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DEVELOPMENT AND DESIGN OF AN
ISOTOPE-HEATED CATALYTIC OXIDIZER

TRACE CONTAMINANT CONTROL SYSTEM

By Thomas M. Olcott
Biotechnology
Lockheed Missiles & Space Company

SUMMARY

A program was conducted which resulted in the development and detailed
design of pre- and post-sorbent beds to be included in the Isotope-Heated
Catalytic Oxidizer System (IHCOS) and the detailed design of the catalytic
oxidizer with a resistively heated simulated isotope. Preliminary design of
the catalytic oxidizer had been accamplished under NAS 1-6256 and is reported
in NASA CR 66346 and CR 66347.

The contaminant load developed in NAS 1-6256 and data from recent manned
simulator tests and outgassing and degradation studies of materials were re-
viewed to develop a contaminant load for the pre- and post-sorbent beds. The
conbaminants selected were those contaminants known to be potentially poison-
ous to catalyst activity and those contaminants that might decompose and be
oxidized to harmful products.

Based on the contaminants selected as potential poisons a pre-sorbent
bed was designed that would protect the catalyst from poisoning. The pre-
sorbent bed design effort included a survey of candidate sorbent materials
to establish those most suited for use as a pre-sorbent material. Laboratory
investigations were then conducted with the candidate sorbents to verify the
conclusions of the literature survey and to assist in the selection of the
pre-sorbent materigl. Lithium hydroxide was selected for the pre-sorbent
material. The sizing of the pre-sorbent bed was then accomplished by
establishing the stoichiometric quantity of lithium hydroxide required to
remove the poisonous contaminants and by establishing that the dynamic per-
formance of the required quantity of lithium hydroxide would be satisfactory.
In establishing the configuration of this bed a trade-off was made between
the weight penalty due to the bed and canister fixed weight and the weight
penalty associated with the fan head rise required for flow. This resulted in
selection of an optimum bed geometry.

To determine the pre-sorbent bed requirements, it was necessary to
assess the affects of the charcoal main sorbent bed on the poisonous contami-
nant load reaching the pre-sorbent bed. To do this, a regenerative charcoal
main sorbent bed system, suitable for the proposed mission, was postulated



and its affect on the contaminant load was assessed.

Following the design of the pre-sorbent bed, a long term sorbent bed
evaluation test was initiated. The test was conducted with the apparatus that
was used to conduct the 180 day catalyst performance test under NAS 1-6256.
This apparatus was modified to include model pre- and post-sorbent beds as
well as a model regenerative charcoal bed system. The test was conducted in
three phases. The first phase was directed towards confirming catalyst per-
formance and assessing the ability of the pre-sorbent bed to protect the
catalyst from potential poisons. The second phase of the test investigated
the production of undesirable products of oxidation. During this phase of the
test the candidate undesirable products of oxidation were identified and a
post-sorbent bed design was evolved. The post-sorbent bed design effort was
conducted in a manner similar to the pre-sorbent bed. The selected post-
sorbent material was lithium hydroxide. The final phase of the long term
sorbent evaluation test was to establish the ability of the post-sorbent bed
to control the undesirable products of oxidation.

Development activities related to the isotope heat source were conducted
and were initiated by establishing heat source material specifications and
a materials traceability program. Based on these specifications and the
traceability program, materials were purchased for fabrication and joining
tests and interdiffusion experiments.

Fabrication and joining techniques were evaluated for all heat source
materials with specific weld and fabrication procedures developed for each
joint type. Weld samples were sectioned in several different areas and
examined metallographically. Photomacrographs and photomicrographs were
taken to determine weld penebration and integrity. Two pyrolytic graphite
shells, sized to encapsulate the noble metal clad capsule were fabricated
and examined. Following the joining and fabrication tests, experiments were
conducted to determine the extent of interdiffusion and compatibility between
the isotope heat source materials of construction. The amount of inter-
diffusion occuring at all material interfaces was experimentally determined
after 15 days and 60 days at 800°F and 1500°F using metallography and
electron microprobe analyses. The data were extrapolated to two year
durations. Short duration compatibility between pyrolytic graphite and
stainiess steel near and above the eutectic temperature was investigated.

A review of heater design and fabrication techniques was conducted and
resulted in the selection of two heater designs for test evaluation. Two
heaters of each design were fabricated and tested successfully in a simulated
capsule environment for 30 days to ascertain thermal performance during
operation. After testing, the composite heater specimens were sectioned and
examined microscopically. Measurements were made of the width of the
diffusion zone between the liner material and the heater sheath.

These studies revealed that the heater sheath, capsule and liner materi-
'als are compatible in both configurations. The sheathed helical heater unit



was selected because it allows better simulation of the isotope fuel weight
and a better closure of the leads leaving the structural module,

An experimental evaluation of both the solid Johns Manville "Min K" in-
sulation and the vacuum insulation was conducted. A simplified configuration,
representing an accurate thermal model, of the Johns Manville insulation was
evaluated for 180 days. During this period both normal and emergency con-
ditions were investigated. The insulation performance was better than anti-
cipated resulting in a reduction in the required insulation thickness from
1.5 to 1.0 inches. The vacuum insulation canister was tested for 52 days and
results of this evaluation indicated that the vacuum insulation was inferior

to the solid insulation. The solid insulation was selected for the final
design.

The detailed design of the isotope heated catalytic oxidizer system
included a stress analysis of the main structure and a review of the thermal
characteristics. Following this, detailed design drawings for the entire
system were prepared. The resistively heated unit is, insofar as possible,
an exact duplicate of the radioisotope - fueled unit except that the thermal
power is obtained from a resistively heated element located in the fuel

cavity, and heater element and thermocouple leads pass through the heat
exchanger core,






INTRODUCTTION

The development of a flight qualifiable isotope-heated catalytic oxi-
dizer for control of trace contaminants was initiated under Contract NAS 1-
6256. This contract between the Lockheed Missiles & Space Company (IMSC) with
TRW Systems as a major subcontractor, and the NASA - Langley Research Center
resulted in engineering layout drawings of the selected approach and long
term testing of a model system. The results of this effort are described in
NASA CR 66346, NASA CR 66347 and NASA CR 66L497. The tasks accomplished under
NAS 1-6256 included the following:

o Mission Definition

o Contaminant Load Definition

o Isotope Selection

o Catalyst Selection

o GCatalyst Performance Tests

o Analysis and Optimization

o Design Layout Drawings

o Development Plan

Following the conclusion of this program, the NASA - Langley Research
Center directed IMSC to continue this development program under Contract
NAS 1-7h433. TRW Systems was also a major subcontractor in this additional
effort. The program conducted under NAS 1-7L33 is reported herein and dealt
with additional development of the isotope-heated catalytic oxidizer system
including detailed design of a unit utilizing a resistively heated simulated
isotope and development and detailed design of pre- and post-sorbent beds.
The tasks involved in this program are shown below and are described in de-

tail in this report.

o Contaminant load definition for the pre- and post-sorbent
beds.

o Design and fabrication of a model pre-sorbent bed.

o Long term sorbent bed evaluation.



o Design and fabrication of a model post-sorbent bed.
o Detailed design of full scale pre- and post-sorbent beds.

o Specifications for the isotope heat source materials of
construction.

o Joining and fabrication tests on the isotope heat source
materials of construction.

o Fabrication and evaluation of the test heater to be used in
the simulated isotope heat source.

o Compatibility tests to determine the extent of interdiffusion
between the graphite reentry aid and the noble metal cladding.

o Fabrication and evaluation of the thermal insulation to be
used in the isotope-heated catalytic oxidizer.

o Detailed design of the isotope-heated catalytic oxidizer

including the resistively heated simulated isotope heat -
source.

Information relating to the liner material and fabrication techniques
and the strength member fabrication techniques are described in a classified
sumary of this report.



PRE- AND POST-SORBENT CONTAMINANT LOAD DEFINITION

The contaminant load for the IHCOS pre- and post-sorbent beds is based
on data obtained from the contaminant load defined in the Study and Prelim-
inary Design of an Isotope-Heated Catalytic Oxidizer System, NAS 1-6256
(ref. 1), recent manned simulator tests, and outgassing and degradation
studies of candidate materials likely to be used on space stations. The con-
taminants selected were those contaminants known to be potentially poisonous
to catalyst activity and/or those that can be decomposed and oxidized to
harmful products. A list of these contaminants is presented in Table 1, which
includes: (1) contaminant orgin; (2) whether contaminant is considered a
potential catalyst poison; (3) whether contaminant is considered a poten-
tial producer of undesirable products; (L) design production rate; and, (5)
maximum allowable concentration, values that are appropriate for a mission
duration of 180 days.

Selected Contaminants

The majority of the contaminants selected were obtained from a review of
the contaminant load definition conducted during Phase I of the IHCOS Program
(NAS 1-6256). The Phase I IHCOS Study resulted in a listing of 150 contami-
nants that might exist in a spacecraft atmosphere. The contaminants were de-
rived from a literature search of the following sources: (1) chemical anal-
ysis of outgassing products from space cabin qualified materials reported by
Lockheed Missiles & Space Company (ref. 2), North American Aviation (ref. 3),
and Minneapolis Honeywell (ref. L); (2) contaminants detected in the AF Bio-
satellite 30-day test (ref. 6); (L) contaminants reported by Toliver and
Morris in the manned 30-day test at the AF Aerospace Medical Research Labora-
tory (ref. 7); (5) contaminants detected in a 27-day manned test at the AF
School of Aerospace Medicine (ref. 8); (6) contaminants detected during
Apollo breadboard testing (ref. 9); and, (7) candidate contaminants that
might be generated from experiments onboard space stations such as MORL and
AES (ref. 10).

Activities reviewed for additional candidate contaminants during this
effort include: (1) recent envirommental chamber tests such as the Langley
ILSS tests (ref. 11) and Lockheed Missiles & Space Company Five-Day Lunar
Shelter and Extravehicular Manned Test (Ref. 12); (2) space cabin material
outgassing reported by Pustinger and Hodgson for the Aerospace Medical Re-
search Laboratories (ref. 13); and (3) chlorinated hydrocarbons in closed en-
viromment atmospheres reported by R. Saunders in the 5th Annual Progress Re-
port: The Present Status of Chemical Research in Atmosphere Purification and
Control on Nuclear-Powered Submarines by Naval Research Laboratory (ref. 1k).
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NOTES FOR TABLE 1

Design production rate includes 9 men metabolic production rate plus equip-
ment production rates scaled from Apollo studies by North American Avia-
tion. Primary contaminants are assumed to be produced at 2.5 gms/day and
secondary contaminants are assumed to be produced at 0.25 grams per day.

The '"maximum allowable concentration" refers to the contaminant concen-
trations appropriate for man allowing a continuous exposure up to 180
days. Values are obtained from reference (A). Other values not included
in reference (A) are limit values taken as 0.1 of the Threshold Limit
Value (TLV) for 1965, American Conference of Govermment Industrial
Hygienists, May, 1965.
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Potential Catalyst Poisons

The selection of potential catalyst poisons was accomplished after a
review of experimental studies on catalyst deactivation. Low temperature con-
version performance test studies (ref. 15) at IMSC with hydrogen sulfide
were reported showing the deactivation of unprotected 0.5% palladium catalyst
after 18 days of exposure. Additional tests during this same program indi-
cated that with Freon-12, vinyl chloride, and methyl mercaptan in the gas
stream, a shift in temperature as great as 180°F was required to maintain a
given oxidation efficiency for 0.5% palladium catalyst.

Experiments at Atlantic Research have shown partial catalyst deactivation
with Hopcalite, palladium, ruthenium, and cobalt oxide resulting from exposure
to Freon 12, methyl chloride, and hydrogen sulfide (ref. 16).

The deactivation effects of cyclic silane compounds on platinum
catalysts were reported both by R. H. Savage (ref. 17), and A. F, Plate and
N. A. Belikova (ref. 18).

Tests by U. S. Naval Research Laboratory (NRL) on Hopcalite catalyst
have indicated that water vapor present in the gas stream required an in-
crease in catalyst bed temperature for successful performance (ref. 19).
More recently, during the 180-day IHCOS long term catalyst test, it was ob-
served that water vapor in the gas stream required an increase of 1LOOF in
catalyst bed temperature to maintain the desired oxidation efficiency
(ref. 1).

Poisoning of platinum catalysts has been demonstrated by nitrogen com-
pounds, especially by ammonia, saturated amines, and cyanide. In a wet gas
stream, the deactivation effect of the nitrogen compounds is nullified by
the presence of moisture (ref. 20).

Maxted discussed the poisoning of metallic catalysts by molecules con-
taining elements of the periodic groups Vb, such as nitrogen, phosphorous,
arsenic and antimony and groups Vlb, such as oxygen, sulfur, selenium and
tellurium (ref. 21). He mentioned that not all compounds of these elements
are poisonous to the catalyst, but these properties depend on the electronic
unshielded configuration of the element in the molecule.

Potential Undesirable Products

Similarly, the selection of potential contaminants that will produce un-
desirable reactants in the catalytic oxidizer and/or the pre-sorbent material
other than carbon dioxide, water, and carbon was accamplished after a review
of the literature on this subject.

In general, it has been shown that catalytic oxidation of compounds con-

taining nitrogen, sulfur, or the halogen lead to the formation of products
that are much more detrimental to man and equipment than the reactants.
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NRL studies on Hopcalite catalyzed oxidation of Freon-11, -12, and
-114B2 show that these compounds decompose extensively to yield acid vapors
(ref. 22, 23). In addition, NRL has shown this with studies on vinyledine
chloride, trichloroethylene, methyl chloroform and ammonia (ref. 2L). Similar
reports by the Warren Spring Laboratory have indicated the catalytic decom-
position of Freon-12 to toxic gaseous products (ref. 25). Church and Mayer
have reported the decomposition of trichlorofluoromethane in the presence of
moisture and metals at temperatures up to 1LOOQOF. Reaction mechanisms are
discussed outlining the formation of phosgene type compounds (ref. 26).
Trenworth and Watson have shown that the pyrolysis of chlorofluoromethanes
lead to the formation of halogenated hydrocarbons together with chlorine
(ref. 27). DuPont, Freon Products Division, has reported on the thermal de-
composition of Freons -11, -12, -22, -112, and -11L, at elevated temperatures
(ref, 28), Free halogen and acid formation at varying temperatures up to
1000°F were reported,

Work at IMSC has shown the formation of sulfur dioxide and nitrogen
dioxide in the outlet stream of a Pt-Pd catalytic oxidizer system fed with
a Freon-11L, HoS and monomethyl hydrazine contaminated stream (ref. 29). The
absence of HCl and HF was assumed to be the neutralization of these acids by
the base, monomethyl hydrazine.

An estimate of possible inorganic combustion products and amounts pro-
duced from contaminants that contain elements other than hydrogen, oxygen and
carbon has been reported by IMSC (ref. 20). The toxic combusion products
includes HF, HC1, NOp, S02, HCN, COClp, Clp, and GOF,.

Saunders discussed the partial decomposition of methyl chloroform to
vinylidene chloride and trichloroethylene in a Hopcalite burner (ref. 30).

Design Production Rate and Maximum Allowable Concentration

For those contaminants obtained from the Phase I IHCOS Program (NAS 1-
6256), the production rates and maximum allowable concentrations cited were
used. The major source of information on nonbiological contaminants used in
NAS 1-6256 was the contaminant identification program conducted by NAA for
the Apollo program in which the outgassing rate of materials within the Apollo
was determined experimentally. The contaminant load estimate for the IHCOS
was obtained by scaling the Apollo contaminant load to the THCOS model space-
craft, Based on this scaling a design equipment production rate of 50 grams
per day was estimated for the model spacecraft.
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To determine the individual equipment contaminant production rates, the
contaminant distribution (i.e., percentage of total) from the NAA Program
was utilized with the exception that no primary contaminant was considered
to be produced at a rate less than 5 percent of the total and no secondary
contaminant was considered to be produced at a rate less than 0.5 percent of
the total. Primary contaminants are those where a known large source exists,
or where the contaminant has been identified in several systems. The remain-
ing contaminants are defined as secondary contaminants,

Allowable concentrations used in NAS 1-6256 were based in the following
order on Submarine Habitability Handbook values, or 0.1 of the 1965 Threshold
Limit Values (TLV) or analogy to chemical compounds with established TLV or
an arbiltrary partial pressure limit or 0,02 torr.

For the contaminants not considered in NAS 1-6256 a production rate of
0.25 grams per day was used which corresponds with the production rate of
secondary contaminants in NAS 1-6256. Por these contaminants, the maximum
allowable concentration was taken at 0.1 of the 1965 Threshold Limit Values
(TLV) of the American Conference of Government Industrial Hygienists or if.
no TLV existed, an arbitrary limit of 0.02 mmHg was used, This arbitrary
1imit was used in NAS 9-3415 and NAS 1-6256. These levels are in reasonable
agreement with the recommendations of the National Academy of Sciences,
Space Science Board, Atmospheric Contaminants in Spacecrafts, June, 1968.
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PRE-SORBENT BED DESIGN

The pre-sorbent bed design effort included the following tasks:
o Survey to screen candidate sorbents.

o Laboratory investigations to validate literature survey con-
clusions.

0 Pre-sorbent bed designs optimization.

o Establish main sorbent charcoal bed characteristics, and effects
on poisonous contaminant load to the IHCOS.

The following sections describe the above tasks in detail.

Candidate Sorbent Screening

A review of data taken by IM3C and other industrial groups as well as
Government agencies was performed to identify candidate pre-sorbent mate-
rials (ref, 31-60). The selection of candidate sorbents was based on the
following parameters:

(1) Selectivity of contaminants for removal.

(2) Sorption capacity.

(3) Chemical stability.

(L) Weight requirements.

The candidates identified included lithium hydroxide, charcoal,
Molecular sieve 13 X silica gel, activated alumina and solid permanganate.
These candidate sorbents are discussed below.

Lithium hydroxide is a strong base that is not only an effective agent
for removing carbon dioxide, but as a candidate pre-sorbent material can
undergo one or more of ‘the following processes:

(1) Acid-base neutralization reactions.

(2) Complex formation.
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(3) Oxidation reduction reactions and
(L) Physical adsorption - chemisorption.

Of the bases which are suitable for use in life support systems, lithium
hydroxide has the greatest capacity per unit weight for the neutralization of
acids. Since the solid lithium hydroxide does not remove carbon dioxide
efficiently, by conversion to the non-volatile salt lithium carbonate any
acid which is appreciably stronger than carbonic acid should also be removed.
The effectiveness of removal however is in part determined by the rate of
reaction with lithium hydroxide.

Lithium salts are soluble in many organic solvents. From these solutions
crystalline complexes of the solvent and lithium salt can be isolated as
stable compounds, thus illustrating the strong bonding involved in these
complexes. Some of the most stable complexes of this type are the lithium
salt hydrates, alcoholates and aminates (ref. 61). Thus, alcohol, and amines
may be effectively removed by lithium hydroxide.

The high surface area of lithium hydroxide provides the conditions
necessary to promote oxidation-reduction reactions. It is known that nitric
oxide is converted to the nitrate ion when passed over solid potassium
hydroxide (ref. 62). Chlorine, nitrogen dioxide and hydrogen sulphide
should also be controlled in this manner. (ref. 61, 63, and 6L). In addition
to the above mentioned inorganic oxidation reduction reactions there are
many organic contaminants such as aldehydes and ketones which are expected
to be oxidized in the presence of a base and oxygen. Other reactions involve
direct oxidation of organic compounds by oxygen on an activated surface and
may include olefins and mercaptans (ref. 65).

Activated charcoal is one of the most effective adsorbents for the re-
moval of a wide variety of contaminants., The affinity of a particular con-
taminant for charcoal has been shown to be related to its vapor pressure and
molar volume, Charcoal can provide effective control of many of the poten~
tially poisonous contaminants, however, it is not effective for compounds such
as inorganic acids and certain Freon type compounds. In general, compounds
with high molar volumes are well adsorbed on charcoal.

In selecting the pre-sorbent material the effect of the main sorbent bed
on the poisonous contaminant load to the IHCOS should be assessed. This is
discussed in more detail in the section on sorbent bed design.

Molecular sieve 13X is an effective sorbent material for contaminants
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possessing a molecular diameter less than ten angstroms. Molecular sieve 13 X
has a larger adsorption capacity for inorganic contaminants than activated
charcoal and is chemically stable. The disadvantages of molecular sieve 13 X
are its special affinity for moisture in preference to other compounds, and
its high weight requirement in comparison to other sorbents for inorganic
compounds such as lithium hydroxide.

Silica gel has good adsorptive capacity for water vapor and in general
a fair capacity for polar compounds, however, in contrast to charcoal its
capacity for most of the potential catalyst poisons is very poor,

Activated alumina, like silica gel, has good capacity for moisture. In
comparison to other sorbent materials, extra precautions are required to
preserve size and shape of the adsorbent. It does not possess the overall
charcoal adsorbing capacity for the acid gases and halogenated compounds.
Previous work by IMSC on the Fleet Ballistic Missile Toxicity Program sub-
stantiated this on experiments with Freon type contaminants tested under
dynamic conditions (ref. 6L and 66).

Solid permanganate impregnated alumina removes contaminants by adsorp-
tion and chemical oxidation. Potential catalyst poisons known to be removed
by "Purafil", a commercial solid oxidant include hydrogen chioride, hydrogen,
sulfide, nitric oxide, tetrachloroethylene, phosgene and sulfur dioxide.
Other potential catalyst poisons for which theoretical considerations in-
dicate possible removal by this method are: carbon disulfide, chloroacetone,
cyanamide, ethyl mercaptan, ethyl sulfide, methylene chloride, methyl
chloroform, methyl mercaptan, nitrogen dioxide, nitrous oxide, propyl mer-
captan, trichloroethylene, vinyl chloride and vinylidene chloride (ref. 67),
Freons, chlorine, ethylene dichloride, hydrogen fluoride, chlorobenzene, and
chloropropane are unreactive with this material,

Laboratory Evaluation

In reviewing the candidate sorbent materials, it was determined that
nearly all of the potentially poisonous contaminants appeared to be con-
trolled by the use of either charcoal or lithium hydroxide.

These conclusions, shown in Table 2, are primarily based on the data
available on sorbent capacity. However, little data is available on the
dynamic performance of the candidate sorbent materials. To establish dynamic
performance (removal per pass) a laboratory investigation was conducted with
the two most promising sorbents and a number of potentially poisonous con-
taminants.

This experimental evaluation was performed on 6 x 8 and 20 x 35 mesh
lithium hydroxide and on 6 x 8 and 10 x 30 mesh (Tyler) activated charcoal
by passing sulfur dioxide, nitrogen dioxide, Freon-12, vinyl chloride,
Genetrons 2land, 23 nitrous oxide diluted in air at varying space velocities
through the candidate pre-sorbent materials.
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The results of the evaluation are shown in Table 3 and Figures 1, 2 and
3. The inorganic acids were well adsorbed by the 1lithium hydroxide even at
relatively high space velocities with a 6 x 8 mesh size. Freon-12 and vinyl
chloride had relatively low removal efficiencies on lithium hydroxide, while
Genetrons 21 and 23, and nitrous oxide appeared not to be removed or very
poorly removed with both 6 x 8 and 20 x 35 mesh lithium hydroxide. These re-

sults are in agreement with the theoretical conclusions drawn in the previous
section.

Activated charcoal was quite effective in removing vinyl chloride and
the Freon type compounds that were not controlled with lithium hydroxide.
These test results support the conclusion that the charcoal main sorbent and
a lithium hydroxide pre-sorbent provide effective control of nearly all of
the contaminants identified as potential poisons.

Pre-Sorbent Bed Size

The sizing of the pre-sorbent bed was accomplished by establishing the
stoichometric quantity of 1lithium hydroxide required to remove the poisonous
contaminants and by establishing that the dynamic performance of the required
quantity of lithium hydroxide would be satisfactory. To determine the re-
quired gquantity of lithium hydroxide, the production rate of the contaminants
anticipated to be controlled by lithium hydroxide was determined. These
contaminant production rates are listed in Table 4. The production rates
listed in the table include the basic contaminant production rate established
in NAS 1-6256 and the maximum quantity of the contaminant that can be removed
with a flow rate of 3 cfm and an inlet concentration equal to the maximum
allowable concentration. The lower of these two production rates for a given
contaminant was used to establish the guantity of lithium hydroxide required
for removal. The removal mechanisms for each of the contaminants are pre-
sented in Table 2. In cases where the lithium hydroxide acts as a catalyst in
an oxidation reduction reaction, no lithium hydroxide is consumed. The total
stoichiometric quantity of lithium hydroxide required for 180 days for all of
the contaminants listed in Table % is 335 grams. Using a performance factor
of 50% and a density of 29 lbs/ft , the required volume of lithium hydroxide
for the pre-sorbent canister is 90 in3., With a flow_rate of 3 cfm this will
result in a superficial space velocity of 3,400 hrsL. Based on the data
shown in Figure 2, a removal efficiency of approximately 95% can be obtained
with 6 x 8 mesh lithium hydroxide (LiOH). Since the removal efficiency of the
6 x 8 mesh LiOH is essentially the same as the 20 x 35 and the pressure drop
of the 20 x 35 mesh is 10 times the pressure drop of the 6 x 8, the coarser
material appears best suited for the pre-sorbent bed.

In establishing the configuration of this bed, a trade off was made be-
tween the weight penalty due to the bed and canister fixed weight and the
weight penalty associated with the fan head rise required for flow., To
accomplish this,canister fixed weight and bed pressure loss were related to
bed geometry (L/D).’ This relationship is shown in Figure L where the total
equivalent weight is plotted as a function of canister diameter. This re-
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RESULTS OF LITHIUM HYDROXIDE AND
CHARCOAL REMOVAL CAPABILITY TESTS

TABLE 3

Inlet Removal Space
Mesh Concentration Efficiency Velocity
Contaminant Sorbent Size Ci (Mg/M3) Rr (%) 8 ( Hrs"l)
Freon 12 LiOH 6 x8 198 .10 16,000
] " " " " .10 9,230
n 1" n " " .10 1’670
" n ] " 1 b 693
n " " i " 2 173
n 1 " 20 x 35 " .10 333
Genetron 21 LiOH 6 x8 115 0 3,930
" n " " " 0 1,680
" n n " " 0 69
n 1 " n " 0 115
n ] n 20 x 35 n .10 3’930
u n L " " .10 1,680
n o " 1 1" .10 694
Genetron 23 LiCH 6x8 115 6,700
1 " n 20 x 35 1 0 2,h7o
Nitrogen Dioxide LiOH 6 x8 2.2 .90 333
Sulfur Dioxide ¥ " n 157 .98 11,400
Vinyl Chloride LiOH 6 x8 106 .10 16,000
1" n " 1" 1 .10 9,230
1 1 " n " .10 1,670
n n n n n .10 693
n n n f 1 11 173
n n n 20 x 35 n .12 333
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Table 3 Continued

Inlet Removal Space
: Mesh  Concentration Efficiency Velocity
Contaminant Sorbent Size ci (MgM) Rr () ¢ (Hrs-l)
Freon 12 BD Activated
Charcoal (B-C) 6 x 8 140 .85 2,850
" " " " " .86 2,100
" " n " " .88 800
" " " 12 x 28 " 1.0 11,400
n " n " n 1.0 2,675
n n i 1 1" 1. O 2 5 loo
Freon 22 BD Activated
Charcoal (B-C) 12 x 28 155 1.0 6,680
n n " n n 1.0 3,000
n 1" 1" 1 1" l . O 2 ,loo
Genetron 21 BD Activated
Charcoal (B-C) 12 x 28 100 1.0 9,700
Genetron 23 BD Activated
Charcoal (B-C) 12 x 28 81 1.0 2,100
" n " " 1 .25 3,000
1 1 " 1 " 11 6’680
Nitrous OXide(NgO) BD Activated
Charcoal (B-C) 12 x 28 108 1.0 866
n n 1 1" n N 1,330
n n ] n n .23 3,000
Sulfur Dioxide % BD Activated 12 x 28 66 .9 11,400
Charcoal (B-C)
Vinyl Chloride BD Activated 12 x 28 124 1.0 11,400
Charcoal (B-C)
" n L n 124 1.0 2, 675
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Table 3 Continued

Inlet Removal Space
_ Mesh  Concentration Efficiency Velocity

Contaminant Sorbent, Size  Ci (Mg/M) Rr (%) @ (Hrs™l)

Vinyl Chloride BD Activated 12 x 28 12l 1.0 2,100
Charcoal (B-C)

" n 1 6 x8 " .92 2,850

" " n " n e 2,100

" " " n " .96 800

% By Kitagawa Colormetric Tubes; minimum sensitivity 5 Mg/M3
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veals that the optimum canister diameter is l;.75 inches and the optimum bed
length is 5.20 inches. The overall canister length including conical ends
will be approximately 11.9 inches and will weigh approximately 1.20 1lbs. The
total fixed weight with lithium hydroxide will be approximately 2.75 lbs. The
pressure drop at 3 cfm and 10 psia will be 0.35 inches of water.

Main Sorbent Bed Characteristics

In establishing the IHCOS pre-sorbent bed requirements, it was necessary
to assess the effects of other components in the 1life support system on the
poisonous contaminant load to the IHCOS. The first step in the assessment was
to establish the location of THCOS in the life support system. A review of
possible locations for IHCOS has revealed that the most probable location is
down stream of the trace contaminant removal system main sorbent bed and in
parallel with the carbon dioxide removal system as shown in Figure 5.

The advantages of this location are that the pressure drop of the CO,
removal system and the IHCOS are about equal and that the flow requirements
of THCOS plus the CO2 removal system are equal to the flow requirements of
the charcoal main sorbent bed. With this arrangement, the poisonous contami-
nants removed by charcoal will not reach IHCOS.

To establish the contaminants controlled by charcecal, the equilibrium
capacity of the charcoal was estimated for each of the contaminants assumed
to be controlled by charcoal. This was accomplished by the use of a correla-
tion termed the "potential plot" which is based on ideas originally proposed
by M. Polanyi (ref. 68). This theory relates adsorption capacity to molar
volume and vapor pressure of a contaminant through an adsorption potential
parameter termed "AY,

A = T/Vm log (Ps/P) where
T = temperature, degrees Kelvin

Vm = liguid molar volume, at boiling point at
standard pressure, ml
mole

Ps = saturation pressure

P = vapor pressure

A plot of adsorption capacity vs "A", Figure 6, has been made based on
experimental studies (ref. 59, 69). All of the contaminants of interest can
be placed on the line by a determination of their "A" values. This generally
can be done from the literature, although sophisticated interpretation or
extrapolation of the available data may be necessary including estimation

of vapor pressure and molar volume from critical constants and molecular weights.
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Fig. 6 Potential Plot for BD Charcoal
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TABIE 5

POTENTIAL POISONOUS CONTAMINANTS REMOVED BY CHARCOAL

Contaminant

Carbon Tetrachloride
Chloroacetone
Chlorobenzene
Chlorofluoromethane
Chloroform
Chloropropane
Dichlorobenzene
Dichloroethane
Dimethyl Sulfide
Ethylene Dichloride
Ethyl Mercaptan
Ethyl Sulfide
Freon 11

Freon 12

Freon 21

Freon 22

Freon 23

Freon 113

Freon 11l

Freon 114 (unsym)
Freon 125
Hexamethylcyclotrisiloxane
Methyl Chloride
Methyl Chloroform
Methylene Chloride
Nitromethane

Iso-Propyl Chloride

AN

Value

19.1
22.6
1.7
40.0
2h.1
22.6
13.5
19.3
27.0
21.8
27.9
15.8
22.0
26.8
32.0
L0.
52.
18.0
18.0
22.
33.
8.7
Lh.5
16.
32.5
39.
22.6

Charcoal
Requirements
#/180 Day #/Day

3.3 0.018L
3.Lh 0.0190
3.0 0.0165
1750. 9.7
115.% 0.6l
5.5 0.035
2.5 0.01L
LO .3 0.22
29. 0.161
3.0 0.017
29.5 0.165
2.l 0.013
83.% 0.L460
330.% 1.83
175. 0.97
770. L.3
160,000. 890.
3.3 0.018
3.3 0.018
8.2 0.0L45
132. 0.730
0.3 0.002
880. L.7
15. 0.083
T7hL.* h.3
L50. 2.5
11. 0.056
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Contaminant

Table 5 Continued

npn
Value

Propyl Mercaptan
Tetrachloroethylene
Trichloroethylene
Vinyl Chloride
Vinylidene Chloride

#Primary Contaminants

19.8
17.8
16.9
32.6
27.3

Charcoal
Requirement s
#/180 Day #/Day

6.1 0.03L
Lh.7 0.026
17.5% 0.093
1000, % 5.50
21. 0.110



Table 5 presents the "A" value for each of the contaminants identified
as being controlled with charcoal, including the quantity of charcoal re-
quired for removal expressed in lbs/day and 1bs for the 180 day mission. It
can be seen from examination of this table that the charcodl requirements for
180 days are quite excessive. It is anticipated, however, that for a 180-day
mission, a regenerative charcoal system would be utilized. This is the type
of system proposed for the Basic Subsystem Module (BSM) (ref. 70).

In this system two charcoal beds are required. The beds are identical,
however, one is being regenerated while the other is in the adsorption cycle.
The regenerative bed is heated to approximately 300°C and exposed to vacuum.
Based on the total contaminant load developed in Phase I of NAS 1-6256, it

was concluded that a regenerative charcoal main sorbent system would have the
following characteristics.

The system would have a flow rate of U8 cfm (LS cfm to the COp removal
and 3 cfm for IHCOS) which is sufficient to control all of the contaminants
listed that are absorbed on charcoal, with the exception of dimethylhydrazine,
monomethyl hydrazine and pyruvic acid, Amonia and hydrogen fluoride are also
flow limited at L8 cfm, but are not adsorbed on charcoal, iowever, ammonia
can be controlled with an acid impregnation on charcoal, For the purpose of
sizing the main sorbent beds, it was assumed that the charcoal requirements
reflected in the potential poison list Table L, are typical of the require-
ments which would result from an evaluation of all contaminants listed in the
Phase I IHCOS contaminant load., In establishing the performance of a bed of
this type, the potential plot theory assumes that with low loading the con-
taminants act independently. Therefore, a bed sized for the contaminant re-
quiring the greatest amount of charcoal (highest "A" value) will satisfac-
torily adsorb all other contaminants., This theory has been modified slightly
to account for the displacement of high "A" value contaminants by low "A"
contaminants (ref. 69).

One of the conclusions of this program was that contaminants with an
"AM value greater than 25 would not displace other contaminants, for con-
taminants with an "A" value less than 25 and with a difference in "A" value
greater than 20 the lower "A" value contaminant will block the surface to or
displace the higher "A" contaminant.

Inspection of the contaminants in Table 5 reveals that Freon 23 is the
most difficult contaminant to control followed by chlorofluoromethane.

Freon 23 with an assumed design production rate of 0.25 grams per day
would require 890 1bs per day of charcoal, which is prohibitive. Sizing the
bed for chlorofluoromethane reduces the required charcoal quantity to 9.7 lbs
per day. With this quantity of charcoal, the capability for removal of
Freon 23 would be 0.0027 grams per day. Specific sorbents for Freon 23 have
been investigated and no sorbent superior to charcoal was found. Experimental
results would be desirable to verify the capacity or charcoal for Freon 23.

The use of Freon 23 as a spacecraft refrigerant or solvent should be restricted.
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Based on a 9.7«-1b per day charcoal requirement and a cycle time of 3.5
days, each bed would contain 34 1lbs of charcoal. To account for displacement
effects of contaminants with an "A" value below 25 interfering with contam-
inants of higher "A" value additional charcoal must be added. Taking a con- -
taminant with an "A" value of 25 and a production rate of 2.5 grams per day,
the required quantity of charcoal for removal is approximately 1.0 1b per day.
Adding this increment of charcoal should provide removal for all contaminants
with "A" values less than 25. This would leave the remainder of the bed free
for higher "AY" value contaminants.

Thus each of the beds sized for a 3.5 day cycle would require 38 1bs of
charcoal.
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LONG TERM SORBENT BED EVALUATION

The long term evaluation of the pre- and post-sorbent beds and catalytic
oxidizer for the Isotope Heated Catalytic Oxidizer System was performed for
a period of 180 days, beginning on January 22, 1968, and ending on July 19,
1968. This section presents the objectives, apparatus, and procedures used,
the results obtained, and a discussion of the results.

Objective

The primary objective of this test effort was to determine the long-term
performance characteristics of the lithium hydroxide pre- and post-sorbent
beds, and the catalytic oxidizer system. Additional objectives included
evaluating the effects of the regenerative main sorbent system and the silica
gel portion of a carbon dioxide removal system. This effort was accomplished
by monitoring the removal efficiency and removal mechanism of various

selected contaminants at points throughout the system during a 180-day test
period.

AEEaratus

The test apparatus is presented schematically in Figure 7 and is
illustrated in Figures 8 and 9. Listed below are the major items used in the
test.

o Cylinders for gaseous contaminant supply and for portions
of the background gas.

0 Pressure gauges and regulator to measure and control system
pressure.

0o Inlet and exit sampling septa for obtaining gas samples.
0 Preheater for heating incoming gas to the catalyst bed.

o Catalytic oxidizer tube to contain catalyst (catalyst
volume = 57 cc).

o Furnace and temperature controller to control catalyst
bed temperature.

o Air cooled heat exchanger for cooling exit gas from catalyst bed.
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Diaphragm pump and flow control valves for maintaining
pressure and for varying system flow rate.

Flowumeter and wet test meter to determine system flow
rates.

F & M gas chromatographs Model 720, 1609, 810, 7004, and
700B, equipped with flame ionization, electron capture
and thermal conductivity detectors for contaminant
analysis.

Water humidifier system for moist-inlet gas stream
conditions.

Hygrodynamics, Inc., electronic hygrometer-indicator
to determine humidity of inlet gas stream.

Lithium hydroxide and activated charcoal adsorbent beds
to remove contaminants present in room air.

Main sorbent beds containing Barnebey-Cheney 8 x 10 mesh
BD charcoal.

Pre-sorbent and post-sorbent beds containing 6 x 8 mesh
Foote Mineral Co. envirommental grade lithium hydroxide.

Diaphragm pump, flow meter and pyrex glass bubblers for
colorimetric analysis.

Perkin-Elmer Model 202 Spectrophotometer for colorimetric
analysis.

Technicon proportioning pump for introducing gaseous
contaminants into the system.

Cambridge Hygrometer for measuring the effluent dew point
from the silica gal beds,

Procedure

The long term M"sorbent" and catalyst bed performance test data were ob-
tained with the system operating at a space velocity of 21,000 hr'l, with an
average catalyst bed temperature of 680 + 20°F. The total system pressure was
held constant at 10 psia. The background gas consisted of the contaminant
mixture used during the previous 180 day catalyst test conducted during
NAS 1-6256 (acetylene, n-butane, carbon monoxide, ethane, propylene and
methane), 160 mmHg oxygen, L mmHg carbon dioxide, water vapor, and balance
nitrogen. Gas supplies were introduced via distribution consoles from pres-
surized gas cylinders, with the exception of the filtered air drawn from the
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room., The system inletdew point was maintained at approximately 55°F with a
water bubbler humidifying system. Other contaminants, potential poisons and
producers of undesirable products, were added to the system at different time
intervals over the 180-day period. The contaminants introduced and the anal-

ysis techniques are indicated in Table 6 and described in the following
sections.

Contaminant introduction,-The following contaminants: hydrogen sulfide,
methyl chloride, nitrogen dioxide, sulfur dioxide, and ammonia, were intro-
duced directly into the system using a Technicon Proportioning Pump which

has a minimum delivery rate of 0.015 cc per minute. Also, sulfur dioxide and
nitroge dioxide were introduced through the distribution console, using
calibrated gas cylinders containing 0.48% and 0.75 (by volume) of S0, and NOp
respectively. Similar techniques were applied to Freon-12, viayl chloride,
and Freon-11l4. Known concentration mixtures were obtained in pressurized gas
cylinders and were introduced at the desired concentration levels into the
system through distribution consoles.

The periods during which these contaminants were introduced are shown
in Figure 10. Freon-12 and vinyl chloride were introduced into the system
continually except during the following periods: 82nd to 98th days, 103rd
through 108th days, and 116th through 142nd days. Methyl chloride was intro-
duced into the system on the 37th day and on the following day the flow was
terminated. Ammonia was introduced on the Lith through the 64th day. Hydrogen
sulfide was introduced during the 108th through the 141st days and 177Tth
through the 180th days while Freon-114% was introduced during the 115th
through the 142nd days and the period between the 173rd and 180th days.

A change in the NO2 and SO, introduction point was made on the 6lith day.
The contaminants were introduced at the outlet of the main charcoal bed at
point B. N02 was turned off on the 79th day and S02 on the 92nd day. N02 and
80, were again introduced into the system ahead of the main charcoal bed on
the 109th day through the 143rd day.

Sample location.-Samples for chemical analysis were obtained at points A, B,
C, D, and E (see Figure 7). Methane and carbon monoxide were analyzed daily
at points C and D. Freon-12 and vinyl chloride were analyzed at points A, C
and D. Acetylene, n-butane, ethane and propylene were analyzed once weekly at
points C and D. Nitrogen dioxide and sulfur dioxide were analyzed at points
A, B, C and D; methyl chloride and Freon-114 at points A, C, and D; HC1 and
HF at points D and E; ammonia at points C and D.

Chemical analysis techniques.-All hydrocarbons and carbon monoxide were anal-
yzed by gas chromatographic techniques using the F & M Models 1609, 700, and
810 gas chromatographs. The Model 700 gas chromatograph units were operated
with Model 810 electrometers. All of these contaminants were analyzed by
flame ionization detection. The halogenated compounds such as Freon-12 and

Freon-114 were also analyzed by gas chromatography using electron capture
detection.
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The analytical technique used for SO» is described by Jacobs (ref..72).
This technique used a 0,04M solution of sodium tetrachloro-mercurate as an
absorbing reagent and a hydrochloric acid-bleached solution containing para-
rosaniline as a dye reagent. Standardization was performed with known solu-
tions of sodium bisulfite and absorption measured at 560mp. Samples for
colorimgtric analyses were collected by using the bubbler system shown in
Figure G.

The bubbler system consisted of three 100 cc pyrex glass bubblers
arranged in series and connected by clear tygon tubing. The first and third
bubblers acted as protective traps and the middle bubbler contained the ab-
sorbing reagent. This bubbler was filled with 20 cc of reagent and system
atmosphere was passed through at a rate of 200 cc per minute. The length of
bubbling varied from 5 to 120 minutes, depending on the concentration and
kind of contaminant being analyzed. The techmique used for the determination
of NO, was the direct absorption method described by Saltzman (ref. 71).
This technique used a solution containing sulfanilic acid, N- (1l-naphthyl)-
ethylene diamine dihydrochloride, acetic acid, and Kodak Photoflo which
acted both as the absorbing and dye reagent. Color development was almost
instantaneous and the light absorption was read at 550mp (millimicrons).
Standardization was performed with known solutions of potassium nitrite
(KNOZ). Hydrogen sulfide analysis was performed using the colorimetric
technique described by Jacobs (ref. T72). This technique uses a dilute alka-
line solution of cadmium sulfate as an absorbing reagent and a dye reagent
containing para-aminodimethylaniline in sulfuric acid solution, which reacts
with ferric and chloride ions to form methylene blue. Standardization was

performed with known solutions of methylene blue and the absorption was
measured at 670 mpu.

Ammonia analysis was performed daily using the colorimetric technique
described in the Technicon Methodology (ref. 73). This technique used 0.1 N
sodiun hydroxide as an absorbing reagent and a combination of a soultion of
alkaline phenol and a solution of alkaline hypochlorite as a dye reagent.
Standardization was performed with known solutions of ammonium sulfate, and
absorption was measured at 610 mu. HCl analysis was performed by using the
turbidimetric method described in Jacobs (ref. 72). This technique used 0.1 N
silver nitrate solution with 0.1 N sodium hydroxide used as the absorbing
reagent. Standardization was performed with known solutions of sodium
chloride. HF was colormetrically analyzed by the SPADNS method as described
in Standard Methods (ref. 7L). This technique used a dye reagent containing
sodium 2 - (para-sulfophynylazo) - 1.8 dihydroxy-3, 6-napthalene disulfonate
and zirconyl chloride octahydrate in dilute hydrochloric acid. The absorbing
reagent was 0.1 N NaOH solution and standardization was performed by using
known solutions of sodium fluoride. Absorption was measured at 560 my.

Main sorbent charcoal beds.-The main sorbent beds, represented by canisters
X and B, were filled with Barnebey-Cheney 8 x 10 mesh (Tyler) BD charcoal
which was prepared by screening L x 10 mesh charcoal. The beds were initially
planned to be on line for one week after which time a fresh bed was to be
switched on line. However, during the course of the experiment, it was deter-

L7



mined that the beds should be switched more frequently. The beds were then
changed three times weekly: Monday at 8:30 a.m., Wednesday at 5:00 p.m., and
Friday at 5:00 p.m. TWhile one charcoal bed was on line, the contents_of the
other was removed, weighed, desorbed by applying vacuum and heat (200°C for
10 hours) cooled to room temperature, re-weighed and re-packed. Also, other
charcoal adsorbents were tested such as Barnebey-Cheney 8 x 12 mesh GI-7883
charcoal which was used on the S54th-~56th days and Barnebey-Cheney 8 x 12
mesh KE which was used on the 59th and 60th days.

Pre-sorbent lithium hydroxide bed.-The lithium hydroxide pre-sorbent
canister was loaded with 78.5 grams of lithium hydroxide and placed on line
at the outset of the test. No changes were made to this bed during the 180
day test.

Catalyst bed.-The catalyst bed was loaded with 57 cc of 0.5% Pd on alumina
catalyst ZEnglhard, Lot No. 11-707). The catalyst bed was operated at a
temperature of 680°F until the 86th day. Some modifications were made in the
test conditions between the 87th and 9Lth days in an attempt to restore
catalyst activity. On the 8T7th through 92nd days, the catalyst bed tempera-
ture was raised to 800°F and the total system outflow was reduced to L6600 cc
per minute. On the 89th day, the water bubbler was stopped and a canister
with 7 pounds of silica gel was placed on line to reduce the moisture in the
inlet system flow. On the 92nd day, the silica gel canister was removed,

the water bubbler re-installed, the catalyst bed temperature lowered to 683°F
and the outlet flow increased to 6700 cc per minute. Since the catalyst did
not recover its initial activity as a result of these changes, the test was
halted. The catalyst bed was removed and re-packed with new catalyst. The
test was then continued with the new catalyst operating at the original

temperature of 680°F. The old catalyst was re-weighed and analyzed by infra-
red spectroscopy.

Prior to the last thirty-seven days of the 180 day test period, system
modifications were made for post-sorbent evaluation. A post-sorbent canister
loaded\w1th 181 grams of lithium hydroxide was placed on line at the outlet

‘the.catalyst bed onthe 1h3rd day. The outlets of the catalyst bed (D) and
the post-sorbent bed" (E) were analyzed daily for oxidation products, hydrogen
chloride.and hydrogen fluoride during the period between the 1lh3rd and 172nd-
days. AnalyS1s for intermediate ox1dat10n products was performed by gas

fchromabography, speclflcally u31ng ‘the flame ionization and electron capture
detectors.x

: Slllca zel. bed.-The main sorbent charcoal beds were removed and each filled
with 600-grams of Davison 6 x 8 mesh (Grade LO, Type 2) silica gel, and
placed back on line on the 172nd day bypassing the humidifier system. Freon-
12, vinyl- chlorlde, and NOs were introduced 1nto the system along with the
»basic background contaminants. Contaminant removal performance was determined
before ‘water saturation by sampling the contaminant inlet and outlet bed
concentrations. The dew point of the silica gel bed outlet was monitored with

a Gambrldge Hygrometer system that was connected in parallel W1th the LiOH
bed. -
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Post-test chemical and physical analysis.-After the long term test was
completed, the following chemical and physical tests were performed. The
lithium hydroxide pre-sorbent and post-sorbent beds were examined visually
and for acidity. Also, both beds were re-weighed, and their weight gains
calculated. The 0.5% palladium catalyst was removed, examined visually, and
re-weighed. The tubing used for cooling the outlet gas stream from the
catalyst bed was removed, examined visually for corrosion, and analyzed
chemically. Chemical analysis was performed by washing the tubing with 100 cc
of distilled water (10 times), evaporating the wash water to L5 cc, and
analyzing specifically for NOp, SO, HC1l and HF.

Results

The system inlet dew point data is presented in Figure 11l. Methane inlet
concentration data, catalyst bed conversion efficiency, and catalyst bed
temperature throughout the 180-day test period are presented in Figure 12.
Carbon monoxide inlet concentration and catalyst bed conversion efficiency
data are presented in Figure 13, Catalyst bed conversion efficiency data and
inlet concentrations for propylene, ethane, n-Butane and acetylene are pre~
sented in Figure 1lL. Vinyl chloride and Freon-12 concentration data at the
inlet and outlet of the charcoal bed and at the outlet of the catalyst bed
is presented in Figure 15. Freon-1lll and hydrogen sulfide concentration data
at the inlet and outlet of the charcoal canister, the lithium hydroxide
canister outlet and the catalyst bed outlet are presented in Figure 16.
Hydrogen chloride and hydrogen fluoride concentration data at the inlet and
outlet of the post sorbent canister is presented in Figure 17. Nitrogen
dioxide concentration data at the inlet and outlet of the charcoal canister,
outlet of the lithium hydroxide canister and outlet of the silica gel
canister is presented in Figure 18, Sulfur dioxide concentration data at
the inlet and outlet of the charcoal canister and outlet of the lithium
hydroxide canister is presented in Figure 19, Ammonia concentration data
at the inlet and outlet of the catalyst bed is presented in Figure 20,
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Discussion

During the test, investigations were made relative to (1) catalyst
poisoning and the need for a pre-sorbent bed, (2) the formation of undesir-
able products of oxidation and (3) the control of undesirable products of
oxidation by a post-sorbent bed. The following sections discuss the results
of the tests pertinent to these investigations.

Catalyst poisoning.~In the investigations relative to catalyst poisoning, the
performance of the charcoal main sorbent system, a lithium hydroxide basic
pre-sorbent and the silica gel desiccant bed portion of a carbon dioxide re-
moval system were considered.

Main Sorbent System: The ecomplete test apparatus was first operated for
three days with the hydrocarbon contaminants used in the previous 180-day
long term test to check out the apparatus and to verify catalyst performance.
The performance of the catalyst was found to be the same as experienced in
the previous test. On the fourth day of testing, the first candidate catalyst
poisons to be controlled by the charcoal bed, Freon-12 and vinyl chloride,
were introduced upstream of the charcoal main sorbent bed. These contaminants
were selected on the basis of candidates for removal by the charcoal bed,
being among those less well adsorbed. The charcoal bed was sized, based on
potential plot data taken in a relatively dry gas stream, for breakthrough
to occur after 7 days. The beds were to be cycled on a 7-day period with
desorbed charcoal being used in each new canister. Both the Freon-12 and
vinyl chloride broke through the bed prior to cycling indicating that the
performance of the charcoal bed was less than anticipated. This test was
repeated several times with the beds being cycled twice a week. The Freon-12
and vinyl chloride were still breaking through before the beds were cycled.
The poisoning effect on the catalyst brought about by Freon-12 and vinyl
chloride being allowed to enter the catalyst bed was evident from the methane
removal characteristics. Methane removal efficiency would start out at a
fairly high value with a fresh bed and would then drop after the Freon-l2 and
vinyl chloride broke through. The methane removal efficiency would, however,
recover soon after a fresh charcoal canister was placed on line. The test
was continued in this mode until the sixteenth day.

Since the 6 x 8 mesh charcoal showed poor removal efficiency for the
Freon-12, and vinyl chloride, a finer 8 x 10 mesh charcoal was placed into
the system on the sixteenth day and again on the eighteenth day after pre-
treatment by degassing and heating. No improvements in Freon-12 and vinyl
chloride removal were noted. Freon-12 and vinyl chloride flow into the main
flow stream was turned off for the weekend (days 20 and 21) as a means of
aiding in increasing ths catalyst bed performance.
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On the twenty-second day, the charcoal bed volume was increased to hold
L35 grams of 8 x 10 charcoal that was prepared by heating above 2000C and
degassing under one micron pressure for ten hours. This was done as an
attempt to improve performance of the main sorbent system since it was still
allowing Freon-12 and vinyl chloride to enter the catalytic oxidizer, The
Freon-12 and vinyl chloride contaminants were reintroduced into the system.
Analysis at the inlet and outlet of the charcoal bed showed 100% removal of
both Freon-12 and vinyl chloride immediately after the new canister was put

on line, After approximately 3 days, vinyl chloride had not broken through
and Freon-12 had partially broken through.

A routine was then established for periodically changing the charcoal
beds on Monday mornings and on Wednesday and Friday afternoons which resulted
in approximately a 2.5 day cycle. As anticipated catalyst performance was
always higher after changing the charcoal beds. The initial removal of Freon-
12 and vinyl chloride by the charcoal resulted in higher catalyst performance
but as the charcoal removal efficiency for the contaminants decreased, so did
the catalyst bed performance. This change in cycle time did effect one of the
other contaminants being introduced, n-butane, in that it was now being re-
moved by the charcoal beds and was not reaching the catalyst. The capacity of
the charcoal for the contaminants in question was at least 1/3 less than had

been anticipated owing to the use of potential plot data taken in a dry gas
stream.

To verify that moisture effects was the problem, the test was modified
to reduce the inlet dew point to the charcoal. On the thirty-sixth day, the
humidifier was by-passed creating an inlet dew point in the range of 32-38°F.
The effect of the lowered dew point was an increase in the charcoal perform-
ance for Freon-12 and vinyl chloride confirming that water vapor had an ad-
verse affect on charcoal capacity.

In a final attempt to increase the performance of the main sorbent
system, different charcoals were investigated. On the 5Shth day of testing,
an 8 x 12 mesh Barneby Cheney charcoal type G-1 was employed. No improvement
in the Freon-12 and vinyl chloride removal characteristics was noticed as
compared with the type BD charcoal previously used. On the 59th day, an 8 x
12 mesh Barneby Cheney charcoal type KE was used. Again no improvement in
the Freon-12 and vinyl chloride removal characteristics was observed. Type
BD charcoal was then used for the remainder of the test.

The final investigation conducted with Freon-12 and vinyl chloride was
to reconfirm that the poisoning caused by these contaminants was reversible
in nature. This was done starting on the 99th day when the charcoal bed cycle
time was increased to L days. This test was repeated again on the 109th day.
In both cases, the Freon-12 and vinyl chloride broke through the charcoal bed
and caused the catalyst performance to degrade considerably; removal
efficiency dropped from better than 80% to less than 10%. In both cases, the
removal efficiency recovered to its initial value immediately following
elimination of the Freon-12 and vinyl chloride from the flow stream.

61



Lithium hydroxide pre-sorbent bed: The first candidate catalyst poisons to
be controlled by the lithium hydroxide pre-sorbent bed, introduced into the
system were sulfur dioxide and nitrogen dioxide.

Sulfur dioxide and nitrogen dioxide were introduced into the flow stream
on the fifth day with the aid of the Technicon proportioning pump. Samples
for contaminant concentrations were taken at the inlet to the charcoal bed,

exit to the charcoal and inlet to the lithium hydroxide bed, and the exit to
the lithium hydroxide bed.

The NO, inlet concentration varied from 0.61 to 1.2 mg/m3. No detectable
levels were identified at the exit to the charcoal bed showing that the
nitrogen dioxide was being removed by the charcoal bed.

Sulfur dlox1de inlet concentration to the charcoal beds varied fram 0.42
to 1.1k mg/m3. Samples were taken at the same locations as those taken for
nitrogen dioxide. Colorimetric analysis for sulfur dioxide showed that it was

also removed by the charcoal bed except on the 25th and 29th days of the
test.

The removal of NO, and 50, by the charcoal was dttributed to these con-
taminants combining with water to form acids and then being chemi-sorbed. A
post-removal examination of the BD charcoal beds verified the presence of
these acids. It was considered that SO, and NO, removal was related to the
inlet dew point and that for lower dew points, NO2 and SO» may not be con-
trolled in the main sorbent charcoal bed. The charcoal adsorption capacity
for these contaminants is quite low. At 20°C and 760 mm under dry gas condi-
tions, the approximate retentivity for these acid contaminants is 10% as
compared for example to a value of 20% for methyl mercaptan (ref. 75). Thus,
for this reason, and because the lithium hydroxide pre-sorbent bed was placed
in the system to control the contaminants such as NO» and SO,, it was con-
sidered necessary to introduce the NOp and SO, downstream of the main sorbent
charcoal to verify the lithium hydroxide removal capacity.

Introduction of the acid gases downstream of the charcoal bed was initi-
ated on the 6Lth day of the test. Methane conversion efficiency dropped from
55% on the 65th day to approximately 12% on the 75th day. During this period,
S0, was removed completely from the flow stream by the LiOH at inlet concen-
trations approximating 0.80 mg/m> while NO, was partially removed, Removal
efficiency for NOp at inlet concentratlons approximating 1.0 mg/m3 varied
from no removal to 30%. The remaining NOp that flowed into the catalytic
oxidizer was completely reacted to other products. It was not determined
what products were being formed.

On the 79th day of the test, NO, was turned off since it was suspected
to be the cause of the catalyst poisoning due to it being only partially re-
moved by the lithium hydroxide and reacting in the catalytic oxidizer. The
catalyst did not recover and Freon-12 and vinyl chloride introduction was
stopped on the 8lst day of the test. The last potential poison sulphur
dioxide was turned off on the 92nd day.
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Steps to reactivate the catalyst were then carried out following pro-
cedures that might be employed in a spacecraft life support system. This in-
cluded reducing the gas flow rate, allowing the catalyst bed temperature to
increase and supplying reduced humidity air into the system.

On the 87th day, the catalyst bed temperature was raised to 800C°F where
methane conversion efficiency jumped to 71%. During this period, the humid-
ifier system was by-passed and a silica gel bed was placed in the line ahead
of the charcoal bed to minimize the amount of moisture entering the flow
system,

Due to the increase in methane conversion efficiency to 83% after 5
days, the catalyst bed temperature was lowered to 687°F, the silica gel bed
was removed from the line, and the humidifier system was placed in the
system. Methane analysis showed that the conversion efficiency was less than
10% and that the catalyst had not been reactivated. Fresh catalyst was re-
packed in the catalyst bed on the 9Lth day and the test was continued on the
same day. Down time was estimated at three hours. This included the time for
the furnace to reach 687°F operating temperature from room temperature.
Methane conversion efficiency was at 91% on the 95th day and 96th day showing

that the new catalyst was performing as well as the previous catalyst before
poisoning.

It was felt at this time that the cause of the catalyst poisoning was
due to poisoning by the NO,; however, during the test some S0, had reached
the catalyst bed due to a by-pass flow around the lithium hydroxide bed.
This occurred while the colorometric analyses were being carried out.

The poisoned catalyst was analyzed by infrared spectrophotometric
techniques by extracting the products formed on the catalyst pellets and by
analyzing the concentrated extracts which were incroporated into a KBr
pellet. The unused catalyst pellets were analyzed by similar methods for use
as standards for comparison. The poisoned catalyst showed that the major
portion of the extracted material was a sulfate type compound while the un-
used or standard catalyst showed the extract to be an oxide type. These re-
sults indicated strongly that SO, deactivated the catalyst.

Sulfur compounds, particular in the lowest valence state, are potent
catalyst poisons due to the electron octet vacancies (ref. 76, 77). Unshared
electron pairs such as SO (0::S::0) result in chemisorptive bonding between
the sulfur atom and the active catalyst sites. Unlike physical bonding, con-
siderable energy is required to disrupt the chemisorptive bond. In this
particular case the sulfur compound reacted and/or accumulated on the active
catalyst sites causing the catalyst to be less active.

At this point in the testing, it had been demonstrated that LiOH would
completely remove SO» and partially control NOo; however, these contaminants
were also controlled in the charcoal in the present of moisture.

On the 108th day further attempts were initiated to introduce contami-
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nants that would pass through the charcoal bed but would be removed by the
lithium hydroxide. Hydrogen sulfide was added to the contaminant flow along
with the hydrocarbon contaminants, carbon monoxide, Freon-12, vinyl chloride,
sulfur dioxide and nitrogen dioxide. The hydrogen sulfide was introduced
upstream of the charcoal bed. The charcoal removed the HyS beyond the break-
through for both Freon-12 and vinyl chloride.

The same experiment was repeated except Freon-lll was introduced in
place of the Freon-1l2 and vinyl chloride. Freon-l1llL was substituted on the
basis that the charcoal has a higher capacity for retaining Freon-11ll over
HyS and thus the H,S breakthrough would probably occur before the break-
through of the Freon-~l11lhi. Results of the experiment showed, however, that
Freon-11l penetrated the charcoal prior to HoS.

At this point in the testing, the requirement for pre-sorbent lithium
hydroxide bed had not been experimentally defined, because contaminants for-
which a lithium hydroxide pre~sorbent is required were being removed by the
charcoal in a humidified atmosphere.

A review of the past charcoal bed performance showed that at least three
distinct removal mechanisms existed for the contaminants in question. These
mechanisms included adsorption which was accounted for in the sorbent bed
design, oxidation, and combining with the water retained by the charcoal. It
was felt that oxidation accounted for the removal of H,S and combining with
water accounts for the control of SO, and NO,. The control of contaminants by
combining with water in the charcoal is dependent upon the presence of water
in the charcoal and therefore dependent on the location of the charcoal in
the spacecraft environmental control system. If the charcoal was located in a
low dew point stream, such as integration with a molecular sieve-type CO2
removal system, the water would not be present in the charcoal bed. These
conditions were of interest and would relate to the possible need of a basic
pre-sorbent in a dry gas version of IHCOS. For this reason, the test with
Freon-11lL, HoS, SOp and other contaminants was repeated with a low dew point
gas stream.

On the 124th day, a silica gel canister was placed ahead of the in-
coming atmosphere and the humidifier system was by-passed. Immediately
following this, the sulfur dioxide broke through the charcoal bed. The sulfur
dioxide also penetrated the 1lithium hydroxide bed during this test. Hydrogen
sulfide, however, did not break through the bed.

As anticipated, these results confirmed that these acid gases (SOp and
NOZ) are poorly retained by charcoal in a dry gas inlet stream condition but
will combine with water adsorbed on the charcoal under humidified atmospheric
conditions. Hydrogen sulfide, however, is controlled by the charcoal under
wet or dry gas conditions confirming that its removal mechanism is not re-
lated to combining with water but instead probably due to oxidation. The per-
formance of the lithium hydroxide in controlling the SO, under dry gas condi-
tions was also poor. Sulfur dioxide had been completely removed by LiOH in
previous tests with a humidified gas stream. Examination of these results and
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a review of the information available on the performance of lithium hydroxide
in other reactions indicated that in general the presence of water vapor is
required for maximum reactivity. Thus, in the dry gas condition, the acid
gases do pass through the charcoal indicating the need for a pre-sorbent,
however, the selected basic pre-sorbent is not of value under these condi-
tions. The test results showed that in a dry gas design, the acid gases
should be controlled at a point in a system where moisture is present. If the
dry gas unit were integrated with a molecular sieve type carbon dioxide re-

moval system, the acid gases might be controlled to some degree in the silica
gel bed.

Silica gel bed: The charcoal canisters were filled with silica gel (David-
son Type 2, Grade L4O) and Freon-12, vinyl chloride, and NO, were introduced
into the system along with the other hydrocarbon background contaminants. The
objective of this test was to determine if the NO, would be retained by the
silica gel up to the point of water break through. The dew point from the
silica gel bed was monitored with a Cambridge Hygrometer System by sampling
the flow in parallel with the pre-sorbent LiOH bed.

Freon-12 penstrated the bed within one hour and vinyl chloride within
three hours time. Nitrogen dioxide did not break through the bed. After sat-
uration of the bed, NOp outlet concentration showed 98.5% removal. The
following day the humidifier system was by-passed and another fresh siliea
gel bed was placed in line. A longer breakthrough time from this setup was
anticipated. Dew point outlet dropped to -68°F. Sulfur dioxide, nitrogen
dioxide, Freon-114, and hydrogen sulfide were introduced into the flow system

Freon-114% penetrated the silica gel bed after twelve hours. The outlet
concentration reached a level where it was higher than the inlet concentra-
tion, due to the outgassing of the Freon-114% from the silica gel bed. Nitro-
gen dioxide was 96.0% removed from the flow stream showing slightly less re-
moval capability than previously. However, sulfur dioxide showed only 65%
removal by the silica gel bed at inlet concentration of 0.40 mg/m3. The water
vapor had not broken through at the time. Further testing with higher SO2
inlet concentrations showed that initial exposure of 502 resulted in nearly
complete removal by the silica gel bed but after 20 hours of continuous ex-
posure, the removal efficiency dropped with increasing bed saturation to
approximately 17%. At this time the silica gel bed had reached water break-

_through. A repeat experiment with a higher inlet humidity showed that at
silica gel water breakthrough after 10 hours of continuous exposure, 802 was
removed approximately 60%. Thus, it appears that NOp is well removed by
silica gel but that only partial removal of SO, can be anticipated.

Undesirable products of oxidation.-The second phase of the test was to estab-
“lish if undesirable products of oxidation were being formed. After the test
had proceded for 37 days, the investigation relative to the formation of un-
desirable products of oxidation were initiated. To this end, methyl chloride
was introduced into the flow stream at 21 mg/m3 inlet concentration as a
potential producer of undesirable products of oxidation. The methyl chloride
passed readily through the charcoal and lithium hydroxide presorbent beds as
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anticipated, however, it poisoned the catalyst bed causing methane conversion
to drop to approximately h%. No undesirable products were detected during

this peiod. Methyl chloride flow into the system was terminated the next day
(38th day).

The catalyst slowly recovered and by the 4hth day of the test, methane
conversion efficiency had increased to approximately SM%.

On the 4lith day, ammonia was added to the system as a potential producer
of undesirable oxidation products. The results from the inlet and outlet
analysis of the catalytic oxidizer showed that the ammonia was not oxidized
but remained unchanged. Even with a high inlet concentration of 11.4k mg/m3
no potential undesirable oxidation products were noted. Ammonia was intro-
duced from the 4lith to the 64th dag. During this period, the inlet concen-
tration was approximately 3.2 mg/m . Since no undesirable products were
found in the outlet flow of the catalytic oxidizer no further ammonia was
introduced into the system.

When the charcoal bed became saturated with Freon-12 and vinyl chloride,
the analysis of the outlet flow from the catalytic oxidizer showed that
Freon-12 and vinyl chloride were oxidized by the catalyst. The outlet
analysis on the 47th day showed that vinyl chloride was 100% oxidized and
Freon-12 was oxidized approximately 27%.

Since the Freon-12 and vinyl chloride were penetrating the charcoal beds,
it was decided to allow these contaminants to pass into the catalytic oxi-
dizer system and determine what undesirable oxidation products they were pro-
ducing and possibly use them as a source of undesirable products. The outlet
from the catalytic oxidizer system was analyzed for Freon-12 and vinyl
chloride during the period from the L7th to the 80th day. The results showed
that vinyl chloride was oxidized 100% and Freon-12 varied in conversion
efficiency from no conversion to 41%. Intermittent analysis for undesirable
products from oxidation was accomplished during this period by concentrating
the outlet flow from the catalytic oxidizer with a refrigerated dry ice bath
and by analyzing the concentrated sample through gas chromatographic and mass
spectrometry analysis techniques.

The Freon-12 and vinyl chloride decomposition products identified were
HC1l and HF. HC1l outlet concentrations as high as 0.68 mg/m3 were determined
during this period. In addition, infrared spectrophotometric scans of
catalyst outflow samples (10 meter path gas cell) showed no undesirable pro-
ducts besides the inorganic acids mentioned.

Post-sorbent bed.-The final portion of the 180 day test was devoted to evalu-
ation of the effectiveness of the post-sorbent bed. On the 143rd day of the
test, Freon-12 and vinyl chloride were added to the flow stream to create un-
desirable products of oxidation in order to determine the performance of the
lithium hydroxide post-sorbent bed. The Freon-12 and vinyl chloride were
oxidized in the catalyst bed and generated HC1l and HF as oxidation products.
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During this experimental period, the Freon-12 and vinyl chloride inlet
concentrations were increased to allow for more product formation. On the
weekends and after the analyses were completed, the inlet concentrations were
lowered to allow the catalyst bed to recover from the poisoning effects of
these contaminants. The charcoal pre-sorbent bed was not changed since it re-
quired a few days before Freon-12 or vinyl chloride would break through.

Analysis of the catalyst bed outlet showed 100% reactivity of vinyl
chloride. Freon-12 conversion efficiencies varied from zero to thirty-three
percent. These results showed that products were being formed in the catalyst
The HC1 concentrations at the post-sorbent bed inlet were at the lower limit
of detectability (0,01 mg/m3). .Only during the 145th day did the HCl inlet
concentration rise to 0.12 mgﬁn3 At no time was HC1l detected at the outlet
of the post-sorbent bed.

The low HC1l inlet concentration into the post-sorbent bed was due to the
reactivity of HC1l with the cooling coil tube located at the outlet of the
catalyst burner. An analysis and inspection of the heat exchanger tube after
the completion of the test showed a high residual chloride content. Also, the
lower HCl production may be accounted for by the incomplete oxidation of
vinyl chloride to other products since the percent conversion was determined
by the analysis for vinyl chloride inlet and outlet concentrations and not
the possible other intermediates that could be formed from incomplete oxida-
tion.

Similar to the results obtained for HCl, the HF produced by the catal-
ytic oxidizer was removed by the post- sorbent llthlum hydroxide bed. The
lower limit of detectability for HF was 0.005 mg/m . HF inlet concentration
to the post-sorbent bed varied from 0.116 to 0.005 mg/m3, but mostly at the
lower limit of detectability. Also, it was assumed that the HF produced by
the catalytic degradation of Freon-12 was partly removed by reactivity with
the catalyst impregnated A1203 base material and/or the stainless steel
cooling coil placed in the outlet of the catalytic oxidizer as indicated by
the chemical analysis of the heat exchanger tube after the completion of the
test.

Thus, the post-sorbent bed was effective in controlling the products of
oxidation from the vinyl chloride and Freon-12.
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Conclusions

Based on the results of the long term testing, the following conclusions
were reached relative to the pre- and post-sorbent beds.

Pre~sorbent bed.-The initial concept was for the basic pre-sorbent bed to re-
move those contaminants not effectively controlled by the charcoal main sor-
bent. A review of the main sorbent bed performance based on the potential
plot theory for prediction of adsorption capability indicated that a number
of acidic contaminants were poorly adsorbed on charcoal. This led to the
selection of a basic pre-sorbent bed. In conducting the long term test, it
became apparent that the charcoal was controlling to a great extent the con-
taminants anticipated to require a basic sorbent. This was attributed in part
to the moisture in the charcoal. These results indicated that a basic pre-
sorbent would not be required. In a dry gas situation the acld gasses pass
through the charcoal, indicating the need for a pre-sorbent, however, the
selected basic pre-sorbent is not effective in this situation.

The catalyst poisoning experienced during the long term test included
poisoning by Freon-12 and vinyl chloride. It was demonstrated on several
occasions that poisoning from these compounds and also from methyl chloride
was reversible in nature. When the contaminant source was removed, the
catalyst performance would recover to its initial value. The poisoning that
resulted from introduction of S0, and NO, into the catalyst bed was irrevers-
ible in nature. It was concluded from these experiences that protecting the
catalyst from poisoning by the acld gases is far more important than protec-
tion from the compounds that produce only temporary poisoning effects. Since
the acid gases caused permanent poisoning in the long term test and since
they are well adsorbed by LiOH in a moist stream, it seems advisable to re-
tain the pre-sorbent cannister as insurance against premature breakthrough
of these contaminants from the charcoal or main sorbent bed.

Tt is therefore concluded that the proposed pre-sorbent bed (4.75" I.D.
and 5.20" bed length) will be employed in the IHCOS design.

Post-sorbent bed.-The initial design of the basic post-sorbent bed that was
modeled in the long term test, is described in the following section of this
report. This bed was effective in controlling the undesirable products of
oxidation that were produced during the test. It is therefore concluded that
the proposed post-sorbent bed (5.5" I.D. and 7.9" bed length) will be
employed in the THCOS design.
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POST-SORBENT BED DESIGN

The post-sorbent bed design effort was conducted in a manner similsr to
the pre-sorbent bed design and consisted of the following tasks:

¢ Lstablishing the potential undesirable products of oxidation
o Post-sorbent selection, bed sizing and optimization

Contaminant Load

In establishing the potential undesirable products of oxidation, the
complete contaminant list was reviewed and an estimate was made of those
contaminants that would probably be introduced into the catalytic oxidizer.
This was done for all contaminants that were considered a source of undesir-
able products of oxidation, and is shown in Table 7. The first step in estab-
lishing which contaminants would reach the catalytic oxidizer was to review
the effectiveness of the upstream removal techniques. This was accomplished
by considering the results of the long term test results to date and the
known characteristics of the upstream sorbents. The upstream sorbents that
were considered included the charcoal main sorbent and a lithium hydroxide
pre-sorbent.

Charcoal main sorbent.-Experience to date with the charcoal main sorbent has
indicated that at least three distinct removal mechanisms exist for the con-
taminants in question. These mechanisms include adsorption, oxidation and
reactions with the water present in the charcoal.

The relative effectiveness of adsorption for removing a mixture of
contaminants is best correlated with the potential plot which is described
in detail in the section on the main sorbent bed design. In assessing the
effectiveness of adsorption, it was decided that contaminants with an "A"
value less than 20 would be well adsorbed and that none of this contaminant
would reach the catalytic oxidizer. This is in agreement with the results of
the long term test where Freon-11lL with an "A" value of 18 was well adsorbed
and premature breakthrough from the charcoal did not occur. For "A" values
between 20 and 30, it was assumed that the contaminant would be moderately
well adsorbed and that a portion of the contaminant load would break through
the charcoal bed and could pass into the catalytic oxidizer. It was assumed
that 50% of the contaminant passed through the bed in this situation. The
performance of Freon-12 with an "A" value of 26.8 during the long term test
indicates that a significant portion of this contaminant would pass through
the charcoal canister. For "A" values greater than 30, it was assumed that
the contaminant was poorly adsorbed and that the majority of the contaminant
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would pass through the charcoal. The performance of methyl chloride with an
"A" value of Ll.5, during the long term test was indicative of this type of

performance. For these situations, it was conservatively assumed that 100%

of the contaminant load would pass through the charcoal.

A number of contaminants appear to oxidize or decompose on the charcosl
and their products of oxidation subsequently removed by the charcoal. This
type of removal has been observed in the long term test with hydrogen sul-
fide and in other tests with methyl mercaptan, ethyl mercaptan, propyl mer-
captan and nitric oxide. It is anticipated that this mechanism will ocecur
with tetrafluorethylene and to some extent with vinyl chloride. This explains
why vinyl chloride was controlled better than Freon-12 in the long term
catalyst test even though vinyl chloride has the higher "A" value.

Examination of the charcoal beds during the long term test indicated
that a number of the acidic contaminants reacted with the water retained in
the charcoal bed. This was observed in the case of both sulfur dioxide and
nitrogen dioxide. It is assumed that this would also occur for the other
acidic contaminants.

Lithium hydroxide pre-sorbent.-In reviewing the complete contaminant list,
charcoal offers some degree of removal for all contaminants when the mech-
anisms of adsorption, oxidation and reacting with the water are considered.
However, for situations where water vapor is not present or at a low concen-
tration, the acidic contaminants would not be retained in the charcoal bed
and would require a downstream basic sorbent for control. In this case, a
lithium hydroxide pre-sorbent might be used to prevent these acid gases from
entering the catalyst bed since they act as catalyst poisons. Testing has
revealed that lithium hydroxide 1s only effective in a dry gas stream when
impregnated with a desiccant compound such as lithium chloride,

Lithium hydroxide is a strong base that can remove many contaminants by
either acid-base neutralization reactions, complex formations or oxidation
reduction reactions. For those situations where charcoal does not control
the acidic gases and a basic pre-sorbent bed is required, the degree of re-
moval of acidic gases is quite high. The complex reaction is a weak reaction
which provides only moderate to low removal capability. The oxidation~reduction
is also a weak reaction compared with neutralization and also provides only a
moderately low removal capability.

Anticipated delivery rate.-In establishing the anticipated delivery rate of
potential producers of bad products to the catalytic oxidizer the overall
degree of removal was assessed and applied to the contaminant production rate
as previously described. The factor of O%, 50%, or 100% was applied to the
production rate of the contaminant in question except in the case where the
allowable concentration is low enough that a 3 CFM flow rate and the indi-
cated removal results in a reduced production rate., This occurred for
epichlorohydrin and ethyl amine.

Post~Sorbent Selection

After establishing which contaminants would reach the catalytic oxidizer
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and determining what their most probable oxidation products would be, the
choice of post-sorbent material was made. Lithium hydroxide was chosen on
the basis that most of the oxidation products were acidic, namely hydrogen
chloride, hydrogen fluoride, nitrogen dioxide and sulfur dioxide. This was
substantiated experimentally with the oxidation of Freon-12 and the detection
of the resultant hydrogen chloride at the catalytic oxidizer outlet.

Post -Sorbent Bed Configuration

The sizing of the post-sorbent bed was accomplished by establishing the
acidic products produced in the catalytic oxidizer and the quantity of post-
sorbent material required to control these products. These results are pre-
sented in Table 7 and described in detail below.

Stoichiometric Production of Acidic Products.-The stoichiometric amounts and
acidic products; e.g., HF, HC1l, SO, and NO, were determined in terms of moles
of acidic product produced per mole of contaminant entering the catalytic
oxidizer. These are shown in Table 8 and were derived by considering the in-
dividual oxidation reactions of the various contaminants.

Anticipated Amounts of Acidic Products.-The anticipated amounts of acidic
products produced in grams per 180 days in Table 8 were determined from the
stoichiometric amounts of acidic products and by considering the removal
efficiency of the catalytic oxidizer for individual contaminants. For example,
during the long term test it was found that Freon-12 was oxidized partially
with a maximum conversion of 40%. On the other hand, vinyl chloride was
found to be oxidized completely. By using these experimental guidelines and
by considering the individual contaminants and their ability to undergo
oxidation, it was decided to use 40% conversion efficiency for all the Freons
which entered the catalytic oxidizer, 100% for the less stable halogenated
hydrocarbons such as vinyl chloride, vinylidene chloride, and methyl chloride
and 100% for sulfur or nitrogen containing compounds.

Quantity of Lithium Hydroxide Required.-The amount of lithium hydroxide re-
quired for each acidic product was determined in Table 8 in grams per 180
days. This was calculated from the anticipated amounts of acidic products
produced and the neutralization reaction which each undergoes with lithium
hydroxide. For example, based on the stoichiometric reactions, 1 gram each
of hydrogen fluoride, hydrogen chloride, sulfur dioxide, and nitrogen dioxide
require 1.20, 0.66, 0.38 and 0.52 grams of lithium hydrogen, respectively.

The total stoichiometric quantity of lithium hydroxide required for 180
days is 715 grams. Using a performance factor of 50%, the required volume of
lithium hydroxide for the post-sorbent canister is 187 in3 with a 3 cfm
flow rate. This yields a superficial space velocity of 1600 hre-1 which
should produce a high removal efficiency per pass for the contaminants in
question.

In establishing the configuration of this bed a trade-off was made be-
tween the weight penalty to the bed and canister fixed weight and the weight
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penalty associated with the fan head rise required for flow. This optimiza-
tion was performed in the same manner as the pre-sorbent optimization. The
resulting plot of total equivalent weight as a function of canister diameter
is shown in Figure 21, This reveals that the optimum canister diameter is
5.5 inches and the optimum bed length is 7.9 inches. The overall canister
length including conical ends will be 15.5 inches and the canister will
weigh approximately 1.8 pounds, The total weight with lithium hydroxide will

be approximately L.9 pounds. The pressure drop at 3 cfm and 10 psia will be
0.35 inches of water.
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HEAT SOURCE MATERTAL SPECIFICATIONS

To ensure that the materials of construction, for the isotope heat
source, have reproducible physical and chemical properties and to establish
material selection quidelines, a materials traceability program was developed
This program included the preparation of material specifications which are
presented in Appendix A. These specifications were used for the procurement
of materials required for the fabrication and joining tests and inter-
diffusion experiments. Materials traceability was performed by TRW design
engineering liaison during fabrication and joining evaluation and on pur-
chased materials by vendor certification and spot check evaluation. A typical

materials traceability program used for end item flight hardware is presented
in Appendix B.
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JOINING AND FABRICATION TESTS

A number of fabrication processes were evaluated for each of the parts
comprising the isotope heat source assembly. The selected processes, which
are described in detail reflect the experience gained by TRW in past isotope
heat source programs, adapted to meet the IHCOS requirements.

Fabrication Methods

Table 9 summarizes the THCOS assembly materials, part description, and
the method of fabrication. Fabrication, inspection and assembly of all the
piece parts were conducted at TRW except for fabrication of the two pyrolytic
graphite shells, which was performed by the Super-Temp Corporation. As a pre-
face to the discussion of the selected manufacturing techniques, a short
description of the recommended processes is given below.

TABLE 9 IHCOS HEAT SOURCE PIECE PART FABRICATION METHODS

Part Description Material Fabrication Techniques
Liner Shell * *
Liner End-Caps * *
Strength Member TZM *
Cladding Shell Pt-20Rh Seamless tubing
Clad End-Caps Pt-20Rh Spinning and finish machine
Reentry Body Pyrolytic Graphite Chemical vapor deposition
Transition Member ATJ Graphite Machine from bar stock
Quter Member Shell 321 85 Machine from tubing
Fins 321 S5 Machine from plate
Outer Member End-Caps 321 85 Machine from plate

*Refer to Classified Supplement
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Spinning.-Spinning is a method of flowing metal by pressure of a roller
against a rotating piece of metal. The final shape is determined by the
mandrel over which the metal is flowed. By continuous rotation of the metal
and pressure of the roller, the metal is gradually forced to conform to the
shape of the mandrel. For the Pt-20Rh alloy clad end-caps, spinning can be
done at room temperature since the material is extremely ductile. A finish
machining operation is normally required after spinning to trim off excess
material. Tooling expense is relatively low and overall cost moderate.

Roll forming.-Forming of sheet, plate, and bar by rolling into a circular,
conical, or cylindrical shape is an established process and lends itself to
almost any material. It is limited to parts of fairly simple shape, but where
applicable requires little tooling and is an economical method of producing
such parts. There is little material waste, machining is eliminated or min-
imized, the process is simple, and chance of contamination is minimal.

After roll forming, a welding operation can be performed to complete the
part. The Pt-20Rh cladding shell can be fabricated in this manner.

Machining.-Machining, employing conventional lathe and milling machines, is
an established manufacturing method for shaping almost any material and can
be used over a wide size range. It is suitable for either simple or complex
parts requiring very close tolerances., Contamination effects are negligible,
tooling is easily adaptable to conventional machines, and machining tech-
niques require a minimum of development time. The ATJ graphite, 321 SS, TZM,
and liner parts fall in this category.

Chemical vapor deposition.-In this process the material is produced by the
thermal decomposition of a gaseous compound of the desired material on a hot
surface. The production of pyrolytic graphite is carried out by passing a
hydrocarbon gas over a hot surface held at approximately LOOO®F. The carbon
atoms are removed from the gas by a thermal decomposition process and are
deposited in a manner similar to a vacuum plating operation. A mandrel of the
desired shape serves as the decomposition surface.

Selected Joining Techniques

It is imperative that isotopic heat sources be carefully designed,
fabricated, and assembled.

The imporatnce of good welding procedures cannot be over-emphasizad.
Tungsten-inert gas (TIG) welding and electron-beam (EB) welding are currently
used for effecting heat source closures. With both methods, welding para-
meters such as welding current, speed of rotation, type of inert gas used,
size of electrode, gap length, gas flow rate, welding voltage, number of
welds, and time of weld must be determined for each type of closure to yield
the desired, reproducible penetration. To determine these parameters, sample
assemblies are welded, sectioned, and examined metallographically.

A discussion of the various weld joints and selected joining techniques
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for all parts, except the liner and strength member, follows.

Liner.-The discussion of the liner fabrication techniques is presented in a
classified supplement to this report.

Strength member.-The discussion of the strength member fabrication techniques
is presented in a classified supplement to this report.

Cladding.-The Pt-20Rh cladding consists of one center shell and two end-caps.
Because of the high cost of this material, fabrication was limited to the two
end-caps. Since Pt-20Rh is a relatively ductile material, it was decided to
fabricate the end-caps utilizing a spinning operation. The stainless steel
master form used to form these parts, and the finished end-caps, are shown
in Figure 22.

There are two general methods for fabricating the Pt-20Rh cylindrical
shell: welded seam and seamless. The welded seam method involves rolling or
die-shaping sheet stock in a cylinder and fusion welding the axial seam to
form a solid tube. This method can be accomplished using sheets two to three
times the required thickness, welding, and then redrawing the tube with
appropriate extrusion dles. Alternately, the tube can be formed from a sheet of
the required wall thickness and welded. The former method of producing seam
tubing is generally preferred due to improved grain structure in the weld

region, and eliminates problems concerned with weld drop-through and distor-
tion.

In order to more thoroughly investigate the fabricability of tubes by
the seam welding process, TRW has formed Pt-Rh tubing to SNAP-29 diametric
tolerances, and investigated EB and TIG welding processes for making the seam
weld., Figure 23 shows one of the Pt-Rh tubes after forming and EB welding. A
press brake, using appropriately configured dies, was used to form 0.020 inch
sheet. After the sheet was formed, fixtures were used to support the tube
during tacking and final welding operations. Experience gained during initial
efforts indicated that 0.003 inch diametric tolerances could be obtained by
this process, and that the working properties of the material were adaptable
to die press forming techniques. EB and TIG welding both resulted in high
quality welds. When TIG welding was employed, using a copper cooling mandrel
and Pt-Rh filler material, weld concavity and drop-through were essentially
eliminated. Metallographic inspections were alsc used to verify weld pene-
tration. The typical structure of a Pt-Rh weld appears in Figure 2L, showing
a butt weld in 0.020 inch Pt-10Rh sheet performed by the electron-beam pro-
cess.

Seam welded tubing has the advantage of minimum material waste, rela-
tively low tooling cost, and nominal development effort. The prinicpal dis-
advantage of seam welded tubing is associated with the integrity of a full
axial weld. Since strength, purity, and integrity of the tube are extremely
critical, possible discontinuities in the weld region are of considerable
concern. The complications involved in analyzing the potential long-term
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Fig. 23

Seam Welded Pt-Rh Tubing
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effects caused by the fusion process and in performing sophisticated non-
destructive examination tests suggest that alternate fabrication techniques,
such as seamless tubing, should be considered.

Seamless tubing requires the application of specialized manufacturing
techniques and tooling. However, such techniques exist for producing seamless
Pt-20Rh tubing in the size required for the IHCOS program. TRW believes they
can be applied to yield high quality structures of tight diametric and
straightness tolerances with negligible material impurity content and a high-
strength grain structure.

Seamless Pt-20Rh tubing can be formed from a disc of the alloy which is
drawn through dies of various sizes until the desired dimensions are achieved.
Generally, mandrels are used for shaping seamless tubing and to maintain the
internal diameter. However, to achieve close tolerances and high surface
quality on the IHCOS components, a plug-type die rather than a mandrel may be
preferred for final drawing operations; difficulties in removing the tube
from a mandrel can thus be avoided. This process results in close control of
wall thicknesses and high surface quality. Due to the excellent ductility of
Pt-20Rh, complete intermediate anneals may not be required. Although some
stress relieving of the tubes may be desirable, complete anneals will be un-
desirable due to large reduction in strength of annealed Pt-Rh alloys com-
pared to cold worked material.

Favorable TRW experience with seamless Pt-Rh tubing makes this fabri-
cation method the primary choice for the liner shell.

Reentry member.-Two pyrolytic graphite assemblies, shown in Figures 25 and 26
were fabricated by Super-Temp Corporation. The hemispherical ends were con-
sidered a potential problem area because of the anisotrophy of pryolytic
graphite. In the direction perpendicular to the surface, the material con-
traction is approximately 20 times greater on cooling than in the parallel
direction. This means that closed shapes of pyrolytic graphite may develop
residual stresses on cooling from the deposition temperature. Super-Temp Cor-
poration precluded this effect by cooling at a slow rate.

One fabrication problem did occur in machining the threads used to Jjoin
the two members. Microscopic examination of the parts revealed a partially
laminated structure, with the propagation of laminations ocecurring during
threading. The relatively low interlaminar shear strength of this material,
combined with the laminar structure, caused portions of the threads to break
off.

One of the pyrolytic graphite assemblies was re-machined to determine
the effect of using a coarser thread (16 threads per inch versus the original
28 threads per inch). An improved, but still imperfect, thread resulted.

The pyrolytic graphite parts were vapor deposited onto a male mandrel

(external deposition). This method of deposition results in higher residual
stresses than those observed in material deposition on female mandrels (in-
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ternal deposition). Two sample right circular cylinders shown in Figuvre 27
were fabricated by Super-Temp Corporation for TRW during an earlier capa-

bility evaluation. These parts were machined with little difficulty and re-
sulted in high quality threads. Further investigation is required to deter-
mine if the internal deposition method would also result in high quality
hemispherical ends.

Other potential joining techniques include diffusion bonding, brazing or
the use of pins. Diffusion bonding and brazing of pyrolytic graphite to
pyrolytic graphite has been investigated. Pyrolytic graphite pins could be
used to Jjoin the two members. The pin would be machined with its grain
structure oriented in a manner which would preserve its anisotropic qualities.

Transition member.-Two transition members fabricated from ATJ graphite are
shown in Figure 28. The free machining of this material made fabrication rel-
atively easy, although a special template was required to machine the inter-
nal contour. Addition of the transition members to the pyrolytic graphite
member completes this portion of the heat source assembly as shown in Figure

29.

Structural module.-The structural module is shown in Figure 30. The material
chosen for the components was 321 (austenitic) series stainless steel. Steels
in this group are widely used and have the highest resistance to corrosion
in the stainless steel family. They also possess the greatest strength at
elevated temperatures of any stainless and heat-resisting steel, yet retain
their ductility at temperatures approaching absolute zero.

The structural module consists of a cylindrieal shell, fins and end-caps.
The cylindrical shell was fabricated from tubular stock. The fins and end-
caps were fabricated from plate stock. Conventional machining was utilized
for these parts without difficulty. Both sides of the fin were then welded

to the shell section to provide maximum structural strength and heat transfer
area.

The conical supports located on the end-cap will be cylindrical in the
final design to facilitate removal of the isotope heat source from the THCOS
assembly. A standard Woodruff key slot will be machined in one support to
eliminate angular movement after the heat source assembly is mated to a com-
plementary female receptacle. The other end-cap has a cylindrical support
which mates with a Belleville-spring assembly to allow for thermal expunsion.
A TIG weld is utilized for the final heat source clcsure.
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MATERTALS COMPATABILITY STUDIES

The experimental studies described herein were conducted to (1) predict
the extent of interdiffusion that would occur between the various materials
at temperatures of 800CF and 1500°F and (2) to assess the effects of exposing
the pyrolytic graphite-stainless steel interface to temperatures near and at
the melting point of stainless steel. Under normal operation conditions, the
isotope heat source liner surface temperature will not exceed 800CF. The
potential failure mode of the system will result in a liner surface temper-
ature of 15000F. During reentry, the structural module will approach or ex-
ceed its melting temperature for 2 to 5 minutes.

Interdiffusion Studies

Interdiffusion between materials of the various layers would be detri-
mental if, during the life of the mission, the extent were sufficient to:

e modify the composition of the liner material, destroying
its compatibility with the fuel form,

e¢ alter the composition of the structural alloy to the point
of degrading its mechanical properties, thus risking fail-
ure by excesslive creep or stress rupture,

e impair the oxidation protection characteristics of the
cladding, thereby permitting the structural alloy to
oxidize upon exposure to air at elevated temperature, or,

e modify the chemical properties of the reentry body,
accelerating its oxidation rate during reentry.

Specimen preparation and thermal exposure.-Specimens used in the interdif-
fusion study consisted of 3/8~inch diameter, 0.030 to 0.050 inch thick discs
which were cut from sheet stock by electrical discharge machining. Flat
sample surfaces were attained by hand polishing the machined discs with 600
grit silicone carbide paper. Each test sample was rinsed in acetone and air
dried before being placed in a molybdenum sample holder. The sample holder
is shown schematically in Figure 31 along with the sample arrangement. The
number and positions of samples shown were based on providing duplicate in-
terfaces of each material combination to be examined. Four such specimen
holder assemblies were prepared.

Since thermal expansion of the specimens was greater than that of the
holder, axial pressure developed during heating served to maintain contact
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at the interfaces. Assuming a tensile yield strength for molybdenum of 15,000
psi at 1500°F and 25,000 psi at 800°F, the axial compressive stress on the
discs could not exceed 45,000 psi at 1500°F or 75,000 psi at 800°F. According
to reported data, these pressure levels are insufficient to appreciably
affect diffusion rates (ref. 78). ‘

The assemblies were surrounded by tantalum foil getter material and
contained in mullite tubular chambers in which a vacuum of 10-2 torr was
maintained. Each chamber held two capsule assemblies. The two chambers were
heated in silicone carbide resistance furnaces. A photograph of one of the
furnace systems is shown in Figure 32. One furnace operated at 1500°F, the
other at 800°F. After 15 days, one capsule was removed from each furnace.
The others were allowed to remain at temperature for 60 days.

Methods of interface evaluation.-The thickness of the diffusion modified

material zone at each interface was determined by metallography and electron
microprobe analysis.

Bach assembly was sectioned longitudinally through the stack of discs,
mounted and polished to observe the structure at each interface. Although
metallographic techniques reveal gross phase changes or modifications in the
microstructure induced by compositional changes due to interdiffusion, small
variations in composition are often not sufficient to cause a visible change
in microstructure. The metallographic examinations were, therefore, supple-
mented by electron microprobe analyses, which directly show variations in
composition.

Basically, the principle of operation of the microprobe is as follows:
A highly collimated beam of electrons impinges upon the surface of the sample
to be analyzed, activating the bombarded material, causing it to emit X-rays.
Emitted X-rays pass through a crystal where they are diffracted and into a
detector where wavelengths and intensity at each wavelength are determined.
The X-rays are characteristic of the material from which they are radiated.
The intensity at a characteristic wavelength is indicative of the quantity of
that element present. The diameter of the impinging beam is less than 1
micron (0.0004 inch) making possible the an%lysis of a volume of material as
small as 2 microns on a side (5 x 10713 in 3). The exact volume is dependent
on the molecular properties of the material. Moving the sample under a sta-
tionary beam ylelds a plot of X-ray intensity at a selected wavelength versus
position in the sample. Neglecting corrections due to absorption and fluores-
cence, this intensity is approximately equivalent to concentration of the
element of interest emitting the selected characteristic wavelength. Such
scans were made across selected areas of interfaces between each combination
of materials being evaluated in an attempt to define the precise limits of
diffusion modified material zones. A photograph of the apparatus used is
shown in Figure 33. Microprobe operating parameters are shown in Table 10.

Interdiffusion results.-Photomicrographs at 400X magnification of sections
through the liner material TZM interface are shown after 15 days at 800°F in
Figure 34, after 60 days at 800°F in Figure 35, after 15 days at 15000F in
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Furnace System Used for Thermal Exposure of Interdiffusion Specimens

Fig. 32
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Electron Microprobe Analyzer

Fig. 33
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Liner

Location of
Microprobe Scan

TZM

Fig. 3L Interface Between Liner and TZM After
15 Days at 800°F (LOOX magnification)
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Liner

Location of
Microprobe Scan

TZM

L
e

Fig. 35 Interface Between Liner and TZM After
60 Days at 800°F (LOOX magnification)
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Figure 36, and after 60 days at 1500°F in Figure 37. Corresponding photomic-
rographs of the TZM-(Pt-20Rh) interface are shown in Figures 38 and 41; of
the (Pt-20Rh)-PG interface in Figures 42 through 45, and of the PG stainless
steel interface in Figures 46 through 49.

A summary of the distances over which changes in intensity occurred for
characteristic X-ray wavelengths of each element analyzed in the microprobe
scans is given in Table 11. A portion of the distance over which the inten-
sity parameter changes is due to excitation of a finite volume of material
on both sides of the interface as the beam crosses the interface. It is
necessary to discriminate between this effect and actual interdiffusion when
interpreting the microprobe data. For an accelerating potential of 25 KV, the
thickness of the activated material volume is generally not more than 2 to
4 microns for the heavier elements such as the metals under study in this
program (ref. 79). The thickness of activated material volume for lighter
elements such as carbon may be 4 to 6 microns. The values in Table 11 for
capsule 1 (exposure to 800°F for 15 days) appear to represent the distances
over which intensity parameters are changing due to the above described
effect. It can thus be assumed that the amount of interdiffusion occurring
under these conditions is negligible.

Two of the data points in this tabulation are inconsistent with the
other data and are, therefore, regarded as invalid. These are the TZM-(Pt-20
Rh) interface in capsule 4 and the (Pt-20Rh)-PG interface in capsule 3.
Although the location selected for scanning the TZM-(Pt-20Rh) interface in-
dicates good contact even when examined under high magnification light or
electron optics, it is possible that an extremely small gap does exist which
prevented interdiffusion. The irregularity of the (Pt-20Rh)-PG interface

could account for the unexpectedly large distance of changing intensity
' parameter for this interface in capsule 3. The results of a scan at a loca-
tion parallel to a mechanical protrusion of Pt-20Rh into pores of the PG does
not reflect true interdiffusion.

In the absence of microprobe scans on a set of un-assembled discs for
control samples, the values shown for capsule 1 were subtracted from longer
time and higher temperature exposures for corresponding interfaces. The re-
sulting diffusion modified material zone thicknesses are shown in Table 12.
The amount of interdiffusion at each interface is extremely small and
approaches the minimum distance that can be resolved by this type of analysis.

Extension to longer times.-The width of diffusion modified material zones
after longer periods of thermal exposure can be predicted from the relation-
ship x = (k t)l n’ in which x is the diffusion zone width, t is time and k
and n constants. Although n is dependent on concentration and will change as
diffusion proceeds, values between 2 and 5 include nearly all observed 4if-
fusion behavior. The predicted two-year diffusion zone thicknesses based on
n = 2, the value yielding results most sensitive to increments in time, are
shown in Table 13. In cases where valid data points were obtained for both
15 and 60-day thermal exposures, the extrapolated value was determined using
the more severe case. Values for (Pt-20Rh)-PG and PG-stainless steel inter-
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TABLE 11

DISTANCE OVER WHICH X~-RAY INTENSITY CHANGED

IN MICROPROBE SCANS

Distance (microns )
Interface 800°F 1500°F
15 60 15 60
Days Days Days Days
Liner - TZM 2 2 2 2
TZM - (Pt-20Rh) 2 3 L 2
(Pt-20Rh) - PG 5 22 6 1l
PG - SS 5 -- 11 15
% 25.l4 microns = .00l inch




TABLE 12

THICKNESS OF DIFFUSION MODIFIED MATERIAL ZONES

AS INDICATED BY MICROPROBE ANALYSES

Thickness (microns)*

Interface 800°F 1500°F
15 60 15 60
Days Days Days Days
Liner - TZM =-0=- -0=- ~0- -0=-
TZM - (Pt-20Rh) -0- 1 2 -
(Pt-20Rh) - PG -0- - 1 9
PG - 5SS -0~ - 6 10

% 25.54 microns = .001 inch
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TABIE 13

EXTRAPOLATED THICKNESS OF DIFFUSION MODIFIED MATERIAL

ZONES AFTER TWO YEARS OPERATION

Thickness (microns )#*
Interface 800CF 15000F
Liner - TZM -0=- ~0-
TZM - (Pt-20Rh) L 1L
(Pt-20Rh) - PG - 32
PG-SS - L2
% 25.4 microns = .00l inch
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Liner

Location of
Microprobe Scan

TZM

Fig. 36 Interface Between Liner and TZM After
15 Days at 1500°F (LOOX magnification)
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Iiner

Location of
Microprobe Scan

T7ZM

Fig. 37 Interface Between Liner and TZM After
60 Days at 1500°F (LOOX magnification)
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T7ZM

Location of
Microprobe Scan

Pt-20Rh

Fig. 38 Interface Between TZM and Pt-20Rh After
15 Days at 800°F (LOOX magnification)
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TZM

(etched to show
microstructure)

Location of
Microprobe Scan

Pt-20Rh

Fig. 39 Interface Between TZM and Pt-20Rh After
60 Days at 800°F (LOOX magnification)

112



TZM

Location of
Microprobe Scan

Pt-20Rh

Fig. 4O Interface Between TZM and Pt-20Rh After
15 Days at 1500°F (LOOX magnification)
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TZM

(etched to show
microstructure)

Location of
Microprobe Scane

Pt-20Rh

Fig. L1 Interface Between TZM and Pt-20Rh After
60 Days at 1500°F (LOOX magnification)
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Pt -20Rh

Location of
Microprobe Scan

PG

Pig. 42 Interface Between Pt-20Rh and PG After
15 Days at 800°F (400X magnification)
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Pt-20Rh

Tocation of
Microprobe Scan

Fig. 43 Interface Between Pt-20Rh and PG After
60 Days at 800CF (LOOX magnification)
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Pt -20Rh

Location of
Microprobe Scan

PG

Fig. bk TInterface Between Pt-20Rh and PG After
15 Days at 1500 F (400X magnification)
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. Pt -20Rh

Location of
Microprobe Scan

PG

Fig. 45 Interface Between Pt-20Rh and PG After
60 Days at 1500°F (400X magnification)
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PG

Location of
Microprobe Scan

Stainless Steel

Fig. 46 Interface Betwegn PG and Stainless Steel
After 15 Days at 800 F (400X magnification)
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PG

TLocation of
Microprobe Scan

Stainless Steel

Fig. 47 Interface Between PG and Stainless Steel
After 60 Days at 800°F (LOOX magnification)
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PG

Location of
Microprobe Scan

Stainless Steel

Fig. 48 TInterface Between PG and Stainless Steel
After 15 Days at 15000F (400X magnification)
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PG

Tocation of
Microprobe Scan

Stainless Steel

Fig. 49 Interface Between PG and Stainless Steel
After 60 Days at 1500°F (L4LOOX magnification)
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faces at B00°F could not be determined due to the lack of valid experimental
data at this temperature. The expected total thickness of diffusion modified

material at 800CF is in every case, however, considerably less than the
corresponding predicted thickness at 1500°F.

The maximum predicted amount of interdiffusion at interfaces within the
THCOS capsule after 2 years operation at 1500°F occurs at the PG-stainless
steel interface. The expected thickness of diffusion modified material is 42
microns. The major portion of the zone would be within the stainless steel
and have little or no effect on thermal properties of the PG reentry member.

The (Pt-20Rh)-PG interface operating under the same conditions is ex-
pected to exhibit an interdiffusion zone 32 microns thick. This zone would
form principally on the (Pt-20Rh) side of the interface and should be sub-
tracted from the total cladding thickness in estimating the remaining use-
ful thickness.

The expected interdiffusion zone thickness at the TZM-(Pt-20Rh) inter-
face after operation under the above conditions is 14 microns. This would
probably occur to approximately the same extent on either side of the inter-
face, consuming about 7 microns each of the cladding and structural alloy.

No appreciable interdiffusion is expected to occur at the liner TZM
interface. Furthermore, any diffusion that doces take place will not alter
the properties of either material to any significant extent.

Since predicted interdiffusion at 1500°F is not extensive and inter-
diffusion rates at 800°F are far less than those at the higher temperature,
only the 1500°F data should be considered in specifying wall thickness of
each material.

Pyrolytic Graphite - Stainless Steel Compatibility

The pyrolytic graphite, which provides reentry protection for the
capsule assembly, will oxidize at a uniform predictable rate during reentry.
A compositional or mechanical change in this material resulting from exposure
to stainless steel at the reentry temperature could change its oxidation
characteristics.

An experiment was conducted in order to investigate the chemical and
mechanical effects of exposing pyrolytic graphite to stainless steel near or
slightly above the eutectic temperature ( 2500°F) for short time periods.

A 1/2 inch diameter, 0.030 inch thick disc of type 321 stainless steel
was placed on a 1/2 inch diameter, 0.050 inch thick disc of pyrolytic
graphite and heated by induction in vacuum until evidence of liquid phase
formation appeared. The sample was then held at constant temperature for 5
minutes and cooled. A second assembly was prepared and similarly heated to a
temperature 100F less than that which caused melting in the initial sample.
This assembly was maintained for 5 minutes at temperatures and cooled. Both
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samples were sectioned longitudinally and metallographically examined.

A photomicrograph of the sample that had melted is shown in Figure 50.
Dimensional measurements before and after testing show that a layer of PG
about 50 microns thick (not apparent in the photomicrograph) was consumed at
the surface that had come in contact with the molten metal. In addition,
several cracks developed in both the AB and C planes of the PG. This is pre-
sumed to be due to stresses induced upon cooling by differences in thermal
expansion characteristics between the stainless steel and PG.

Should this condition occur, heat source integrity is maintained since
the maximum capsule temperature will be about 2600 F, the melting point of
type 321 stainless steel. If temperatures remain high enough during reentry
to effect removal of the stainless steel, this condition is not detrimental
to PG. The PG is not affected if the eutectic temperature is not attained
during reentry and no liquid is formed.

A photomicrograph of a section through the PG disc that had been in con-
tact with stainless steel below the eutectic temperature is shown in Figure
51 at 50X and in Figure 52 at 4OOX. The material shows no evidence of chemi-
cal interaction or mechanical degradation as a result of contact with the
stainless steel.
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Stainless Steel

Cracked PG

Unaffected PG

Fig. 50 Pyrolytic Graphite After Contact with Stainless Steel
Above its Eutectic Temperature (50X magnification)
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Mounting
Material

PG

Fig. 51 BSection through Pyrolytic Graphite Surface After Contact With
Stainless Steel at 100F Below its Eutectic Temperature (50X magnification)
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Mounting
Material

PG

Fig. 52 Section through Pyrolytic Graphite Surface After Contact With
Stainless Steel at 10°F Below its Eutectic Temperature (400X magnification)
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HEATER DESIGN AND EVALUATION

For the electrically heated version of IHCOS, the heater unit will be
located in the isotope fuel cavity within the liner. The heater design will

duplicate the 123 watts of thermal power available from the radioisotope
fuel.

Two heaters of each design were hermetically sealed in helium to simu-
late the capsule enviromment in the radioisotope fueled capsule. Helium is
the end-product of the alpha particles emitted during the decay of the Pu-
238 fuel form proposed for the IHCOS.

After 30 days of successful operation at a simulated liner wall temper-
ature of 1500°F, one heater of each design was examined metallographically
for post-test examination.

Temperature requirements.-Passive temperature control utilizing conventional
insulation techniques is the selected approach to the IHCOS design. When
passive control is used, heat losses are by thermal conduction through the
insulation, and the minimum loss will be established by the 1000°F maximum
temperature limit on the oxidizer surface during the no-flow depressurized
cabin condition. This operational mode results in a temperature of 1500°F

on the capsule liner surface.

Material requirements.-The characteristics of several high temperature heat-
ing elements were reviewed in order to select those best suited to the
current application. Candidate materials include Pt, Pt-Rh, Nichrome V, and
Kanthal. The criteria applied in the selection included high melting point,
resistivity characteristics, availability, backlog of experience, and cost.
Nichrome V and Kanthal A-1 have been used extensively by TRW Systems and are
also widely used in industry. Nichrome V represents a highly developed heater
material technology and appears to be the most suitable for this type appli-
cation. This nickel-chromium alloy has the desired ductility and oxidation
resistance while its coefficient of resistance results in an acceptable
element length. Unlike refractory resistance elements, Nichrome V has a low
coefficient of resistivity, as shown in Figure 53, resulting in a resistance
increase of approximately 6 percent from TOPF to 1500°F. This electrical
property eliminates initial high current surges which would occur during
heater start up. High nickel alloys appear best suited for use in fabricating
the heater leads.

5

The most applicable high temperature electrical insulating materials
include magnesium oxide, beryllium oxide, and thorium oxide. Thorium oxide
has superior insulating characteristics at extremely high temperature, but it
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is rather expensive and mildly radiocactive. Beryllium oxide and magnesium
oxlde both have excellent high temperature insulating properties but, due to
availability, handling, and cost considerations, magnesium oxide has found
wider application. Magnesium oxide has been extensively used by TRW in heat-
er applications at temperatures in excess of 2000°F for long periods of time
with excellent results.

Four materials, Inconel 600, Hastelloy X, Haynes 25 and T.D. Nickel were
considered as candidates for the outer sheath assembly. All of these candi-
date materials have excellent strength and oxidation resistance at the IHCOS
maximum operating temperature.

The most commonly employed heater sheath material is Inconel 600. This
alloy has been used by TRW for heater applications at temperatures in the
range of 1800° to 2100°F in air and vacuum environments with excellent re-
sults.

Candidate Heater Designs

Electrical heaters have been developed by TRW for both flight and ground
applications at temperatures ranging from 10000F to LOOQCF. Many of these
heaters were specifically designed to simulate the heat generated by a radio-
isotope fuel contained within a capsule assembly. Heaters in this category
have been developed by TRW for the POODLE, DART, and SNAP 29 programs. A
thorough review was performed in order to select the approach best suited to
the resistively heated THCOS design and operating requirements.

As a result of the above review, two design approaches were evaluated:
one, involving a swaged cartridge element; a second based on forming a
helical unit from a swaged sheathed element. Both designs are shown in Figure
54. Materials of construction chosen for both designs included Nichrome V
for the resistance wire, magnesium oxide for the insulator, solid nickel lead
wire, and Inconel 600 for the outer sheath. A description of each design is
discussed below.

Cartridge heater.-The cartridge heater design involves winding the resistance
wire on a ceramic core, carefully spacing each turn. Two nickel electrical
leads are attached to the same end of the heater wires prior to swaging. The
assembly is then surrounded with additional electrical insulation in powder
form and swaged within a metallic tube which acts as an outer protective
sheath. Thus, a rugged cylindrical heating element is produced with leads
extending from one end of the assembly.

The cartridge heaters used in this task were fabricated by Rama Indus-
trial Heater Company, San Jacinto, California. Each heater, 0.625 inch in
diameter and 4.0 inches long, was wrapped with a 0.002-inch thick sheet of
the capsule liner material to check compatibility of the liner and heater
sheath. Interdiffusion between these two materials would be detrimental, if,
during the test period, the extent were sufficient to affect the integrity of
the heater. This subassembly was inserted into a stainless steel sleeve of
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1.0 inch dismeter. The unit was then purged and back-filled with helium gas
prior to TIG welding the final closure between the heater sheath and sleeve,
is shown in Figure 55,

Sheathed heater.-The sheathed design is similar to a sheathed thermocouple
configuration. This type of element is made by threading refractory ceramic
oxide insulators onto the resistance wires, and inserting the assembly into a
metal sheath. A swaging operation reduces the diameter of the tube and com-
pacts the insulation to produce a tough, integral assembly of wire, tube,

and insulation. This relatively long, small-diameter unit can then be formed
into a helical configuration with both heater leads attached to the same end.

The sheathed elements were fabricated by Semco Inc., North Hollywood,
California. These elements, 3/16 inch in diameter, were formed on a 5/8 inch
diameter mandrel resulting in a helical configuration with an outside diam-
eter of 1.0 inch. The lead end was then positioned in line with the longi-
tudinal axis of the developed heater. Each heater was wrapped with a 0.002
inch thick sheet of the capsule liner material to check compatibility of the
liner and heater sheath. This subassembly, shown in Figure 56, was inserted
into a stainless steel sleeve. The unit was then purged and back-filled with
helium prior to TIG welding the final closure between the heater sheath and
the stainless end-cap, as shown in Figure 57.

Heater Test Program

The prototype IHCOS electrical heaters were tested at TRW Systems. Com-
ponents of the test facility included instrumentation used to monitor the
electrical test parameters. A multi-channel recorder together with a milli-
volt potentiometer provided a redundant temperature measuring capability.
Redundant chromel-alumel thermocouples were attached at each temperature
measuring location. All heater assemblies were tested in air.

Bach of the heater assemblies were wrapped with approximately six turns
of 0.002 inch stainless steel thermal shielding which was dimpled to minimize
thermal conduction losses between successive shields. A 1/2 inch thick layer
of Refrasil* was added to raise the temperature at the liner material - heat-
er surface interface to the design temperature of 1500°F. In addition to this
shielding, one of the cartridge heaters was inserted into a stainless steel
structural module to simulate the IHCOS operational configuration.

Two heaters of each design were tested successfully for 30 days. At the
end of this period, one heater of each design was removed from the test area
for post-test examination. The remaining two heaters were tested at 1500°F
for the remainder of the program. Table 1 presents test parameters recorded
during these tests. The cartridge heater contained within the structural
module is shown in Figures 58 and 59 and the sheathed helical heater assembly
is shown in Figure 60.

*¥A high temperature SiOp thermal insulation manufactured by H. I. Thompson
Co., Gardena, California
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Fig. 55 Cartridge Heater Assembly



Fig. 56 Helical Sheathed Heater Subassembly
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Fig. 57 Helical Sheathed Heater Assembly
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Post-test heater examination.-At the conclusion of the 30~day test period,
heaters S/N 2 and S/N 3 were sectioned and examined microscopically. The
visible thickness of interdiffusion-modified material was measured with a
metallograph equipped with a calibrated eye-piece. Thickness measurements
were made at 400x magnification and were reproducible to within one micron
(25.4 microns = 0.001 inch) at any location along the heater sheath-liner
material interface. The average interdiffusion reaction zone thickness ob-
served was approximately 0.2 mil, with a maximum of 0.8 mil after 720 hours
at 1500°F. A typical reaction zone is shown in Figure 61.

Heater Selection

The experimentation conducted during this task showed that both heaters
performed satisfactorily. In addition, design techniques employed to tailor
the helical sheathed heater configuration required for fabrication of an
electrically-heated THCOS were successful.

Two heater designs were tested in a simulated capsule enviromment for
30 days at 1500°F. An additional heater of each type was tested for 60 days
at 15000F. No deleterious effects were observed. Heaters of similar design
have been successfully tested at TRW Systems for time periods in excess of
8,000 hours at 1800°F. Since a normal operational temperature in the appli-
cation to the IHCOS is only 800°F, the tests performed provide a valid basis
for selecting a heater that will meet the 180-day heater life requirement.

The interdiffusion rate between the liner material and the Inconel 600
heater sheath material was sufficiently low so that no detrimental effects
would be expected in a heat source designed for 180-day mission. In addition,
the proposed 0.020 inch wall thickness for both liner and heater sheath
materials is sufficient to warrant higher temperatures for considerably
longer periods of time.

Operation of both the heater and liner materials in a hermetically
sealed helium environment resulted in bright and clean surfaces on these
comronents. The lack of an oxidizing atmosphere in this simulated fuel volume
was effective in maintaining the integrity of the liner material which would
otherwise oxidize catastrophically.

After reviewing the test data, the sheathed helical heater unit was
selected for use in the THCOS. The reasons for this selection were:

0 The simulation of the isotope fuel weight can be more readily
accomplished with this geometry.

o The closure of the exiting leads from the structural module
can be best accomplished with this heater.

i



Fig. 61 Photomicrograph of Interdiffusion Zone Between Inconel 600
and Liner (4OOX). Tested at 1500°F for 768 Hours in a Helium Environment
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INSULATION EVALUATION

Long-term testing of the two candidate insulation concepts (vacuum and
filled type) was conducted to determine which insulation type is best suited
for use in IHCOS. This section presents the objectives, apparatus and pro-
cedures used, the results obtained, and a discussion of the results.

Objective

The objective of this test was to evaluate the integrity and thermal in-
sulation characteristics of the vacuum type insulation and the Johns Manville
Min-K 1301 insulation. These test resulis were to be used to establish
whether the IHCOS insulation shall be a vacuum or filled insulation type.

Apparatus
The test apparatus used to obtain the performance data is shown
schematically in Figure 62 and pictorally in Figure 63. The major items of
equipment included:
e Heater
e Heater Power Supply
e Ammeter

e Voltmeter

e TIron Constantan Thermocouples
o Temperature Recorder

e Potentiometer

e Test Insulations

Filled insulation.-The filled insulation configuration that was tested is
shown in Figure 6l and represents a simplified, but thermally accurate,
version of the configuration that would be used in the final design. The
simplification in geometry was in using cylindrical bored sections as opposed
to a more complex and expensive molded geometry. The insulation thickness on
the hot end and around the cavity that represented the catalyst canister was
1.5 inches. The thermal model was composed of six (6) pieces of insulatian
7.6 inches in diameter.

1h3
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These were:
e A solid end-cap, 1.5 inches thick.

e Three 2.5-inch thick sections with a L.6~inch diameter hole in
the center that simulated the catalyst canister cavity.

e Two 2,5-inch thick sections for the heat exchanger end with a
1.6-inch hole in the center to allow the simulated heat exchanger
to pass through.

These pieces of insulation were wrapped with an aluminum outer shell and
clamped firmly between two aluminum plates to prevent heat losses through
the separation lines. The inmer cavity had a stainless steel liner to hold
the thermocouples in place. A heater rated at 200 watts was placed in the
cavity and was connected with 0.050-inch nickel lead wires similar to those
that will be used in the final design. A steel bar with the same cross-
sectional area and length as the heat exchanger was used to simulate the heat
exchanger conduction losses. The bar had a l-inch diameter disk welded to the
hot end to assure that it would be at the cavity temperature.

Vacuum insulation.-The vacuum insulation canister was manufactured by
Gardner Cryogenics Co. and is shown in Figure 65. The insulation canister
was fabricated from 0.0L-inch stainless steel with the interior surfaces
coated with gold to produce an emissivity of 0.07. The vacuum canister was
evacuated to a pressure of less than 102 mm/Hg. After several days of evac-
uation with the canister at an elevated temperature, the canister was

sealed. The configuration of the canister was identical to the configuration
proposed for the final design.

Procedure

In operati on of the IHCOS, two temperature levels are of particular
importance. These are 680°F which is the normal operating temperature and
1000°F which is the maximum temperature during the emergency shutdown con-
dition. A third temperature level, 1200°F, is of interest for the filled
insulation since it should be cured at this temperature to outgas possible
contaminants in the binder material. However, above this temperature, an in-
sulation additive which limits radiation begins to change its characteristic
and can cause a degradation in insulation effectiveness. The majority of the
testing with the filled insulation was conducted at these three temperature
levels. '

The simulated heat exchanger conduction leak was installed in the unit
after 66 days of testing.

Testing of the vacuum insulation was first conducted at the power levels
anticipated for the insulation losses at the normal and full power conditions
to determine what temperature would result. Tests were then run to debtermine
the insulation power losses at the normal operating temperature of 680CF.
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After 2L days of testing with the vacuum canister s,the vacuum pinch off was
opened and the canister was connected to a vacuum system and reevacuated.

The vacuum system was also used to maintain the canister vacuum for the re-
mainder of the test.

Results

Filled insulation.-The filled insulation was tested for 180 days during which
time the power level was measured for operating temperatures of approximately
680°F, 1000°F and 1200°F. These test results are shown in Figure 66. For the
first thirty days of testing, the power was held at approximately L6 watts
during which time the temperature remained constant at about 700°F. After
this period, the power was increased approximately 70 watts and the tempera-
ture increased to slightly above 1000°F. The power was off from the L7th to
the 51st day due to a heater lead failure. After the heater lead was repaired
the 70 watt and L6~watt conditions were repeated to verify that the same
temperatures resulted. On the 66th day, the power was turned off and the
simulated heat exchanger conduction leak was installed. The unit was then
cycled between the low temperature and high temperature conditions to
establish these power levels which were 57 watts and 9L watts respectively.
On the 10hth day of testing, the power was increased to bring the internal
temperature up to the recommended cure temperature of approximately 1200CF.
The power was left at this level until the 118th day at which time it was
returned to 57 watts to determine if any degradation had occurred due to the
exposure to 1200°F. The power was left at 57 watts for the remainder of the

test during which time the temperature remained constant at approximately
700°F,

Vacuum insulation.-The performance results of the vacuum insulation canister
evacuation are shown in Fig. 67. This unit was initially tested at 60 watts
which was the power anticipated to produce an internal temperature of 680°F.
Since the temperature level was less than 680°F, the power was increased to
the full power condition of 123 watts to see what temperature would result.
The temperature started to increase until it reached 7O0°F at which time the
temperature abrubtly started to decrease indicating a sudden loss in per-
formance. The power was left at 123 watts until the 2Lth day during which
time the temperature continued to drop. On the 25th day, the power was reduced
again to 60 watts and the resultant temperature was 370°F. The test was
terminated because of the reduced performance of the unit and the canister
was reevacuated and put back on line at 60 watts. The internal temperature
returned to 600°F indicating that an increase in pressure due to a leak or
outgassing caused the loss of performance. After several days at this con-
dition, the power level was again increased to 123 watts and this time the
temperature rose to 800°F and remained there. On the L5th day, the 60-watt
condition was rechecked and then the power was adjusted to 85 watts to reach
an internal temperature of 680°F. On the 52nd day, the test was stopped and
the vacuum canister Wwas opened to inspect the condition of the gold surfaces.
The outer gold surface on the low temperature wall appeared normal with a
bright gold color. The high temperature or inner cagnister Wwas mottled in
appearance with the bulk of the gold surface contaminanted with a black
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coating. The black coating was gnalyzed by infrared spectrophotometry and
the coating was identified as being a hydrocarbon material. It is probable
that this contamination can be attributed to some material such as vacuum
pump oil that entered the canister during the pump down period.

Discussion

Filled insulation,-The overall thermal conductivity of the Johns Manville
Min-K 1301 filled insulation was determined from the test data at various
temperatures and is shown in Figure 68. This figure also shows the manu-
facturers data for comparison. The original THCOS design was based on a very
conservative estimate of insulation effectiveness. Results of this test in-
dicated that the insulation effectiveness was higher than that used in the
THGOS design but lower than the manufacturers data. Using this test data and
the original design constraints of a 680°F internal temperature during
normal operation with a maximum allowable temperature of 1000°F during the
no-flow shutdown condition, the required insulation effectiveness was re-
evaluated. This analysis resulted in a reduction in required insulation
thickness fram 1.5 inches to 1.0 inches.

The nickel heater leads used during this test were made of the same
material proposed for use in the final heater design. This type of wire had
been tested at TRW for long periods of time at elevated temperatures with
no problems assoclated with failure due to corrosion. The heater lead failure
that occurred during this test was attributed to the fact that the insulation
had not yet been cured to drive off contaminants present in the binder
material. After replacing the heater lead, no subsequent problems were en-
countered with this unit and examination of the leads at the end of the test
revealed that no significant corrosion had occurred.

Vacuun insulation.-The performance of the vacuum insulation was less than
required throughout the test period. Also during a portion of the testing,
the insulation performance degraded with time due to an internal pressure
increase. These factors coupled with the initial difficulties in obtaining a
satisfactory gold plating that would withstand the temperature requirements,

indicated that the vacuum insulation concept was not suitable for the THCOS
insulation.

Additional development efforts might have produced a vacuum insulation
canister that would have met the design requirements, however, the vacuum in-
sulation approach is inherently less reliable than the filled insulation and
appears to offer no potential advantages. For these reasons, the filled in-
sulation was selected for the final design configuration,

Conclusion
Another test was conducted to verify the conclusion that the uncured

Min-K was the cause of the lead failwre and that curing of the Min-K at
1200°F would eliminate the problem.

152



TOET ¥ -UTW STTTAUER) Suyop Jo A4TATIONPUO) TTBISA) Q9 *3Td

do — JUNLVIIdWIL TVYNIILNI
006 008 004 009 00§ oor

00t

_ _ _ _ | |

X/H QILVINWIS INOHLIM O

X/H QILVINWIS HLIM O

Viva dOAN3A

NOILLVINSNI 1531

—%T°0

—4¥Z°0

I
0
N
o

|
&
o

de , 14 ¥H
“NI-Nig

= ALIAILDNANOD TYWI3HL TTIV¥IA0

153






SYSTEM DESIGN

The following sections describe the design characteristics of the
catalytic oxidizer with an electrically heated simulated isotope, and the
pre- and post-sorbent beds. This complete assembly is presented in Figure 69.

Catalytic Oxidizer

Description.-The catalytic oxidizer assembly is shown in Figure 70 and in
Appendix C with the detailed design drawings. An assembly drawing of the
isotope heat source and the detailed design drawings of the liner and strength
member are presented in the classified summary to this report.

The catalytic oxidizer is 14.50 inches long, excluding end fittings, and
7.62 inches in diameter. The weight of the unit is approximately 20.9 1bs.
The unit consists of an outer shield, molded insulation, and an inner body.
The inner body is made up of a regenerative heat exchanger, catalyst canister
and radio-isotope heat source.

The regenerative heat exchanger is a 5-pass cross-counter flow, stainless
steel plate fin heat exchanger. The cold end is bolted to one end of the
cylindrical aluminum shield. The hot end of the heat exchanger terminates in
a machined flange that mates with the catalyst canister. The gas ports are
sealed with Parker metallic face seals. This heat exchanger has a very small
fin and parting sheet thickness to reduce core conduction losses. In addition,
the fin height is very low to obtain high heat transfer coefficients. The
center fin passage on the cold side is 0.1L6 inches high which allows for the
passage of heater wires and thermocouple instrumentation leads through the
heat exchanger. This eliminates the requirement for high temperature electri-
cal penetrations into the catalyst canister., Sintered metal rlates are pro-
vided at the cold outlet and hot inlet cone face to assure good flow distri-
bution.

The catalyst canister is a cylindrical unit that contains the 0.5 per-
cent palladium catalyst and the radioisotope heat source. The catalyst is
easily replaceable from the end opposite the heat exchanger by unbolting the
end of the shield, removing the insulation section, unbolting the end of the
catalyst canister, removing the screens and pouring the catalyst out. New
catalyst can then be put in the unit and the unit reassembled in the reverse
order. The catalyst canister body is furnace-brazed and entirely constructed
of nickel. The radioisotope is mounted in the center of the catalyst canister
where it is supported by posts projecting from either end of the isotope
source. One post is slotted and held in place with a key to prevent rota-
tional movement of the isotope heat source. The other post is cylindrical,
and fits into a socket located on the end of the catalyst canister away from
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the heat exchanger. Axial movement is limited with a Belleville spring placed
in this socket. This spring also allows for thermal expansion of the isotope.
Work at TRW has shown that the reentry aid fins are no longer required for
reentry protection, however, a heat transfer analysis has shown that these
fins modified as straight radial fins reduce the maximum isotope heat source
temperature. Straight fins are therefore provided on the isotope heat source.

The resistively heated source is, insofar as possible, an exact dupli-
cate of the radioisotope-fueled heat source except that the thermal power:
is obtained from a resistively heated element located in the fuel cavity.
All of the component closures are identical to those for the radioisotope
heat source except to allow for the heater element leads and required in-
strumentation. The isotope heat source consists of the following components:
liner, strength member, cladding, reentry member, and structural module.

The liner provides a compatible container for the fuel. The strength member
provides protection during impact and contains the pressure caused by the
helium buildup. Cladding is provided for oxidation protection. A pyrolytic
graphite shell provides aerothermal reentry protection. The structural
module which contains the radial fins provides oxidation protection and heat
transfer surface area.

The catalyst material is located in eight compartments located between
the fins of the isotope heat source. A perforated steel plate and screen is
placed at one end of the catalyst compartment and a screen is located at the
other end to prevent the catalyst material from entering the heat exchanger,
A machined cover is located at the end of the catalyst canister away from
the heat exchanger to provide access to the isotope heat source and catalyst
material. This flange is held in place with bolts and sealed with a Parker
metal face seal.

The entire area between the inner body and the shield is filled with
molded insulation (Johns Manville Min-K 1301). The insulation is molded in
five pieces; four half cylindrical sections to insulate the catalyst

canister and che heat exchanger and one to insulate the catalyst canister
cover.

The aluminum outer shield separates at the catalyst cover and canister
plane to allow access to the insulation and inner body of the unit. The
aluminum outer shield is also attached to the cold end of the regenerative
heat exchanger. The shield is painted white to provide a high emittance,
and thus reduce its surface temperature.

Fitting ends on the cold end of the regenerative heat exchanger are per
MS33666-12, for tube comnections. An electrical feed-through is also located
at the cold end of the heat exchanger for instrumentation leads and for the
electrical leads of the optional electrically heated simulated isotope. The
instrumentation and electrical leads pass through the inlet gas passage of
the regenerative heat exchanger. Instrumentation consists of recording gas

temperatures at the inlet of the catalyst bed and the heater surface tempera-
ture.
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Structural analysis.-Additional structural analyses conducted on the cataly-
tic oxidizer revealed that the metal spokes that were previously proposed to
support the catalyst canister to the outer shield were not required. The
major loads imposed on the unit were due to vibration which is present as a
steady state acceleration, launch and space operation sinusoidal and random
vibrations and shock inputs. The temperatures used in the analysis were the
maximum values which were possible. Very little thermal cycling is expected
which helps assure the success of the load bearing insulation concept. Vibra-
tion and thermal expansion were of primary interest in determining the work-
ability of the load bearing insulation concept. '

Since the system natural frequency is extremely dependent upon the
method of mounting, a typical case of 100 g's acceleration was assumed. This
value is probably higher than would occur in actual operation, but was chosen
after a careful study of the vibration requirements. The 100 g vibration
load producgs approximately an 80 psi stress in the insulation. This stress
was determined by assuming a sine load distribution between the cylinders
and the insulation. A stress of this magnitude will produce no damage to the
insulation, which has an approximate yield stress of 700 psi in compression.

Similarly, the shell and structure have adequate strength to withstand
vibration loads, assuming a reasonable mounting configuration, such as sup-
porting the outer shell at the heat exchanger end or supporting the outer
shell at both ends.

The small thermal stresses involved should not affect the insulation if
it is installed properly. The differential expansion of the internal shell,
over the extremes of operating temperature, is about 0.006" radially. Since
the insulation is about 1.0" thick, the radial expansion results in 0.4%
radial strain. The tangetial strain was not calculated but would be less than
the radial strain and therefore was ignored. A 0.L% radial strain would pro-
duce only about LO psi stress, much below the yield stress of 700 psi.
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Pre- and Post-Sorbent Canisters

Description.— The pre- and post-sorbent canisters are shown in Figures 71 and
72; the assembly and detail design drawings are presented in Appendix C. The
units are constructed of 321 stainless steel and consist of a cylindrical body
with a flange, housing an "O" ring seal on one end and a L5° cone outlet duct
on the other end; a flanged 150 cone inlet duct is used for the cover. The
flange on the cover mates and is bolted to the flange on the body. A 235 mesh
screened ring is located in the outlet end of the body to retain the sorbent
in the body. A screened ring backed by a compression spring is used to com-
press the sorbent material and keep it from channeling. The spring is com-
pressed between the cover on one end and the screened ring and sorbent material
on the other end., The mated sealing flange is used as a mounting ring. The
sorbent material 1s envirommental grade lithium hydroxide.
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CONCLUSIONS

The program for the development and design of an isotope heated cata-
lytic oxidizer system (IHCOS) has resulted in detailed engineering drawings
of a catalytic oxidizer assembly and pre- and post-sorbent beds. This
system, sized for 9 men,can be successfully used to control a significant
portion of the contaminants anticipated to be present in a typical early
space station.

Pre- and post-sorbent beds of lithium hydroxide situated in a moist-gas
stream or impregnated with lithium chloride, augmented with a main sorbent
charcoal bed can effectively control those contaminants potentially poisonous
to the catalyst or that will decompose to undesirable products. Testing of
the catalyst at design conditions with the catalyst directly exposed to poten-
tial poisons revealed that poisoning by halogenated compounds is reversible
whereas poisoning by the acid gases is irreversible. The halogenated com-
pounds are best controlled by charcoal whose capacity for these compounds is
better in a dry gas stream than a moist gas stream. The capacity of charcoal
however is poor for some specific halogenated compounds such as Freon 23, and
the use of these compounds in a spacecraft should be restricted. The capacity
of charcoal however is poor for some specific halogenated compounds such as
Freon 23, and the use of these compounds in a spacecraft should be restricted.
The acid gases are controlled by lithium hydroxide and also by charcoal when
they are in a moist atmosphere. Halogenated compounds will decompose in the
oxidizer to acid gases which are effectively controlled by lithium hydroxide.
Ammonia did not decompose in the oxidizer.

The isotope heat source configuration most suitable for the IHCOS con-
sists of a liner for compatibility with the Pu-238 fuel form, a strength
member for impact survival, noble metal cladding for oxidation protection,
a pyrolytic graphite reentry member for aerothermal reentry protection, and
a stainless steel structural module for oxidation protection and to provide
a heat transfer surface. Testing of these materials indicated that fabrica-
tion and joining can be satisfactorily accomplished and that the materials
are compatible with each other with no appreciable interdiffusion occurring
over the range of expected operating conditions.

A sheathed helical heater provides the most satisfactory choice for use
in an electrically heated simulated isotope heat source.
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The use of Johns Manville Min-K 1301 for the IHCOS thermal insulation is
superior to the use of the vacuum insulation canister that was tested.

The catalytic oxidizer requires 125 watts of power with l-inch of insula-
tion and is 1L.5 inches long excluding end fittings and 7.6 inches in diameter.
The weight of the catalytic oxidizer is 20.9 pounds. The pre-and post-sorbent
canisters utilize lithium hydroxide and weigh 2.8 and 4.9 pounds, respectively.
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APPENDIX A

MATERTAL SPECIFICATION
TANTALUM ALLOY PLATE, SHEET AND STRIP

1. SCOPE

1.1 Scope. This specification establishes the requirements for re-
crystallized annealed tantalum alloy plates, sheets, and strips for the fabrication
of components used at elevated temperatures.

1.2 Classification. Tantalum alloy plates, sheets and strips procured
to this specification shall be supplied in the following types as specified.

Type Composition

Type I Ta - 10 W

Type II Ta - 8 W- 2 Hf

Type III Ta - 10.5 W - 2.5 Hf - ,01C

2. APPLICABLE DOCUMENTS

2.1 The following documents of the issue in effect on the date of
invitation for bids or request for proposal, form a part of this specification to
the extent specified herein. Later issues of these documents may be used at the
option of the supplier providing no degradation of the product ensues. Mandatory
use of later documents shall be as negotiated between TEW Systems and the supplier.

STANDARDS
Federal

Federal Test Method
Standard No. 151 Metals; Test Methods

American Society for Testing Materials

ASTM-E112 Methods for Determining Average
Grain Size

ASTM-E21 Short-Time Elevated-Temperature
Tension Tests of Materials

ASTM B393 Columbium and Columbium Alloy
Strip, Sheet, Foil and Plate

OTHER PUBLICATIONS

National Academy of Sciences

Material Advisory Board

MAB-192-M Evaluation Test Methods for
Refractory Metal Sheet Material
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3. REQUIREMENTS

3.1 Manufacture.

The mill products covered by this specification are

formed with the conventional forging and rolling equipment normally found in

primary ferrous and nonferrous plants.

The ingot metal for such mill operations

shall be double vacuum melted in a furnace of a type suited for reactive metals.
The ingot shall be free of voids as determined by ultrasonic inspection.

3.1.1 Unless otherwise specified, material shall be furnished in

the recrystallized annealed condition.

3.2 Chemical Composition.

The chemical composition of tantalum

alloy ingots for conversion to finished products covered by this specification
shall conform to the requirements for chemical composition as prescribed in
Table I. The manufacturer's ingot analysis shall be considered the chemical
analysis for products supplied under this specification, except that carbon,
oxygen, nitrogen and hydrogen shall be determined on the finished products and
shall conform to Table I.

3.3 Hardness readings shall be as specified in Table I.

Alloy

Type I
Type IT
Type TIT

Element

Tungsten
Hafnium
Carbon
Nitrogen
Oxygen
Hydrogen
Boron
Cobalt
Iron
Molybdenum
Nickel

17k

Hardness Requirements

Vickers

230 Max.
280 Max.
310 Max.

TABLE TI

CHEMICAL COMPOSITION*

Type 1
8.5 - 11.0%

50 ppm
50 ppm
100 ppm
10 ppm

100 ppm
300 ppm
100 pmm

Thickness

.005 to .080" over 080"
30 N 40 Max. Ra 60 Max.
30 N 50 Max. Ra 65 Max.
30 N 59 Max. Ra 70 Max.
Type II Type I1I
7.0 - 9.0% 9.6 - 11,2%
1.8 - 2.4% 2.2 - 2.8%
100 ppm 80-175 ppm
100 ppm 100 ppm
150 ppm 100 ppm

10 pm 10 pmm

1 ppm 1 ppm

50 ppm 50 ppm

50 ppm 50 prm
200 ppm 200 ppm

50 ppm 50 ppm



Vanadium 20 ppm 20 ppm
Colubium 2000 ppm 2000 ppm 2000 ppm
Tantalum Balance Balance Balance

¥* Maximum limits unless otherwise indicated
¥¥*ppm- parts per million

3., Tensile Properties

3.4.1 Room Temperature. The annealed materials when tested at room
temperature, shall have minimum tensile properties in accordance with Table ITI.

TABLE TIT

Tensile Properties at Room Temperature

Alloy Designation
Type I Type IT Type IIT

Ultimate Tensile Strength 1,000 psi 75 80 105
Yield Tensile Strength 1,000 psi 65 65 100
Elongation % in 1 inch 15 20 20

3.4.2 Elevated Temperature. When specified in the purchase order,
the tensile properties of annealed material when measured at elevated temperature
shall have minimum values in accordance with Table IV. These propertiez shall
be measured at 3000°F + 259F in vacuum at a pressure not to exceed 1 x 10~4 mm of
mercury.

TABLE IV

Tensile Properties at 3000°F

Alloy Designation

Type I Type IT Type IIT

Ultimate Tensile Strength, 1000 psi 20 15 22
Yield Strength, 0.2% offset, 1000 psi 14 13 20
Elongation, € in 1 in. 15 30 30

3.5 Ductility. Sheet or strip shall be capable of withstanding a
bend of 105 degrees around a radius equal to the material thickness at room
temperature without cracking as viewed under 10X magnification.

3.6 Grain Size. Grain size shall be ASTM number five or finer

3.7 Dimensional Tolerances

3.7.1 Thickness tolerances for sheet and strip shall conform to
the following: ! 17¢



Sheet or strip thickness, inches Tolerances

up to .010 . + .001
.010 to .050 * .002
.050 to .075 + .003
.075 to .187 + .010

3.7.2 All other tolerances shall be in accordance with ASTM
B393 except that for material greater than 24 inches in width, width tolerance
shall be + 1/4", -O" and for material greater than 24 inches in length, length
tolerances shall be + 1/2", -O",

3.8 Edges. Edges of sheet and strip shall be produced by slitting
or shearing with a burr height not to exceed 5 percent of the material thickness.

3.9 Finish. All material shall be supplied with a cold rolled or
machined finish, with a chemically clean surface. There shall be no dizcoloration
or foreign matter on the surface.

3.10 Quality. All material shall be free from slivers, cracks, pits,
blisters, and laminations. Local surface defects may be removed by buffing or
spot grinding. provided that such conditioning does not violate the minimum gage
tolerance. Such removal must be accomplished prior to final finish treatment.
Unless otherwise specified, pits, scratches, or gouges shall be acceptable if no
deeper than 0,002 inch or deeper than 10% of the thickness of the sheet whichever
is smaller.

3,11 Identification of Product. Each plate, sheet and strip rhall be
marked with the contract or order number, ingot melt number, specification number,
type and nominal dimensions. The identification shall be put on a removable
adhesive sticker.,

L. QUALITY ASSURANCE PROVISIONS

4.1 Acceptance

L.1.. Certification. The supplier shall certify that each shipment
of material made to this specification conforms to the requirements of this
specification. The supplier shall submit three certified copies of a report
indicating:

(a) Chemical composition

(b) Tensile test results at room temperature

(¢) Tensile test results at elevated temperature (when zpecified)

(d) Duectility

(e) Grain size

(f) Hardness
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This report shall include the purchase order number, heat number, material

specification number, alloy type, nominal dimensions and quantity from each
heat.

4.1.2 Responsibility. Unless otherwise stated on the applicable purchase
order or other procurement document, acceptance testing shall be performed by the
supplier. TRW Systems reserves the right to perform any of the inspections set
forth in this specification where such inspections are deemed necessary to assure
that the material conforms to prescribed requirements.

4.1.3 Sampling

4.1.3,1 Lot. A lot shall comprise material of the same cross section
dimensions fabricated from a single ingot. The samples shall be taken so as to be
representative of the finished product. Unless otherwise specified the supplier
shall include sufficient material (40 square inches minimum) to be uszed for
acceptance testing.

L.1.4 Testing. Acceptance testing shall consist of the following:

(a) Chemical composition

(b) Hardness test

(c) Tensile test

(d) Ductility test

(e) Grain size test

(f) Visual and dimensional examination

L.1l.5 Rejection and Resubmittal. Material not conforming to all of the

regquirements of this specification shall be subject to rejection. Resubmittal
shall be accompanied by a statement providing evidence of corrective action.

L.2 Test Methods

4.2.1 Chemical Composition. The methods for sampling and analy:zis shal.
be those agreed upon between TRW and the supplier.

L.2.2 Hardness Test. Hardness test Method 243.1 or 24i.1 of Fed. Te~t
Method Std. No. 151 shall be used.

L.2.3 Tensile Test.

L.2.3.1 Room Temperature. Two tensile test specimens shall be prepared
and tested per MAB - 192 - M., The axis of the specimens shall be transverse to
the final rolling direction. The strain rate shall be maintained at 0.005 + 0.001
inch per inch per minute through the 0.2% offset yield strength and at 0.05 + 0.005
inch per inch per minute thereafter.

L.2.3.2 Elevated Temperature. Test specimens shall be tested in accordarice
with A.S.T.M. E 21. Strain rate shall be .05 in. per in. per minute.
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4.2.4 Ductility Test. Two ductility test specimens shall be prepared
and tested per Material Advisory Board Document MAB-192-M. The axis of the
specimens shall be transverse to the final rolling direction.

L4.2.5 Grain Size Test. Grain size shall be determined in accordance
with ASTM E 112.

5. PREPARATION FOR DELIVERY

5.1 Packaging. All material shall be packed and packaged in a manner
that will prevent damage in transit and storage. Material shall have adhesive
type protective coating on each side.

6. NOTES

6.1 Intended Use. The alloys described by this specification are
intended for use in space power systems.

6.2 Ordering Data. Procurement documents shall specify the
following:

(a) Title, number and date of this specification
(b) Alloy type
(c) Product size and quantity

(d) Reguirement for elevated temperature tensile tésting (if
applicable).

6.3 Definitions
6.3.1 Plate - 6" wide or over and more than 3/16" thick
6.3.2 Sheet - 6" wide or over and 3/16" thick or less

6.3.3 Strip - less than é" wide and 3/16" thick or less
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MATERTAL SPECIFICATION

MOLYBDENUM-0.5 PERCENT TITANIUM-0.08 PERCENT ZIRCONIUM (TZM)
WROUGHT BARS

1. SCOPE

1.1 Scope. This specification covers wrought bars of carbon-
deoxidized TZM produced by vacuum arc-casting.

2. METHOD OF PROCESSING

2.1 Bars shall be rolled, or rolled and waged, from arc-cast TZM billet=z
produced by the consumable-electrode vacuum arc-melting process.

3. CHEMICAL COMPOSITION

3.1 The chemical composition of the billets from which these bars
ar produced shall conform tc the following limits:

Check
Maximum Minimum Analysis
Element Percent Percent Percent
Carbon 0.03 0.01 + 0.005
Titanium 0.55 0.40 + 0.05
Zirconium ’ 0.12 0.06 + 0.02
Gaseous elements (listed below) 0.005 -
Trace elements (listed below) 0.018 -
Molybdenum (by difference) - 99.25

3.1.1 Gaseous elements as determined by vacuum fusion analysis shall
conform to the following:

Maximum Weight

Element Percent
Oxygen 0.0025
Hydrogen 0.0005
Nitrogen 0.002

3.1.2 Trace elements as debtermined by spectrographic analysis shall
conform to the following:..

Element ) Maximum Percent
Iron 0.008
Nickel 0.002
Silicon 0.008
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L. STRUCTURAL CONDITION

4.1 The maximum grain size of recrystallized bars shall be ASTM No. 3
(ASTM E 112).

5. MECHANICAL PROPERTIES
5.1 All test specimens shall be taken from bars selected at random.

5.2 Hardness of stress-relieved bars shall be determined at the mid-
radius of the bars and shall conform to the following limits:

Diameter DPH Hardness (10 Kg)

of Bar in Inches Minimum Maximum

1/8 to 7/8 260 320
Over 7/8 to11/8 250 310
Over 1 1/8 to 1 7/8 245 300
Over 1 7/8 to 2 7/8 240 290
Over 2 7/8 to 3 1/2 235 285
Over 3 1/2 to 4 1/2 230 280

5.2.1 Hardness of recrystallized bars shall be determined at the
mid-radius of the bars and shall conform to the following:

Diameter DPH Hardness (10 Kg)
of Bar in Inches Maximum
1/8 to 4 1/2 215

5.3 Tensile tests shall be conducted at 70 to 85°F using a strain ra*e
of 0.002 to 0.005 in./in./min. through 0.6 percent offset and of 0.02 to 0.0%
in./in./min. to failure. All tensile properties shall be determined in the
longitudinal direction using teet specimens taken at the center of the bar up to
1 1/8 inches in diameter and at mid-radius for over 1 1/8 inches in diameter.
Test specimens shall be made in accordance with ASTM Specification E8. The gage
diameter of the test bar shall be 4D for all bar diameters.

5.3.1 The properties of stress-relieved bars shall conform to tne

following:
Minimuam
Minimum Yield Minimum
Diameter Tensile Strength, PSI Elonga*ion

of Bar in Inches Strength, PSI (0.2% Offset) Percent in iD

1/8 to 7/8 115,000 100,000 18
Over 17/8 to11/8 110,000 95,000 15
Over 1 1/8 to 1 7/8 100,000 85,000 10
Over 1 7/8 to 2 7/8 90,000 80,000 10
Over 2 7/8 to 3 1/2 85,000 75,000 5
Over 3 1/2 to 4 1/2 80,000 70,000 3
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5.3.2 If tensile properties are specified at the time of purchase,

the properties of recrystallized bars shall conform to the following:

Diameter
of Bar in Inches

Less than 2

2 to 4

1/2

6. DIMENSIONAL TOLERANCES

Minimum Tensile
Strength, PST

80,000
75,000

Minimum Yield
Strength, PSI
(0.2%) Offset)

Minimum
Elongation
Percent in 4D

55,000
45,000

20
10

6.1 Bars shall be supplied to the limits shown in the following table:

Diameter

of Bar in Inches

1/8 to  9/32
Over 9/32 to 13/32
Over 13/32 to 5/8
Over 5/8 to 7/8
Over 17/8 to 1
Over 1 to 1 3/8
Over 1 3/8 to 1 1/2
Over 1 1/2 to 1 5/8
Over 1 5/8 to 2
Over 2 to 2 1/2
Over 2 1/2 to 3 1/4
Over 3 1/4 to 3 1/2

Over 3

1/2 to 4 1/2

Diameter Variation,

Out of Round

Inches Inche=
+ 0,002 - 0.002 0.004
+ 0.003 - 0,003 0.006
+ 0.010 - 0.005 0,012
+ 0.015 - 0.005 J.01%
+ 0,020 - 0.005 0,015
+ 0,020 - 0.010 ¢.018
+ 0,020 -~ 0,015 G.220
+ 0,025 - 0.015 C.C2
+ 0.030 ~ 0.020 $.02¢
+ 0,032. - 0,032 C.0Z¢
+ 0,032 - 0.032 0.027
+ 0,045 - 0.045 0,042
+ 0,062 - 0.062 C.353

6.2 Centerless ground bars shall be supplied with a tolerance of +

0.002 inch for 2-inch diameter and under, +

0.003 inch for over 2-inch diameter.

6.3 The maximum variation from straightness shall be 0.050 inch per foot.

6.4, Maximum variation in cut lengths shall be + 1/4 inch, - 0.

7. SURFACE

FINISH

7.1 All bars shall be supplied with chemically or mechanically cleaned

surfaces.

7.2 Minor surface imperfectioﬁs may be removed provided such removal
does not reduce the dimension below the minimum permitted by the tolerance foxr
the size specified.

7.3 Centerless ground bars shall be supplied with a surface finmish
of 90 RMS or better.
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8. INSPECTION

8.1 The surface and ends shall be free of all surface defects which
may be detected by dye penetrant inspection methods.

8.2 Bars of 2-inch diameter or more shall be sound, as determined by
ultrasonic inspection methods.

8.3 Bars of smaller diameter than 2 inch shall be ultrasonically inspected
for soundness, if requested.

9. MARKING

9.1 All bars shall be identified with the heat number. The character:z
shall be applied using a suitable marking fluid that will withstand ordinary
handling.

10. PACKING AND SHIPPING

10.1 The material shall be packed so that damage will not occur during
ordinary shipping and handling. When shipped, each box or pallet shall be con-
spicuously marked with the customer's name and purchase order number as well as
the manufacturer's identification.

11.. REPORTS

11.1 Each shipment shall be accompanied by a shipping memorarium
and quality control report stating the specification number, the number of pieces,
heat number, chemical composition of the billet, bar sizes, structural condition,
mechanical properties, and net weight of each bar size.

11.2 If requested at the time of purchase, certified copies of a tesT
report shall be furnished.
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MATERTAL SPECIFICATION

PLATINUM-EHODIUM ALIOY TUBE, SHEET AND STRIP

l. SCOPE

1.1 Scope. This specification establishes the requirements for
platinum-rhodium alloy tube, sheet and strip. '

2. APPLICABLE DOCUMENTS

(None). Existing specifications for Pt-Rh alloys are tailored to
specific applications and are generally proprietary for a given customer and
fabrication.

3. REQUIREMENTS

3.1 Chemical Composition. The purity of the platinum-rhodium alloy
shall be determined by quantitative spectrographic procedure. The rhodium content
shall be determined by either standard chemical procedure or X-ray spectrographic
procedure. The concentration of any single impurity in no case zhall exceed the
maximum amount listed in the tabulation below. The combined total of the various
groups of selected impurities shall not exceed the maximum for that group as in-
dictated in table I.

TABLE I

CHEMICAL COMPOSITION

Element Maximum ppm
Mo 100
Au 100
Fe 100
Si 100
Ag 70
Pb 70
Sn . 70
Zn 70
Sb 70
As 70
cd 70
Bi 40
Cu 150
Pd 250
Other' 200
Pt + Rh 99.90% Min.
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3.2 Tensile Properties.

3.2.1 Room Temperature. The annealed materials when tested at room
temperature, shall have minimum tensile properties in accordance with table II
and table ITI.

TABLE II

TENSILE PROPERTIES AT ROOM TEMPERATURE

Material Tensile Strength
Pt 40,000 psi
90 Pt -10Rh 77,000 psi
80 Pt -20Rh 92,000 psi
60 Pt -4ORh 107,000 psi

3.2.2 Elevated Temperature. When specified in the purchase order,
the tensile properties of annealed material when measured at elevated temperature
shall have minimum values in accordance with table III. These properties ghall
be measured at 2000°F + 25°F in vacuum at a pressure not to exceed 1 x 107%
mm of mercury.

TABLE IIT

TENSILE PROPERTIES AT 20000F

Material Tensile Strength
Pt 7,000 psi

90 Pt -10Rh 12,000 p=i

80 Pt -20Rh 21,000 p~i

60 Pt -4ORh 29,000 pri

2.3 Dimenszional Tolerances.

3,3,1 Thickness tolerancex for sheet and strip shall conform *5 “he
following:

Sheet or Strip Thickness, Inches Tolerances
Up to .010 + 0055
.010 to .050 + LCOL
.050 to .075 + .002
.075 to .187 + ,005

3.4 Edges. Edges of sheet and strip shall be produced by slitting or
shearing with a burn height not to exceed 5 percent of the material thicknezs.

18hL



3.5 PFinish. All material shall be supplied with a cold rolled or machir.ed
finish, with a chemically clean surface. There shall be no discoloration or
foreign matter on the =urface.

L. QUALITY ASSURANCE PROVISIONS

4.1 Acsceptance.

4.1.1 Certification. The =supplier shall certify that each shipment
of material made to this =specification conforms to the requirements of this
specification. The supplier shall submit three certified copies of a report
indicating:

(a) Chemical composition

(b) Tensile test results at room temperature

(c) Tenszile test results at elevated temperature (when specified)
(d) Ductility

(e) Grain size

(f) Hardness

L4.1.2 Responsibility. Unless otherwise stated on the applicable
purchase order or other procurement document, acceptance testing shall be per-
formed by the supplier. TRW Systems reserves the right to perform any of the
inspections set forth in this specification where such inspections are deemed
necessary to assure that the material conforms to prescribed requirements.

4.1.3 Rejection and Resubmittal. Material not conforming to all of the
reqguirements of this specification shall be subject to rejection. Resubmittal
shall be accompanied by a statement providing evidence of corrective actiomn.

5. PREPARATION FOR DELIVERY

5.1 Packaging. All material shall be packaged in a manner that will
prevent damage in transit and storage.

6. NOTES

6.1 Intended Use. The alloys described by this specification are
intended for use in radioisotope heat source assemblies.

6.2 Ordering Data. Procurement documents shall specify the following:

(a) Title, number and date of this specification

(b) Alloy type

(¢) Product size and quantity

(d) Requirement for elevated tensile testing (if applicable)
6.3 Definitions.

6.3.1 Sheet. 6" wide or over and 3/16" thick or less.

6.3.2 Strip. Less than 6" wide and 3/16" thick or less. 185






MATERTAL SPECIFICATION
PYROLYTIC GRAPHITE

1. SCOPE

1.1 Scope. This specification establishes the requirements for
pyrolytic graphite produced by vapor deposition.

2. APPLICABLE DOCUMENTS
None
3. REQUIREMENTS

3.1 Manufacture. The materials covered by this specification are
produced by thermal decomposition of a hydrocarborn gas on a hot surface and
deposits so that the direction of high strength and high thermal conductivity
is always parallel to the deposition surface.

3.1.1 TUnless otherwise specified and agreed to between vendor and the

customer only the following physical tests and quality measurements will be
performed.

3.2 Plate. Flat plate or machined shapes produced from plate.
3.2.1 Density gm/cc at 77°F + 5 2.20 +.02

(as determined by differential weighing in air and CP
carbon tetrachloride)

3.2.2 Nodules.(Conical Growth Defects) The following nodule size~
and distribution will be considered the maximum allowable in plate material:

MAXTMUM NODULE SIZE ALLOWABLE

Size-Round Thickness

or Square 1/8" /4 3/8" 1/2" g
Up to 2¢ .062 .125 .187 .250 .312
2" to 4h 094 .156 .250 .312 406
L to 6 .125 .203 .312 406 .500
6" to 8" 156 .250 375 .500 -500
8" to 10" .203 312 437 .500 - 500
10" to 12n .250 375 »500 .500 .500
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MINIMUM DISTANCE BETWEEN EDGES OF NODULES
OF MAXTMUM SIZE

Size-Round Thickness

Or Square 1/8" 1/h 3/8n /2" 5/8n
Up to 2¢ 1 1 1 1 1
2" to 4" 7/8 7/8 15/16 1 1
LM to 6 13/16 13/16 15/16 1 1
6" to 8" 3/4 3/4 7/8 1 1
8" to 10" 5/8 5/8 13/16 1 1
10" to 12v 1/2 1/2 3/k 1 1

3.2.3 Surface flaws. The exposed surfaces of the plate parallel to the
ta" direction shall be free of cracks when examined visually, and shall not be
visibly marked (grooved or gouged) by measuring instruments. Final inspeztisz
for cracks shall be made by a penetrant dye check after finish machining acecording
to the appropriate Military Specifications.

3.2.4 Delaminations. The exposed surfaces of the plates parallel ts
the "e¢" direction shall be free of major delaminations when examined wvisually;
and shall not be visibly marked (grooved or gouged) by the measuring iunstrument:

oo

No delaminations shall extend more than one-fourth the length of the size on which
it appears. There shall be no more than two delaminations through the thickne:s
in any material up to 1/4" in thickness, and no more than three through the thick-
ness in material between 1/4" and 1/2" thick. Final inspection for delaminatiors
shall be made by a penetrant dye check after final machining according to the
appropriate Military Specifications.

Bow in plate as deposited:

For L Thickness t Maximum
Tp to 4" Yp to 3/8" 1°
L o 8n Up to 1/2¢ 2°
8" and above Up to 1/2" 4>

3.2.5 Purity. Total ash content by combustion - 0.01%
maximum - 0.005% typ.

3.2.6 Minimum flexural strength "a" direction - 12,000 psi {lcaded
parallel to the surface of deposition min. at RT).

3.3 Cylinders. Hollow cylinders and closely related shape- such a~
ovals, cones, etc.

3.3.1 Density gm/cc at 77°F + 5 2,20 * .00
(as determined by differential weighing in air axnd CP
carbon tetrachloride).
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3.3.2 Nodules.(Conical Growth Defects) No nodule or cluster of nodules
(nodules touching each other) shall be larger in diameter than equal to the cylinder
wall thickness for all thicknesses up to and including 1/2" material. For cylin-
ders with wall thicknesses greater than 1/2" the nodule size and distribution shall
be agreed upon between vendor and the customer. Nodule distribution shall be such
that no more than two nodules of the maximum size shall be closer than 1" apart.

3.3.3 BSurface Flaws. The exposed surfaces of cylinder parallel to the
“"a" directions shall be free of cracks when examined visually; and shall not be
visibly marked (grooved or gouged) by measuring instruments. Final inspection
for cracks shall be made by a penetrant dye check after finish machining according
to the appropriate Military Specifications.

3.3.4 Purity. Total ash content by combustions - 0.01%
maximum - 0.005% typ-

3.3.5 Tensile Strength "a" direction 10,000 psi
(pulled in the plane parallel to the zurface cf depositiorn
min. at RT).

3.3.6 Compressive Strength parallel to "a" dir. 10,000 p=i
min. at RT parallel to '"c" dir. 45,000 psi

3.3.7 Thermal Exparsion parallel to "a" dir. 0./ + 0.3
(x 1076 1=, in/°F parallel to "e" dir. 15.0 + 3.0
at 1000°F)

3.3.8 Thermal conductivity parallel to "a" dir. 100 + 50

BIU-ft-£t° hr ~ °F % parallel to et dir. 1.0 + 0.5

3.3.9 ZElastic Modulus min. at RT 3 x lO6 psi Plate ornly

3.3.10 Minimum Flexural Strength "a" direction - 12,000 psi.cylinders
only. (loaded parallel tc the surface of deposition min. at RT).

3.3.11 Internal residual stress-.-inner fiber bending stress pzi
maximum - 5,000. cylinders only (A 7/8 inch wide ring from one end of each
cylinder shall be provided for measuring internal residual stress before machixing
The internal residual stress is a function of the thickness-to-radius ratio.)

3.3.12 Out-of-Roundness, difference in diameters 90° apart after
machining in., + .003 to .005 - cylinders only.

3.4 Dimensional Measurements. The dimensions and tolerances, including
surface finish, will be held according to the customer's engineering drawings and
agreed to by the vendor by acceptance of the purchase order.

3.4.1 Certification. Three copies of a Certificate of Test will be
furnished upon request stating that the product conforms to the reguirement: of
our standard tests and any other tests agreed upon mutually by the vendor and the
customer. This report will include the purchase order number, furnace run number,
form or part number, quantity, and dimensional measurements. Where agreed “o mutually
between the vendor and the customer, process data including furnace cycle times
and temperatures, and types of gases used will be furnished. Detailed drawing:
or sketches of the furnace hardware will not be provided.
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3.4.2 Identification. All parts will be clearly marked to show part
number, lot number, etc. in such a way that the marking does not in any way remove
or displace the parent material of the part.

3.5 Péckagigg° Packaging shall be accomplished to such a manner as
to insure the product during shipment and storage will be protected against damage
from exposure to weather or any normal hazard.

L. QUALITY ASSURANCE PRCVISIONS

4.1 Acceptance.

4.1.1 Certification. The supplier shall certify that each shipment of
material made to this specification conforms to the requirements of this specification.

4.1.2 Responsibility. Unless otherwise stated on the applicable
purchase order or other procurement document, acceptance testing shall be performsi
by the supplier. TRW Systems reserves the right to perform any of the inspections
set forth in this specification where such inspections are deemed necesvary to
assure that the material conforms to prescribed requirements.

4.1.3 Rejection and resubmittal. Material not conforming to all of
the requirements of this specification shall be subject to rejection. Resubmitial
shall be accompanied by a statement providing evidence of corrective action.

4.2 Test Methods.

4.2.1 Chemical Composition. The methods for sampling and analycis shall
be those agreed upon between TEW and the supplier.

5. PREPARATION FOR DELIVERY

5.1 Péckagiggo A1l material shall be packed and packaged in a mavvc-
that will prevent damage in transit and storage.
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MATERTAL SPECIFICATION

STEEL, CORROSION- AND HEAT-RESISTANT (CHEMICALLY STABILIZED)
PLATE, SHEET, AND STRIP (TYPE 321)

1. SCOPE

1.1 Scope. This specification covers chemically stabilized steel
plate, sheet, and strip products possessing high resistance to corrosion and heat
and a high order of weldability.

1.2 (Classification. Materials shall be furnished to the chemical com-
positions indicated by table I, and designated as columbium stabilized, titanium
stabilized, or columbium-tantalum stabilized. Unless otherwise specified, either
type may be furnished, except that all material furnished on an individual order
shall be of one type only.

2. APPLICABLE DOCUMENTS

2.1 The following documents, of the issue in effect on date of invi-
tation for bids, form a part of this specification to the extent specified herein:

STANDARDS
Federal
FED. STD. Tolerances for Steel and Iron
NO. 48 Wrought Products
FED. TEST METHOD Metals; Test Methods
STD. NO, 151 '
Military
MIL-STD-163 Steel Mill Products Preparation for
Shipment and Storage
MII-STD-183 Continuous Identification Marking of

Iron and Steel Products
3. REQUIREMENTS
3.1 Material. The steel shall be manufactured by the electric-furiace
process. Sufficient discard shall be taken from each ingot to in~ure freedom fiom

injurious piping and undue segregation.

3.2 Chemical composition. The chemical composition shall be in accordancse
with table I. :

3.3 Condition. Unless otherwise specified, materials shall be furmiched
in the following conditions:

(a) Sheet: Cold-rolled, solution heat treated, and pickled
(No. 20 finish).
191
(b) Strip: Cold-rolled, solution heat treated, and pickled
(No. 1 strip finish).
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TABLE I

CHEMICAL COMPOSITION

Element Composition Type
l/ Cb Ti Cb-Ta
(percent) (percent ) (percent )

Carbon 0.08 (max) 0.08 (max) 0.08 (max)

Manganese 2.00 (max) 2.00 (max) 2.00 (max)

Phosphorus 0.040 (max) 0.040 (max) 0.040 (max)

Sulfur 0.030 (max) 0.030 (max) 0.030 {(max)

Chromium 17.0/19.0 17.0/19.0 17.0/19.0

Nickel 9.0/13.0 8.0/11.0 9.0/13.0

Silicon C.050-1.00 0.040-1.00 0.,50-1.00

Molybdenum 1.50 {max) 1.50 (max) 1.50 (max)

Copper 0.50 (max) 0.50 (max) 0.50 (max)

Columbium 10 x carbon (min) — -—

1.15 (max)
Titanium _— 6 x carbon (min) —
0.75 (max)

Columbium —— —_— 10 x carbon {min,
plus 1.25 {max)2/
tantalum

Tron Remainder Remainder Remainder

1/ Small quantities of certain elements, which are not specified or required,

may be present.
0.5 percent.

The aggregate amount of such elements shall not exceed

2/ The determination of tantalum is not mandatory. However, if tantalum
is determined, it shall not exceed 0.4 times the =um of the ol moium
plus the “antalum comtent.

3.4 Mechanical properties.
to the following reguirement:s:

Tne mechanical properties shall ~:w.form

Mechanical Properties
Tensile Strength, PSIT
100,000 (max)

Elongation, Percent in 2 Tnche:
40 (min)

3.4.1 Bending. Material shall withstand, without cracking, bending
at room temperature tnrough the angle indicated below around a diameter equal
to the nominal thicknesz of +he material, with axes of bends both perpeadicular
and parallel to the direction of rolling:

Nominal Thickness Angle, Degrees
(inch) (min)
0.249 and under 180
Over 0.249 to 0.749, incl. 90
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_ 3.5 Dimensions and tolerances. Dimensions shall be as specified by
the contract or purchase order. Dimensional tolerances shall be a3 specified
in Federal Standard No. 48.

3.6 Identification of product. Marking shall be in accordance with
Standard MIL-STD-183. The marking legend shall include the following items:

Specification MIL-S-6721B
Composition designation (Cb, Ti, or Cb-Ta)

3.7 Workmanship. Material shall be uniform in quality and condition,
clean, sound, and free from scale and foreign materials, and free from defects
(including seams, laminations, or blisters) detrimental to the fabrication or
service life of parts.

4. QUALITY ASSURANCE PROVISICNS

4.1 Inspection responsibility. The supplier is responsible f:r the per-
formance of all irspection requirements as specified herein. Except a:s ctherwise
specified, the supplier may utilize his own or any other inspection facilities
and services acceptable to the Govermment. Inspection records cf the examination
and tests shall be kept complete and available to the Govermment az specified
in the contract or order. The Government reserves the right tc perform any of the
inspections set forth in the specification where such inspections are deemed
necessary to assure supplies and services conform to prescribed requirement:z,

L.2 Clasgification of testz. All the test required herein for the
testing of steel are classified as acceptance tests, for which necezsary
sampling techniques and methods of testing are specified in this section.

L.3 Examination of product. Sufficient spot checks shall be made to
insure conformance to this specification with respect to identification, work-
manship, and tolerance requirements.

L., Chemical analysis.

L.L.1 Sampling. Samples for chemical analysis shall be zelected by
the inspector as decribed in Federal Test Method Standard No. 151, to repre-e-:
each heat from which materials are presented for acceptance, at one time. A
sample shall —onsist of not less than 2 ounces of material.

4.4.1.1 Samples for chemical analysis may be waived at the di:crefim
of the inspector, provided that all of the material under inspection can be ident.s
fied as being made from a heat previously analyzed and found to be in conformanc-
to the chemical composition specified herein.

L.4.1.2 The method of selecting samples specified above is based on the
assumption that the material is produced from ingots from the same heat at one
time and is essentially homogeneousz in all respects. If the material is taken
from stock and is not identifiable as to heat and method of manufacture, or if
the identity of any portion of the shipment is obscure in any respect, the
inspector shall select the necessary additional samples to determine conformance
of all portions of the shipment to this specification.

LoLh.2 Method of analysis. Analysis shall be accomplished in accordancs
with Method 111.1 or 112.1, as applicable, of Federal Test Method Standard
No. 151. ’
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4.5 Embrittlement test.

L.5.1 Sampling. FEmbrittlement tests will not normally be required.
However, in the event the Govermment representative has reason to question the
corrosion resistance of the materials, embrittlement tests shall be conducted on
not more than two samples selected at random from each heat of steel represented.
Two specimens not less than 3 inches in length by 1 inch wide shall be cut from
the sample(s).

4.5.2 Method of test. Theospecimens shall be sensitized by heating
within the temperature range of 1,020° to 1,050°F for 48 hours. After the
sensitizing treatment and pickling to remove any scale which may have formed,
acidified, copper sulfate solution of the following proportions:

Copper sulfate (CuSOL,EHQO) 10 gm.
Sulfuric acid (H SOQ) (sp.gr. 1.84) 10 ml.
Water (distilledy 90 ml.

(A reflux condenser or similar device shall be used to
prevent changes in concentration of the solution.)

At least 35 ml. of the above solution shall be used for each square inch of
exposed specimen surface, In all cases, however, the specimens shall be covered
with solution.

L.6 Tensile test.

4.6.1 Sampling. Two or more tensile test samples (one or more from
each end of the coil) shall be selected from each coil. When material is produced
in sheet or plate form, one or more tensile specimens shall be selected from each
100 sheets or fraction thereof of each lot of material produced under the same
processing conditions, from the same heat, of the same physical condition, the
same thickness, essentially uniform in all respects, and submitted for acceptan-e
at one time,

L.6.2 Preparation of specimens. Tensile specimens shall be prepared
to conform to type F1 or F2, Method 211.1 of Federal Test Method Standard Wo.
151, and shall be prepared with the long axis perpendicular to the direction
of rolling when the width of the material will permit.

L.6.3 Method of test. Tenzile tests shall be conducted in accordance
with Method 211.1 of Federal Test Method Standard No. 151.

4.7 Bending.
L.7.1 Sampling. Two or more bend test specimens, one longitudinal and

one transverse, shall be selected from each coil, each lot of 100 sheets {or
‘fraction thereof), or each lot of 10 plates (or fraction thereof); each lot to
be of the same heat, thickness, and physical condition.

L.7.2 Method cf test. Testing shall be in accordance with Method 231.1
of Federal Test Method Standard No. 151.
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4.8 Rejection. Materials failing to meet all the requirements of this
specification shall be rejected.

L.9 Presgervation, packaging, packing, and marking. Preparation for
delivery shall be inspected for conformance to section 5.

5. PREPARATION FOR DELIVERY

5.1 Preservation, packaging, and packing.

5.1.1 Level A. The material shall be properly separated by class and
size when prepared for delivery. Materials shall be preserved and packaged
in accordance with Standard MIL-STD-163.

5.1.2 Level C. Materials shall be packaged in accordance wiih com-
mercial practice.

5.2 Marking of shipments. Marking and labeling shall be in accordance
with Standard MIL-STD-163.
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APPENDIX B

MATERTALS TRACEABILITY PROGRAM

1. PURPOSE

To establish a procedure for determining and implementing traceability
requirements for identification and marking of parts and materials incorporated
into TRW contract hardware items.

2. GENERAL

Traceability shall be accomplished through the identification of customer
supplied, Contractor purchased, or subcontractor furnished material., Material
traceability will be maintained by the identification of the fabricated items
or by reference to supporting documentation and records which trace the material's

origin and history either by themselves or through intermediate documentation.

3. POLICY

3.1 The Engineering design drawing will specify the traceability classifi-
cation code for all items requiring serial numbers or lot traceability.

3.2 Where compiling lists of items requiring the application of traceability
requirements, the following should be considered:

(a) Matched items of hardware which may require replacement in sets.

(b) Parts and/or components having a specific "life" time and cycle limita-
tion.

(¢c) All components requiring interchangeability at the black box or.major
assembly level.

(d) Assemblies cdntaining one or more seriaglized or lot controlled items.

(e) Parts, components or assemblies which require unique data to be
recorded and maintained.

(f) Critical items or materials where judgement and experience indicate that
defects would result in a safety hazard.

L. RESPONSIBILITY
L.l Project Office
(a) Establishes the general classifications of materials, parts and assemblie

requiring traceability control.

(b) Prepares and submits traceability control listing to the customer when
required by contract.

(c) Monitors the traceability assignments made by design organizations.
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4.2 Quality Assurance
(a) Coordinates with Project Office as required on material traceability

matters.

(b) Monitors all material traceability activities to assure compliance
with the requirements of this document.

(c) Reviews, evaluates and approves vendor traceability procedures and
lists.

(d) Performs physical and chemical testing of raw materials as necessary.

(e) Maintains surveillance over all storage, fabrication, inspection and
test operations to verify continued validity of identification and
traceability of materials.

L.3 Functional Divisions

(a) Establish and maintain material handling, storage, traceability
accounting records, and controls and procedures to insure continued
validity of prescribed traceability and identification.

5. PROCEDURE

5.1 Project Office

(a) The Project Office establishes and controls listing of parts and
materials subject to traceability. The Project Office incorporates
these determinations into a chart summary format similar to that
shown in Figure B-1.

5.2 Receiving Ingpection

(a) Complete quality data files are maintained on all procured contract
materials whether such materials are inspected at the supplier's plant
or upon receipt.

(1) Quality Inspection Verified Receiving Report
(2) Material Certificates

(3) Physical/Chemical Test Reports

(4) Non-Conforming Material Reports

(5) Miscellaneous Inspection and Test Data

(b) When material traceability and identification are required by contract,
lot control and serial numbers are referenced on all pertinent docu-

mentation.’
5.3 Fabrication and Assembly

(a) ‘A1l kits and material disbursements from stores or staging are inspected
~and traceability and identification verified as being noted on new or
‘next documentation such as "Parts Accumulation List" and "Manufacturing
Shop Orders'.
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WR WORK RELEASE

SEE FIGURE

TRACEABILITY IDENTIFICATION
REGUIREMENTS CIASSIFICATION
LEVEL ASSIGNED 8Y DESIGNATION PARTS REMARKSS
APPLICABLE SYSTEM/ PROJECT OFFICE SERIALIZED YES SERIAL NUMBERS OF INDIVIDUAL PIECE PARTS, SUBASSEMBLIES
SUBSYSTEM FLIGHT UNITS — 1001 WHICH MAKE UP THE END {TEM, PLUS TRACEABILIT'Y REC ORDS
{SPACECRAFT) AND UP, FROM THE ASSEMBLY LEVEL UP, COMPILED INTO THE NARRATIVE
GUAL., UNITS - Q1001 END ITEM REPORT .
AND UP;
PROTO. UNITS.— P100!
w3 2)
MAJOR STL FABRICATED PROJECT OFFICE SERIALIZED YES LOT CONTROL NUMBERS OF MATERIALS, SERIALIZED PIECE PARTS
ASSEMBLIES ENGINEERING o SERIAL NUMBER AND SUBASSEMBLIES WHICH MAKE UP YH( ASSEMBLY, PLUS
SEE NOTE 2 001 AND UP TRACEABILITY RECORDS COMPILED AND MAlNTAINED BY THE QA
{CMP1.2) DATA CENTER.
MAJOR SUBCONTRACTOR SUPPLIER O SERIALIZED OPTIONAL YES PREDELIVERY TRACEABILITY RECORDS RETAINED BY SUBCONTRACTOR,
FABRICATED ASSEMBLIES SEE NOTE 2 {CMP 3.2) AFTER RECEIPT AT STL, TRACEABILITY MAINTAINED ON SUPPORTING
15TL DRAWINGS) TRACEABILITY DOCUMENTATION AND RECORDS. SUSCONTRACTOR'S
’ MATERIAL TRACEABILITY SYSTEM SHALL BE APPROVED Y STL; RECORDS
SYSTEM SUBJECT TO PERIODIC STL AUDIT.
MAJOR SUBC ONTRACTOR SUPPLIER SERIALIZED YES PREDELIVERY TRACEABILITY RECORDS RETAINED 8Y SUBCONTRACTOR,
FABRICATED ASSEMBLIES OPTIONAL AFTER RECEIPT AT STL, TRACEABILITY MAINTAINED ON SUPPORTING
{SUPPLIER DRAWINGS) (CMP3.3) TRACEABILITY DOCUMENTATION AND RECORDS. SUBCONTRACTOR'S
MATERIAL TRACEABILITY SYSTEM SHALL BE REVIEWED BY 5TL; RECORDS
AND SYSTEM SUBJECT TO PERIODIC STL AUDIT.
STL FABRICATED QA SERIALIZED YES TRACEABILITY RECORDS AND DOCUMENTS RETAINED BY THE
PIECE PARTS TRACEABILITY SEQUENTIAL NUMBERING COGNIZANT ACTIVITY
CONTROL SYSTEM
SUBC ONTRACTOR QA SERIALIZED YES PREDELIVERY TRACEABILITY RECORDS RETAINED 8Y SUBCONTRAC TOR,
FABRICATED PIECE PARTS TRACEABILITY SEQUENTIAL NUMBERING AFTER RECEIPT AT STL, TRACEABILITY MAINTAINED ON SUPPORTING
(STL DRAWINGS) CONTROL SYSTEM TRACEABILITY DOCUMENTATION AND RECORDS.  SUBCONTRACTOR'S
MATERIAL TRACEABILITY SYSTEM SHALL BE APPROVED BY STL; RECORDS
AND SYSTEM SUBJECT TO PERIODIC STL AUDIT.
HIGH RELIABILITY HIGH RELIABILITY SERIALIZED YES TEST DATA RECORDS RETAINED 8Y HIGH RELIABILITY SCREENING
SCREENED PARTS SCREENING SEC. SEQUENTIAL NUMBERING SECTION.
SYSTEM
STANDARD HARDWARE RECEIVING LOT NUMBER NO PART LOT CONTROL NUMBER ASSIGNED BY RECEIVING INSPECTION,
TTEMS INSPECTION SEE NOTE 1| TRACEABILITY IDENTIFICATION MARKED ON INDIVIDUAL CON-
AN AND MS, ETC.) TAINERS. LOT NUMBER NOTED ON STORES RECORDS AND
TRANSCRIBED TO DISBURSEMENT DOCUMENT(S) UPON 1SSUE.
COMMERCIAL OFF- EXEMPT N/A NO
TRE-SHELF 1TEMS
RAW MATERIAL RECEIVING LOT NUMBER YES RAW MATERIAL LOT IDENTIFIED UPON RECEIPT, IDENTIFICATION
INSPECTION SEE NOTE 1 MAINTAINED DURING STORAGE, TRACEABILITY IDENTIFICATION
TRANSCRIBED TO DISBURSEMENT DOCUMENT UPON ISSUE.
TRACEABILITY MAINTAINED THROUGH INTERMEDIATE DOCUMENTS
THEREAFTER.
LIMITED SHELF LiFE RECEIVING PART LOT YES INDIVIDUAL ITEMS AND/OR CONTAINERS LOT IDENTIFIED BY
1TEMS INSPECTION NUMBER AND DATE RECEIVING UPON RECEIPY. ADDITIONALLY, DATE CRITICAL LiFE
SEE NOTE | WAS INITIATED AND/OR DATE USEFUL LIFE WILL BE EXPENDED 15
DESIGNATED THEREON.
NOTE 1—LOT NUMBER NOTE 2 SYMBOLS
PO saa2t | MAJOR FABRICATED ASSEMBLIES STL DRAWING NO.
| b fiast SHIPMENT OF MATERIAL o COMBUSTION CHAMBER, ASSEMBLY 104275
‘ OR PARTS QUALIFYING AS A LOT e THRUST MOUNT PICK-UP AND GIMBAL ASSEMBLY 104729
‘ e  NOZZLE EXTENSION ASSEMBLY 104761
; PROCUREMENT DOCUMENT NUMBER o  ELECTRICAL PACKAGE 104772
®  LINKAGE INST. —ENGINE 104737
L—__._—rvrc OF PROCUREMENT DOCUMENT: £33  INJECTOR, VARIABLE AREA 106202
1 FLOW CONTROL VALVE, FUEL 104698
PO = PURCHASE ORDER £ FLOW CONTROL VALVE, OXIDIZER 104762
POR - PURCHASE ORDER RELEASE 8 SHUT-OFF VALVES 104619
CPO - CASH PURCHASE ORDER THROTTLE VALVE ACTUATION ASSEMBLY 104622

FIGURE B-1,

TYPICAL

TRACEABILITY SUMMARY CHART
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5.3 Fabrication and Assembly (continued)

(b)

(c)

@)
(e)

(£)

A Manufacturing Data Package is initiated by the preparation of
Manufacturing and Quality Assurance copies of the MSO and PAL.
The Quality Assurance copies of these documents are provided for
inclusion in the Data Package.

A1l documentation initiated during the course of the manufacturing,
assembly and inspection which reflect the manufacturing, configuration,
serialization, or quality history of contract material are recorded on
the MSO or PAL (or their equivalent). Inspection personnel concerned
with or initiating such documents are responsible for the recording,
verification and/or insertions of copies in the data package. Quality
Assurance keeps the data package up-to-date.

The MDP must accompany the material with which it is associated at all
times, including rework and Material Review.

When the last inspection operation is completed, the inspector verifies
that copies of all applicable documents are accounted for, validates
the M350, and forwards the data package to Quality Assurance Data
Center. Quality Inspection will attach an Acceptance Tag to the
hardware signifying complete and accurate records, and perform confi-
guration verification as required.

Throughout all operations, material removed and replaced must be
documented to ensure that the line of traceability and identification
is not lost or broken.
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BE1OO~-00 Isotope Heated Catalytic Oxidizer Assembly

BE100-02
BE100-03
BE100-0l
BE100-05

APPENDIX C

THCOS ENGINEERING DESIGN DRAWINGS

Screen Lower
Screen Upper
Cover

Body Assembly

BE100-06 Body Outer
BE100-07 Fin

BE100-08 Base Flange
BE100-01  Body Inner

BE100-09
BE100-10
BE100-11
BE100-12
BE100O-13
BE100-1L
BE100-15
BE100-16
BE10O-17
BE100-18
xL,03254

Inlet-Outlet Duct
Inlet-Outlet Duct Seal Plate
H-X Insulation Upper

H-X Insulation Lower

Body Insulation

Cover Insulation

Heat Exchanger

Outer Canister

Canister Cover

Spring

Resistively Heated IHCOS Heat Source

X,02727 Member, Reentry

X103255 Fin, Structural Module
X03256 Sleeve, Structural Module
X1;03257 Cap, End Structural Module
X1,03258 Member, Transition
X)03259 Sleeve, Clad

Xu03260 Cap, End-Clad

Xl;03261 Member, Strength¥
X,03262 Sleeve, Liner*

X,03263 Cap, End-Liner*

X},0326L Element, Heater

X),03553 Core, Ceramic

BE100-19 Pre-Sorbent Canister Assembly
BE100-20-301 Cover

BE100-21

Spring

BELODO-22-305 Compression Plate
BE100-23-301 Body
BE100-2)4-301 Secreen Lower

BE100-25 Post-Sorbent Canister Assembly
BE100-20-305 Cover

BE100-21

Spring

BE100-22-301 Compression Plate
BE100-23-305 Body
BE100-24~305 Screen Lower

% Presented in Classified Summary.

Assembly¥
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LIBRARY CARD ABSTRACT

This report describes the development and design

of an isotope-heated catalytic oxidizer trace con-
taminant control system. The program included
establishing pre- and post-sorbend bed designs to
control potentially poisonous contaminants and to
control contaminants that might produce undesirable
products. A 180-day evaluation test of the pre-
sorbent bed, catalytic oxidizer, and post-sorbent

bed system was conducted. Tests were conducted to
establish the fabrication and joining techniques and
the compatibility between the isotope heat source
materials of construction, Additional tasks included
evaluation of candidate electric heater concepts for
use in a simulated isotope heat source and evaluation
of thermal insulation concepts for IHCOS., Detailed
design drawings of the system including catalytic
oxidizer, pre-sorbent bed and post-sorbent bed were
prepared.
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