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ABSTRACT

This report is concerned with the application of transformation groups

to the solution of systems of ordinary differential equations and, in particu-

lar, partial differential equations. These groups are Lie groups in the usual

sense, but it is the transformation properties rather than the group structure

that is used.

The principal tool used here, referred to as Lie's theorem, gives a

method for finding an integrating factor for a system of ordinary differential

equations when the appropriate invariance group or groups can be found. Lie's
r

theorem is extended to partial differential equations by considering a partial

differential equation as a continuously infinite system of coupled ordinary

di,16ferential equations. For a system of ordinary differential equations the

integrating factor is a matrix. For a partial, differential equation the inte-

grating factor is a continuously infinite matrix.

The proof of Lie's theorem and its use for partial differential equations

depends on constructing an adequate theory of continuously infinite matrices;

this is done here through the use of distributions or generalized functions.



TABLE OF CONTENTS

Page

L. INTRODUCTION	 .	 .	 .	 .	 1

II. LIE'S THEOREM FOR A FINITE SYSTEM OF ORDINARY DIFFERENTIAL

	

EQUATIONS. . . . . . . . . . . . . . . . . 0 . . . . . . . a . .	 8

A. Lie's Theorem for Systems of Ordinary Differential

	

Equations. . . . . . . . . . . . . 0 0 . . . . 0 . . . . . .	 8

B.	 Examples	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . . .	 .	 .	 . .	 .	 . 18

1.	 The One-Dimensional Heat Flow Equation . .	 .	 .	 . .	 .	 . 18

1 .1.	 Discussion	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . . .	 .	 .	 . .	 .	 . 25

2.	 The Wave Equation,	 .	 .	 .	 .	 .	 . .	 .	 .	 . . It	 .	 .	 . .	 .	 . 25

III. LIE'S THEOREM FOR PARTIAL DIFFERENTIAL EQUATIONS . .	 .	 .	 . .	 .	 . 33

A.	 Lie's Theorem .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . . .	 .	 .	 . .	 .	 . 33

B.	 Examples	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . . .	 .	 .	 . .	 .	 . 37

1.	 The One-Dimensional Heat Flow Equation . .	 .	 .	 . .	 .	 . 37

2.	 A Class of Linear Problems .	 . .	 .	 .	 . . .	 .	 .	 . .	 .	 . 42

3.	 Partial Differential Equations in More than Two
independent Variables .	 .	 .	 .	 . .	 .	 .	 . . .	 .	 .	 . .	 .	 . 43

IV. RESULTS AND CONCLUSIONS.	 . . . . .	 . . . . 46

A.	 Results	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . . .	 .	 .	 . .	 .	 . 46

B •	 Conclusions	 .	 .	 .	 .	 .	 .	 .	 ' .	 .	 .	 .	 . .	 .	 .	 . . .	 .	 .	 . ..	 .	 . 48

C.	 Recommendations for Further Study. . .	 .	 .	 . .	 .	 .	 . .	 .	 . 49

V. APPENDIX	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . . .	 .	 .	 . a	 .	 . 51

VI. BIBLIOGRAPHY	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 . . 9	 9	 . 9	 .	 . 92



I

I. INTRODUCTION

This report is concerned with the application of transformation gro ,,,xps to

the solution of systems of ordinary differential equations and in particular

partial differential equations. These groups are Lie groups in the usual

sense, but it is the transformation properties rather than the group structure

that is used.

The principal theorem, referred to as Lie's theorem, gives a method for

finding an integrating factor for a system of ordinary differential equations

when the appropriate invariance group or groups can be found. Lie's theorem

can be extended to partial differential equations by considering a partial

differential equation as a continuously infinite system of coupled ordinary

differential equations. For a system of ordinary differential equations the

integrating factor is matrix. For a partial differential equation the inte-

grating factor is then a continuously infinite matrix.

The proof of Lie's theorem and its use for partial differential equations

depends on having an adequate theory of continuously infinite matrices; this is

done here through the use of distributions or generalized functions.

Chapter II treats systems of ordinary differential equations. Lie's

theorem is derived in such a way that it can be readily applied to the discrete

approximation of a partial differential equation. Examples given are the

discrete approximation to the heat flow and wave equations considered as initial

value problems, and it is shown that the limiting form of the solutions obtained

are those given by other more familiar techniques.

In Chapter III Lie's theorem is derived for and applied directly to par

tial differential equations without the necessity of using a discrete -approxi-

mation. 'The heat flow equation is again used as an example.

^tiou'^Bh. ^ ,.. <_^xs:2,^m&.ia ^ ga	 ..d a-^ :sm3..'^Ts:da



While the examples given are linear equations, there is nothing in the

method that restricts it to linear problems. Lie's theorem can in principle

be applied to non-il.ranr Oartial differential equations, but in practice it	
i

has been difficult to find a non-linear example.

Chapters II and III are oriented towards the engineer, physicist or

chemist whose prime interest is application and the practical solution of

problems. The proofs or derivations here would not be considered satis-

factory by standards of the mathematics of this century.

In the Appendix, however, an effort was made to achieve rigor in the

proofs given. It is here that the foundations of a theory of continuously

infinite matrices based on distribution theory and generalized functions[29-

331 is giver► .

It will be noted that the notation of Chapters II and III and of the

Appendix are not always consistent with each other. Where differences occur

it is usually due to an effort to maintain a notation consistent with that

of the reference from which the material was obtained.

While we have not been able to find in the literature Lie's theorem for

partial differential, equations (or even for systems of ordinary differential

equations), it seems unlikely that the work here is completely new.

Note
The notation used in connection with matrices in Chapter II is as follows:

A dourly indexed quantity will be called a matrix. If A ij are the elements of

a matrix, then the matrix is referred to as A. Singly indexed quantities will

be called vectors so that B  are the elements of the vector called B. The

transpose of A and B will be denoted AT and BT respectively. The inverse of A

is AI and its elements written as Aid.

2



The summation convention will be used so that any repeated index is

understood to be summed unless stated otherwise. For example, if A and C

are matrices, the product AC will be written as A imCmi . The index m is

understood to he summed. The product A TC is written as miCmjj etc. These

sums run over the entire range for which the index is defined.

To shorten notation when partial derivatives are used, the comma nota-

tion will be used. That is &- (x,t) and o (x,t) will be wri tten as 0, t and

O Ox respectively. If a quantity is a function of a set of indexed variables,

for example

'Y(Y1>Y2)Y3r . . .) = T (Y) s
	 then

its partial derivatives 
a will be written. as T, k . For example

k

d
t Q(yl (t)) y2 ( t)	 t) = Q, t + qPi Yi

where

dyi (t)
Y i = dt

In the chapter dealing with the application of continuously infinite 	 !	 ^

matrices to the solution of partial differential equations, the notation caa
i

become quite complex and under some circumstances ambiguous. Some of the

conventions and notations used there	 be deFcribed as follows.-

The partial derivative will have its usual' meaning. That is, if

O(x , t, z) for example, then	 t

3 }



DI Is dO	 and	 a s ^$

t = constant	 x = constant
z = constant	 z = constant.

If z happens to be a function of x and t, that is z E z(x,t) then

0 is ¢ (x, t, z (x, t)) a T (x, t)	 and

&I M SU+ 1 U ax
 (x, t) , U L' + SU 

a 
(XV t)

The comma notation will also be used for the partial, derivatives, i.e.

t a at , 0, x
 bo	 and

d
f,j y

3 
f(yl ,y2 ,y3 . . . ).

F

Where this will cause no confusion, the prime and dot notation will also be

used for partial or total, derivatives with respect to x and t respectively.

That is

	

a2	
a	

2la --	 (xs t), Y	 , Y^ _	 (xst)s Y" 	 etc.

	

C) t
at	 ax

3

A functional notation will also be used. Parentheses will be used to
i

indicate parameters of functions or distributions and square brackets indicate

functional parameters. Thus 0 (x)[y] =	 (x,z) with

Z	 J f(x ,Y(X)sY l y"	 .	 )dx,
_oo

a.

4



where f is some function of the indicated parameters. That is, 0 can be

regarded as a function (or distribution) in the variable x and as a functional

in the quantity y.

The variational derivative * will indicate a derivative with respect to a
I

functional parameter. That is

(x) GYa	 .$ (x , Z)	 8         	 . , )dxby(s)	 cax	 6y(s) S
f(^oy(i),y'pyll ,

+W

	

`	 f f(u,Y(x),Y', .	 .)di
a

and

8Y(S)f f (x,y (x),y ' ,	 .	 dx = f	 f (X ZO ,y^ ,	 .>	 6Y (S)
aX

0j-	 •	 r
x0 y (x)

+ J a f{x,,Y(x),ZI .	 )
6 Y'

 
(x)c1X

-0, 1Y(-)
Z 1 = y' (X)

+ etc.

t

and	 1'

6 V 	 (	 $) b Y' (X>	 48 (z)	
Y

6y (S)	 8Y(8)	 ` dZ

Z X 

PINION
......	 .... __	 _



A

6y(s)	
dz2
	 etco

..
z  x s

so that

Wx)[y] , 0 (x , z)	 d k bf(s,z0'zl'z2'sy (s)	 dzda dz
O<k	

k

z 
S tdx	

zm d(B)

-00	 d s

Mere 6 (x) is the Dirac delta distribution or generalized function, The pa-{

renthe.ses designate either function or distribution parameters; no distinction

betweex,tunction or distribution parameters will be made, however, it is under 
^t

stood that in any integration associated with a matrix multiplication, one of

the occurrences of the variable is a distribution and the other a fairly good

function (in the sense of Lighthill [211,])

Distributions, the general theory of continuously infinite matrices.

definitions, and theorems associated with these topics are given in the

appendices. It should be noted that a functional parameter can also be a funs-
Yy

Lion (or di s tribution) in some variable. In that case, account must be taken

in expressing the total and partial derivatives, Thus if

r

^- W1Y] ^ (t, 2)	
{

-„
r	 iz	 J f (X , y (x, t ) , y ' (X, 

t) , yip (x, t)	 . ) dx,
_00

then



at m a O (t, z)

	

Ft at	 and

Z f f dx

aO	 at	 a} o (t Z)	
d +°°

dr at az	 • dt f f(xo y (x,t), y ' (x,t) s .. . )dx
_00

'z	 Z = f f dx
_ao

= at + ^ s t	 ,ate (x, t) dx
at ^ 6y (x,t) at



I3. LIE'S THEOREM FOR A FINITE SYSTEM
OF ORDINARY DIFFERENTIAL EQUATIONS

Lie developed the theory of one parameter continuous transformation

groups for the purpose of studying ordinary differential equations [1]. This 	 j

technique has become a standard tool for the solution of first order ordinary

differential equations and is derive6 and discussed in most text books on the

subject [2-4]. For some reason, not too apparent, the extension of Lie's

theorem to systems of first order differential equations seems to have been

neglected. This extension is made in the, first report on this contract [26]

where Lie's theorem is proved for systems of equations and examples given.

The proofs will be repeated here in-this report in a slightly altered form,

one that is more easily e.-.tended to partial differential equations and more

examples given. However, we will not repeat here many of the definitions and 	 f

elementary concepts of group and transformation theory discussed in the first

report but will refer the reader to this report [26] or to the standard text 4.

books on these subjects'.
i_

A. Lie's Theorem for Systems of Ordinary Differential Equations

Consider the system of M (total) differential equations in M + 1 variables
i.

P jk (yl , 0 1 0 yM , t) dyk + Q  (yl t y2 ;	 . . yM, t) dt = 0 2	(11-1)



0K L =	 P	 (1L-2a)
j,k ayk 	^i ik

a^

	

^iQi	 (II-2b)	
a

j,t	 at

where the X 
ji 

may be functions of the y and t but are independent of the index

k. X is called an integrating factor and is an M by M matrix. Thus if an

integration factor exists that satisfies 11-2, each 0^ must satisfy the partial

r
differential equation

I

0^,kP kiQi^,t	 U '	 (I1-3)

where 
P 1ki 

is the k,,i element of the inverse of the matrix P provided P T exists.
i

Assume that the 0^ c are invariant as a family under the groups U n , n_

1, 2 1 . . , M,

''^^'^ + 0 (Y Y	 y ,	 aUn _ ank (Y1 , Y2' . .	 YM' ^' d n	 n l 2	 M t) atXk

that is

UnOj_= gnj(0)	 (11-4 )

for n - 1, 2,	 M, and j = 1,, 2 )	 M, where the gnu are some functions



i

	so that ^s = Cs is identical with the family, 01 	cJ . The notation here is

that giis is the i, s component of the inverse of the matrix g(o), assuming

that this inverse exists. The right hand side of II-5 is meant to indicate a

line integral in 0 sp ,, , ^e, i. e.

I

	fglis doi = R gll s (w , R2 , R3 ,	 )dw
I

+02 

9  2s 
(0 I ,w,R 3 ,R 40	 dw + 03 g  3s 

(01002 
,w,R 

4'
	 . >dw

R2	 R3

+ etc.,

so that

at s	 l
aoi a is

Here the R  are arbitrary constants.

Then

U 
t s _ 

Umoi 
a^ s = 

;̂Mi 9 1 s _ 8 m '	 (=1-6)
^wi

where Ems = I if m s or 0 if m } s. It is also seen that the ^ s obey the

same partial differential equation II-4 as do the 0 1 , that is

§- ,_P I,_A: - §-	 0	 (II-7)



Equation II-6 and II - 7 can be combined to solve for 
is k and § s t in

terms P, Q, a and s giving

S _ (PaT + QPT ) I P
s,k ayk 	si ik

^	
at s -
 (Pa + QS T) I Qs,t	 at -	 si i

and

(II-8a)

(II-bb)

Here the notation (PaT + QpT) I si 
refers to the s, i component of the inverse of

the sum of the matrix products P with the transpose of a and Q with the trans-

pose of 0, provided this inverse exists. (Note that 
QPT 

is a square matrix).

From equation II-7 it is seer that under the assumpt;.1ns made, an inte-

gration factor or matrix exists of the form (Pa T + QPT)I, and matrix multiplica-

tion with equation II-1 gives a perfect differential in the sense that

d	
I§ s dy + M s dt	

(Pa? + Q^T) I P dy + (Pa + Qp T) I Q . dt.

	

s dYk k at	 S  ik k	 sJ J

The function can be found by a line integral in the y, t space along

some convenient path, represented by

s =

	

jd§.
 = J 	 + Q

p
}TIse Pik dyk + j(PaT  + QpT) 

Is 
Q. dt

- K
s	

s = 1, 2,	 M	 (II-9 )

	

where the Ks are constants. The equations s (yl ,y2 ,	 ,, t) = Ks represent

then the general solution to the set of equations II-1,
}f

11



There are two points to be noted in connection with this result. The

first is that instead of the matrix equation P d + Q = 0, it would be just

as general to have used the equation d + Q - 0, where Q = V1 Q since a

necessary and sufficient condition for the existence of a solution to the first

is that P z exist.

The second point to note is that there is no need to consider transforma-

tions of the variable t. That is the transformation

t I.- t +Ern

is exactly the same transformation (as far as the equation dy/dt + Q(y,t) = 0

is concerned) as the transformation

yk yk (t - CPd 	 since

yk (t - ern) ^ yk (t) - ed 0n = yk + eQksn .

This the transformations

a	 a
Un ink ayk + ^n at

are identical to the transformations

Un = (ank + Qkn)a
yk .



The remainder of this chapter will be concerned with the equation

dyjdt + Q = 0 and transformation ,y - y + ea only.

A formal statement of the theorem used in this report for the solution of

differential equations, which we will refer; to as Lie's Theorem, then, is as

follows.

"If the differential equation 
d 

(t) + Q(y(t), t) = 0, where y and Q are

vectors, and t a scalar, is invariantwith respect to the set of transformations

specified by

Un = 
«ns (Y ^ t) ay

s

where a is a square matrix and 
ay 

a vector operator, then provided aTI exist,

the general solution-to the differential equation its

JCV TI 

(dy 
+ Qdt)	 K

where the integral is understood as a line integral in y, t space along any

convenient path, and K is an arbitrary vector constant."

The paragraphs in this chapter leading up to a statement of this theorem

can, in fact, be considered a proof of the theorem, but an alternate form of 	 ;`4

the proof will now be given. 	 f

The differential equation to be integrated is

dy	

i

i

dt + Q(Y, t) 	 0	 (II-10)	 }

i

If this equation is to be invariant with respect to the transformation specified

i

by



a	
(xx -11>

n ank ayk

for all n it must be invariant with respect to the infinitesimal transformations

yk #.- yk + FNnk (y , t
(II - 12)

Qk (y , t )	 Qk (yj + eanj^t)

to first order in a for all k and n. Here a is an infinitesimal parameter.

Making this transformation gives

dyk +	 + e {Td 	 +	 + E2	 R 0	 xz - 13dt	 Qk 	 nk	 rimQk,ml	 (	 )	 (	 )

This equation is invariant up to first order in a if an only if

Ft «nk(y(t) r t)

T	 TI
Letting 

a
kn ^ ank and of be the inverse of

T d TI
C1 n dt C'ns

-anm Qk,m	 (11-14)

aT , I1-14 gives

Qk,s	
(II-15)

The left side of this equation is the right Volterra derivative* of 01 TI

It will now be shown that every solution to II-15 is an integrating factor

of II-10. Let Xkm be an integrating factor of II-10 for each k; that is

MacDuffie, C. C., The Theory of Matrices, Chelsea Publishing Co., New York,
(1946) page 103.



dOk = Xkm dy
m + 

Xkm Qom dt

where dOk is a perfect differential for each k.

Then

Xkm 3 Ok,m	 and

%km O-m ` Ok, t

Thus 0k is a solution of the partial differential equation

Ok,t - Qm Ok,m = 0
	

(11-16)

Differentiating (I1-16) with respect to y  gives the parti,il differential

equation for X,

xks,t - Qm Xks,m = Xkm Qm,s

or

x	 a _	 a ,.
kn a t QM aym ns Qk, s

The operator in square brackets is the total derivative with respect to

t, so that a satisfies the equation



Then

d
d	 RS'	 0.

s /J

^f

^tl

^t

E

Cpq 
%qs = 

(Cpq oq) ' s '

so that CX is both an integrating factor and a solution to 11-17 for every

invertible constant C.

Suppose two invertible matrices R(t) and S(t) have equal Volterra

derivatives, that is

RI dI R=SkitS

Then

R^ 
t R 

+ at S I S 
= 0,

provided dt SI exists. Multiplying on the left by R and on the right by Si

gives

dr, r RdSi
at s + dt or

M

RS  = C

where C is some invertible constant matrix. That is, if two matrices have

the same Volterra derivative, they are proportional to each other through

some invertible constant matrix.



In this way it is shown that every solution of 11-17 (or 11-15a) is

proportional to every other solution through some invertible constant matrix.

Thus if some solution is an integrating factor, every solution is an integra-

ting factor. The matrix aTZ (y(t),t) is then an integrating factor of the

matrix equation

WO  + Q (Ys 0 a 0 .

Then since

A

dO = m dy + d :n dt = aTZ
(dY + Q dt)	 (xz• 8)

m ayk k	 at	 mj	 ,^

the line integral in, y, t space

0m = j O' T
I
 (dy j + Q j dt) - m
	 (11- 19)

is a solution to the system of differential equations II-10 for each constant

vector K, That is, the m are the constants of integration.

This completes the proof of Lie ' s theorem for systems of differential

equations, the basic theorem on which the methods and results of this report

are based.

We note at this point that the Lie's theorem is proved here for a finite

system of equations. The extension to countably infinite systems depends on an

adequate theory of countabl y infinite matrices The proof would be unchanged

for a. system of countably infinite matrices that form an algebra, that is,, a

system which is closed under addition and multiplication.* The extension to

C G Madlluffie to cit ) a e i06p,	 p g

1.7

I

^c,



t

f

Y

conLinuously infinite matrices vhiieh forms the basis of the application to

partial differential equations will be discussed in a later chapter. 	 w
k

E. Ex ►pjes

The One -Dimensional Heat Flow Equation
i

As an example of the use of Lie's theorem to solve systems of ordinary
6f

differential equations, the method will be applied to the discrete form of the

one-dimensional heat flow equation.

Consider the partial differential equation

Al(x , t) _

	

Bt	 2 Y(x, t)	 0 ,	 (11-20)
ax

with initial conditions

and the periodic boundary conditions

Y (x + 2L, t) = y (x, t) .

Using the lowest order difference approximation for the derivativewith respect

to x gives the system of equations

Y	 ZY + Y

a
n(t) _ n+1	

2 	
n i 0
	 n0 , tl, ±2 .. N	 (11-21)

h

Here yn (t)	 y(nnh,t) where h is the discretization interval (Nh L) . There are

only 2N independent equations since y n (t) = yn + 2N (t) by virtue of the periodic



boindA y londitions. The initial conditions are

Yn (C)	 yn •

Considered as a system of coupled differential equations, 11-21 is of the

form

dt yn ♦. Qn (y I t) =

where

Qn (Y t) _ - (Yn+l 2y  + yn-1) /h2

Equation 1I-21 is invariant with respect to the transformation

f

	

yn^t>	 yn ^> + ,^yj
+nit)

a	 j	 i

, _1,	 N and j = 0, tl ±2	 N. The operators characterizingr^	 for n = 0	 ,	 0-^	 ^ 
1

the set of transformation are ^	 M

j

	

a 	 JUj yj+8 ay	 °^	
N

s	 #

}

This is of the form;

U	 aj r	
is

--	 withays

T

j 6	 y j+s ` s j

of is a square 2N by 2N matrix. #

f

k: 19
J;

..	 MW	 YJ

.......m.ep..,y,...«a.µy+cgY ♦.h 4.+".,. »	 th	 -	 rsti^nF

i11_.. _r."^'	 h^ _.:n v..it_ _.6 Y.....,, 6 az.._» k,.+71cr'wx. t
	 c	 j'p'	 }.^I	

^j^ ^y.,xi	 'y	 '^	 r'°,:sejc:	 .ace..	 awiv	 4;k+.a.'M1eC+?:.
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' ayl {'."1FE1r „wF+M TC	
_._31..-.._....,	 w

y	 u

The matrix a, whose elements are y3+s, is called an anticirculant matrix.

Much is knmm about anticirculants. In particular, the inverse of an anticircu-

lant is an anticirculant, if it exists. It is straightforward to show that if

qm+k are the elements of ttie inverse of the matrix whose elements areym+j(=aT

= 
mJ

) , so that

TI T
amk a

jm = 
qm+k ym+j = b kj

then

1 
eniks/N

q  - 2N e1Tij s/Ny

(Note here that the summation convention is used on all repeated indices, the

sums running from -N+1 to N, and q  is periodic with period 2N.) This inverse

can be obtained in a variety of ways. It can be obtained from the theory of

finite Fourier expansions. Also, by showing that powers of the Nth roots of

unity form a unitary matrix that diagonaiizes every N by N anticirculant,

this inverse can be obtained from the reciprocal of the eigi:nvalues of ym+j.

With this inverse, then, the integration factor is

TI	 1 e77i
(k+m)s/N

mk gmi-k 2N eTTi j s/Ny
,	 3



such that

H 	 ai= aTI '	 m	 TI Q
ayk 	 mk	 a t 

_ a 
mk k

^m I t - amk (yk+1 2Yk + Yk-1) /h2 = - (6 ml- 26m0 + 6m-1 ) /h2

The f-itctions ^m
(Y-N+1' Y-N+2'' ' 'Y

0)' ' •yNI t) can then be calculated by

integrating di
m
 along some convenient path in the 2N + 1 dimensional space of

the Y's and t. A convenient path of integration is as follows;

(1) Yk = 6k0
along t from t = 0 to t

(2)	 t = 't,	 Yk = 0(k 0) along yo from yo = 1 to y  (t)

(3)	 t = t, Yk - 0 (k 0,1) Yo = 'Yo (t) , along yl from yl = 0 to yl (t)

(4)	t = t , Yk = 0 (k 0 p l p ' 1 ) Yo = Yo (t) , Y1 = Y 1 ( t) , along y_ l from

Y-1 = 0 to y_ 1(t)

etc. Written out with the summation signs, this is

t

S1
0 
dt(6m1 - 28 m +•6m-1)/h2

1	 C,	 yp	 eni (O+m) s /N
dw,— 

2N -"N	 1	 erri j s /N jY + 
eniOs/Nw



t
i

i

i

^+
y_ 1	 erri (-14hn) s /N

J 0	 dW
-1,<J<2 e

rrij s /N yj + erri ( - 1) s/Nw

+..

YN	 eai (N+m) s/N
f0 dw	

rri,j s/N	 Trims/N
-N<Y<N a	 yi + e	 w

This particular path of integratUon gives

e Trims /N 1n(errijs/N
^m (Y ' t) = 2N	

Y^)	
t2 (6 ml

-
 26 

"A0 + 6m-1)	 (II-: 2)
h

That this is in fact ^ m (y,t) can be'readily verified by calculating that

TI
^m,k " «km

2
m, 

t	
(6m	 26m0 + 6 m-1)/h

A completely general solution to equation II-21 is given by ^m = Km where the

K are arbitrary constants.

While this solution does not look particularly useful, it can be solved

and



gives

.1n(enijs/N y i ) + 4t sin 2(TTs/2N)/h2 	 In Ms ,	 or

e (-TTi j s /N - 4t sin 2 (TT s /2N)/h2)M
Y^ ( t) = 2N	 s

l

The constants M s can then be related to initial conditions by noting that at

t- 0
3

y 
(0) _ 2N a Trig s/N M

s	
or

M = e
TTims/N o

s	 ym

In terms of the initial conditions then, the solution to 11-21 is

e-in (n-m) SIN a-4t sin2 (TTs/2N) /h1y 0 ^
yn(t) _

2N m	 (11- 23) 1

(Note the sum over both the repeated indices m and s.)

While this solution to the one -dimensional heat flow equation may not

look familiar, by passing to the limits h -► 0 2 N - co with Nh = L it can be seen

that this is the usual solution for the initial value problem.

Introducing the notation
r

1



e -2TTi(x - xl)s /2L e-4t(TTs /2L)y(x',o)
= f '	 dx' 2L

-L	 w

and writing out the summation signs explicitly,

y (x, t) = lim

N-- w
h-0

(Nh=L)

_-2TTi (x - x' m)s/2L a -4t sin  (1Ts/2N) /h 2 y o

- ZNx ZW — 2Nh	
m

If the limit L -400 is now taken one obtain p the solution to the heat flow

equation valid over the entire real axis for the initial value problem. Intro-

the notation

p  = s/2L , Ap = 1/21,

gives

+L	
- 2TTi (x-x') P - 4t (tTp ) 

2
Tim	 J	 dx'	 AP e	 s	 s Y (x ) 0)

_L 	 Wz-CO
(AP-0)

+W aX^ += 
d	 e - 2r i(x-x')p - (2Trp)2 t^(X' ^o) .f	 f P

_CO	 _CO

This is the usual Fourier transform solution for the infinite interval. The

integration over p can be carried out and gives

+ 
dx' 

e - (x-x') 2/43t
Y (x 3, t> = f Y(x^^o).	 (II -24)
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1.1 Discussion

The above technique for using Lie's theorem to solve the heat flow

equation is quite complicated and gives well-known solutions that are mach

more easily obtained in other ways. It is used here only to illustrate this

method. The equation 11-20 is linear, but Lie's theorem can be applied to

the non-linear problems. The technique of discretization of the partial

differential equation $ followed by the application of Lie's theorem to a

finite 6ystem of ordinary differential equations, followed in turn by taking

the limit back to the continuous system, can be applied to other partial

differential equations but is an extremely awkward way of proceeding. A more

desirable method would be to obtain a form of Lie's theorem applicable directly

to p arti4l differential equations without introducing the discrete approxima-

tion. This subject will be taken up in later chapters of this report.

2. The Wave Equation

The second example given here will be the application to a second

order partial differential equation, the wave equation

i!2	 a2y 
(X., t) -

 

ax y
{x, t) = 0 ,	 ^1 i-25

a t2	
)

with initial values y(x,0) = y° (x) and as y(x ' t) f t _ p y' (x)

Since Lie's theorem is applicable to first order differential equatic-dj , it

will be necessary to reduce I1-25 to a°pair of first order differential equa-

tions. This can be done by introducing two new variables y and y' defined as

y = y (x,t), y' = x (x,t). Then the single second order partial differentialat	 ax,



equation II-25 can be written as a pair of first order coupled differential

equations

a y a y ' _ 0
	 (II-26a)

a y' a Y = 0	 (II-26b)

This pair of coupled equations can be reduced to a pair of uncoupled equations

defining

u =y+ y,

v=y - y'

which satisfy the equations

au_au _ 0
at ax (II-27a)

a + av = o .	 (II-27b)at ax

The solution of II-25 is related to the solution of II-27 by

t

y (X, t) = y (X, o) + f to (X, t) + v(X, t)) dt
0

i

Equations II-27 represent a pair of uncoupled first order partial differ-

ential equations equivalent to II-25. These can be solved separately and the
1

equation for u only will be solved here since that for v can be obtained by

reversing the sign of t in the ►solution for u.
t

{

26

1



Qn = -(u n+1 un-1)/2h

I
and U is in the form

d
ut^n + Qn , U

M

The discrete version of II-27a is

d	 _ un+1 un-1	 (11-28)
dtu
	 0n	

2h	 ^•

If the periodic boundary conditions un = yn+2N are used, this equation is

invariant with respect to the set of infinitesimal transformations

urt +- u  + eun+k
	

k = 0, f1 0 t2 . . . N ,

characterized by the operator

Uk _. uk+n b yn .

Equation 11-28 is in the form



The ms,trix a, whose elements are
uk

+n' is called an ant;icirculant matrix,

The inverse of an anti.circulant is an anticirculant, if it exists. It is
i

straightforward to show that if qj+k are the elements of the inverse of the

matrix whose elements are uk+n so that

q;j+k uk+n a jn '	 then

l eniks/N
q 	 2N eniJs/N	 and

u

I	 1 
eTii (k+m) s/N

km  qk+m 2--

2N 
eTTi..—.

(Note the summation over both repeated indexes s and J, and that q is periodic

with period 2N.) There exists then a function

m (u-N+l , . . u
-1' u

p , ul , . 0 uN ,t)
	

such that

3 't
a;{

a	 q	 andauk	 k+m

J

aim
a - gm+n (un+l un-1) /2h - - 0 m bm_ l) /2h

i
m can be obtained from a line integral ir. the 2N + 1 dimensional space of

u and t. A convenient path of integration is the same used above for the heat

flow problem, (page 21). This can be written
a
1
j



'	 uk` d 1	 eTTi.(k+m) SIN 	
1

^.► 	 2N	 Tti J SIN 	 Triks/N
O^k .N ko	 -N<s:N - k;<j<k a	 u j + e	 w

+	 U  d 1	 7'	 a -rr' (k+m) s/N
2N	 L	 E	 TTi j SIN 	 mks/N

-N<s<N k< j<-k+l a	 u j+

t
+ S

0 
dt 

(8ml 6m-1) /2h

Integrating along this path gives	 r

swims IN	 TTiJ s IN
m (u ' t)	 2N	 In (e	

uj)	 t (Sml - 8M-1 )/2h	 s

It is readily verified that this 
^m 

gives the correct aim/auk and a§
 m

/at. The

relations

m (u, t) - m

give the general, solutions to equations 11-28, where the m are the 2N arbitrary

constants. Introducing new constants Ms such that

In M = 
e -rrims/N K

s	 m

one can solve for u. as

i{
e 

-(Tri js /N + itsin (rrs /N) /h)M
U (t)_--	 s

	

j	 2:N

The M are related to the initial values of u (u (x, t) = a— y(x, t) + a— Y (, t)) bys	 at.	 ax

	

Ms 
eTTirs/N u°r , where u	 u j (0) is the value of a at t = 0. The Ms are the



discrete Fourier transforms of the initial aIn terms of the u^ then

e -ni(j-k)s/N e-itsin(ns/N)/h uo .
u (t) a

	

	 k2N 

Taking the limit as h -+ Q, N -+ o, with hN = L gives the continuous solution to

II-28 for periodic boundary conditions wit. period 2L. Introducing the nota.

tion

xi a j h

xk 
2 kh

Ax l e h

and writing in the summations explicitly, we have

-,	 -TTir (x - x') s/hN - it sin(TThs/hN) /h o
u(x ) t) -^ l im	 L,	 ^.,	 Ax'	 k	 e	

uk
h -o 0
N -o co 

-N<s<N -N<k<N

(Nh=L)

1 
( +L	 ' eni (x' - x+t) s/L uo 

(x I )
2L J	 dx

0<s<^	 'L

M

^	 I

Taking the limit as L 00 with

p "=' s/4 0 Ap a 1/21,

+0	 +CO	 e2Tri(x' - x+t:)p uo (xl)
u (x, t) _ J	 dp f dx'

-ao	 -oo

gives

10
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^	 1

dp J	 dxr 
e2TTix p u  (X' + x-t)

,J -00	 -CO

u° (x- t) .

The solution for v(s,t) is similar to the solution for u, except with the sign

of t reversed, and can be worked out to give v(x,t) = v°(x+t). Since

	

u (X, t)	 y (X, t) + Y (x, t)

	

V (x ) t)	 y (X ) t) - y' (x, t)

and

t

Y( X , t) = Y(X,O) + J
O

{ u (x , T) + 'v (X ,T)) dT

we, have

t
Y(x,t) >;-- Y(x,0) ± J j (Y(X+T, O) + y(x-T,O) + y' (x+T ) O)	 y' (X-T,o))dT

0

X+t	 --
{ Y (X+t,o) + y(x-t ) o) + T	 y(T,o)H)

x- t



^a

In treating second order differential equations by Lie l s method it is

necessary to first reduce the problem to a pair of first order equations. If

these two equations can then be uncoupled as was done above,the mechanics of

the solution become much simpler, but the method still applies even if the

equations remain coupled.



^'	 t
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III. LIE'S THEOREM FOR
PARTM DIFFERENTIAL EQUATIONS

This chapter deals with the extension of Lie's theorem directly to

partial differential equations without the need for the discretization intro-

duced in Chapter II. The extension of theorems for finite matrices to con-

tinuously infinite matrices is given in the appendix.

A. Lie's Theorem

A statement of Lie's theorem for use with partial differential equations

is as follows:

"If the partial differential equation

v(x't) 
+ Q(XPt)M = 0at

is invariant with respect to the transformations

y(x,t) '' y(x,t) + eN(x,x,t) [y]

for all	 x, x and t, and provided an aI(x,x,t)[y] exists such that

dx aI (x 2 x, t) cx (x, x, t)	 !> (x - x)
	

then

«
TI (x,x,)t) _
	 X, t)



the previous chapter. Such a proof depends on the construction of a satis-

factory theory of continuously infinite matrices. This theory is outlined in

the appendixes and the reader will be referred to there for the necessary

definitions and theorems as needed.
i

Proof: The differential equation to be integrated,

a-}' (x ' t) + Q(X^olyJ = oa t 	
f r`

'q

^r

1

is to be invariant with respect to the infinitesimal transformation
i

,a

Y(x , t) '' Y(x,t) + ea (x ' X ' t )1Y'	 (III-2a)
;a

Q (x, t) CYa '' Q (X, t ) CY + ea]	 (III-2b)

to first order in a for all relevant x and x. Making this transformation gives

a y(xot)	 d
at	 + Q(x , t)[Y] + e{r 6a'X,t)[Y]

I
f

+ f dx SY(x) Q(X^t )CYJ a(x 2X ' t )CYJ} + e2 (• 	 •) +	 0	 3,

I
For the coefficient of a to be zero,	

1

d_ 
01 (x )	 = -J dx 8	 Q(X,t)CY^ a(x'X.' t ) CYJ 	 1dt	 by (x)

Considerine (Y(x.x) as a matrix in the Parameters x and x. and provided that the	 i
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x
21a

f$.

-
f di dt aT 

(x,x, t) C1 (x,x, t) _ -SY(X) Q(x, t)

Here aT (x,x) = a(x,x) and 
aTI 

is the inverse of cy	 From the properties of

the matrices

J dx dt aT (x, x, t) «TI (x, x, t) 	 - f dx cxT (x, x, t) at 01 (x, x, t ) f

and

dx aT (x,x, t) d_t 
aTI

(x,x, t) _ 6Y(X)Q (x, t) .	 (III - 3)

(The functional dependence on y is understood here, and will not be written

where this would cause no confusion.)

The left side of equation II1-3 is the right Volterra derivative of the

matrix aTI . It is straightforward* to show that if two matrices have the

same Volterra derivative, they are proportional to each other through a non-

singular (matrix) constant. It is also clear that if a matrix is an integra-

tion factor, a constant matrix, multiplied by the integration factor, is also

an integration factor. Thus it only needs to be proven that the integration

factor, X, also satisfies the equation

J dx XT (x, x, t) dt (x,x, t) = s.
Y (X) 

Q (x, t)	 (III-4).

To show this we notethat an integration factor for equation III-1 is defined

so that



s
f^

and

dx X (x, x, t) Q (x, t) = a O (x, t) [y] (III-5b)

and X (x,x,t)[y] is nonsingular. Taking a partial derivative with respect to

i

	 t of the first of these two equations and substituting aofat from the second

gives

Ft X (X, X, t) = 
b 
Y (- f di X (x , X , t) Q (x o t)

dx &y
Y(>

( X' X ' ) Q (x, t) + f dx X (x, X , t) b_
Y( x ) Q (X " t)

and

dt 	 ,x^t)[yJ = at X(x,x, t) +	 dx 
b Y(X> X(x ' x ' t) 

at y(x,t)

J di h (x,x, 
t)$y(x) 

Q(x, t)	 (III-6)

Multiplying by the inverse of X on both sides gives

i
J d XI(x,x,t) t X (x .1 x " t) = — -Q(x,08Y( X)

showing that the integration factor and 
aTI 

have the same Volterra derivative.

They are then proportional to each other through a nonsingular constant * matrix

and thus aTI is also an integration factor, completing the proof.

In comparing this version of Lie's Theorem with the discrete version, we

note no mention is made here of obtaining a solution to the differential

*See Appendix, Section F, page 86.



equation by performing the line integral in y, t space. The theorem for the

continuous case only gives an integrating factor and not 0 directly. While

a line integral in a discrete (even infinite) vector space is a straightforward

concept, a line integral in a continuously infinite-dimensional vector space

is not so readily achieved. In practice to perform a line integral in a

continuously infinite vector space, one would discretize the problem, apply

the line integral to the finite (or countable) dimensional vector space and

then perform a limiting process.

In the absence of a solution by a line integral it appears that the theorem

is not very powerful. In fact, Lie's theorem only allows one to change the

partial differential equation into an equivalent variational equation. That

is, the partial differential equation

dt Y(X,t) + Q(X ,t)[Y] = 0

and the variational equation

i

C) t 
(X t) CY) - ,^ dX Q(X) 8y(i)^ ( X f t ) CYl = 0

i
1

are equivalent to each other. It may or may not be more convenient to solve

the variational equation by a "pseudo line integral" than to attack the ori-

ginal equation. The following sections examine the heat flow equation and

others in view of the continuous form of the Lie Theorem.

I



The partial differential equation to be solved is

z

at Y(x ' t) -	 Y(x, t)	 0
ax

(III-10)

with initial conditions

Y (X, 0 ) = YQ (x) ,

defined everywhere on the real, x axis. (This is equivalent to setting

2
Q(x , t) IYa _ - dx	 b (x	 x) Y{x, t)

7x

Equation III-10 is invariant with respect to the transformation

Y(x , t) `'- Y(x , t) + e Y (x + X, t)

for all r and x. That is, a for the transformation is given by

u (x 2 x, t)	 Y (X + X: t) •

ar is symmetric	 T}mmi	 (a = cx) and is an anticirculant continuous matrix. Its .inverse

is also an anticirculant. It is straightforward to show that if

e2rrixp

jCO

.^4(x,t) =	 dp
	 2rrixp	 -

dx a
	 Y(x)t)

00

then

1

a

dx q(x + x) Y (x + X)	 b (x - x)	 #

38

is

^.
mo

a =.,	 a



and

r

I
f

1

8i

Thus we have

+M2Tri (x + x)p
SY^(X^ t)	

01 (xp x
) 
t)	

q(x + X>	 J dp ^	 (III - 12a )
_00	 dx e2TTixp

Y (x t)
f

_CO

a o(x,t)_ +00= r̂ 	TI =	 a2	 = -
at	 -j dx 

J 
dot a Cx, x, t)	 6(xy(x,t)

-00	 _CO

	 ;_= 2
x

62
- 2 6 (X)	 (III-12b)
ax

r

The general solution to the partial differential equation then is

0 (x, t) C Y] = K (x)

where K is an arbitrary "constant" vector. (K(x) is a constant in the sense

that at K (x) = 0 and 6y (x) x) _ 0.)

Finding O(x,t)[y] from 60/6y and 60/at is something of a problem. In this

particular case it is possible to look at the discrete version of this problem

and figure out what 0 ought to be in the continuous case. The discrete case

can be solved by taking a line integral in a finite-dimensional space. In the

continuous case one must essentially guess the integral and verify by substitu-

tion in III-1.2. While this may appear crude, it is, nevertheless, the way all

quadrature is done, the problem here being more complex in that it is the entire



By inspectio^ of II1-12 it is not difficult to see that

+W	 +W	 2

(x0 t) C:Y]	 dp e2rtixp In( f dx e2rtixp 
y (X, t))	 t a2 6(x) (111-13)

ax

p	 gives the correct $0/8y and 60/at. The general solution is O(x,t) R- K(x)

where K is independent of y and t, but can depend on x. To relate this solu-

tion to the initial value problem where

y (x0) = yo (x) ,
	 let

-F0

In(M(p )) = J dx 
e-277ipx 

K(x)
_0

and take the Fourier transform of both sides of

4-co 	 +CO

dp e2nixp In 	 dx e2trixp 
y (X 3 t))	 t 

a2 
b ()	 K (x)	 (111-14)_

j i	 ax 
w00	 _00

giving

1n(f dx ,e2n3xp y(x ,t) ) _ t(zrr3p) 2	In M(p)
_CO

Solving for y:

z

1



M(p) then, is the Fourier transform of yo (x),

M(p)

	

	 r di e2rrxp Y
o (^ ,J

-co

so that y(x, t) in terms of yo (x) is

	

x 
t	 r dp	 dX 

e -2rri (x - X)p - (2rrp)'t o 
(x 	 (acxx 15)

	

y (, )	
J	 Y	 )	 "

^ C -0

Doing the p integration first gives the usual Form of the solution to the

initial value problem:

e- (x - X) 
2
/O o x

y (xo 
t)	 (' dX 

^	
Y () ,	 (I1I-16)

_«0

It will be noted here in comparing with the procedure for solving the

discrete form of the heat flow equation, that there is a one-to-one corres-

pondence between the steps in each. The discrete solution can be used as a

model or guide in following the continuous case or vice versa. The continuous

case is possibly easier to follow because of the absences of the discretization

and limiting processes. One notes that all the discrete Fourier transforms are

replaced by the corresponding continuous transformation and these are only

introduced to relate the general solution 	 K to the initial value type

solution.



t
za

t
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The one point in the continuous case that is possibly more complex than
R

the discrete case is relating the radients of 0 (with respect to y and t) to

0 $ itself. In the discrete case this can be done by a line integral in a

finite-dimensional space; the analog in the continuous case would be a line
^f

integral in a continuously infinite-dimensional space -- a rather difficult

concept. Ir, any event, Lie's theorem reduces the problem of integrating a

differintial equation to finding a quadrature or set of quadratures, provided

the appropriate invariance group can be found.

The wave equation example given in the preceding chapter can be worked 	 ,;

out in a manner similar to the heat flow equation without recourse to dis-

cretizing. The two treatments are so similar that this will not be done here.

2 A class of ,linear problems
	

i

From the heat-flow and wave equations it can be seen that there is

a general, class of first order linear initial value problems that can be
:4

solved by use of the same transformation. Consider the partial differential

equation of the form

Sa t + f (t'ax)I y (x ' t) = 0
	

(111-20)

where f ( t, z) is integrable in t and a fairly good function* of z. This equa-

tion is invariant with respect to the infinitesimal transformation

Y(x,t) - Y(x,t) + ey(x + x)t)

thus

U (x, x, t) = Y (x + x, t) ,	 and

*In the sense of Lighthill [301



t.

t

	

TI -	 e2rrip (x + x)
(x,x, t) =	 dp	 (111-21)

j 	 +00

J ds 
e2TTips y(s t	

1)

-m
1

I

The functional is given by

l
+CO

O (x l t) ^y] = J dp 
e2TTixp ln(o

J 
d e2TTipx Y(Xs t))	 i

— w	 —co	 {

t
+	 dt t(E O 51- 6(x) ,	 (II1-22)

0 f
j

	and the general solution to 111-20 is 	 i

i
1

O (x 2 t) [ y]	 K(x)`	
s'

f

In Corms of the initial conditions, y(x,t) is given by

t

y(x,t)dp r dx e2rri(x 	 x)p	
TO 

dt f( ,2TTip) 
y ( X t o )	 (111-23)

_m	 -CO

`Vbr



.

The family of partial differential equations mentioned.. above in Section

2 of this chapter can then be generalized to

	

^
a	 ^'

	

at + f (t$a ))` y (X t)	 o	 ( 111- 24)

where b/ax is the gradient operation with respect to the components of x .

This equation is invariant with respect to the transformation

	

y (X, t)	 y (x, t) + Ey (x + x, t)

The integrating factor is

TI	
=	 ^^ e2TTip - (x + x)

a (x, x, t) = J dp 	 (III-25)

CO

J ds 
e2TTip	 s y (s , t)

_00



t

1

1

t	
f

^► 	 4.00 -^+ ^	 is x - x	 ^ -	 - 2y (X , t) w	 dp dX
^ 	 xe 

2rr (	 )	 p	 d t f
.I	 (t, nip) y ( ,o) . (111 -26) 	}J

	

	 o
-CO

The notation used here in that dx, dp represent volume elements in x and p

space respectively, x p is the scalar product, i.e. x . p - x lpl + x2p2 +

and 6(x) is the multi-dimensional delta (generalized) function

S (x) = b (x1 ) S (x2 ) b (x3) . . . .

All of the results derived with a scalar x can be carried over to the

case where x is a vector.

i

{

I
g

^, r
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IV. RESULTS AND CONCLUSIONS

A. Results

The main result of this investigation is that it is possible to apply

Lie's theorem to the integration of partial differential equations. This

'	 can be done in two ways.

The first method is to discretize the partial differential, equation so

that it is approximated by a system of coupled ordinary differential equa-

tions and then apply the form of Lie's theorem for a system of ordinary

differential equations. A limiting process can then be used to get from

the solution of the discrete approximation back to the continuous case. This

is an awkward procedure but has certain advantages. The main advantage is

that in the discrete case, Lie's theorem gives a prescription both for the

construction of an integrating factor and for integrating the resulting equa-

tion by way of a line integral in a finite dimensional space.

The second method uses a form of Lie's theorem applicable directly to the

partial differential equation without introducing a discrete approximation.

But here one obtains a prescription for constructing the integrating factor

only. The actual integration becomes a line integral in a continuously infi-

nite dimensional space. Such line integrals are not as obvious as in the dis-

crete case,

n

	

	 Lie's theorem for systems of coupled ordinary differential equations is

as follows:

"If the differential equation 
d 

(t) + (.' (y(t)2t)   = 0, where y and Q are -

vectors, and t a scalar, is invariant with respect to the set of transforma



Un = «ns (Y ^ t )	 ,
s

where a is a square matrix and ay a vector operator, then provided aTt exists,

the $eneral solution to the differential equation is

o?
TI

 (dy + Qdt) = K	
x

where the integral. is understood as a line integral in y, t space along any

convenient path, and K is an arbitrary vector constant.' (Summation over

repeated indexes is understood.)

Lie's theorem for partial differential equations is as follows:

"If the partial differential equation

at !	 4
1.,

1

is invariant with respect to the transformations

r

Y (x, r) +- Y (x, t) + ea (x, x, t) [Y]

for all relevant x, x, and t, and provided an of (x,x , t)[y] exists such that

C

J dx of (x,x, t) a (X X., t) = S (x - x)

then oiTT (x,x,t) = 01 (x,x,t) is an integrating factor of the partial differentia



O (x ^ t ) Cyl = J dx 
a1 (x

> x , t ) 4(x001y] offat

Proof of the first version is straightforward. Proof of the second

involves a theory of continuously infinite matrices. A development of continu-

I	 ous matrices based on distribution theory or generalized functions is given in

the Appendix.

The examples given here (heat flow equation and wave equation) are all of

linear partial differential, equations. There is nothing in Lie's theorem that

restricts it to linear problems but no example of non-linear equations, solva-

ble using ie's theorem have been found.g	 ^	 :

t

B. Conclusions
w

The method of solution of partial differential equations by use of Lie's

theorem has both advantages and dis-dvantages. Among the advantages are the

following:
J

1. Where it can be applied, Lie's theorem gives a completely general
Fi

solution to the differential equation. It is general, enough so that, in
ii	 r

principle, any boundary conditions can be accommodated. 	
j

2. The method as given here applies to single first order partial

differential equations, but can be extended both to higher order equations

and systems of partial differential equations.

3. While a knowledge of group theory would be useful, the method does

r,

ij,ot depend on the general theory of Lie groups or the structures of the Lie

algebras for its use.

The disadvantages are as follows



2. It is not usually easy to find an appropriate transformation neces-

sary to apply Lie's theorem to a particular differential equation. There is

no straightforward prescription for finding such a transformation. There

are undoubtedly many equations for which the required kind of transformation

does not exist.

3. Even tahen a suitable transformation group can be found it is not

always easy to find the inverse matrix that is the integrating factor.

4. If the inverse matrix is found, it may still be difficult to actually

do the necessary line integral.

5. Finally, if the line integral can be done, the solution may be in an

awkward form (possibly as an integral relation) that is not easy to use or

for applying initial conditions.

G. Recommendations for Further Study

Several improvements and extensions of Lie's theorem, and the application

of group theory to partial differential equations can be suggested.

1. Lie's theorem as stated here applies to a single first order partial

differential equation of the form

tt Y(x,0 + Q(x,t)CY] = 0 .
	

(IV-l)

While it is straightforward to extend this method to higher order partial

differential equations or systems of equations, it is difficult to use these

extensions. Work remains to be done on examples ofthe higher order and sys-

tems of partial differential equations.

2. It should also be possible to find an extension of Lie's theorem in

a
such a way as to allow its application to systems of equations of the form

t	 1:
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. at

^, x 0 tlGya = a, 1 = 1, 2i 4^t	 2	 3	 n	 J

This would eliminate the necessity of bringing equations in to the form IV-1

above before solving.

3. Lie's method is applicable to non-linear partial, differential equa-

tions but so far no such examples have been found. It ought to be possible,

for example, to set up transformations and then find rather general forms of

partial differential equations that are invariant with respect to these

transformations. In this way, tables of equations and transformationscould

be made, and used (much as tables of integrals are used) for finding integra-

tion factors. Here, one would expect that classical group theory and the

A

structure of Lie groups would be useful in classifying and correlating the

equations and integrating factors.

4. In the case of a sj_ngle ordinary (or total) differential equation

if two distinct integrating factors can be found, their ratio (set equal to

a constant) represents a solution. There should be similar theorems for

systems of ordinary differential equations and for partial differential equa-

tions but these are not known.

Respectfully submitted,

L. J. Gallaher
Project Director



V. APPENDIX

DISTRIBUTIONS AND CONTINUOUSLY INFINITE MATRICES

Page

A	 Mathematical Background	 . ,, . . . . . 	 .	 . .	 . . . .	 as 5e

B. Rapidly Decreasing Functions and Temperate Distributions, 	 59

C. Continuous Linear Transformations on the Rapidly Decreasing
Functions . .	 .	 .	 . .	 .	 67

D. Continuously Infinite Matrices. . .	 .	 . .	 0 . . .	 . . 9 . 74

H. The Finite Matrix as a Special Case of the Continuously
Infinite Matrix	 . . .	 . . . . . .	 . . . . . . . .	 . . . . .	 84

F. Matrices with Function Entries. 	 .	 . . . . . . 86

I^



A. Math„ ematical Background

Notation: N will denote the set (0,1,2, 	 .) of natural numbers, Z

the set (O,il,i2, . . .) of integers, 1, the field of real numbers, and C the

field of complex numbers. If K is any of the sets above, Chen K * will denote

the same set without the zero element.

Dfn; A non -empty set E is said to be a vector space over the field C of

complex numbers if there is a binary operation + from E x E into E and a bi-

nary operation • from C x E into E such that if x, y, zeE, a, beC,

(1)x +y= y + x .

(2)(x + y) + z x + (y + z) •

(3) There exists an element OcE such that x + 0 = 0 + x = x

(4) There exists an element -xcE such that x + -x = -x + x = 0.

(5) a • (x + y)	 a	 x + a	 y .

(6) (a+b) • x = a x + b x

(7) (ab)	 x	 a - (bx)

(8) 1 • x = x

Dfn: A non-empty set E is said to be a topological space if there exists

a family T of subsets of E such that

(1) 0, EeT

(2) If (0^) eL is a family of sets in T, then ^ L 0 eT

(3) If 01) 0 2 , •	 OneT, then n,01eT

The elements of T are called open sets.
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Dfn: A map f from a topological space E into a topological space F is

said to be continuous at a pol y t xeE, if for any open set W of F containing

f (x) , there is an open seL V of E containing x such that f (V) C W. f is said

to be continuous if it is continuous of every point of E.

Dfn: If E is a topological space and xeE, then a set NCE is said to be

a neighborhood of x if there exists an open set 0 in E such that xeOcN. A

family of neighborhood (Nd XeL of xeE is said to be a fundamental system of

neighborhoods if for any neighborhood N of x, there is a X 0eL, such that

N  C N
0

Proposition: If E is a topological space, xeE, (N)?tXeL a fundamental

system of neighborhoods of x, f a map from E into of topological space F,

(M
14
) µ,, a fundamental system of neighborhoods of f(x) in F, then f is con-

tinuous at x if,and only if, for each µ0eM, there exists a XOeL such that

f (NX )GN
0 140

Proof: trivial.

Dfn Let E, F°, G be topological spaces. Then a function f : E x F -, _G

is said to be continuous at (x
p)

yC ) e E x F if for any neighborhood W of

f(XO ) YC) in G there exist neighborhoods V I of X  in E and V2 of yo in F such

that f (VI x V2)CW.

Dfn: .A non-empty set E which is both a vector space over C and a topo-

logical space is said to be a topological vector space over C if the maps

(1) (x , y) — x+ y from E x E E

(2) (a,x) -► ax from C x E -+ E

are continuous. (where C is endowed with the normal topology).
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Dfn; if E is a vector space over C then a subset A of E is said to be

convex if for any x, yeA, a, beC, a, b k C, a + b = 1, Chen ax + byeA,

Dfn: A topological vector space E is said to be a locally convex space

if each point in E has a fundamental system of convex neighborhoods.

Note: It is easy to check that if (N% ) XeL is a fundamental system of

neighborhoods of zero in a topological, vector space E then (x + N%)XCL is

fundamental, system of neighborhoods of any xeE. In particular, E is locally

convex if,and only if, -4ero has a fundamental system of convex neighborhoods.

Dfn. Let R+ = (xeR: x ' 0). Then a function q: E - 4 R+ where E is a

vector space is called a semi-norm or E on the following holds:

(1) q(ax) = j a l q (x) for all aeC, xeE

(2) q (x + y) :; q (x) + q (y) for all x, ye E

THEOREM: LeCE be a vector space over C and (qz ) LeI a family of semi-

norms of E. Then there exists a unique topology on E associated with the

family (gL)Zex which makes E into a locally convex space. A .fundamental sys-

tem of neighborhoods of zero is given by

Nm^ e = {xeE: qZ ( x) S e  0 s k S m}
k

where e > 0, meN, Zk , 0 s k s m a finite subset of I.

Proof: See Horvath [ 33] pp 88- 89.

Dfn Let E and F be vector spaces. A map f: E F is said to be linear

if for all x, ye E, aeC,

(1)f (x + y)	 f (x) ' f' f (Y

(2) f(ax)	 af(x)

f

1

d
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Proposition: A linear map f from a topoiogical vector space E into a	 j

t

topological vector space F is continuous if and only if it is continuous at

the origin.

Proof: See Horvath [333 P. 97.

Dfn If E and F are non-empty sets, a map f: E - F is said to be

infective (one-to-one) if for any x, yeE such that f(x) = f(y), then x = y.

f is said to be surjective (onto) if for any yeF, there exists an xeE such

that f(x) y. If f is both infective and surjective ) it is called bijec-

tive.

Proposition: If f: E -+ F is a bijective map and for each yeF, we

define g(y) = x if and only if f(x) = y, then g: F E is a bijective map.

g is called the inverse of f and denoted f- 1.

Proof: trivial.

Dfn	 If E and F are topological spaces, then a continuous bijective

map f: E F is called a homeomorphism if Cl is continuous.

Dfn: If f: E -+ F, g F -4 G are functions then we denote the function

X g (f (x) ) f rom E into G by g o f

Note: if f: E -+ F is bijective, then. f_l o f	
I  

and f o f- 1
	

IF.

B. Rapidly Decreasing Functions and Temperate Distributions

Dfn: A function f: R - 4 C`is said to vanish at infinity if given e > 0,



t^

1

Dfn: 0M will denote the set of i.nfinttel.y differentiable functions

a: R -+ C such that for each peN, there exists a W such that the function

Y -► (l + Y 2 k (p)) a 	 (y) vanishes at infinity.

j	 Dfn: 0C will denote the set of infinitely differentiable functions

0: R -+ C for which there exists a keZ such that the functions 	 (l 
+ 2)k

•	 Y	 Y
^

	
(p) (y)(y) vanishes at infinity for all peN.

The elements of T are called rapidly decreasing functions. It is easy

to see that if cpeT, that y (p) eT for all peN. Also, TCL1(R)

If for each W. peN, we define qk,p : T -+ R+ such that

qk , 
P (y) = max •( (l + ,y2 ) k 1 CP (P) (Y) I }

eye R

then qk is a semi-norm on T. Thus, the family (gk )	 defines a,p	 ,p(k,p) eZ x N

unique locally convex topology on the vector T which makes T into a topologi-

cal vector space. A fundamental system of neighborhoods of OeT is given by

Nk m e - fcpeT: (1 + 'y2 ) k
l
cp(P) (Y) `	 e ^P s ml

where k, meN, e > 0. (See Horvath [33] pp. 90-91).

For each keZ, let T  denote the class of all infinitely differentiable

functions f: R C such that the functions y -+ (1 + 'y2 ) k f (p) (y) vanishes at

infinity for each peN. For each keZ, we let the family 
(gk,p)peN 

of semi-norm

defined above determine the topology on Tk which makes Tk into a topological

vector space.

It is easy to check that 0	 =
-C

U T '.keZ k Furthermore., A' fundamental systems'

of neighborhoods of Tk is given by
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^i

0

Nk,m,e = ffe  Tk	(1 + y2)k I f (p ) (,y) l < c o p s m} -

if ik : T : -+ OG is the canonical injection (i.e. ik (cp) = cp for all cpeTk),

then we equip 0. with the finest locally convex topology for which the family

(ik)keZ °f maps are continuous. (See Horvath [33] p. 157).

Proposition: If G is a locally convex space and g: OG -+ G is a linear

map, then g is continuous if,and only if, the maps g o ik : T  -+ G are con-
i

tinuous (i.e. g is continuous U, and only if, g I Tk is continuous for all

keZ) ,

Proof: See Horvath [333 p. 159.

nfn: If V is any vector space over a field K, a linear function f V - ► K

is called a linear ,form (functional) on V {

Dfn: The set of continuous linear forms on T will be called temperate

distributions. This set will be denoted by V.
4-m

If TeT 1 , yeT, then we will denote T(y) by either <T, y> or f T(y)y(y)dy.

- contin	 -	 C Dfn. The set of continuous linear forms on 0 will be called rapid ly^

ai

decreasing distributions. This set will be denoted by 0C.
+w	 ?'

If SeO^, ^tOC , we will denote S(^) by e ither <S, P> or J S(Y)0(^y)dy.
_ oo

Examples:
+CO

(1) If feL R and <T > S f(y)cp(y)dy for all cpeT, it can be shown
-CO	

9p,

	that TeT'	 T is usually denoted Tf or f.

(2) If <T, y> = cp(0) for all cpeT then Tee andT is usually denoted by &	 it	 1
W

and called the Dirac delta measure. (i.e. J b(y)y(y)dy = cp(0)).
_00

(3) If cpeT, and <S^ > = f y(y)P (y)dy then S a 0	 For let kCZ	 f
_00
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and e > 0 be given. Then if Mk = max(]. + Y2)-
k
 + 1 I y (y) I} < 00 and

yeR

1V. =	 eTk : (l + Y2 )
k 	

(Y) I^&} , where S =	
e

Mrsdy +
_00 l+y

then N is aneighborhood of OeTk , and if peNk{

I<s , 0>I ^ I ,f Y(Y)P(Y) d 1 s f' I CP(Y) I IP(y) I dy
_00	 -0

f . (1 
+ ,^2)k - 1 	

b . 
(1 + Y -k 

dy

+00
Mk • b	 f 

(1 + x,2)' 1 dy
-0

+
C

O	
av	 E	 <

'	 Mk J00+(1	
2	 +00 dY) Mk f v2 + 1

-00 I+Y

Thus, S cp ITk is continuous at the origin and hence continuous. Hence, by the

previous proposition, S
Y 

is continuous on 0e . Therefore, acpe0l.

(4) If S is such that 4S, P> = 0 (0) for all PeOc , then SeO l .

THEOREM: If for each cpeT, we define 80Q) = F ly] (1) = f e-2ni ^y cp(y)d-y, the
CO^

map F: cp -+ cp is a linear homeomorphism from T --+ T. The inverse of F is given

by the map F1 ; cp -+ T where TO) 	 e2rril1' cp(y) dy for each ' eR.

Furthermore, if for each TeT' we define F[T] such that <F[T] , cp>

<T, F[cp> and F l [T] such that<F^T],cp> <T, F I [cp]> then F[T] and F l[T] are in V.

Proof See Horvath [ 33] PP • 408-411•

The maps F and Fl are called the Fourier and inverse Fourier transforma-

tion respectively.,



THEOREM: if at. R -, C is a function, then cxcpeT for all cpeT if and only if

cxeOM . The map 
a' 

cp -+ cxcp is a continuous linear map Trom T into T if and

only if ueOM.

Furthermore, if for each TeV, asOM, we define aT such that <cvT, cp> .

<T, txcp> for all cpeT, then aTeT'
r

Proof: See Horvath [,3a), pp. 417-41 9.

Note: It is easy to see that if aeOM, then Mo, is a homeomorphism from

T onto T if and only if ^ W . and if 
a 

is a homeomorphism, Ma = a .
THEOREM: If peN, and we define Dp [tp] = cp(p) then Dp is a continuous linear

map from T into T. Furthermore, if TeV , and we define DP [T] such that

<Dp [T] I y> = ( - 1) 1^ <T, D (P) [cp]> for all cpeT, then DP [T] cT' .

Proof: See Horvath [33] pp. 411- 412.

Dfn: Lo t f: R — C be a. function. Then for each heR, aeR we define

ithf to be the function y f (y h) and µaf to be the function y -+ f(ay) .

Proposition: the function T h : sp -4 Thcp and Ra : cp -► µay where aeR*, heR

are linear homeomorphisms from T onto T.

Proof: It is clear that these maps are linear and bijective. Furthermore,

sinceTh .= T_h and Ra = R1/a , we need only show they are continuous. Let

Nk,m, e = fT eT	 (1 + -y2)k I T (P) ( ,y) ( <e, p :5 m}

where keZ, meN, peN, p s m, and e > 0. First we show Th is continuous: Let

Mk m+1 S 
= fTeT • ( 1 + y2 )R IT (p) (Y) I <S, p s m + 1

where S = 1/2 I + h	
Then if ye 

Mk,m+I,S 
and p s m, then



iefinition, we see that Thy cp T 

any of the maps µa or Ta , we define

that µaThy is the map Y - o c(aY h)

60

•.

and µac = cP 0-11a.

µvcp to be the map

and Thµac is the

M

1

I)

2

Max ^(1 + 'Y') k 
(P (P) (Y „ h) _ y

(P) (Y) ^} ^ max {jhj (1 + Y2) k j y (P + 1) (y) J} e/2 .
YeR	 YeR

In particular,

(1 + 'Y2)k l y (P) (Y - h) J<e/2 + (1 + 'Y2)k I CP (P) (Y) l<e

Hence, if ye Mk,m+l,S, 
we have Th[y]e 

Nk,m,C 
so T  is continuous for all. heR.

To prove Ra is continuous, we take Nk e as above and choose,
lm ,

N S 
= fT C T:  (l + 

Y2 ) k IT (P) (Y) I<S , P :r-m}

where S e /[n2k (1 +l al)m] and neN is large enough so that lal > n
	 Then

if cPe Mk,m,S, P s m,

(1. + Y2)k l (RaLcp] p (Y) l' = (1 + Y2 ) k IaP(P (P ) (ay) l

< (1 + Y2)k ial P ( 1 + (ay) 2 ) -k • S

< (1 + Y2)k(n2 + Y2) -k n 2 lal p S

< e ,

Therefore Ra[c]e Nk,m,e 
whenever ye Mk,m,s 

so Ra is continuous. Q.E.D.	
r

Dfn: We also let Th , heR be the map x ^+ x - h and µa, aeR k be the map

x ax from R onto R.

From the above

Thus, if p and v are

cPvp µ Thus, we see

k

...:3:di^T	 ^'.:i'*i...t2f_.._..: _`...... .. 	 ^.akir•s+^F^.:i.. .r.k, d-L. iF.+...-a



i

s

map y + y(ay	 ah) , Also, if hl , h2eR, Th- • Th (P ^`' fill + h	 and if a, beR*,
^.	 2	 1	 2

Naµby µbµay = µaby'

Note: If a, beR*, h l^ , h2eR ) then Rao 'Rb a Rb o 
R 
	 %b and Th o Th

1	 2

Th Th 	Th + t1	
Also, Rl T^ I,

2	 x	 1	 2

THEOREM: if TeT l , heR, and we define ThT such that <ThTytp> :T O T„hy> for
yeT, then ThTeT' . Also if aeR* and we define µaT such that <4j,(P>

<T,µl/acp> for all yeT, then µaTeT'

Proof: Immediate since T hT = T a T_ h and µaT T o Rn , all of which are

continuous and linear.

Remark: If feLl (R) and T T f) then from the definitions and theorems

above it is easy to check that

F[T ] T^ DP [T ]	 Tf(p) aTf 
af' ThTf TT E , and i^aTf T

h	 µa

Proposition: If TeV) yeT and we define the convolution T*y by

T *(Q) = = T, t Y>

for all JeR, Chen T ye 0  and the function cP -+ T*cp from T into 0  is continuous

for each TeV .

Proof: See Horvath [33] p• 420.

Note: If feL1 (R), T - Tf , then



Dfn. If SO") TsT I , yeT, we define the convolution T*S such that

<T*S, (Q > x <S	 _ IT) * cp>.

Note; This is well defined god:, by the previous proposition (IA_,T) *cOG.

Furthermore ) T*SeT' since	 -(p„1T) *y and S are continuous. Also, this

definition agrees with thy: previous one if S = S 7 , TeT.

THEOREM: The Fourier transform maps 0G isomorphically onto OM, its inverse is

the inverse Fourier transform which maps 0 isomorphically onto 4' and ifM	 c
SeO , TeT I , then

(l) F,[T*S] = F[T]	 r(S]

Furthermore, F also maps OM isomorphically onto Q c', F-1 is its isomorphic

inverse, and for aeOM , TeT',

(2) FCtxT] = F[a] *F[ T] .

Form414,s (1) and (2) also hold with F replaced. by F1.

Proposition; If S 1 , S 2 , S3 e0c, then

(1) S 1
 11 s

2 Go 

(2) (S It)) i's 3	 S1*(S2*S3^

(S) S1*s2	 S2*S
1

Proof

(1) If Si , S2 e0l then F[S 1] , F[S 2] EOM and F[S 1 *S2] = F[S 1]	 F(„S2] e0M

F l [F[S *S 2'a = S 1 *S 2 e0^

(2) F [ (S1
"I`S2) I's 3] - 

F [ ( S 1*S2)] - F[S 3] = FES1] • FCS 2]	 F[S3]

F[S 1] FC (S2 *s3)3	 FCSL*(S2 *S3)3

T_



By taking Fl of both sides we get (2),

(3) FES I *S 23' w F[Slj FES21 ,G FIS 23 FESSi X FES 2 *S 
11 Q, F,.D.

C. Continuous , Linear Transformations on the Ra2idly Decreasin Functi2ns

Dfn: L(T) will denote the class of continuous linear transformation f.x'om

T into T.

D`n: if E is a non-empty set, we say E is an associative algebra over C

if E is a vector space over C and there is a binary operation * from E x E into

E such that for x, y, zeE, aeC,

(l) (X + Y)	 z a x z+ y z

(2)x(y+z) x, y+x z

(3) a(x y)	 (ax)	 Y = x	 (ay)

(4) (x Y)	 z — x	 (y	 z ) •

Furthermore, if there is an element eeE such that e x = x - e x for all XeE

f}

then we say E is an associative algebra over C with identity.

Dfn: If U, VsL(T), zeC, and cpeT, then we define the following:

(l) (U + V) [cp] - U[Y] + VCcp3

(2) (Z	 U) [y]	 Z • U[cp]

(3) (U o V)[cp] - UCVc(paa

This definition makes L(T) into an associative algebra. over C with identity.

This identity is the function Z such that T[cpj = y for all yeT

Dfnt An element UeL(T) is said to be invertible if there exiats an ele -

ment U lcL(T) such that U o U^ = U l ° U = Z. Ul is called the inverse of U.

Examples

(1) The Fourier transformation F is in L(T). Also Pl is in L(T) and since

F 0 F 1 C cP^	 F[Fl[y]]	 y	 l[cpa and F1 o F y]	 T[cp] for all yeT, Fl, is the

inverse of F.



i

(2) if of R ..* C is a function the map M
a

 Cy] a cap for all cpcT is in L(T)

if, and only if, aeOM . Furthermora, M01 is invertible it and only if I/ac
OM

and in this case, M	
Ml/'

(3) The previously defined functions DP, 
Th' 

he R, Rf , aeR* are in L(T) .

Notation For convenience we will denote the elements of T' by , g, h,
40 0

etc. and for yeT we will usually write f f(y)cp(y)dy for 4 ,cp> .

THEOREM: If feT' and for each cpeT we define Co[y] = f*gip, a necessary and

sufficient condition for C^ to be in L(T) in that fe0l (or equivalently,

F[fl eOM) .

Proof: Suppose CoeL (T) . Then F o CocL (T) and it yeT, F 0 Cf*[CP3 = F[ hpj

F[l]	 F[y] cT. But every element in T can be expressed in the form F[cpl so

by a previous theorem, F[fje0, (i.e, aTeT for 411 TeT if, and only if, aeOM)

Conversely, if feW , then F[ ) EO M so Mp C o] cL(T) . Furthermore, for each

cpe T',

Thus

Ck	 Fl	 F[0 0 FsL(T). Q.E.D.

Dfnt If fe0^, the transformation CO[cp] = f*p is in L(T) and is called
0

the convolution transformation of f. The set of convolution transformations

in L(T) will be denoted Lc (T)

Proposition: If COeLc (T) and F the Fourier transformation then

F o Cf 0("-MF g 0 F.



r

G

Note -9 MF . f] c T̂ , T) since F[130,.

Proof: If cpeT we have F C CO[y] = F[fo*y3 = F[f] • PCy], and MF[^]0 FE(P]

MF[ ] 
C F[y3] = F[ ']	 F r.]	 Q.E.D.

Corollary: If COcLc (T) and F,	 are the Fourier and inverse Fourier transfor-

mations respectively, then

F C CO o rl = MF[]

Proof: By the above proposition,

F o COo rl	 (F , C) o Fl _ (MF[ 
f]	 F) p El MF[] (F op  1) M^, [ 6]	 Q. E. D.

Proposition. If C O is a convolution transformation and 	 e0 , then
f	 F[ f]	 m

C' is invertible and

C	 Fl	 Mi/F[f1 ° F.f 

p.

e'- if	 F-3	 S - 
-l^ oFurthermore,	 ], then. ^ FQe and C^ = Og

F[ f]

Proof: Using the previou corollary and since

	

MF f	 M= I F F	 ,

	

[]	 CJ

r.ia ^a^rc



4

Similarly (Fl o 
Ml/I'[f] 

9 F) o Co = I. Thus, the first part of the

proposition is true. Since

	

—loo e0M ,	 then
F[f]

Fl [ o ]eol
F[f]

so Cl eL(T). Furthermore, if yeT, then

9

	

^0[y] = (Fl C 

Ml/F[f] ° F)[y]
	 F-'[0	 F[y]]

f	 F[f]

Fl[

	

	
Of ] * P I E F E Y]]	 g * yCg[(p]Q.E.D.

F[ ]

Examples;

(h) If feL1 (R) , F[i]e%, then CoeL c (T) and for each yeT,

CO [ Y] (T1) = Of * Cp(^1) = f f Q - Y)CP(Y)CPY
_0

(2) Let peN and 5 (p) be the p th derivative of the Dirac measure. Then

6 (p ) eOc and for cpeT,



T1 11-ly (P) (0) = CPO) (71)

Hence, Dp eLc (T) and DP	 C6 (p) ', In particular, I = C & .

(3) Let f (y)

	

	 e-2na l Y I , a > 0. Then feL l (R) anda

r

	

PC f] ('^) = ^' e-2rri'^y (1 e-2rra1 YI)dy 	 2 2 e0M .
-00	

a +^

4	 Thus, C  eL c (T). Furthermore, F (1^)	 a2 + 2 EOM so 
f 
is invertible and

C f = CO where g = FlE a2 + ' '3. But

k

	

F1[a2 + , 2] = r1 C a2] + pl [^ 2]	 a26	 12 6"
4n

so	 g = a26 -	
1 

2 
6 11 .

4rr

Proposition; If Lc (T) denotes the class of all convolution transforma^-

tions in L(T) , then L c (T) is a commutative subalgebra of L(T) which contains

the composition identity and the composition inverses if they exist.

Proof ; Let C f, Cg eLc (T) and ZeC. It is clear that C£ + Cg, ZC feLc (T)
O	 Q	 C	 p

since CO + CO = CO + g and ZCf = CZ	 Since. f, geO , we know f * g EOM and if

cpeT,

	

C0o COEY] =C£C g ''cY,]= f*(g*CP)

	

00
	 o	 0

But yeO I and by a previous proposition f 	 (g ^'c cp) _ (f * g) * cp so

f f

v

g g

l^
l
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Furthermore, since f * g = g * f we have

•	 Co a C o	 C	 a = CO' 	 o	 Co * CO
f*	 "g	 g* f	 g	 f

Since we have already shown C
6
eLc (T) is the identity and if CO is invertible,

4

then Co = C O where g = Fl[ o_ e0l then ,C1ELc (T)a nd the proof is complete.
F[f^

Dfn: For each aeR*, let R  be the transformation Raly] = µYP for all

ye,T and let Lca(T) denote the set of all transformations which can be written

in the form

o= o
a,f C f Ra

where

C feLc (T)

Note: Lc I (T)	 Lc (T)

Proposition: For each aeR*, L a(T) is a sub vector space of L(T) and
G

the map La : L
c
(T) - Lca(T) such that La (C o ) = Aa 

f 
is a linear isomorphism

from the sub vector space Lc (T) into L
c

a(T) .•

Proof: It is trivial that L
ca(T) is a sub vector space of L(T) since

C

i

1
A o + A o	 (Co ♦ Co) o R = Co	 0 o R and Z - A o = C o o na, f

	

	 d.,$	 f	 g	 a	 f+ g	 a	 of	 Zf	 a	
l

Fur t"`h^^,,more, since Ra is invertible, Q o Ra = 0 if, and only if, Co _ 0

so La is injective. It is surjective from the definition of L Ga(T) and the
b	 i

linearity follows since Cf + Cg Cf 
+o 

and Wo CZ
0	

Q.E.D.

Proposition: If aeR*, A ar feLca(T), and g a µl/a , there geOc and

A °	 R o Co
a,f	 a	 g	 i

r	
tt	

^

J
68



(µaTajµ_1)'p('y) = 'P(µ-JTaTj'a(Y)) = ^ ^1._^^'a,(ay))

cp(µ-1(a'y - a^)) = y (al - a'Y)'

and

Proof; It is clear that ge'J4	 Let yeT, JeR. Then A,a = C o Ra and

CO ° RI(p] (^1) = C01µa(p] m0 * (µapp) m

^. < f, T,^µ_ lµacp : = <, T1µ-a'p > .

Also

Ra	 C O [y^a (^)	 RaEb * cp(aj)]	 g * ;p(a^)

_ < g, r a_1 11-1y > ai < µl/af a lra^ t - 1y 
>

O

< f, µaTa^µ-1Y >

But if yER . we have

(T iµ - a)y(y) = CD(µ - 'aT^	 Y(µ_a(y	 l>) _ cp(a'	 ay)
J



I

I

0
Proof: "rom the above. proposition C o * RA  R o Ch where ^ ^^

a
I µleaf

1I
{a) µ,/a I a l µa g " 0	 Q.E.D.

i

Corollary: If a, beR*, Aa! 
0 

eLCa(T) and 
Ab p o 

eLCb (T) where E, geQ^, then

Aa,0 
o 
Ab ^ g = Aab ^ 0 eLCab(T)

where	 £ 	 a I µago)

Proof: By the above corollary we have

Aa	 C "' )Ci
	 (C o

f o Ra) ° (C `7 0 "') = o f ° (Ra O Cg )	 Rb

Cf ° 
(C l aj

µL 0 ) o Ra ° Rb	
f * ( a

lµ
Ci

ag
 o Rab . Q.E.D.

Note: A-10 0
f o A_T ° = CO
	 0 SL (T)}

Yc µ_ lg	
3

D. Continuously Infinite Matrices

Theorem: Let UeL (T) and for each 1 eR. define < f,r, T > = U[cp] (V for all MI
yeT. Then ^,^W for all 1 eR.

°:
Proof	 f,^ is clearly a linear form on'T so let NE = (ZeC: (Z! < e} where

e > 0 be a neighborhood of 0 in C. Now let M e	{reT: IT(Y)I < e, yeRj, then

Me is a neighborhood of 0 in T so, from the continuity of U, there exists a

neighborhood M of 0 in T such that U[y] eM for all yeR. Hence, if yeM, the	 #

< L. CD > I = IUITI (11) 1 < e so < f,„, ep > e N_ and f,„ is continuous. Thus,



Dfn: If UcL(T) and the Of JeR are as above then we say the family
0

(fI)JeR of elements in T' determines U

Since, for each JeR, cpeT, we have UCcp] (j) < OfT Y > - f f,^(y)y(y)dy we
0,

will denote the family ( of,^),^eR by EiQ,y)] and call [k(%y)] the matrix of U
+0

and write U [y] Q) - S O (11 ^ Y) y (y) dy or U — C f (1, y) ] ,
-00

Note: Tj is considered as a parameter while y is the 'variable of inte-

gration" of the temperate distribution kI.

Examp le s:

(1) If F is the Fourier transform then F N Ce 2TTi^y].

(2) If I is the Identity transformation them I N [TI8 (y)] since, if yeT,
+C

then < T, & , cp > < 6 , T_,^ cp > = J 6 ('Y) y ('y + ^) d'y = y () = I[ y3 Q)
_00

Dfn: Two matrices EkQ,y)] and Cg(j y)] are said to be equivalent if

they determine the same linear transformation U in L(T).

The two matrices CT^1 6(y)] and 
CT, 

µ_ 161 are equivalent since they both

determine I. We consider two matrices as being equal if they determine the

same linear transformation in L(T)A

Dfn: Let M denote the class of matrices which is associated with some

UeL(T). Then M can be made into an associative algebra over C where if ZeC,

[f(jo y)] — U, [9(1;y)] — V, U, VeL(T), we define

(1) If' my)]  + 19(10y)3	 C^l Q,y)] where [ft 1 (1 ,'Y)] — U + V

(2) zCtMY)] = Co 2 (J, y)] where Cfi2 My)]	 zU

(3) [i(^ y)] • C g (Isy)] = Ch3 MY)] where Chi (%y)] — U o V

Since _r ( o(%1/) + $(^^^)) cP(Y)d1(= < ^^ ♦ g") cP > < 4.,^P >	 gm



Similarly,

+0	 +CO

f z • f (1) y) y(y) dy = z	 f ^(^1, y) cp(y)dy
moo	 -00

so we have h2(Jo ly) = z f(j y). Furthermore, from the definition of composi-

tion we have

f f (P) j ) ( f 0 (^1) y) y (y) d'y) d`^ = f hS (p 3'Y) cp (y) d^y
-00	 —CO	 -00

so we usually write

f Of(p )j) 0 Qp y)dj = hg(P ^^r)
-00

Notation: If feT', and IT I i (y)] is a matrix, we will denote this ma trix

by [f (y	 Also we will denote the matrix IT_, f ('y)] by [ f0 Q + y)].

Examples;

(1) Since [ 6(y 	 I and I + I	 21 ) 1 o U = U ° l = U for all UeL (T) ,

we have

[ 8('y - ^)]+[8('y - ^)]= [ 26('y - ^)] ,

[8 ( y	 [ofMY)] [s (Y - W] = If MY)]

i.e.(.	 f 8(	 - A) O(% ) d^ --	 f0 (p ) j) 8(yY	 f - J) d^ -	 i (P)y))	 •
_00 -00

Since [6Q - y)] [6(y - TJ)]	 the same results are obtained if [8(y	 is
replaced. by [8 Q - y)]

T
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(2) since r	 C e -2Trilly 	, 1	 mew	 -
^ , ^	

2

	

Ce	 "lye and	 1: ^ ^ F	 	 F-1 o F	 x, we have

Ce-
27TiIy3 = Ce 2Trijyj -I

and

Ce-2TTijy3 Ce2Tri jyj = Ce2TT'N3 Ce-21jyj . 
[6 (1 - y)]

or

	

S	 °°e- 2T ip' e2Tr'. y 
dj	 e2Tr p1 e- 2T "y dj	 (p _ y)

CO
f

(3) R-1	 CT_18 (y)l = [6 (y + J)] since if, yeT, ' e R)

< T_,^6,Cp > _ b ,Tjcp > — cp(-I) "
R_llcp] Q)

(4) Dp I C (-I)p b (p) (y since if cpeT, DER,

( - I) p T16 (P)" y > = (-1) p < 6, (-1)P T_ly(P) > = Y (p) (1) _ DPCyl m -

(5) If oieOM then µa ^' Ccx(^) & (y 	 CCY(y) 6(y	 since i f yeT,

TIER,

< UQ)T^6 0 y > a(l) < b T _I > = a() Y")	 ► L a E yj (1)

and

a(T,^s), cP >	 < T,^d, acp >	 < 6, T _, (acp) >

a Q) (P Q))= µaCcp] Q 

73
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Remark: Since 9 D'yj"	 cp (P)	 thenX DP 	 C(y(q) (.l) P 6 (P) (yL
01

for if cpcT ) JeR)

< a Q) (-W T16  (P) 
i CP > = ('- 1) p #(1) < 6, (-1. )P T . I (

p ) 
> W ^ (1) Y(p)  (1) 1

f Thus,

lam 6 (Y - 1)31 (-1) 
(0 8 (P) (Y - X1)1  a [a(1) (-1)p6 (p) (Y - 1) 3

or

a(p) 8 a - P) (-1) 
(P) 6 (P) (y	 d^	 (p) (-1)

P 6 (P)
(Y - P)

(C) If C otCLC (T) then C O	 Cp_,T_ f(y)] since if yeT ) JeR)
f

0
<	 f_ IT_ ij(p >	 i)Tlp- ly >	 Y(V	 C O 	 Q)

If f is a function then 11 _ IT_ f(y)	 fQ y) so w4a denote the matrix of

C O
f 

by [tQ-y)]. Matrices determining convolution transformations will be called

circulant.

	

if C o O C O eL (T), C O	 [ fO Q 	 y)], Co	 C O ( T]	 y)], then C O o C o	 C o	 0
f g C	 f	 9	 9	 f g

so that

f	 f g

	

" Q	 11,09 Q - Y) I = C 0 * 0 (^ - Y)



0

r1 o) - )I[ I[ ^I 1 0 ^ Y)j ^ (^i ^ Y)j
'F1

or

By writing Pl and R in its integral notation, we have

Jm	 ^f (p	 e2rris ('^ - 'Y)	 -x^xis^	 -1" v)^ S	 ( S e	 ( dt) ds] dj a 6 (A - y) .

(7) Let Aar 0 = CO o R.a ELG (T) . Then Aar t' N C	 µl/a µ_lT., i ('y)] since;

if yeT, jeR,
jal

o'
r	

Ill/aµrl^,^,^ ,^P >	 G µ- l /aT _1 ocPj al	 jal

O	 a

If f is a function we have

.141/aµ_1T ^ f (Y)	 —? f(T^	 I^_	 µ	 (>> = Iff(' -	 Y)
ja l 	 jal	

1/a	
jal	 a

so we usually enote —^-	
0

Y	 C I..1 µl/al-1 _11 (1') by 	 I ('^ a 'y)1	 In panic .lar,



(8) Let LC ("t) denote the elemen ts of L (T) which can be writ ten in the
at,

dorm Lam.f 
*g Ra I^ where CfeLC(T)	 Then Ra ^ ^ [µ„ ir„ a 	since	 aP£ , sR)

we have

µ„ i 'r w aq , Y >	 1 ,TaIll.ly > o Ra [< f o Tjµ_ icp > n Ra 0 C 0 [rpJ (1)

If f is a function, than p_i'T ajf(y) w t(al - Y), so we denote the matrix of

ia^ zeLC (T) by L0 (al"Y)
at

() Since a	 o	 o ^ ^	 0 *' (I a I ^ ^) we have,	 ,g	 ab,f	 a

[-^--- . (I ` a Y)31 	 g Q » b -r )3 ^ C ^ Of * (^ a ^ µa9) M - ab Y)
I a n	 I b I 	 I ab I

or

S —' (P -	 l)	 Q - y) al	 of * (I a I µ c) (P	 Y)
-00Ial	 a	 Ibl 	

ab

0t* (ubo) (p ap 'y)
I b ^

Note: if f, geL 1 (R), then

J00 
I a(	 b	 ,	 a	 bI b

L 	 I
a

II
b

I

Letting - a . we have

-- r (p 	 g Q - -1 y) dl _	 1	 + f (p 	^I) g (a^1 -	 Y) (a al
_ 0° jai	 II

a 	 b	 b	 IIIia b oo	 b	 I

+rte

(b -co

i



Thus,

or

A i

f	 YJ-)	 8 CV dj	 f	 g) (P	 Y)
lb -co 	

ab	 a	
JbI	

a	 ab •

Hence, we see the integrals agree 1U Of = f, 09 = geL I(R).

	

(10) Let a, beR*, Da, o, B
b o eL

C
 (T) where f, geo l 	 Then by using a

; g	 C
a

previous proposition we have

B o o B 0	 (Ro 0 C (Rg o CO)	
0 (C

	

R	 R 0
a , f	 b)9	 a	 f	 9	 a	 f0 b ) CS

R 0 (C

	

14	 0)	 B	
0	

*	 (T)
abab	 1/b	 9	 ^'I/b f
	

cL
g 

C
JbI	 JbI	 ab

0

Ei(a^	 y)][ O (bl - y)]	 E(	 f)	 g (ab^ - y)
09

JbI

+CO

Of (ap - 1) 0 (bj9	 Y)d,^(Ill/b f)	 9 
(abj - y)

-00	 1 b I

Note: If f, geL 1 (R) then

+03	 +00

f
f(ap

	

	 g(b^ - y)d^ S f(ap - 1 7) gC^ y)	 (17 where	 b^
 -M	 b	

)bI

+CO b

	

—	 —	 —
I f( (abp	 gQ - Y) d1

JbI -c,

+00
XJ

(^Ll/bf) 
(abp y) d7j

JbI -oo

+00

(µ1/bf) 
(abp y g Q) d^

J bI	 -co

77
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Hence, this definition of the integral agrees if , gfeL (R).

(11) Let «EOM, feoC, and aeR* . Then if yeT, JeR,

	

M o Bay 
fC(P] (^1) ^ rt« CRa 9 c fC J J (^1)	 «(^1) f * y (a')	 UC^j Q) •

Hence, since M« ^- CaQ) 6Q - y)], Ba,f — Cf(a' - -y)] we have

	

[a Q) 6 Q - Y) f (ail - y)a	 C«(1)f^, a7 - y)7

or

J a (P ) 6 (P - 1) Of ( ail - y) d1 = v (P) f (ap - y)
CO_

The transpose of a continuously infinite matrix

Dfn: For each'UeL(T) we define the transpose of U - denoted t  -

to be the map from T' into T' such that for each feV , tU[f]	 f o U (U is

continuous so f o UeT').

Note;, For each yeT, < tU[f] , cP > = < Of 	 U[(P] > .

Note: If UeL(T) then tU is linear for if f, gET', zeC, and yeT,

< tU[f + g] , ^ > = < f + g, UCy] > < f, UCy] > + g, Uly] >

< tU[f] ^ Y > + < tUC0] ^ CP >

$.



II

Note: If F is the Fourier transformation in L(T) then for each ,feT',

it is easy to see that F[f]	 F[f
0
],

Proposition: If U, VeL (T) , then t (U + V) = to + tV, and t (U C V)
t  

0 
tU.

Proof: Let eT', yeT, then

< t (U + V) [ f] , Y >=  < f, (U + V) [Y] >= < f, U[(p] >+ <  f, V[Y] >

< tU[f]  + tV[ f] , CP > _ < ( t  + tV) If]  Y >

and

< t (U C V) [ f] 2 C > = < f , U ° V[Y] > = < ( t U [ f ] , V[cp] >

< tV[ tU[]] , Y > = < tv o 
tu[f], Y > .

Proposi ion: If IeL(T) is the identity transformation, the t  is the

identity transformation on T'. If UeL(T) and UeL(T), then tU is invertible

and ( tU) -1 = t (U 
l )

Proof: If cpeT, feT' , the

< tI[ f],	 > = < f, '`I[^] > _ < f, cp >

Hence tl[f] = Of for all feT'.

Using the previous proposition and letting I' be the identity map on T',

IE

we have

tU o t (U 1) '_ t (U1 o U):	 tI; _	 L,

and similarly t (U1 ) 0 t  = V. Hence
t

(U)

I

(tU)	
1	

Q.E.D.
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E, The Finite MatriX as a Special Case of the Continuously Infinitenite

Dfn: Let 0 denote the set of eeT such that e(0) = 1 and e(n) = 01

n _ ±l, f2, . . . .

Dfn: For each UG, i, jeZ, define

Vi t cp] Q) = Cp( j ) 8 Q - i)i
for all yeT, JeR.

Proposition: V ^^(T,) for all es0, i, jEZ.i
Proof: Let	 0 and suppose NE = (YeT: (1 + y2) k I

 (P) (Y)( < ,

p:,,,' m) is a neighborhood of 0 in T. Take M e = ( TeT	 IT(y) l c b) where

S = (max{ (l + y2 ) k 1 6 (p) (Y) I) } 
1	 e

Psm
ye R

then if yeMe , i t is clear that Ve [yj -= cp(j)OeNe so that V8 is continuous
o	 o

at the origin. But Ve is linear so it is continuous. V 3 is continuous for
o

any ieZ since V3
0
	 o Ve where Ti: cp T ice which is continuous. Q.E.D.

i	 o

Dfn; For each neN*, BEO, let L8(T) denote the subset of L(T) which can

be written in the form;

n n
UeLe (T)	 > U = j1 (jEl ai j Ve , )

i



ij

Proof: If yeT, p eft, we have

Vg O V1C cp(Y)3 (p ) = Vj Cy (1)eQ - k)] (p) = y(1) 0 ( j -^ k) A (p - i)

	

k	 1

0 if j	 k (since A (j - k) = 0)

y(1)0 (p - i) if j = k (since 0(0) = 1)

0 if j # k

	

' V1
i 
Eyl (p) if 3	 k	 Q. E .D.

Proposition: For each neN, AeG, Le(T) form a subalgebra of L(T).

Furthermore, if

n n	 n n
jU= E (E a, V} U= E (.E b	 V)1	 i=1 j=1 	 2	 1. ij ei

and ZeC, then

(1)
Ui + U2 = ZZ(aij + b ij )Vj .i

(2) ZU1	 ij= EE Za Ve,

fr
r
A

s



Yom. M_	 __w____

But ViO C V8= 	 0 if j # k and = Ve if j = k so we have
i	 n

n n n	 n n n
Ui ' U2	

iEl jE1 kZi aikbkl V	 E E ( E a b )V^ = il	 l
i	 j= l k=1 ik k 1 91

Q.E.D.

The following corollary follows immediately from the above proposition.

Corollary: If Mn (C)denotes the n x n square matrices with entries in C, the

maps fn G: Le Mn (C)such that for each UeLB(T),
i

f

s

f^-V,6 (U) 	 (aij ) i, j _ l,n

n	 n	 }
where U = i

Z 1 ( jZl aij V8 ,) are algebra isomorphisms,

Hence, we can consider the finite matrices as a subset of the continuously

infinite matrices associated with L(T). In a similar fashion we can show

that the n x m matrices can be considered as a subset of the continuously

infinite matrices.

Note: VQ	 [9 Q	 i ) (T 6(y))] 	 Ce Q	 i)8 (y - j)] for if yeT, T CR, we	 :.

have	 +
1

V Q	 i)T^S,(p > = e Q - i) < S, T-jCP > = OQ - i)CP (j) _ Ve . [ Cp' ^^)

n n I
Thus, for each neN, 9e@, matrices of the form iZi ( jEl aij [9 {'^ - 0 6 (y  j I )

are isomorphic to Mn(C).

F.	 Matrices with Function Entries

1.	 Finite Matrices

Dfn:	 Let neN* and for each 1 5 is	 j 5 n let Q. , s R -+ R be a function.	
i

j x
I

If for each teR, we define S (t) to be the matrix (a ij (t)) ,  we say that S is a

matrix whose entries are the function cr  and write S = (a i , )
ij j
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A

Dfn: If S	 (a ij ), T = (Tij) are matrices then we define S + T to be
a

the matrix (u i j ) where u i j (t) aij ( t) + Ti j (t) and S T to be the matrix

( ..) where	 E a	 for all teR.µ1J	 µijt()	 tT	 tlo;l ik ( ) kj ()	 i

Note: If 6 i j : R }-+ R is much that for each teR, 6 i j (t) = 0 if i	 j and

6 ij (t) _ l if i = j then the matrix I = (6) is the identity matrix, for if

S • I = (µ, j ) then i

.n

µ (t) = E a (t)6 (t) = a (t)6 (t)_ Cr (t)ij	 k-zl ij	 kj	 ij	 jj	 ij

for all teR, so S • I	 S. Similarly, I • S = S.
i

Dfn: If S = (a ij ) in a matrix, then for each teR, we define V(t)

(a i j (t))l where (a i j (t)) l is the determinant of the matrix (a j (t)) . We

call the function , V the determinant of S.

Dfn; If S - (a ij ) is a matrix, then we say S is invertible if there

exists a matrix S_l	 (a ij ) such that S	 S ^ 1	 Sri	 S = I.

Note: If S = (a i j ) is invertible and S l = (aij ) is the inverse of S,

then for each teR, S(t) S -1 (t) S=l (t) • S(t) = I(t) so we see that S is

invertible if, and only if, S(t) is invertible for all teR. Hence, we know

S is invertible if, and only.if, V(t) ^ 0 for any teR..

Dfn: If f: R — R is a function, S = (a ij ) a matrix, then we define

f	 S to be the matrix (µ,j ) 'where µ i .
J	 J
(t) = f (t) • ai . (t) for all teR.	 J

Dfn; If S = (a	 is a matrix, then for each teR, we define adj (S) (t)

to be the adjoint of the matrix S(t) = (a i (t)) . We call the matrix adj (S)

the adjoint of the matrix S. Furthermore, for each teR we define ST (t) to be

the: transpose of the matrix (alj (t))	 We call the matrix S T the transpose of S.

Note: It is easy- to see that - ST 	 (a j ) where vA l j =- a j i.
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4

Dfn: If S = (a
ij

) is a matrix, we say S is differentiable if a is
ij

differentiable for all l s i, j s n and defined dS to be the matrix (a'ij).

We say S is continuously differentiable if a l ij is continuous for all

s	 ,j s n.
i
i

Proposition: If S = (cr	 !p	 ij) is differentiable (respectively continuously

differentiable) then the determinant  is differentiable (respectively continu -

ously differentiable).

Proof: Immediate since d can be written as sums, differences, and

products of the a i j .
9
}

7

Proposition: If S = (cr ib ) is a differentiable (respectively continuously 	 j

differentiable) matrix then ST and ad (S) are differentiable (respectively

continuously differentiable).

Proof: ST is clearly differentiable (respectively continuously differ-

entiable) and since entry is the adj(S) in a sum, difference, and product of

the entrits of S. it is clearly differentiable (respectively continuously

	

differentiable).	
fi	

_

Proposition: If S = (a. ,) is invertible, then S
- 1 

= (adj • (S))T.
1J	 p

Proof: Immediate, since S 
1
{t) = 0( r)(ad3 (S(t)) )T for all L.eR.

4

Proposition: If f: R -+ R is differentiable (respectively continuously

r	 I

differentiable) and S = (a id ) is a differentiable(respectively continuously

differentiable) matrix then f - S is a differentiable (respectively continu-

ously differentiable) matrix.

Proof: trivial.

Proposition: If S _ (al b ) is differentiable (respectively continuously

differentiable) and S-1 exists, then S 1 is differentiable; (respectively

continuously differentiable).

_ 84	
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Proof: We know p is differentiable (respectively continuously differ-

entiable) and since S -1 exists, v(t) r 0 for every teR so 
0 

is also. By

the three previous propositions we have S_l = p(adj(S)) T is differentiable

(respectively continuously differentiable). Q.E.D.

Dfn: If S = (c ij ) is a differentiable matrix and S is invertible, then

we define the right Volterra derivative of S to be the matrix S ldS and de -

note it by DS.

Note: Froin the previous proposition we have dS -1 exists and hence,

DS^1 = SdS^I..

Proposition: If S = (a ij ) and T = (T ij ) are differentiable matrices,

then S T is differentiable and d(S	 T) = (dS) • T + S . (dT)

Proof: S • T	 (µij ) where

n

Hence µi j is differentiable so S . T is differentiable and

µ'	 (Ql T	 ♦ Q T 1 ) -1Qi T	 i. L ' T

	

ij = (z a z,k T kj 
)^ - 

^	 k kj 	 ik kj
	 Z ^k kj ^ il k kjk	 k	 k	 k

But clearly if µij 
= 7a ilcTk j and p i j _ L Q . Tk j then WS) • T = (µij ) and

k	 k
S . (cYT)	 (p i j ) ,. Hence d (S • T)	 (dS)	 T + S • (dT) . Q.E.D.

Corollary: If C = (C ij) is a matrix of constant functions, thew C is

differentiable and dC 0. Furthermore, if S is differentiable, d(C • S)

C . dS.



to see that S is a constant matrix.

THEOREM: Let S = (a i3 ) and T v (T i j ) be two differentiable and invertible

matrices. Then a necessary and sufficient condition for DS = DT is that there

exists an invertible: constant matrix C such that S = CT,

Proof: Suppose S = CT where. C is constant and invertible. Then DS

D(CT) - (CT) -ld (CT) = (T-1 C -1 ) CdT = T-1dT = DT. Hence the condition is

sufficient.

Conversely, suppose that DS = DT. Then S -1dS -. T-IdT x 0 and S - 1dS +

d(T^1)T .» 0, since d (T- l) exists for all TeR. Multiplying on the left by S

and on the right by T
-1 

gives (dS) T 1 
+ Sd(T_ ') .- 0 or d(ST - ^	 0. ST- ^' .- C

where C is a constant invertible matrix, since 'both. S and T are invertible.

S = CT or T = CIS

2. Infinite Matrices
i

Dfn: Let (apt) 
teR 

be a family of elements in T. Then we say lim 'Pt -	 if
t-'t.

for any neighborhood N of zero in T, thence exists a S > 0 such that o

It - tol<b
i

^	
JJ

implies cpt *EN. If - yt then we say the family(cpt) teR is continuous at to. I
o	 y

If (cp)	 is continuous for all t in R, we simply say the family is continuous.
t teR	 o	 ,

Dfns Let (Ut)teR be a family of linear maps in L(T). We say the family

is continuous in t if for each toeR, yeT, lim U t [cp] = U  [y]	 We say this
t-+t0	0

family is strongly continuous if for each t eR, and any neighborhood N of zero 	 I
j

in T, there exists a b > 0 and a neighborhood M of zero in T such that for all,3

teR, It - toff < b and all cpeM, we have Ut [cp]	 Ut [cp]eN.
o

4
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if Cft Q) Y)] — U t for all teR then we say [I t MY)] '.s continuous (strongly
continuous) if (Ud teR is continuous (strongly continuous)

Dfn: We say the family (Ut ) is differentiable if there is a family (Y,)
1.

in L(T) such that for each 'toeR, cpeT)

11m (U t lyj	 Ut z])	 vt [y] •o
t-4t0	 t - t0

(Vt) is called the derivative of (U t ) and denoted (Ult).
0If Cf't MY)l — U t for all teR then we say this family of matrices is

E	 differentiable if (U t) is differentiable and denote its derivative by

C
O
f t My)] •

It

R Note: It is easy to see that if at I f tQ ,Y)] exists then the function

+M
t ^` f ft(1)Y)Y(Y)(pY

i from R into C is differentiable for all 'eR, cpeT and its derivative is the

function

t
i
 a 

f (^1, Y) cP (Y) dY •_ m dt t

Proposition: ati Ift Q^ Y)] = q if, and only if, C^ t (`^,Y)] is constant in t.
it	 Proof: It is clearly true that if Ift Q, Y)] is constant in t then

a
at eft %y)] = a•



Conversely, if at [f M Y)J n 0 then by the note above the function

t	 t (`, Y) cP (Y) dY

is constant and hence Of t (q,Y) = ts (%y) for all s, ttR x > [ ft Q pY)] is

constant, Q,E,D,

THEOREM; if Ift (1, Y)1 and [g t (I, Y)] are differentiable and [ of MY)] is
strongly continuous, then [ of t (im] • [°g t (j p< is differentiable and

t ^Cft(^l,Y)] • Cgt my)]	 at C t my)] [g t (71,Y)] + [0 (10Y)] 
^ CO 

MY)]t	 t

Proofs Let t0 e R and cpeT. Then if (U t)	 I ft (j, Y)] and (Vt )	 [gt M Y)]

then

	

Ut a Vt1y] - U t0 0 vt [(p]	 Ut[Vt[^p] 1 _ Ut IV t CY]

	

0	 o a

t - t0	 t	
t0

Ut[Vt [y]	 Vt [gyp] + Vt [ gyp] - Ut LV [gyp]	 U v	 ] _ V CY] ]
o	 p	 O t	 J	 t[ t	 t

	

o	 o	 +

t - t0	 t	 t0

U t[Vt Ccp] - U t IV t (,cp]

	

_O	 O _ p

t	 t
O

But Ut is strongly continuous and since

Vt [cp] - V a [(P]	 Ut[Vt p [y]	
°1

]_- Ut Vt [cp]

t VI °	 -►
 ^t CVt 

[cp] ] as t -+ t0_ °	 t ,^ t0	 ° °

t

a



we have (U t Vt)" _ U t o VI + U l o Vt and hence the same result corresponding
0	 0	 0

to the matrices. Q.E.D.

Not, It is easy to see that

K

a--t(!,ft(^ y)] + 19 t Q ' Y"'1)	 ft(Ily)] + at g t Q, Y)^

Examples;

(l) If h(t) is differentiable for all teR and C€(,^,y)] is a matrix, the

family Ch(t) . f(j,y)] is differentiable and

a^
t [h (t)	 Of Q, y), = [h " (t)	 Of Q, y)

(2) For each teR, let y(y,t) be a temperate distribution. 'then if

y(y, t) exists and CY (y - J, t)] , C^:t Y('y - ^, t)] are matrioes then

^a—t CYO ('y - , t)]	 Catt o (y - ^, t)a far if y , , o ,r	 pFT t t eR

r y 	 ;*y , t) y (Y) dy -	y (-1 ` Y to cp ( 'y) dy +00
—ao	 -oo

t - t 
	

Y" - Y, to) cp(r)dy

	

o	 ..00

t	 t
	 Y	 to))

y (y) d-y	 0 as t -+ t ,- CO	 o	 a°

be a differentiable fanvil	 mDfnt Let [f ((7) 'Y)]	 ^	 y of invertible atrices	 Then
t	 ' )1

we define:

rDt[ t MY)^ =	 f at ftmy)]

ri 89
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THEOREM: If [ jt (1 y)]p [go tQsy)] are differentiable families of invertible

matrices where both [ f t (%y)] -1 and C ot my)]- I are differentiable, then

exists an invertible matrix [9Q,y)] such that

[ i t Q1Y)3 = 1 fi(%Y)3 • [9tMY)J

if and only if

Dt,[ft(joy)] = Dt[gtQ)Y)]

Proof: if [it (^1^`Y)] = [h (% y)] - [$ t QpY)] , then

D t [ (^,'Y>]	 [ f t QXY)]
,l 

[^ MY)] = ^[h(%Y)^190 M^Y)]) _1 a, 0(%Y)j19-t(^ Y)]

.-	 r

= [gt(^1'Y)]-1 atCgtQ'Y)]

Dt[btMy)]

Conversely, suppose D fY^	 PP	 t '[ • t
Q , y) ] , = Dt [ g t (IM] , Then since

it



Hence

C9t(%Y)J1 tQSY)J-1 ^ Ifimy)J

for al l teR. Q.E.D.

Thus, since

C 0 (I,Y) a
-1 

a t^^ t MY)]	 [gtmy)]
-1 

atIgt MY)]

wee, have by multiplying by [ of t (TI,Y)]
-1 

that

11-
 ^t(1 o t (%Y)3 -1`I  J -	 Q, Y) C—t ['̂O'tmY)^ /^0t (^l^Y'r J- _ 4

or

Fg Q Y)	 tmY)I	 +t,^ at \C	 Ig(T1,Y)1 ^ o' -i =C—t 	 ^C t Y)	 o

or

T 	 1) = 0 .



VI. REFERENCES AND BIBLIOGRAPHY

References on differential equations;

1a. Klein and Lie, tdath. Ann. 4 (1871) 80.

1b.	 Lie, S., Forhand Vid. - Selsk. Christiania, (1875) 1; Math. Ann. 9
(1876) 245; 11 (1877) 464; 24 (1884) 537;	 25 (1885) 71.

2. Ince, E. L., Ordinary Differential Equations, Dower Publications (1956).

3. Ford, L. R., Differential Equations, McGraw-Hill Book Company, Inc.,
New York, N.Y. (1933).

4. Goursat, E., Differential Equations, Ginn and Company, Boston, Mass. (1917).

References on group theory;

5. Belinfante, J. G., B. Kolman and H. A. Smith, "An Introduction to
Lie Groups and Lie Algebras with Applications," SIAM Review 8
(January, 1966) 11.

6. Chevallez, C., Theory of Lie Groups I, Princeton University Press,
Princeton! (1946).

7. Eisenhart, L. P., Continuous Groups of Transformations, Princeton (1933).

8. Hermann, R., Lie Groups for Physicists, W. A. Benjamin, Inc., New York
(1966) .

9. Hi.gman, B., Applied Group-Theoretic and Matrix Methods, Oxford University
Press, London (1955).

10. Littlewood, D. E., The Theory of Group Characters, Oxford University
Press, London (1940).

11. Lipkin, H. J., Lie Groups for Pedestrians, North-Holland Publishing Co.,
Amsterdam (1965).

12. Montgomery., D., Topological Transformation Groups, Interscience Publishers,
Inc., New York (1955).

13. Murnaghan, F. D., The Theory of Group Representations, The Johns Hopkins
Press, Baltimore-, Md. (1938).	 {

14 Pontrjagin, L, Topological Groups, Princeton University Press,
Princeton, (1966).

15. Weyl H., The Classical Groups, Their Invariants and Representations,
Princeton University Press, Princeton (1939).

92	 -

.^:



r

16. Wigner, E. P., Group Theory, Academic Press, New York (1959).

References on similarity theory and dimensional analysis:

17. Higgins, Thomas J., "Electroanalogic Methods", (IV and V), Applied
Mechanics Reviews, Vol. 10, Page 331, No. 8 and Page 443, No. 10,
August and October, 1957. (This contains a list of some 596 refer -
ences on this theory of similarity).

18. Birkhoff, G., Hydrodynamics, A Study in Logic, Fact, and Similit ude,
`	 Princeton University Press, Princeton, N. J., 1960.

19. Birkhoff, G., "Dimensional. Analysis of Partial Differential Equations",
Electrical. Engineeringz, 67 (1948) 1185.

20. Brand, L., "Total. Differential Equations in the Light of Dimensional
Analysis", l,cnerican Mathematics Monthl y, 69 (September, 1962) 618.

21. Ehrenfest-Afanassjewa, Mrs. T., ' cDimensionsbegriff and Bau Phsikalisher
Geichutigen" Math. Annalen 77 (1915) 259.

22. Ehrenfest-Afanassjewa, Mrs. T., "Dimensional Analysis . . . Theory of
Similitudes", Phil. Mag. 1 (1926) 257.

23. Gukhcna.n,, A. A., Introduction to the Theory of Similarity, Academic
Press, New York (1965).

24. Hansen, A. G., Similarity Analysis of Boundary Value Problems in
Engineering, Prentice-Hall, Inc,., Englewood Cliffs, New Jersey (1964).

25. Tolman, R. C., "The Principle of Similitude", Physical, Review 3-
(1914) 244.

General:

26. Gallaher, L. J., and Russell., M. J, Application of Dimensional Analysis
and Group Theory to the Solution of Ordinary and Partial Differential
Equations, Contract NAS8-20286, George C. Marshall Space Flight Center,
NASA, Huntsville, Alabama, (1967) (STAR listing NASA-CR 84056 [N67-26329]).

27. Mo%,gan, A. J. A., "The Reduction 'by One of the Number of Independent
Variables in Some Systems of Partial Differential Equations", Quart.
J. Math. Oxford (22), 3 (1952) 250.

28. Hormander, L., Linear Partial Differential Operators Academic Press;
New York, 1963.	 -

e
29. Schwartz, L., Thetor.i.e des Distributions, Vol. II. Actualites

Scientifiques et Industrielles 1122; Hermann, Paris, 1951.

4	 /

s . a ^^t
t



30. Lighthill, M. J., Introduction to Fourier Analysis and Generalized
Functions, Cambridge University Press, 1958,

31. Gel /Fand, I. M., and Shilov, G. E., Generalized Functions, Vol. L.,
Academic Press; New York, 1963.

32. Davis, Philip J., Interpolation and Approximation, Blaisdell Publishing
Co.; New York, 1963.

33. Horv4th, John, Topological. Vector Spaces and Distributions, Vol. I,
Addioon-Wesley Publishing Co.; Reading, Mass., 1966.

0°

_.


	GeneralDisclaimer.pdf
	1969009402.pdf
	0075A03.pdf
	0075A04.pdf
	0075A05.pdf
	0075A06.pdf
	0075A07.pdf
	0075A08.pdf
	0075A09.pdf
	0075A10.pdf
	0075A11.pdf
	0075A12.pdf
	0075B01.pdf
	0075B02.pdf
	0075B03.pdf
	0075B04.pdf
	0075B05.pdf
	0075B06.pdf
	0075B07.pdf
	0075B08.pdf
	0075B09.pdf
	0075B10.pdf
	0075B11.pdf
	0075B12.pdf
	0075C01.pdf
	0075C02.pdf
	0075C03.pdf
	0075C04.pdf
	0075C05.pdf
	0075C06.pdf
	0075C07.pdf
	0075C08.pdf
	0075C09.pdf
	0075C10.pdf
	0075C11.pdf
	0075C12.pdf
	0075D01.pdf
	0075D02.pdf
	0075D03.pdf
	0075D04.pdf
	0075D05.pdf
	0075D06.pdf
	0075D07.pdf
	0075D08.pdf
	0075D09.pdf
	0075D10.pdf
	0075D11.pdf
	0075D12.pdf
	0075E01.pdf
	0075E02.pdf
	0075E03.pdf
	0075E04.pdf
	0075E05.pdf
	0075E06.pdf
	0075E07.pdf
	0075E08.pdf
	0075E09.pdf
	0075E10.pdf
	0075E11.pdf
	0075E12.pdf
	0076A03.pdf
	0076A04.pdf
	0076A05.pdf
	0076A06.pdf
	0076A07.pdf
	0076A08.pdf
	0076A09.pdf
	0076A10.pdf
	0076A11.pdf
	0076A12.pdf
	0076B01.pdf
	0076B02.pdf
	0076B03.pdf
	0076B04.pdf
	0076B05.pdf
	0076B06.pdf
	0076B07.pdf
	0076B08.pdf
	0076B09.pdf
	0076B10.pdf
	0076B11.pdf
	0076B12.pdf
	0076C01.pdf
	0076C02.pdf
	0076C03.pdf
	0076C04.pdf
	0076C05.pdf
	0076C06.pdf
	0076C07.pdf
	0076C08.pdf
	0076C09.pdf
	0076C10.pdf
	0076C11.pdf
	0076C12.pdf
	0076D01.pdf
	0076D02.pdf
	0076D03.pdf
	0076D04.pdf
	0076D05.pdf
	0076D06.pdf


