e

(7) (ab) « x= a + (bx) .

(8 1+« x=x .

Dfn: A non-empty set E is said to be a topological space if there exists

a family T of subsets of E such that
(1) ¢, EeT

(2) If (OA)AeL is a family of sets in T, then *Ek OAGT

(3) 1£ 0, 0

r n f
2 o vy Onef, then.{\ OieT .

=1

The elements of T are called open sets,




Dfn: A map f from a topological space E into a topological space F is
said to be continuous at a poiat xeE, if for any open set W of F containing
£(x), there is an open set V of E containing x such that £(V)CW. £ is said
to be continuous if it 1s continuous of every point of E,

Dfn: If E is a topological space and x¢E, then a set NCE is said to be
a neighborhood of x if there exists an open set O in E such that xeO<N., A
family of neighborhood (NA)AeL of xeE is said to be a fundamental system of
neighborhoods if for any neighborhood N of x, there is a AoeL such that
ng: N.

Proposition: If E is a topological space, XcE, (Nk)heL a fundamental
system of neighborhoods of x, £ a map from E into of topological space F,
(M“)“emka fundamental system of neighborhoods of £(x) in F, then £ is con-
tinuous at x if, and only if, for each “OGM’ there exists a AOeL such that
f(NAO)CN“o .

Proof: trivial.

Dfn: Let E, F, G be topological spaces. Then a function £ : EX F ~ G
is said to be continuous at (xo,yo) € E x F if for any neighborhood W of
f(xo,yo) in G there exist neighborhcids V1 of XO in E and V2 of Yo in F such
that f(V1 X vz)cw.

Dfn: A non-empty set E which is both & vector space over C and a topo-
logical space is said to be a topological vector space over C if the maps

(1) (x,y) »x+y fromE X E - E

(2) (a,x) = ax from C x E = E

are continuous. (where C is endowed with the normal topclogy).

s sl 43
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Dfn: If E is a vector space over C then a subset A of E is said to be

convex if for any x, yeA, a, beC, a, b2 0, a+ b = 1, then ax + byeA,

Dfn: A topological vector space E is sald to be a locally convex space

e e

if each point in E has a fundamental system of convex neighborhoods,

A

Note: It is easy to check that if (NA)AGL is a fundamental system of
nelghborhoods of zero in a topological vector space E then (x + Nh)keL is 1
fundamental, system of neighborhoods of any xeE. In particular, E is locally
convex if,and only 1if, uero has a fundamental sysiem of convex neighborhoods, 5 #

Dfn: Let R, = {xeR: x 2 0}, Then a function q: E - R, where E is a
vector space is called a semi~norm or E on the following holds:

(1) q(ax) = |a|q(x) for all aeC, xeE

(2) q(x + y) 5 q(x) + q(y) for all x, yeE

THEOREM: Let E be a vector space over C and (qb)bel a family of semi-~-
norms of E. Then there exists a unique topology on E associated with the

family'(qb)bel which makes E into a locally convex space., A fundamental sys- il

tem of neighborhoods of zero is given by

R RN N

N = {er: q, (x) se, 0sk = m}

m,e

:j:,»ﬂlg;,. .

k

where ¢ > 0, meN, 20 0 s ksma finite subset of I,
Proof: See Horvath [33] pp. 88-89.

Dfn: Let E and F be vecter spaces. A map f: E — F is said to be linear

ey M&L«Mwwm S

if for all x, yeE, aeC,

(1) f(x+ y) = £(x) + £(y)

(2) f(ax)

af(x) .
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Proposition: A linear map £ from a topoiogical vector space E into a
topological vector space F is continuous if and only if it is continuous at
the origin,

Proof: See Horvath [33] p. 97.

Dfn: If E and F are non-empty sets, a map £: E — F is said to be
injective (one-to-one) if for any x, yeE such that f(x) = £(y), then x = vy,
f is said to be surjective {(onto) if for any yeF, there exists an xeE such
that f(x) = y. If £ is both injective and surjective, it is called bijec-
tive.

Proposition: If f: E — F is a bijective map and for each yeF, we
define g(y) = x if and only if £(x) = y, then g: F - E is a bijective map.
g is called the inverse of f and denoted f-l.

Proof: triviél.

Dfn: 1If E and F are topological spaces, then a continuous bijective
map f: E — F is called a homeomorphism if f"'1 is continuous.

Dfn: If £: E-F, g F - G are fynctions then we denote the function
x = g(f(x)) from E ian G by go f. |

~ 1 1

Note: if f: E - F is bijective, then. f ~ o f = I, and £ o £ = I

B, Rapidly Decreasing Functions and Temperate Distributions

Dfn: A function f: R — C is said to vanish at infinity if given ¢ > 0,

there exists a M = 0 such that
|f(y)|~< ¢ for all ‘Iyl >M .

Dfn: T will denote the set of infinitely differentiable functions

¢: R = C such that for each ReZ, peN, the function y — (1 + yz)Rw(p)(y)

‘* yanishes at infinity.




Dfn: 0M will denote the set of infinjtely differentiable functions

@: R = C such that for each peN, there exists a keZ such that the function

y— (1+ Yz)ka(p)(y) vanishes at infinjty.

Dfn: O, will denote the set of infinitely differentigble functions

c
B: R - C for which there exists a keZ such that the functions y - (1 + yz)k
ﬂ(p)(y) vanishes at infinity for all peN,

The elements of T are called rapidly decreasing functions. It is easy

to see that if @eT, that @(P)eT for all peN. Also, TCLI(R).

If for each keZ, peN, we define 9 p: T = R+ such that
)

= . 23k @)
G, p @) = max [+ D% 19w}

then Y p is a semi~norm on T. Thus, the family (qk,p)(k,p)ez x N defines a

unique locally convex topology on the vector T which makes T into a topologi-

cal vector space. A fundamental system of neighborhoods of 0eT is given by

Nk,m,e = {@eT: (1 + yz)k|@(p>(y)| < e;p < m}

[

where k, meN, ¢ > 0. (See Horvath [33] pp. 90-91).

For each keZ, let T, denote the class of all infinitely differentiable

k

functions £: R = C such that the functions vy — (1 + yz)k f(P)(y) vanishes at

infinity for each peN. For each keZ, we let the faﬁily (qk ) of semi-norm

»P peN

defined above determine the topology on Tk which makes Tk into a topological

vector space.

It is easy to check that OC = ngTk’ Furthermore, a fundamental systems

of neighborhoods of Tk is given by
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= {fe Tk: (1 + yz)k |f(p)(y)| < e,p S m} .

A

If 4,: T, -~ 0, is the canonical injection (i.e. i, (9) = ¢ for all geT,),

then we equip 0C with the finest locally convex topology for which the family

/ (ik)kez of maps are continuous. (See Horvath [33] p. 157).

Proposition: If G is a locally convex space and g: 0C = G is a linear
map, then g is continuous if, and only if, the maps g , ik: '1‘k - G are con-
tinuous (i.e. g is continuous if, and only if, gITk is continuous for all
keZ).

Proof: See Horvath [33] p. 159.

| Din: If V is any vector space over a field K, a linear function £: V - K

is called a linear form (functional) on V.

«;yg Dfn: The set of continuous linear forms on T will be called temperate

distributions, This set will be denoted by T'.
o]
If TeT', @eT, then we will denote T(¢) by either <T, ¢> or I T(y)p(y)dy.
ws (P

Dfn: The set of continuous linear forms on OC will be called rapidly

decreasing distributions. This set will be denoted by 0'.
4
If SeO aeo » we will denote S(B) by either <S8, B> or f S(y)B (y)dy.

Examples: I‘ ‘
(1) If feL"(R), and <T, ¢> = f £(y)p(y)dy for all ¢eT, it can be shown :
: - o | '
- that TeT'. T is usually denoted Tf or f. |

(2) If <T, ¢>= @(0) for all eT then TeT andT is usually denoted by §
and called the Dirac delta measure.. (1 e. f 6(y)¢(y)dy ©(0)).

(3 1If geT, and <s_, §> = j<p<y)e<v>dv then 5 ¢ OL. For let keZ

,,,,,,




and ¢ > 0 be given. Then if M_ = max {(1 + yz)'k +1 |<p(y)|} < ® and
yeR

N = {Ber: 1+ DK [aey) |<6} , where 6 = ——=
Mkf 9.!._2. + 1
- 14y
then Nkisaneighborhood of Oe’rk, and if BeN, ,

e to
|<S'<P.B>| = | [ otmpyayl = 'L lov) B ¢y) |ay

oo
s/ Mm@+ vl os caryh ™ gy

]
=
%

[« 9
ad
N
3
(0]
A
(]

Thus, ScplTk is continuous at the origin and hence continuous, Hence, by the

previous proposition, Scp is continuous on 0. Therefore, Scpe()‘(':.
(4) 1f S is such that <S, B> = B(0) for all Beoc,-‘mthen Seoé.
THEOREM: If for each ¢eT, we define $(1) = ‘F[cp] m = f e 2md Ty ¢p(y)dy, the
map F: ¢ -'c'{i is a linear homeomorphism from T — T. T_t: inverse of F is given
by the map f‘lz ¢ = 7 where T(T) =-':Jf:a«az“inY ¢(y)dy for each TeR.
™

Furthermore, if for each TeT' we define F[T] such that <F[T], ¢> =

<T, F[¢]> and F]‘[T] such that<f‘1[T],cp>=<T,f‘1[cp]> then F[T] and ﬁlt'r] are in T'.

Proof: See Horvath [33] pp. 408-411.

The maps F and f‘l are called the Fourier and inverse Fourier transforma-

~ tion respectively. .

T — .
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THEOREM: if o: R = C is a function, then ageT for all ¢eT if and only if
@€0y. The map M ¢~ ap 1s a continuous linear map from T into T if and
only 1if dGOM.

Furthermore, if for each TeT', aeoM, we define aT such that <qT, ¢> =
<T, ay> for all wpeT, then aTeT’,

Proof: See Horvath [33] pp. 417-419.

Note: It is easy to see that if acOM, then Ma is a homeomorphism from
T onto T if and only if ékeQM, and if Md is a homeomorphism, ﬁ; = Mi .
THEOREM: If peN, and we define Dp[qﬂ = ¢(P) then DP is a continuous linear
map from T into T. Furthermore, if TeT', and we define Dp[Tﬂ such that
<P(1], ¢ = (-1)F =T, D(p)[cp]> for all geT, then DP[T]eT'.

Proof: See Horvath [33] pp. 411-412.

Dfn: Lat f: R - C be & function, Then for each heR, aeR*, we define

T, £ to be the function y - £(y - h) and p_f to be the function y ~ f(ay).

Proposition: the function T,: ¢~ T and R ¢ o where aeR¥, heR

are linear homeomorphisms from T onto T.

Proof: It is clear that these maps are linear and bijective. Furthermore,

\ bond -1 . ]
since Th = th and Ra = Rl/a’ we need only show they are continuous. Let
Nk e = {TGT: 1+ yz)k |T<p)(y)| <e, p = m}
28R )

where keZ, meN, peN, p s m, and ¢ > 0, First we show '1‘h is continuous: Let

Mk,m+1,s = {TéT - (1 + Yz)k I'r(p)(y)l <s’, psm+ 1}

where S = 1/2 %%:TTE]' Then if e Mk m+l. S and p s m, then
H H




max«{(l + v )k lw(p)(y h) -

o® |} = el + v2yk 1o® + 1),
veR W} max Il + vB* o w [Jer2

In particular,

1+ yz)k |¢(p)(y - h)|<e/2 + (1 + yz)k |¢(p)(y)|<e .

k,m, 6 80 Th is continuous for all heR,

as above and choose

Hence, if e Mk,m+1,s’ we have Th[qﬂe N

To prove Ra is continuous, we take Nk
{ Raad |

Mk,m,s = {TGT: 1+ yz)k IT(p)(Y)|<S, p s m}

where § = e/[nzk(l + Ia])"ﬂ and neN” 1is large enough so that |a| >'% « Then

@+ vOF R LaPm | = @+ vDE |Pe® (ay)|

kla

< (L+y 2y P+ (ay)z)-k .« S

< @+ v m? + 4Bk a2 |aP s

<e€.

Therefore Ra[qﬂe Nk c whenever e M, so R, is continuous. Q.E.D.

sMM, »Mm, 8

Dfn: We also let Th? heR be the map x - x - h and Ko aeR” be the map
x - ax from R onto R.

From the above definition, we see that Th? = @ ° Ty and p @ = @fo,u .
Thus, if 4 and v are any of the maps p or 7., we define uVyp to be the map

9oVols Thus, we see that p r ¢ is the map y - ¢(av - h) and TpHa? 18 the

- T —
. W

.



map Y - ‘p(a\; - ah)’ Also’ if hl) h26R, Th. Th (p = Th + h Cp and i£ a, bGR*,
1 1 2

2
Halp® = HuHa® = Mo

. > * .
Note: If a, beR”, hl’ hzeR, then Rﬂ°ﬁb = Rb°Rh = Rnb and Th1° '1‘hz =
T, ¢ T. =T

h2 hl h1 + 112

THEOREM: if TeT', heR, and we define T,T such that <t T,¢> = <I,1_ ¢> for

« Also, R1 = TQ n I,

y ¥ . . 1
¢weT, then ThTeT‘. Also if aeR™ and we define “aT such that <ua£,¢>-a T;T

<Tyhy ) of> for all geT, then B TeT!
Proof: Immediate since 7T =T e Tk and y T =T o R, all of which are
continuous and linear.

Remark: If feLl(R) and T = T,., then from the definitions and theorems

£
above it is easy to check that

F[Tf] = T, Dp['f‘f] = Tf“’), T . = T

£ 2 f? 'rh'l‘f = T'r £ and pan = T

h Mo f
Proposition: If TeT', ¢eT and we define the convolution T%p by
T*‘P('ﬂ) = <T’Tnp- - 1‘?'?

for all TeR, then T*@e 0c and the function ¢ - T*¢ from T into 0c is continuous

for each TeT'.

Proof: See Horvath [33] p. 420.

Note: If feLl(R), T= Tf, then

40
T = <Te,mpu_ 9> = L ECY) (i1 @) (DY

4o 4o

= [ £ oM - Yoy = [ £M - v) o(Wey
= £%m) .

-




Dfn: If Se0;, TeT', ¢eT, we define the convolution T¥S such that

<T*3, ¢ > = <S,(p_1T)* o>

Note: This is well defined for, by the previous proposition (g_lT)*beoé.
Furthexmoxe, T*SeT' since ¢ = (p~1T)*¢ and S are continuous, Also, this
definition agrees with the previous one 1if S = ST, TeT.

THEOREM: The Fourier transform maps Oé isomorphically onto OM’ its inverse is
the inverse Fourier transform which maps QM isomorphically onto 3é and if

Se0, TeT!, then

(1) r{T*s] = FLT]} - F[S] .

Furthermore, F also maps 0M isomorphically onto Oé, 13"'1 is its isomoxrphic
inverse, and for anM, TeT',

(2) Flo1] = Flo]*F[T] .

Formulas (1) and (2) also hold with F replaced by Fl.

Proposition; If S., S

S eoé, then

1’ 72* 73

' %o '
(1) S1 S eoc .

2

k{ ) - % e |
(2) (8,%8,)%, = 5,%(5,%S,) |

f‘ - * .?
(3) 8,8, = 8,%, g ‘

Proof:

' , * — .
(1) If 5., 5, €0, then F[Sl:l, F[,s_,_] €0,, and F[s1 32] = F[Sl,] F[SZJ €0y,

=1 *a 17 _ % '
F [F[s1 s2JJ = 5,78, €0 . i
/ * W

FL(8,%8,)] + FS,] = Fs;] + F[s,] - F[s,) |

Ll

I

F[S].J F[(SZ*SB)J = FESl*(Sz*S3)] | 'f'ﬁy{y .




By taking Fl

(3) F[Sl*52] - F[Sl] F(s,] = F[s,] F[Sl] = .v.e[sz*slj Q.E.D.

of both sides we get (2),

C. Continuous Linear Transformations on the Rapidly Decreasing Functions

Dfn: L(T) will denote the class of continuous linear transformation from
T into T,

Dfn: If E is a non-empty set, we say E is an associative algebra over C

if E is a vector space over C and there is a binary operation » from E x E into
E such that for x, y, zeE, aeC,

() (x+y) » z2=x2+y .2

(2) x(y+2z)=x+y+x .2

(3) a(x » y) = (8x) . y= x « (ay)

4) (x+y) +z=x.(y~2),

Furthermore, if there is an element ecE such that e » x= x « € = x for all xeE
then we say E is an associlative algebra over C with identity,

Dfn: If U, VeL(T), zeC, and ¢@eT, then we define the following:

(1) @+ Wil = vlg] + vig]

(2) @ - Ole] =2+ Ule]

(3) W ° gl = vfvlel] .

This definition makes L(T) into an associative algebra over C with identity,

This identity is the function I such that I[¢] = ¢ for all ¢eT. § .

Dfn: An element UeL(T) is said to be invertible if there exists an ele-

ment U eL(T) such that U o 01 = §* o U= I. U is called the inverse of U. 8
Examples: | |
(1) The Fourier transformation F is in L(T). Also ?1 i8 in L(T) and since ]1‘ . |

Fo Flgl = F[F'[¢]] = ¢ = 1] and - o F{g] = I[¢] for all geT, ' is the

_inverse of F.

e 1 o) i
: W
-

e g g




(2) 1£ ot R = C is & function the map Matwﬂ = ot for all ¢eT is in L(T)
if, and only if, ozeOM. Furthermore, Ma is invertible if and only if l/areOM

, =1
and in this case, M“ = M'L/oz'

¢

(3) The previously defined functions Dp, T., heR, R, aeR* are in L{(T).
h £

Notation: Fox convenience we will denote the elements of T' by %, é, ﬁ,
00

ete, and for el we will usually write f %(y)¢(y)dy'for <%,¢> .
=0
-] )
THEOREW: If feT' and for each gcT we define C3l¢] = f%p, a necessary and
sufficient condition for G% to be in L(T) in that feoé (oxr equivalently,
rl£]e0y).

Proof: Suppose C%GL(T). Then F o CZeL(T) and if ¢eT, F ° cg[cpj = F[ %]
= F[#] » Flg)eT. But every element in T can be expressed in the form F[u) so
by a previous theorem, F[%JGOM (i.e. areT for all teT if, and only if, @e0y).

Conversely, Lf %eOé, then F[%JGOM 50 MF[%]EL(T). Furthermore, for each

peT,

- ] . - © 0 .
™ o Mpreq © Flg] = FIRLE) - Bl = FURLEY] = % = cilg)

Thus
o= Ft oy o o FeL(T). Q.E.D
t F[f] y . . ] .
Dfn: If %eOé, the transformatiion Cg[qﬂ = %*@ is in L(T) and is called
the convolution transformation of %. The set of convolution transformations
in L(T) will be denoted LC(T).

Proposition: If CEGLC(T) and F the Fourier transformation then

o - _
Foo CgoMprgy ° F.




Note: MFEEJG:L{T) since F[%]eoM.

Proof: If ¢eT we have F © CE[qﬂ = F[£%)] = F[£] . Flo], and MF[%J > Fleo]
= Mprgy [FLe)] = F(£] - Flg] + Q.E.D.

1

Corollary: If C°eLc(T) and F, F* are the Fourier and inverse Fourier transfor- *

f

mations respectively, then

0 ':1_
F°Cf°1" "MF[%J ]

Proof: By the above proposition,

F o G° o fL 1

£ =(F°c%)°§*

= -] o 071- 0. © 0-1 - o g
= (MF[f] F)oF .-MFEf] (FoF"):= MF[f] . Q.E.D.

k"
Proposition: If C% is a convolution transformation and ';%"60 then

F(§] W

C; is invertible and

=1 =1
o= F o ° ° .
% Myprg) 0 F

Furthermore, if g = fl[ ﬂ
F[£]

s [~} -
], then g aQé and C

H Op

=g0 .
g

Proof: Using the previou corollary and since




7

I ~ l o
Similarly (F~ o Ml/F[%] °© F) o Ci = I. Thus, the first part of the

proposition is true. Since

, then

50 5% eL(T). Furthermore, if @eT, then
g

~1 1
——— . F
F[ e [o]]

il
i

=1 =1
Colgl = (F~ o M o F)[

n
I}

Pl —L— 7 * FLLRg)]

g *o=C°[g] . Q.E.D.
F £] &

)

Examples:

(1) If feLl(R), F[%]eo , then C°eLC(T) and for each ¢eT,‘

f
o +
calol(M = £ * oM = [ £ - VoVoy .

(2) Let peN and é(p) be the pth derivative of the Dirac measure. Then

6<p)eoé and for eT,

Co oy LAl M = 8P %oy = < 6@,y o>

(_1)9 < 63 (Tnu_lcP) (p> >

- D <6, (VP @) >




N
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i =S Satane

Hence, DpeLc(T) and DP = Cé(p) . In particular, I = 05. f
(3) Let £(y) = % e'2"a|Y|, a > 0., Then feLl(R) and

£

+x v
’ FLEI (M) = [ e 2™V E e z”alYl)dy = 21 5 €0y, .
~ a"+7)
Thus, C_. e¢L (T). Furthermore -;L—(ﬂ) = az + ﬂ2 ¢0,, so 3. is invertible and i
»VE PHe M : > FLf] - M ’f

| Cp = C; where § = F‘l[a2 + ﬂzj. But

Flra + 1% = Fla?] + M%) = &% - 2= o

S0 gzaé_—l—_a'!.

Proposition: 1If LC(T) denotes the class of all convolution transforma-

tions in L(T), then LC(T) is a commutative subalgebra of L(T) which contains

the composition identity and the composition inverses if they exist.

: . . O ° s ; ° °© 209

Prooff Let Cf, Cg eLC(T) and ZeC, It is clear that Cf + Cg’ ZCfeLc(T)
" [+ o o o K
. o o _ <] o o _ [ . ; 1 % [ . ]

smnge Cf + Cg Cf + g and ZCf sz Since f, geocg we know f * g eOc and if |

PeT,

cg o cilgl = colg vl = E ¥ & * o)

’ [+]
But ¢eoé and by a previous proposition £ %}(é * @) = (£ * é) * ¢ so

s 2 .
PR




Furthermore, since £ * g = g * £ we have
AR R i 2 a R

Since we have already shown CéeLc(T) is the identity and if C% is invertible,

f
. then Gi = Co where g = ﬁl[ —;%- 0’ then,éleL (T) and the proof is complete.
A £ g F[£] ¢ £ ¢

Dfn: For each acR¥, let R  be the transformation Raﬁqﬂ = p,¢ for all
¢eT and let L a(T) denote the set of all tramnsformations which can be written

in the form

where

C%eLc(T) .

Note: Lc.(T) = LC(T).
Proposition: For each aeR¥, Lca(T) is a sub vector space of L(T) and

the map L_: LC(T) - Lca(T) such that La(C%) = Aa,% is a linear isomorphism

from the sub vector space Lc(T) into Lca(T)a

Proof: It is trivial that Lca(T) is a sub vector space of L(T) since

Aa:% ¥ A‘?a’:é

!

= (C24+C°) o R_=C2, °©°R and Z * A
' £ g a a a

f+g C,g ° R

0 =
£ Zf a '

[}
Furithzrmore, since Ra is invertible,q%Ra = 0 if, and only if, C%‘= 0
,‘j - { ‘;‘

so L is injéctive. It is surjective from the definition of Lca(T) and the

1in¢ar1ty follows since C% + Cg = C% + g and ZC% N CZ% . Q.E.D.

L o 1 o i
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Proposition: If aeR¥%, Aa’feLca(T), and g lal ul/af R theglgeoc and

A ° = R o C o /’N’
a,f a £ . P
//,’ /

P




Proof: It is clear that geoé . Let @eT, TNeR. Then A_ 3 = Cg ° R, and

A
s X

1

6z o RLg1(M = C3lu @l (M = & * (b))

i

AN

"
-

Tﬂ“-l“aw =< %, Tnu_aQ > .
Also

* (al)

Qo

il

R, o Cslgl () = R[E # g(am)] =

L
A
o

1 9
raﬂ“-l¢ > = lal < pl/af, ranu“1¢ >

i}
A
Fho

“aTaﬂ“-l¢ -
But if yeK, we hav;
(M_ IO = DT () = oy = M) = 9(al = ay)

and

i}

WaTanpo )OO = @iy Topi, () = 9l g7 ,0(ay))

¢(u_q(ay - al)) = o(an - ay) .

Hence, ¢np_a@ = pawaﬂp_1¢ and it follows that C: o R = Ra ° Cg . Q.E.D.

- . ; - o ! — : °
Corollimry: If aeR¥*, U = R, ° C§ where geo/, then UeLCa(T) where U = (% R,

° o
and f = |a|uag.

N\
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-]

- L
Proof: Trom the above proposition CgeR =R o Cp where ﬁ~“|al “1/35

= —l—i—l-“l/a |al paéz g . Q.E.D.

. ) o [} ' '
Corollary: 1If a, beR%, Aa,% eLCa(T) and Ab,§ eLCb(T) where £, geQ;, then

' Aa,t ° 4,5 = Aab,f LD

where b = £ * (lalpaé).

Proof: By the above corollary we have
Aa’% ° Ab’é = (C% o Ra) ° (C\% o Rb) = C% o (Ra 0 Cg) ° Rb

Note: A = Ceo ° eLC(T) .

1,8 A1,8 7 CE g

D. Continuously Infinite Matrices

Theorem: Let UeL(T) and for each TMel, define < Eﬂ’ o > = ULgp] () for all

@eT. Then %neT' for all TeR.

]
Proof: £
M

€ > 0 be a neighborhood of O in C. Now let Me = {reT: |T(y)| < e, yeR}, then

is clearly a linear form on T so let Ne = {ZeC: |Z| < ¢} where

M€ is a neighborhood of O in T so, from the continuity of U, there exists a

neighborhood M of O in T such that U[g]eM for all qeM. Hence, if qeM, the
l < fﬂ’ ® > I = |U[¢J(ﬂ)| < € so < fn, P >e N, and f,rl is continuous, Thus,

4

eT' for all TeR. (

£

i i
‘// /

)

et




ey

Dfn: If UeL(T) and the £ » MeR are as above then we say the family
[
<fﬂ)neR of elements in T' determines U,

o

Since, for each MeR, ¢eT, we have U] (M) = < %n, P > = f %n(y)w(y)dy we
=0

will denote the famiily (£ )ﬂeR by [E(M,v)] and call [£(7,y)] the matrix of U

£
4o N
-] -] \
and write ULQ](M) = [ ECM,v) 9(y)dy or U ~ [£(N,v)].
-w
Note: T is considered as a parameter while y is the '"variable of inte~-
gration" of the temperate distribution %n.
Examples:

(1) If F is the Fourier transform then F ml[e-zninyj.

(2) If I is the Identity transformation then I m'[Tné(y)] since, if oeT,
40

then < Tn5, p>= <86, T @ > f 5¢y) oy + Mdy = oM = Ifel (M.

- Q0

Dfn: Two matyices [EM,v)] and [g(7,v)] are said to be equivalent if
they determine the same linear transformation U in L(T).

The two matrices [Tn 8 (y)] and [Tn p_16] are equivalent since they both
determine I. We consider two matrices as being equal if they determine the
same linear transformation in L(T).

Dfn: Let M denote the class of matrices which is associated with some
UeL(T)., Then M can be made into an associative algebra over C where if ZeC,
[£¢N,v)] ~ U, [&8(M,y)] ~V, U, VeL(T), we define

(L) LEMI + [eMy)] = [B (N,y)] where [R (N,7)] ~U +V

(2) 2LEM, )] = [h,(N,7)] where [B,(N,y)] ~ 2u

3 [EMWI * [&M] = [B;(N,1)] where [hy(M,y)] ~U o v .

!

A | |
since [ (E(M,y) + 8(M,¥)) pipdy = < B+ &, 0>=< B, 9>+ < gy, 9>

<o 4o |
[ EMy) otndy + [ 8(M,y) @(y)dy we have b (M,y) = E(Ly) + &(N,y) .

-0

It
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Similarly,
0 . +o
[z EMy) oMy =z + [ £,y o(y)dy

g0 we have ﬁz(ﬂ,y) = 2z £(M,v). Furthermore, from the definition of composi-~-

tion we have

+ o +o
JE£e,MC[ gMy) otdy)dn = [ hylp,v) ply)dy ,

so we ugually write

+°°o . ] [}
J' f(p:'ﬂ) g(ﬂ:'Y)‘”] = h3(paY) .

Notation: If feT', and [Tn%(y)] is a matrix, we will denote this matrix
by [%(y - M]. Also we will denote the matrix [T_n%(y)] by [%(ﬂ +v].
Examples:

(1) Since [6(¢y - M) ~ I and I+ I=2I, I o U=1Uv?°1I=1U for all UeL(T),

we have

[6¢y - M + [6¢y - M = [26¢y - W],

and

[s¢y - M1 LEM,I = [EM,v] « [8¢y = M1 = [£EM, W],

+m <] -‘-d) ] .
(i.e. [ 6(0 - p) EMy)AN = [ EG,m 6¢y - MdN = E,y)) .

Since [6(N - y)] = [6(y - M] the same results are obtained if L6¢y - ] is

replaced by [6(N - v)].




(2) Since F ~ Ce'?'m'ny], Fl o~ [ezninYJ and F o F* = F* o F = I, we have

[e'Z'ﬂiﬂYJ - [eZﬂin‘YJ"l

and

L2y [2™NY) o [2MY) [o=24MY) & [50q - y)]
or

4o 0
J. - 2miph 2mily an = f 2mipN -2mify dN= 6@ -v) .

-0 -0

mm————

(3) Ry ~ [1_8 ()] = [6Gy + D] since if et TeR, a

ST > =< 8mpe > = oM = R [el (M) .

(4) o° ~ [(-1)P 6<p)(y - MJ since if @eT, TeR,

<onpwﬁ”,m>=onp<m<4W¢m¢”>=¢“Nm=n%wm>.

(5) If anM then g ~ LaT) 8¢y - M] = [a(y) 8¢y - M] = since if ¢eT,

TeR,
' < aMrpds ¢ >=a(M) <6, 1_pp>= a(M oM = pLe] M
and
C<alrgd), 9> =< T g > =<6, 'r_»q(ql»CP) >
= a() oMi'= plel (M) . o i '4




Remark: Sincema"bpfcp] M = (M ‘P(p) m thean@Dp ~ Lo (M) (-1)96“’) (v =~ M)
for 1f ¢@eT, TeR,

<o 0P 1?5 (1P e <5, 1) rqe®) > = e 9P
Thus,

Lo 8¢y - MILED P @ iy - mI = [am) 1P P ¢y - M)

or

4o
[a® 6= 1Ps® g - man = ate) PPy - p) .

(€) 1f CgeLg(D) then Cg ~ [l )7 pf(Y)] since if geT, TeR,

< HgTgbe > = < Bruge > = Brom = ol .

If £ is a function then “-IT-ﬂf<Y) = £(7 = ¥) so w¢; denote the matrix of
cs by (&N -y)]. Matrices determining convolution transformations will be called
circulant.

If C%, cgeLc(T): C% ~ [f(ﬂ - Y)J’ Cé ~ [g('ﬂ - 'Y)J’ then C% ° Cg = Cof *g

so that
[E - 1M - v = [E # &M - y)]

or

+o ) N
[ £G =M gM-vy)dn=£ *gk -vy) .

1

FL£]

= Go where h = FLL

2 ] so that

oo

Furthermore, if C% is invertible, then C
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r§(7 - "‘1 """]‘"" - = |8 » 3
! Y)JEI‘CFmJ(ﬂ Y] = [8(n - y)

or

e, 1 3
[EG -1 FL 21 -~ pyan= 607 -vy) .
™ F[%J

By writing i'?l and F in its integral notation, we have

o oo ~ o
[ £ - mO [ FeM =) ("2 ey ey Tas1an w b0p - )

; 1 )
(7) Let Aa,% = C2 o R, €L, (T). Then Aa,{é ~ [ m H1/a u_.l'r_,n%('y):] since
Lf @eT, eR,

<l .
Hi/aka1fs® > =

|a]

ai < p_l/g'r-n%,({) >

o °
= < f‘,'r,np_acp e < f""n”-l“a.“’ >

L

< %,T,an_lfRaffpj) >= Fo# R;‘P] m

H

Cz o R[] (M) .
If £ is a function we have
L 1 | 1
T By R TapE V) = T R t ly Ry (YD) = S E( - =)
|a| *L/a=1-T o] - BT Fya la] a

50 we usually denote ['-L Hy /b 4T £(y)] by [-1—- £ - L v)]. In particular,
|a 1/a”-1"-1 |a a

Ay g~ LEM+ .
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(8) Let Lc (I) denote the elements of L(T) which can be written in the
a

form B, .= R, o g where C3eL,(I), Then Ba,%’“'tuth-an%J since 1f ¢eT, TeR,

wo have

< P',.l'r..an%ﬁ‘? > =< %’Tnﬂp’"l(? > = Ra[< §:Tnﬂ_1‘? >] = R, ° C%['?PJ m

If £ 48 a function, then p_lTanf(y) = f(al] = v), so we denote the matrix of
P
Ba,geLCa(T) by [£(al - y)].

2
i

R

o;
(9) Since Bog oAy 8= Aab,% * (]aluag) we have

coomascimssacsen et reny st s
S

"%\W",‘ »,n

[ﬁT By - L v)JE—I-i—I- BN - )] = E-I-j)-,- Ex (falud - 55 0]

B (lalu® e - =)

e e e -

Note: If £, geL'(R), then

[ =L s -%m»l-—i-l-gm-%mdn:

~o |a|

j' Ep - s M s - -)dTl .
|a|[b] e

]
® =

Letting T] T, we have

4o
[ Hse-in-Lgm-tya- f £ - T 8@l - ¢ v)|aldf

o Tal | ,' A

£ - M (ue) @ - L vl

il

1
o] %=




N -
4o
1 1 = ol 1 1
s ==L f(fp - ==y] =M peMdi=——£% (e - =y .
Hence, we see the integrals agree if f= £, é S geLl(R).
L (10) Let a, beR¥, Ba,%’ Bb,éeLCa(T) where £, geoé . Then by using a
i previous proposition we have

“ b Bg T B3 O C 0 = R, o Oy

=R, o (B v E) =B (- B geL

ab H1/b ab H1/b c
| |b] [b]
5 Thus,
‘33: a o 1 9 ° A
¢ [£(an - ILEEN - NI = [(-I-l;-l— byp) * 8(abN - vl ,
% or
o0
1 [ #ap - M BN - VAN = == (u; 1 ) * (&bl - y)
ke Y Ib] 1/b Y)
E 1
; Note: If £, geL (R) then
- -
N 1 = you 1 rey ey
i [ £(ap - M) g®N - y)dn = [ £(ap - 5 M & =) T‘;'I- dT) where 1) = b7 .
| -0 - ,
: +o
; = == [ £(abp = M) g - )T
o] ==
i 1 7 ~ = = =
i = mfw (hy/p) (@bp = ) g(N - v)dN
s ,
1 -
" I_L,(“l/bf)(abp -y =M gMdn

M.
ab




Hence, this definition of the integral agrees if %, %eLl(R).

(11) Let €0y, %eoé, and aeR* , Then if ¢eT, TeR,

M, o B, [Lol(M = 1 [R, o celolIM = «(ME * pan) = ule] ) .

Hence, since M ~ [a(M) 60 - y)], B, ¢ ~ [E(al - )] we have

[a (M) E¢an - )]

1

[ (M) 6¢N - v)I[£(N - v)]

or

-.-m o
[ o) 8¢ - M £@&N - y)dn = alp) E@p - v) .

The transpose of a continuously infinite matrix:

Dfn: For each UecL(T) we define the transpose of U - denoted tU -

[¢]
to be the map from T' into T' such that for each fe7', tU[%] = fouy U is
continuous so £ o UeT!').
' ]
Note: For each geT, < LU[%], o >=< £, Ulg] > .

Note: If UeL(T) then % is linear for if %, EeT', zeC, and oeT,

<%lt+gl, 9o>=<E+g, ulg] >= < £, ulg] >+ g, Ulg] >

< "ull], o>+ < fulgl], ¢ >

it

[/7'

< t;U[z%], p >=< zf, Ulgp] >= 2z < %, Ule] >

= Z ‘<tU[%J’CP>=<Z ° tU[%[’(P>-




Note: If F is the Fourier transformation in L(T) then for each %eT',
it is easy to see that F[f] = tF[%].

Proposition: If U, VeL(T), then (U + V) = ‘U + by, and S(U o V) =

ty o ty. '
Proof: Let feT', @eT, then
<P+ WL, 9>=< £, + V] >=< £, Ulg] >+< £, V] >
=< %le) + g, o>=< Cu+ WL, 9>,
and

< t(U ° V)[of], @ >

I

<% U vlg] >=< ("ulE], vig] >

< "8I, 9>=< v o UlE], 9> .

L

Proposition: If IeL(T) is the identity transformation, the t:I is the

identity transformation on T', If UeL(T) and ﬁ%L(T), then tU is invertible
t =1
us.

Proof: If geT, feT', the

and (fu)~1 -

< tl[%], @ >=< %;‘I[@j >= < £, Q> .

Hence tI[%] = ¥ for all feT'.

]

Using the previous proposition and 1ettingJIf be the identity map on T', 1 R

we have

t

tU o t(ﬁl)= t(ﬁl o U)= I= I'

‘

and similarly (@) o fu = 1'. Hence 5@ = (fu)”! q.E.D. i

@




E, The Finite Matrix as a Special Case of the Continuously Infinite
Dfn: Let ® denote the set of 6T such that 6(0) = 1 and 6(n) = O,

n= i’l, iz’ . . ¢

Dfn: For each 6e®, i, jeZ, define
vgitqﬂ<n> = (6 - 1)

for all @eT, TeR.
Proposition: V) eL(T) for all 8e®, i, jeZ.
Proof: Let { = 0 and suppose Ne = {veT: (1 + yz)klw(p)(y)| < ¢,

p % m} is a neighborhocd of 0 in T. Take M, = {YeT: ¥ (y)| < 6} where

6= max{(1+ YO P D,

psm
YER
then if geM_, it is clear that Vg Lo] = cp(j)eeN€ so that Vg is continuous
. o . O
at the origin. But Vg is linear so it is continuous. Vé is continuous for
. 0 . i
any ieZ since Vé =T, e Vg where T.: ¢- 7.9 which is continuous. Q.E.D.
i o ' ‘

Dfn: For each neN¥, 6e@®, let Lg(T) denote the subset of L(T) which can

be written in the form:

n n .

(o} _ _ J
UeLe(T) = > U = jgl(jgl aij Vei)

({:
where aijeC and Vg is as defined above.
i
Proposition: 1If i, j, k, 1leN, 6e®, then
j L JO ifiFk
Vo. ° Y% =\ 1 NPT
i k VG if j=k

i

T T—_, T ———

o




Proof: If @eT, peR, we have

j 1- .
Vi o Vs Lo(y)] (p)
ei @k QLY

. vgic¢<1>e<n - 1) = 91O - KB - 1)

—
—_—

{0 if j # k (since 6(j - k) = 0)
©(1)8(p - i) if j = k (since 8(0) = 1)

0if j # k

e
om

Véi[qﬂ(p) if j =k Q.E.D.

Proposition: For each neN, 0¢@, LS(T) form a subalgebra of L(T).

Furthermore, if

n n 'j n n j
Up = 3212 845 Yo, U2 = 211 Py Vei) ’
and ZeC, then /
‘ _ h|
(1) U1 + U2 = ZZ(aij + bij)V'(_)i
- J
(2) 2U, = ¥ Za, vei
3 n
(3) U1 ° U2 = I cij Vei where Cij = k§1 aikbkj .
Proof: (1) and (2) are trivial. Also
n n ; n n ;
- Y o
Up o Uy = G2y &1 25 Vej” (:Z1 3%1 Pij Vei)
n n n n ; L
= ‘Elngl k§ S.oa,.b Ve o Ve .

1151 %457k 8,

e

/
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But V1 o V' = 0if j#k and = V- if § = k so we have
5. ° Vg 8
i n i
n n n l n n ; n 1
10 %= 1 EL i fafa e, 7 E1G8 cudi)Ve,  OED

The following corollary follows immediately from the above proposition,
Corollary: 1If Mn(C) denotes the n x n square matrices with entries in C, the
map s fn,ez Lg - Mn(C) such that for each UeLg(T),

£ =
Fa,00 = @iy 1

n n

- J .
where U = §1<j§1 aij Ve') are algebgg isomorphisms.

Hence, we can consider the finite matrices as a subset of the continuously
infinite matriceslassociated with L(T). In a similar fashion we can show
that the n x m matrices can be considered as a subset of the continuously
infinite matrices.

Note: Vg. ~ [8(N - i)(Tjé(y))] = [6(N - 1)8(y - j)] for if weT, MeR, we

i
have

<6(M - i)Tj6,<P >=8(N - i) < 8,7_ 5@ > = oM - 1)) = V‘g‘[CPJ am .
1

n n
Thus, for each neN, 6e®, matrices of the form i§1(j§1 aij[e(ﬂ - 1)8C¢y - N

are isomorphic to Mn(C).

F. Matrices with Function Entries

1. Finite Matrices

Dfn: Let neN¥ and for each 1 < i, j £ n let Gij: R » R be a function.
: If for each teR, we define S(t) to be the matrix Gdij(t)),'we say that S is a

matrix whose entries are :the function ¢.. and write § = (o,.)

ij ij
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Dfn: If S = (cij)’ T = (Tij) are matrices then we define S + T to be
the matrix (Uij> where Uij(t) = Gij(t) + Tij(t) and S "T to be the matrix

(uij) where “ij(t) = kgl cik(t)Tkj(t) for all teR.

Note: If éij: R = R is much that for each teR, éij(t) =0 4if 1 # j and
éij(t) = 1 if 1 = j then the matrix I = (611) is the identity matrix, for if
S« I= (pij) then

‘N
Hyg(6) =\ 2y 744 ()8, (E) = 0,4(0)8,,(t) = 0,,(t)

for all teR, so § + I = S, Similarly, I *+ S = S.

Dfn: If S = (Gij) in a matrix, then for each teR, we define V(t) =
I(Gij(t))l where I(Oij(t))l is the dgterminantof the matrix (Gij(t))' We
call the function vV the determinant of S.

Dfn: If S = (cij) is a matrix, then we say S is invertible if there

- - -}
exists a matrix S 1 = (cij) such that S * § 1 =8 *

.'S=Ia
Note: If S = (cij) is invertible and S-l = (Eij) is the inverse of S,
then for each teR, S(t) - S-l(t) = S-l(t) « S(t) = I(t) so we see that S is

invertible if, and only if, S(t) is invertible for all teR. Hence, we know

S is invertible if, and only if, V(t) # O for any teR.

Dfn: If £: R - R is a function, S = (oij) a matrix, then we define
f + S to be the matrix (pij) where pij(t) = £(t) - cij(t) for all teR.

Dfn: If S = (dij) is a matrix, then for each teR, we define adj(S) (t)
to be the adjoint of the matrix S(t) = Gsij(t))., We call the matrix adj(S)

the adjoint of the matrix S. Furthermore, for each teR we define ST(t) to be

- the transpose of the matrix (oij(t)). We call the matrix S' the transpose of S.

Note: It is easy to see that SI = (é..) where é.. = O,
: ~ ij ij ji
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Dfn: If S = (cij) is a matrix, we say S is differentiable if o,, is

13

differentiable for all 1 < i, § s n and defined dS to be the matrix Gs'ij).
We say S is continuvously differentiable if‘d'ij is continuous for all

l1si, jsn,

Proposition: If S = Qsij) is differentiable (respectively continuously
differentiable) then the determinantVv is differentiable (respectively continu-
ously differentiable).

Proof: Immediate since V can be written as sums, differences, and
products of the cij'

Proposition: If S = (dij) is a differentiable (respectively continuously |

differentiable) matrix then ST and adj(S) are differentiable (respectively

continuously differentiable).

Proof: ST is clearly differentiable (respectively continuously differ-
entiable) and since entry is the adj(8) in a sum, difference, and product of
the entries of S, it is clearly differentiable (respectively continuously
differentiable).

Proposition: If S = Qsij) is invertible, then S-1 = %(adj . (S))T.

Proof: Immediate, since S-l(t) = %(t)(adj (S(t)))T for all teR.

Proposition: If f: R - R is differentinble (respectively continuously

differentiable) and S = (cij) is a differentiable(respectively continuously

differentiable) matrix then f * S is a differentiable (respectively continu-
ously differentiable) matrix,

Probf: trivial.

Proposition: If S = Osij) is differentiable‘(respectively continﬁously
differentiable) and S-1 exists, then S-l is differentiable (respectively

continuously differentiable).




8 @T) = (pij)* Hence d(8 ¢« T) = (dS) * T+ S * (dT). Q.E.D.

e G B LR S

Proof: We know V is differentiable (respectively continuously differ-

entiable) and since st exists, v(t) # 0 for every teR so % is also., By

the three previous propositions we have S'1 = %(adj(S))T is differentiable
(respectively continuously differentiable). Q.E.D,
Dfn: If S = (Gij) is a differentiable matrix and S is invertible, then

we define the right Volterra derivative of S to be the matrix s"lds and de-

note it by DS.
Note: From the previous proposition we have dS"1 exists and hence,

ps~t = sas”l,

Proposition: If S = Qsij) and T = (Tij) are differentiable matrices,

then & * T is differentiable and d(S * T) = (dS) * T + S * (dT).

Proof: S * T= (pij) where

n
Mag = 1 &1 kg

Hence “ij is differentiable so S * T is differentiable and

' _ Y 0 ' - ] ,\-‘ )
hiy = & oMy ‘Z @3k ¥ OukTky) ; 71Kk T4 Ok

oy . ,_v ! _Y-I ] . °» — o
But clearly if Hij = L;cikaj and pij = L;OinTkj then (dS) * T = (pij) and
k k

Cerollary: 1If C = (Cij) is a matrix of constant functions, then C is

I

differentiable and dC = 0. Furthermore, if S is differentiable, d(C * S) =
c - ds.

Proof: Trivial.




Note: If S is a differentiable matrix where dS = 0, then it is easy
to see that S is a constant matrix.
THEOREM: Let S = (aij) and T = (Tij) be two differentiable and invertible
matrices. Then a necessary and sufficient condition for DS = DT is that there
exists an invertible consfant matrix C such that S = CT,

Proof: Suppose S = CT where C is constant and invertible. Then DS =

p(er) = (€r)"taer) = (r"'¢"Mcdr = T714T = DT. Hence the condition is
sufficient,
Conversely, suppose that DS = DT, Then S “dS - T “dT = 0 and S ld§ +

d(T'I)T = 0, since d(T-l) exists for all TeR. Multiplying on the left by S
and on the right by T © gives (dS)T°* + 8d(T™Y) = 0 or d(ST™Y) = 0. sT7} = ¢
where C is a constant invertible matrix, since both S and T-1 are invertible,

wS=CTlorT= c'ls .

2. Infinite Matrices

Dfn: Let () be a family of elements in T. Then we say lim ¢ _= ¢ if
t” teR gop  ©
for any neighborhood N of zero in T, there exists a 6§ > 0 such that

|t - e | <

teR is continuous at to.

1f (vt)teR is continuous for all to in R, we simply say the family is continuous.

implies ¢ - yeN. If ¢ = P then we say the family (wt)
)

Dfn: Let (Ut)teR be a family of linear maps in L(T). We say the family
is continuous in t if for each t eR, ¢eT, lim Ut[qﬂ = U, [¢]. We say this
: t-t o
family is strongly continuous (f for each toeﬁ,gand any neighborhood N of zero

in T, there exists a § > 0 and a neighborhood M of zero in T such that for all

reR, |t - tol < § and all @eM, we have Utfqﬂ - U, [p]eN.




-

1f [%t(ﬂ,y)] ~ U, for all teR then we say E%t(n5Y)] is continuous (strongly

continuous) if (Ut)teR 1s continuous (strongly continuous),

Dfn: We say the family (U.) is differentiable if there is a family v,
in L(T) such that for each t, €R, @eT,

1im Ueled - Up LoD = Ve 9]
tt

t-t:o

(Vt) is called the derivative of (Ut) and denoted (U't).
1f [%t(ﬂ,y)J ~ U, for all teR then we say this family of matrices is

differentiable if (Ut) is differentiable and denote its derivative by

g-t- (£,
Note: It is easy to see that if %E [%t(ﬂ,y)] exists then the function
to,
t "’J ft("],Y><P(Y)<pY
-0

from R into C is differentiable for all TeR, @eT and its derivative is the

function
"? 3 ¢
t=] 5t Moy .

Proposition: %; [%t(ﬂ,y)] = 0 if, and only if, [%t(ﬂ,y)] is constant in t,

Proof: It is clearly true that if [%t(ﬂ,y)J is constant in t then

%E [%C(T],Y)] = 0.




Conversely, 1f %g [%t(n,y)j = 0 then by the note above the function
+o0
=~ [ E Mveindy
-l

is constant and hence %t(n,y) = %B(ﬂ,y) for all s, teR = > [%t(ﬂ,y)] is
constant, Q.E.D,

THEOREM: If [%t(ﬂ,v37 and [ét(ﬂ,y)J are differentiable and [%t(ﬂ,y)] is

strongly continupus, then [%t(ﬂ,y)] . [ét(n,y)g 15 differentiable and

5e (L - D) = & LRI + 2,a,0] & (3, )]

Proof: Let t eR and geT. Then if (u,) m'[%t(ﬂ,y)J and (V,) ~'[§t(ﬂ,Y)]
then

- Uto[vt OE‘PJ]

o " 5

U o v le] - Uto ° 'V%[cp] g Ut[vt[“’]]
£ -t £

" | L
= ut[vt[cpJ - vtotcp] + vto[qﬂy ]- UcoLVtOE‘P]] = Ut[Vt[cp] - Vtofcp]] .

-

t-to * t-to

Ut[vto&p] :] ) Uto‘[vtol-‘f’] ]
t

-t
o

But Ut is strongly continuous and since

Velel - VtoL‘f’] e Ut[vt o[“’] ]- v, O[Vto[qﬂ:l
t.'c’ ’ t~t
o o

T - Ut':o[vto[cp]] as t-t ,
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we have (Ut Vt)' = Ut o Vé + Ué ° Vt and hence the same result corresponding
) ) o

to the matrices, Q.E.D.

Not:: It is easy to see that

(e, + e ) = e ]+ He ]

e .

Examples:
(1) If h(t) is differentiable for all teR and [%(ﬂ,y)] is a matrix, the ! 4
family [h(t) - %(ﬂ,y)] is differentiable and
!
{

& [ k] =o' - B ]

ety et

(2) For each teR, let ;(y,t) be a temperate distribution. Then if

%— ;(y,t) exists and [y(y - N,t)], [%? y(y - M,t)] are matrices then

& I5¢y - M0 = (& F(y - 0,0 for if geT, €€ eR, |
., | e, «
y(M = vy,t) @(y)dy - f vy o=y, £)) ely)dy
-0 -0 3 \ 4
— £ -t - fgg y(M = v,t) @(r)dy f
O =00
e Y - vt) - (- yse) o | ~
# < t -t iy y(M - Y,t‘°)> p(y)dy = 0 as t - t, -
Dfn: Let [%t(ﬂ,y)] be a differentiable family of invertible matrices. Then E [X
| ] &
we define x; \
1
. } 0 =193 e ; R A
Dt"[%t(ﬂ,v)] = [ft(ﬂ,v)] &{ft('ﬂ,y)] : i
- s ,

H
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THEOREM: If [%t(ﬂ,y)], [8,(M,y)] are differentiable families of invertible

matrices where both [%t(n,y)]'l and [gt(ﬂ,y)]-l are differentiable, then

exists an invertible matrix [ﬁ(ﬂ,y)] such that

[E ] = (R,p] - L8, (1)

if and only if
D.LE (My] = D,LE, (M,y)]

Proof: If [£ (M,y)] = [A(N,y)] » [g (My)] , then

W
5

D LRI = [RnI™ SLE 0] = (ThanIce,m,nD)? S @amwnitg, mp1)

= [e, 17" (ha,]™ Tha,v1 S L&, M)

(8, (MyI™ 2,08, (M)
= D [g (V)] .
Conversely, suppose Dt[%i(ﬂ,y)] = thét(ﬂ,yijb Then since

(E MIE ] ™ = (6 - 1],

SLE ] - a1 + 12 ) %;t%t(n,vn'l =0 -

and we have

K™D - -tk a1 Gt s . B




Thus, since
(B 1™t SLE ] = L8, 017t L8, o)

we. have by multiplying by [%t(ﬂ,y)]'l that

- & @ o) - [an Tt GRav DR an Tt -0

or
[t 0] Q1™ + Gz, o = o
or
2 (. mit i ™= 0.
Hence

(8, MIE, M1 = B,y

for all teR.
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