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ABSTRACT

o s,

Despite the significant research effort that has been directed toward
& the modern control theory areas, relatively few applications have been made

to practical problems. One explanation for this is that the implemertation

of must closed loop optimal control laws requires .hat all of the state vari-
ables be reasured and fed back. In addition consideravle computational
effort is usually involved in obtaining the optimal solutions.

The Linear Specific Optimal Control Problem (SOC problem) that is formu-
lated and solved in this document is an attempt to combine some of the

practical features of the classical approaches with the analytic power of

! f S )

the modern theory. The formulation is based on the linear quadratic optimal

———y

control problem and has the following features.

a
|

1. Linear feedyacl control laws.

2. Unavailable state capbility.

3. Low computational effort.

—
R I

A technique which allows the calculation of closed loop control laws which do
[< not depend on all of the states is said to have an unavailable state capavcility.
8 The above properties are obtained by specifying the structure of some of the
w2ighting matrices of the cost index. The explicit values of these matrices
r are not knuwn until the problem is solved; that is, part of the solution to
a SOC problem involves the completion of the formulation.
This approach is justified from a mathematical point of view oy the proof

Bt of the local existence and uniqueness of the 80C solutions and from an
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engineering point of view by the successful application of the SOC technique

to three general control problems, the unavailable state control problem, the
model reference control problem, and the trajectory censitivity control problem.
In addition numerical methods are developed which allow these techniques to be
applied with relatively low computational effort.

Of the three methods, the SOC Sensitivity approach appears to be the most
promising. A significant feature of this problem is that the computational
effort is relatively independer.t of the number of parameters considered and is
of the same order as an unavailable state problem with no sensitivity consider-
ations.

The SOC problem is the result of the application of the SOC concept, which
involves the formulation of optimal control problems so that the optimal
solutions have certain specified properties, The main emphasis of these formu-
lations is on the properties of the solutions rather than the explicit values
or interpretations of the cost index.

This theory is demonstrated by simple examples and the consideration of
8 significant engineering problem, the attitude control of the Saturn V launch
vehicle. The aerodynamic instability and the flexible nature of the vehicle are
factors which complicate this control problem. Critical parameters of the
mathematical model of the bocster are the bending frequencies, for a control
system designed on the basis of a model with inaccurate bending frequencies
may prove to be ineffective when applied to the actual booster. Wind gusts
may cause the bending modes to be excited to such an extent that the structural

integrity of the vehicle is violated. The application of the S50C Sensitivily




technique resulted in 2 feedback control law which desensitized the rigid body
responses of the vehicle to inaccurate knowledge of the bending frequencies.
That is, the rigid body responses to a de=ign test wind for bending frequencies

from 804 to 100% of nominal were almost identical.

e S e
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Chapter I
INTRODUCTION

1.1 Motivation

The control problem may be defined in loose terms as the manipulation
of certain variables or inputs of a system to obtain a desired result or
output. Almost all of man's activities may be considered as some type of
a control problem. With the advent of technology, control problems on a
simple scale became obvious. The water clock, windmills, and the steam
engine governor were control problem solutions developed through the use
of empiricsl methods.

Since World War ITI the art of control theory has come of age. Spurred
on by.the wartime demands, the pioneers at MIT's Lincoln Labs initiated
the work which lead to a mathematical treatment of control theory. The
design techniques of Bode, Evans, and Nichols, although based on mathematics,
are of a cut and try nature. An initial solution for the problem is guessed,
the system is analyzed by one or more of the techniques, and then another
guecs is made based on the results of the analysis. The effectiveness of
this approach depends to a large extent on the nature of the problem and the
experience of the user. Although these technigues have been used with great
success, they are not very effective in attacking many of the large complex
problems encountered today. Thus s more analytical approach to control
systems design has been sought. Work by Wienerl and Newton, Gould, and
Kaiser2 were initial steps in this direction. Erncouraged by thelr results,
it was assumed that the power of the analytical approach wculd all but

eliminate the art from control system design.




v (ooamcrteer o,
: H -

Tadddd il i bt L bbb i P 1N

e S vt

N

L I

T S R et e i - . —

However, this has not been the case. In recent years much effort has
been devoted to the analytical aspect of modern control theory with the
study of the state space approach, stability theory, and optimization
techniques. Unfortunately, relatively few applications of this theory have
been made to problems of practical interest. These are three major diffi-
culties preventing the widespread use of this theory. In the first place,
it is often difficult to define the desired behavior or characteristics of
the controlled system in precise mathematical terms. Secondly, once the
problem has been formulated, it may be ill-posed Srom a mathematical point
of view or tke solutions may be difficult to calculate even with the aid of
& high speed digital computer. Lastly, the solutions do not lend themselves
to practical implementation.

This author feels that these difficulties do not arise from a basic
limitation of the analytical approach but rather from sn inappropriate
formulation of the problem. It is the purpose of this work to formulate and
solve an optimal control problem which will serve as a link between the
theoretical and the practical. The Specific Optimal Control Problem or SOC
problem presented in later sections attacks directly the last two 2iffi-
culties indicated above and this theory may be used in a design vcrocedure

to reduce the first difficulty.

1.2 The SOC Concept

The SOC problem is an optimal control problem which is formulated so

that its solutions have certain desirable properties. To place SOC in the

proper perspective, the concept of the optimal control problem is reviewed.

U,

v
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The basic objective of an optimal control problem is to choose a control
or set of input variables in some optimal fasiiion so that the output of a
process or system meets certain specifications. The words process or sysiem
are used to indicate anything which involves a cause and effect relationship
as shown in Fig. 1.1. In order to proceed in & precise manner the problem
must be expressed in mathematical terms. The control is chosen to minimize
{maximize) a matbematical function, the cost index, which in some sense
reflects the desired system response or characteristics. Thy actual process
or system is approximated oy a mathematical avstraction or model which usually
consists of a system of differential or difference equations which character-
ize the state of the system.3 The cost index may be an integral with an

integrand which 1is a function of the stat:e and control.

x=1f(xu,t); x(t)=¢c (1.2.1)
‘e

J =[ g(x, u, t) at (1.2.2)
t
o

Thus, the control, u, is chosen to minimize the cost index, Eq. (1.2.2), sub-
ject to the constraint of the dynamiecs, Eq. (1.2.1). The necessary conditions
which charascterize an extremum of this problem consist of a system of differ-
ential equations which comprise a two point boundary value problem. In
general, the determination of these necessary conditions and the solution of
the two point houndary value problem are not trivial tasks. Moreover, it is
often very difficult to translate the desired system response into the mathe-
maticel cost index funetion. Also, the control laws are usually of an open

loop nature, that is they are not a function of the ctates, and tiey do not

lend themselves to convenient implemertation.
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The SOC approach attempts to combine the analytical power of optimal
control theory with some of the practical aspects of the classical design

techniques. To achieve this end, an optimal control problem is formulated

D : i

which emphasizes certain properties of the solution. The explicit value of

ey
LR ST

the cost index or its precise interpretation in terms of desired system

- characteristics 1s not of paramount importance. Rather, the optimal control

formulation is used to provide a well defined structure which leads to control
laws with the desirable properties. These ideas are summerized in the
following definition of the SOC concept.

Definition 1 (0.1)- SOC Concept

The Specific Optimal Control Concept involves the formulation of

g optimal control problems so that the solutions have certain specified pro-

g perties. The important consideration is not the explicit value of the cost

- index but rather that the minimization procedure serves as a well defined

B method to determine the control laws.

- Thus by picking properties which allow the control laws to be of

‘» practical use, the SOC concept may generate practical analytical design pro-

rg cedures. The validity of the SOC approach is demonstrated by the success of / 2

the resulting techniques. Although, the SOC concept is applicable to the

i most general of systems, this work is concerned primarily with the study of

linear systems and hereafter SOC will refer to the Linear Specific Optimal

(o

Control Problem.

1.3 Statement of the SOC Problem and Scope of the Work

The formulation of this SOC problem involves the specificatior of pro-

aes. S

perties that the solution control laws will have and the formulation of an

optimal control problem that leads to such solutions.
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For reasons of sensitivity and implementation, closed loop control laws
are usually specified. For linear systems, linear feedback control laws
have proven to be adequate. However, care must be taken, for by closing the
loop it is possible to generate stability problems. Also, the computational
effort involved in calculating the control laws should not be excessive.

One of the tenents of modern control theory is that all of the states
should be fed back in order to achieve optimal performance.h In most realistic
situations it is difficult if not impossible to measure or estimate all of
the states. Thus the ability to handle the unavailable state problem is of
concern.

To summarize, the desired properties of the SOC solutions are listed
below.

1. Linear feedback control law structure
2. Stability

3. Low computational effort

4. Unevi.ilable state capabilities

Thus, the purpose of this work is to formulate and solve an optimal
control problem with these properties. The proposed formulation, developed
in later sections, is based on the linear quadratic optimal control problem.
Properties of this formulation and its solutions are developed and discussed.
This SOC theory is applied to three general control problems, design of
controls with unavailable states, a model reference control problem, and a
trajectory sensitivity control problem. Some of the properties of these
techniques are discussed, examples presented, and their practical use is

demonstrated by the solution of a non-trivial engineering problem, the design

of a control system for the Saturn launch vehicle.
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To place this work in a proper perspective a brief review of available
theory and techniques is presented in the next section. In order to provide
8 basls for comparison the generasl control problems are defined below.

Definition 2 (D.2) - Unavailable State Problem

Given a model of the process or system to be controlled, a closed
loop control system based on the available states is to be designed so that
the controlled system mesets certain specifications.

A significant problem with respect to the design of control systems
for real systems concerns the relationship of the model to the actual process.
Since the mathematical model is at best an approximation of the real situation.
the modelling problem is in many cases a significant one. After the structure
of the model is chosen, values of the parameters for this model must be
obtained. For many practical problems it is very difficult to obtain accurate
values for the parameters. In addition, component aging and other environmental
changes lead to changes in the characteristics of the process and hence para-
meters of the model.

A control law designed on the basis of a nominal model may be
inadequate when applied to the actual system. Thus it is important to be able
to design control laws which compensate for these parameter variations. Model
reference and trajectory sensitivity techniques have been used to attack this
problem. In this work, SOC theory 1is used to develop model reference and
trajectory sensitivity techniques with practical properties.

Definition 3 (D.3) - Model Reference Control Problem

In the model reference control scheme, the output of the actual
system is compared with the output of a model which generates & nominal tra-

Jectory. A control system is designed, in this case with SOC techniques, to

/“

SN R
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null the error between the actual and the nominal trajectories.

Definition 4 (D.4) - Sensitivity Control Problem

In the trajectory sensitivity approach, sensitivity variables are
defined which are a measure of the sensitivity of the system trajectory to
changes in system parameters. The sensitivity varisbles are placed in a cost
index which is minimized by the choice of the control law. Thus, a tradeoff

between system response and sensitivity may be obtained.

1.4 Historical Review

1.k.1 Unavailable State Problem

There are two basic approaches to the study of the problem of un-
available states. In the first, K'alman,5 Luenberger,6 and others have attacked
the problem by estimating the unknown states. These estimates may then be
used to formulate the control. Although the theory has been well developed,
thers are practical disadvantages involved in the use of this approach. The
addition of the filter or state estimator to the system may unduly complicate
the controller since satisfactory system performance may be obtained with
controls based only on the available states. Furthermore, the use of the
Kalman filter requires approximations for the statistics of the process which
may not be meaningful in practical situations.

Thus, the second approach, that of calculating control laws which
are a function of the available states has practical appeal. However, the
theory of this approach is not as well developed as that of the first, although
two basic methods have emerged. In their books Newton, Gould, and Kaiser?
and Merriax describe a straight forward parameter optimization approach. For

a linear time invarient system, a linear feedback control structure depending
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on the available states is chosen. A set of design initial conditions is
picked and an integral index with squared output and control terms is formu-
lated. Parsevals Theorem is used to transform the integral intc the fraquency
domain, the integration is carried out, and an expression for the index in
terms of the feedback gains is obtained. This expression is minimized with
respect to the gains by methods of ordinary calculus. This procedure suffers
from a number of disadvantages since the gains areinitial condition dependers
and the method is restricted to time invariant singleeinput single-output
systems. Also, the nonlinear functional dependence of the index expression
on the gains becomes more and more complicated as the order of the system
incrzases; for these higher order problems there is no systematic way to find
this function.

In an attempt to remove the derendence of the solution upon the
initial conditions, technigues employing max.-min. procedures have been
developed.8’9 A control structure is specified and a cost index is formulated
as a function of the state and control. The cost index is maximized with
respect to an initial condition set and then minimized with respect to the
feedback gains. Although this technique is applicable to nonlinear systems.
the problem of choosing an appropriate design initial condition set is not
well defined and the computaticnal effort involved in this max.-min. problem
may be enormous for all but trivial examples. A recent contribution by
Rekasiuslo employs a cost index which is a measure of the effectiveness of
the chosen control structure to a control structure using all of the svates.
For linear systems, he has derived an analytical expression for the maximum

of this expression with raspect to all initial conditions. Thus the problem
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is reduced to the parameter optimization problem of picking the gains and
accordingly suffers from similar disadvantcages.

It is believed the SOC procedure described in this document is a
new approach to the unavailable state problem. It is an application of the
SOC concept of Definition 1 and is based on a linear optimal control problem
with quadratic cost index. This problem was chosen as the basic ctructure
because of the practical nature of its solutions. A brief description of
the linear problem is presented so that the nature of SOC and its relationship
to this theory is made clear. For a more complete exposition, the reader is

11,12 g hultz and Melset and Athens end Falb.'s

referred to Kalman,
Anticipating that the SOC formulation will apply to the unavailable

state problem. the linear quadratic optimal control problem will be referred

to as the allstate problem. It is important to discuss the properties or

the allstate problem since many of them will be extended to the SOC case. It

is assumed that the process or system to be controlled is modeled by a system

of linear differential equations.

é =Ax+Bu; x(t)=¢ (1.4.1)

The integral cost index contains quadratic terms ia state and control.

<
]
NI

/ (ET Sx+ ET Qu) dt (1.k.2)
ts
Thus u 1s choseu to minimize Eq. (1.%.2) subject to Eq. (1.4.1). The necessary

conditions which describe an extremum of the problem are given below and

derived for the more general SOC rroblem in Chapter II.




Costate equation -“é

L
Dynamics X
Control equation u

11.
AT p+s x; Rtp)=0 (1.4.2)
AxX+Bu; E(to) =c (1.4.4)
-t T (1.4.5)

wlere p 1is the costate or multiplier vector.

Thes2 necessary conditions comprise a two point boundary value

problem (TPEVP). It is well known that this TPEVP may be decoupled by use of

the Ricatti transformationll

RP=Px

where P 1s the Ricatti matrix.

(1.4.6)

An equivalent set of necessary conditions may

be written in terms of the Ricatti matrix.

Allstate Differential Ricatti Equation

T

B o= A P+ PA + S + PBQ BTP ; P(ty) =0 (1.4.7)

Dynamics

é =Ax+Bu; §(to) =C (1.4.8)

Control Law

u=-K x
Allstate Feedbeck Gains
K =gty

(1.4.9)

(1.4.10)

Note that the computational effort involved in solving this problem is

reduced since the TPEVP has been decoupled. The Ricatti equation may be

integrated backwards in time from ¢

£ to obtain P and K. Then integration

of the dynamics in forward time generates the system trajectory. Other
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important features are the linear feedback control structure and the fact that
the gains are independent of initial conditions. Furthermore, if the infinite

time interval problem is considered, that is

©0
J =% /(ET S x + HT Q u) dt (1.4.11)
t
o
the Ricatti matrix and the feedback gains have constant values and are character-
ized by algehraic equations as opposad to differerntial equations.

Allstate Algebraic Ricatti Equation

AT + pa+ s+ pBABTP = 0 (1.4.12)

Allstate Feedback Gains

K =gl p (1.4.13)

Existence and uniqueness or solutions to the allstate problemll are
guarantead provided the control weighting is positive definite and the plant
is completely controllable. A system (A, B) is said to be completely con-
trollable if there exists some control u e C. such that for any initial con-
dition vector, the state of the system is brought to zero in some finite time.
This condition is equivalent to requiring that at least NS of the NS ¢ NC
columns of (B, AB,...,ANS-lB) be linearly independent.lu The existence proof
hinges on this restriction since it serves to provide a bound on the optimal
solution to the Ricatti matrix.

Stability of the optimal closed loop system, A =~ BKT, of the in-
finite time interval problem can be guaranteed by proper choice of weighting

matrices and proven by a Lyapunov argument. Stability follows if (A, B) is

,

.
/




N

13.

completely controllable, tiie control weighting is positive definite, Lhe
state weighting is positive semi-definite, and (A, H) is completely
observable. Since the state weighting, S, is positive semi-definite, it may

be expressed in terms of the matrix H as15

T
i

S =H H (1.4.14;

A system

. . . WL, . ‘

is said to be completely observable if it is possible to reconstruct any set
of initial conditions given y over a finite time interval. This condition is
equivalent fo requiring that there be NS 1linearly independent columns of

T Ns-1T T

T.T
(H', A'H ,...,A H

Thus many of the properties listed in Section 1.3 are inherent
features of the allstate problem solutions. For a given design problem, the
design objectives may not be modelled exactly in the quadratic index, however
it has been shownl; that *he allstate solutions result in closed loop systems
which have desirable properties in terms of the classical requirements of
overshoot, damping, etc. Moreover if an initial solution of the problem leads
to unsatisfactor; system response, the weightings may be changed and the
problem resolved.

The one prorerty that is definitely missing is the unavailable state
-apability. However, it is clear that it 1s possible to stabilize certain

systems by partial state feedback. Moreover, Kalma.n12 has indicated that for

any stacle set of gains there exists a linear optimal control problem for
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which the given gains are the optimal control law. Thus it appears rzasonable
to expect that the allstate problem can be reformulated so that a specified
control law structure is maintained in which only the available states are

fed back. Chapter II is devoted to the formulation and solution of such a
problem, the linear SOC problem. Althouzh the SOC formulation and that of

the allstate problem are similar in many respects, neither one is a subproblem
of the other. The problems are different since different restrictions are
made on the plants and weighting matrices. If the allowable weightings and
plants are congsidered as sets in some abstract space, then neithei set is a

subset of the other although they may overlap.

1.4.2 Model Reference Control Problem

The basic objective in the model reference approach is to design a
control system so that the error between the ideal output of the model and
that of the actual system is nulled; two basic approaches have been used. 1In
the first, termed mouel reference adaptive. on line adaptive changes in the
feedback gains are made to reduce the error. Modern control theory has been
applied to the design of such systems w*th some success. Osborn and
Whitaker17 formulated an integral cost index containing a quadratic term in
the error between the system and model trajectories. An error measurement is
cbtained and the gradient of the index with respect to the gains is calculated
on line. The gradient information is used to change the gains in order to
minimize the index. Donalson and Leondesl8 employing a similar concept. added

19

error derivative terms to the index. Dressler introduced a related schene
which reduced the amount of on line computation. The most important consider-

ation in these techniques is the stability of the adaptation procedure. A
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tradeoff between this stability and the rate of adaptation is obtained by the
choice of the adaptation constants. There does not seem to be a2 well defined
method for choosing these constants and an inappropriate choice often leads

to instability.

In order to reduce the stability problem Parksgo and Shackcloth21 have
taken an Lyapunov approach. A Lyapunov function with terms in the error. error
derivative., and adaptation parameters is formulated and used to define the
adaptation process. This approach insures that the adaptation procedure as well
as the model reference system is stable. In order to implement this method it
is necessary to be able to adapt all of the elements of the closed loop system
matrix independently. For most systems this is not possible. From a practical
point of view other disadvantages become apparent. The basic schemes involve
on-line computation and measurement of all the states and in some cases state
derivatives. The feasibility of such a complex control system for most realistic
problems is in doubt.

The second approach to the design of model reference systems has been
called model following. In this method optimal techniques are employed and
the calculations are done off-line. Tyler22 has proposed two methods. 1In
one, the model is included in the cost index while in the other the model is
incorporated into the system as a prefilter. The usual optimal control problems
are present since all states must be known and the open loop terms of the
control law are a function of the systems initial conditions and the input to
the model. Recently, Asseo23 has used a S0C-like concept to design a model

following system which is independent of the model input.
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The SOC model reference problem considered in Chapter V is of the
model following type since the computations are done off-line. The SOC
approach allows unavailable state capabilities and results in a control law
which is independent of the nominal trajectory and hence the model input.

1.k.3 Trajectory Sensitivity Control Problem

The problem of sensitivity has always been of concern to control
system designers.Bode,24 in his pioneering work, made the basic definition
of transfer functicn sensitivity. This measure of sensitivity is a ratio of
the percent change in the transfer function to the percent change in the
parameter. The reduction of sensitivity has long been advanced as a reason

p)

for using a feadback control law. Horowitz2 made this reasoning precise

with his definition of the return difference. In addition he 3'.ndicza.’c.ed.26
that an adaptive control scheme with its inherent complex implementation
might be replaced with a desensitizing feedback control law. Other frequency
domain techniques such as pole zero and root locus sensitivities have been

27

examined by Kuo ' and Huang28. The basic disadvantages of these techniques
involve their restriction to linear time invariant systems and the lack of
information cobtained about time domain sensitivity characteristics.

The development of the time domain approach has occurred relatively

9

recently. Miller and Murray2 made significant contributions in their study
of the error involved in the numerical solution of differential equations.
DoratcéoRohrer and Sobral3l, and Pagurek32 have applied optimal control tech-
nigues in their studies of the problem of cost index sensitivity. Holtzman

33

and Horing~~ were concerned with the effect of parameter variations on

terminal conditions of fixed endpoint optimal control problems.
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The fundamental work which led to the Sensitivity Control Problem of
Definition 4 was done by Tomovic,34, Tuel,35 and Dougherty36. Tomovie investi-
gated various measures of sensitivity and proposed a parameter design pro-
cedure. Tuel conceived the idea of adding sensitivity variables to the cost
index to be minimized by the choice of the control, and developed a design
procedure for open loop controls. Dougherty extended these concepts to the
closed loop case and formulated a design procedure based on control signal
and parameter optimization techniques.

The optimal control approach leads to the computationally difficult
two point boundary value problem, to the measurement of all the states, and
to the dependency of the solution on the state initial conditions. In addition
the augmented state vector formulation suffers from a dimensionality problem.
For each parameter that is considered, the dimension of augmented state vector
increases by the dimension of the original system state vector. For any
system of any size with more than one parameter the dimension of this sensi-
tivity proolem becomes unwieldy. The SOC sensitivity problem is formulated in

Chapter VI.




Matrices

A

Nomenclature

System matrix: NS by NS

B Control coefficient matrix: NS by NC

H Observability matrix: NS by NS

P Ricatti Matrix: NS by NS

Q Symmetric control weighting matrix; NC by JC

S Symmetric state weighting matrix: NS by NS
Vectors

c State initial condition vector: NS

he) Costate or multiplier vector: N3

u Control vector: NC

X State vector: NS
Scalars

J Cost index

t Time

S ,

18.
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Chapter II

THE SOC PROBLEM

2.1 Basic Equations

In this section the basic equations defining the SOC problem and its
solution are derived. The SOC concert leads to the formulation of optimal
control problems for which the solution control laws have certain specified
properties. In this case, the property of importance is an unavailable state
capability. For the allstate problem each of the feedback gains will in
general be non-zero. The unavailable state capability is obtained by choosing
some of the waighting matrices so that the gains corresponding to the un-
available states are zero. Thus, the crux of the SOC formulation involves
the use of two classes of weighting matrices. The first class of weightings
i35 chosen in the usual manner to obtain desirable system response and a
tradeoff between state error and control effort and to insure the stability
of the resulting closed loop system. The desired feedback structure is im-
posed by choosing the second c¢lass of matrices as a function of the unknown
Ricatti matrix so that the unavailable state gains are forced to be zero.
However, the necessary conditions are derived assuming that these weightings
are known. By using these functional relations between the class two weight-
ings and the Ricatti matrix, the formally derived necessary conditions reduce
to a well defined set of equations similar to the allstate necessary conditions
which do not depend on the weightings of class two. It 1s showr that the
remaining weightings can be chosen to guarantee the existence and uniéueness
of solutions tc the reduced equations and hence existence and uniqueness of

solutions to the formal SOC problem. The "cart before the horse" nature of
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this development is justified by the properties of the solutions and the

effectiveness of the related techniques. If the reader is bothered by this
- pragmatic approach he may wish to view SOC as a Lyaponov stability design
technique with a well defined procedure for generating the Lyaponov functions
and the feedback control laws. However, SOC is much more than that as in-
dicated in later sections.

The SOC control law is obtained from the minimization of an integral

- quadratic index, J, which conteins bilinear terms between the state and

control as well as the usual quadratic terms in state and control.

T

t
f A A
J = j (;_Ts§+5Ts§+§Tw‘{+_>_c WE+ETQ,_1_1)dt (2.1.1)
%

-

: )

A A
The matrices marked with a caret, S and W belong to class two and are
‘E chosen to generate the specified SOC control structure. It is assumed that
[ the dynamics of the systems to be controlled are modeled by a system of linear

differential equations.

; X =A x + B u; 5(1:0) =c (2.1.2)
& Thus, u is chosen to minimize the cost index, Eq. (2.1.1), subject to the ///*
: constraints of the dynamics, Eq. (2.1.2). The necessary conditions or Euler-

Lagrange equations are given below and derived in Appendix A through the use
of the calculus of variations.

Euler-Lagrange Equations

Costate equation

A
-é=(g+éw-)20+(S+g)£o+AT2=9; B(tf)':e (?..1.3)
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Control law
w=q st p+ (“I %) 2 (2.1.4)
Dynamics
Xe=ax+3u% At )=g (2.1.5)

vwhere the superscript zero indicates the optimal.
These equations comprise a two point boundary value problem which may be
decoupled by the use of the Ricattli transformation.
p=Px (2.1.6)

Equation (2.1.6) is used to eliminate p from Eq. (2.1.3) and (2.1.4) which
results in an egquivalent set of decoupled necessary conditions.
Unreduced Ricettl Zquation |

T A o 1(511}?:T

-P=A P+1=A+s+s-(3§"3+m)q +B P) = B(t,) = 0
(2.1.7)
Control Law
u=-Kx (2.1.8)
Feedback 3ain Equation
K =q ("w"{‘}T + BT p) (2.1.9)
Dynamics
x=(a-3)x; xs)=g (2.1.10)

The Ricatti matrix, P, and the feedback gain matrix, K, are found by the back-
ward time integration of the Ricatti eguation, Bg. (2.1.7); the trajectory is
generated by the forward time integration of the dynamics. NRote thuv these
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equations reduce to the allstate equations of Section 1.2 if the bilinear
terms are zero.

From Eq. (2.1.9) 1t follows that v? can be chosen as a function of W
and P such that some of the feedback gains are identically zero. There is
no loss of generality in requiring the gains to be zero since any other
non-zero value may be obtained by redefining the system A m.,rix and then
see:ing zero gains. Thus if the last L states of the state vector are
unavailable, define a as follows.

Definition 5 (D.5) - W

=2, (m+ %) (0.5)
0 0
where I, = is a NS by NS matrix and I is the L by L identity
° I
matrix. For later use define
s O
I =
0 0

vwhich is a NS by NS matrix and INS-L is the NS-L by N8-L identity matrix and

Il+12=I

the NS by NS identity matrix. Since Il I2 = 0,
A
Il W=0

It is clear from (D.5) that the lower elrments of W have no effect on
the control law and hence on the closed loop system trajectories. Thus there
is no loss in generality in assuming that they are chosen to be zero.

IL,W=0 (2.1.11)

/
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Now g is chosen to simplify the SOC necessary conditions by insuring
that Q will not appear in the reduced equations. Also g is required
to be symmetric since only a symmetric portion of a matrix hes any significance
in a quadiatic term.

Definition 6 (D.6) - §

8=l ((w+ )&+ x(i + ) (D.6)

A
Using the definitions of @ and § the optimal velue of the cost index

may be expressed as follows

e 1 D
= ff (x°s5x°+u® Qu°) at (2.1.12)

tO
This does not imply that SOC is optimal with respect to a cost index of only
quedratic terms but rather that the optimal index may be expressed as such.
In fact, Kalman'® has indicated that for a cost index of the form of Eq. (2.1.12)
&ll of the states must be fed back.

D.5 and D.6 may be used to elimtnate W and S from Eq. (2.1.7)-(2.1.10)

to obtain the following:

BReduced Necessary Conditions

S0C Ricatti Equation

, i ) ) T
P+ATP+Pa+8-BQIE + I, BQET, + FQ BT + 12 K- 0

t,) = 0 (2.1.13)

/
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SOC Contrcl Law

2 = - KT X (2.1.1’4)

Feedback Gain Equation

. T
SRR EE D (2.1.15)
) I
Dynamics
x=(A-3K) x; x(t ) =¢ (2.1.1)

Note the similarity between the reduced SOC equations and the allstate equations.
In fact, if W = 0 the only difference is tha' the quadratic terms in the
Ricatti equation and the feedback gains corresponding to the unavailable staves
are missing.

It is convenient to rewrite the Ricatti equation in terms of the closed
loop system matrix and the feedback gains. t is shcwn later that the two
forms of the Ricatti equation are equivalent.

T

A, = A - K (2.1.17)
T -1, T W -
K' =37 (BP+%) I, (2.1.1%)

- T T . _
P+a  P+PA +S+KK =03 P(tf) =0 (2.1.19)

For comparison purposes the equivalent allstate equations are given
below. Note that the structure of these Ricattli equations are identical,

except that the SOC gains corresponding to the unavailable states are zero.

Ao = A -B 4 ' (2.1.20)
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, T
& = q @™ - g—) (2.1.21)

P+ Ai? P+ Phn + S+ KR = 0 ; Pt,.) =0 (2.1.22)

b

Steady State SOC Problen

If a system to be controlled is time invariant, and an infinite tims
interval problem with constant weightings is considered, that is tf—' ao
the solution to the Ricatti differential equation may approach a steady state
value. Hence the feedback gains assume a steady state or constant value. In
this case the difierential equations describing the Ricatti matrix are re-
placed by nonlinear algebraic equations.

Steady state Ricatti equation

m T
AP + PA + 5 - BQTIET + IEEQ-IE I+ g Q lETIl + I,EQ L g— =0 (2.1.23)
where
W
E=PB+ =
<
or
T ()
Ay P+PA.K+S+KQKT=O (2.1.24)
where

A = A - BKY

K

T
& - Qs + g—) I, (2.1.25)

In the following sections the properties which indicate that SOC may be a

useful tool for the study of linear systems are described.

2.2 S0C Properties

In Section 2.1 the basic equations of the SOC problem were formally
derived. In this section the sigrificance and usefulness of the SOC problem

is indicated by the examination of the properties of the SOC equations

y

/
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and solutions.

In order to guasrantee that the SOC solutions will have certain properties
it is necessary to make restrictions on the allowable systems and weighting
matrices. The reasons for these restrictions will become clear as the pro-
perties are developed.

Restriction 1 (R.1l) - Weighting Matrices

The control weightirg,q, must be a symmetric positive definite
matrix.

The state weighting matrix, S, must be a symmetric. positive semi-
definite, S0C observable matrix.

Definition 7 (D.7) - SOC Observability

Since S 1is positive semi-definite, it may be expressedlS as

5 = HT H

where H 1is a NS by NS matrix. Now a system, A, and weighting matrix, S, are

said to be SOC Observable if the matrix pair (A, H) is completely observable
L

as defined by Kalman.l
Note that this definition differs from the Kalman allstate definition

since the former involves a portion of the state weighting while the latter

involves all of the state weighting. A further restriction on the allowable

systems must be made, since it makes no sense to talk about the minimization

of a cost index if there are no control laws (feedback gains) which result

in g finite value of that index.

Definition 8 (D.8) - SOC Controllability

A system, A, 1s said to be SOC Controllable with respect to a

specified feedback structure provided there exist finite values of feedback

gains, K ¢ Cl, such that all initial conditicn responses are square integrable.

AP N Lad LA 14
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1

- where @K(t, to) is the state transition matrix for the closed loop system

E AK Then for all c¢ such that lecil <€ OO
t t‘f T

[' V= fﬁTEd‘t =_§T{j @K (z, to)éK(t’ to) dr?_g«.ca
t t J

{ ° °

For a linear time invariant system and the steady state problem,
this condition is equivalent to the existence of a set of constant feedback
gains such that the closed loop system in stable.

£ Existence and Uniqueness

3 The motivation for the SOC Controllability definition is provided by

the following lemma which states a necessary condition for existence. The

proof of this lemma follows directly from the definition.

Lv

Lerms 1:
A necessary condition for the existence of the solution to a SOC

A

problem is that the plant and chosen feedback control structure be SOC Con-

L,m...mﬂ

trollable.

A distinction must be made between existence and unigueness properties

——
Rl mm«n“

i

of the 727 equations in reduced and unreduced forms. That is, given all the

weightings of the formal SOC index the existence and uniqueness of the

ERTITR Y
: :
S

solutions to the necessary conditions may be demonstrated in exactly the

same way as in the allstate case.

E
i
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However, in order to use the SOC theory the question of the
existence of the solutions to the reduced equations must be answered. The
importent point is that the cholce of the class two matrices leads to a
well defined set of equations (the reduced equations) in which these matrices
do not appesr. The existence of solutions to these equa.tibns is a justifi-
cation of the SOC approach. If solutions exist to the reduced equations, the
S0C procedure is shown to be valid from a mathematical point of view ard only
the interpretation of or motivation for the SOC problem from an engineering
point of view is of concern.

The finite time interval and steady state problems lead to the
study of systems of nonlinear differential and algebraic equations, respectively.
These equations are very similar to the allstate equations. However, the
approach used in the proof by Kalmanll does not appear to be applicable in
the SOC case. Demonstrating the existence of solutions to these problems is
equivalent to proving the existence of solutions to the Ricatti equations.
The fundamental point of Kalman's proof involves the derivation of a bound
on the solution to the Ricatti equation. An attempt to follow this same path
for the SOC Ricatti equation fails, since it leads to a bound that is a
function of the Ricatti matrix. Despite significant effort along these lines,
no general existence theorem has been developed. However, for scame specific
examples it is possible to say something positive about general existence.
See the example at the end of this chapter.

It is falrly easy to prove local existence of a special nature with
the aild of the Reverse SOC problem described below. This reverse problem

provides an initial solution to the reduced SOC equations. A perturbation of
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the weighting matrices leads to a new set of equations which in some sense
are close to the reverse problem equations. Thus the question of existence
and uniqueness may be answered in terms of the solutions to equations con-
taining parameters.

Since both differential and algebraic Ricatti equations are en-
countered, two types of existence proofs must be demonstrated. The results
are stated in theorem form for preciseness and clarity and the proofs involve
the application of certain well known theorems of analysis and differential
equation theory.

Definition 9 (D.9) - Reverse SOC Problem

Given a set of feedback gains, determine if there exists a SOC

index such that the goins are the SOC control lsw.

In order for the steady state reverse problem to have a solution, the

allowable feedback gain must be stable, that is, the closed loop system is
stable, while for the finite time interval problem any set of finite gains
contained in Cl will suffice.

Theorem 1:

For all SOC controllsble systems with any set of allowable feedback
gains, there exists a nonunique SOC problem with weighting matrices satisfying
(R.1) and for which the given gains are the optimal control law.

Proof A: Steady State Problem

Choose any § and Q which satisfy (R.1) and such that S + KQK®
is positive definite. For example S and Q might be the appropriate
dimensioned identity matrices. Since the feedback gains are stable by

assurption and S + KQKT is positive definite, there exists a unique positive

/L
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definite solution, P, to the SOC Ricatti equa.tion.37

AKT P+PAy==-5- KQJ{T (2.2.1)

i= Note thet S + KQK® 1s symmetric and since P' also satisfies Eq. (2.2.1)
which has & unique solution, the Ricatti matrix is symmetric. The feedback

gain equation is used to find W,

Wi I, =2(kt - BT P L)
! 1 1 (2.2.2)

i} W I, =0

A
while Q and S are determined from their respective definitions. Thus the

( reverse SOC problem for which the given gains are optimal is specified. This
. problem is not unique since the choice of S and Q is not unique.

| Proof B: Finite Time Problem

oA

Agein choose a S and Q which satisfy (R.1). The Ricatti matrix

P 1is found by solving the SOC Ricatti differential equation where K, 4, S,

and Q are known. i
[
T
- P+ASP+PA +S+KK =05  B(t,) =0 (2.2.3) |
. :
E t, < t =1, /
' To show that & unique, positive definite solutlion to this differential equation
E exists, the following lemms will be useful.
Lemma 2:
The value of the optimal SOC index may be expressed in terms of the

Ricatti matrix which is necessarily positive definite if (R.1l) is satisfied.

J :
o_1 T . 1 £ _oT (s} oT o L
E J =58 P(uo)_(_!=§- (_}= Sx +u Qg)d.t (2.2.4)

%
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where P i1is the solution to the SOC Ricatti equation, Eq. (2.2.3), and ¢
is a state initial condition vector.
Proof:
Equation (2.2.4) is derived by the manipulation of the SOC necessary
conditions. Adjoin the dynamiecs to the cost index with the costate vector

and integrate by parts.

o_1 tf oT o oT o T o 0
=3 [l s+ au’+ga s -")]at
t
(o]
or
be T e
o_1 ot ) o, T o, 2T o .7
=3 [ (£ 52+’ v pa v P at-Fxp |
t o]

(o)

Using the Ricatti transformation, terminal conditions on p, and the control

law equations leads to

£,
°=%f x° (s + KK’ + PA + AKP+P)x°]dt+ TRt ) e
b
(o]

But the expression in the integral is the Ricattl equatiom, hence for any to

JO

f\)ll—'

s e (2.2.5)

(R.1) requires S to be positive semi-definite and Q to be positivs definite.
The SOC observable requirement insures that gT S x will not be zero for any
allowable traJectory.37 Thus J° is positive for any ¢ and hence P is

positive definite.




32.

Now ‘P can be expressed in terms of the state transition matrix

for the elosed loop systen.

i=(A-BK)x;  xt)=¢
PORE SACORBE
then
o 1T , Lt g T
P=ilr=t fLIE (7, s )5+ ) f (T, t) e]az
t

&)
or

t
f
Bt ) = /@KT(T, to)(s+mKT)éK(t, t) 4T bt € Tt
t

(2.2.6)
Since Eq. (2.2.5) holds for all t tof te, Eq. (2.2.6) defines P(t).
: T
P(t) = - I@K (T, ) (s + mxT)IK (z, t)ac (2.2.7)
te
s d
Recall that ¢K(t, t) =1 and el 2 AK?FK. Taking the time derivative

of Eq. (2.2.7) leads to

Bt)=-s-mK ~aTP-PA

which is the Ricattl equation. Thus the existence and positive definiteness
of P 1is established. Since Eq. (2.2.3) satisfies a Lipschitz condition, the
uniqueness is demonstrated by the application of a standard theorem of
differential equation theory.

As in the case of the steady state problem, W is chosen to satisefy

A A
the gain equation and S and W are found from their definitions.




K 33.

i It has been shown that the Reverse problem determines well behaved
solutions to the SOC necessary conditions. Existence properties of these
equations may be studied by considering the walighting metrices as parameters.
For sets of welghting matrices which are suitably close to those of the

Reverse problem, something may be sald about the uniqueness and existence

discussion consider the following notation. A weighting vector g 1s formed

|
|
of the solutions to the corresponding SOC problems. To facilitate the
i
I from all the independent elements of S, @, and W in column order. (Only
the lower or upper triengular elements of the symmetric matrices are con-
r sidered.) The weighting vector g may be pictured as a point in a finite
- dimensional Euclidean space, where the corresponding norm may be denoted by
- f1glt « With this notation the contept of one set of weightings being close

to another c¢zn be made precise.

Theorem 2:

Given a Reverse problem solution for a finite time interval problem, ‘

charscterized by a weighting vector -9 solutions to the SOC problem exist

L

and are unique for all weightings in some neighborhood 2) of -9

Proof: /

The existence of asolution to the SOC problem is equivalent to the

-

e

: £ existence of a solution to the SOC Ricatti equation over the time interval of

e

interest. Since P 1is symnetric, this matrix differential equation can be

written as a vector differential equation of dimension NP = Ns(ns + 1) Ng L
. T -]_ET -]_ET W -lET -1 WT
ttptt . _ 0 - W "

"g"(tf) =0 (2.2.8)

;
|
I
!
|
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L

where E = PB + 3 12 W=0 and "D" indicates a vector formed from the

matrix D as follows.

7
i = . ..... » 0..’0
D" = Dy 13 Dy 35++3Dyg 45 Dp pi++iDyg yg)

or symbolicelly

n—;n = E(ugn, 5); "2"(tf) - 9 (2.2.9)

From Eq. (2.2.8) it is clear that partial derivatives of F with respect to
the elements of P exist and are continuous and thus satisfy a Lipschitz
condition in some neighborhood of -9 The existence and uniqueness of the
solutions in some neighborhood, ZJ , of g, 1s a standard result from the
theory of different’al equations. See Theorem 7.5 of Reference 38.

A similar theorem for the steady state problem may be demonstrated
with the aid of the Implicit Function theorem. To clerify the discussion,
consider each set of feedback gains as a point in some Euclidean space. This
point is denoted by the feedback galn vector g formed by the column order-
ing of the feedback gain matrix K.

Theorem 3:

Given a solution to a steady state Reverse SOC problem with gain
vector ﬁo and weighting vector £y there exists a unique solution to the
SOC problem for weightings in some neighborhood W ot -9 Moreover, the
stable feedback gains are contimuocus functions of the weighting vector.

Broof:
The proof will be carried out by the application of the Implicit

Function theorem to a feedback gain vector function. Consider the steady

state SOC equations
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35.
AKTP+PAK+S+1QKT=O (2.2.10)
© = Q" Xap + _éwf) I, (2.2.11)

Since the eigenvalues of the closed loop system are continuous
functions of the feedback gains, AK is stable for all feedback gain vectors
_ﬁ_ conteined in & suitably small neighborhood of £, FX . Since A, 1is
steble, P may be found as & unique function of K, S, Q, and W. Using the
equivalent  vector notation introduced above, Eq. (2.2.10) may be rewritten
as & linear system of NP equatlions.

E"P" = - "(5 + KK)"

B - 5 (s s )"
or symbolically

"P" = El(_k» g)
where

E = "(IdA, + A T¥I)"
and * represents the Kronecker product. The matrix E 1is simply the Kronecker
matrix manipulated in the appropriate memner to form the coefficient matrix
for the linear system. Both the matrix and vector forms represent the same
system of scalar equations, with a particular form chosen by the context of
the discussion.
To return to the proof, a vector gain function can be written as

follows.
"l g - (LT Kk g) - &) =0

The notstion DQ" indicates that a vector has been formed from the matrix D

by column ordering.




AED R N N ey

36.

1]
P T .

D (Dl’l;...;nns,l; Dl’e;...;Dm’ns)

Now the Implicit Function theorem may be applied to this equat:lon39 s provided
that

Cl : g(g,g)=o at go,;o

c2: KK g)ect

C3 ¢ Jacobian at (jgg, 50) is non-zero.

The Jacoblian is the determinant of the partial derivative matrix of F with

A
respsct to k.

(.-)E
J = det (=
o4

where

W)
)

QE)_-_’-

3k, 2

(

1=

o
This theorem indicates that within some suitably small neighborhoods, >8/o and
2 o of &, and go respectively, there exists & unique continuocus vector
function @ such that

k- og)

Helg) g) =0 ged, keK

Since only stable gains are of interest, the neighborhood of g 1s further
restricted so that for any g e ¥J , k¢ K 1s a stable gain vector.
It is clear that conditions Cl and C2 are satisfied while C3 must

be considered more closely.
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”A
For any stable set of galns l‘-o’ it is possible to find a Reverse

i
|
[ lema 3:
I

SOC problem characterized by & such that the Jacobian is non-zero
i, &) #o.
Proof:

Note that the gein function equation can be written as

- o
KK g) =« a7 - &

Then
F & o
%——: = Q-l BT &% -1 (2.2-12)
§ vk ok

) A
i If J(_l_go, 50) = 0, then at least one eigenvalue of mst be zero. Thus,

(>4

o _ o
g from Eq. (2.2.12) it follows that at least one eigenvalue of Q ]'BTC}—I-’ is

Jk

equal to 1. However, by = mroper cholce of &y that is S and Q it is

possible to insure that this is not the case.

)
Consider the €— term of the matrix in question. For convenience

of
examine the equivalent matrix

_ D nph

J

(B2 Y

|

Again this is a notational switch to allow for convenient manipulation.

Since 'lgll = = E'l n(s + KQKT)"

‘) npn _ D E-l "(S . KRKT)" ) E"l acv(s + ]@(T)vn
) %

k

0 & k
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If the Jacobian is zero it is possible to pick new values of S and Q to
insure that the Jacobien is not zero. Thus C3 is satisfied and the proof is
complete.
The local existence properties are sufficient to allow the practical
use of the SOC theory as indicated in later chapters.
Stability
For the steady state SOC problem, the feedback control law consists of
constant feedback gains. A linear system with such a control law is said to
be stable if all the eigenvalues of the closed loop systems have negative
real parts. In addition these feedback gains are said to be stable. It shouvld
be emphasized that an optimal control law is not nscessarily a stable control
law! It 1s possible to formulate an optimal control problem for an unstable
plant for which the optimal control law and the cost index are identically
zero. The steady state SOC problem has been structured so that the resultant
closed loop system is nece-sarily stable.
Theorem k:
Congider a SOC problem with a SOC controllable plant and weighting
matrices which satisfy (R.1). For any constant feedback gain matrix, K, a

necessary and sufficient condition that K be a set of stable SOC feedback

gains is that there exist a Ricatti matrix, P, with the following properties.

CL: A =A-BK
T

S DSOS L. N

ce.KT-Q(BP+2)Il

c3 : AKTP+PAK=-S-1QKT

ch P is positive definite and symmztric

L X}




Proof:

Necessity - By definition, if K 1is a matrix of stable SOC feed~

back gains the necessary conditions, Egs. (2.1.23) and (2.1.25) are satisfied.
Substitution of (2.1.16) and {2.1.25) into (2.1.23) leads to (2.1.24) and C3.
The positive definiteness was demonstrated in Lemms 2 and the symmetry is
eagily shown. Since K 1is stable, there exists a unique solution P to C3.
Since S and Q are symmetric PT also satisfies C3, hence PT = P.
Sufficiency - Iet K be a constant matrix of feedback gains for
a system;, A. Let S and Q be matrices which satisfy (R.1) and let P and
W Dbe matrices such that Cl, C2, C3 and C4 are si .sfied. Constant values of
é\ and il‘ of the SOC index may be calculated using P, S, and W. Then it
is clear that P is the solution to Eq. (2.1.7), the unreduced Ricatti equation.
The stability property is presented in the following lemma.
Lemma L4:
Given that the weighting matrices satisfy the hypothesis of the

theorem and that Cl, C2, C3 and Ch are satisfied AK is asymptotically stable.

Proof:
The lemma is proved by a Lyapunov argument. Let V = _:_cT Px be ’
a positive definite Lyapunov function. Then (

\.f=-3sT(S+KQKT)5

and asymtotic stability is guaranteed since V 1s negative over any possible
1:1'a.Jec't;¢:or;y.)+ Requiring S to be positive definite would be sufficient to

insure the negative definiteness of V, but the SOC Observable restriction of

(R.1) guarantees that ;_;T S x will not be zero along any possible trajectory. H

This weaker requirement wes introduced by Ka.lma.nl‘? for the allstate problem.
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The proof will be complete provided the unreduced steady state Rieatti
equation has a unique positive definite solution. In that case the steady
state solution to Zq. (2.1.7) and the solution to C3 must be identical. This
uniqueness property can be shown by reformvlating the SOC problem into an
allstate problem and applying Kalman's sllstate result,

An allstate control u is chosen to minimize

y [T s T
J=-2- f (x* Sx+u Q u) dt (2.2.13)
t
o
subject to
i=2\5+§}_1_; E(to)--g (2.2.1k4)

Define the following relationship between the SOC cortrol u, and the allstate

control u.

i
s=u+Qt () x (2.2.15)
Then
Yag-gaurzrM+Murzue W) x
+ %-ET(W + W) Q-l(WT +’ﬁTf
or
woutx WM u=Tei-gx@+M I +W) x  (2.2.35
'""ne SOC index is given bty
te
m ~
7=3 f G+ x+F@+Wury ew at . (2.2.17)
t

o)
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Substituting Eq. (2.2.15) into (2.2.17) leads to

t
4
1 A - -H -
J=3 f ("5 + 8 - llr(w MW W) x+ T Q) at (2.2.18)
t
o
To insure that both problems have the :zame trajectory, require that the

dynamics be equal.

. - -1 W +WT

x=Ax+Bu=Ax+Bu-q" ( ) x)
or

k=Ax+3B3
where

_ T AT

A-‘-A*BQ-l(W ;W)

B=238

By requiring the indices to be equal, Eq. (2.2.13) and (2.2,18), the definition

for S8 1is obtained

AL 21,.T A
3o5+8. MW QW +F)

Thus the problems are equivalent and choosing u to minimize
Eq. (2.2.13) will give the same answer as choosing u to minimize Eq. (2.1.1).

Kalmanl1

has shown that there is a unique positive definite solution to the
steady state allstate Ricatti equation. Since tha Ricatti equations for the
two problems discussed above are identical, this result also holds for the

unreduced SOC equations. Kalman's proof depends on the structure of the

equations and not on his restrictions on the state weighting of the allstate

problem; it is possible that s may not satisfy the Kalman restrictions.

Thus the proof of Thecrem 4 is complete,
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In addition to demonstrating the stability of the SOC control law
this theorem has characterized the optimallity of a feedback control law in
terms of the existence of a positive definite solution to a system of non-

linear equations, the steady state SOC Ricatti equatioan.

2.3 Example
To clarify the formulation and indicate scme of the properties of SOC,

e simple second order damped oscillator examwle is presented. For a more
practical example see Chapter VII which is a case study of the use of SOC to
design a control system for & large flexible launch vehicle.

The state space representation of the example is givgn below and pictured

in Flg. 2.1.
}V+ 2,? w & + w? y=u
*
=y
* =Y
x=AxBu  xt)=¢
where
-E_f w -w? 1
A= H B =
1 0 0

Assume that & rate feedback control law structure has been specified.
u=-kx1=-k;‘r

Now NS =2, NC =1, and L =1. Let
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The control u 1is chosen to minimize the following SOC index.

[

L The SOC steady state matrix Ricatti equation may be written as a system of

(;_TS§_+£T§§+J:T(

W+ u+qud) at

Do

i three scalar equations.

or
2P (-2 fw-k) + 2P, = =8, - qk° (2.3.2)
- 1 2 1l : o
P, w> +P,(2F wk) +P, =-8 (2.3.3)
1 2 ) 3 2 3.
22 P, = -8 (2.3.1)
2 3 4 et/
The scalar gain is found from
T
k* = 1(Tp + L) 1 (2.3.5)
2 1
W
Pt
k = ( ) (2.3.%)
q
The elements of the Ricatti matrix and the feedback gains are found by the
siaultaneous solution of Eq. (2.3.2)~(2.3.4) and (2.3.8). Recall that the
P positive definite solution is sought.
2
5 W S.q
2 p2 2 1
P1=-2qju)+\/hqfu)+slq+—r+;ng— (2.3.7)
3 S3
- P2 S = —-—-2— (203-8)
I~ .
- 2
P3 =P w + Pe(z'fm + k) - 8, (2.3.9)
[ A e W,_a. S q_
"L o fusl 2 p2 2 S
[. k”eq'2‘-r‘°+q b g, m+slq+T+w2 (2.3.10)
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The appropriate equations are used to find the matrices which complete the

formulation of the SOC problems.

0 Q
I, =
0 1
A 0
W=-21(m+3) =
=-2P
2
A A
s=%((w+W)KT+K(W+w)T)
A A
S S
A 1 2
S = A 7\
82 83
A W, (2P, + W.)
S. =W k=l 1 1
1l 1 2q

n
L}
O

To be more speciiic, consider some typical numbers. Let _f =0 and w=1

and choose

From Eqs. (2.3.7)-(2.3.10)

P, = V2
=X
Po=35
)
Py =% V2
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Thus
-y2 -1
A=A -BK =
1 0
Note that the closed loop systems heas a characteristic frequency of 1 radian/sec.
and a damping ratio, j’ , of .707. The remaining SOC weighting matrices are
given by
a o
W=
| -1
and o -
0 iy
S = 2
(2
- ° ]
Finally, ©The SOC index may be written =as
@®
_ 1 2 i 2 _ 2
J=3 ‘[ (xi - Ve X Kyt Xy =Xy utU ) dt
to
From Eq. (2,3.4) it is seen that o must be non-zero in order that the }
solutions to the SOC problem exist. What does this imply? An examinetion of (

tae properties of the A matrix with o = O indicates that with a rate feed-
back control law, the system is not SOC controllable. The characteristic

equation for the closed loop system is given below.

det (SI - A) = O
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Thus
S+k 0
det =0
-1 ]
or
. S(stk) = 0
The characteristic roots are

y 8

i b2=-k

0

)

Clearly, there exists no value of k such that the closed loop system is
- asymtotically stable; thus this particular system and control structure is
not S0C controllable.

For this e¢xample, SOC solutions exist for any set of matrices which
satisfy (RF.1). Note that any positive gain is sufficient for asymtotic
stability of the closed loop system and any positive semi-definite 5 is
SOC observable. From Eq. (2.3.10) any pc:itive definite S with positive g
leads to a positive value of gain for any wl and hence existence of SOC
solutions.

In the chapters to follow, the computational aspects of the SOC problem

are discussed and the SOC concept is applied tc various general countrol

problems of current interest.
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] Matrices

System matrix: NS by NS

Equivalent allstate system matrix: NS by NS

Allstate closed loop system matrix: NS by NS

SOC closed loop system matrix: NS by NS

Control coefficient matrix: NS by NC

Equivalent allstate control coefficient matrix: NS by NC
Notational matrix

Notational matrix

Observability matrix: NS by NS

H,:ﬂbﬂbb’lw’?’*’rb\”

|

Notational matrix
Notational matrix

Notational matrix

S0C feedback gain matrix: NS by KC
Allstate feedback gain matrix: NS by KC ' )

Ricatti matrix

Symmetric control weighting matrix: NC by KC
Symmetric state weighting matrix: NS by NS
Symmetric state weighting matrix, classtwo: NS by KNS

Equivalent allstate weighting matrix: NS by NS
Bilinear weighting matrix: NS by NC

Bilinear weighting matrix, class two: NS by NC

;p.:c.sz: viLd B o w xR H

Closed loop state transition matrix: NS by N8
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Vectors

State initial condition vector: NS

.
|
[

Weighting vector

Iwa I

Feedback gain vector

Costate or miltiplier vector: NS

g
2

Equivalent Ricatti vector: NP

s S oo M oo
b

Control vectar: NC

e

State vector: NS

Frod
14

J Cost index

v N~tational scalar
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Chapter III

oo oty

COMPUTATIONAL CONSIDERATIONS

3.1 Introduction
If the theory of the preceding chapters is to be of any practical use,

efficient computational procedures should be available. Even for modest

problems, most of the modern control theory techniques tax even the amazing
capabilities of state of the art digitel computers. One of the goals of this
work was to develop a design technique with reduced computational requirements.
This technique should be programable on almost any digital facility and might
oe very useful as a time-share library routine. Hopefully, the procedure
would have low execution times and would be easy to use. In this chsapter,
numerical methods are developed for the SOC problem with these properties.

SOC has a decided advantage over other optimal schemes, since the structure
of the necessary condition equations leads to reduced computational effort.
There are four mair considerations.

Point 1: The two point boundary value problem has been eliminated.

Comment: The Ricatti matrix has been used to decouple the two point boundary /

value problem of the necessary conditions. That problem has been replaced with

8 system of simultaneous nonlinear differentialor algebrsic equations.

—

Point 2: The structure of the necessary conditions is independent of the

m.;‘-J

size and complexity of the system.

Comment: The necessary conditions of an equivalent parameter optimization

froosmen
A

problem are a system of nonlinear equations which must be s lved to obtain the

optimal feedback gains. The structure of the equations becomes more and more

[ e— gt .,WJ

=
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complicated as the size and complexity of the system increases. Moreover
there is no systemetic wa, to formulate thesé equations. In contrast, the
well defined SOC necessary conditions have a quadratic structure which is
independent of the size of the problem.

Point 3: The SOC feedback gains are independent of the state initial
conditions.

Comment,: This fact is clear from the structure of the SOC necessary
conditions. The feadback gains are a function of the Ricatti matrix which is
independent of the state as a result of the decoupling of the two point boundary
value problem. Thus, the feedback gains comprise a control law which is
optimal for all initial conditions. Since most other schemes generate control
laws which depend on the initial conditions. a suitable choice of design
initial conditions must be made. In some cases, attempts have been made to
develop a systematic procedure for picking a design initial condition vector.
These procedures usually involve a large amount of computational effort.

Point 4: There exist efficient numerical methods for the solution of the
SOC equations.

Comment: For almost all problems with NS larger than two, it is impossible
to obtain an analytical solution to the Ricatti equation. There are two basic
numerical approaches. The finite time interval and steady state problems may

be solved by numerical integration of the Ricatti differential equation or the

steady state problem may be solved by the direct solution of the steady state

Ricatti equation.

. "“'""“““‘“ﬁ“‘mﬂmﬁﬁﬁiﬂ}mﬁmﬁﬁmmlliié*
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3.2 Solution by Numerical Integration

Since the two point boundary value problem was decoupled by the Ricatti
transformation, the finite time interval problem may be solved by straight-
forward numerical integration. The Ricatti equation is integrated backwards
in time from tf to obtain the Ricatti matrix which is used to calculate the
feedback gains. Then the dynamics are integrated in the forward time direction
to simulate the system trajectory.

The integration approach may be used to calculate the solution to the
steady state problem, although not in a straightforward manner. The SOC index
contains weighting matrices, ﬁ and g, vhich are functions of the unknown
steady state Ricatti matrix. Thus integration of the unreduced Ricatti equation
is impossible. However the reduced Ricatti differential equation may be used.
Note that this equation is not equivalent to the unreduced SOC Ricatti equation.
This is clear since G of the unreduced equation is a function of the steady
state Ricatti matrix while Q corresponding to the reduced equation is a
function of the time varying Ricatti matrix. However if a steady state solution
of the reduced equation exists, this matrix will also be a solution to the
steady state unreduced SOC Ricatti equation. The general conditions for
existence of the solution to the reduced differential equation have not been
established, although numericalevidence suggests that the solution of most
steady state SOC Ricatti equations may be obtained by the solution of the corre-
sponding reduced Ricatti equation. This may be a moot point since the next
section describes the direct solution of the steady state equation by iterative
means. This approach is usually more effective than numerical integration

from accuracy and execution time considerations.
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3.3 Iterative Solution of the Steady State Equation

The direct solution of the allstate Ricatti equation has been proposed by
various authors.uo’ul’he’43 For the most part these methods can be extended
to the SOC problem. The concepts of some of these methods are described briefly
and an extension of one of the more promising is derived. In addition, a new
method applicable to the allstate as well as the SOC equations is proposed.

M,s.cFarlanel"O and Ba,ssl+l have developed procedures which require calculation
of eigenvalues. To determine these eigenvalues is not a trivial task especially
for large systeus. 13].a.ckburnll'2 irtroduced a procedure based on the Newton
Raphson method. See Appendix B for a brief description of the Newton Raphson
(N.R.) concept. The Blackburn algorithm involves the direct application of the
N.R. approach to the algebraic Ricatti equation. In a similar way this approach

can be applied to the reduced steady state SOC equations.

T

T W
=0 (3.3.1)

AP+ PA+ S - EQ-lET + IEEQ'LETI2 + -g Q']‘ETIl + IlEQ'l

where

The major drawback of this algorithm is that an initial guess for the Ricatti
matrix must correspond to a set of stable gains. That is, if P° is the initial
guess then (A - BQ BTP°) must be stable. In most cases it is a difficult
task to find a suitable value of P°.

Recently Kleinmanh3 introduced an algorithm which is also a Newbton Raphson
method. However, the structure of this algorithm is different from that of

the usual N.R. approach and it possesses regional rather than local convergence
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properties. Moreover, only a set of stable gains is required to initialize
this method. With a little effort, the Kleinman method may be extended to
the SOC problem. However, the Kleinmun-SOC algorithm must be started with a
PO corresponding to stable gains. This algorithm is to be preferred over the
Blackburn algorithm since the implementation of the former is somewhat simpler
and for the allstate case it does not require the knowledge of a stable P°.
The basic concept of the Kleinman algorithm involves the simplification
of the Newton Raphson algorithm by recognizing certain properties of the
Ricatti equation. Consider the all.tate Ricattl equation

F(P) = A'p + PA + S - PBQY 8TP = 0

or in terms of the closed loop system matrix
F(P) = AK? P+PA + 5+ KQKI =0 (5 3.2)

and the recursive relation defining the standard Newton Raphson method in

function space is,

-1
S ) F(p') (3.3.3)
p=pl
ar, "t aF
where the (Ff) indicates the inverse of the differential matrix, T That
is, if
gar
dF = FT dp
then
-1
dF
dpP = Elg) ar

To derive this matrix, take the total differential of F(P).

aF = AT 4p + apA - apBQ~L BYP - pBQ L BT ap
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Since for the allstate problem KT = Q'l BTP and AK = A - BKT this equation

may be rewritten

d.F=AKTdP+dPAK
or
%% = (AKT * T + 1% AK) (3.3.4)

where * indicates the Kronecker product. Thus

-1
(& =mrrrrxa)™

and the inverse exists if AK is stable. Equation (3.3.3) may be rewritten as

. X . T
i+l 1 T +S+K1QK1)

P = P7 - (AKi

By definition

-1 T i i
*
I +I*AKi) (AKiP +PAKi

(A 'T i

* + * + )=

Thus the Kleinman recursive equation is obtained

, -1 T
i+l _ ar i i

P - (39 (8 + KT QK

p=pt
or
T _i+l i+l i iT

A . P + P A.=-«8-K QK

Ki K

Using this same concept, a similar algorithm can be formulated for the SOC
Ricatti equation. However, in this case, Pi is not eliminated from the
recursive relation. Thus a P° corresponding to stable gains is required to
start the Kleinman-SOC procedure. Write the SOC Ricatti equation in terms of

P and let
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PA + ATP + 8

T
Wy 4=1/,T W
F(P) L(PB +3) Q7 (BP + 5) I,

Wy =1 T
(s +3) Q"B P I,
T
-1, T, W

I

e

T
W=l T W Hy A=l W5
2@ BP+z) L +L(B+35) Q7 5 =0

+

Taking the total differential

T

T
-1, T . W Wy =1,_T
d.F=d.PA+AdP-Il(dPB)Q (BP+§-)Il-Il(PB+-é-)Q (}3@)1l

-2.T Wy =1l,.T
- Il(d.PB)Q"BPIE - Il(PB +-2-)Q (B*apP) I,

wT

-1,.T -1,.T
-IQ(dPB)Q (BP+-2—-) I, - I, PBQ™(B"dP) I,

1w
Q(Bd.P)I +Il(d.PB) 5—=o

This equation can be written in terms of the closed loop system.

T
a
dF = dP A +A.K @ - I, dFB Q (BPI 2)
Wy =1 _T
~(I,PB-3)Q B P I,
or
dF = H dP
where
T
T -1,.T
=I*A +A *I-I, I*BQ (BPIQ--E—)

-(IPB-—)Q BT *I L
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The Newton Raphson recursive relation may be written as
pt* < pt _ ol p(ply

Anticipating that the desired structure is

rewrite F(Pi) as follows

P' Ayt + Ay

or adding zero

T

T Pi + S+ Ki Q Ki =0

T T T
F(Pi)=riAKi+AmTPi+S+KiQKi -D1+D‘-D1 +Di
where
T
1 1 .-1, T 1. W
D" =I P BQ (B P I, - §~)

From the definition of H

T
p* o pt oyl F(Pi) = Pi-Pi-H-l(S+KiQKi +D, + DiT)

Thus

I

P o gL (et

where

T T
o(pt) = s + xt ot + ot + Dt

Ir I2 = 0, which is true for the allstate problem, this algorithm reduces to

Kleinman's algorithm. To summarize, the Kleinman-SOC algorithm is an appli-

cation of the Newton Raphson concept to the solution of the SOC Ricatti equation.

An initial guess for the Ricatti matrix corresponding to a set of stable gains

is required. For convenience the method is implemented in terms of the equivalent

vector from, "P", and require a single solution of a system of NP linear
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equations for each iteration.

Np o NS(ns ¢+ 1)

2

A New Algorithm

The proposed algorithm is unique in that the Ricatti equation is not
solved directly. Instead a feedback gain equation is solved for the gains with
the Ricatti matrix acting as a constraint relating the feedback gains and the

Ricatti matrix. The steady state SOC equations are given below.
Ay = A - BK (3.3.5)
AKTP+PAK+SH<Q,KT=0 (3.3.6)

- T
CHEP+E) L -k =0 (3.3.7)

The SOC Ricatti equation i< used to find P as a function of K which leads to a
gain equation in terms of K. It will be convenient to formulate the matrix

c_0O
equations in terms of a vector equation. Recall that the notation D  indicates

a vector formed by the column ordering of the matrix D.

o _ T © g
g("xa) = Q l(BTP(K) -g ) I, - X =0 (3.3.8)

This notation is slightly redundant since the gain funetions corresponding to
unavailable state gains are identically zero. This equation is solved by
Newton Raphson iteration. With this approach the reduction in the number of
equations to be solved may be significant. The direct solution of the Riecatti
equation requires that E§Lg§iil nonlinear equations be solved while the pro-

vosed algorithm requires the solution of (NS-L)KC equations. For cxample, if

NS =7, L =5, and NC = 1 there are 28 unknown Ricatti elements and only
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2 unknown gains. An additional advantage of this new scheme is that only a
stable set of gains is required to start the method.

The recursive relation defining the algorithm is given by

-1
B @14 _B 01 '{VaKaF(pKu 1)} E(nKa 1 (3.3.9"

where vnKaF represents the Jacobian matrix of first derivatives such that

B o
VogeF ¢ K =dF

The central concept of the algorithm concerns finding P as a function of
K and calculating the Jacobian. Manipulations may be carried out more con-
veniently in terms of the equivalent vector equations. Recall that "P" repre-

sents a NP element vector found from P as follows:

. P

nonT _ . . .
P = (P Ns,10 Fo,28 ** 5 Pyg,ns)

1,1° "

The Ricatti equation may be rewritten in vector form,

E"P" = - "(5 + KK)"

where

E:"(AKT*I+I*AK)"
and

HPH(K) = - E"l n(s + I@,KT)"

The inverse of E exists as long as AK does not have two eigenvalues, xi, xj

such that xi + xj = O.)'l')+ Now

"ot ] -1 " "
Q_DPB - -a——-—f ~ "(5 + KaKT)" - BT DS+KQ§(T
K, D) K, , 0"k,

oyt
where (Dh) is the partial derivative of the [ th o1ement of "P" with
K. 1
J
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D
respect to the Jth element of Kn . Since

[}

< K

[ - = 2 0
0 K, P K, ;’
Thus
V‘JKDF =( ;:;F 9 2 L nF )
27K anKNC(NS-L)
where

Ya o
K,
J J

the matrix form.

. HE v
The derm 22——- is calculated in vector form g'a_Pa and then manipulated into
K

R

At each iteration two basic tasks must be performed. In the first

"P"
3 L £ j £ nC(Ns-L)
K,

d

is calculated by solving NC(NS-L) systems of NP linear equations, all with
the same left hand side. This is significant since after the initial solution,
there is very little effort involved in solving additional systems with the

same coefficient matrix. Note that Eq. (3.3.10) can be rewritten as

an n}:ﬂ =.E-l ( nna npt . ga"(m{l‘)")
D Kj Kj K,j
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To calculate this matrix, first solve the following system of NP linear

equations for "P".
E "P" = - "(S + m)" -

y o n
Since 4%;21; is independent of K it may be computed once and stored.

X,
J d "P"
Secondly, the vectors, :55—75 are found by solving
K.

J

A D )-SR N .
; J “Kj" (-),_,ij g &DKJ"(W(T>

This involves the solution of NC(NS-L) additional linear systems 211 with the
same coefficient matrix. With this data, the Jacobian of the gain function
equation may be formulated.
The second phase of each iteration involves the computation of the gain
perturbations by the solution of a system of NS - L 1° .ar equations
Vo o1 T &K = - 50

followed by the calculation of the new values of the gains

D_T(Di+l=n

x k*5 e a8k7

Thus, to execute one iteration of this algorithm.,NC(NS-L) + 1 systems of
NS %§+l order linear equations all with the same coefficient matrix and a
linear system of NS - L equations must be solved. This new method has been
called the SOCDES algorithm since it plays a role in the SOC design procedure

described in the next chapter.
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3.4 Comparison of Algorii.ms

To solve the finite time varying problem numerical integration must be
used. It has been found that the simpler algorithms such as Fourth order Runge
Kutta give more satisfactory results than some of the more sophisticated methods
such as Hamming predictor corrector or the Bulirsch - Stoer technique. Care
must be taken when using these methods since an improper choice of integration
step size or other algorithm parameters may lead to excessive execution times
or erroneous results.

For the steady state problem, it is usually advisable to follow the
iterative path. If a suitable initial guess can be found, then the iterative
techniques have faster execution times and a simple control over the accuracy
of the results. Of these procedures the Kleimman SOC or SOCDES methods appear
to be superior. The former requires an initial guess for the Ricatti matrix
corresponding to stable gains while SOCDES needs only *he stable gains. Since
Kleinman SOC has a simpler structure, execution time per iteration is less
than that of SOCDES. However, it has been found that SOCDES usually converges
in a fewer number of iterations. Thus even if a suitable starting value for
the Kleinman SOC method is known, it may be more efficient to use SOCDES
especially for the many practical problems in which the number of feedback gains
is small with respect to the number of Ricatti elements. For example. a third
order SOC problem with one feedback gain was solved in 12 seconds by SOCIDES,

18 seconds by Kleinman SOC and 150 seconds by Runge Kutta integration.

//// 
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Nomenelature
\ Matrices
' A System matrix: NS by NS
’ AK Closed loop system matrix: NS by NS
B Control coefficient matrix: NS by NC
E Equivalent vector equation coefficient matrix: NP by NP
E Notational matrix
%F? Differential matrix: NS by NS
: Il Notational matrix
12 Notational matrix
K Feedback gain matrix: NS by NC
4 Ricatti matrix: NS by NS
] Q Symmetric control weighting matrix: NC by NC
; _ S Symmetric state weighting matrix: NS by NS
( W Biiinear weighting matrix: NS by NC
| f VuKnF Jacobian matrix: NC.NS by NC.NS
o
‘ Vectors /,,k
) Pk  Feedback gain vector: NC.NS
"E’" Equivalent Ricatti vector: NP
O |
Partial derivative vector: NI
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Chapter IV

THE UNAVAILABLE STATE SOC DESIGN PROCEDURE

4,1 Introduction

The basic SOC theory and computational considerations have been ex-
amined in previous chapters. It has been shown that the optimal control
law of the SOC problem is linear feedback with only the available states
fed back. In addition eff. -ient numerical procedures are available for
the calculation of these control laws. The theory and the numerical
methods are tied together to form a design procedure which may be useful

for the study of realistic unavailable state problems.

6k .

To apply these techniques to a problem,a state variable represerntation

of the systems must be obtained. From a block diagram or differential
equations describing the system a set of first order linear differential

equations of the following form is determined.

= Ax+ Bu

I«

where Xx 1is the state of the system and u  the control or input vector.

This model should be formulated so that the last I states of the state
vector are the unavailable or unmeasurable variables. Note that in many

cases an engineering decision Is made as to which states are available.

That is, there may exist sensors which can measure some of the unavailable

states, but for economic or other reasons it may be decided to assume that

these states are unavailable.

s




In addition, the control law structure and design specifications or
goals must be determined. Some of the specifications might include closed
loop stability, an inherent property of SO0C, a maximum peak value of one
or more of the states to a particular input, and a well damped initial

1 condition response.

A S0C cost index is formulated and S and Q are chosen to mcdel the
design specification. This choice of S and Q is somewhat arbitrary
] since some of the specifications are not explicitly represented in the
quadratic index. However, previous work has shown that the use of the
jz‘ quadratic index leads to systems which are satisfactory with respect to
5 the classical specifications of overshoot,damping, etc., After the initial
S0C problem has been solved, the response of the system is compared with
! the design requirements. In some cases, this initial design may be
unsatisfactory. Then the weightings are changed in a logical manner so
’: as to correct the unacceptable features of the current design. The SOC
problem is solved and again the response 1s evaluated. This concept is
' different from the usual trial and error procedure for two reasons. Fifst,
} the interpretation of SOC as an optimal control problem removes some of //,‘,
the art from the design process. At each step, the new weighting are ~

chosen in a systematic manner rather than in an intuitive marner. For

|
l

example if the peak or integral square values of the states are too
large than the state weighting would be increased and or the control 3

weighting decreased in order to reduce this state error. The choice of

the per’urbation in the weighting matrices is discussed in a moure precise

way in section 4.3. Second, the whole procedure may be programmed to run
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automatically on a digital computer. Thus in a short time & number of
designs can be made and evaluated allowing the engineer to gain insight

into the problem.

It 1s possible that after a careful evaluation of the system, through
the application of S0C, no satisfactory design is found. This may in-
dicate that the design specifications are inconsistent with resrect to
the sys:em and the chosen control structure. Then the control structure,
the system, or the design specifications may be changed and the design
procedure repeated. This approach is not an elixir but it has been found
to be a very useful tool for the study and design of linear control

systems.

k.2 S0C Design Procedure

In this section an explicit systematic procedure for the design
of control lews based on the concepts of section 2.1 is proposed. The
central concept is to use the Reverse SOC problem to obtain an initial
set of weighting matrices. These weightings are perturbed in a systematic
menner to obtain a more satisfactory design. For each set of weightings
the SOC equations are solved by numerical integration for finite time
interval problems and by SOCDES for the steady state problem. A digital
computer program SOCSES I based on this method has been developed. See
Appendix C for the description, flow chart and listing of the program.
The reduced running time and user effort compered with other optimal
design control programs, indicate that SOCDES I may be a very useful
design tool. In Chapter VII SOC is applied to the prublem of contrclling

a8 large flexible launch vehicle.
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In Fig. 4.1, a block diagram of the method is shown and it is
described below.

Step 1l: Determine System Specifications

Comment: Based on the problem to be solved a reasonable set of specifi-
cations mist be determined. SOCDES I may be helpful in pointing out

inconsistent requirements.

Step 2: Select a Cuntrol Configuration

Comment: As indicated above, the unavailable states must be specified.
In addition, compensation in the form of a filter or network may be -sed.
It may be considered as part of the system to be controlled and some of

its parameters may be chosen by feeding back some of the filter states.

Step 3: Solve the Reverse SOC Problem

Comment: For the finite time interval problem any set of finite continuous
feedback gains may be used in the solution of the Reverse problem. How-
ever, for the steady state problem a stable set of gains must be obtained.
For the many physical systems which are stable, zero gains are sufficient.
For those that are unstable it is usually not very difficult to generate
a set of gains with stability as the only criterion. Even for the complex
booster of Chapter VII, a calculation of the Routh array leads to a stable
set of gains.

Note that the existunce and uniqueness properties of Chapter II
and the convergence properties of the iterative schemes of Chapter III
are of a local nature. SOCDES I may be used to externd these properties
to a region. For example if during the design procedure the Jacobian

disappears or the equations become numericglly 4ifficult to solve, it is




68.

DETERMINE SYSTEM SPECIFICATIONS

l

SELECT A CONTROL CONFIGURATION 2
3
SOLVE THE REVERSE SOC PROBLEM
ry
CHOOSE NE# WEIGHTING
¥
)
CALCUTATE THE SOC CONTROL LAW
DESIGN COMPIETED  S|eYES.| ARE THE SPECIFICATIONS MET ? El

v

Y

HAS THE CONTROL (ONFIGURATION BEEN EXTENSIVELY INVESTIGALTD ?

YES

PICK A NEW CONTROL CONFIGURATION wl< CHOICE 1|

CHOICE 2

Y

DETERMINE NEW SYSTEM SPECIFICATIONS
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rossible to resolve the reverse problem and thus define a new neighborhood
of existence and convergence which allows the design process to be con-

tinued.

Step 4 Choose New Weightings

Comment: See Section 4.3

Step 5: Calculate the SOC Control Iaw

Comment: The new SCC problem is solved by one of the numericel technigues

of Chapter 3.

Step 6: Are the Specifications Met?

Comment: The current design is checked to see if the design specifi-

cations are met, This may include simulation of the closed loop system
or other calculations such as finding the closed loop poles. If specifi-
cations are met, the design 1s complete; 1f not the design procedure is

continued.

Step 7t Has the Control Configuration Been Extensively Investigated?

Comment: If the current control configuration has been carefully examined //

and no satisfactory design has been obtained then two choices are avail-
‘able. First, the analysis done so far may point out a new set of feasible
specifications. Second, a new control strucvure may be chosen. This
might include a new choice of availasble states or the use of a d'fferent
compensator. Once a choice is made the design returns to step 3 and the
cycle continuves. Since the computational effort involved in implemeuting

this procedure is low it may be feasible to examine various configurations
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ard compure the results. In this way it may be possible to gain insight

into the choice of a "best" controller configuration.

4.3 Systematic Choice of Perturbation Welghting Matrices

After each iteration in the SOC design procedure new weightings
must be chosen to impreve the design. A tradeoff between syster error
and control effort can be obtained by varying the relative magnitudes
of S and Q. Intuitive reasoning indicates that by increasing the
state weighting, S, the integral state error will decrease while in-
creasing the control weighting, Q, will lead to reduced values of
the integral square control effort. Since the control law is of a closed
loop nature, the integral square values of control effort and state error
are related. Assume that the state weighting is increased. In general,
this will cause the magnitude of the feedback gains to increase and the
state error to decrease. The control effort may increase or decrease
corresponding to the relative magnitudes of these changes. These inituitive
concepts have been substantiated by numerous examples. Moreover, it is
possibie to derive an express.on which indicates the effect of perturbing

the weighting matrices.

Given an expression which represents the properties of interest, say

A t
Jx =./i‘ _T dt , then determine the gradient of this expression with
t
o

respect to the weightings. Again let g represent a weighting vector
formed from the independent elements of S, W, and Q. Then the perturbation

A
d Jk due to weighting changes is given by
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A 3J¥T
d Jx = - dg
3 g
A Y] A
I, [ 33, o I,
where is a vector such that , ] =
g g T gy

This approach is not restricted to integral square quantities and may
be applied to any design characteristics which can be represented by a
mathematical expression. Moreover, an indication of the consistency of

the design requirements may be obtained. Form a vector composed of NN

A
design specification expressions, Ji s 14 i< NN .
T A ]

Iy

[
]

A
_JNN_I

Then calculatz the gradient of this vector with respect to the weighting

vector.
A il
dJd = Vgg dg (4.3.1)
where
3 f
A a4d. ) d.
V s- r,.. =M
£ g of-

n
If for a particular design specification change, dJ , a solution to

Eq.(h.3,ﬂ exists, then the change is consistent and may be obtained with

dg as the weighting change.

L
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oo}
A T
Consider Jx = f X'x 4t
t
Q

and for simplicity assume a scalar control and the corresponding gain

vector k of N elements. Using the chain rule

A A
{)Jx - v ]-{- .aJx
28 © )k
Dk Ak
where V k = ———l, e NJ
g 3§ Jg

Ak,

The vectors, -;——-l- > can be calculated easily using the SOC necesseary
g

condition equations.

kT = gt TP+ W) I

5 1

TP+ PA +84+kQK =0

or using the equivalent vector notation

T)H

HPH = - E-lvl(b, + E Q

Note that the weighting elements enter into these equations in a simple

manner leading to easy calculations.,
73,
The calculation of 5% is not as trivial a matter, since a

straightforward approach is not feasible. However, by interpreting Jx

2
=
7
=
&
g
2
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as a cost index and using Iemma 2 of Chapter II it is possible to determine

these terms. Let Jx be a function of the lower time integration limit

and require that JX have a quadratic representation.
fo'e}
78 = x(6) Togle) = [ xTex at
t
where S = I and 0 is a constant matrix to be determined.

with respect to t leads to

adJ . .
X = xTopg o+ XL Dx =—xTSx

_JETAkTD§+ ETDAK§=-XTSX

Since Eq. (4-3.2)is required to hold for all x .

AkTD+DAk=-s=-I

Differentiating

(h'3|2

(4.2,3)

It Ak is stable, Eq.(h.3¢3)may be solved for D and expressed in the

vector notation ss

"pr o= _E"'l nIn
Thus
.) "D" = - ___'D_E-l"I_"_ = E'l 3 E E'l nI"
D I D
. Ky Dy ky
R




For an initial condition wvector c

J = Tpe
x — -
and
) T -
ax= d(g"pg)_ T ID
= 3 =
dk dky kg
anDn ) . . 3D
where can be calculated and manipulated to owvtain i;—
Kk, 2K,
i i

Note that Eq.(4.3,4) appears in the SCCDES algorithm and thus it would
be easy to calculate these gradients and implement the automatic choice

of new weightings.

Using this approach the intuitive effect of varying the weightings
may be verified for the second order example. The pertinent data for

this example is given below.

—Ejszk -

1 0

1 S. S W
; s=[l 2]; Wﬂ[l]

0 S, Sy c

w=1 then from Eq. (2.3.10)

W 2

-

Th.

1 -
—+ = S a+ - * 834 (%.3:5)




The parameter vector g has the following components

s,
S,
-4
g = S3
Wy
q
- and let o
A
- Jd = xT X dt
x - -
B %
Using the chain rule
N n
i 3Jk ) ﬁJk 9k
i
; where
2% [ 2k Jk Ik 2k Jk
ye Las. T as. 25, w0
«)5 \Sl 82 3 R 1 q

and from Eq. (}-.3-5)

Jk _ 1
Ds

2

%

=

I
(@)

QY
wn
o

]

(X
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Tk _ Ak
J 8, )8,
Jk 1 Wy
= g |t .
W
E 1 4ﬁ1q+ Y}_ + 5.4
; 3
-W S, + 8
2 k = L. > S.q+ wl + S.aq + = L 2
Ja  2q <V 3 2 -
/Slq+ -Wic+83q
I

Using the definition of AK and the fact that

E="(AE*I+I*AK)"

it is easily shown that for this example

-2k 2 0
E =1-1 -k 1
0 -2 0
If this notation is bothersome, recall that this matrix may be obtained

by writing the Ricattli matrix as a system of three scalar equations and

simply identifying the coefficients as shown in Appendix E.

Now
[ 1 7]
- X 0 - T
-1 _ 1
E 0] 0 - 5
1 1 1
T . -5 (e )




e

and
- HI" = O
. 1
’ Thus -1 -1 . -
= — 0 1
i >y 1 2k? e
b g D = - a E "I" = O
)k Jx 0 0 0
[ o o 3(1- 3 1
2k k
r - - -
- D, D
T or if D=
Eb Ig ]
Thus _
A SN
Ik K°
3D2 _ :
)k
Van
2 1. // |
2k K2 2 '
-
!
) Thus
i ho! J ‘) T c 2
X _ SC Dc) _ -~ _1 ( % - 'i%') o 2
dx Sk K2 K 2
| ey
where E(to) =c=

Consider the specific values of the weightings used in the example of

ety uuuwmltﬁiltm“ﬂ“immw

Chapter II which were




which lead to the optimal SOC feedback gain,

Assume that -
1
c =
0
Then
aAA A 1
Jx _ aJx - aJx 2k - . i \/12:= -'lg
s s Ok J 2 8
28, 383 5,
A A
;)q Jx ~)q e 2 L

Hence the intuitive notions are verified since increases in the state

A

weighting, S, or S causes the state error Jg to aecrease, while

1 3°

increasing the control weighting, q , causes the state error to increase.

Calculations of this type may be made to verify or establish the
effect of perturbing the weightings. It is possible to systematically
vary the weightings based on this information to obtain changes in the
design characteristics and hence proceed to a acceptable design in a
logical manner. If desired this gradient procedure could be added to
the SOCDES I program and the weighting perturbations could be calculated

automatically.

/‘




Moreover, the SOCDES I program could be used as a computational

method for solving other optimal problems. Suppose that it was desired

to minimize

(e/0]
A T
J, = f_gc_dt
t
(o}

for some set of initial conditions. Then SOCDES . 2culd be used as &
gradient procedure to solve this optimal problem and possibly avoid some
of the formulations and numerical difficulties o. the parameter optimi-

zation approach.

o li Design Loci

One of the most useful of the classical technigues for the study
of single input single output time invariant systeis is the root locus.
Essentially it is a graphical technique which plots the loci of the
closed loop poles (system eigenvalues) as a function of the loop gain.
This technique provides insight as well as explicit infcrmation about
the behavior of the system. A similar procedure has been proposed
for SOC through the use of the SOCDES I program. This technique involves
determining the loci of the closed loop pules as & function of the
weighting matrices. The SOCDES I program is used to solve the SOC
problems for various values of the weightsings. For each step, the
characteristic equation is solved and the poles obtained. Thus these

poles as a function of the weightings are plotted.

Another locus which has been of use is the gain locus which involves

/\

y
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the plotting of the feedback gains as a function of the weightings. From
this locus, the gradient of the gains with respect to the weigntings
may be obtained and used to determine the effect of the weightings

on the design criterion.

As an example of these loci agein consider the second order example.

Let

then

(]

+ k -1
det = 82 +kS+1=20

Since k = /E;

_ 2 :
S > +J

opol

Consider the loci of these roots and the gain as Sl is varied which

is plotted in Fig. 4.2a and L4.2b. As Sl is increased the gain increases

and the poles approach the real sxis. As Sl is decreased, k approaches

o)

one and the roots approach - % * J‘ In a similar manner consider
the loci as a function of the control weighting, q . Then the trend is
in the opposite direction since as q 1is increased the gain decreases
and the poles approach *he imeginary axis. By varying q it is possible

to obtain all stable values of the feedback gain. See Fig. 4.3a and 4.3b.
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Note that the Sl and q root loci coincide where they both exist.
Since various combinations of weightings may give the same gain it is

possible to get identical rocot loci for different weighting sets.

Another useful tool is the graphical representation of the feed-
back gains corresponding 1o stable poles. Since the poles are a
continuous function of the gains it is possible to plot the set of stable
gains 7‘{ in some region of a Euclidean space. Then the K locus may

be plotted on the same graph. For a problem with two gains,

a typical plot is shown in Fig. 4.4




stable gain region

ki

FIG. 4.4
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Nomenclature

Matrices
A Syster matrix: NS by NS
, B Control coeificient matrix: NS by NC
D Notational matrix
E Coefficient matrix for equivalent vector equation: NP by NP
} K Feedback gain matrix: NS by NC
: P Ricatti matrix: NS5 by NS
Q Symmetric control weighting matrix: NC by NC
S Symmetric state weighting matrix: NS by ©Ns
dD Matrix of partial derivatives
; L
Jk,
i
A
‘75 J Jacobian matrix of J with respect to g
: ‘25 k  Jacobian matrix of k with respect to g

Vectors
i~ "D" Vector equivalent of D
| "I" Vector equivalent of I
g Weighting vector
_3 Vector of design criterion
k Vector of feedback gains
"P" Vector equivalent of P
x State vector: NS
u Control vector: NC
Scalars A
Jx Design criterion expression
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Chapter V

THE SOC MODEL REFERFNCE PROBLEM

5.1 Imntroduction

In order to design a control system, a mathematical abstraction
ar model of the process to be controlled must be obtained. In any practical
situation this model is only an approximate representation of the actual
process. The effectiveness of the control system designs depends to a

large extent on the accuracy of this model.

Once the model has been chosen and the nominal design completed,
additional design factors must be considered. These factors include
the effect of possible environmental changes, such as additive dis-
turbances or plant parameter variations. Many of the current design
techniques allow the consideration of additive disturbances; however,
the plant parameter variations are not as easy to handle. These plant
parameter variations may be of two types; there may be actual changes in
the plant caused by component aging or the parameter estimates for the
model may be inaccurate. For this study, the term variations does not
refer to changes with time but rather to the fact that the constant
parameters have unknown off-nominal values.

In recent y:ars, the plunt parameter problem has been attacked by
sensitivity methods and by the model reference approach. The objective
of these control schemes is to cause the trajectory of the system to re-
main close to the nominal in spite of plant parameter variations. The

model reference scheme does this by attemping to null the error between
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the actual trajectory and the ideal nominal trajectory generated by a
model. Note that the term "model" has been used in two different ways.
The first usage referred to the mathematical description of a physical
process while the second referred to a "black box" which may or may
not have & physical reelization and which generates the desired nominal
system treajectory.

The scheme proposed in this section consists of two feedback loops.
The inner loop is designed with the aild of conventional or optimal tech-
nigques on the basis of the assumed nominal process model in order to
obtain satisfactory respons2 to command inputs in the presence of additive
disturbances. The outer feedback loop is designed with the SOC technique
to compensate for inaccuracies in the process model parameters as well
as any additive disturbances. An advantage of the model reference
approach over that of trajectory sensitivity, is that the nominal model
reference trajectory may be chosen independently of any sensitivity
considerations, while the sensitivity approach involves a tradeoff be-
tween the nominal trajectory and sensitivity. The model reference

approach pays for this advantage with increased controller complexity.

To be more specific, consider the regulator control problem of
driving the output of a system to zero. The following development is
easily extended to the more general case of a non-zero command input.

In Fig. 5.1 the model reference scheme is pictured. The inner feedback
gain matrix, KO , is designed on the basis of the nominal process model.
In the outer loop, the control is obtained by feeding back the difference

between the actual system output and that of the output of the model.
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The outer loop gein matrix, K , is found by the application of the SOC
procedure. It is shown that this gain matrix depends on the process

model and desired response characteristics but that it does not depend

on the nominal trajectory. This property may be of practical significance.
Consider the Saturn launch booster prcblem. Aside from the difficulties
involved in generating an accurate process model, the actual flight of
the vehicle is subJject to severe additive wind disturbances. For a
particular flight, the guidance command is a function of the mission
requirements and the wind patterns, hence nominal trajectories vary from
one flight to the next. Using this model reference scheme it is possible
to precompute the feedback gains and hence the controi law and then simply

change the model input based on the nominal trajectory.

5.2 Formulation of the SOC Model Reference Problem

Previous sections have described the SOC theory and considered its
application to control problems with unavailable states. The design of
the outer control loop in order to keep the system trajectory close to
the model reference trajectory in spite of parameter variations can be

formulated as an unavailable state problem.

Assume that the inner control loop and the command input, which
for the regulator problem is zero, are given. Consider the effect of
parameter variations on the system trajectory. A perturbation model
which describes this effect can be obtained by the linearization of the
plant and the nominal feedback control about the nominal trajectory and
parameter values. The parameter variations are considered as additional

state variables and the SOC theory is used to determine a linear feed-
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back control law that does not depend on the parameter states. Since

the gains operate on the perturbed states, in the actual implerentation
they operate on the difference between the sctual and nominal trajectories
as shown in Fig. 5.1. Strictly speeking the analysis applies to small
perturbations, although in many cases it has been found that the SOC
model reference scheme gives satisfactory control for a wide range of

parameter values.

Derivation of the Perturbation Model

Llet the nominal process model with a inner loop control and

a command input be described by a linear system of differential equations.
N T
x= (A(g°) -BK ) x°+Bm; x(t)=¢c (5.2.1)

where q° 1is a vector of NPA parameters and Ko is the matrix of inner

loop gains. The superscript ° indicates a nominal quantity.

By expaniing Eq.(5.2.1)about the nominal parameter vector and
trajectory, an expression for the differential equation system describing

the off nominal trajectory can be obtained.

NEA
] s o
x=x"+ (A -BK D ax+ O, =2 £°dsL+B§m+02

/(é .\.q )
LAYy




2 and O2 denotes second and higher order terms.

If the perturbations are sultably small, the higher ordered terms

may be neglected and a linear model is obtained.

' ax = x-x° = (A(g®)-B KOT) ax + LA

VA
= qX

The SOC problem is formulated in terms of an augmented state vector.

§O d%z + B dm

L= 'aé'

The dynamics which describe this state vector are obtained from the linear
: perturbations model and the fact that the parameter vector is assumed to

be time invariant.

1= Ay+Bu; x(t)=¢ (5.2:3)
where — | —
A-BK* A x°. A x°
° ! 9y A ~ }L
0 : 0 . 0 //
- { .
A= |
' 3
0 : 0 . 0
)
A = ——A-
qi "lq‘i
-5 H
B = 0
. O -l




L
|
i
i
i
|
!

'

- 0

< _ -
dg

u = dm

The upper elements of the initial condition vector are zero since it is
assumed that the perturbations in the parameters do not effect the system

initial conditions.

formal Statement of SOC Problen

The SOC control u is s’ructured so that the unevailable
perturbation ~tates and the pararzter states are not fed back. This

control, u , 1is chosen .o minimize J.

t
f ” N
J = % -[ (Z? Sy-+ 1? Syt 1? Wu+ 1? Wu+ E? Q u) dt
tO

subject to the dynamics of Eg. (5.2.3. Since 5? is a function of time,
E is; and it would appear that this is a time varying SOC problem. Thus
the SOC feedback gains would be time varying and would be characterized

as follows.

"l%a

Ko(t) = @1 (B p(t) + ) I,

-I'>(t)=f\ﬁTP+PA{(‘+S+!2QKT;P(tf)=0

9l.
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-

A- B(KT+KOT) : A xseeed x°
! 9 NPA
0 . 0 * e . 0
e A= ] . .
1] ) . .
' .
o] t 0 ¢ .o o 0
. + J

However, a close examination of these equations indicates that the
gains are independent of Aqi and x° ! This surprising result implies
that insofar as the linearization model is accurate the model reference
schere compensates for any parameter variation around any nominal trajec-
tory. Moreover, although the SOC problem has been formulated as a time
verying problem, constant values of the model reference gains can be

found by considering a time invariant process model and inner feedback

geins and a SOC index terminal time of o0 .

To demonstrate this result a matrix partitioning notation will te

used. For convenience assume that there are two parameters and let

A - B(KT+KOT) oA x® oA x°
4 %
- , |
s = 0 . 0 i 0
0 ; 0 .0
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W

-1
W= R
=
(5.2:4)
. T T 7
Pl P2 P3
_ T
P = P2 Pk P5
| P3 P5 P6
With this notation the matrix differential Ricatii =quatimm can be
decomposed and written in terms of six cotponent equations.
gt (@Fr e 21 (5.2.5
1 > * 2022)
-I v 0
where I, = —-- | ee- is NS by NS
o 0
and I is a NS~L by NS-IL identity matrix. The last L states
of the original state vector are assumed to be unavaileble.
= A-BE +k) (5.2.5 )
= P. AA+ A P 4+ 8 +KQKT-P(t)=O (5.2:6)
1R RS 3 By ltp :
_ o T AT LT ] T _
= PlAql§ * 8,7 + M P, 3 By(tp) =0 (5.2.7)
_ o T AL 5T . T _ )
= PlAq25 + 8,7 + AR Py i Py (tf)—O (5.248)
. N
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m
‘;’u = B, Aql X+ x° AqlT PET + 8, i Rlt) = 0 (5.2.9)
BT pa aorx0 4 TeTagT P.(t.) = 0 (5.2.10)
57 27,2 = Tg 3 7% b5t
. T
Pg = Py A x%+ x° A T ‘ST + 8¢ i Plt) = 0 (5.2:10)

Fron Eq.(S.E.S}and(S.E.é)it is clear that th:e feedback gains depend only

on Pl which is independent of the other P partition blocks. Thus,
the SOC gains are independent of Aq ’ Aq and 50. If the time

1 2
invariant steady state problem is considered, the SOC model reference

gains are determined from a algebraic matrix Ricatti equation.

A

T T ~
Pl Aﬁ + Aﬁ Pl + Sl +K QK =20 (52~

and % = (AB(K +X) ) x (

U
o

.2.13)

The nominal composite closed loop systiem, AQ , that is the system
with feedback gains equal to the sum of the inner and outer loop gains
is stable.

Al’(‘zA-B(KOT+KT)

This can be shown by choosing the fcllowing Lyapunov function.

V= ET Pl X

where Pl igs positive definite and is cbtained i1..:m the partitioned Ricatti

matrix. From Eq.(5.2.12)ard(5.2.13}
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T (s, +K k%) x

4
! V= -x 1 X

which is negative for any allowable system trajectory. With the application
i of the Lyapunov Stability Theorem, the result is obtained. If the para-

meter variations are suitably small so that the linearized dynamics are

[ valid, NPA .

- ¢ m A

dx = (A(qo)-BKo*) T S x% day+ B dm
’ - da L
A=1 Y
T

and dm=-K d&=u

-

. Or, in terms of the composite system matrix,

i

: NPA

;, a% = AP ax + ;’ LB yo gy soax (8)) = 0 (5.2.1k)
i . q -

! (=1 £

.

{ Assume that the nominal trajectory is stable, then

? 59——3-0 as t—> oo

? Since the composite system is stable, its state transition matrix .ﬂﬁ(tlto) //,/7“

] approaches zero as t approaches infinity. If the last terms of Eq.(5.2.1k)

is considered as a forcing term, the trajectory despersion can be written

as t  NPA ;

@)= [ e T 22 (), el :

- b =1 o, L ;

i 0 ‘ A i

- and §
' x(v) % x°(¢) + ax (t) (5.2,15)

Thus, the dispersion remains b.unded since it can be shown that the

integrand is bounded by some negative exponential.
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From the block diagrams of Figure 5.1, it is seen that the
differential equations describing the model reference system can be written

in two ways

x = (A-B KOT) x - B KT (x = 59)
or
x = (A-B (xoT +KT) < + BK x°

The solution for this second equation can be expressed as

t
x(t) = g2 (t,8) e+ f ¢{(-(t) ¥) BK x° (7)) ar (5.2,16)
o}

From this viewpoint it is clear that the model reference system will re-

main stable as long as the parameter variations do not cause the composite

system, Aﬁ , to become unstable. Note that Eq.(5.2.15)is an approximate :
relation derived from the linearized model which is used to calculate

the onter loop, while Egq.(5.2.16)is an exact expression derived from the

consideration of the model reference system block diagram.

A important feature of this model reference approach is the fact
that the nominal response of the system, which is independent of the

outer loop sains, may be designed to achieve the "best" system response

3

without regard to parameter sensitivity considerations. Thus, the model
reference gain, KT, could be chosen so that the composite system is
insensitive to parameter variations. If the parameters have nominal values,
the "best" performance is obtained while if there are parameter variations,

the response may deteriorate slightly but the entire system will remain

stable.
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Although most of the blocks of the Ricatti matrix do not effect
the calculation of the feedback gains, they may provide useful information.
Suppose that all of the blocks of the state weighting matrix, S except

Sl are chosen to be zerc. Then the optimal index may be expressed as

t

(a5, & + ' Qu) at

[
O
1]
VI
ct [ -
< ct

Using the definition of the control law and Lemma 2 of Charter II it is

possible to rewrite this equation as

ax ax ®
P = % ['5-:'] P ['a:'] = % f (axT (s, + K q K¥) ax) at
g a : = 1 =

0

The elements of P indicate the relative effect of the various parameters
on the trajectory dispersion. ‘he value of the cost index, which is an
integral weighted square of the dispersion due to the parameter variations,
dg , can be found in terms of the Ricatti matrix «=lements. L or example
for the system and Ricatti matrix of(Eq. 5.2.4)the value of the index

resulting from the variation dql is given by

e} 2
Jl = dql P4

Similarly, for a perturbation in %> dq2

With this information the designer has an indication »f the relative

effects of the various parameters. If Jlo is large compared with
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Jéo , then it might be important to know the value of 9 in a precise

manner while q2 might not have a significant effect on the systenm

response.

5.3 Example

In order to illustrate the calculations and effectiveness of this
model reference scheme, & second order damped oscillator example is
considered. It is assumed that only the rate state is available. The
model reference scheme is designed to compensate for lack of knecwledge
of the damping ratio, ;f . The differential equation defining the system

is given below and the block diagram is shown in Fig. 2.1.

¢

x+2}w>’c+a)2x=v(t)

o)
ILet 'f =0 and w=1 and use as the nominal inner loop gain the

S0C control law of the example of Chapter II.

The formal model reference problem required the choice of the

perturbation control u to minimize

'—l

@®
A A
T T T T T 2
J= 3 f(z SY +y Sy+y Wu+y Wu+u Q)at

e}

subject to

LR AT
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The augmented state vector is

dx
L = ax
dj‘
and
.0 .
-2 7 arko -u? -20>x°
A= 1 0 0
0 6] 0
E:
c= 0
af
Q= g , a scalar

The solution control law has the following structure.

Instead of calculating the formal problem, the reduced problem was solved
for various weighting matrices. The equations which characterize this

reduced problem are

K = Q"l (BTP+ gT-) I,

T A T_
AP 4 Py AK + 8, + kKK =0 (5.

w
o

[

~—
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[

where _2) o) © - k-ko -a?
i A
1 A =
1 0
{ - -
o | o
1=
l | P2 P3|
— -
| 55 8
i Sl=
s )
| SRS

Eq.(5.3,l)can be written as an equivalent set of scalar equations and

oty
. ‘

for convenience the values of ;f and w have been substituted and it

{‘ is assumed that W = 0.
J p
| k= L
q

{
| o :

py -k -k) *+2p, = -5, - qk

-l = -
}' P2 77 53 /
:
3
i or

1 \/2 2

k = =k, % 3 ky *81a% 859

These equations were solved for the following three sets of weighting

matrices.

mwmm A
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1.91 0
i 1) s= s, a=1, W=¢0
{ 0 1.91
l k =1
‘. '8.76 0

2) 8§ = , a=1, W=0

’ 0 8.76
f Xk = 3
{
: 53.08 0
{‘ 3) S = y a=1, W=20

0 53.08
8
{.

k= 9

These solutions are compared by perturbing the parameter, j’,

e
-t

similating the system and calculating
t

Jx=f x(t)2 at

t
o

with £t = 10 seconds. To provide a basis for comparicon the system was
simulated with onl;” the inner loop control for the various values of
parameters. The numerical integration was done with a fourth order
Runge Kutta algorithm. Three off-nominal values of ‘f; were examined
and the resultsare logged in Table 5.1. Note that 7: = - 1.664 with

the nominal gain alone corresponds to an unstable system as indicated by




k
J
\Fo 10 3.0 9.0
0 .354 | .354 354 354
-414| 500 | 448 | .414 380
-1.164[1.960 | 807 | .562 436
-1.664| o 1.501 722 .480
{°= o0
k°=v'2_
Table 5.1 J(k,t)
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the entry of o in the table. As expected the value of qk for an off
nominal parameter decreases as the model reference gain increases. This
corresponds to the tradeoff between state error and control effort. In
Fig. 5.2, the simulation results for the nominal control and parameters
are compared with an off-nominal parameter with inner loop control only,
and the full model reference system. Note that the model reference scheme
succeeds in keeping the trajectory close to the norinal in spite of the
parameter variation. In Chapter VII this model reference schene is

applied to launch vehicle problem.
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Nomenclature
& -
L
' i > Matrices
'
xf ) A System matrix:; NS by NS
§ L A Perturbation system matrix: NPA + NS by NPA + NS
% . B Control coefficient matrix: NS by NC
%2 = g Pertvrbation system control coefficient matrix: NS + NPA by NC
% E K Model reference feedback gain matrix: NS by NC
—§ N Ko Inner loop feedhack gain matrix: NS by NC
2 l; I’(‘ Composite feedback gain matrix: NS by NC
s 4 K  Perturbation model feedback gain matrix: NS + NPA by NC
P Ricatti matrix: NE oy NS
Q Symmetric control weighting matrix: NC by NC
S Symmetric state weighting matrix: NS + NPA by NS + NPA
g Symmetric state weighting matrix, class two: NS + NPA by NS + NPA
Sl Component ratrix of S: NS by NS /
W Bilinear weighting matrix: NS + NPA by NC
G Bilinear weighting matrix: NS + NPA by NC

Wl Component matrix of W: NE by NC

— Matrix of partial derivatives
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Vectors

Initial condition vector: NS

o o

Perturbation model initisl condition vector: NS + NPA

E

System input vector: NC

13

Perturbation model control vector: NC

q Pargmeter vector: WPA

Perturbation parameter vector: NPA

Jr—
oy

Perturbation model control vector: NC

I

1%

System state vector: NS

Y Perturbation model state vector: NS + NFA

o

W— | T—y, {—

b}




108.

Chapter VI

THE SOC SENSITIVITY PROBLEM

6.1 Introduction
s § The concepts of optimal control have been applied to the pr-blem of plart

parameter sensitivity in order to calculate control schemes which are relatively

insensitive. The basic concept is to define a variable which represents the

sensitivity of the trajectory or cost index to changes in system perameters.

‘.’ !

These sensitivity variables are considered as additional state variables and
are placed in the cost index to be minimized. Since most of the closed loop

control laws of optimal control requir: knowlsdge of all of the state variables,

the additional sensitivity states must be generated, adding to the complexity

of the controller. It is clear that for a given feedback control structure,

certain values of gains lead to less sensitive closed loop systems than others.

Thus it appears feasibl: .o formulate a SOC problem which determines a control

T r—"
oy

law that does not feed back any sensitivity states, and yet allows a tradeoff

fmer

between system error, sensitiviiy, and control effort. Using this approach

feedback control laws may be designed with sensitivity considerations, rather

Shma—

than designing and then analyzing for sensitivity characteristics.

6.2 Problem Formulation

Previous work3h’35’36’45 has defined and developed the concept of trajectory
sensitivity functions as outlined below. Assume that the state or trajectory
of a system may be described by a system of first order linear differential

equations, which are a function of a vector of constant parameters, g.

% = ag’) x° + By’ x(t ) =¢ (6.2.1)

o e W N e

[l
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where the superscript o indicates the nominal. Consider the effect of a

small change in the parameter on the system trajectory. The resulting off-

nominal trajectory is deseribed by the following system of differential equations.
X=Ag’+dg)x+By  x(t)=c.

This trajectory ray be represented by a Taylor series expansion about the

nominal parameter.

X
L 2
= + —F + 0
2 oX
where 0 represents second and higher order ter and 53 is a matrix of
partial derivatives.
Y P
o8] 24y
i,J
Similarly the trajectory dispersion is given by
X
o] a— 2
X=Xx- = dg+0 6.2.2
hx=x-x =32dg ( )

Assuming that the first order terms are sufficient to describe the tra-
Jectory dispersion, it is clear that for a given parameter perturbation the
dispersion can be made small by limiting the magnitude of g—-—i . Thus, define
the sensitivity matrix, Z, as follows.

()xi 1<21i<Hs

Dx
7 = %= Z = (6.2.3)
pr []1,5 oYy 14 j£ NPA

Let _z._'_j denote the Jth sensitivity vector corresponding to the ,jth parameter
and the jth column of Z. These sensitivisy vectors are adjoined to the system

state vector to form an augmented state vector.
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11.0.
r-;)xl - N _
= X
. Z
Ej = . 3 _Q_ = -.-l (6.2 It)
9 *ng y
| 9% | Zwea

The augmented state vector is to be placed in a SOC cost index; by appropriate
choice of weighting matrices a tradeoff between system performance and sensitivity
mey be obtained. The formulation of the SOC problem requires that a differential
equation describing the behavior of the state vector be known. Fortunately,

such an equation may be easily derived. Since by assumption g 1is independent
of time and the first order partial derivatives are cont mious, the differential

operators may be interchanged.

dz, - dx X
> = %5 .4 (il_{_) _d = =2.'_}‘c_ (6.2.5)
-3 dt dat qj E;qj dat i q_j

Note that the partial derivatives are taken with respect to the nominal. Using

Eq. (6.2.1) this expression becomes

° OA o8 OJX JX
=£a A =—; =Z—=0
25 aq35+( * B ()z)aJ 04 -
t=t,
or
e _Ja 2 . _ )
z, = an x + (A + B;—i&) EJ H _Z_J(to) =0 (6.2.6)

The initial conditions are zero, since the parameter variations have no effect

on the systems initial conditions. If the control law is lineer feedback,
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then Eq. (6.2.6) reduces to
. = XA (A - - ~ - £
:‘"j —‘%q:j‘z'b\l‘x BE) :j’ :J(to> —Q (O:do(/

The differential equation system describing the augmented stete vector may be

written in convenient state variable notation.

P
3= 5] (6.2.%)
ZNPA
[ o ]
e A A ;
2=AX+Bu; _S‘_c(:o) - |2 (6.2.5
i Q -
where
A »
i— &
0% Y
[ A 0 0 » . 0 ]
A A-BKT 0 *
q'l - .
A
A= 1| A 0 A-BKT .
2 SN
* - L4
» ® 0 . .
- 4 ‘ - 0
. . .
A 0 0+ 0 A-BKY




i)

1lie.

Consider the problem of formulating a quadrstic index in terms of the

state and sensitivity variables and solving for the optimal control law. It

! is well known that the solttion to the linear quedratic problem is & linear
S u |
L feedback controller. Note that the term, %—x— s appears in the sensitivity

differential equation. This term prevents the direct use of the linear approach

po-
pom———

since the necessary conditions defining the optimal solution are derived assum-
ing that the 2 matrix is Independent of the control and hence the feedback
gains. Thus a straightforward application of the SOC concept is not possible
since the gain matrix KT appears in 2

However, it is possible to reformulate the problem and remove this diffi-

.
§ culty. Define a new control vector
[ Y
— Q _
=15 (6.2.10)
] | NPA |

Anticipating thet the SOC control law is linear feedbeck, formulate the SCC

sensitivitly problem s¢ that u and m 5 have the folluwwing structure.

u=-KTx

(1o

g‘jm-l{m__z_4 ls 3 <2 NPA
o

Py

where the NS by NC gzain matrices in all the equations are required to be identical.

This iz a different application of SOC than was used in the unavailable state

problem. In this case tle galins are required to have equal but unknown values
which will be determined by the solution of the SOC problem. In addition, the

unavaileble state property is used to insure that neither the unavailable states

e em

Z -
e
7
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nor the sensitivity variables are fed back. Now, the dynemics may be rewritten.
*
- - - A
X=ARX+Bu (6.2.11)
wvhere
A 0 « + . 0]
A A QO o ¢« 0
- q‘l * P
A= . o . - ¢
* v - M v 3
* N " 0
4 <
k. . )
A 0. ¢ « O A
. YA
b~ -
B 01
{ C
3 - 0 L] *
- B = . . . .
0
o & »
]
. *
- 0O ¢+ =+ O B
- §
The SOC sensitivity control law, u, is chosen to minimize

<0
A . A A
~ 523 f(Fs2+5a+Fwi+FwE+Tad) e (6.2.12)
: ¥ s+ sx+F Wi+ wiru el
t
L )

subjeet to the dynamics

10

g(t ) = (6.2.13)

IMdde
|
>\

I~
+
x

e

[
ese VWO

and the S0C structure constraints.

E L 0
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u=-Kx
EJ='I{TEJ
or
f=-Kx
wha
rKT O b4 [ O-
[ - '
I.{T=O. * e ¢
: . . 0
0 « « s 0 xT‘
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A A
The selection of S and W and the derivation of the necessury conditions are

described in Appendix D and summarized bhelow.

SOC Sensitivity Ricatti Equation

Al P+Paz+5+KQK =0

where
A'!? = (A - BKT) . (NPA + 1)NS by (NPA + 1)NS

A =(A-BK'): NS byNs

(6.2.14)
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Feedback Gain Equation

KT 0 L4 . 0
L ] ‘. .
T(T = o] » L4 .
¢ * A
’ ¢ ' 0
1 4 * e T
O ¢ « ¢ O K
3 J
where
K =g XaT p + EE) *
2/ 711
. | T ©
and Iy;= is a (NPA + 1) NS by (NPA + 1) NS matrix with Ins-r
0 0

the NS-L by NS-L identity matrix.

6.3 Proble~ Simplification

The computational effort involved in solving the optimel trajectory sensi-
tivity problem by other m:e‘c,hod.s35 ,36 mey be very large. The use of SUC reduces
the computational requirements. However, the dimension of the sugmented state
vector may become unwieldy. For each parameter of the parameter vector the
dimension of the augmented vector is increased by NS. For NS system states

and NPA paremeters, X has (NPA + 1)NS elements and the Ricatti matrix has

(A + 1)NS ((gPA * LNS + 1) elements. For example, with a system of 7 states

and 1 parameter the augmenied state vector has 1l states and the symmetric
Ricatti matrix has 105 independent elements. To obtain the solution to this
Ricatti equation would require the solution of 105 simulteneous nonlinear

equations, which is not a triviael task. If two additional parameters are considered,

the corresponding Ricatti equation would involve 406 elements. If the SOCDES
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iterative approach is used to solve these equations, two linear systems of
dimension equal to the number of unknown Ricatti elements must be solved at each
iteration. Accuracy and running time conslderatlons would indicate that this
spproach is not feasible for most practical problems.

However, a careful examination of the SOC sensitivity equations indicates
thet this "curse" of dimensionality may be reduced significantly. It is shown
below that the computational effort involved in solving the sensitivity problem
is approximately equal to the effort involved in solving a SOC problem for the
original system, regardless of the number of parameters. That 1s, systems of
equetions on the order of ES_(HS_i_l). must be solved for any number of parameters.

To demonstrate this reduction, the matrices of the Ricatt! equation are
partitioned into blocks of NS by NS elements. For convenience, & parameter
vector of two elemruts is considered, NPA = 2.

Thus,

A?= A 0 : 3NS by 3NS
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Q=140 Q, 0 : 3NC by 3NC

K 0 gy

(& o o]
F=]o K o |: 3 vy 3ms

K 0 KT_

and
-KQlKT 0 o ]
Re ™ = 0 KQ, K 0 3NS by 3NS

0 0 KQ.3KT

Using this notation the SOC sensitivity Ricatti equation may be written

as a set of 6 NS by NS matrix equations.

T 7 T _
By *AqEytPyA. +h P,+8 +KQK =0 (6.,

T
P.A, +AT P +P
Pt Bt R g, T2t T3y, Ty B3

PQAK+AKT P2+P,+Aql+P5TAqe+sg=o (6.3.2)
PBA.K+AKT Py + Pg Aql+P6 Aqe+s3=o (6.3.3)
PMAK+AKTPA+SM+KQ2KT=O (6.3.4)
Py Ay + Al P + 85 = 0 (6.3.5)
Po Ayt Ay gt St KK =0 (6.3.6)
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-1 T -1 I .
K 3‘}1 B™ P, +Q g]r}l (6.3.7)
Since P and S are symmetric, the diagonal blocks of the psrtitioned
representation will also be symmetric while in general the off-diagonal elements

will not be. Note the recurring underlined portions of the above equations and

consider general matrix equations of the same fora.

Type I:

P, A +ATP =D (6.3.8)
vhere P, is symetric.
Type II:

Py A+ Al P, = D, - (6:3.9)

whexe PJ is not symmetric.

In Eq. (6.3.1)=(6.3.7), P,, P, and Pg are symetric while P, and P

3 5
are not. If the SOCDES approach is used to solve the SOC problem, a stable K
matrix is known at each iterriion and Eq. (6.3.1)-(6.3.7) must be solved for P,

and P 3

Since AK is stable, there exists a unique solution to equations of Type I
which mey be found by the solution of an equivalent set of 52 (NS + 1) Llinear
equations. Denote this equivalent set by

" it " o n "
B," = "D, (6.3.10)

This equivalent system of equations is described in detail in Appendix E. The
manipulations involved in this transformeation do not seem to be well known as

evidenced by & recent publfi.c::ation.1"6 The Type II equations may be reformulated
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80 as o reduce the solution effort. Consider Eq. (6.3.9) and its transpose.

AT o
PJ A AL PJ = 1).j (6.3.11)
T T, T T
PJ Ap + AL PJ = DJ (6.3.12)

Define symmetric and skew symmetric matrices as follows:

T
P, +P
P =-—J———j— = P - B T
P, 5 3 Py PJ
T
P, - P
P ood_Jd . FT__%
Fy===%":3 B Fs
and
Pj = Pj + PJ
By adding and subtra.ting Egs. (6.3.11) and (6.3.12) equations for FJ and
FJ are derived
P, A +ATP =(D, +DT)/2 (6.3.13)
J J J J -
P, A+ AT F. = (. -0 (6.3.1k)
J J J J
Note that Eq.(5.3.13)is of Type I; thus the equivalent linear system of §§ (Ns + 1)
equations can be written as
- T
" 7w ” = " " 6‘ .
A" "By (o, +D,7)"/2 (6.3.15)

-
Since PJ

corresponding to the lower or upper off diagonsl triangular elements. Thus

is skew symmetric, only L (NS = 1) elements must be found,
2

Eq. (6.3.14) is not of Type I but is closely related. An equivalent linear

system can be found for these unknowns.

ay' By = Dy - D)) e

(6.3.16)




)

I

(D

" rm

o

120.

‘A.K' is generated in much the same fashion as "A.K" except that minus signs

are involved since ?J is skew symmetric. Thus, Bq. (6.3.1)-(6.3.7) can be

written in terms of the equivalent linear systems.

o A N L b, * AqlT Py + By A, * Aqu Pyt 8 tKQ K) (€:337)
A" "1-;2" =-"(p, Aql + AqlT By + PST Aqe + Aq: P +5, + sar)"/e (6.3.18)
"ag" "By = - (B A * AqlT Py + B b, * Aq: Po+ 55+ 85)"/2  (6:3.19)
" "B = - (5, + KQ, K)" (6.3.20)
" nl‘,;_u - "(SS + SST)"/Q (6.3.21)
"M "B" = - "(S¢ + K Q KT)n (6.3.22)
' Bt = - (B A - AqlT B+ B b, Aq: By +8y-8y)/2  (6.3.23)
' '§3' = - (&g Aql - AqlT pST + B Aqe - Aq: Pg + 55 - S_:;'l')‘/2 (6.3.24)
' .’P‘S. = - (s - SET):/Q (6.3.25)

Equations (6.3.17)=(6.3.22) are six systems of F—S-(Eg——ﬂ'-}- equations with
the same coefficient matrix, while Egs. (6.3.23)=(6.3.25) are three systems of
5‘9—'(%'—1)- equations with the same coefficient matrix. This is significant
since after an initial solution to a system of linear equations is obtained, the
computational effort involved in obtaining solutions for different right hand

side vectors is relatively very low.

;




it

Thus, using this approach, Eq. (6.3.20), (6.3.21), (6.3.22) and (6.3.25)

may be solved for Py, Pj', and Pg. Then Eq. (6.3.18), (6.3.19), (6.3.23) and

(6.3.24) are solved for P, and P,. Finally Eq. (6.3.17) is used to find P, .

2 3
To summarize, instead of solving & system of (NPA + 1)NS (£NPA + LNS + 1)

equations to determine the Ricatti matrix, a system of NS Ng’ L equations

+1) (NP + 2)
2

is solved (xe times and & system of o Ng =1 equations is

solved ﬁfg_*_i). times. For example, if NS = 7 with two parameters (NPA = 2),
the solution of & system of 231 equations is replaced by the solution of a 28
equation system 6 times and a 21 equation system 3 times. This is a substantial
reduction in computational effort.

With this computational approach, the SOC sensitivity problem is no more
difficult to solve than a SOC problem for the original system. Thus SOC has a
distinct computational advantage over other trajectory sensitivity fornmlations.‘

It now becomes feasible to apply the sensitivity techniques to practical problems.

6.4 Examples
A. First Order Example

Consider the first order system described by this differential equation.
$=ax+bu
Assume that the value of a 1is not accurately known but that it lies somewhere
near a nominagl value of -1 and let b = 1. The sensitivity variable for this

problem is defined as follows.

P
*=Ja

Use the SOC sensitivity prqcedure to calculate a feedback control so that the

closed loop system is insensitive with respect to a.




x = (a=k) x ;

Choose @ to minimize J,

o
subject to
X==-x+u
i=-z+x+m
or
L -l 0
_2_:
1 =1
and A
- A A
1 f12
S= A "
| So1 Pee
_A A
nTll Wl2
W=1, A
R -~
™ ™
o x
E:
L 2 )
-
A
u=
.m.
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511 0]
S =
0 s
| 22
— -
1l 0
Q=
0 1
and -
0 8]
W=
EIY

The Ricatti equation which defines the solution gain is given below.

ZKT P+PEz+8+KQ % =0

_ k 0
K =
0 k

and

“2 Paa = 2P, K+2Dp., + 8, + k2 =0

11 11 12 11
2 pys (L +k)+ Pyp = 0 (6.4.1)
2

-2 Py, (L +x)+ Spp * kT =0

and

k= pll

To illustrate the equivalent v:ctor notation, P can be found as a function of

k and thus k as a function of sll and 822.

E"P" = « "(S *'iQK:)"
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The coefficient matrix E 1is obtained from Eq. (6.4.1).

P11
Htt
=P
Pap
su + k2
" _nh
S+ = o]
2
322 + k
Thus,
2
-2 -2k 2 0 P1q =8y - X
0 -2 -2k 1 P, | = 0 (6.4.2)
0 0 -2~2k Poo =S5 - k2
Then p;; 8sa function of k, 8117 and 8, mBY be determined.
2 2
5,4 *t k S., + K
P =3 [ T 3 ] (6.4.3)
2(1+k)

Since py; =k, Eq. (6.4.3) can be used to define an equation in 811> Bppr 80d k.

kl*+uk3+(§-su) k2+(2-25u)k-sn--s-§—2-=0 (6.4.4)
A positive solution to this equation is scught since the positive definite
solution to the Ricattl equation is of interest (pll> 0). It 1s expected that
as the weighting on the sensitivity variable, B in increased the corresponding
closed loop system will become less sensitive to changes in a.
let the initial set of weightings be chosen as follows.
8,, = 1.0

11
8op ™ .876
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Equation (6.4.4) is solved to obtain
k = 0.5

The sensitivity weighting is increased.

s 1.0

1l

i

s 15.0

22
and Eq. (6.4.4) is solved to obtain,

k=1.0
As this welghting is increased further, the feedback gain also increases. Clearly,
this leads to a decrease in the system sensitivity to a. For a off-nominal
value of &, a = O, this i3 verified by the entries in Table 6.1. The optimal

trajectory is described by
$°=-(°+x)x°=-(1+x)x°; =x0) =1

while the off-nominal trajectory is described by

x=-(x) x; x(0)=1

This table also indicates integral square values of the sensitivity variable, z,

and trajectory dispersion Ax = x - xo. Note the integral square values of these

variables decrease as the sensitivity weighting and feedback gain increase.
Although the actual value of the cost index may not be of any use, it

is iuteresting to look at the specific nature of the formal index. To do this

explicit values of g and G may be found from their respective definitions.

From Eq. (6.4.2), with k =1, 817 = 1.0, and s, = 15.0, the Ricatti matrix is

1l 1
1 4




S22 k jx}ct f Z'dt j:s K'dt
] 0 0
0.876 0.5 .333 | .074 .3333
15.0 1.0 280 031 .0834
28.7 10°] 10.0 .048 .0003 | .0003
Table 6.
ARST ORDER SENSITIVITY EXAMPLE
-]
S k f X xa jz‘zdf AXBxdr
0 0 0
0.005 L73 5.78 10°'| 3.8 10~']2.61 10~
0. .78 8.71 107 2.39 107|257 10~
1.0 L95 5.12 10| 2.46 10} 1.65 10™
10.0 268 |349 107" 9.46 102 4.6610°
100.0 434 | 217 10°] 2.258 102] 8.22 10°3
1-10* 8.40 |1.00 107! 3.07 10 9.30 10°*
110 | 26.6 265 00'1 144 uo"'I 3.63 10

Table 6.2
SECOND ORDER SENSITIVITY EXAMPLE

126.
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A

I The structure of W 1s somewhat simplified since all of the states, in this
A

{f cese one, are fed back. From the definition of W, given in Appendix D, end

roting that W =0 and Ille = 0,

S ﬁu=-2[[11f(1=§+-”§’)}]ll=o
B T R

See Appendix D for an explenation of this notation. Similarly

i A -
Wy = -2 [[PB]J 21=-2

| and

| . . -
i W = 2 { [(z,," #81]] " [(=5]) 22}




As a check
A 1 1 0
% - (BT P+ -g) = +
1 4 -1
A
Finally S5 1is given by its definition.

A A - O '2
S =% (WKT + KWT) =

-2 =6

128.

A A
Using these values of S and W this SOC problem may be stated as choosing u

and m to minimize J.

J:% f(x2+9zg-hxz-Em-2zu-6mz+u2+m2)dt

o
subject to
Xx=-x+u
z=-z+x+m
with the solution
u=-Xx
m= =2z

B. Second Order Example

To compare this method with other techniques, consider the second order

damped oscillator example. Once again the differential equation describing this

system is given by

§+2fw§r+w2y=u‘

Assume that the damping parameter f is susceptible to variations. The state

equations are

e R AR " "
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i - -2,‘70.) -a)e
A=
i ! 0
(1
b =
) o
and
E -2 0
A =
q
0] 0

Only the rate signal will be fed back. Thus

and NS =2, L =1, NC = 1. For illustrative purposes, use the reduced formulation
described by the following equatious where each of the partition blocks is of ////}‘

! the proper dimension to allow consistent multiplication.

_ .
ST P
P P i
L2 3 ;
_ o
5. 5
S =
S S
e 2 3 -
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0 0]
0 0
-k-2f @ -wg
= A - BKT =

equations describing the optimal solucions are

T

T T T
Ap + A Py + P, Aq_+Aq_ P, +8 +KQK =0 (6.k.5)
T
A + AL P, + Py Aq+82=0 (6.4.6)
AK+AKTP3+83+KQKT=O (6.4.7)
! 2] r a 2
Py Py 51 51
= S. =
1
2 3 2 3
! 2 | 51 1
Pgl P23 52l 523
= S. =
2 L 2 2 i
| P2 by | B2 52
[ 1 2" ! 21
P B3 ®3 83
= S =
p.° 3 ’ 5.2 83
| F3 3 | 3 3
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o]
where the elements of these matrices are scalars. Assume that UP =0 and

®w = 1; then Eq. (0.4.7) can be written,

1 2 1 2

-2 p3 k +2 p3 + 53 +qgk =0

1 2 3 2 _ <
-p3 - p3 k + p3 + s3 =0 (6.4.8)
- 2 p32 + 833 = o

Equation (€.4.6) becomes,

1 3 1 2 1 1
-kp2+p2 -kpg +p2 —2p3+82=0
1 3 L 3
-p, -kp,m +tp, *+8,7 =0
2 2 2 2 (4 L
5.4, 9)
2 L 1 2 2
-k 2 + P, - py - 2 p3 + S, = 0
2 3 oo
“Pp "Py tsy =0
and Eq. (6.3.1) is equivalent to
0o lx+o2 @ yplista k2 =0
e P Py Po 1 T ¢
- pll - pl2 kK + plJ -2 p22 + 512 =0 » (6.4.10)
2 3

-2 pl + s;” = 0

The gain equation is

bT P, I 1

1711
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Equation (0.4.8)-(¢.4,11) can be solved to obtain
k=1.73
As the sensitivity weighting

8 0

0 s

is increased, the resulting closed loop system becomes less sensitive to J as
shown in Table ©.2. The results enterad in this table were obtained for a off-
nominal J; of =-1.0. Again for this simple problem the insensitive nature is
obtained by an increase in the magnitude of the feedback gain so that for the

same value of parameter variation, the relative effect is diminished. Figure 6.1
indicates the nominal and off-nominal time domain response o an initial condition
of y(0) =1 for k =1.73 and k = 8.4 while Fig. 5.2 and 5.3 compare the
sensitivity variables and traje~tory dispersions.

A basic difference between the model reference and sensitivity tech-
niques is pointed out in the responses of Fig. €.1. 1In the sensitivity approach
the feedback gains and hence the nominal trajectory are chosen to be insensitive
to parameter variations. In the model reference technique the nominal per-
formance of the system is independent of any sensitivity considerations. This
may be an advantage since reduced sensitivity may correspond to degraded nominal
performance. “he "price" paid for this model reference feature is the increased
complexity of the model reference controller.

As an indication of the feasibility of the SOC sensitivity approach,
it was compared with the method described by Dougherty.36 Both methods were used
to solve the same second order problem which is similar to the problem discussed

above except that both position and rate information is fed-back. Dougherty's
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initial control law was

u=-2kty-293y

These gains can be obtained with the S0C sensitivity approach with the following

walghtings.
r10.9 0 -
q_=l-0 Sl=
e 1.0 3
0 o0 [ o7.4 o ]
S. = S. =
2 0 0 3 0 27 .4

Using Dougherty's technique a desensitized control law
u=-2.78y-54.16y

is obtained with an e.ecution time of about fifteen minutes on an IBM model 360/%5)

digital computer. This same control law can be obtained with SOC with the

following weightings; note the increase in sensitivity weighting.

[13.8 0 ]
q = 1 H S. =
1
| 0 1
0o 0 [ 281, 0] /
82 = i S3 = .
o 0 | o 281. ] '

The execution time required to solve this problem using the SOCDES algorithm

was ten seconds! As the size of the problem considerel increases the execution

time requirements of the SOC technique increase but they still remain reasonable ;
as shown in Chapter VII where the technique is applied to the Saturn V launch

vehicle problem.
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. Nomenclature

——

Matrices

{E A System matrix: NS by NS

lg K Augmented system matrix: (NPA + 1)NS by (NPA + 1)NS
A Augmented system matrix: (NPA + 1)NS by (NPA + 1)NS

I Az  Closed loop sugmented system matrix: (NPA + 1)NS by (NPA + 1)NS
AK Closed loop system matrix: NS by NS

1 AqJ Partial derivativ~ matrix: NS by NS

ff s Control coefficient matrix: NS by NC

) B Augmented system control coefficient matrix: (NBA + 1)NS by (NPA + 1)NC
8 Augmented system control coefficiet matrix: (NPA + 1)NS by NC

i Di Notational matrix
. K Feedback gain mstrix: NS by NC
: X Augmented system feedback gain metrix: (NPA + 1)NS by (NPA + 1)NC

P Ricatti matrix: (NPA + 1)NS by (NPA + 1)NS
Pi Component of Ricatti matrix; NS by NS

- 53 Symmetric part of Ricattli component matrix: NS by NS ///}\
;3 Skew=-Symmetric part of Ricatti component matrix: NS by NS
Q Symmetric control weighting matrix: (NPA + 1)NC by (NPA + 1)NC
3 Symmetric state weighting matr’x: (NPA + 1)NS by (NPA + 1)NS
S Symmetric state weighting matrix; class two: (NPA + 1)NS by (NPA + 1)NS
Si Component of state weighting matrix: NS by NS
W Bilinear weighting matrix: (NPA + 1)N3 ty (NPA + 1)NC
3 Bilinear weighting matrix; class two: (NPA + 1)NS by (NPA + 1)NC
Z Sensitivity matrix; NS by NPA
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Vectors
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Control vector of ith sensitivity vector: NC
Parameter veclor: WNPA

Perturbation parameter vector: NPA

System control vector: NC
Augmented system control vector: (NPA + 1)NC

State vector: N3

Augmented system vector: (NPA + 1)NS

Sensitivity vector of ith parameter: NS
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Chapter VII

CASE STUDY: THE LAUNCH VEHICLE PROBLEM

& 7.1 Introduction

In this chapter, the techniques developed in the preceding sections are

PR

demonstrated by their application to the significant engineering problem of the
altitude control of a large launch vehicle of the Saturn class. The vehicle
configuration is shown in Fig. 7.1. The first stage propulsion is obtained from
five liquid fuel engines each of which generates about 1.5 million pounds of

. thrust. Control is obtained by gimballing or swivelling four of the five engines.
This vehicle is a large complex system which is difficult to control. Neither

classical nor currently available modern techniques have been particularly

5 - effective in solving this problem.

There are two major sources of difficulty. The first stems from the physical
characteristics of the vehicle and is independent of any design technique. The
basic objective of this contrcl pre¢’ _em is to force the vehicle to remain in the
neighborhood of the programmed nominal trajectory despite environmental disturbances.
Bach new generation of launch vehicles is larger than the last; the length to

width ratio decreases corresponding to an increase in the flexible nature of the

vehicle. For the Saturn V vehicie this length to width rate is about 10 to 1
and the flexible modes pose a serious problem. Under certain flight conditions

i it is possible to excite these modes to such an extent that the vehicle destroys

itself, Thus an important objective of the control svstem is stability of the

bending motions as well as control of the rigid motions of the vehicle.
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The study of the launch vehicle involves a significant modeling problem.
Even after a reasonably satisfactory model structure has been determined, the
physical size of the rehicle inhibits the accurate evaiuation of the model p-ra-
meters. Some of these parameters, such as bending frequencies, may be critical
with respect to the accuracy of the model in that off nominal values of these
parameters may reuder ineffective the control designed on the basis of the
nominal values. Present techniques for estimating these parameters include
physiczally shaking the vehicle and noting its behavior. For vehicles larger
than the Saturn V, this does not appear to be a feasible approach and analytic
techniques will have tc be used. Morenver, the bending frequencies are functions
of the physical configuration of the vehicle and hence the payload which changes

from mission to mission. It would be advantageous to be abie to use the same

launch vehicle control system for a variety of missions. Thus it is important
to be able to design a corntrol system which is insensitive to inaccurate know-
ledge of the bending frequencies. More specifically the sy-tem -rill be designed
to give adequate control for variation in tne bending frequencies of + 20%.

The fuel for the liquid-fuel engines of the Saturn V booster is stored in

Va
tanks. The dynamics of the vehicle are influenced by the movement or sloshing ///

of the fuel in the partially filled tanks, For the present study it it assumed
that the slosh modes are adequately damped by tank baffles.
In Fig. 7.2 the frequency spectrum of the launch vehicle is shown. The

spectra of the engine and gimbal dynamics are indicated as well as those of the

bending and slosh. Some of the spectra are represented by bands indieating that

the frequencies change with time.

e
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The control problem is further complicated since the booster is aerodynamically
d unstable for most of the launch trajectory. This is caused by the center of
pressure being forward of the center of gravity. The center of pressure is a

E point at which the normal aerodynamic force is assumed to act while the booster
rotates around the center of gravity. Thus the force of the wind tends to

topple the vehicle.

The flexible nature of the vehicle introduces a measurement problem. At

present, position and rate gyros are the available sensors. Unfortunately,
; these devices measure local movements and thus their output is a combination of
rigid a.d bending motions. Previous design approaches have used filters to
{ : separate the rigid and bending signals, however this approach is hampered by
the lack of knowledge about the bending frequencies.
The second major source of difficulty becomes obvious when an attempt is
made to choose a satisfactory design technique. Many of the classical design

techniques are not suitable due to the complexity of the system and the parameter

variation problem. The current modern techniques are not satisfactory from a

computational point of view as well as the lack of an unavailable state capability.

Even if the rigid and bending modes are separated, the usual optimal control
,T approach would require the use of sensors to measure all of the states including
the angle-of-attack, engine dynamics, and any compensator states. This is
{? clearly an unreasonable requirement since adequate control has been obtained ;
} using only pitch and pitch rate feedback.
3 The SOC approach is shown to be very useful in the design of control systems
’ for the launch vehicle since many of the difficulties discussed above are

eliminated. In the following sections the equations of mo*tion of the vehicla

o g
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are derived, a state variable model is chosen, a control structure is proposed,
and the various SOC techniques are applied.

7.2 Launch Vehicle Model o749

In order to design a control system for the launch vehicle it is necessary
to derive a mathematical model of its dynamical behavior. This model should be
complicated enough to allow an accurate description of the physical situation
and yet not so complicated as to prevent analysis,

The launch vehicle has six degrees of freedom, three translational, and
three rotational. 1In this study only the motion of the vehiele in the pitch
plane is considered and a flat earth with constant gravity is assumed. The
inertial co-ordinate system (X, Y), is located at the launch point and defines
the local verticle. A second co-ordinate system (X, y) is aligned with the
longitudinal axis of the vehicle and centered at the center of gravity. A third
co-ordinate system (Xn, Yn) defines the nominal trajectory of the vehicle; if
the vehicle follows a nominal trajectory the (x, y) and (Xn, Yn) co~ordinates
will coincide, X o = 0, See Fig. 7.3. It should be emphasized that the
equations of motions are written in the inertial space defined by (X, Y) but
the nature of the investigaticn requires that the equations be expressed in terms
of the other co-ordinate systems.

The result of the following derivation will be a set of linear differentlal
equations which will characterize the motion of the vehicle about its nominal
trajectory. These equations are obtained by applying the laws of Newtonian
mechanics. The basic assumption is made that the rigid and bending motions may

be modeled separately and then added to give an accurate reprezsentation of the

behavior of the vehicle.

AN b g
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Since the control is obtained by gimballing some of the engines, a portion,
F, of the thrust acts along the longitudinal axis of the vehicle, while the
gimballed thrust, R', acts at an angle of B degrees with respect to the
centerline. The aerodynamic force is decoupled into two components; the drag
force, D, acts along the centerline of the vehicle while the normal force, N,
acts in a orthogonal direction to the centerline at the center of pressure. The
sum of the forces in the Xn direction is
Fy = (F+R'"cos B~-D) cos § - mg cos )(c - (N + R sin B) sin ¢ (7.2.1)
n
while the sum of the forces in the Yn direction is
Fy = (F+R'cos B-D) sin + (N+R' sin B) cos § - mg sin j[:c (7.2.2)
n

while the sum of the moments about the center of gravity is given by
~ « R! : - .
I¢=-R 1cg sin B - N 1cp (7.2.3)

The velocity of the vehicle, v, is measured in the inertial frame but expressed
in the ncminal frame

v=vecos¥ i+vsin¥V (7.2.4)

where v = |jvil and i and Jj are unit vectors in the Xn and Yn directions
respectively.
Since (Xn, Yn) is not an inertial frame of reference, the unit vectors

are timevarying and thus the acceleration of the vehicle expressed in this frame

is given by
dv . . dy . : di
a=gpeosY i-vsin¥ = i+vecos¥ =
P A (o v 54y siny fgi (
3T J = v cos 3t 4 * Vv sin I 7.2.5)

/
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The angular velocity of the nominal co-ordinate system with respect to inertial
space is given by - ')(Cin the k direction out of the pitch plane. Thus

dai

&
]

w=- Ko kxi=%cd

The acceleration may be expressed as
L]
a=(veosV «vecosUV + v sinll Yc) i

+ (v sinV - v cos ‘If1;' - v cosVU Xc) b (7.2.5)

The acceleration can be decomposed into components lying in the Xn and Yn

directions.
a.i-= (;(‘n + v sinV Xc)
a.J= (:."n—vcos\f ’).(c)
where
.;=%-E)Zn =%€ (v cos?V)
:Y.n=%¥ (Y‘n) =-§-t- (v sin V")
Although the equations of motion are written in the inertial space, they may be /\

expressed in the nominal co-ordinate system.

(F +R' cos B=D, cos f - N sin ¢ - B' sin B sin ¢
- mg cos Xc (7.2.7)

n(X_ +vsinv X)
n C

m(;fn - v cosV ’XC) (F + R' cos B-D) sin § + N cos § + R' sin B cos ¢ g

- mg sin 7(c (7.2.8)
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The normal aerodynamic force is proportional to the angle of attack.

N=N'a

[ Y
Using this relation Eq. (7.2.7) and (7.2.8) can be solved for X, end Y

respectively.
g ** _(F +R' cos B-D) N'a . - Y R' . .
X = - cos @- — sin § - v sin V )(c -~ sinB sin § - g cos ;(C
‘- + R! o ' '
Y = (F +R mcos 3-D) sin @ + E;g cos @ + %— sin B ros @ - g sin 7(0 + v cos?

These equations are linearized by using the following small angle aprroximations.

-

. I sin § = ¢ sin B = B sinV = v sin B sin @ = 0

1 cos § =1 cos B =1 cos =1 asing =0
** F+R' =D y
Xn = - -v Vv )CC - g cos 2:c (7.2.9)
o _ (F +R' -D) N'a . R' : .
n - m g+ = too BtV X, &sin X (7.2.10)
. (R'lc)
p=-—E8-nW 1, @ (7.2.11)

Since disturbances do not seriously effect the motions of the vehicle in the Xn

) N direction, the equations are simplified by assuming that the origin of the

nominal co-ordinate system moves wiili the vehicle in that direction.ug Also, the

nominal trajectory involves a gravity turn, that is

7-( _ g sin X,
I c v
' Then Eq. (7.2.10) and (7.2.11) become
* _(F+R' -D) N' R'
Y = — ¢ tooa+ - B (7.2.12)
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a (7.7.13)

The main source of additive disturbances is provided by the wind which is
assumed to blow in a horizontel plane only. The wind induces an additional
contribution, Q. to the angle-of-attack. Figure 7.3 indicates an angular
relationship which relates the angle-of-attack to the variables of the above

equations,
(7'701#»

Equations (7.2.12)-(7.2.1k4) describe the rigid body motions of the vehicle about
the nominal trajectory.

The bending equations are derived by the application of simple beam analysis
to the booster which is considered to be a slender beam with uniform mass and
stiffness. The model for each normalized bending mode is assumed to be a linear
second order lightly damped oscillator with a forcing term proportional to the

engine gimbal angle.LL9

. 2 D1
nyg+t2 fyop Ny re My =R 8B

To determine the actual bending at a point along the centerline of the vehicle, ///f

11i must be multiplied by the mode slope coefficient corresponding to that
point and the ith bending mode,

The pitch and pitch rate gyros are located at specified points on the vehicle
and measure local movement composed of rigid and bending moticns. For this study

it was assumed that the first three modes dominate, hence the pitch gyro output is




fy=0+ 2 vilg) 4,
{=1

and the rate gyro output is

where xD = 79.8 meters and Xp = 7.5 meters are the position and rate gyro
locations respectively, mezsured from the gimbal plane of the wvehicle.
In summary, the linearized equations of motion which describe the vehicle

are given below.

(X4 _ F + Ri - D t R! - .
Y = ﬁ————;;————l-¢ to—at - p (T.2.1%)

n
e R'I1 N' 1
p=-—Etp-—2a (7.2.16)

o ¢ o yi<xs)

”(i*gxi‘”in(i““i Ti=R® 5B i=1,23 (T.2.77)

' 1
Yn
a-a =@ - = (7.2.18)

.3 .
o =8+ 2 vy Y, (7.2.20)

l,‘w .




somarmtsmmany

p— e e

T.3 Control Structure

Current control schemes use a feedback structure employing only pitech and
pitch rate information which is obtained by filtering the gyro outputs. This
Work proposes a new approac' in which the actual sensor outputs are fed back
without attempting to filter out the individual bending frequencies. A second
crder low pass filter is used as a forward loop compensator in order to roughly
separate the rigif and bending motions. The outputs of the gyros are fed back

to the input of the filter as shown in Fig. T7.k4.

B. = -k # -k, O (7.3.1)
Tre filter chosen for this study had the following transfer func‘cion.br5

B(s) _ __ 50

Bc s 32+lOs+50

where the breakpoint was chosen to fall between tht lowest bending freguency and

highest slosh frequency.
The differential equation describing the filter is given by

B+10B+508=508 (7.3.2)

7.4 State Equations

The =2quations of motion have been written using variables which relate the
movements of the vehicle to the nominal co=-ordinate system. This viewpoint was
taken since it is desired to regulate the motion of the vehicle about the nominal
trajectory and hence drive these variables to zero.

There are two basic philosophies guiding the altitude control design,
minimum drift and load relief. In the former, the objective 1s to keep the
vehicle as close as possible to the nominal trajectory. However the excitation

of the bending frequencies results in bending motions which must be limited in
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order to preserve the structural integrity of the vehicle; hence the latter
epproach. These two approaches are by nature somewhat ir conflict. A design
objective of this study was to insure that the allowable bending moments did
nct exceed certain limits over the entire flight of the vshicle despit2 in-
accurate knowledge of the bending frequencies. Since the bending moment is a
function of the gimbal angle, P, and the angle-of-attack, @, the angle-of-attack
was chosen as a state variable instead of the position variakle Yn. With a
proper choice of weighting or @ and R the SOC procedure may be used to
limit the bending moment.

One possible choice of state variables is indicated below where for con-

venience only one bending mode is considered.

rxl' F? -
X, )
X3 x
2{_ = X)+ = n.(l (7'24"1)
*5 11
xé B
L7 L]

The state variable formulation requires that a system of first order differential
equations describing the states be derived. In order to eliminate Yn and
derive an equation describing «, multiply Eq. (7.2.18) by v and differentiate

with respect to time.
e

Ynzvé+’\.l'¢-\./'(a'aw)‘v(&-a.w)

This equation and Eq. (7.2.15) are used to eliminate Yn and the resulting

1]
equation is solved for Q.

o

i b
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y- - (E*R -D ¥ P L U L PV
@=- ( mv V) ¢ * ¢ (mv V') @ mv B * <V aW * GW)
This equation along with Eq. (7.2.16) and (7.3.2) are used to formulate the
state variable model.
x=Ax+bpB +v(t); x(t ) =c (7.4.2)
where -
.
0 1 0 0 0 0 0
N' 1, R'1,
0 0 -- c 0 - —T—ﬂ 0
F+R'-D V. NV R
( mv A S v) 0 0 T v ©
A= 0 0 0 0 1 0 0
R' y, (%)
2 1\'B
0 0 0 o) 2f w i 0
0 0 0 0 0 0 1
| 0 0 0 0 0 -50 -10
F o ] i .
0
/
0 KA .
b = 0 5 y_(t) = v ozw + Clw
0 0
0 0
| 50 | 0
o

The outputs of the system, y, that is the quantities measured by the sensors are

given by
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0 y(x) 0 0

It is possible to redefine the state vector so that the measursable quantities
appear as statos., This new formulation is consistent with the SOC approach in
which only the measurable or available states of the state vector are fed back.

Define the following state vector where again only one bending mode is considered.

[ % ‘?D ]
*2 P
X [0

|54
]
]
=S
I
}_.l

%5 "
Xg B
X7 g
where
By =8+ v () My /

t *
Pp= 8+ v () M4
The first order differential equations describing these states are derived by
rearrangement of Eq. (7.4.2). It is assumed that the bending coefficients are
time invariant; this is a reasonable approximation for the first bending mode or

for a fixed time point model.
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1= "1 (7.4.9)
L. . ¥s (%)
My = “’12’71 2f71‘*)1 N+ R lMlB B (7.0.0)
By = B+ v100) s = B + () = w10y (7.4.5)
. N'1 !

=2
j=s]
]
=
<+
e
W
~
=
n
1
(2]
o

v, (x.)
+ Yi(XR) R' —EMIE_ B

or

These equations plus tlose describing the filter states can be written in a

more compact form with the state variable notation.

e
]
=
[
+
o
e

ng ' 2 ] .
- =3 -y 0) oY, - 2f) v 007

(7T.4.5)

(7.4.8)




where

0] 1 0 0 9'15
0 0 323 &2h a25
a 1 a a a
31 33 3k 35
0] 0 0 0 1
0 0 0 &5u 855
0 0 0 0 0]
0 0 0 0 0
a ____(F+R'-D__\'£).
31 mv v/ 2
I L
333 = = (mv + V)’
ay, = () (EE2 4
als = yl(xD) = yi(xR) »
335 = - yl(xR)
R' 1, ' ' yi(xﬁ)
B = =TTty () R M
g b
56 Ml
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0
0
0
0
0
1
-100
-
N' 1
o = .__cp
23 I
B = - vy lng) @
-
Bgy = @y
a25=-2§lwlyl(xR)
a55=-2:fla>l
¥4 (x5)
=g 1B
336 = R! M
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These two representations are equivalent and may be used interchangesbly.

7.5 Computational Considerations

Various engineering considerations require that the feedback control law
employ constant values of feedback gains. The solutions to the SOC problems
with time invariant models will have this property. The nominal flight of the
booster extends from liftoff at t = O, to shutdown »f the first stage at
t = 140, seconds. The model of the booster for this trajectory is time-varying;
it was discovered that a suitable time invariant model could be generated by
freezing the coefficients at t = 80. This approach proved to be satisfactory
since designs made on the basis of this medel provided adequate control for the
time-varying model over the entire trajectory. Appendix F contains a table with
the parameters as a function of the trajectory flight time.

The simulations were carried out on the R.P.I, medel 360/50 digital computer
using a fourth order Gill version of the Runge Kutta algorithm. For the time-
varying simulations, linear interpolation was used to obt2in the unspecified
values of the model parameters. The acceptability of the designs was judged by

initial condition responses of the fixed time point model. To provide a more
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realistic test of the proposed designs, time-varying simulations over the entire
flight in the presence of a realistic wind disturbance were made.

From Eq. (7.4.8) it is clear that the only external disturbance acting on
the vehicle is wind. The wind is assumed to change the apparent angle-of-attack
by an amount equal to qw. This angle is related to the velocity of the vehicle,
v, and the velocity of the wind, LA Figure 7.5 portrays the relationship
between the velocity vectors when the booster is on its nominal trajectory.
(d=¢ =0) From this figure it is clear that

Vw cos Q(C
aaa—-—-—-—‘_

w v=V 8in )(
w ¢

(7.5.1)
Thus by knowing the nominal trajectory parameters and the velocity of the wind it
is possible to construct a realistic forcing function. From the data provided by
Marshall Space Flight Centerhg, a 95% synthetic wind profile was constructed as
shown in Fig. 7.6. The 95% notation indicates that the magnitudes of these winds
exceed those of 95% of the actual winds measured from May to November at Cape
Kennedy. To further test the effectiveness of the control schemes, a wind gust
was added to the profile in the region of maximum dynamic pressure (msx. q). The
wind induced angle-of-attack, Qs obtained from this wind profile via Eq. (7.5.1)

is indicated in Fig. 7.7.

7.6 Application of the SOC Technigues

7.6.1 Design Objectives
As described in Chapter IV, the SOC design procedure may be used to
ca” “ulate linear feedback controllers for linear systems with unavailable states.
Recall that the position and rate gyros measure a mixture of rigid and bending

motions; angle-of-attack meters are available but their use is to be avoided if
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possible. Consider the corrupted state model, that is the state vector which

_ contains the gyro outputs. This formulation is consistent with the SOC approach

§ when it is assamed that only the first two states of the state vector are avail-

& able.

L The actual design specifications are stated in terms of the time

: domain response and are summarized below.

B General Requirements

1. Stable closed loop system with respect to the fixed
¢ time point model.
{ 2. Well behaved initial condition responses.
{. 3. Limits on the maximum absolute values of the states must
be maintained for the duration of the wind forced time

t§ varying simulation.

- 4. At cut-ofr the pitch and pitch rate quantities must be

3

; small to allow smooth staging. k
= Specific Requirements

- For the time varying simulation with the design wind the following

limits must be maintained.

§ 1. Engine deflection: |RI< 5°

! 2. Engine deflection rat:: |BI< 5°/second %
E 3. Angle-of-attack: [0§& 10°
- k., Pitch angle: @< 10°

5. Engine cut-off: |@#l4 1°;]@]< 1°/second
5. Bending magnitude: |7/< .25 meters

7. Bending moment (Station 3256): BM < 5.45 x 10° kg.m.




7.6.2 The SOC Design Procedure
In order to determine ihe effectiveness of the SOC design approach,

g it was applied to the launch vehicle problem. The SOC problem was formulated so

g that the feedback control law depended only on the noisy outputs of the twe
sensors, The SOCDES program was used in an automatic mode, that is a series of

SOC problems were calculated with slightly different weightings. The results

were analyzed and compared via the graphical aids described in Chapter IV,

Control Weighting Perturbations

To study the effect of variations in the control weighting, the
reverse problem was solved for the optimal design of reference MS’which was
obtained as a result of an "optimal" analog computer study,using the following

set of weightings.

3 u=-k A -k b
[ k) = - 0.8 -
k, = -0.8

oo
o

I

)
o
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In Fig. 7.8 the k locus is shown,; the entire locus may be ohtained in about
five minutes of 360/50 execution time. The s0lid line indicates the region of
stable gains. In Fig. 7.10 the root locus corresponding to this k locus is
presented. The same scale increments are used for all curves. Parts a and ¢
show rigid body poles, part » corresponds to the first mode poles, and the filter
poles are graphed in part d. Note the interestirg portion of the locus of part c
in which the rigid complex roots approach the real axis, remain there for a while
and thea cranch >ut into the complex region again. This result can be obtained

20 The

by a conventional root locus analysis but not without considerable effort.
effe~t of the variation of Q on the integral square control effort is pictured
in Fig. 7.9; as expected the control effort increases as the control weighting

is decreased. The examination of these figures points out a basic property of

the booster.

Result:
The design of the launch vehicle altitude control system involves
a tradeoff between relative stability of the bending modes, measured by the
real part of the first mode complex root pair, and the rigid body damping ratio.

(See Fig. 7.11)

As the control weighting is decreased the relative stability is increased and
rigid body damping is decreased. This tradeoff appears throughout the study of
this booster problem. If the bending frequences are below nominal then the
bending poles tend to migrate toward the imaginary axis and instability.

Although these designs were calculated for a seven state fixed time point model

at t = 80, sec., final evaluations were obtained by simulating the controls for
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a time varying model with three bending modes and the design wind. These
simulations corresponding to the various control laws were remarkably similar

in shape, with the only major differences being the magnitude of the peaks. The
nominal response is pictured in Fig. 7.22. To avoid the monotony of page after
page of similar graphs, only a few responses are included along with tables
containing values of peak magnitudes and integral square state values. For
example, Table 7.1 indicates that responses corresponding to various pcints

along the k locus are similar except that the peak value of the pitch decreases
as Q decreases.

Insight into this problem may be obtained by varying the relative
magnitudes of the sta.e weightings and then varying the control weightings as
indicated in Fig. T7.13. In .his case the pitch state weighting is increased
and the loci generated by reducing the control weighting.' For this problem
the entire stable gain space may be probed by changing the relaticnships between
the weightings and generating the gain loci.

State Weighting Perturbations

A similar approach can be taken for state weighting loci. For

example, the reverse problem was solved for the following set of weightings

3 0 - - - ol
0 1 .
e« o 1 . ’
S = 0 . . H Q=l.0
. - O
. . 0
0 . . . 0o ,
with
-0.8
5:
-0.8
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and the Sy weighting was varied to generate the locus shown in Fig. 7.1li. In
general, as the gain locus approaches the stable gain bow'dary, the SOC equations
become numerically sensitive and a new reverse problem may be solved and the

perturbations continued to extend the locus. As the s_ weighting is decreased,

a
the k locus moves upward; when Sq = 0, the reverse problem is resolved for the
following weightings.

(30 0 . . . 0]
0 10 ; N
. . 1C
S = o ° . 5 =10
. O . .
) 0 o0
0] . . . 0
- -

and Sq is again decreased to zero. This process is repeated and the locus is

extended. Again the tradeoff between damping and relative stabilily is evident
as shown in Fig. T7.12. As Sy is decreased, the relative stability increases
and rigid body damping decreases. In addition, the integral square value of O
decreases as o increases. ({(Fig. 7.15) If different reverse problem weighting
combinations are employed or other weightings are varied, different areas ol the
gain space are probed. The root locus corresponding to this k locus is shown

in Fig. 7.17. The results of the full wind simulations are shown in Table T.2.

As the angle-of-attack weighting is decreased the peak value and integral square

value of  decrease.
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7.6.3 Application of SOC Sensitivity

177,

Using the method outlined in Chapter VI, it is possible for the first

time to use sensitivity considerations in the design of control laws for realistic

problems. For the launch vehicle problem, the parameters of concern are the

bending frequencies. The S0C sensitivity problem was formulated as described in

Chapter VI and the reverse prcblem was solved for the following set of weightings.

S¢ 0 4
D

- S ¥ Y

o P

L 4 * Oa .
8, = s
- . .

o .

O - -

Sy 0 . 0

-L -
S_‘ = Y . - =
- »
» - O
S
i 0 . 0 Zid

and the nominal control law

us=-k # -k @
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To obtain the gain root locus the sensitivity weighting is increased. (Fig. 7.19)

The locus moves almost vertically indicating that kl, the pitch gain, has little
-.5

-4
obtained by the Analog Sensitivity Design (ASD) method.hS In Fig. 7.18 the root

effect on the sensitivity of the system. Note the point k = [ ] which was

locus is depicted while in Fig. 7.16 the d=mping and relative sensitivity curves
are pictured. The desensitization is obtained by increasing the relative stability
at the expense of the rigid body damping. This result is in contrast with the S0OC

sensitivity results for simple examples in which the magnitudes of the feedback

gains were increased to "swamp" out the effect of the parameter. Intuitively,
the inclusion of control effort weighting forces the SOC procedure to produce
the more subtle result if one exists.

To place the SOC olutions in mnerspective, they are compared with
the ASD result and the nominal control law. Evidence of the reduction in
sensitivity can be obtained from a number of points of view. Figure 7.20 indicates
that as the sensitivity weighting is increased the integral sqrare of the /F
sensitivity variables decreases. However, this curve does not indicate the f
accuracy of the sensitivity variables in mocdeling the actual desensitization of
the trajectories.

The design objectives require that the control system maintain

adequate control for bending frequency variations of + 20%. An increase in
bending frequency has a beneficial effect on the system performance since the
relative stability is increased. However, the reduction of bending frequencies

poses a serious problem. As shown in Fig. 7.21 the closed loop system for the
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nominal control (s = 1) becomes unstable as w —» .8 @, Various S0C

sensitivity control laws as well as the ASD design are compared. Wote that

S0C does not appreciably reduce the root dispersions, rather the nominal pole
%, position is located so that as the bending frequencies are reduced, the closed
r loop system remains stable.

Based on the fact that the desensitized control laws are obtained
by increasing the sensitivity weighting it would appear that a tradeoff between

nominal performance modeled by,
o

Ix = IETZ‘.dt:

o
and sensitivity characterized by changes in Jy 1is obtained. The conjecture
t is verified graphically in Fig. 7.21. In this figure values of Jy are plotted
versus the bending frequency. As the sensitivity weighting is increased the

nominal performance d¢ eriorates slightly while the variations of Jy with

respect to «w remain finite and eventually become small.

{ This deterioration in nominal performance is relatively low as
. evidenced by the r:sponses of Fig. T7.23, 7.24 and 7.25. That the actual trajectory
B dispersion is low is verified by Fig. 7.26 in which the ¢ znd «a state

dispersions are plotted. The time varying simulation indicaies that for 80%

nominal bending frequency and the nominal control law the launch vehicle is

o~

unstable. The SOC control laws

k -.821 -.921
| _ . =
-1 -.500 =2 -.394

are somewhat more desirable than the ASD design

—T T
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Since the peak value of the pitch response is reduced for k., arnd k, . Table 7.3

1 2

indicates that for the time varying simulation with design wind these con*rol
laws do indeed reduce the sensitcivity of the trajectory with very little de=-

gradation of performance.

Result:
The SOC sensitivity problem involves a tradeoff between nominal
performance and sensitivity. For this launch vehicle problem the tradeoff is

mild and leads to a very acceptable desensitized control law.

It should be noted that the designs were made using the seven state
fixed time point model with only one bending mode, but were checked by appli-
cation to the time varying model with three bending modes. Moreover, rapid
computation is 2 feature of the SOC sensitivity method since the entire k locus

may be calculated in about ten minutes.

7.6.4 Application of SOC Model Reference
Based on the insight obtained from the analysis of Chapter V it was
decided not to apply the model reference technique directly but rather combine
the model reference and sensitivity approaches. The basic idea is that the de-
terioration of nominal performance encountered in the sensitivity approach may
be eliminated. The inner loop gains are designed to provide the best nominal
performance while the model reference gains are found from the difference between

the composite and inner loop gains. The composite gains a.e calculated using




the S0C sensitivity approach.

-.823 -.921

-.500 - -394

The performance of the model reference systems with the desensitized composite
loop gains is compared with the performance of the nominal and pure sensitivity
control systems. In Fig. 7.27 the responses are displayed for w = 0.8 @ with
nominal inner loop gains and

-.821

-.5

as the composite gains. Compare these curves with the sensitivity results of
Fig. 7.24k. By definition the nominal responses of this model reference system
will be identical to the nominal response of Fig. 7.23, As the bending frequency
is decreased the rigid body performance improves slightly while the bending
performance deteriorates. As shown in Table 7.3 the model reference scheme is
slightly more effective in reducing the trajectory dispersions but these slight
improvements do not justify the implementation of the more complex model refer-
ence control system.
7.6.5 Conclusions

As a result of the applicaticn of the SOC techniques, four general
points can be made.

1. Even for a practical problem, such as the booster, the
computational effort required by SOC is small. One iteration of the SOCDES
algorithm required four seconds; the solution of a typical SOC problem regquired

five iterations (20 seconds).
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2. The 50C procedures are very easy to use. Through the use
of the reverve SOC problem concept, very little effort is required to
initlate the computational procedure. The reverse problem generates an
initial set of weightings which correspond to equations which are numerically
well behaved.

3. The use of the SOC approach to calculate a number of designs and
the interpretation of the results by using the graphic aids affords an insight
into and generates explicit information about complex problems.

L. By varying the relationship between the weightings and calcu-
lating the various loci, it is possible to probe all the areas of the stable

gain space and thus determine the properties of the system being studied.

The solutions generated by the SOC approach are comparable to those
obtained from other methods with respect to the satisfaction of design
specifications. It appears that for this particular problem the SOC sensitivity
control law is to be preferred over that of the SOC model reference. The
marginal improvement in performance does not warrant the additional complexity

of the implementation of the medel reference scheme.

Result:
Based on the preceding analysis the following SOC sensitivity feed-

back control law is proposed.

'0821
.}i =
=-.500

With this control law the following limits are maintained for the duration of

'a
|
a




:

the time varying simulation with 95% design wind for any value of bending

frequency between nominal and 80% of nominal.

1l < 1.3°
[ ;6) A 35°/second
Ja] < 6.15°

lel ¢ 1.3°

’*ll' <& .18 meters

{ l”l2l £ +10 meters

,13, <& .06 meters

—————,

Twe areas of tris work that should be pursued are the further
development of the digital computer programs of the SOC procedures and the
investigation of adlitional numerical methods. For example, using & recently

51

proposed”” algorithm,it appears that a sensitivity gain root locus such as

that pictured in Fig. 7.18 could be generated for a 20th order system with sbout

forty-five minutes of 360/50 computation.




Nomenclature
Matrices
A Booster system matrix: 7 by 7
C Booster observation matrix: 7 by 7
S Symmetric state weighting matrix: 7 by 7
% ' Sl Symmetric state weighting matrix: 7 by 7
- 83 Symmetric sensitivity state weighting matrix: 7 by 7
( Vectors
i a Acceleration of vehicle
b Booster control coefficient vector: 7 elements
§ D Drag force
; Fg F Centerline thrust
g B g Gravity
= i Unit vector Xn direction

Unit vector Yn direction

"
= -

Unit vector perpendicular to Xn Yn plane

=
=

Feedback gain vector

=

Normal aerodynamic force

uhl"ﬂllus‘
©

Gimballed thrust

Additive disturbance vector

I<

I<

Velocity of vehicle

Wind velocity

l<

Velocity of vehicle relative to wind

4‘4

State vector: 7 elements
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t
I
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Scalars

R A e —

Cost index

Feedback gains
Thrust moment arm
Normal force moment arm

Mass of vehicle

Equivalent engine mass

Normal force coefficiert
Control weighting

Nominal ¢ -ame co-ordinate

Inertial frame co-ordinate
Airframe co-ordinate

Nominal frame co-ordinate

Inertial frame co-ordinate
Airframe co-ordinate

Slope of ith mode at point x

Angle-of-attack
Wind induced angle-of-attack
Gimbal angle

Contrel zignal

Normalized bending

Angle between velocity vector and Xn co=-ordinace
Pitch angle
Output of pitch gyro

Pitch rate
Output of pitch rate gyro

Nominal trajectory angle

Bending damping coefficient of ith mode

th

Eending frequency of i“" mode

198.
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Chapter 8

SUMMARY AND CONCLUSIONS

8.1 Contributions of This Work

The underlying theme of this work has been the Specific Optimal
Control concept. This approach allows the advantages of the modern and
classical techniques of control thecry to be combined by formulating
optimal control problems in which the primary goal is a solution control
law with certain specified properties. This control law is obtained by
the minimization of a cost index which has been structured to insure that

the optimal solution will possess these properties.

This concept was applied to the problem of calcivlating control
laws for systems in which not all of the states are available, the
unavailable state problem. The important feature of the linear SOC

problem and its solutions ars listed below.

1. The linear SOC problems are a class of linear optimal control
problems in which some of the weignting matrices are chosen to provide
a specified structure while others are chosen to obtain satisfactory ////
system response.
2. Thc hasic control structure is linear feedback and the gains
are independent of system initial conditions.
3. The SOC approach has unavailable state capabilities since those
feedback gains corresponding to unavailablzs states may be structured to

be zero.
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L. The steady state SOC control laws for the +ime invariant problem

are asymptotically stable.

5. The linear SOC problem has desirable computational properties,
a) The optimal solution for the time invariant steady state problem is
characterized by systems of nonlinear algebraic equations. b) The
simple structure of these equations is independent of size or complexity
of the system. c¢) Efficient numerical methods are available for the

solution of the SOC necessary condition equations.

The linear SOC problem is justified from a mathematical point of
view by the study of the existence and uniqueness of the solutions to
the SOC necessary condition equations. It was shown that for any system
which can be controlled with a control law of the specified structure,
there are classes of weighting matrices for which solutions to the SOC
problem exist and are unique. One class of these weightings may be
determined by the solution of the Reverse SOC problem. That is, given
any control law for which the system response is square integrable, the
corresponding SOC problem with this control law as the optimal solution
can be found. Using this Reverse SOC problem as a starting point, it

is possible to vary the weightings and redesign the system response.

In addition, the concewt of the Reverse problem may have application
to a wide range of optimal control problems. One of the main difficulties
concerned with the optimal approach is of a computational nature. It
is often very difficult to determine the proper computational parameters

or initial guesses which result in a well behaved numerical solution.
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For example, a unique solution to the ordinary allstate linear quadratic
problem exists for any positive definite state and control weightings.
However for most problems, many choices of these weightings result in
necessary condition equations which are numerically difficult to solve.
The Reverse problem generates a set of well behaved equations which have
tpe known control law as a solution. The equations corresponding to new
problems obtained by perturbing the weightings, are usually well behaved.
Thus the effort and skill needed to use the method is reduced since
numerically well beha?ed problems are automatically formulated. This
technique is especially effective when the optimal procedure is being used

to improve or modify an existing control law.

Most of the optimal control approaches are computationally bound
since a large amount of computational effort is required to solve even
simple problems. An important feature of SOC is the relatively low
computational effort requirement. This feature is du= to the basic
structure of the equations defining the optimal solutions and to the
new computational procedure, the SOCDES algorithm, which has been intro-
duced in this work. This algorithm solves the algebraic matrix Ricatti
equation which characterizes the steady state optimal solution. The
control concept of SOCDES is the indirect solution oi the Ricatti equation;
the feedback gain equation is solved by Newton-Raphson iteration while
the Ricatti equation acts as a constraint relating the Ricatti Matrix
and the feedback gains. Although the execution time per iteration is
longer than that of the straight forward Newbton Raphson solution of the

Ricatti equation, the rate of convergence of SOCDES measured in number of

e
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iterationsis faster. The superiority of the SOCDES algorithm becomes
apparent in most practical problems in which there are many states with

only a few control variables.

The Reverse SOC problem and these computational features have been
cormbined to form a systematic procedure for the analysis and synthesis
of linear feedback control systems. The synthesis is carried out by a
systematic trial and error procedure in which the Reverse problem is
solved to obtain an initial set of weightings and the weightings are
perturbed to obtain a more satisfactory design.

Analysis of and insight into a linear system is obtained by allow-
ing the SOCDES algorithm to calculate the solution for a number of weight-
ing matrices and interpreting the results in terms of the following
graphical alds, the feedback gain root locus which is a plot of the
feedback gains as a function of the weighting matrices and the weighting
root locus which is a plot of the poles {characteristic roots) of the

closed loop system as a function of the weightings.

The SOC concept was applied to the model reference control problem
in which a control law is designed to maintain the trajectory of a system
in the neighborhood of the nominal or model reference trajectory despite
enviromental disturbances. The result of the SOC application is a model
reference control system with two loops, an inner loop designed to obtain
a nominal response and an outer loop designed with SOC which operates on
the difference between the actual and model trajectories. An important

feature of this technique is that the outer loop gains are independent

P
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of the nominal trajectory as well as system initial conditions. After
these feedback gains are chosen, the model reference trajectories may

be changed or modified without any redesign of the feedback gains.

Another approach to the problem of the effect of enviromental
changes on the controlled system is the use of sensitivity considerations.
Previous efforts employing the optimal control approach to sensitivity
have not been effective for realistic problems because of difficulties
encourtered in formulation and computation. The SOC sensitivity technique
introduced in this work substantially reduces these difficulties. 1In
addition to the computational reduction resulting from the nature of
50C, the sensitivity problem has been formulated so that the computational
effort required is about the same as for the unavailable state SOC problem
without sensitivity considerations. Moreover, this effort is relatively
independent of the number of parameters considered. Furthermore, this
technique has the unavailable state capability so that the unavailable
states do not have to be neasured or estimated nor do the sensitivity

variables have to be generated.

The efficacy of the SOC theory a»l the techniques described above
was demonstrated by simple examples and the study of a significant
engineering problem, the control of the Saturn V launch vehicle. As
indicated in Chapter VII, which describes the launch vehicle problem

in detail, the SOC approach may be very useful with respect to the study

of practical problems. The actual designs are comparable to other techniques

with respect to satisfying the design specifications with the advantages

of reduced computational effort and increased insight. The SOC sensitivity

approach appears to be especially effective.
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8.2 Future Work
In this work the SOC concept was applied to linear systems with emphasgis
f on the time invariant case. Most of these 1deas expressed in the previous
) chapters are directly applicable to the time varying case, This particular
té application of the SOC concept depends on the structure of the equations de-
fining the optimal solution for the linear quadratic problem. A similar approach

may be used to apply the SOC concept to any linear problem which employs the

integral quadratic cost index. Thus, extensions to the discrete and stochastic

problems are possible, Similarly, nonlinear problems may be attacked using the

f second variational or neighboring optimal control problem approaches. Some work

7 has already been done in these areas with encouraging results.
The further development of the SOC procedure as an automsted design

technique appears to be feasible, There are indications that the use of SOC

rbaisaristboiad

to choose an "optimal" compensator as well as the generation of an initial

set of stable gains are promising areas of future Investigation.

The digital computer programs currently available were written in a
5 straight forward "brute force" manner to test the SOC techniques. No signifi-
cant effort was made to optimize the execution times, memory requirements or
the handling of input and output. Additicnal work along these lines might
lead to sets of programs thet would comprise a useful design tool suitable ////

for time share library usage.

An effort should be made to investigate the relationships between the
SOC techniques and other optimal and classical approaches. This work might

involve a theoretical comparison as well as an empirical comparison involving

the solution of a number of problems with the various methods.
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Appendix A

Derivation of the Formal SOC Necessary Conditions

This appendix is devoted to the derivation of the unreduced SIUC necessary

k7

conditions by the application of the calculus oi variations. The S0C control

s B e B

law, u, is chosen to minimize J

[ J=2 ]r(xTSszng_cTW&+.=.=T32+feg)dt (A-1)
[ :
subject to the plant dynamics.
; [ x=Ax+By x(t)=c¢ (a-2)
E [ Assume that the optimal control law is known.
3 éo = A §° +B 303 .’.Eo(to) =c (a-3) *
g' The necessery conditions will be determined by the consideration of a variation |

in the control, J u. That is .

el

u=u’+ Ju

The resulting system trajectory must satisfy the dynamical contraints in order

t0 be admissa.ble .

=5°+ CJ-'E

=Ax+Bw  x(t)=g¢ (A-4)

U]

I

By subtracting (A-1) from (A-2) a differential equation is obtained which character-

izes any sllowable variation about the optimal.

(i=§-g°=AJ§+BJE; cf_;(to)=g (a-5}
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[ For suitably small and admissable variations in the control and trajectory, the
E cost index may be expressed in terms of the optimal index and first and higher

|

order variations.

E F=3%+ d3+?

E where 02 represents second and higher order variations of the cost index and
= t

di-=2 [fJ_zg(s+lS‘)_:5°+-;'-or§(w+Q)‘_x°
t

| :

3 T
L +%_§°(V+?I)Jt_1+ Jg_chg_)dt (A-6)

The calculus of variations requires that the first variation of the index be zero
for any suitably small admissable variations about the optimal. This corresponds

i

to the requirement of the first derivative being zero at an extremum of an
ordinary calculus problem. The Euler-Lsgrange equations may btc derived by
adjoining the variational dynamics to the first variation by use of the costate

or Lagrange multiplier vector, p.

t
£ £
i JI=dJ3+2 fgf(Ar":_;+Bd'g-J§:_)dt=o (a-7)
i , %o
: Note that (I 1is zero for all admissable variations because the dynamics are '
3 satisfied. Integration by parts of Eq. (A-7) leads to the following expression ‘
4 i
for J1I.

} t
: o oom AL 0.1 Ao T e

r=2 [[Jx(s+8)x+Z3W+W)u’+a" p+p)

t

o

+JET%(HI+QT)_§°+QEO+BT2)] dt

f

ﬁ + d‘l:T P ' =0 (a-8)
t=t

[

—

i
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If the costate vector is required to satisfy the following equation,
. A A
p+aTp+(s+8) L +3 WM =0 pt) =0 (A-9)

and since the variation in the control is arbitrary, the optimal control law is

described by the following equation.

Q5°+BT3+%(WT+§T)_§°=Q (4-10)
or
W=t p e 0+ ) 2°) (a-12)

Now, (A-1), (A-9), and (A-11) are the Euler-Lagrange or necessary condition

equations for the formal SOC problem.
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Appendix B

Newton Raphson Method

The Newton Raphson method is a powerful iterative numerical method which
is used extensively to solve nonlinear algebraic equations. This method has a
quadratic rate of convergence; convergence occurs provided the initial iterate
is suitably "close" to the solution. The recurrence relation which defines the
algorithm follows easily from the basic concept of the method as shown by the

following derivation for a scalar nonlinear equation with one independent variable.

z = g(y) (B-1)

The centrol concept involves linearizing the nonlinear equation about the
current guess. That is, given a current solution guess, Vis expand the equation

in a Taylor series about ¥y

2= g(y) = elyy) + $ (v) v + ¥ (B-2)

where y2 represents second and higher order terms. Only the linear term is
retained and a new guess is found by extrapolating along the tangent line until

the approximate functicn is zero as shown in Fig. B-1. That is,
A ) d
= = = ag
z = g(y) *® ely) =elyy) + 33 (v;) &
The new guess is chosen by requiring that
) =0

&
8V

A - -
e(vyg) =0 =8lyy) + 37 () iy - vy) (B-3)

I

]
il
<

+

k&
o
<




213,

AN

-8 34N9Id * GOHLIW NOSHAVH NOLM3IN

oL '§ %%

(£)6

L Famomet Pt Y— o ] ] i Yool L S—— L —




ey

Ty R S e

21k,

where dy =y, ., - y;+ Then Eq, (B-3) may be solved for Vi, to obtain the

recursive relation defining the Newton Raphson algoritim,

V.

s =Yy - g(yi)/%% (v;)

Geometrically, this corresponds to finding the tangent to the equation at

y=yy and extending the tangent line until it crosses the horizontal axis,

z = 0. The intersection of these two lines determines the new guess, MK

The process is continued by finding the tangent to g(y) at y = Yin and

extrapolating to determine Viioe
o~

If convergence problems are encountered, the use of a convergence factor,

o, may help. By choosing v=lues of a, 0 L @ £1, it may be possible to

alleviate convergence problems at the expense of rate of convergence. Geometric-

ally, the new iterate is found by only extrapolating part way along the tangent
line. That is, Vi is determined by the intersection of the tangent line and
z = ¢, where c = (1-00) g(yi).

In a similar manner the Newton Raphson algzorithm in function space may

be derived. Consider a vecter function equation with a vector of independent

variables.

Given a guess, Yy0 the vector equation is lineared about Z-

[}

Z

AY 2
fp) = £g) +V, Ldg+ 1

where Y7i f represents the Jacobian or gradient matrix of f with respect to
y and g? denotes second and higher order terms. The equation is linearized

by neglecting the higher order terms.
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The new iterate or guess is determined by the intersection of the tangential

plane and the plane; z = 0.

Y =Yg - L
The recursive relation is given by
=y - (7, D7 £(g)
Vi =4 - (VD Iy

The actual implementation of this algorithm does not require that the Jacobian

matrix be inverted, rather the following linear system of equations is sclved

for dy which leads to Yie1e

V, £y = -1y

Livg T Y

This is significant from a numerical peint of view since fewer operations and
hence execution time and error are required to solve a single system of

equations as opposed to inverting the coefficient matrix of the system.
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APPENDIX C

Digital Computer Programs

To test the effectiveness of the proposed theory, verious digital computer
programs were coded, debugged, and used. Much of the computational effort was
devoted to the solution of steady state problems. Both the SOC-Kleinman and
SOCDES algorithms déscribed in Chapter III were implemented and compared. The
SOCDES algorithm was found to be superior to SOC-Kieinman especially for the
launch vehicle problem, Two versions of the SOCDES algorithm are described in
this appendix; SOCDES I solves the steady state unavailable state problem of
Chapter IV as well as the unreduced sensitivity problem of Chapter VI while the
SOCSEN version solves the reduced SOC sensitivity problem. The basic block
diagram for both programs is shown in Fig. C-1. The only significant difference
between the two versions is found in the structure of the solution of the
Ricatti equations. In SOCDES I the Ricatti equation is formulated in terms of
the equivalent linear vector system described in Appendix E while SOCSEN de-
couples the Ricatti equation into the reduced form and successively solves each
of the partition equations via the equivalent vector approach.

The programs consist of a main program which is listed below, and various
subroutine programs. The names, call statements, and purpeose of the subroutines

follow,

NAME: DLIN

USE: DLIN solves systems of linear equations by Gaussian elimination

with full pivotal condensation.
CX=Y
The matrices C, N by N, and Y, N by M, are known and X, N by M,

is to be found.

/
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? READ IN DATA START

: i : INITIALIZE VARIABLES

1——’ PRINT PRINT

2

4

SOLVE REVERSE FROBLEM
YES

/ CALCULATE W

SOLVE

REVERSE PROBLEM?

NO FIGURE C-1
- SOCDES | SOCSEN
CALCULATE BLOCK DIAGRAM
—> GAIN FUNCTIONS
{: > PRINT FRINT
X x
" FUNCTION TOLERANCE \ YES SOLVE
E SATISFIED? / - CHARACTERISTIC EQUATION
 § NO
E CALCULATE NO / WEIGHTING /
i JACOBIAN \ | PERTURBATIONS? |
! YES
CAICULATE UPDATE
E NEW GAINS WEIGHTINGS
i T L
,_ " FRINT PRINT e e sTOP FRINT
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CALL: CALL DLIN (R, A, M, N, EPS, IER, ICODE)
R: Y is placed by columns in R; after execution X is placed
by columns in R.
L% A: C is placed by columns in A.

EPS: Pivot error tolerance,

IER: IER is set equal to zero before DLIN is called. If C
is singular (pivot element less than EPS), rank of

matrix is stored in IER and control is returned to Main.

ICODE: If ICODE is zero, DLIN operates in a normal manner and
{; pivot information is saved., If additional systems of
) equations with identical coefficient matrices are to be
; solved, ICODE is set to 1 and a new Y is entered and

equations are solved using saved pivot information at a

~} considerable saving in computational effort.
NAME: CHAREQ
USE: CHAREQ formulates characteristic equation of given system matrix. A
lf CALL: CALL CHAREQ (C, N, CCEF)
]
[1 C: C is the N by N system matrix

COEF: Coefficients of characteristic equation are placed in

COEF in descending order, that is coefficient of s?

is placed in position 1 of COEF.

......,.W.WMWWWWWWMWMWWW\
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‘_ NAME: POTROT
USE: POTROT is used to set up characteristic equation for solution
{E by POLYRT.
CALL: CALL POTROT (C, ICFL, TIME, K1, K2, K3, Kk, K5, M)
C: C contains polynomial coefficients in descending order.
M: Order of polynomial.
- TIME: Dummy variable.
ICFL: Output control variable.
{t K1, K2, K3, K4, K5: Feedback gain values,
& NAME: POLYRT
[ USE: POLYRT finds roots of polynomials up to ord:r 99 by Newton Raphson

iteration in complex plane.

CALL: CALL POLYRT (M, C, TOLl, RX, RY, RMULT, NR, ISW, CFCTR, IDOUT, IDOUT1)

ZE M: Order of polynomial

C: C contains polynomial coefficients in descending order.
TOLl: If distance between roots in less than TOLl, then roots
[ are assumed to be identical,

- RX: Matrix of real parts of roots.

RY: Matrix of imaginary parts of roots.

RMULT: Matrix of scaling factors.

NR: Number of non-identical roots.
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ISW: If ISW = 1, the factored polynomiel is re-multiplied
to form a comparison polynomiel.
CFCTR: Matrix of differences between coefficients of original
and comparison polynomial.

IDOUT, IDOUT1: Diagnostic print variables.

POLYRT was developed by Ray Ash of the Systems Div.sion of R.P.I.

while the rest of these programs were developed by the author.

-

T e—
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. ‘ Ba1.
' /J08 4045 CASSIDY,LINES=50
: ¢
fooe
C ' I XXX} SCCOCS 1 saena
A C
l c
. c
. C PROGRAM RESTYRICTEC TO SCALAR CONTROL
l? C CERTAIN WRITT STATEMENTS ARE ENTERED AS COMMENT CARDS, IF TROUBLFE
: C DEVELCPS THE *CY MAY BE REMOVED AND THIS DIAGNOSTIC INFURMATION MAY
C BE PRINTED.

DOUBLE PRECISICN ADP(20,20),COEFF(100)
CIMENSINN £S(10,10),%(10)
DIMENSTOUN GRADT(10,10),0(10)
CIVENSION S{12,10),P(10,10)
DIVMENSION A{10,1C)48(10,1),FRG(1,10)
CIMENSINN AA(1C,10),FSA(L,10),F(10),FS(10)
- CIMENSION AIN{28,28),FHA(1,10),EN{784),EG(28,10),EH(TE4)
: CIMENSION F¥K(28,28,10),EK(10410)4FHSAIL410),EFS(28),F0S{23,28)
- DOUBLE PRECISICN E(28,28),EE(784),EF(TR4),F0(28,28)
FORMAT(1615)
FORMAT(4E27.5)
FORMAT(1X,1P10F13.4)
FORMAT(1%,10110)
FORMAT(412C.5)
FORMAT(1X,17°10013.4)
FORMAT(//2X, *ITERATION NUMBER *,15)
FORMAT(////T30,"AFTER *,13,* ITERATINNS,THE STOPPING TOLERANCE WAS
[ 1 REACHED.'//)
CALL TRAPS{0,1,1C0000)
. 5CCO CONTINUE
l; C NOTE sw¢ FBG=K

5 e

D w3 O DWW N

[

C REAC IN AND INMITIALIZE CATA
1SS=1
READ(1,1) I1S,1KC,ISTAB
WRITE(3,4) TIS,IWC,ISTAR
APP%C.ZSEO
APH=CL.1E0
APH=.CC1F O
APH=]1.CED
KOUNT=C
’ ’ READ(1,1) NS,NI,NU
' ' NL=NS=-NL
NP=(NSENS+NS) /2
{; © WRITE(3,6) NSyAI, U,NL,AP

READ(L,2) FPS,TCL,ESS,SWTOL
WRTITE(3,43) EPS TCL,ESSySWTOL

. SWTOL=SKTCL®SWTCI.

[§ TOL=TCL#*TCL

S, READ(1:2) ((AUT1,4J),1=1,4NS),J=1,NS)
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C

320

325

15

332

33¢
337
334
328

330

27
26
€

340

35¢C

READ(1,2) (D{I,1),41=1,NS)
WRITE(3,43) ((ACT1,J)41=14NS)J=1,NS)
WRITE(3,3) (4001,1),1=1,NS)
READ(1:2) ({S{I4J)e1=14NS)sJ=1,NS)
WRITE(3,3) ((SUEsJ),1=1,4NS)J=1,NS)
IFL11S-1) 329,325,320

CONTINUE

READ{1,2) ((DStI4J),1=1,NS),J=1,NS)
WRITE(3,3) (UDS{I4J)e1=14NS),J=1,NS)
READ(1,2) r¢

WRITE(3,3) DCN

CONTINLUFE

READ(1,2)

WRITE(3,3) Q

READ(1,2) (F3G(1l,1),1=1,NS)
WRITE(3,3) (F2GU1+1)91=1,NS)
DO 15 I=1,AS

Fl1)=0.EC

FSAl(l,1)=0.F0

W(l1)=0.E"

DO 15 J=1,\S

AA(loJ)=ﬁ("J)

IF{ISTAR-1) 334,332,334
CONTINUE

L0 336 I=1,%M8

DN 336 J=1,NS

AA(I,J)=C.CE0
AA(T,J1=A(1,J)- B(I'I)GFRG(IQJ)
WRITE(3,3) ({(AA(T4J),5I=1,4NS),J=1,NS)
L0 337 1=1,MNU

FBG(1,1)=0.0%0

COANTINUE

IF(IwC) 330,322,330
REAC(142) (A(1)4I=1,NS)
KRITE{3,3) (Wll),I=1,™S)
CONTINUE

00 26 1=1,.\P

DO 26 J=1,NP

O 27 L=1,MU

EKK{T,J,L)=N.FC

CONTINUE

A
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IS THE CNEFFICIENT MATRIX OF THE EPUXVALEWT VECTOR SYSTEM.
- EKK = DER OF E &R TC FBRG

0O 250 JK=1,NU
DC 34C I=1,"S
p0 340 J=1,NS
EK(I,J)=".%C

CQ 35C f=1.~5
EK(I'JV’=—9‘l.1’




R

C WRITE(3,3) (FK({l,JK),I=1,4NS)
DC 25C 1=1,“S
DO 25C J=1,MS
DO 25C KL=14NS
TI=NS—-C.5+4
L={J=-1)sT1leXL
IF(KL=J) 243,244,244
243 T1=NS-C.5eKL
) L=(KL=-1)eT1+J
244 COMTINLE
T2=NS~0,.5%1
K={I-1)=TV2+¥L
IF(KL=1) 245,246,246
245 T2=NS-0.5eKL
K={KtL-1)eT?2+]
246 FAC=1.EQ :
IF ( I"KL, 2’08'247'268
247 FAC=2.EC
248 CNOMTINUE
EKK{K Lo JKI=EKKIK Ly JKY+FAC®EK({Jy1)
250 CONTINUFE
C WRITE(3,3) (LIEKKIKG L JK) JK=1 o NP), L=1,4P),JK=1,NU)
181C COMTINUE
NI=NI+1
CO 9CI1C 10S=[SS,I11IS
D0 SCCO 1TTT=1,M]
ITT=1777-1
WRITE(3,9) IT7
IFCITY) 17,100C,17
17 CONTINUE
C EG=CER(FBGC*CeFESGY ) =KL ReFAG
DO 140 I=1,NS
00 140 J=1,MP
140 EG(J,1)=C.FEDQ
C EC= 1'pet=—El«(S+FRG=C2FQRG*)
K=C
DO 142 J=1,NS
DO 142 1=J,MS
K=¥+1
EG(K,J)=F2G{1,1)#0+EG(FK,J)
EG(K, I)=FEG{1,J)*C+EG(K,I)
ED(K)=FF(X)
142 CNMTINUE
C WRITE(3,43) (TEGIK,T1)oK=1,NP),1I=1,4NS)
DO 143 IXK=1,\U}
DC 144 L=1,MP
. EH(L)=C.FC
DO 144 LL=1,N\P
T44 EH({L)=FH{L)-FKX{L,LL,IK)=ED(LL)
C WRITE(3,3) (EH(L) L=1,NP)

-
e
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C
c
c
C

OO0

ICODE=1wsswre DLIN HAS BFEN INITIALIZEND., NO NEED TO COMPLETELY

RESCLVE SYSTEM 0F EQUATICNS.,

ICODE=1

EF=—EKKst'prr_cg

145

146

147

149
151

148

94

91

88
89

92

93

SCLVE EeepYI=EF

DO 145 L=1,4NP

EF{L)=CHIL)Y-EG{L, IK)

CONTINUE

CALL DLIMIEFZEENP,NENLEPS, 1ER, ICNNE)

WRITE(3,7) (EEIK) yK=1,NP)

K=0

DO 146 1=1,MS

DO 146 J=1,NS

K=K+1

P(I+J)=EF(K)

PlIyI)=EF(K)

WRITE(3,3) ((P(I,J)sI=1,NS)4J=1,NS)

DO 148 KX=1,NU

GRAD=C.EN

DO 147 a=1,4NS

GRAD=GRAN4"({J, 1) 2P (J,KK}/Q

}F(IK—KK) 151,149,151

GRAD=GRAN~-1.0EC

CONTINUE
GRADIFNT=GRAD=Q[=#R'spP-]

WRITE(3,1) KX

WRITE(3,3) GRAD

GRADT (KK ,1¥)=GRAC

CONTINUE

WRITE(3,3) ({(GRADT(I9J)4I=1,NU)Jd=1,NU)

CONTINUE

NEQ=1

1ER=0-

ESS=1.CED

DO 82 I=1,MU

CliI)=F(1)

CONTINUE

WRITE(3,3) (D{I),I=1,NU)

Ks0

DO 92 1=1,"U

EF(I)=0D(1)

DO 92 J=1,NU

K=K+1

EE(K)=GRADT(J,T)

ICODE=C

CALL DLIM(CF yEEMNUJNENEPSH,IER,ICODE)

WRITE(3,7) (EF{I)yI=1,NU)

CO 93 I=1,NU

FSA({1l,1)=FFGI1l,1)

FOG(L,yTY=F2Gl1,1)-ESS*APH*EF(I])

e




1CCO

10

20

215

22C

225
230

235
236

40

55

WRITE(3,3) (FSA{l,1),I=1,NS)
WRITE(3,3) (FBG(1,41),7=1;NS)
CONTINUE
A=AA-RxFNGY
D0 1C I=1,4NS
DO 1C J=1,NS
AT )=ANT,0)-FRGIL,0)=R ([ ,1)
WRITE(3,43) ((A(],4J),0I=14NS),4J=1,NS)
FORMULATE F #ex
DO 20 K:I,NP
DO 20 L=L,NP
E(¥Y,L)=C.NC
DO 40 I=1,NS
DO 40 J=1,NS
DO 4C KL=1,NS
JyKLesael
T1=NS-0.5+¢J
L=(J-1)eT1+KL
IF(KL=J) 215,220,220
T1=NS—-C.5#KL
L={(KL-1)=T14J
CONTINUE
IoKL#nwrxK
T2=NS-C.5=1
K=(I-1)eT24KL
IF(KL-1) 225,230,230
T2=NS-C,5+#KL
K="KL-1)=T2+1
Fal=1,.0
IF(I-KL) 235,235,236
FAC=2.(
CONTINUE
E(KyLY=E(K,L)+FAC2A(J, 1)
CONTINUE
WRITE(3,7) (¥ (KoL) K=1,NP),L=1,NP)
WRITE(3,7) ((E(K'L‘ |K‘—'1,NP’,L=1|NP)
NEC=1

ICQCE=C
K=0
EF= —"I'S4F25GeCaFrCGY V0

DO 55 I=1,NS

DO 55 J=T,NS

K=K+1
EF(K)==S{1,J)-FRG({1,1)eQeFBG(1,J)
WRITEL3,7) (EF(K) K=1,NP)
WRITE(3,7) (EF(K)K=14NP)

K=0

DG 7C J=1,NP

CO 7C I=1,M0

K=K#1

TRTN




EE(K)I=E(T,d)
70 COMTINUE
TER=C
' WRITE(3,4) [ER
i CALL DLIN(FFEE NP NEC,CPS,TER, ICNDE)

c CALCULATE P

C WRITE(3,7) (EF(K) K=1,NP)
K=0

c EF= tIDtY

' "~ DO 90 [=1,AS
DO 9C J=1,NS
K=K+1
PlI,J)=EF(K)
90 P(J,1)V=EF(K)
c WRITE{3,3) ((P(I1,J)4:=1,NS)sJ=1,NS)
WRITE(343) ((P(I,J),1=1,NS),J=1,N5)
C F=QIlsn'sD4+0 e '-FBG L wERe N='W*/2
DO 111 I=1,NU
. FS(I)=F{T1)}
{ FI1)=0.E0
DO 110 J=1,NS
o 110 FID)=F(I)1+2(J,1)eP(J,1)/C
| 111 FLI)=F{I)-F 501, 1)+u(1)/Q
L . C W CF PROGRAM IS 1/2 W OF THEORETICAL DEVELOPMENT.
: WRITE(3,3) (ES(I),1=1,NU)
f , WRITE(3,3) (FLI),I=1,NU)
L WRITE(3,3) (wW(I),I=1,N1)
(o WRITE(3,3) (EHSA(Yl,1),01=1,NS}
i c WRITE(3,3) (FHA(L,I)s1=1,NS)
IF(ISW-1) 121,132,131
131 CONTINUE
IF(ITT) 112,82C0,112
8CCC IF(I®C-1) S000,8002,9C00
: CALCULATE W
8002 CO 80C1 I=1,\NU
) W(I)=—F(1)
. FI1)=0.C"0
8001 CONTINUE
[ . IWC=2
i WRITE(3,3) (¥W(I),I=1,%NU)
: WRITE(2,3) ({S{I,J),1=1,NS),J=1,4NS)
; GO TG 9¢Cn1
- 112 CONTINUE
‘ 15C CONTINUE
132 CONTINUE

i ( CHECK GAINS

oo 0C 154 I=1,NU
: . CD=F(1)

[ CO=CD=D00

: IF(DD~-TOL) 154,160,160




'R

r
N
-]

154 CONTINUE
. WRITE(3,11) ITTY
; WRITE(343) ({P{1,J),1=14KS)¢J=1,NS)
Lo GO TC sCr1 ‘
16C KOUNT=XCUNT+]
i SCCC COMTINUE
; 9C01 COMTINUE
CO 9CCS5 1=1,NS
~ L0 9CG5 J=1,VS
/ 9C05 S(1,J)=S{1,J:¢DS(T1,J)
WRITE(3,2) ({S{1,J),01=1,NS),J=1,NS)
Q=0+CCA
WRITE(3,3) 0
DO 90C" T=1,NS
DO SCO0R J=1,NS
9C03 ADP(I,J)=A(1,)
CALL CHAREC{ANP 4NS,COEFF)
NSS=NS+1
WRITE(I,7) (CNEFF(I),y41=1,NSS)
TIME=0.0FN
A3=0.0C0
A4=C.CEC
A5=0.0:C
Al=FBG(1,1)
A2=FRG(1,2)
ICFL=0C
CALL POTRCT(COEFF,ICFLyTINE,AL,A2,43,44,45,NS)
9010 CONTINUE
¢ GO T0 5C00
| END
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C HRNER SCCSEN | (T2 Y Y}
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[ ¢
c .
C PROGRANM RESTRICTEN TO SCALAR CONTROL
c CERTAIN WRITFE STATEMENTS ARFE ENTERED AS COMMENT CARDS. [IF TROUBLE
C DEVELCPS THE *C* MAY BE REMOVED AND THIS DIAGNOSTIC IMFORMATINN MAY
C BE PRINTED.

DOUBLE PRECISICN ADP(20,20),COEFF(100)

CIVENSIOM DRAT{14,14) |

DIMENSION GRADT(14,414),D(14)

DIMENSICON A{164,14),B(14,1),FRBG(1,14)

DIMENSION AA(14,14),FSA(L1,14)4+F(14),FS{14)

CIMENSICM ¥(14),P(14,14)

DIMENSION ERLI0S5),EG(105,14),EH{105)

DIMENSION EKK(105,105,2)

DINENSINN FK{14,14)

DIMENSION AQUT37)sSLUTsT)oS2(737)9S3(747),0S1(T7+7),40S2(7,7)
DIMENSION DS3(7,7)

COUBLE PRECISICN DE(784)

. DOUBLE PRECISINN E1(28,28)

E DOUBLE PRECISICN E(2B,28),EE(T8B4),EF(784)

; FORMAT{1LIS)

FORMAT(4E2G.5)

FORMAT(1X,1P10F13.4) : ‘
FORMAT(1%,10110) .
FORMAT(4D20.5)

FORMAT(1X,1P10D13.4)

FORMAT( /72Xy *TTERATION NUMBER *,15)

FORMAT{////T30,*AFTER *,13,' ITERATINMS,THE STOPPING TOLERANCE WAS
1 REACHED.'//) 4
SCO0 CONTINUE

D~ O WN -

[

c PROGRAM SLVES SOC SENSITIVITY PRORLFY VIA REDUCED PROKLEM
C FORMULATION.
c PROGRAM LIMITED TO SINGLE PARAMETER BUT STRUCTURE ALLOWS EXTENSION
C TO MULTIPLE PARAMETERS,
C IF LCW ORDER SEMSIFIVITY PRNALEM IS TN RE SOLVED, THEN IT MAY B¢
C FNRMULATED IN UNREDUCEDN FORM AND SOLVED WITH SOCDES 1.
« € NS2 IS THE ORDER OF ORIGINAL SYSTEM,
' C READ IN AND INITIALIZE DATA
C NOTE s=s FB3G=K
1S§S=1 '

READ(1,1) TIS,IWC
WRITE(3,4) TIS,IWC
APH=C.29FC
APH=0,1€EQ
APH=,CO1E0
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32¢

325

130C

15
328

APH=1,0EQ

KOQUNT=0

READ(1,1) NS ,MI,NU

NL=NS-NU

NP=(NS«NS+NS)/2

NS2=NS/2

NS3=NS2-1

NP2=(NS2eNS2¢MS2) /2

WRITE(3,44) MS,NINU,NL,NP

READ(142) CPS,TOL,ESS,ySKTOL

WRITE(343) EPS+TCL,ESS,SKTOL
SKTOL=SKTCLeSWTOL

TOL=TCL&«TOL

READ(142) ((AA(I,4),1=1,NS2),J=14NS2)
READ(1,2) ((AQUT4J)yTI=1,NS2),J=1,NS2]}
REAR(1,2) (P(T,1),1=1,MS2)

READ(142) ({SYUI,J),I=1,NS2),J=]1,NS2)
READ(1492) ((S2(1,J)91=14NS2)J=1,NS2)
READ{1,2) ((S3(I,4J)4,1=14NS2),J=1,NS2)
WRITE(3Q3, '(AA(!gJ,'[=lgN52,'J"1"\'SZ’
WRITE(3,3) ((AQ(I4J)yI=14NS2),J=1,NS2)
MRITE(3,3) (R{I,1),1=1,NS2)

WRITE(3,3) ({S11140),1=1,MS52),J0=1,%N52)
WRITE(343) ({S52(1,J)¢I=14NS2)9Jd=14NS2)
WRITE(393) ({S3{14J)91=1,NS2)sJ=1,NS2)
IF(IIS-1) 320,325,320

CONTINUE

READ(1,2) ({DS1(1,J),1I=1,NS2),J=1,NS2)
READ{1,2) (INS2{T1,5J),1=1,N82)sJ=1,NS2)
READ(1,2) (IDS3(14J),1=1,NS2),J=1,N52)
WRITE(343) LIDSLIT4J)oT=1,NS2),4J=1,N82)
WRITE(3,3) ((DS2{T1,J)»1=14NS2),J=1,NS52)
WRITE(3,93) ((DS3(1,J)91=1,MS2),Jd=1,NS2)
CONTINUE

DO 13CO0 I=1,NS2

1I=14NS2

8(II+1)=0.CEOQ

READR(1,2) €

WRITE(2,3) Q

READ(1,2) (FOG(1,41),I=1,NS)
WRITE(3,3) (FAG(1,1),1I=14NS)
DO 15 I=1,N§

F(1)=0.E0

FSA{1l,1)=C.F0

Wll)=0.€E0

CONTINLE

IF(IWC) 330,327,330
READ(1,2) (W(I),I=1,N\S)
WRITE(393) (WD), I=1,NS)
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330 CONTINUE
; 00 26 I=1,NP
{s : 0N 26 J=1,NP
DO 27 L=1,NU
27 EKK(14J4L)20.E0"
{ 26 CONTINUE
C € IS THE COEFFICIENT MATRIX OF THE EQUIVALENT VECTOR SYSTEM,
C EKK = BER OF £ WR TC FRG
" T DO 250 JK=1,N0 '
{ DO 340 1=1,MS
DO 34C J=1,NS
- 340 EX(1,J)=C.F0
b JKK=JK+NS2
- ' DO 350 I=1,NS?
II=1+NS2
EK(II,JKK)==R(1,1)
350 EK(I,JKI=EX{IT,JKK)
C WRITE(3,3) (EK(I,JK),I=1,NS)
00 250 1=1,NS
D0 250 J=1,NS
DO 25C KL=1,NS
- : T1=NS-0.5%)
L={J=-1)eT1 KL
IF(KL=J) 243,244,244
243 T1=NS~0.5%kKL
L=(KL=-1)=T1+J
B 244 CONTINUE
T2=NS-0.5¢1
& K=(I-1)#T2+xL
TFIKL=1) 245,246,246 o
245 T2=NS-0.5=KL
{ K=(KL=-1)*T2+]

246 FAC=1,.E0
IF(I-KL) 248,247,248

247 FAC=2.E0 :
{ : 248 COMTINUE *//L
. EKK(KyLy JK)=EKK (KoL o JK)+FACHEK(J, 1)

250 CONTINUE /
c WRITE(353) (({EKK(KyLyJK)3K=14NP),,L=1,4NP)JK=1,NU)
NI=NI+1
DO 901C IDS=I1SS,IIS
g DO SCCC ITTT=1,NI
' ITT=17177-1
WRITE(3,9) ITT
IFCITT) 17,1000,17
17 CONTINUE .
C EG= PDER OFL(FRG=CeF2G*)BAR) WR TO FBG
IFLING-1) 136,135,136
135 INO=0
GO TC 94




. 136 CONTINLE
3 15C0 CONTINUE
{% DO 140 I=1,%4S
DO 140 J=1,NP .
- 140 EG(J, I)=n 0 -
S C ED = 11P%t =—Flett((S+(FRGeN&FBGT )RAR) Y
e K=0
: DO 142 J=1,NS
DO 142 1=J,MS
K=K+1 :
, EGIK+JI=FRGIL, LInQ+EGIK, J)
& EGIK,1)=FBGI1,J)#0+EG(K, )
ED(K)=0{1,J)
142 CONTINUE
- K=NP-NP?
DO 480 J=1,"S2
- DO 480 1=J,MS2
K=K+l
| EG(KsJ)=FFRG(1, [ )=N+EG(K,J)
4 480 EG(K,I)=FRG(1,J)1#04E5(K,1)
| c WRITE(3,3) ({EGIK,I)oK=1,NP),I=1,NS)
DO 148 IK=1,NU
{ DC 144 L=1,49
EH{L)=0.EC
5 144 EH(L)=EH{L)-FKK(L,LL,IK)*ED(LL)
WRITE(3,2) (FH(L),L=1,NP)
ICODE=1#exssx DLIN HAS REEN INITIAL17ED. NO NEED TO COMPLETELY
RESOLVE SYSTTM OF EGUATINNS,
1CODE=1
EF=—EKK® ' 'PYI_EG
SCLVE FrepeszEF
TN SAVE MEMNRY, P IS USED IN MANY DIFFEREMT WAYS,
SINCE THERE IS ONLY ONF PARAMETER, THE UNREDUCED RICATTI MATRIX IS
DECOUPLED INTC THREE(3) NS2 BY NS2 BLOCKS. e

[ L=0
2 DA 145 J=1,4$

e DO 145 1=JNS
L=L+1
| : P(I,J)=EH(LY-CEGIL,IK)
: PlI,1)=P(1,J)
1 145 COMTINUE
! € SNLVE FLR 93, £ vep3sezavi(p3)ee
. K=0
- 11=NS2+1
00 1410 T=11,M$
DO 1410 J=1,%4S
) + K=¥el
K 1410 EF(K)=2(1,J)
! ICrpE=1

_‘
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. CALL DLIN(EFEE,NP2,NEQ,EPS, IER, ICODE)
{; € ONLY P1 MUST HF SAVED.
- K=0
11=NS2+1
DO 142C T=11,N$
DO 142C J=1,N$
K=K+1
r P{l4+J)=EF(K)
,é ; 1420 PLJ,T1)=P(1,d)
§

K=0
C DRAT==1/2 P2-1/72¢3sAQ
: DO 145C J=1,4NS2
{ DC 1450 I=1,MS?
11=14NS2
K=K+1
DRATI(1,J)=P(I1,J)*0.5
DO 1450 L=1,NS2
SR LL=L#NS2
’ 1450 CRAT(1,J)=0RAT(1,J)=-0.5«{(P(II,LL}#AQ(L,J))
C SOLVE FOR THE SKEWsSYMMETRIC PORTION OF P2,
C SOLVE DRAT=DRAT,T
Kel
DO 1452 J=1,NS3
Ji=J+l
D0 1452 1=J1,NS2
K=K+l
1452 EF(K)I=NRAT(I,J)-DRAT(J,])
1CODE=1
CALL OLON(FF,NENP3NEQ,EPS,[ER,ICNNE)
K=0
PINSyNS2)=C.0ED
DO 1453 J=1,NS3
Jl=J+ )’
JJ=J+NS2

" P(JIyd)=C.CED
0O 1453 1=J1,NS2
K=K+l |

e T1=14NS2
! PlLJJ,1)=-EF(K)
1453 P(11,J)=EF(K)
C SOLVE FOR THE SYMMETRIC PORTION OF P2,
, C SCLVF CRAT+0OFAT,T
' K=0
: DO 1456 J=1,NS2
i DO 1456 1=J,NS2
CoL K=¥+1l
1456 EF(KY=NRAT(I,J)¢DRAT(J,1)
' ICGDE=1
CALL CLIN(FFEE,NP2,NEQ,EPS,IER,ICNDF)
K=0

LTI |
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DO 1457 J=1,NS2

DO 1457 1=J,NS2

K=K+l

I1=14NS2

JJ=J¢NS?
PITIIyJ)=EF(K)4P(I1,J)
IF(I=-J) 1312,1383,138?
PlJJs1)=P(11,J)

GO TN 1384
P{JIsy1)=2P(JJ, 1) 4EF(K)
CONTINUE
PlJyI1)=P(11,J)
Pl1430)V=P(JJd,1)
CONTINUE

K=0

DO 1470 J=1,NS82

DO 1470 1=J,NS2

K=K+l

EFtK)=P{1,d)

DO 1470 L=1,MNS2
LL=L+NS2
EF(K)=EF(KI=-P{LLyI)«AQIL,J)-AQ{L,1)eP(LL,J)

C SOLVE FOR Pl ETIPLY ==t [P2VaAC+AQT #D2P+] )

ICODE=1
CALL DLINUEFLEL NP2,NEQ,EPS,IER,ICONE)
K=0
DO 148C J=s1,NS2
D0 1480 I=J,NS2
K=K+l
PlI,J)=EF(¥)
Pl{Jy1)=P(1,J)
WRITE(3,7) (FE(K)K=1l,NP) .
WRITE(3,3) ((P{I4J)s1=14NS)yJ=1,NS)
00 148 KK=1,NU
GRAD=C,EC
DO 147 J=1,MS
GRAD=GRAN+2{Jy 1) &P (JyKK)}/Q
IF{IK-KKX) 151,149,151
GRAD=GRAN-1.0F0C
CONTINUE

GRADIENT=GRAD=Q[#R 'eP=1]
WRITE(3,1) KX
WRITE(3,1) KK
KRITE(3,3) GRRAD
WRITE(3,3) GRADR
GRADT (KK, IK)=GRAL
COMTINUE

" WRITE(I,3) ((GRADT(IsJ)e1=1,NU),J=1,Nl})
CONTINUE
NEO=1

-
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: 1ER=C
F i 91 ESS=1.0€E0
DO 88 I=1l,"1U
&8 DII)=F(])
- 89 CONTINUE
’ * ¢ WRITE(3,3) (D(]1),1=1,NU)
= K=0
00 92 I=1,NU
EF(I)=CI(])
DO 92 J=1,.,NU
K=K+l
2 92 EEI(K)}=GRADTLI,]I)
: 1C00E=0
CALL DLIN{EFL,ECNU,NEQL,EPS,1ER, ICOOE)
- C KRITE(3,7) (EF{I),I=]1,NU)
: DC 93 I=1,MU
- FSA(l,1)=FuGll,1}
’ 93 FBG(l,1)=FPG{1,1)-FSS=APH=EF(])
- WRITE(3,3) (TSA(1,1),1=1,%%)
- HRITE(3,3) (FRG{1,1),1=1,NS)
1CC0 CORTINUE
i AcAA-PaFRGY
{i DO 1C I=1,NS2
) 00 1IC J=1,NS82
— 10 AT, J)=AA(1.JY-FEGI1,J)28(]1,1)
C KRITE(3,3) ({A{1,J)e1=1,4NS)pJ=1,NS)
< C FORMULATE E uss
00 2C K=1,\P?2
00 20 L=1,vP2
| El(K'L)=0.ch
20 E(K,L)=0.CC
DO 4C I=1,NS2
00 4C J=1,%S2
00 4C KL=1,NS2

- C JeKiLerpeay
T1=K52-0.5¢) ’
L: FT1=1.0€EQ

. L=(J-1)=T1eKL
£ IF(KL-J) 215,220,22C
215 T1=NS2-0.5%KL
FT1=-FT1
r L=(KL-112T1+J
. 220 COMTINUE
c IoKLessssK
T2=KS$S2-C.5=1
K={I-1)=aV2e%XL
IF(KL~-1) 225,230,230
, 225 T2=NS2-C.SeKL
B FTl=-FT1
b K=({KL-1)eT24]

P T R
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. 230 FAC=1,0
2 IF{I-KL) 236,235,736
0 235 FAC=2.0
236 CONTINUE
- E(KoL)=F (K L)+FAC=A({J,1)
) ELIK L)=FI(K,L)+FT1eFAC#A(J,])
) 40 COMTINUE
C WRITE(3437) ((E(K L) eK=1yNP) yL=1,NP)
C SOLVE FCR P3 FeeplIte ¢t {S4rBGQaFBRGY) VY
NEQ=1
ICCCE=0
- K=C
Cc EF= =''S4FR2GeCeFRGt ¢
C CALCULATE P3=-S3-KOKT
- : L0 55 I=1,NS2
DO 55 J=1I,NS2
- K=K+1
55 EF(K)=—S2(1,J)- FFG(ItI)*C‘FBG(l J)
C WHRITE(3,+47) (EF(K),K=]1,NP)
= K=0
D0 70 J=1,.NP2
F GO 7C I=1.MP2
' K=K+1
EE(K)I=E(I,J)
23 7C CONTINUE
: 1ER=C
- ‘ WRITE(3,4) IER
CALL CLINIEF4SEJNP2 NECL,EPSLIER,ICONE)
) C CALCULATE P
- C WRITE(3,7) (EF (K),K=1,NP)
K=0
g TI=NS2+1
00 9C I=11,MS

0O 90 J=I,NS
K=K+1
P(I,J)=EF(K)
90 P(J,I1)=EF(K)
c FORM -S2-P3AC /2
; K=0
. DO 3C0 J=1,%S2
DO 3CC [=1,NS2
- © TI=1+NS2
- K-K+1
DRAT(1,4)=-0.5%52(1,4)
DO 300 L=1,NS2
LL=L4NS2
3CC DRATII,J1=TRAT(1,4)-0.5¢(PIT,LL)*AN (L))
C CRAT=-1/2 $?-1/2 P3#AQ
C SOLVE FCR THE SXEWsSYNMETRIC PORTINN GF P2,
c SOLVE  DRAT-DRAT.T
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C EE IS THE CCEFFICIENT MATRIX FOR ECIVALFENT SKEWeSYMMETRIC VECTOR SYSTEM,
[ K=0
00 133¢ J=1,M83
Jl=J+1
DO 1336 1=J1.NS2
;{i K=K+1
1336 EF{K)=DRAT(I,J)-0RAT(J,I)
NP3=NP?-NS?
. [CODE=0
o FORV NEW EE FR(GM CLD E.
K=0
KJ=C
DO 1369 J=1,NS2
DO 1369 I=JyNS2
KJ=KJ+1
IF(J-1) 1361,1369,1361
1361 K1I=0 :
DO 1368 JJ=1,NS2
DN 1368 11=JJ,NS2
KI=KI+1
. IF(JI-T1) 13664,1362,1304
o 1364 K&K+l
' DE(K)=FE1(KI,KJ)
1368 CONTINUE
o 1369 CONTINUE
CALL CLON(EF 4NENPIMNECL,EPS,IER,ICONE)
K=¢C
0O 1332 J=1,NS3
JJ=J4+NE2
Jl=4+1
PlJJed)=0,0E0
A DO 1338 1=J1,MS2
l K=K+1
TI=1+4NS2
PlJJ,y1)==EF(XKY)
1338 P(11,J)=FF(K)
o SOLVE CRAT+CRAT.T
K=C
DO 1339 J=1,NS2
D0 1339 I=J.NS2
K=K+1
[ 1339 EF(K)=NRAT{I,,J)+CRAT{J,I) _
C SOLVE FCR THE SYMMETRIC PRRYIION OF P2.
1ICODE=1
CALL DLINIFF,FELNP2,NEC,EPS,IER,ICODE)
P{NSyNS2)=C.0FC
K=0
C SOELVE FOR Pl €£0ep) 0oz 0t (PR21aAQ+AQ'#P2+S1+FRGEQ#FRGT) Y
DO 1340 J=1,NS2
DO 1340 1=J,NS2




K=K+1
{ [I1=14NS2
| JJ=JeNS2
PUILl s J)=P{TI,J)+EFL(K)
o IF(I-J) 1372,1373,1372
i {; 1373 PLAJ,1)=P({11,J)
o GO YO 1374
1372 P{JJ,1)=P{JJ, 1 V+EF(K)
1374 CONTINUE
Pll,dd)=PJJd,1)
1340 P{JI,11)=P{11,J)
C CALCULATE o}, LHS==-P2T=AQ-AQ#P2-S1-KOKT ,
K=0 :
DO 1350 J=1,NS2
o . DO 135C I=J,NS2
K=K+1}
EF{K)==S1{1,J)~FBG(1,1)#Q2FBG(1,J)
DO 1350 L=1.NS2
LL=L+NS2
L 1350 EF(K)=EF(K)=PILL, 1)} =AQ(L,J)-AQ(L,1)»P{LL,J)
1CCCE=]
. CALL CLIMISFEL NP2 4NEQLEPS, IER, ICNDE)
: K=0
DO 1360 J=1,N82
: K=K+]
Pl{l.Ji=EF(K)
1360 P(J,1)=P(1,J) :
o KRITE(3,3) ((PLI,J),1=1,MS),J0=1,NS)
WRITE(343) ({P{1,4J)sI=1,NS),J=1,NS)
C F=QlaBta2psCTeWk*—FBG Tene W=t'W*/2
, oC 111 1=1,MU
] FSII)=F(T)
F(1)=C.E"

- DO 11C J=1,NS
( 11C FUI)I=F(1)45(J, 1)#P(J,1)/Q
: 111 FID=FII=FRGIL, 1)+W(1)

) C "WlI)'=CINV.WIT)Y /2
{ Cc W CF PROGRA™ IS 1/2 W 0OF THEORETICAL DEVELOPMENT.,
WRITE(3,3) (FS({I),I=1,X\U)
WRITE(3,3) (F{I1),1=1,N1})
WRITE(3,3) (H{T),1=1,N11)
C WRITE(3,3) (FHSA(1,1),1I=1,0NS)
. C WRITE(3,3) (FHA{1,1),I=1,NS)
- IF{ISwW-1) 131,132,131
: 131 CCMTINUE
c CHECK SI7E GF FHHA
> FSMAX=FUNAX
FUMAX=0.2C
DO 156 1=1,MU
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D3=F{1)sF (1)

IF{(D3-FU™AX) 196,156,153

FUMAX=03

CONTINUE

IFLITY) 112,80C0,112

IF{IWC-1) 9C00,8002,9000

0O 8001 [=1,NU

Wil)==F(])

F{1)=0.0F0

COMTINUE

IwC=2

WRITE(3,3) (u(l),I=1,%NU)

WRITE(3,3) ({S1(1,4J),1=1,NS2),J=1,4NS2)
WRITE(343) ((S2(1,4J),1=1,NS2),J=1,NS?)
WRITE(3,3) ((S3(14J)eT=1,NS2),J=1,NS52)
GO TC 9Co01

COGNTINLE

CONTINUE

CHECK GAIMS

DO 154 I=1,NU

DD=F(1)

ge=CC=rD

IF(OD-TOL) 154,160,160

CONTINUE

WRITE(3,11) ITT

WRITE(343) ({(P(1,J)1=1,MNS5),J=1,NS)

£0 10 gcol

KOQUNT=KOUNT+1

IF{ISW-1) 161,9CC0O,161

CONTINUE

CONTINUE

COMTINUE

DC 9CC05 I1=1,%52

0O 9CCS J=1,NS2
S1(I,J)=S1{1,4)+0S1(1,J)
S2(1,J)=S211,3)+DS2(1,d)
S3(1,J1=S3{1,J)+D0S3(1,J)

WRITE(343) ((SI(I4J)s1=14NS2)9J=1,NS2)
WRITE(3:43) (1S2(1,J),1=1,MS52)yJ=1,NS2)
WRITE(343) ((S3(1,J),1=1,N52),J=1,NS2)
DO 9CCR I=1,NS2

DO 9CCHE J=1,4NS2

ADP{1,J)=A(1,4)

CALL CHAREC(ADP,NS2,COFFF)

NSS=NS2+1

WRITE(3.7) (CNEFF(I)y1=1,MSS)
TIME=C.CEQ

A3=C.CEG

A4=C,.O0FC

A5=0.0F0

Al=FPG(1,1)

A2=FRrG(1,2)

=c
O P CTROT(COEFF o ICFLy TIME, AL A2, 834 R4, A5NS2)

CONTINUE
GO TO SCOU
END

238.
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Appendix D

A
Derivation of the S and Q Definitions for the
SOC Sensitivity Problem

The rationale which governs the choice of g and 9 i3 the same as that
| of the ordinary SOC problem. That is, Q is chosen to insure that the desired
gain structure is obtained and § is chosen to simplify the structure of the
equations. Recall that the general steady state or infinite time interval SOC

index is of the following form

p——— oot

I'ﬁ;’a
=>

G+8Tqd) at (D-1)

x>
+

lxé
X

>
+

o

and the unreduced Ricatti equation and control law are given below.

; _ _ ‘ A _ AT
{ ATP+PA+s+§-(PB+3’—2’£)Q1(BTP+%1-)=0 (D-2)

=-%z (p-3)

Ie>

=g lE p+ iﬁf) (D-4)

Suppose that the last L states of the system state vector are unavailable and

note that the SOC sensitivity structure requires that the first NS - L states

P

of each sensitivity partition block in the augmented state vector have gains
! identical to the available state gains while the last 1L gains of each block

f are to be zero. To facilitate the discussion partition W 1nto blocks and
{

define the matrix II J as follows:
>




2ko,

A [T o0t Y xpand
Vel ; (2-5)
A A '
w LI w
NPA+L, 1 NPA+1, NPA+L
A

where 1.7 is & NS by NC partition block matrix and
)

(0° 0 -« - « 0
_ 0 : - .
I ;=% Tmems :
. . 0 o0
. ¢
L} s *
|0 -« -« 0.0
where II, 7 is NS(NPA+1) by NS(NPA+l) and INS’NS is & NS by NS

identity matrix and it occupies the I,J block position. Note that the expression

A A A
I W isolates the W block of W and thus may be used to define these

I,J J
blocks. To separate the portions of each block corresponding to the available

and unavailable states the following notation is useful.

(0:-0 e ¢ O
o-"0 -~ .
1 .
1 — - + L4
Ty, Tvs, s
" 0.0
0 -+ - - 0-0]

when this matrix ic identical to IIJ except that the last I diagonal elements

1 2 .
of INS,NS are zero. An sdditional matrix II, J is defined as follows:

2. =1 _-1I (D-6)

I,J I,J I,J
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As a finel notational consideration, let [[A]]I 5 be a metrix which is
2

equal to the I,J portion block of the matrix A.

To obtain the desired gains structure for the system states, W

as follows:
A

A
11

Wy =-2 U:Iil (7B + %”H 1,1

is chosen

(D-7)

To inaure that these gain values are repeated for the sensitivity blocks, the

A
remainder of W 1s chosen as follows. For I =J

foge L U 3, - 0o E0 7

and for I #J

-
1,3

-2 {[p§+§]]I

m)

With these definitions the feedback gain matrix assumes this structure.

-

and

x = LX)
1

L=l e @]

’l

(p-8)

(D-9)

a
As in the unavailable state problem, S 1s required to be symmetric and is chosen

; A
to cancel the W and W terms. Hence,

=5+ & « kT + ¥y

(D-10)
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With these definitions the reduced Ricatti equation becomes
ZKTP+PKﬁ+s+RQ1'<I=o (D-11)
and the optimal value of the index may be expressed as
e o T
J°=% [ (& s5%1° eiat =28 r2 (D-12)
t
o

t=t°
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{ Appendix E

Derivation of Equivalent System of
| Lineer Vector Equations

Since it is often difficult to handle the Ricatti equation in its matrix

form, it 1s convenlent to formulate a vector from the elements of the Ricatti

matrix and derive the equivalent vector equation. Consider the matrix equation

F(D, A, P) = ATP + FA - D (E-1)

A A M T

where the matrices are NS by NS. This matrix equation is equivalent to (NS)°
scalar equations. If D 4is symmetric and a unique solution to (E-1) is assumed,

and since P and P satisfy (E-1), P is also symmetric. In this case the

number of independent equations reduces to NP = L3 Ng t1 corresponding to the

disgonal and either upper and lower triangular terms.
It is clear that (E-1) is linear in P; for reasons of notation and manipu-

lation it is convenient to formulate (E-1) in tne standard format for linear

equations which is denoted below. That is

ATp+pa=D (E-2)

or in terms of the Kronecker product notation
(AT*I + I*a) P = D (E-3)

The equivalent vector expression is

"A" uPn = uDu (E'l")

vhere "P" and "D" are NP element vectors formed from P and D as follows.

z T o (P P

l,l; ves} NS,l; P2,2; D

Ng,2% NS,NS)

FHTION PR R IR RS b
¥

O R . . N . o N
D" = (Dy y5-++3Dyg 13 Dp pi+++ilyg, i+ *ilyg yg)




I

| 2.

and "A" = "(AT*I + I*A)" 1s a NP by NP coefficient matrix formed with the
elements of A. The straightforvard procedure for determining this matrix is to
simply write down the scalar equations and place the coefficients of the elements
of P 1in the proper positions. For purposes of implementation on a digital
computer, a more systematic approach is desirable.

To develop this approach it is helpful to derive an expression which relates

the position of an element, (1=)I g2 in the matrix form to its position ("P")K
H

in the vector form, that is

( "P“)K y-3 (P)I,J

—

[ This transformation is given below and may be verified by in.pection.
X =121, J) (E-5)
[ where
(I-1) IVI(NS - ) + 7 147
[ ™I, J) =
(7-1) Ne(ns - £) + I I>J

Ly

and INT(M) indicates the truncation of M to an integer value.

g Consider the I, J'° scalar equation of (E-2). The notation (PA); ;
refers to the 1I, Jth element of the matrix PA.
T - -
1 or
NS
S (g Bl g+ (Bl g 5= () 5 (E-7)
‘ KL=1

th

This expression is required to be identical to the K component of the vector

R

equation.

A J—

i

/
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2ls.,
: K =nI, J)
- 1t = Halt 11t = tHatt it -
{f KK=1
i
Thus the elements of A in (E-7) will form the K'® row of "A". The column

position of an element of A, (A)KL P in the Kth row of "A" depends on the
2

element of P which multiplies it, (P)I yy Hence from the terms (P)I L (A)m e
) s

(A)KL g 1s placed in the K= ™I, J) row position and the L = T(I, KL) column
L

pr *tion of "A". To generate the remaining elements of "A", the lower triangular

tera. of ATP and PA are considered and the elerments of A are allocated to

P L
1 S O
Y »

| ' i
" H

: the proper position in "A". It is possible that more than one element of A 1is

planed in the same position of "A" end in that case that coefficient is equal

—

to the sum of all such elements.

Since P 1is symmetric the implementation of this scheme on a digital computer

oy

. may be simplified by considering only terms in PA. Instead of checking the lower

-

triangular terms the lower and upper triangular terms are checked with the

diagonal terms considered twice.

The matrix equation G(P, A, H) = AP+ PA - H vwhere H and P are assumed

to be skew symmetric, (H = - HT, P=- PT), may be treated in a similar manner.

In this case the equations corresponding to the disgonal positions of G are

trivielly satisfied because of the skew symmetry. Then the equivalent vector

SHL I IR B T L i Gt

‘ equation system consists of NQ = 18 gs'l equations corresponding to the lower
: or upper off-dlagonal triangular terms. Thus
(|
AP+ PA=H
or

IAI lPl = IH'
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.

where

and ‘A’
T

T
pr = HEY X
P (PE,l’ ;P ,

V¥ P3,0% g ys1)

T = (g eiligg, g5 By i eiligg g )

is obtained as "A" except that only off-diagonal terms in the products

246,

AP and PA are considered. In uddition the skew symmetry requires that some

of the elements of A are multiplied by

mm -

=1 before being placed in the 'A'

To illustrate this p-ocedure for a symmetric P and D, consider a second

order example.

A
Ao

Since D,, =D

Ay Py
A P
,, and P, =P

P.

P

Mmoo
by A

Dy Dyp

D2l D

this matrix equation may be written in terms

of the following se* of scalar equations corresponding to the lower triangular te:ms.

24, By v24, P, =Dy

App Py + (A, +A) By + Ay By, =Dy

2 Ajp By * 2 Azp Bpp = Dpp

Then "A" "P" = "D"

oAy

Ao

0

-

2 Ay 0
Aoy Ay
2h 2y

(E-9) /‘

(2-10)
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This same coefficient matrix can be obtained by considering the elements of PA.

P Pio] 1A Ap
PA =
Far P | [P A
p +P
1141t P Ay Py AL+ Py Ay
fal“ll*PaeAal Pai Ao+ By Ay
In particular,

(PA)yy = Py Ay *+ Py Ay

The elements A]_l and Aal will be placed in the second row of "A" since

K=72, 1) =2
This colurn position is determinuu by the multiplying P elerment.

B, 4, —> =12, 1) =2

P A, —> L=72,2)=3

Thus A, 1is placed in 2, 2 position of "A" and A21 is placed in 2, 3
position of "A". Note that this placement agrees with (E-10).

Tois systematic procedure is easily programmed for use on a digital computer
as indicated below. Note that this procedure is simpler than that of referece 46,
since only simple "IF" ratuer than logical "IF" statements are required.

Given a matrix equation

ATP+PA=D
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where all matrices are NS by NS and D is symmetric the following code

generates the coefficient matrix for the equivalent vector system of equations.
E "Pl! = "A" "P" = "D"

where NP=NSgS+1 and E is NP by NP.

DO 20 K = 1, NP
DO20L =1, NP
20 E(X, L) = 0.0

DO4 I =1, NS
DO k0 J =1, BS

TL = NS - 0.5%
L = (J-1)*T1 +KL
IF(KL-J) 22, 24, 2k
22 Tl = NS - O.5%KL
L = (KL=1)*T1 + J
24 CONTINUE
c K=17I, ku)
T2 = NS - 0.5%I
K = (I-1)*T2 + KL
IF(Ki-I) 26, 28, 28 ;
26 T2 = NS - 0.5%KL (
K= (KL-1)*T2 + I
c DIAGONAL TERMS MUST BE CONSIDERED ITWICE
28 FAC = 1.0
1F(I-KL) 32, 30, 32
30 FAC = 2.0

CONTINUE
E(k, L) = E(k, L) + FAC*A(J, I)
4O CONTINUE
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Appendix F

Time Varying Model

——

An eleven state time varying model was used to evaluate the

proposed control laws.
x=Ax+bB +v; x(t)=¢ (¥-1)

where —_ 9

X = . H Y= 3¢
Yo [¢R
‘'3
e
l!.3
B
B
_ .
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0 1 0 0 0 0 0 0 0 0 0
‘ 0 o A(2,3) o0 0 0 0 0 o A(2,10) ©
| A(3,7) 1 A(3,3) o© 0 0 0 0 0 A(3,10) ©
0 0 0 0 1 0 0 0 0 0 0
{ 0 0 0 A(5,4) A(5,5) 0 0 0 o A(5,10) ¢
l A= o o0 0 0 0 0 1 0 0 o o0
o 0 0 0 o A7,6) A(7,7) O o A(7,10) o
; 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 A(9,8) Aa(9,9) A(9,10) ©
0 0 0 0 0 0 0 0 0 0 1
: o o0 0 0 0 0 0 0 0 -50 -10
: f' - - % -
2l 0 0
z 0 0
© Ya +a
0 Vv W W
_ o .’ - °
= ; v=
o 0
o 0
o 0
0 0
o 0
50 | 0
L 0
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0 0 0 (1,4 0 ¢f(1,6) 0 c(1,8) 0 0 0

0 0 © 0 e(2,5) 0 e(2,7) 0 e(2,9) o0 o
The following pages contain these parameter values at four second
intervals for the duration of the trajectory. Linear interpolation was

used to obtain the ccefficient values for wvalues of time not given in

the table.
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