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ABSTRACT

P
Despite the significant research effort that has been directed toward

the modern control theory areas, relatively few applications have been made

to practical problems. One explanation for this is that the implementation

of r,i:,st closed loop optimal control laws requires hat all of the state vari-

ables be mea6ured and fed back. In addition considerable computational

effort is usually involved in obtaining the optimal solutions.

Tne Linear Specific Optimal Control Problem (SOC problem) that is formu-

lated and solved in this document is an attempt to combine some of the

practical features of the classical approaches with the analytic power of

the modern theory. The formulation is based on the linear quadratic optimal

control problem and has the following features.

1. Linear feed,' ach; control laws.

2. Unavailable state capbility.

3. Low computational effort.

A technique which allows the calculation of closed loop control laws which do

not depend on all of the states is said to have an unavailable state capauility.

The above properties are obtained by specifying the structure of some of the

weighting matrices of the cost index. The explicit values of these matrices

are not known until the problem is solved; that is part of the solution to

a SOC problem involves the completion of the formulation.

This approach isjustified from a mathematical point of view by the proof

of the local existence and uniqueness of the SOC solutions and from an

0
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engineering point of view by the successful application of the SOC technique

to three general control problems, the unavailable state control problem, the

model reference control problem, and the trajectory zensitivit; , uontrol problem.

In addition numerical methods are developed which allow these techniques to be

applied with relatively low computational effort.

Of the three methods, the SOC Sensitivity approach appears to be the most

promising. A significant feature of this problem is that the computational

effort is relatively independent of the number of parameters considered and is

of the same order as an unavailable state problem with no sensitivity consider-

ations.

The SOC problem is the result of the application of the SOC concept, which

involves the formulation  f t 	 c control	 b	 s that the optimalo optimal o	 problems o	 t	 op

solutions have certain specified properties. The main emphasis of these formu-

lations is on the properties of the solutions rather than the explicit values

or interpretations of the cost index.

This theory is demonstrated by simile examples and the consideration of

a significant engineering problem, the attitude control of the Saturn V launch

vehicle. The aerodynamic instability and the flexible nature of the vehicle are

factors which complicate this control problem. Critical parameters of the

mathematical model of the booster are the bending frequencies, for a control

system designed on the basis of a model with inaccurate bending frequencies

may prove to be ineffective when applied to the actual booster. Wind gusts

may cause the bending modes to be excited to such an extent that the structural

integrity of the vehicle is violated. The application of the SOC Sensitivity

x.

0



technique resulted in a feedback control law which desensitized the rigid body

responses of the vehicle to inaccurate knowledge of the bending frequencies.

That is.the rigid body responses to a de eign test wind for bending frequencies

from 8th to 100, of nominal were almost identical.

xi.
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Chapter I

1.1 Motes

The control problem many be defined in loose terms as the manipulation

of certain variables or inputs of a system to obtain a desired result or

output. Almost all of man's activities may be considered as some type of

a control problem. With the advent of technology control problems on a

simple scale became obvious. The water clock, windmills, and the steam

engine governor Were control, problem solutions developed through the use

of empirical methods.

Since World War II the art of control theory has cam of age. Spurred

on by the wartime demands, the pioneers at MIT's Lincoln Labs initiated

the work which lead to a mathematical treatment of control theory. The

design techniques of Bode, Evans, and Nichols, although based on mathematics,

are of a cut and try nature. An initial solution for the problem is guessed,

the system is analyzed by one or more of the techniques, and then another

guess is made based on the results of the analysis. The effectiveness of

this approach depends to a large extent on the natur e of the problem and the

experience of the user. Although these techniques have been used with great

success, they are not very effective in attacking marry of the large complex

problems encountered today. Thus a more analytical approach to control

systems design has been sought. Work by Wiener  and Newton, could, and

Kaiser were initial steps in this direction. Encouraged by their results,

it was assumed that the power of the analytical approach Would all but

eliminate the art from control system design.
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however, this has not been the case. In recent years much effort has

been devoted to the analytical aspect of modern control then with the^	 theory

study of the state space approach, stability theory, and optimization

techniques. Unfortunately, relatively few applications of this theory have

been made to problems of practical interest. 7hese are three major diffi-

culties preventing the widespread use of this theory. In the first place,

it is often difficult to define the desired behavior or characteristics of

the controlled system in precise mathematical terms. Secondly, once the

problem has been formulated, it may be ill-posed Prom a mathematical point

of view or tte solutions may be difficult to calculate even with the aid of

a high speed digital computer. Lastly, the solutions do not lend themselves

to practical implementation.

This author feels that these difficulties do not arise from a basic

limitation of the analytical approach but rather from an inappropriate

formulation of the problem. It is the purpose of this work to formulate and

solve an optimal control problem which will serve as a link between the

theoretical and the practical. The Specific Optimal Control Problem or SOC

problem presented in later sections attacks directly the last two diffi-

culties indicated above and this theory may be used in a design rrocedure

to reduce the first difficulty.

1.2 The SOC Concept

The SOC problem is an optimal control problem which is formulated so

that its solutions have certain desirable properties. To place SOC in the

proper perspective, the concept of the optimal control problem is reviewed.
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The basic objective of an optimal control problem is to choose a control

or set of input variables in some optimal fasaion so that the output of a

process or system meets certain specifications. The words process or sysem

are used to indicate anything which involves a cause and effect relationship

as shown in Fig. 1.1. In order to proceed in a precise manner the problem

must be expressed in mathematical terms. The control is chosen to minimize

(maximize) a mathematical function, the cost index, which in some sense

reflects the desired system response or characteristics. Th y actual process

or system is approximated oy a mathematical abstraction or model which usually

consists of a system of differential or difference equations which character-

ize the state of the system- 3 The cost index may be an integral with an

integrand which is a function of the stag,• and control.

x = f(x, u, 0 ; x(to) = c

tf

J =f	 g(x, u, t) dt	 (1.2.2)
t0

Thus, the control, u, is chosen to minimize the cost index, Eq. (1.2.2), sub-

ject to the constraint of the dynamics, Eq. (1.2.1). Tae necessary conditions

which zharacterize an extremum of this problem consist of a system of differ-

ential equations which comprise a two point boundary value problem. In

general, the determination of these necessary conditions and the solution of

the two point boundary value problem are not trivial tasks. Moreover, it is

often very difficult to translate the desired system response into the mathe-

matical cost index function. Also, the control laws are usually of an open

loop nature, that is they are not a function of the states, and tuey do not

lend themselves to convenient implementation.

f
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The SOC approach attempts to combine the analytical power of optimal

control theory with some of the practical aspects of the classical design

techniques. To achieve this end, an optimal control problem is formulated

which emphasizes certain properties of the solution. The explicit value of

the cost index or its precise interpretation in terms of desired system

It

characteristics is not of paramount importance. Rather, the optimal control

formulation is used to provide a well defined structure which leads to control

laws with the desirable properties. These ideas are summarized in the

following definition of the SOC concept.

Definition 1 (T .1)- SOC Concept

The Specific Optimal Control Concept involves the formulation of

optimal control problems so that the solutions have certain specified pro-

perties. The important consideration is not the explicit value of the cost

index but rather that the minimization procedure serves as a well defined

method to determine the control laws.

Thus by picking properties which allow the control laws to be of

practical use, the SOC concept may generate practical analytical design pro-

cedures. The validity of the SOC approach is demonstrated by the success of

the resulting techniques. Although, the SOC concept is applicable to the

most general of systems, this work is concerned primarily with the study of

linear systems and hereafter SOC will refer to the Linear Specific Optimal

Control Problem.

1.3 Statement of the SOC Problem and Scope of the Work

The formulation of this SOC problem involves the specification, of pro-

perties that the solution control laws will have and the formulation of an

optimal control problem that leads to such solutions.

9
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For reasons of sensitivity and implementation, closed loop control laws

are usually specified. For linear systems, linear feedback control laws

1 have proven to be adequate. However, care must be taken, for by closing the

loop it is possible to generate stability problems. Also, the computational

effort involved in calculating the control laws should not be excessive.

One of the tenents of modern control theory is that all of the states

should be fed back in order to achieve optimal performance. 4 In most realistic

situations it is difficult if not impossible to measure or estimate all of

the states. Thus the ability to handle the unavailable state problem is of

concern.

To summarize, the desired properties of the SOC solutions are listed

below.

1. Linear feedback control law stricture

2. Stability

3. Lr,%r computational effort

4. Unf.v+: ,.ilable state capabilities

Thus, the purpose of this work is to formulate and solve an optimal

control problem with these properties. The proposed formulation, developed

in later sections, is based on the linear quadratic optimal control problem.

Properties of this formulation and its solutions are developed and discussed.

This SOC theory is applied to three general control problems, design of

controls with unavailable states, a modral reference control problem, and a

trajectory sensitivity control problem. Some of the properties of these

techniques are discussed, examples presented, and their practical use is

demonstrated by the solution of a non-trivial engineering problem, the design

of a control system for the Saturn launch vehicle.
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To place this work in a proper perspective a brief review of available

theory and techniques is presented in the next section. In order to provide

a basis for comparison the general control problems are defined. below.

Definition 2 (D.2) - Unavailable State Problem

Given a model of the process or system to be controlled, a closed

loop control system based on the available states is to be designed so that

the controlled system meets certain specifications.

A significant problem with respect to the design of control systems

for real systems concerns the relationship of the model to the actual process.

Since the mathematical model is at best an approximettion of the real situation.

the modelling problem is in many cases a significant one. After the structure
{

of the model is chosen, values of the parameters for this model must be

obtained. For many practical problems it is very difficult to obtain accurate

values for the parameters. In addition, component aging and other environmental

changes lead to changes in the characteristics of the process and hence para-

meters of the model.

A control law designed on the basis of a nominal model may be

inadequate when applied to the actual system. Thus it is important to be able
i

to design control laws which compensate for these parameter variations. Model

reference and trajectory sensitivity techniques have been used to attack this

problem. In this work, SOC theory is used to develop model reference and

trajectory sensitivity techniques with practical properties.

Iefinition 3 (D.3) - Model Reference Control Problem

In the model reference control scheme, the output of the actual

system is compared with the output of a model which generates a nominal tra-

[r

	 jectory. A control system is designed, in this case with SOC techniques, to

I ris;



r

^11.

r

	 null the error between the actual and the nominal trajectories.

Definition 4 (D.4) - Sensitivity Control Problem

In the trajectory sensitivity approach, sensitivity variables are

defined which are a measure of the sensitivity of the system trajectory to

changes in system parameters. The sensitivity variables are placed in a cost

index which is minimized by the choice of the control law. Thus, a tradeoff

between system response and sensitivity may be obtained.

1.4 Historical Review

1.4.1 Unavailable State Problem

There are two basic approaches to the study of t-he problem of un-

I

	 available states. In the first, Kalman, 5 Luenberger, 6 and others have attacked

the problem by estimating the unknown states. These estimates may then be

used to formulate the control. Although the theory has been well developed,

there are practical disadvantages involved in the use of this approach. The

addition of the filter or state estimator to the system may unduly complicate

r

	 the controller since satisfactory system performance may be obtained with

controls based only on the available states. Furthermore, the use of the

Kalman filter requires approximations for the statistics of the process which

may not be meaningful in practical situations.

Thus, the second approach, that of calculating control laws which

are a function of the available states has practical appeal. However, the

theory of this approach is not as well developed as that of the first, although

two basic methods have emerged. In their books Newton, Gould, and Kaiser2
7

and Iierrian describe a straight forward parameter optimization approach. For

a linear time invarif.nt system, a linear feedback control structure depending

I V
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on the available states is chosen. A set of design initial conditions is

picked and an integral index with squared output and control terms is formu•-

lated. Parsevals Theorem is used to transform the integral into the frequency

domain, the integration is carried out, and an expression for the index in

terms of the feedback gains is obtained. This expression is minimized with

respect to the gains by methods of ordinary calculus. This procedure suffers

from a number of disadvantages since the gains are initial condition depender.r,

and the method is restricted to time invariant single-input single-output

systems. Also, the nonlinear functional dependence of the index expression

on the gains becomes more and more complicated as the order of the system

increases; for these higher order problems there is no systematic way to find

this function.

In an attempt to remove the dependence of the solution upon the

initial conditions, techniques employing max.-min. procedures have been

developed. 
8.9 

A control structure is specified and a cost index is formulated

as a function of the state and control. The cost index is maximized with

respect to an initial condition set and then minimized with respect to the

feedback gains. Although this technique is applicable to nonlinear systems.

the problem of choosing an appropriate design initial condition set is not

well defined and the computational effort involved in this max.-min. problem

may be enormous for all but trivial examples. A recent contribution by

Rekasius10 employs a cost index which is a measure of the effectiveness of

the chosen control structure to a control structure using all of the states.

For linear systems, he has derived an analytical expression for the maximum

of this expression with respect to all initial conditions. Thus the problem

ff-

r
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is reduced to the parameter optimization problem of picking the gains and

accordingly suffers from similar disadvanrages.

It is believed the SOC procedure described in this document is a

new approach to the unavailable state problem. It is an application of the

SOC concept of Definition 1 and is based on a linear optimal control problem

with quadratic cost index. This problem was chosen as the basic structure

because of the practical nature of its solutions. A brief description of

the linear problem is presented so that the nature of SOC and its relationship

to this theory is made clear. For a more complete exposition, the reader is

referred to Kalman,
11,12

 Schultz and Melsa, and Athans and Falb.13

Anticipating that the SOC formulation will apply to the unavailable

state problem. the linear quadratic optimal control problem will be referred

to as the allstate problem. It is important to discuss the properties of

the allstate problem since many of them will be extended to the SOC case. It

is assumed that the process or system to be controlled is modeled by a system

of linear differential equations.

x= A x+ B u	 x(to) = c

The integral cost index contains quadratic terms in state and control.

t
f

J=	 r (x Sx+uTQu)dt

to

Thus u is chose:, to minimize Eq. (1.4.2) subject to Eq. (1.4.1). The necessary

conditions which describe an extremum of the problem are given below and

derived for the more general SOC problem in Chapter II.

t
1
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Costate equation -P = AT p + S x ; p(tf ) = 0

Dynamics x= A x+ B u x(to)	 c (1.4.4)

Control equation u = - Q-1 BT p (1.4,5)

w}.ere	 p	 is the costate or multiplier vector.

These necessary conditions comprise a two point boundary value

problem (TPBVP).	 It is well known that this TPBVP may be decoupled by use of

the Ricatti transformationll

p = P x	 (1.4.6)

where P is the Ricatti matrix. An equivalent set of necessary conditions may

be written in terms of the Ricatti matrix.

Allstate Differential Ricatti Equation

-P = AT P + PA + S + PBQ 1BTP ;	 P(tf) = 0	 (1.4.7)

Dynamics
•
x=Ax+Bu;	 x(to) = C	 (1.4.8)

Control Law

u = - KT x

Allstate Feedback Gains

KT = Q-1 BT P	 (1.4.10)

:rote that the computational effort involved in solving this problem is

reduced since the TPEVP has been decoupled. The Ricatti equation may be

integrated backwards in time from t  to obtain P and K. Then integration

of the dynamics in forward time generates the system trajectory. Other
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imyortant features are the linear feedback control structure and the fact that

the gains are independent of initial conditions. Furthermore, if the infinite

time interval problem is considered, that is

0o

J = 2 J (xT S x+ uT Q u) dt	 (1.4.11)

t0

the Ricatti matrix and the feedback gains have constant values and are character-

ized by algerraic equations as opposed to differential equations.

Allstate Algebraic Ricatti Equation

ATP + PA + S + PBS '-BTP = 0	 (1.4.12)

Allstate Feedback Gains

KT=QlBTP

t

Existence and uniqueness of solutions to the allstate problem 
11 are

guaranteed provided the control weighting is positive definite and the plant

is completely controllable. A system (A, B) is said to be completely con-

trollable if there exists some control u c C I such that for any initial con-

dition vector, the state of the system is brought to zero in some finite time.

This condition is equivalent to requiring that at least NS of the NS * NC

columns of (B, AB,...,ANS '-B) be linearly independent 
.14 The existence proof

hinges on this restriction since it serves to provide a bound on the optimal

solution to the Ricatti matrix.

Stability of the optimal closed loop system, A - BK T, of the in-

finite time interval problem can be guaranteed by proper choice of weighting

matrices and proven by a Lyapunov argument. Stability follows if (A, B) is

f

F
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i	 completely controllable, tiie control weighting is positive definite, the

state weighting is positive semi-definite, and (A, H) is completely

observable. Since the state weighting, S, is positive semi-definite, it Ira:

be expressed in terms of the matrix H as 15

i

S =H y H	 !1.4.1`,

A system,

i
x= A x+ B u

- H x

i
is said to be completely observable )	if it is possible to reconstruct- any set

of initial conditions given 	 y	 over a finite time interval.	 This condition is

equivalent to requiring that there be 	 NS	 linearly independent columns of

4 TT T	 NS-1T	 T
(H , A H	 H ),...,A

t

Thus many of the properties listed in Section 1.3 are inherent

features of the allstate problem solutions.	 For a given design problem, -.he

design objectives may not be modelled exactly in the quadratic index, however

lh	 ^ 	 so lutions	 , ^^	 „lo	 ,	 ,a	 s s+i^^ has been shown	 .haL 	 n_	 ..e allstate 	resay^ in closed poop ^:,J ems

which have desirable properties in terms of the classical requirements of

overshoot, damping, etc.	 'Moreover if an initial solution of the problem leads

to unsatisfactor;	 s-,vstem response, the	 be changed and theweightings may

problem resolved.

The one prorerty that is definitely missing is the unavailable state

apabiliti.	 However, it is clear that it is possible to stabilize certain

systems by partial state feedback:. 	 Moreover, Kalman 
12 

has indicated that for

any sta;;le set of gains there exists a linear optimal control problem for

r
r
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which the given gains are the optimal control law. Thus it appears reasonable

to expect that the allstate problem can be reformulated so that a specified

control law structure is maintained in vihich only the available states are

fed back. Chapter II is devoted to the formulation and solution of such a

problem, the linear SOC problem. Although the SOC formulation and that of

the allstate problem are similar in many respects, neither one is a subproblem

of the other. The problems are different since different restrictions are

made on the plants and weighting matrices. If the allowable weightings and

plants are considered as sets in some abstract space, then neither set is a

subset of the other although they may overlap.

1.4.2 Model Reference Control Problem

!

	

	 The basic objective in the model reference approach is to deoif;n a

control system so that the error between the ideal output of the model and

t
that of the actual system is nulled; two basic approaches have been used. In

the first, termed model reference adaptive. on line adaptive changes in the

feedback gains are made to reduce the error. Modern control theory has been

applied to the design of such systems w-th some success. Osborn and

Whitaker17 formulated an integral cost '._ndex containing a quadratic term in

the error between the system and model trajectories. An error measurement is

r-

I

	
obtained and the gradient of the index with respect to the gains is calculated

on line. The gradient information is used to change the gains in order to

minimize the index. Donalson and Leondesi8 employing a similar concept. added

error derivative terms to the index. Dressler 
19 

introduced a related scheme

which reduced the amount of on line computation. The most important consider-

r

	
ation in these techniques is the stability of the adaptation procedure. A

r

r
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tradeoff between this stability and the :rate of adaptation is obtained by the

choice of the adaptation constants. There does not seem to be a well defined

method for choosing these constants and an inappropriate choice often leads

to instability.

In order to reduce the stability problem Parks 20 and Shackcloth 21 have

taken an Lyapunov approach. A Lyapunov function with terms in the error. error

derivative. and adaptation parameters is formulated and used to define the

adaptation process. This approach insures that the adaptation procedure as well

as the model reference system is stable. In order to implement this method it

is necessary to be able to adapt all of the elements of the closed loop system

matrix independently. For most systems this is not possible. From a practical

point of view other disadvantages become apparent. The basic schemes involve

on-line computation and measurement of all the states and in some cases state

derivatives. The feasibility of such a complex control system for most realistic

problems is in doubt.

The second approach to the design of model reference systems has been

called model following. In this method optimal techniques are employed and

the calculations are done off-line. Tyler 
22 

has proposed two methods. In

one, the model is included in the cost index while in the other the model is

incorporated into the system as a prefilter. The usual optimal control problems

are present since all states must be known and the open loop terms of the

control law are a function of the systems initial conditions and the input to

the model. Recently, Asseo 3 has used a SOC-like concept to design a model

following system which is independent of the model input.

I F
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The SOC model r--ference problem considered in Chapter V is of the

model following type since the computations are done off-line. The SOC

t
approach allows unavailable state capabilities and results in a control law

which is independent of the nominal trajectory and hence the model input.

1.4.3 Trajectory Sensitivity Control Problem

The problem of sensitivity has always been of concern to control

system designers.Bode, 24 in his pioneering work, made the basic definition

s
	 of transfer function sensitivity. This measure of sensitivity is a ratio of

i
	 the percent change in the transfer function to the percent change in the

^-	 parameter. The reduction of sensitivity has long been advanced as a reason

for using a feedback control law. Horowitz 25 made this reasoning precise

with his definition of the return difference. In addition he indicated 
cb

that an adaptive control scheme with its inherent complex implementation

might be replaced with a desensitizing feedback control law. Other frequency

domain techniques such as pole zero and root locus sensitivities have been

examined by Kuo 7 and Huang28 . The basic disadvantages of these techniques

involve their restriction to linear time in7ariant systems and the lack of

information obtained about time domain sensitivity characteristics.

The development of the time domain approach has occurred relatively

recently. Miller and Murray 
29 

made significant contributions in their study

of the error involved in the numerical solution of differential equations.

Dorato O Rohrer and Sobra131, and Pagurek32 have applied optimal control tech-

niques in their studies of the problem of cost index sensitivity. Holtzman

and Horing33 were concerned with the effect of parameter variations on

terminal conditions of fixed endpoint optimal control problems.

If
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The fundamental work which led to the Sensitivity Control Problem of

Definition 4 was done by Tomovic, 34, Tuel, 35 and Dougherty36 . Tomovic investi-

gated various measures of sensitivity and proposed a parameter design pro-

cedure. Tuel conceived the idea of adding sensitivity variables to the cost

index to be minimized by the choice of the control, and developed a design

procedure for open loop controls. Dougherty extended these concepts to the

closed loop case and formulated a design procedure based on control signal

and parameter optimization techniques.

The optimal control approach leads to the computationally difficult

two point boundary value problem, to the measurement of all the states, and

to the dependency of the solution on the state initial conditions. In addition

the augmented state vector formulation suffers from a dimensionality problem.

For each parameter that is considered, the dimension of augmented state vector

increases by the dimension of the original system state vector. For any

system of any size with more than one parameter the dime ,.',sion of this sensi-

tivity problem becomes unwieldy. The SOC sensitivity problem is formulated in

Chapter VI.

rF
it



Nomenclature

Matrices

A	 System matrix: NS by NS

B	 Control coefficient matrix: NS by NC

H	 Observability matrix: NS by NS

P	 Ricatti Matrix: NS by NS

Q	 Symmetric control weighting matrix: NC by NC

S	 Symmetric state weighting matrix: NS by NS

Vectors

C	 State initial condition vector: NS

p	 Costate or multiplier vector: N3

u	 Control vector: NC

x	 State vector: NS

Scalars

J	 Cost index

t	 Time

18.

r
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Chapter II

THE SOC PROBLEM

2.1 Basic Equations

In this section the basic equations defining the SOC problem and its

solution are derived. The SOC concept leads to the formulation of optimal

control problems for which the solution control laws have certain specified

properties. In this case, the property of importance is an unavailable state

capability. For the allstate problem each of the feedback gains will in

general be non-zero. The unavailable state capability is obtained by choosing

some of the weighting matrices so that the gains corresponding to the un-

available states are zero. Thus, the crux of the SOC formulation involves

the use of two classes of weighting matrices. The first class of weightings

i3 chosen in the usual manner to obtain desirable system response and a

tradeoff between state error and control effort and to insure the stability

of the resulting closed loop system. The desired feedback structure is im-

posed by choosing the second class of matrices as a function of the unknown

Ricatti matrix so that the unavailable state gains are forced to be zero.

However, the necessary conditions are derived assuming that these weightings

are known. By using these functional relations between the class two weight-

ings and the Ricatti matrix, the formally derived necessary conditions reduce

to a well defined set of equations similar to the allstate necessary conditions

which do not depend on the weightings of class two. It is shown. that the

remaining weightings can be chosen to guarantee the existence and uniqueness

of solutions to the reduced equations and hence existence and uniqueness of

solutions to the formal SOC problem. The "cart before the horse" nature of

F1
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this development is justified by the properties of the volutions and the

effectiveness of the related techniques. If the reader is bothered by this

pragmatic approach he may wish to view SOC as a Lyaponov stability design

technique with a well defined procedure for generating the Lyaponov functions

and the feedback control laws. However, SOC is much more than that as in-

dicated in later sections.

The SOC control law is obtained from the minimization of an integral

quadratic index, J, which contains bilinear terms between the state and

control as well as the usual quadratic terms in state and control.

tf

J =2 r (xT Sx+x Sx+xT Wu+x Wu+uT Qu) dt	 (2.1.1)
tt0

The matrices marked with a caret,

chosen to generate the specified

the dynamics of the systems to be

differential equations.

x = A x + B u; x(t0)

A	 A
S and W belong to class two and are

SOC control structure. It is assumed that

controlled are modeled by a system of linear

= R	(2.1.2)

Thus, u is chosen to minimize the cost index, Eq. (2.1.1), subject to the

constraints of the dynamics, Eq. (2.1.2). The necessary conditions or Euler-

Lagrange egaations are given below and derived in Appendix A through the use

of the calculus of variations.

Euler-Lagrange Equations

Costate a gaation
A

g=(2+2)u_°+(S+ "S) S +AT g =O; ^(tf)=0	 (2.1.3)

1(
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Control Law

uo = -1 (B T  p + (W2 } x°}	 (2.1.x}s

Dynamics

xo = A xo + B uo ;	 x(to} = e

where the superscript zero indicates the optimal.

These equations comprise a two point boundary value problem which may be

decoupled by the use of the Ricatti transformation.

= P x
	

(2.1.6)

Equation (2.1.6) is used to eliminate 2 from Eq. (2.1.3) and (2.1.4) which

results in an equivalent set of decoupled Necessary conditions.

Unreduced Ricatti equation

A
-P=ATP+PA+S +S •{	 +PB )R-1(WT2E +BT P} t^; P{tf}=0

(2.1.7)

Control Lev

U = K x

Feedback ain Equation

KT =R l{W +BT P}	 {2.1.9}

Dynamics	
_a

x-{A-Blc^}x;	 x(to)=c	 {2.1.10}

The Matti matrix, P: and the foodhe ek gain matrix, K, are foux►d by the back-

ward time integration of the Ricatti equation, Eq. (2.1.7); the t"ctory is

generated by the forward time integration of the dynamics. Note thh&v these

0-
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equations reduce to the allssate equations of Section 1.2 if the bilinear

terms are zero.
A

From Eq. ( 2.1.9) it follows that W can be chosen as a function of W

and P such that Boone of the feedback gains an identically zero. There is

no loss of generality in requiring the gains to be zero since any other

non-zero value may be obtained by redefining the system A me,sXix and then

see_dmg zero gains. Thus if the last L statq& of the state vector are
A

unavailable, define W as follows.

Definition 5 (D.5) - t
=-212 (PB+2)	 (D.5)

0 0
where I2 =

	

	 is a NS by NS matrix And IL is the L by L identity
0 IL

matrix. For later use define

-PIS-L	 0

Ii
0	 0

which is a NS by NS matrix and INS-L is the NS-L by NS-L identity matrix and

Il+I2=I

the NS by NS identity matrix. Since 11 3 2 - 0,

A
I1W=0

It is clear from ( D.5) that the leer elrments of W have no effect on

the control law and hence on the closed loop systan trajectories. Thus there

Is no loss in generality in assuming that they are chosen to be zero.

12 W s 0	 (2.1.11)

19
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w
Now S is chosen to simplify the SOC necessary conditions by insuring

that 0 will not appear in the reduced equations. Also s is required

to be symetric since only a symmetric portion of a matrix has any significance

in a quadratic term.

Definition 6 (D.6) - S
S = ((W + W) IF + 0 + W'))	 (D.6)

Using the definitions of W and S the oi;%Ual value of the cost index

may be exwessed as follows

JQ = 1 t (j°
T

 S xo + eT 
Q u_°) dt	 (2.1-12)2 f

to

This does not imply that SOC is optimal with respect to a cost index of only

quadratic terms but rather that the optimal index may be expressed as such.

in fact, Kalmen'2 has indicated that for a cost index of the form of Eq. (2-1-12)

a 1 of the states must be fed back.

D.5 and D.6 my be used to eliminate W and S from Eq. (2.1.7)-(2.1.10)

y	 to obtain the following:

LI	 Reduced Necessary► Conditions

SOC Ricatti Equation

P+ ATP +PA+S- - T +I2 EQ	 + R	 +',EQ	 =0;

P(tf) - 0	 (2.1.13)

where
E=2+PB

and
12W-0

I
1
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SOC Control Law

u = - KT x	 !2.1.14)

Feedback Gain Equation

Kr = Q -1 (BTP + T) I1	(2.1.15)

Bynana c s
• M
x = (A - BK ) x ;	 x^t ) = c

0

Note the similarit; between the reduced SOC equations and the allstate equations.

In fact, if W = 0 the only difference is that the quadratic terms in the

Ricatti equation and the feedback gains corresponding to the unavailable sates

are missing.

It is convenient to rewrite the Ricatti equation in terms of the closed

loop system matrix and the feedback gains. It is shown later that 'Uhe two

forms of the Ricatti equation are equivalent.

AK = A - BKl

T

K l = a-1 1(BP + 2 ) I1

p+r X P+?A_+S +K'^ l =0 ;	 P(tf) =0	 (2.1.19)

For comparison purposes the equivalent allstate equations are given

below. Note that the structure of these Ricatti equations are identical,

except that the SOC gains corresponding to the unavailable states are zero.

AR =A - BKT
	

(2.1.20)

4
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K _ Q-1(BTP ^ 2T )	 (2.1.21)

p+AKT P+ PAR +S+	 0	 P(tf) =0	 (2.1.22)

Steady State SOC Problem

If a system to be controlled is time invariant, and an infinite tim°

interval problem with constant weightings is considered, that is t,- ► m
L

the solution to the Ricatti differential equation may approach a steady state

value. Hence the feedback gains assume a steady state or constant value. In

this case the differential equations describing the Ricatti matrix are re-

placed by nonlinear algebraic equations.

Steady state Ricatti equation

ATP+PA+S - EQ lET +IEQ 1ElI"+WT	 1b^J

	

2	 c 2 Q	 Il + Il
EC^ 

2 = 0 (2.1.23)

whe re
E _PB+W

or

AK P+—K +S+K	 =O
	

(2.1.2-)

where

AK = A - BKT

KT = Q-1(BTP + 2T ) Il
	

(2.1.25)

In the following sections the properties which indicate that SOC may be a

useful tool for the study of linear systems are described.

2.2 SOC Properties

In Section 2.1 the basic equations of the SOC problem were formally

derived. In this section the sigrificance and usefulness of the SOC problem

is indicated by the examination of the properties of the SOC equations
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and solutions.

In order to guarantee that the SOC solutions will have certain properties

it is necessary to make restrictions on the allowable systems and weighting

matrices. The reasons for these restrictions will become clear as theP ro-

perties are developed.

Restriction 1 (R.1) - Weighting Matrices

q

	

	 The control weightirg,Q, must be a symmetric positive definite

matrix.

The state weighting matrix, S, must be a symmetric. positive semi-

definite, SOC observable matrix.

Definition 7 (D..7) - SOC Observability

Since S is positive semi-definite, it may be expressed^ 5 as

S=HTH

where H is a NS by NS matrix. Now a system, A, and weighting matrix, S, are

said to be SOC Observable if the matrix pair (A, H) is completely observable

as defined by Kalman. 14

Note that this definition differs from the Kalman allstate definition

since the former involves a portion of the state weighting while the latter

involves all of the state weighting. A further restriction on the allowable

systems must be made, since it makes no sense to talk about the minimization

of a cost index if there are no control laws (feedback gains) which result

in a finite value of that index.

Definition 8 (D.8) - SOC Controllability

A system, A. is said to be SOC Controllable with respect to a

specified feedback structure provided there exist finite values of feedback

gains, K e C1, such that all initial condition responses are square integrable.

RM
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Let	

--TTx=(A-BKT)x=AKx;

27.

x( to) = c

and

x(t) = L (t, to ) c

where I K t, to ) is the state transition matrix for the closed loop system

AK . Then for all c such that 11c L, 4 OP

t	 tf
T	 T	 (^ T

V =	 x x dt = c	
frK (=s to) ^ K (_r' to ) dr 

t	 t0	 0

Fit

For a linear time invariant system and the steady state problem,

this condition is equivalent to the existence of a set of constant feedback

gains such that the closed loop system in stable.

Existence and Uniqueness

The motivation for the SOC Controllability definition is provided by

the following lemma which states a necessary condition for existence. The

proof of this lemma follows directly from the definition.

Lemma 1:

A necessary condition for the existence of the solution to a SOC

problem is that the plant and chosen feedback control structure be SOC Con-

trollable.

A distinction must be made between existence and uniqueness properties

of the ::;`!' equations in reduced and unreduced forms. That is, given all the

weightings of the fo:-mal SOC index the existence and uniqueness of the

solutions to the necessary condIti.ons may be demonstrated in exactly the

same way as in the allstate case.

0
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However, in order to use the SOC theory the question of the

existence of the solutions to the reduced equations must be answered. The

important point is that the choice of the class two matrices leads to a

i	 well defined set of equations (the reduced equations) in which these matrices
I

do not appear. The existence of solutions to these equations is a Justifi-

cation of the SOC approach. If solutions exist to the reduced equations, the

SOC procedure is shown to be valid from a mathematical point of view and only

the interpretation of or motivation for the SOC problem from an engineering

f J
point of view is of concern.

The finite time interval and steady state problems lead to the

study of systems of nonlinear differential and algebraic equations, respectively.

These equations are very similar to the allstate equations. However, the

approach used in the proof by Kalmann does not appear to be applicable in

the SOC case. Demonstrating the existence of solutions to these problems is

equivalent to proving the existence of solutions to the Ricatti equations.

The fundamental point of Kalman's proof involves the derivation of a bound

on the solution to the Ricatti equation. An attempt to follow this same path

for the SOC Ricatti equation fails, since it leads to a bound that is a

function of the Ricatti matrix. Despite significant effort along these lines,

no general existence theorem has been developed. However, for some specific
1!

examples it is possible to say something positive about general existence.

See the example at the end of this chapter.

It is fairly easy to prove local existence of a special nature with

the aid of the Reverse SOC problem described below. This reverse problem

provides an initial solution to the reduced SOC equations. A perturbation of

IN
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the weighting matrices leads to a new set of equations which in some sense
:

l	 are close to the reverse problem equations. Thus the question of existence

and uniqueness may be answered in terms of the solutions to equations con-

taining parameters.

Since both differential and algebraic Ricatti equations are en-

countered, two types of existence proofs must be demonstrated. The rRsults

are stated in theorem form for preciseness and clarity and the proofs involve

the application of certain well known theorems of analysis and differential

equation theory.

Definition 9 (D.9) - Reverse SOC Problem

Given a set of feedback gains, determine if there exists a SOC

index such that the gains are the SOC control law.

In order for the steady state reverse problem to have a solution, the

allowable feedback gain must be stable, that is, the closed loop system is

stable, while for the finite time interval problem any set of finite gains

contained in C1 will suffice.

Theorem 1•

For all SOC controllable systems with any set of allowable feedback

gains, there exists a nonunique SOC problem with weighting matrices satisfying

(R.1) and for which the given gains are the optimal control law.

Proof A: Steady State Problem 	

S
Choose any S and Q which satisfy (R.1) and such that S + KQK^

is positive definite. For example S and A, might be the appropriate

dimensioned identity matrices. Since the feedback gains are stable by

assumption and S + N14F is positive definite, there exists a unique positive

Fl
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definite solution, P, to the SOC Ricatti equation.37

AKT P+PAK = - S - fit

Note that S + is symmetric and since PT also satisfies Eq. (2.2.1)

which has a unique solution, the Ricatti matrix is symmetric. The feedback

gain equation is used to find W,

WT I1=2(QJF-BTPI1)
(2.2.2)

WTI2=0

while A and S are determined from their respective definitions. Thus the
reverse SOC problem for which the given gains are optimal is specified. This

problem is not unique since the choice of S and Q is not unique.

Proof B: Finite Time Problem

Again choose a S and Q which satisfy (R.1). The Ricatti matrix

P is found by solving the SOO Ricatti differential equation where K. A, S,

and Q are known.

P+AKT P+P- K +S+ = O;	 P(tf}=0	 (2.2.3)

t° L t ^ t 

To show that a unique, positive definite solution to this differential equation

exists, the following lemma will be useful.

Lemma 2.

The value of the optimal SOC index may be expressed in 'terms of the

Ricatti matrix which is necessarily positive definite if (R.1) is satisfied.

t 	 T	 T
J° = 2 cT P( i:o ) c = 2 f (x S x° + u° Q u°) dt	 (2.2.4)

to
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where P is the solution to the SOC Ricatti equation, Eq. (2.2 .3), and c

is a state initial condition vector.

(	 Proof:

Equation ( 2.2.4) is derived by the manipulation of the SOC necessary

conditions. Adjoin the dynamics to the cost index with the costate vector

and integrate by parts.

t

J° = 2 ff Ex° S _x°+u° Qu°+ .E (AKx°-x°)]dt
to	

—	 —

or

^	 0 1	
t f o

T	 o	 0	 o	 T	 o •T o	 1 T tfJ = 2 j (x Sx +u Qu +p AKx +p x ) dt-2x1
t° 	to

Using the Ricatti transformation, terminal conditions on P, and the control

law equations leads to

0 1	 tf o 	 ^_ S	 T	 0	 1 T,
J =2 f^ x (S+MZtt. +PAK +AK p + p}x ^dt+ 2 c P^t0 ) c

t°

But the expression in the integral is the Ricatti equation, hence for any t0

and t
f

	

J°=2cT P(to) c
	 (2.2.5)

(R.;,,) requires S to be positive semi-definite and Q to be positiva definite.

The SOC observable requirement insures that x S x will not be zero for any

a
	

allavable trajectory 37 Thus J° is positive for any c and hence P is

positive definite.

n
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Now P can be expressed in terms of the state transition matrix

for the closed loop system.

x=(A-BKT) x;	 2E(t0) =c

x(t) _ K (t, to ) c

then

tf

J° = 2 cT Fc = 2 f E ` ^ K (_, to)(S + Q ^T ) 
IK ( r , to ) c] dT

t0
or

t

f
P(t 0)= I ^ 

K (t, to )(S + 'Qj) .?K (_' to) d r	 to !^ T tf
t0

(2.2.6)

Since Eq. (2.2.5) holds for all t 0, t0 : tf, Eq. (2.2.6) defines P(t).

t (^
P(t)	 I rK ( r , t ) ( S +	 )K {t, t) dr	 (2.2.7)

t 

Recall that OK( t '  t) = I and dt K̂ s A
K fK* Taking the time derivative

of Eq. (2.2.7) leads to

P(t) _ - S- ts;- AKT P - PAX

which is the Ricatti equation. Thus the existence and positive definiteness

of P is established. Since Eq. (2.2.3) satisfies a Lipschitz condition, the

uniqueness is demonstrated by the application of a standard theorem of

differential equation theory.

As in the case of the steady state problem, W is chosen to satisfy

the gain equation and Sand W are found from their definitions.
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It has been shown that the Reverse problem determines well behaved

solutions to the SOC necessary conditions. Existence properties of these

equations may be studied by considering the wai.ghting matrices as parameters.

For sets of weighting matrices which are suitably close to those of the

Reverse problem, something may be said about the uniqueness and existence

of the solutions to the corresponding SOC problems. To facilitate the

discussion consider the following notation. A weighting, vector g is formed

from all the independent elements of S, Q, and W in column order. (Only

the lower or upper triangular elements of the symmetric matrices are con-

sidered.) The weighting vector g may be pictured as a point in a finite

dimensional Euclidean space, where the corresponding norm may be denoted by

11 glf • With this notation the concept of one set of weightings being close

to another can be made precise.

Theorem 2•

Given a Reverse problem solution for a finite time interval problem,

characterized by a weighting vector go, solutions to the SOC problem exist

and are unique for all weightings in some neighborhood -,9j of go.

Proof:

The existence of asolution to the SOC problem is equivalent to the

{	 existence of a solution to the SOC Ricatti equation over the time interval of

interest. a{ ,wce P is symmetric, this matrix differential equation can be

written as a vector differential equation of dimension NP = NS NS + 12

It 0It _ _ , ( ATP + pA + S - EQ 1
E
T + I2EQ l

ETI2 + 
2 Q

-lETZ2 
+ ^EQ 1 

WT)

 n

"P"(tf }	 O	 (2.2.8)

t
9
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where E = PB +2; I2 W 0 and "D" indicates a vector formed from the

matrix D as follows.

a_"D #T $ ( D1)1 ; D2)1; ... ; ]) vS, l ; D2, 2 ; "'; DNS, NS )

or symbolically

to ;11 = PCIP110	
f
	 (2.2.9)

From Eq. (2.2.8) it is clear that partial derivatives of F with respect to

the elements of P exist and are continuous and thus satisfy a Lipschitz

condition in some neighborhood of	 The existence and uniqueness of the

solutions in some neighborhood, .b , of go is a standard result from the
theory of differentlal equations. See Theorem 7.5 of Reference 38.

A similar theorem for the steady state problem may be demonstrated

with the aid of the Implicit Function theorem. To clarify the discussion,

consider each set of feedback gains as a point in some .fuclidean space. This

A
point is denoted by the feedback gain vector k formed by the column order-

ing of the feedback gain matrix K.

Theorem 3:

Given a solution to a steady state Reverse SOC problem with gain

vector k  and weighting vector ELO, there exists a unique solution to the

SOC problem for weightings in some neighborhood kQj of go . Moreover, the

stable feedback gains are continuous functions of the weighting vector.

Pr... oof :

The proof will be carried out by the application of the Implicit

Function theorem to a feedback gain vector function. Consider the steady

state SOC equations

n
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is
Aj P + PA

K + S +0	 (2-2-10)SW 
T
PY.T = Q	 B	 +

2

Since the eigenvalues of the closed loop system are continuous

functions of the feedback gains, 	 A.	 is stable for 
all feedback gain vectors

A
k	 contained in a suitably small neighborhood of 	 Since	 A,,	 is

stable, P	 may be found as a unique function of	 K,, S o Q,, and	 W.	 Using the

equivalent	 vector notation introduced above ,, Eq. (2.2.10) may be rewritten

as a linear system of NP equations.

E SI
P 11	 II(S + ^Z) 11

'-1 II( S +E	 Nzi?)

or symbolically

11PII

where

Es tl(I*A
+ J

46KT  
*1)11

K

and	 represents the Kronecker product. 	 The matrix E	 is simply the Kronecker

matrix mani pulated in the appropriate man	 r to form the coefficient matrix

for the linear system.	 Both the matrix and vector forms represent the same

system of scalar equations ) with a particular form chosen by the context of

the discussion.

To return to the proof, a vector gain function can be written as

follows

B P(hj	 0

The notation O DP indicates that a vector has been f-mid, from the matrix D

by column ordering.

8
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D	 = (Dill; ... ; D
MS,l

; D1,2; ...;DNS,NS)

Nov the Implicit Function theorem may be applied to this equation 39, provided

that

Cl	 F( 	 0 at k0 so

C2	 F(	 Cl

C3 : Jacobian at (40 j,  so) is non-zero.

The Jacobi" is the determinant of the partial derivative matrix of F with
A

respect to k.

^F
J - det(^̂)

where

(^F) =C)
D^C.

This theorem indicates that within some suitably small neighborhoods, 5^1 o and

^{ o of 
go 

and k  respectively, there exists a unique continuous vector

function 0 such that

A =QW

A-0(a), $) = 0 g E'b o	 k 
Ef(O

Since only stable gains are of interest, the neighborhood of g is further

restricted so that for any I E )^j , & E O^ Is a stable Oin vector.
It is clear that conditions Cl and 02 sae satisfied while C3 must

be considered more closely.
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Lemma 3:

A
For any stable set of gains ko, it is possible to find a Neverse

SOC problem characterized by go such that the Jacobian is non-zero

J( , go ) #0.

Proof:

Note that the gain function equation can be written as

k, g) - o Q 1BTP' - kT

Then

,^ = Q-1 BT ^' - I
U k	 k

(2.2.12)

If J( ko,) = 0, teen at least one eigenvalue ofd—  must be zero. Thus,
t1 k

from Eq. (2.2.12) it follows that at least one eigenvalue of 
17 Q-1j P *

Jk

equal. to 1. However, by F proper choice of go, that is S and Q it is

possible to insure that this is not the case.

Consider the )p 	 of the matrix in question. For convenience
lk

examine the equivalent matrix

nPrr

!) k

Again this is a notational_ switch to allow for convenient manipulation.

Since "P" _ - E-1 IS + KQJ )n
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If the Jacobian is zero it is possible to pick new values of S and R to

insure that the Jacobian is not zero. Thus C3 is satisfied and the proof is

complete.

The local existence properties are sufficient to allow the practical

use of the SOC theory as indicated in later chapters.

Stability

For the steady state SOC problem, the feedback control law consists of

constant feedback gains. A linear system with such a control law is said to

be stable if all the eigenvalues of the closed loop systems have neigative

real parts. In addition these feedback gains %rti said to be stable. It should

be emphasized that an optimal control law is not necessarily a stable control

law! It is possible to foramlate an optimal control problem for an unstable

plant for which the optimal control law and the cost index are identically

zero. The steady state SOC problem has been structured so that the resultant

closed loop system is nece s sarily stable.

Theorem 4:

Consider a SOC problem with a SOC controllable plant and weighting

matrices which satisfy (R.1). For any constant feedback gain matrix, K, a

necessary and sufficient condition that K be a set of stable SOC feedback

gains is that there exist a Ricatti matrix, P, with the following properties.

Cl AK =A - BKT

T
C2 : K = Q-1(BP + 2)T  -1

C3	 AK  P + PAK = - S - Indic._

c4 : P is positive definite and symmetric

4

f
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Proof:

Necessity - By definition, if K is a matrix of stable SOC feed.

back gains the necessary conditions, Eqs. (2.1.23) and (2.1.25) are satisfied.

Substitution of (2.1.16) and (2.1.25) into (2.1.23) leads to (2.1.24) and C3.

The positive definiteness was demonstrated in Lemma 2 and the symmetry is

easily shown. Since K is stable, there exists a unique solution P to C3.

Since S and Q are symmetric PT also satisfies C;, hence PT = P.

S'ufficien y - Let K be a constant matrix of feedback gains for

a system; A. Let S and Q be matrices which satisfy (R.1) and let P and

W be matrices such that Cl, C2, C3 and C4 are st Lsfied. Constant values of

n	 .,
S and W of the SOC index may be calculated :sing P, S, and W. Then it

is clear that P is the solution to Eq. (2.1.7), the unreduced Ricatti equation.

The stability property is presented in the following lemur.

Lemma 4:

Given that the weighting matrices satisfy the hypothesis of the

theorem and that Cl, C2, C3 and C4 are satisfied AK is as; mptotically stable.

Proof:

The lem, is proved by a Lyapunov argument. Let V = x P x be

a positive definite Lyapunov fun2tion. Then

V=-aT (S +AW) x

and asymtotic stability is guaranteed sine V is negative over any possible

trajectory. 4 Requiring S to be positive definite would be sufficient to

insure the negative definiteness of V, but the SOC Observable restriction of

(R.1) guarantees that x S x will not be zero along any possible trajectory.

This weaker requirement was introduced by YAlman
12
 for the allstate problem.
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The proof will be complete provided the unreduced steady state Ricatti

equation has a unique positive definite solution. In that case the steady

state solution to Eq. (2.1-7) and the solution to C3 must be identical. This

uniqueness property can be shown by reformillating the SOC problem into an

allstate problem and applying Kalman's allstate result.

An allstate control u is chosen to minimize

t

J= 12 
f	 T S x+ UT q u) dt	 (2.2-13)

t
0

subject to

R x+ E u	 E(t 
0	

C	 (2.2.14)

tDefine the following relationship between the SOC cor4rol u, and the allstate

control a.

u u +
2 	 (2.2.15)

Then

uTQu=T 
u + I T (W +	 +	 AT

u	 2 x	 W	 2 u
T(WT + 

W x

I T	 1 T + ^T% x+	 (W + W) Q- (W	 W

or

T	 T	 A	 (W
W	 u	 IT x	 W	 -:'))Q u + x /W +	 -T 

Q	
1 T +A) Q-1(WT + W	 (2. 2. 1A T

U

.he SOC index is given by

t 
f1	 A

P1	 fJ	
+

xT
	 S)
	

+ xT (W + W) u + U
T 

G,	 dt	 (2.2-17)

t0
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Substituting Eq. (2.2.15) into (2.2.17) leads to

fJ 2 	 (XT(S + S - Ir(W + W) (Z (WT + WT)) x + ul Q u) dt
	 (2.2.18)

t
0

To insure that both problems have the -lame trajectory, require that the

dynamics be equal.

x=Ax+Bu=Ax+B(u-Q
-1

 (WT-----+,W-) x)

or

x= A x+ B u

where

T	 AT
A=A - BQ"l (W 2W )

^ B = B

By requiring the indices to be equal, Eq. (2.2.13) and (2.2.18), the definition

for	 S	 is obtained

S	 (W	 W Q
-1 (WT + AT )

^s

S- S+	 ^-F 

Thus the problems are equivalent and choosing 	 u	 to minimize
i

Eq. (2.2.13) will give the same answer as choosing 	 u	 to minimize Eq. (2.1.1).

} Kalman 	 shorn that there is a unique positive definite solution to the

steady state allstate Ricatti equation. 	 Since th-a Ricatti equations for the

two problems discussed above are identical, this result also holds for the

unreduced SOC equations.	 Kalman's proof depends on the structure of the

his	 the	 the allstateequations and not on	 restrictions on	 state weighting of

problem; it is possible that	 S	 may not satisfy the Kalman restrictions.

Thus the proof of Theorem 4 is complete,

t
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In addition to demonstrating the stability of the SOC control fair

this thecrem has characterized the optimallity of a feedback control law in

terms of the existence of a positive definite solution to a system of non-

linear equations, the steady state SOC Ricatti equation.

2.3 Example

To clarify the formulation and indicate some of the properties of SOC,

a simple second order damped oscillator exam-le is presented. For a more

practical example see Chapter VII which is a case study of the use of SOC to

design a control system for a large flexible launch vehicle.

The state space representation of the example is given below and pictured

in Fig. 2.1.

y+21' coj +W2y=u
•

xl=Y

x2 = Y

x=Ax+B u;	 x(to) =c

where

-2f w -,u22 1

A = ;	 B =
1 0 0

Assume that a rate feedback control law structure has been specified.

u -- - kx1 =- k 

Now	 NS = 2, I4C = 1, and L = 1.	 Let

Sl 	S2 P1 P2 wl

Q=q; S- ;	 P= ; W=

S2	S3 P2 P3 0

f

^'	 l

t

t

i

i

i

E

6
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The control u is chosen to minimize the following SOC index.

coJ= f(xT S x+xT Sx + xT (W+W) u+qu2) dt
0

The SOC steady state matrix Ricatti equation may be written as a system of

three scalar equations.

A K T P + PA  = - S - KQKT 	(2.3 .1)

or

2P1(-2 I a)-k) + 2 P2 = - S1 - q k2	(2.3.2)

-P1 w2 + P2 (-2 f w-k) + P3 = - S2	(2.3.3)

-2W
2

	= - S3	 (2.3.4)

The scalar gain is found from

T
KT = Q-1 (BTP + W) I1	(2.3.5)

P + W1--
k= ( l q2 )	 (2.3.9

The elements of the Ricatti matrix and the feedback gains are found by the

si:aultaneous solution of Eq. (2.3.2),-(2.;.4) and (2.3.6). Recall that the

positive definite solution is sought.

W 2 S3
P1 = -2gfw+	 4g2f2w2+S1q+-T+ 2 	(2.3.7)

w
s3

P = -	 (2.3.8)
2 22

P3 = P1 w2 + P2 (2 :f co + k) - S2	(2.3.9)

2
q

k2q-2,^w+q	
4g2^^2w2+Slq+- -+2	 (2.3.10)

W
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The appropriate equations are used to find the matrices which complete the

formulation of the SOC problems.

0	 0
I2 =

0	 1

n	 0
W=- 2I2(PB+2) a

-2P2

S = 2 (W+W) K- + K(W+W)T)
A	 A

A	 S1	 S2
S =	 n	 ii

S2	 S3

A	 Wl(2P1 + Wl)

S1 = W1 k =	 2q

P2(2P1 + Wl)
S2=-	 2q
It
S3=0

To be more specliic, consider some typical numbers. Let = 0 and w = 1

and choose

1 0

S =
0 1

From Eqs. (2.3.7)-(2.3.10)

P1 = Y-2

1
P2 = 2

d r--
P3 -2 Y2

k ^2

[0]

W= 	 q=1
0



Note that the closed loop systems has a characteristic frequency of 1 radian/sec.

and a damping ratio,	 of .707. The remaining SOC weighting matrices are

given by

4	 0
W =

-1

and

0	 .^
S =	

t--	

2

r 2	 0
2

Finally, the SOC index may be written as
CO

J = 2 f (x12 - V2 x1 x2 + x22-x2 u + u2) dt

t0

From Eq. ( 2.3.4) it is seen that co must be non-zero in order that the

solutions to the SOC problem exist. What does this imply? An examination of

the pro7e .rties of the A matrix with u) = 0 indicates that with a rate feed-

back control law, the system is not SOC controllable. The characteristic

equation for the closed loop system is given below.

det (SI - AK) = 0

where

AK=A - BK
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Thus

S+ k	 O
det	 = 0

-1	 S

or

S(S+k) = 0

The characteristic roots are

51=0

S 2 = - k

Clearly, there exists no value of k such that the closed loop system is

asymtotieally stable; thus this particular system and control structure is

not SOC controllable.

For this example, SOC solutions exist for any set of matrices which

satisfy (F.l). Note that any positive gain is sufficient for asymtotic

stability of the closed loop system and any positive semi-definite S is

SOC observable. From Eq. (2.3.10) any pcsitive definite S with positive q

leads to a positive value of gain for any W1 and hence existence of SOC

solutions.

In the chapters to follow, the computational aspects of the SOC problem

are discussed and the SOC concept is applied tc various general cuntrol

problems of current interest.

i

i



Nomenclature

Matrices

A System matrix: NS by NS

A Equivalent allstate system matrix: NS by NS

AK Allstate closed loop system matrix: NS by NS

AK SOC closed loop system matrix: NS by NS

B Control coefficient matrix: NS by NC

B Equivalent allstate control coefficient matrix: NS by YC

D Notational matrix

S Notational matrix

H Observability matrix: NS by NS

Il Notational matrix

12 Notational matrix

IL Notational matrix

E SOC feedback gain matrix: NS by NC

K Allstate feedback gain matrix: NS by NC

p Ricatti matrix

Q	 Symmetric control Weighting matrix: NC by HC

S	 Symmetric state weighting matrix: NS by NS

S	 Symmetric state weighting matrix, classtwo: NS by NS
S Equivalent allstate Weighting matrix: NS by NS

W Bilinear Weighting matrix: NS by NC

W Bilinear Freighting matrix, class two: NO by NC

-FK Closed loop state transition matrix: NS by NS

48-



Vectors

c State initial condition vector:	 NS

$ Weighting vector
A
k Feedback gain vector

j2 Costate or multiplier vector:	 NS

"P"r Equivalent Ricatti vector:	 NP

u Control vector: 	 NC

x State vector:	 NS

Scalars

J Cost index

V N^tat'onal scalar

49•
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Chapter III

t
COMPUTATIONAL CONSIDERATIONS

3.1 Introduction

bl-
If the theory of the preceding chapters is to be of any practical use,

efficient computational procedures should be available. Even for modest

problems, most of the modern control theory techniques tax even the amazing

capabilities of state of the art digital computers. One of the goals of this

work was to develop a design technique with reduced computational requirements.

This technique should be progrsmable on almost any digital facility and might

oe very useful as a time-share library routine. Hopefully, the procedure

would have low execution times and would be easy to use. In this Chapter,

numerical methods are developed for the SOC problem with these properties.

SOC has a decided advantage over other optimal schemes, since the structure

of the necessary condition equations leads to reduced computational effort.

There are four main considerations.

Point 1: The two point boundary value problem has been eliminated.

Comment: The Ricatti matrix has been used to decouple the two point boundary

	

s}	 valueroblem of the necessary conditions. That problem has been replaced withP	 ^'Y	 P	 P

a system of simultaneous nonlinear differentialor algebraic equations.

Point 2: The structure of the necessary conditions is independent of the

size and complexity of the system.

Comment: the necessary conditions of an equivalent parameter optimization

problem are a system of nonlinear equations which must be s)lved to obtain the

optimal feedback gains. The structure of the equations becomes more and more

fl,
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complicated as the size and complexity of the system increases. Moreover

there is no systems'.ic wa; to formulate these equations. In contrast, the

well defined SOC necessary conditions have a quadratic structure which is

independent of the size of the problem.

!

	

	 Point	 The SOC feedback gains are independent of the state initial

conditions.

Comment: This fact is clear from the structure of the SOC necessary

conditions. The feedback gains are a function of the Ricatti matrix which is

independent of the state as a result of the decoupling of the two point boundary

value problem. Thus, the feedback gains comprise a control law which is

optimal for all initial conditions. Since most other schemes generate control

l-	 laws which depend on the initial conditions. a suitable choice of design

rrinitial conditions must be made. In some cases, attempts have been made to

i
develop a systematic procedure for picking a design initial condition vector.

These procedures usually involve a large amount of computational effort.

Point 4: There exist efficient numerical methods for the solution of the

SOC equations.

Comment: For almost all problems with NS larger than two, it is impossible

to obtain an analytical solution to the Ricatti equation. There are two basicY	 -

numerical approaches. The finite time interval and steady state problems may

`

	

	 be solved by numerical integration of the Ricatti differential equation or the

steady state problem may be solved by the direct solution of the steady state

Ricatti equation.

i
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3.2 Solution by Numerical Integration

Since the two point boundary value problem was decoupled by the Ricatti

transformation, the finite time interval problem may be solved by straight-

forward numerical integration. The Ricatti equation is integrated backwards

in time from t  to obtain the Ricatti matrix which is used to calculate the

feedback gains. Then the dynamics are integrated in the forward time direction

to simulate the system trajectory.

The integration approach may be used to calculate the solution to the

steady state problem, although not in a straightforward manner. The SOC index
i1	 A

contains weighting matrices, W and S, which are functions of the unknown

steady state Ricatti matrix. Thus integration of the unreduced Ricatti equation

is impossible. However the reduced Ricatti differential equation may be used.

Note that this equation is not equivalent to the unreduced SOC Ricatti equation.

A
This is clear since W of the unreduced equation is a function of the steady

A
state Ricatti matrix while W corresponding to the reduced equation is a

function of the time varying Ricatti matrix. However if a steady state solution

of the reduced equation exists, this matrix will also be a solution to the

steady state unreduced SOC Ricatti equation. The general conditions for

existence of the solution to the reduced differential equation have not been

established, although numericale ,ridence suggests that the solution of most

steady state SOC Ricatti equations may be obtained by the solution of the corre-

sponding reduced Ricatti equation. This may be a moot point since the next

section describes the direct solution of the steady state equation by iterative

means. This approach is usually more effective than numerical integration

from accuracy and execution time considerations.



53•

3 . 3 Iterative Solution of the Steady State Equation

The direct solution of the allstate Ricatti equation has been proposed by

various authors. 40,41,42,43 For the most part these methods can be extended

to the SOC problem. The concepts of some of these methods are described briefly

and an extension of one of the more promising is derived. In addition, a new

method applicable to the allstate as well as the SOC equations is proposed.

MacFarlane 
4o 

and Bass 41 have developed procedures which require calculation

of eigenvalues. To determine these eigenvalues is not a trivial task especially

for large systems. Blackburn 
42 

introduced a procedure based on the Newton

Raphson method. See Appendix B for a brief description of the Newton Raphson

(N.R.) concept. The Blackburn algorithm involves -the direct application of the

N.R. approach to the algebraic Ricatti equation. In a similar way this approach

can be applied to the reduced steady state SOC equations.

ATP + PA + S - EQ_ lET + I2EQ lETI2 + 2 Q 1ETIl	 + IlEQ 1 2T = 0	 (3.3.1)

where

E PB +2

I2 W = 0

The major drawback of this algorithm is that an initial guess for the Ricatti

matrix must correspond to a set of stable gains. That is, if Po is the initial

guess then (A - BQ 1BTPo ) must be stable. In most cases it is a difficult

task to find a suitable value of Po.

Recently neinman43 introduced an algorithm which is also a Newton Raphson

method. However, the structure of this algorithm is different from that of

the usual N.R. approach and it possesses regional rather than local convergence

r



i"

54.

properties. Moreover, only a set of stable gains is required to initialize

this method. With a little effort, the Kleinman method may be extended to

the SOC problem. However, the Kleinman-SOC algorithm must be started with a

P° corresponding to stable gains. Tnis algorithm is to be preferred over the

Blackburn algorithm since the implementation of the former is somewhat simpler

and for the allstate case it does not require the knowledge of a stable P°.

The basic concept of the Kleinman algorithm involves the simplification

of the Newton Raphson algorithm by recognizing certain properties of the

Ricatti equation. Consider the allstate Ricatti equation

F(P) = ATP + PA + S - PBQ-1 BT  = 0

or in terms of the closed loop system matrix

F(P) =AKT P+PAK +S+KQKT =O	 (3 3.2)

and the recursive relation defining the standard Newton Raphson method in

function space is,

Pi+1 = Pi - ( 2b
-1
	 F(P1)	 (3.3.3)dP	

P=Pi

-1 dF
where the ( C—P̂-)	 indicates the inverse of the differential matrix, 	 That

is, if

dF=dRdP

then

-1

dP = ( P-) dF

To derive this matrix, take the total differential of F(P).

dF =AT dP+dPA - dPBQl BTP - PBQ1BTdP

N
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Since for the allstate problem K T = Q-1 B 
T 
P and AK = A - BKT this equation

may be rewritten

dF =AKTdP+dPAK

or

dP	 (AKT * I + I * AK)	 (3.3.1)

where * indicates the Kronecker product. Thus

-1

(AE)
= 	 (AKT* I+I*AK)-1

and the inverse exists :f A K is stable. Equation (3.3.3) may be rewritten as

Pi+l = Pi - (AKiT * I + I * 
A i)

-l (A iTP
i + P i 

A i 
+ S + K  Q 

KiT)
K	 K	 K

By definition

T * I + I * A 	 i
(A K1
	

Kl)	 (A
	 +

Ki P
	 P AKi )-_ P

-	 Thus the Kleinman recursive equation is obtained

-1T
Pi+1 = - (P)	 (S + K1 Q Kl )

p=Pi

or

A T Pi+l + Pi+l	 1A = - S - K Q KITKi	 Ki

Using this same concept, a similar algorithm can be formulated for the SOC

Ricatti equation. However, in this case, Pi is no'- eliminated from the

rrecursive relation. Thus a Po corresponding to stable gains is required to

start the Kleinman-SOC procedure. Write the SOC Ricatti equation in terms of

`	 P and let
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I2 W = 0

T
F(P) = PA + .ATP + S - I1(PB + W) Q-1( BTp + 2 ) I1

Il(Rd + 2) Q-1 BT p I2

- I2 PBQ-l(BTP + 2T ) I1
T	 T

+ 2 Q-1(BTp + 2- ) Il + I1 ( PB + 2) Q-1 2 = 0
Taking the total differential

T
dF = dPA + ATdP - Il(dPB) 0. (BTP + 2 ) I1 - I1(PB + 2) Q 1(BTdP) I1

- Il(^) Q -BTPI2 - I1(PB + 2) Q-1(B 	 I2
- I2(^) Q-1(BTp + T,2 ) Il - 22 

P 1(BTdp) I1

+ 2 Q-1(BTdp) Il + Il(^) Q-1 2
T 

= 0

This equation can be written in terms of the closed loop system.

T
dF = dP AK + AK

T 
dP - I1 dPB Q 1(BTPI2 - 2 )	 1^

- (I PB- W ) Q-1 BT dP I2	 2	 1

or

dF =HdP

where
T

Y. = I AK +AKT * I - I1 I B Q
-1 

(BTP I2 - 2 )

- (I2PB - 
2

Q-11 BT * I I1
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The Newton Raphson recursive relation may be written as

P
i+l 

= Pi - H 1 F(Pi)

Anticipating that the desired structure is

Pi+l = - H-1  G(Pi)

rewrite F(Pi ) as follows

T
Pi AKi + AKiT Pi + S + K  Q Ki = 0

or adding zero

F(Pi) =riA_{i+AKiTPi+S+KiQKTi -Di
+D- - 

D Ti 
+ D i 

T

where

Di = I1 Pi BQ-1(BT Pi 32 - 2
T )

From the definition of H

Pi+l = Pi - H 1 F(Pi) = Pi-Pi-h-1(S+K 	
T

iQKi + Di + DiT)

Thus

Pi+l = - H
-1 

G(Pi)

where

jT j
G( Pi ) = S +KigJt + D i + D i T	 {I

If I2 = 0, which is true for the allstata problem. this algorithm reduces to

Kleinman's algorithm. To summarize, the Kleinman-SOC algorithm is an appli-

cation of the Newton Raphson concept to the solution of the SOC Ricatti equation.

An initial guess for the Ricatti matrix corresponding to a set of stable gains

is required. For convenience the method is implemented in terms of the equivalent

vector from, "P", and require a single solution of a system of NP linear

I-
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t

equations for each iteration.

NP = NS NS } 1
2

A New Algorithm

The proposed algorithm is unique in that the Ricatti equation is not

solved directly. Instead a feedback gain equation is solved for the gains with

the Ricatti matrix acting as a constraint relating the feedback gains and the

Ricatti matrix. The steady state SOC equations are given below.

AK =A - BKT 	(3.3.5)

AK  P + PA,,+ S t	 = 0	 (3.3.6)

Q
-1 

(B , P  + 2T ) I1 - KT = 0	 (3.3.7)

The SOC Ricatti equation i^ , used to find P as a function of K which leads to a

gain equation in terms of K. It will be convenient to formulate the matrix

C, o
equations in terms of a vector equation. Recall that the notation D indicates

a vector forme('. by the column ordering of the matrix D.

F('K') =O Q-1(BTP(K) - WT)  Il - ^K = 0
	

(3.3.8)	 I^

This notation is slightly redundant since the gain functions corresponding to

unavailable state gains are identically zero. This equation is solved by

Newton Raphson iteration. With this approach the reduction in the number of

equations to be solved may be significant. The direct solution of the Ricatti

equation requires that NS 2S+1 nonlinear equations be solved while the pro-

;posed algorithm requires the solution of (NS-L)P;C equations. For e::ample, if

NS = 7, L = 5, and NC = 1 there are 28 unknown Ricatti elements and only
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2 unknown gains. An additional advantage of this new scheme is that only a

stable set of gains is required to start the method.

The recursive relation defining the algorithm is given by

U Ko i+l = 11KD i - Vu F('K"i)^ -1 F('Kai)	 (3.3,91

where 17=K aF represents the Jacobian matrix of first derivatives such that

VKOF d^Kam	 = dF

The central concept of the algorithm concerns finding P as a function of

K and calculating the Jacobian. Manipulations may be carried out more con-

veniently in terms of the equivalent vector equations. Recall that "P" repre-

sents a NP element vector found from P as follows:

11P ItT = (P 1, 1; ... PNS,1; P2, 2 , ... ; PNS, NS)

The Ricatti equation may be rewritten in vector form,

E "P 11 = - ' I (S +	 ')

where
E= 11(AKT*I+I*A)

11

	 l
and

IIPII(K) = - E-1 it 	 +	 )"

The inverse of E exists as long as AK does not have two eigenvalues,

such that ^ i + % = 0.	 Now

II PI(	 E-1	
fl	 " 	

S+T/r 17/L

	

ClV ^K
Q
 =- CJ

cK^
	(5+.') _E-1 )  c K

where (^ 	 ) is the partial derivative of the j th element of "P" with
K  I
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dr

respect to the j th element of c Ka . Since

E-1 a E_ E-1
pK c
	

J^Ka

E _1 E	 -1G 	 E „(S + ^T	 -1)„ _ E	 „ T„
o ^	 ) O K

 a	 n ^ KQK ^	 (3.3.10)

	

Kj 	 j	 G^Kj

Thus

K1	 r) KNC(NS-L)

where

D	 p	 o ^
	F 	

(Q-1
  

B T	
P I1)	 K

l K a = oK o	 ,^K u

	

tJ j	
J	 J

f

j	 P	 „P„
The term la ^ is calculated in vector form	 u^ and then nanipulated into

	

U Kj	 do Kj

the matrix form.

At each iteration two basic tasks must be performed. In the first

j	 1 -` j = NC(NS-L)
1	

dKJ7

j	 is calculated by solving NC(NS-L) systems of NP linear equations, all with

the same left hand side. This is significant since after the initial solution,

'	 there is very little effort involved in sol ving additional s{

	

	 z'Y	 ng	 stems with theY

same coefficient matrix. Note that Eq. (3.3.10) can be rewritten as

„P„	 _1	 r

^AK
=-E	 ( aKo „

P„ 4.Kam„('):,)
C?

I	 j

F
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To calculate this matrix, first solve the following system of NP linear

equations for "P".

E „P„ _ _ „ (S + K4,K)„,

Since E is independent of ^K it may be computed once and stored.
t} X.

J	 l
Secondly, the vectors,	

Pff

 
are found by solving

v K.

E 	 „P„
uKJ`'	 lei=KJ—	 K.

This involves the solution of NC(NS-L) additional linear systems all with the

same coefficient matrix. With this data, the Jacobian of the gain function

equation may be formulated.

The second phase of each iteration involves the computation of the gain

perturbations by the solution of a system of NS - L Y :ar equations

Vu DiF - eK' = - F(0Krji)
K

followed by the calculation of the new values of the gains

o Q i+laK 3 i+ p°K JV

Thus, to execute one iteration of this algorithm,, NC(NS-L) + 1 systems of

NS NS+l	 order linear equations all with the same coefficient matrix and a
2

linear system of NS - L equations must be solved. This new method has been

called. the SOCDES algorithm since it plays a role in the SOC design procedure

described in the next chapter.
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3.4 Comparison of Algori::uns

To solve the finite time varying problem numerical integration must be

used. It has been found that the simpler algorithms such as Fourth order Runge

Kutta give more satisfactory results than some of the more sophisticated methods

such as Hamming predictor corrector or the Bulirsch - Stoer technique. Care

must be taken when using these methods since an improper choice of integration

step size or other algorithm parameters may lead to excessive execution times

or erroneous results.

For the steady state problem, it is usually advisable to follow the

iterative path. If a suitable initial guess can be found, then the iterative
t

techniques have faster execution times and a simple control over the accuracy

of the results. Of these procedures the Kleinman SOC or SOCDES methods appear

to be superior. The former requires an initial guess for the Ricatti matrix

corresponding to stable gains while SOCDES needs only 'he stable gains. Since

Kleinman SOC has a simpler structure, execution time per iteration is less

than that of SOCDES. However, it has been found that SOCDES usually converges

in a fewer number of iterations. Thus even if a suitable starting value for

the Kleinman SOC method is known, it may be more efficient to use SOCDES

especially for the many practical problems in which the number of feedback gains

is small with respect to the number of Ricatti elements. For example. a third

order SOC problem with one feedback gain was solved in 12 seconds by SOCDES,

18 seconds by Kleinman SOC and 150 seconds by Runge Kutta integration.

f I-
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Matrices

A	 System matrix: NS by NS

AK 	Closed loop system matrix: NS by NS

B	 Control coefficient matrix: NS by NC

E	 Equivalent vector equation coefficient matrix: NP by NP

E	 Notational matrix

dF	
Differential matrix: NS by NS

dP

I1 	Notational matrix

I2 	Notational matrix

K	 Feedback gain matrix: NS by NC

P	 Ricatti matrix: NS by NS

Q	 Symmetric control weighting matrix: NC by NC

S	 Symmetric state weighting matrix: NS by NS

W	 Bilinear weighting matrix: NS by NC

Qa K a F Jacobian matrix: NC-NS by NC.NS

Vectors

^ %i
K	 Feedback gain vector: NC .NS

"P"	 Equivalent Ricatti vector: NP

1AK Partial derivative vector: NI'

U J 

0
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Chapter IV

THE UNAVAILABLE STATE SOC DESIGN PROCEDURE

4.1 Introduction

The basic SOC theory and computational considerations have been ex-

amined in previous chapters. It has been shown that the optimal control

law of the SOC problem is linear feedback with only the available states

fed back. In addition eft_^ient numerical procedures are available for

the calculation of these control laws. The theory and the numerical

methods are tied together to form a design procedure which may be useful

for the study of realistic unavailable state problems.

To apply these techniques to a problem,a state variable representation

of the systems must be obtained. From a block diagram or differential

equations describing the system a set of first order linear differential

equations of the following form is determined.

x= A x+ B u

where x is the state of the system and u the control or input vector.

This model should be formulated so that the last L states of the state

vector are the unavailable or unmeasurable variables. Note that in many

cases an engineering decision '_s made as to which states are available.

That is, there may exist sensors which can measure some of the unavailable

states, but for economic or other reasons it may be decided to assume that

these states are unavailable.
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In addition, the control law structure and design specifications or

goals must be determined. Some of the specifications might include closed

loop stability, an inherent property of SOC, a maximum peak value of one

or more of the states to a particular input, and a well damped initial

condition response.

A SOC cost index is formulated and S and Q are chosen to mcdel the

design specification. This choice of S and Q is somewhat arbitrary

since some of the specifications are not explicitly represented in the

quadratic index. However, previous work has shown that the use of the

quadratic index leads to systems which are satisfactory with respect to

the classical specifications of overshoot, damping, etc. After the initial

r
i
i

SOC problem has been solved, the response of the system is compared with

the design requirements. In some cases, this initial design may be

unsatisfactory. Then the weightings are changed in a logical manner so

as to correct the unacceptable features of the current design. The SOC

problem is solved and again the response is evaluated. This concept is

different from the usual trial and error procedure for two reasons. First,

the interpretation of SOC as an optimal control problem removes some of

the art from the design process. At each step, the new weighting are

chosen in a systematic manner rather than in an intuitive manner. For

example if the peak or integral square values of the states are too

large than the state weighting would be increased and or the control

weighting decreased in order to reduce this state error. The choice.of

the perturbation in the weighting matrices is discussed in a mure precise

way in section 4.3. Second, the whole procedure may be programmed to run
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automatically on a digital computer. Thus in a short time a number of

designs can be made and evaluated allowing the engineer to gain insight

into the problem.

It is possible that after a careful evaluation of the system, through

the application of SOC, no satisfactory design is found. This may in-

dicate that the design specifications are inconsistent with reslect to

the sys';em and the chosen control structure. Then the control structure,

the system, or the design specifications may be changed and the design

procedure repeated. This approach is not an elixir but it has been fo:sid

to be a very useful tool for the study and design of linear control

systems.

4.2 SOC Design Procedure

In this section an explicit systematic procedure for the design

of control lows based on the concepts of section 2.1 is proposed. The

central concept is to use the Reverse SOC problem to obtain an initial

set of weighting matrices. These weightings are perturbed in a systematic

manner to obtain a more satisfactory design. For each set of weightings

the SOC equations are solved by numerical integration for finite time

interval problems and by SOCDES for the steady state problem. A digital

computer program SOCSES I based on this method has beer. developed. See

Appendix C for the description, flow chart and listing of the program.

The reduced running time and user effort compared with other optimal

design control programs, indicate that SOCDES I may be a very useful

design tool. In Chapter VII SOC is applied to the problem of controlling

a large flexible launch vehicle.

r
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In Fig. 4.1, a block diagram of the method is shown and it is

described below.

Step 1: Determine System Specifications

Comment: Based on the problem to be solved a reasonable set of specifi-

cations must be determined. SOCDES I may be helpful in pointing out

inconsistent requirements.

Step 2: Select a Cuntrol Configuration

Comment: As indicated above, the unavailable states must be specified.

In addition, compensation in the form of a filter or network may be -lsed.

It may be considered as part of the system to be controlled and some of

its parameters may be chosen by feeding back some of the filter states.

Step 3: Solve the Reverse SOC Problem

Comment: For the finite time interval problem any set of finite continuous

feedback gains may be used in the solution of the Reverse problem. How-

ever, for the steady state problem a stable set of gains must be obtained.

For the many physical systems which are stable, zero gains are sufficient.

For those that are unstable it is usually not very difficult to generate

a set of gains with stability as the only criterion. Even for the complex

booster of Chapter VII, a calculation of the Routh array leads to a stable

set of gains.

Note that the exist.:nce and uniqueness properties of Chapter II

and the convergence properties of the iterative schemes of Chapter III

are of a local nature. SOCDES I may be used to extend these properties

to a region. For example if during the design procedure the Jacobian

disappears or the equations become numerically difficult to solve, it is
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possible to resolve the reverse problem and thus define a new neighbez,hood

of existence and convergence which allows the design process to be con-

tinued.

Step 4: Choose New Weightings

Comment: See Section 4.3

Step 5: Calculate the SOC Control Law

Comment: The new SOS problem is solved by one of the numerical techniques

of Chapter 3.

Step 6: Are the Specifications Met?

Comment: The current design is checked to see if the design specifi-

cations are met. This may include simulation of the closed loop system

or other calculations such as finding the closed loop poles. If specifi-

cations are met, the design is complete; if not the design procedure is

continued.

Step 7: Has the Control Configuration Been Extensively Investigated?

Commen±: If the current control configuration has been carefully examined

and no satisfactory design has been obtained then two choices are avail-

able. First, the analysis done so far may point out a new set of feasible

specifications. Second, a new control struct-are may be chosen. This

might include a new choice of available states or the use of a d'_fferent

compensator. Once a choice is made the design returns to step 3 and the

cycle continues. Since the computational effort involved in impleme.iting

this procedure is low it may be feasible to examine various configurations

i

I
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and compare the results. In this way it may be possible to gain insight

into the choice of a "best" controller configuration.

4.3 S;Tstematic Choice of Perturbation Weighting Matrices
t

After each iteration in the SOC design procedure new weightings

must be chosen to improve the design. A tradeoff between systerr error

and control effort can be obtained by varying the relative magnitudes

of S and Q. Intuitive reasoning indicates that by increasing the
i

state weighting, S, the integral state error will decrease while in-

creasing the control weighting, Q, will lead to reduced values of
i

i	
the integral square control effort. Since the control law is of a closed

loop nature, the integral square values of control effort and state error

are related. Assume that the state weighting is increased. In general,

this will cause the magnitude of the feedback gains to increase and the

state error to decrease. The control effort may increase or decrease
l

corresponding to the relative magnitudes of these changes. These inituitive

concepts have been substantiated by numerous examples. Moreover, it is

possible to derive an express.^jn which indicates the effect of perturbing

the weighting matrices.

Given an expression which represents the properties of interest, say
A	 t
Jx = ff x x dt , then determine the gradient of this expression with

t
0

respect to the weightings. Again let a represent a weighting vector

formed from the independent elements of S, W, and Q. Then the perturbation
A

d x due to weighting changes is given by

F
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dr-

A 	
T

d x =	 x d^
=^ g

A	 q	 /^

where	 X	
r x	 Jx

is a vector such that L
) jE	 _ja i

	 )e i

This approach is not restricted to integral square quantities and may

be applied to any design characteristics which can be represented by a

mathematical expression. Moreover, an indication of the consistency of

the design requirements may be obtained. Form a vector composed of NN

A
design specification expressions, J i , i x i ^. NN .

r n

^ J1

A
J =

JNN

Then calculate the gradient of this vector with respect to the weighting

vector.
t, T

dJ= V J dZ
	

(4.3. 0

where

A	
l	 1 N

A
If for a particular design specification change, dJ , a solution to

Eq.(4.3,^ exists, then the change is consistent and may be obtained with

d:g as the weighting change.



OD
A	 r

Consider x = J xTx dt

t
0

and for simplicity assume a scalar control and the corresponding gain

vector k of N elements. Using the chain rule

A
^J	 p kx	 x_

az	 b	 3k

(' 'J k	 '^ k

where	 D k = L 1̂ 1 ... J,	 N

g

k.

The vectors,	 1 , can be calculated easily using the SOC necessary

condition equations.

kT= Q 1 (BT P+WT) I1

2

AkT P+PAk +S+kQkT =0

or using the equivalent vector notation

VI PIT = _ E 1 "(S + k Q kT)"

Note that the weighting elements enter into these equations in a simple

manner leading to easy calculations.

') J
The calculation of 3

kx
 is not as trivial a matter, since a

straightforward approach is not feasible. However, by interpreting x

72.
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as a cost index and using Lemma 2 of Chapter II it is possible to determine

these terms. Let X be a function of the lower time integration limit

and require that X have a quadratic representation.

00

X(t) = x(t) T Dx(t) = J x  Sx dt

t

where S = I and D is a constant matrix to be determined. Differentiating

with respect to t leads to

d 
XT Dx + xT Dx = - xT Sx

dt

Since	 x = A  x

xT AkT Dx+ xT DAk x=- xTSx	 (4.3, 2)

Since Eq.(4-3.2)is required to hold for all x .

-kT D+ DAk = - S = - I	 (x+.3.3)	 )1-

If Ak is stable E . (4.^r3)ma be solved for D and expressed in the^ q	 _	 Y	 P

vector notation as

„D" = -E-1 ,lI„

Thus
„D„	 D F 1 "I,' 	 -1	 E

- -	 E	 E-1 „I„

r, k  -	 ') xi	 J k 



For an initial condition vector c

J = CTDc
x — —

and

x =	 (.Q D = c 	 D c

k 	 ) k 	 •)ki

where	 can be calculated and manipulated to obtain
3 k 	 j ki

Note that Eq.(4.3 . 4) appears in the SOCDES algorithm and thus it would

be easy to calculate these gradients and implement the automatic choice

of new weightings.
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Using this approach the

may be verified for the seca

this example is given below.

-k-2 w

1

intuitive effect of varying the weightings

.id order example. The pertinent data for

2
-w

0

b=

 [

1 ]	 S= [S1 S21	 WaLWl^
0	 S2 S3 	 c

Let	 = 0 and a)=  1 then from Eq. (2.3 .10)

k = Wl + q	
Sl q + — + S3 q	 (4.3:7 )

2q
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f

The parameter vector g has the following components

S1

S„c

S3

W1

q

and let	
Oo

A
J { = 1	 XT X dt

t
O

Using the chain rule

A	 A

X	
_^ X
	 k

where
3kT '^k ,	 k )k ?k k

-.a C'^S1 ' ^S2 , dS 3
)W1 q

and from Eq. (4-3-5)

Jk	 1

S1	

S1 q 
+ W1 + Sq q-

,3 k = 0

3 S2
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t^ k _	 ^^ k

3 S3	 S1

k =	 1	 1 +	 Wl

2q
^JW1	 4 S1q+ W17+ S_q

4

-	 S1 + S^3 k	 W	 1 1 _	 S	 Wq+ l + S3 q + 2
q	 2q 2	 q2
	 1	 q

Slq + W, + ^3
4

Using the definition of AK and the fact that

E	 (,Aj * I + I * A K
) It

it is easily shown that for this example

-2k	 2	 0

E _ - 1	 - k	 1

0	 - 2	 0

If this notation is bothersome, recall that this matrix may be obtained

by writing the Ricatti matrix as a system of three scalar equations and

simply identifying the coefficients as shown in Appendix E.

Now

_ 1	 0	 _ 1

2k	 2k

E1=	 0	 0	
-2

2k	 1	 - 2 
(k+ 

k^

ff-



and

1
?Vitt	 =	

0

1

Thus	 _

_ 2k2	
0	 - 1-^	 1

2k

k	 3k	
0	 0	 0	 0

2k2 	0	 2(1 k2)
	

- 1

Dl D2
or if	 D =

D2 D3

Thus

^D1 	 1

k	 k2

D2
= 0

)k

)D3 	 1	 + 1

a k	 k2	 2

Thus

2
a x =c TD c	 c1 +( 1 _ 1	 2

J k	 clik	 k2	 2	 k2	 2

c1

where	 x(to) = c =
c2

Consider the specific values of the weightings used in the example of

Chapter II which were

77
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F

S1 = S3 =1,	 S2 = 0, q=1, W1=0

which lead to the optimal SOC feedback gain,

k = /2

Assume that
1

C =

0

Then
A

Jx
A

 x

4
 '^ x	 k 	 1	 2 _	 2

s1 '3S3
-

^k	 )S3

A

J `Tx	 _ Jx ?k	 1	 r	 /2
=	 -	 -	 =

^q )k )q	 2	
2	

4

Hence the intuitive notions are verified since increases in the state

A
weighting, S1 or S3 , causes the state error 

x 
to decrease, while

increasing the control weighting, q , causes the state error to increase.

Calculations of this type may be made to verify or establish the

effect of perturbing the weightings. It is possible to systematically

vary the weightings based on this information to obtain charges in the

design characteristics and hence proceed to a acceptable design in a

logical manner. If desired this gradient procedure could be added to

the SOCDES I program and the weighting perturbations could be calculated

automatically.

1

l
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IF

Moreover, the SOCDES I program could be used as a computational

method for solving other optimal problems. Suppose that it was desired

to minimize
00

n
x = r xTx dt

t

0

for some set of initial conditions. Then SOCDES L could be used as a

gradient procedure to solve this optimal problem and possibly avoid some

of the formulations and numerical difficulties o: the parameter optimi-

zation approach.

',.4 Desi n Loci

One of the most useful of the classical techniques for the study

of single input single output time invariant systeis is the root locus.

Essentially it is a graphical technique which plots the loci of the

closed loop poles (system eigenvalues) as a function of the loop gain.

This technique provides insight as well as explicit inf.:rmation about

the behavior of the system. A similar procedure has been proposed

for SOC through the use of the SOCDES I program. This technique involves

determining the loci of the closed loop pules as a function of the

weighting matrices. The SOCDES I program is used to solve the SOC

problems for various values of the weightsings. For each step, the

characteristic equation is solved and the poles obtained. Thus these

poles as a function of the weightings are plotted.

Another locus which has been of use is the gain locus which involves

d_

r

i



the plotting of the feedback gains as a function of the weightings. From

this locus, the gradient of the gains with respect to the weightings

may be obtained and	 used to determine the effect of the weightings

on the design criterion.

As an example of these loci again consider the second order example.

Let

^ = 0, w = 1, Sl =S3 = 4 q=11 W1=0,

then

k = F2 and the characteristic equation is given by

a+k	 -1

dat
	

S2 + k S + 1 = 0

1	 S

Since	 k = 3 2

80.

S = - 2 ± ,j ' 2
2

Consider the loci of these roots and the gain as S 1 is varied which

is plotted in Fig. 4.2a and 4.2b. As S1 is increased the gain increases

and the poles approach the real axis. As S1 is decreased, k approaches

one and the roots approach - 2 + ^j` 2 . In a similar manner consider

the loci as a function of the control weighting, q . Then the trend is

in the opposite direction since as q is increased the gain decreases

and the poles approach the imaginary axis. By varying q it is possible

to obtain all stable values of the feedback gain. See Fig. 4.3a and 4.3b.
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Note that the S1 and q root loci coincide where they both exist.

Since various combinations of weightings may give the same gain it is

possible to get identical root loci for different weighting sets.

Another useful tool is the graphical representation of the feed-

back gains corresponding to stable poles. Since the poles are a

continuous function of the gains it is possible to plot the set of stable

gains 
k 

in some region of a Euclidean space. Then the K locus may

be plotted on the same graph. For a problem with two gains,

k 

k2

a typical plot is shown in Fig. 4.4

82.
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Nomenclature

Matrices

A	 System matrix: NS by NS

B	 Control coeficient matrix: NS by NC

D	 Notational matrix

E	 Coefficient .matrix for equivalent vector equation: NP by NP

K	 Feedback gain matrix: NS by NC

P	 Ricatti matrix: NS by NS

Q	 Symmetric control weighting matrix: NC by NC

S	 Symmetric state weighting matrix: 	 NS by NS

,ID Matr__x of partial derivatives

jk.
1

4
Q J Jacobian matrix of J with respect to g—	 —

v k Jacobiarl matrix of k with respect to g

Vectors

"D" Vector equivalent of D

"I" Vector equivalent of I

g	 Weighting vector
14

J	 Vector of design criterion

k	 Vector of feedback gains

"P" Vector equivalent of P

x	 State vector: NS

U	 Control vector: NC

Scalars
it
Jx Resign criterion expression



Chapt cr V

THE SOC MODEL REFEUNCE PROBLEM

5.1 Introduction

!	 In order to design a control system, a mathematical abstraction

cr model of the process to be controlled must be obtained. In any practical
1

situation this model is only an approximate representation of the actual

process. The effectiveness of the control system designs depends to a

large extent on the accuracy of this model.

Once the model has been chosen and the nominal design completed,

additional design factors must be considered. These factors include

the effect of possible environmental changes, such as additive dis-

turbances or plant parameter variations. Many of the current design

techniques allow the consideration of additive disturbances; however,

the plant parameter variations are not as easy to handle. These plant

parameter variations may be of two types; there may be actual changes in

the plant caused by component aging or the parameter estimates for the

model may be inaccurate. For this study, the term variations does not

refer to changes with time but rather to the fact that the constant

parameters have unknown off-nominal values.

In recent y!ars, the plant parameter problem has been attacked by

sensitivity methods and by the model reference approach. The objective

of these control schemes is to cause the trajectory of the system to re-

main close to the nominal in spite of plant parameter variations. The

model reference scheme does this by attemping to null the error between

85•
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1

the actual trajectory and the ideal nominal trajectory generated by a

model. Note that the term "model" has been used in two different ways.

The first usage referred to the mathematical description of a physical

process while the second referred to a "black box" which may or may

not have a physical realization and which generates the desired nominal
}

system trajectory.

r The scheme proposed in this section consists of two feedback loops.

The inner loop is designed with the aid of conventional or optimal tech-

niques on the basis of the assumed nominal process model in order to

obtain satisfactory responE-^ to command inputs in the presence of additive

disturbances. The outer feedback loop is designed with the SOC technique

I	 to compensate for inaccuracies in the process model parameters as well

as any additive disturbances. An advantage of the model reference

IJapproach over that of trajectory sensitivity, is that the nominal model

reference trajectory may be chosen independently of any sensitivity

considerations, while the sensitivity approach involves a tradeoff be-

tween the nominal trajectory and sensitivity. The model reference

approach pays for this advantage with increased controller complexity.

To be more specific, consider the regulator control problem of

driving the output of a system to zero. The following development is

easily extended to the more general case of a non -zero command input.

In Fig. 5.1 the model reference scheme is pictured. The inner feedback

gain matrix, K  , is designed on the basis of the nominal process model.

In the outer loop, the control is obtained by feeding back the difference

between the actual system output and that of the output of the model.

L_
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The outer loop gain matrix, K , is found by the application of the SOC

procedure. It is shown that this gain matrix depends on the process

model and desired response characteristics but that it does not depend

on the nominal trajectory. This property may be of practical significance.

Consider the Saturn launch booster prcblem. Aside from the difficulties

involved in generating an accurate process model, the actual flight of

the vehicle is subject to severe additive wind disturbances. For a

particular flight, the guidance command is a function of the mission

requirements and the wind patterns, hence nominal trajectories vary from

one flight to the next. Using this model reference scheme it is possible

to precompute the feedback gains and hence the control iaw and then simply

change the model input based on the nominal trajectory.

5.2 Formulation of the SOC Model Reference Problem

Previous sections have described the SOC theory and considered its

application to control problems with unavailable states. The design of

the outer control loop in order to keep the system trajectory close to

the model reference trajectory in spite of parameter variations can be

formulated as an unavailable state problem.

Assume that the inner control loop and the command input, which

for the regulator problem is zero, are given. Consider the effect of

parameter variations on the system trajectory. A perturbation model

which describes this effect can be obtained by the linearization of the

plant and the nominal feedback control about the nominal trajectory and

parameter values. The parameter variations are considered as additional

state variables and the SOC theory is used to determine a linear feed-



back control law that does not depend on the parameter states. Since

the gains operate on the perturbed states, in the actual implementation

they operate on the difference between the actual and nominal trajectories

as shown in Fig. 5.1. Strictly speaking the analysis applies to small

perturbations, although in many cases it has been found that the SOC

model reference scheme gives satisfactory control for a wide range of

parameter values.

Derivation of the Perturbation Model

Let the nominal process model with a inner loop control and

a command input be described by a linear system of differential equations.

	

x = (A(go ) - B K  ) x  + B m ; x(to ) = c
	

( 5.2.1)

where qo is a vector of NPA parameters and K  is the matrix of inner

loop gains. The superscript ° indicates a nominal quantity.

By expand=ng Eq.(5.2.1)about the nominal parameter vector and

trajectory, an expression for the differential equation system describing

the off nominal trajectory can be obtained.

NIA

x = xo + (A(_qo ) - B Ko ) dx + 7- —A x r' dg + B dm + 02

	

1 qx	
r ^

( 5.^i-)

where `-A denotes the matrix of partial derivatives evaluated at theN
9

nom'.nal,

^A	 [A] ij
')q.

ij

89•
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and 0  denotes second and higher order terms.

If the perturbations are suitably small, the higher ordered terms

may be neglected and a linear model is obtained.

NPA
C" 1

d.: = x-x° = (A(q°) -B Ko ) dx + L Â x° dq^ + B dm

R=l q^

The SOC problem is formulated in terms of an augmented state vector.

dx

The dynamics which describe this state vector are obtained from the linear

perturbations model and the fact that the parameter vector is assumed to

be time invariant.

A 'Y+Bu	 x(to) = c
	

(5.2:3)

where

A - BK
i

0

A =
i

0

.? A

Aqi -	 q 

B

B
	 0

0

A x°	 A	 x°
ql 	 gNPA
0	 0

0	 0



91.

r
_	 0
C

dg

U =	 d m

The upper elements of the initial condition vector are zero since it is

assumed that the perturbations in the parameters do not effect the system

initial conditions.

.!ormal Statement of SOC Proble7

The SOC control u is s':ructured so that the unavailable

perturbation states and the pararrater states are not fed back. This

control, u , is chosei.	 minimize J.

t 
J= 2 r (yT S y + ,Y 5^+T Wu+^rT Wu+uT Qu) dt

t 0

subject to the dynamics of Eq.(5.2.). Since x o is a function of time,

A is; and it would appear that this is a time varying SOC problem. Thus

the SOC feedback gains would be time varying and would be characterized

as follows.

KT(t) = Q71  (BT P(t) +
 WT

 ) Il

p(t) =A P+PAK+S + i QKT ; P(tf) = 0

where
K

K= ----

0
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	A - B(KT+K°T )	 Aq x `.... Aq 	x°
1	 NPA

0	 0	 0

AK =

0	 r	 0	 0 I

However, a close examination of these equations indicates that the

	

gains are independent of A 	 and x° . This surprising result implies
i

that insofar as the linearization model is accurate the model reference

scheme compensates for any parameter variation around any nominal trajec-

tory. Moreover, although the SOC problem has been formulated as a time

varying problem, constant values of the model reference gains can be

found by considering a time invariant process model and inner feedback

gains and a SOC index terminal time of oo .

To demonstrate this result a matrix partitioning notation will be

used. For convenience assume that there are two parameters and let

A - B(KT+Ko )	 A x°	 A x° -
ql —	 , q2 —

AK =	 0	 0	 0

0	 0	 0

S 	 S 2 T
	

S 
3 
T

S =	 S2	 S4	
S 

5 
T

S3	 S5	 S6



wl

-0w =

0

(5.-:4)

^
P1 	P2 

T	
P3 T

P =	 P2	 P4
	 P 5 T

P3	 P9	 P6
4

With this notation the matrix differential Ricatti equation can be

decomposed and written in terms of six co •aponent equations.

KT =4 1
 (BT 

Pl+ W1 ) I.
2

I	 + 0
where	 I _	 ---- ---	 is NS by NS

0	 0

and	 I is a NS-L by NS-L identity matrix. The last L states

of the original state vector are assumed to be unavailable.

AK = A - B(KT + Ko)
	

(5.2 . 5 )

-Pl = Pl
AK+AKT

 P,+S
I

+KQKT ; P1 (tf ) = 0	 (5.2:6)

-P2T = Pl qA x  + 52T + AKT P
2T	 P2T(tf) = 0	 ( 5 .2 r 7 )1

-P3
T 

= Pl A
q2 

xo + S 3 T + A^
T 

P3 	 ; P3T(tf ) = 0	 (5.,- .8 )

93•



1
	

94.

-P	 =
T

P2 A	 x` + x''
ql

A	 P2 	 +
ql

S P (tf )	 =	 0	 ( 5.2: 9)

-P5 =
T

P2 A^ x°+ x° Ag1T P3T + S5T P5 (t f ) =	 0	 ( 5.2 -,10)

-P6 =
T

P3 A^ x°+ x°
L

AST i,3T + S6 ;	 P6(tf) =	 0	 (5.2 .11)

From Eq.(5.2.5)and(5.-,6)it is clear that Vie feedback gains depend only

on P1 which is independent of the other P partition blocks. Thus,

the SOC gains are independent of A
ql	 q2

, A	 and x°. If the time

invariant steady state problem is considered, the SOC model reference

gains are determined from_ a algebraic matrix Ricatti equation.

P1 AK+AKT PI
+SI +K QKT = 0
	

(5.2: i2)

and	 x = (A-B (Ko + KT) ) x	 (5-2. 13)

The nominal composite closed loop .ys.-em,AK , that is the system

with feedback gains equal to the sum of the inner and outer loop gains

is stable.

AK A - B (K 0 T  + J)

This can be shown by choosing the fcllowing Lyapunov function.

V = x  P1 x

where P1 is positive definite and is obtained i^.:m the partitioned Ricatti

matrix. From Eq.(;.2.12)and (5.2.13^

.,



V= - X  (S1 +K Q K T ) x

which is negative for any allowable system trajectory. With the application

of the Lyapuiiov Stability Theorem, the result is obtained. If the para-

meter variations are suitably small so that the linearized dynamics are

valid,
idPA

dx = (A ( qo ) - B Korl, ) dx +	 r	 A x° do ;. + B d_m

.1L 
1 do^

and	 dm=-K_Tdx=u

Or, in terms of the composite system matrix,

NPA

ax = AK dx + ^ 4A x° d 9`^ 	 dx (t° ) = o (5.2:14)
1^	 3o.
= 1	 ^`

Assume that the nominal trajectory is stable, then

x°--aw C as t ---> oo

Since the composite system is stable, its state transition matrix fA(tlt

approaches zero as t approaches infinity. If the last terms of Eq.(5.2,14)

is considered as a forcing term, the trajectory despersion can be written

as	
t	 NPA

	

( t ) = f	 L K fit,	
) a A 

X° (L)
 do d L

t °	 ,+^=1	
J g	 '^

and

x(t) ti x°(t) + dx (t)	 (5.2,15)

Thus, the dispersion remains b-)unded since it can be shown that the

integrand is bounded by some negative exponential.
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From the block diagrams of Figure 5.1, it is seen that the

differential equations describing the model reference system can be written

jin two ways

x= (A-BKo ) x- BKT (x-x°)

or

x = (A-A (K0 + KT) _Y + B KT x°

The solution for this second equation can be expressed as

t

x(t)^K (t t°) c + I rK(t) .` ) B KT x°	 d	 (5.2x16)

t 0

From this viewpoint it is clear that the model reference system will re-

main stable as long as the parameter variations do not cause the composite

system, AK , to become unstable. Note that Eq.(5.2,15)is an approximate

relation derived from the linearized model which is used to calculate

the outer loop, while Eq.(5.2.16)is an exact expression derived from the

consideration of the model reference system block diagram.

A important feature of this model reference approach is the fact

that the nominal response of the system, which is independent of the

outer loop Zains, may be designed to achieve the "best" system response

without regard to parameter sensitivity considerations. Thus, the model

reference gain, KT, could be chosen so that the composite system is

insensitive to parameter variations. If the parameters have nominal values,

the "best" performance is obtained while if there are parameter variations,

the response may deteriorate slightly but the entire system will remain

stable.
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Although most of the blocks of the Ricatti matrix do not effect

the calculation of the feedback gains, they may provide useful information.

Suppose that all of the blocks of the state weighting matrix, S except

S1 are chosen to be zero. Then the optimal index may be expressed as

t 

'i = 2 f (dxT S 1 (1: + UT Q u) dt

1
V

rJ

Using the definition of the control law and Lemma 2 of Charter II it is

possible to rewrite this equation as

^ T^

f^2 	 d	 P[d _] 	 (dxT (S + K Q KT) dx) dt
S	 q	 t	 —	 1

0

The elements of P indicate the relative effect of the various parameters

on the trajectory dispersion. The value of the cost index, which is an

integral weighted square of the dispersion due to the parameter variations,

d_q , can be found in terms of the Ricatti matrix ^.lements. !or example

for the system and Ricatti matrix of(Eq. 5.2,4)the value of the index

resulting from the variation dq 1 is given by

2
J1 
0 

= dql P4

Similarly, for a perturbation in q2 , dq2

0	 2
J2 = dq2 P5

With this information the designer has an indication of the relative

effects of the various parameters. If J1° is large compared with



J20 , then it might be important to know the value of ql in a precise

manner while q2 might not have a significant effect on the system

response.

5.3 Example

In order to illustrate the calculations and effectiveness of this

model reference scheme, a second order damped oscillator example is

considered. It is assumed that only the rate state is available. The

model reference scheme is designed to compensate for lack of knowledge

of the damping ratio, I . The differential equation defining the system
is given below and the block diagram is shown in Fig. 2.1.

x+2Jx
+(Uw 	 x = v(t)

0
Let 7 = 0 and w = 1 and use as the nominal inner loop gain the
SOC control law of the example of Chapter II.

k0 = V' 2

The formal model reference problem required the choice of the

perturbation control u to minimize

aD
/1	 n

J	
2 f (,YT S,YT +.YTS.Y +,Y Wu+yT Wu+u

2
 Q)dt

t
0

subject to

= A Z + b u; y(to ) = c

98.
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The augmented state vector is

dx

y =	 dx

d 7'

and
-2 °w-ko 	-w	 -2m x°

A =	 1	 0	 0

0	 0	 0

1
b =	 0

0

0

c =	 0

d 7'

Q = q , a scalar

The solution control law has the following structure.

u= - kdx

Instead of calculating the formal problem, the reduced problem was solved

for various weighting matrices. The equations which characterize this

reduced problem are 	

TT

K = Ql (BT P + 2 ) I*

An  Pl + Pl AK + S
i
 + gKKT = 0	 ^5•^el^



where
-2 ) ° CV - k-ko 	-( 2

AK^

1 0

Pi P2P	 =
1

P2 P3

s1
s2

S	 =1
s2 s3

Eq.(5.3,1)can be written as an equivalent set of scalar equations and

for convenience the values of J and w have been substituted and it

is assumed that W = 0.

Pik = —q

2p1 (-k o -k) + 2P2 = - s l - q k o-

-Pl - k P2 + P3 = - s2

-2p2 = - s3

or

k = - k o +	 Vq 2 ko + sl q+ 1, 3 q

These equations were solved for the following three sets of weighting

matrices.

100.



1.91 0

1) S=	 , q=1,	 W=0

0 1.91

k = 1

8.76 0
2) S=	 , q=1,	 W=0

o 8.76

k = 3

53•o8 o
3) S=	 , q=1, W=0

0	 53.08

k= 9

.. -

	

	
These solutions are compared by perturbing the parameter,

simulating the system and calculating

t

Jx =	 x(t)2 dt

t
0

with t = 10 seconds. To provide a basis for comparioon the system was

simulated with onl,- the inner loop control for the various values of

parame+.ers. The numerical integration was done with a fourth order

Runge Kutta algorithm. Three off-nominal values of 	 were examined

and the resultsare logged in Table 5.1. Note that 	 _ - 1.66+ with

the nominal gain alone corresponds to an unstable system as indicated by
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I
i

t

S 0 = 0
k° = v2

Table 5. 1 	 JX(k1t)

1

i'
I

l

I 
^.

IJx
k

0 1.0 3.0 9.0

0 .354 .354 .354 .354

S
-.414 .500 .448 .414 .380

-1-164 1.960 .807 .562 .436

-1.664 ao 1.5 0 1 .722 .480

r

r.

r
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the entry of co in the table. As expected the value of 
X 

for an off

nominal parar:ezer decreases as the model reference gain increases. This

corresponds to the tradeoff between state error and control effort. In

Fig. 5.2, the simulation results for the nominal control and parameters

are compared with an off-nominal parameter with inner loop control only,

and the full model reference system. Note that the model reference scheme

succeeds in keeping the trajectory close to the no^.inal in spite of the

parameter variation. In Chapter VII this nodel reference scheme is

applied to launch vehicle problem.
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Nomenclature

Matrices

A	 Systet,i matrix: NS by NS

A	 Perturbation, system matrix: NPA + NS by NPA + NS

B	 Control coefficient matrix: NS by NC

B	 Perturbation system control coefficient matrix: NS + NPA by NC

K	 Model reference feedback gain matrix: NS by NC

K 	
Inner loop feedback gain matrix: NS by NC

A
K	 Composite feedback gain matrix: NS by NC

K	 Perturbation model feedback gain matrix: NS + NPA by NC

P	 P.icatti rlatri.x: WE by NS

Q	 Sy--metric control weighting matrix: NC by NC

S	 Symmetric state weighting matrix: NS + NPA by NS } NPA
A
S	 Symmetric stave weighting matrix, class two: NS + NPA by NS + PA

S1 Component matrix of S: NS by HS

W Bilinear weighting matrix: NS + NPA by NC
A
W Bilinear weighting matrix: NS + NPA by NC

W1 Component tratrix of W: N° by NC

A
B 

Matrix of partial derivatives

3q^t.

1o6.



Vectors

C
	

Initial condition vector: NS

c
	

Perturbation model initial condition vector: NS + NPA

U
	

M
	

System input vector: NC

dm Perturbation model control vector: NC

h;	 q
	

Parameter vector: NPA

dq Perturbation parameter vector: NPA

u
	

Perturbation model control vector: NC

fif
	

X
	

System state vector: NS

z
	

Perturbation model state vector: NS + NPA

t

r-if

n

f.

107.
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Chapter VI

THE SOC SENSITIVITY PROBLEM

6.1 Introduction

The concepts of optimal control have been applied to the problem of plant

parameter sensitivity in order to calculate control schemes which are relatively

insensitive. The basic concept is to define a variable which represents the

sensitivity of the trajectory or cost index to changes in system parameters.

These sensitivity variables are considered as additional state variables and

are placed in the cost index to be minimized. Since most of the closed loop

control laws of optimal control requi.r-- knowledge of all of the state variables,

the additional sensitivity states !rust be generated, adding to the complexity

of the controller. It is clear that for a given feedback control structure,

certain values of gains lead to less sensitive closed loop systems than others.

Thus it appears feasibl .o formulate a SOC problem which determines a control

law that does not feed back any sensitivity states, and yet allows a tradeoff

between system error, sensitivity, and control effort. Using this approach

feedback control laws may be designed with sensitivity considerations, rather

than designing and then analyzing for sensitivity characteristics.

1	 6.2 Problem Formulation
Previous work34' 35,36,45 has defined and developed the concept of trajectory

sensitivity functions as outlined below. Assume that the state or trajectory

of a system may be described by a system of first order linear differential

equations, which are a Function of a vector of constant parameters, S.

x = A(SO) xo + B u°O;	 x(to) = c	 (6.2.1)

F
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where the superscript o indicates the nominal. Consider the effect of a

small change in the parameter on the system trajectory. The resulting off-

nominal trajectory is described by the following system of differential equations.

X = A(0 + d%) x + B u . 	x(to ) = c .

This trajectory ray be represented by a Taylor series expansion about the

nominal parameter.

x
x = x° + --- d g + 02g

where 02 represents second and higher order ter

partial derivatives.

LC	 _ r^ xi

qj

Similarly the trajectory dispersion is given by

XAX=x-x°=^d%+02

_x

and ^ is a matrix of

(6.2.2)

Assuming that the first order terms are sufficient to describe the tra-

jectory dispersion, it is clear that for a given parameter perturbation the
_x

dispersion can be made small by limiting the magnitude of ^7g^ . Thus, define

the sensitivity matrix, Z, as follows.

	

)x 
	

xi	 1^ iLNS

	

Z -^
	

[z] i • C7 qj 	 1 j ^ NPA	
(6.2.3)

	

tJ^ 	 J

Let z. denote the j th sensitivity vector corresponding to the j th parameter

and the jth column of Z. These sensitivity vectors are adjoined to the system

state vector to form an augmented state vector.



x 1
Tqj

XNS

qj

X

A Z1x=	 ,

ZNPA

(6.2.11.)

1]_0.

t

s

The augmented state vector is to be placed in a SOC cost index; by appropriate

choice of weighting matrices a tradeoff between system performance and sensitivity

may be obtained. The formulation of the SOC problem requires that a differential

equation describing the behavior of the state vector be known. Fortunately,

such an equation may be easily derived. Since by assumption .g is independent

of time and the first order partial derivatives are cont'.nuous, the differential

operators may be interchanged.

d-z^ d -1 X	 dx	 X

	

Zj = at = dt (^ q. ) _ ^ (at) - v q.	
(6.2.,)

J	 J	 J

Note that the partial derivatives are taken with respect to the nominal. 	 Using

Eq. (6.2.1) this expression becomes

c)A
	 u ) C x Jxt= z	 =	 x + (A + BZ.	 qj	 x qj ' = 0qj	 -

t_-to

or

1A	 u)z	 =	 x + (A + B
-j	 qj

z.	 ;
-J

z {t ) = 0	 (6.2.6)j	 o

The initial conditions are zero, since the parameter variations have no effect

on the systems initial conditions. If the control law is linear feedback,

U = - K X



(6.2.6-)

."x (JO)

0

r.

0

I'.

fi

I'

then Eq. (6.2.6) reducer, to

a
'

A—j = ^p	
% - B Y21,	 . + f A	 T) z

qj

The differential equation system describing the augmented state vector may be

written in convenient state variable notation.

X

21

ZNPA

A	 '% A	 A
x = A x + B u

wbere

CA ° A
C) qj	 qj

A 0 0 0

A A-BKT 0

A q, •
A A 0 A-BYT

0
•

.	
0

* 0 9

A-BK2A
qNPA

0 0• 0  j

B

0A
B

z (t—1 00
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Consider the problem of formulating a quadratic index in terms of the

-`	 state and sensitivity ariables and solving for the optimal control law. ItY	 ng	 p

is well known that the solttion to the linear quadratic problem is a linear
_	 Cu

feedback controller. Note that the term, 
T 
x , appears in the sensitivity

{	 differential equation. This term prevents the direct use of the linear approach

since the necessary conditions defining the optimal solution are derived assum-

ing that the A matrix is independent of the control and hence the feedback

gains. Thus a straightforward application of the SOC concept is not possible

U11-1
since the gain matrix K- appears in A.

E!

	

	 However, it is possible to reformulate the problem and remove this diffi-

culty. Define a new control vector

u

A
u	 1°l	 ( 6.2.10 )

TNPA

Anticipating he.t the SOC control law is linear feedback, formulate the SOC

sensitivity problem so that a snd m j have the fol.lcn:Ing structure.

rillu-KTx

Y' z	 1= j 1 NPA

where the NS by NC g4ia matrices in all the equations are required to be identical.

This is a differe ,:zt application of SOC than was used in the unavailable state

problem. In this ca..^,a the gains are required to have equal but unknown values

which will be &-termined by the solution of the SOC problem. In addition, the

unavailable state property is used to insure that neither the unavailable states

F
t'
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nor the sensitivity variables are fed back. Now, the dynamics may be rewritten.

_	 _

x=Ax+Bu	 (6.2.11)

where

A	 0	 0

A	 A	 0	 0
_	 gl	 .

A =	 0 w

j	 I	 •	 1	 • s

•	 0
0

I	 •

A	 0	 0 A
gNPA

B 0 0

0
B

0

0 0 B

The SOC sensitivity control law, u, is chosen to minimize

001	 AT n AT	 ^a	 %T A ^T n
J= 2 f(x S x + x S x + x Wu+x Wu+u Q u ) dt

t0

subject to the dynamics

C

X(t0 ) 	 0

0

(6.2.13)
A	 ^-X = A x+ B u;

and the SOC structure constraints.



and

A

Aq
A= _	 .l

A
gNPA

0 0
•

AK n

0

• 0

0 0 AK

u=-KTx

KT z3

or	

--^+I^+^
u=- K-X

wh,: cis

KT 0 0

KT =
0 ..

.
Q

0 0 KT

AThe selection of S and W and the derivation of the necessaxy cc

described in Appendix D and summarized below.

SOC Sensitivity Ricatti Equation

AR
T
 P+ PAR +S+KQK-=0

	
(6.2.1!<<)

where

AK = (A - BY- ) .
	 (NPA + 1)NS by (NPA + 1)NS

AK =(A-Be) :	 NS by NS
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Feedback Gain Equation

KT 0 0•

MKT = 0

r 0•
f ^ .

0	 . 0 KT

where
T

K = Q
-1

(BT P + 2 ) Ill

NS-L 0
and Ill= -
	

is a (NPA + 1) NS by (NPA + 1) NS matrix with
F 

	
-NS-L

0	 0

the NS-L by NS-L identity matrix.

6.3 Proble - Simplification

The computational effort involved in solving the optimal trajectory sensi-

tivity problem by other methods 35,36 may be very large. The use of SW reduces

the computational requirements. However, the dimension of the augmented state

vector may become unwieldy. For each parameter of the parameter vector the

dimension of the augmented vector is increased by NS. For NS system states

and NPA parameters, xta 	 has (NPA + 1)NS elements and the.Ricatti matrix has

(NPA + 1)NS ((NPA + 1)NS + 1) elements. For example, with a system. of 7 states
2

and 1 parameter the augmented state vector has 14 states and the symmetric

Ricatti matrix has 105 independent elements. To obtain the solution to this

Ricatti equation would require the solution of 105 simultaneous nonlinear

equations, which is not a trivial task. If two additional parameters are considered,

the corresponding Ricatti equation would involve 406 elements. If the SOCIJES

0
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iterative approach is used to solve these equations, two linear systems of

dimension equal to the number of unknown Ri%;atti elements must be solved at each

iteration. Accuracy and running time considerations would indicate that this

approach is not feasible for most practical problems.

However, a careful examination of the SOC sensitivity equations indicates

that this "curse" of dimensionality may be reduced signif.cantly. It is shown

below that the computational effort involved in solving the sensitivity problem

is approximately equal to the effort involved in solving a SOC problem for the

original system, regardless of the number .)f parameters. That is, systems of

equations on the order of NS NS + 1 must be solved for any number of parameters.

To demonstrate this reduction, the matrices of the Ricatti equation are

partitioned into blocks of NS by NS elements. For convenience, a parameter

vector of two elenr.ats is considered, NPA = 2.

Thus,

AK 0 0

Aq
1

AK 0 3NS	 by	 3NS

Aq2 0 AK

where AK = A - BKT

Pl TP2 P3 T

P = P2 P4 P5 .	 3NS	 by	 3NS

P3 P;> P6

^ S
2 
T S 3 

T

S = S2 84 S5  :	 3NS	 by	 3NS

s3 S5
86 j
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Ql 	0	 0

	

Q = 0	 Q2	 0	 ; 3NC by 3NC

	

0	 0	 Q3

KT	0	 0

	

{T = 0	 KT	 0	 3NC by 3NS

	

0	 0	 KT

and

K Ql KT	0	 0

	

$ Q 'T r	 0	 K Q2 KT	0	 3NS by 3NS

0	 0	 'Q3 KT

Using this notation the SOC sensitivity Ricatti equation may be written

as a set of 6 NS by NS matrix equations.

PlAK +AKT Pl
 + P2TAq1 +Aq1

 T P2 + P3 AC1
2
 +A 

q2 ' P
3 + Sl + KQl KT = 0 (6.

P2 AK + AK  P2 + P4 A
q1 

+ p 5 T A q2 + S2 = 0	 (6.3.(6-3-1---)

P3 AK + AKT P3 + P5 Aq + p6 A + S3 = 0
	

(6-3-3)
1	 92

P4 AK +AKT P4 + S4 + KQ2 KT = 0	 (6.3.4

P5 AK + AK  P5 + S5 = 0	 (6.3.5)

P6 A
K + AV P6 + S6 + K Q3 KT = 0	 (6.3.6;



s	 TP^ AK + AK P __ D^ (6.3.9)

us.

and

^^+	 T ^7.
X = Q11 BT P1 + Q1 2 `11	 (6.3.7)

Since P and S are symmetric, the diagonal blocks of the partitioned

representation will also be symmetric while in general the off-diagonal elements

will not be. Note the recurring underlined portions of the above . equations and

consider general matrix equations of the same fora.

Type I:

Pi AK + AKT Pi = Di	 (6.3.8)

where Pi is symmetric.

where P  is not symmetric

In Eq. (6.3.1)-(6.3.7), 111, P4, and P6 are symmetric while P21 P3, and P5

are not. If the SQCIES approach is used to solve the SOC problem, a stable K

matrix is known at each iterFe.ion and Eq. ( 6.3.1)(6.3.7) must be solved for Pi

t	 and Pj .

Since AK is stable, there exists a unique solution to equations of Type I

which may be found by the solution of an equivalent set of 2S (NS + 1) linear

equations. Denote this equivalent set by

tt A ' "Pit' = nDirr	 (6.3.10)

This equivalent system of equations is described in detail in Appendix-E. The

manipulations involved in this transfor tion do not seem to be well known as

evidenced by a recent publication. 
46 The Type II equations may be reformulated
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so as to reduce the solution effort. Consider Eq. {6.3.9} and its transpose.

Pj AK -4AST P3 = Dj 	( 6.3.11)

T	 T
AK + AK Pj
	 T= DjPi 	 (6.3.12)

Define symmetric and skew symmetric matrices as follows;

P +PT
p
j

_	 2	 ; p`j=pJT

Pj	 P.
	 .

Pi -21 2	 ; Pj T _ - Pi

and

Pi = P
i 

+ Pi

By adding and subtraa.ting Eqs. ( 6.3.11) and (6.3.12) equat_ons for P i and

Pj are derived

Pj AK + AKT P
j

 (D
j
 + DST)/2	 {6.3.13}

Pj AK + AKT Pj _ {Dj - njT}/2	 (6.3.14)

Note that Eq.("-,.3.13) is of Type I; thus the equivalent linear system of 2S (NS + 1)

equations can be written as

►AK" "Pj _ ^►(Dj + DjT	 ( 6.3.15)

SinceP
i
 is skew symmetric, only 2S (NS - 1) elements must be found,

corresponding to the lower or upper off diagonal triangular elements. Thus

Eq. (6.3.14) is not of Type I but is closely related. An equivalent linear

system can be found for these unknowns.

T'AK' 'Pj ' = '(Dj - Dj ) 1 /2	 (6.3.16)



'AK' is generated in ouch the same fashion as "AK" except that minus signs
I"

are involved site P
i is sir symmetric. Thus, Eq. {6.3.1}-(6.3.7) can be

`mitten in terms of the equivalent linear systems.

„AK" "P6" = - "(S6 + K % KT)"	 (6.3.22)

x
'AK f 'P„' = - '(P4 Aql - Ag1T P4 + P5T A^ - AST P5 + S2 - S2T) 1 /2	 (6.3.23)i

t t ti3t =-'(P5 A -A T P5T +P A -A T P +S3 - S3T)'/2	 (6.3.2+)q

	

1	
g 
1	 6 q2	 q2 6

t^, tp5
1 

= _ 
#
(s5 - 	s5

	

T ) '/2	 (6.3.25)

Equatioras(6.3.17)-(6.3.22) are six systems of NS N2 + 1 equations with

the same coefficient matrix, whjle Eqs. (6.3.23)-(6.3.25) are three systems of

Ns NS - l
2	 equations with the same coefficient matrix. This is significant

since after an initial solution to a system of linear equations is obtained, the

}

	

	 computational effort involved in obtaining solutions for different right hand

side vectors is relatively very low.

 

"AX #I "Pl" o _ „{ P2T Aq #, 
Aq T 

P2 + P3T 
A + A T 

P3 + S, + 
K Q, KT ^ „ 

( 6 . 3.1' f )
1	 1	 q2	 ^2

„p2„ _ _ „{ P^ Aq + Aq T P^ + P5T A + A T P5 + 52 # S2T) "/2	 ( 6-3-16)

	

1	 1

"^„ "P3,t = - "(P5 Aql + Aqi P5T + P6 
^ + ^2T P

6 + S3 + S3T)"/2 (6.3.1y}

"F5" _ - "(,5 + S5 ) "/2 (6.3.21 }

I1	 120.
Lj

n
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Thus, using this approach, Eq. (6.3.20), (6.3.21), (6.3.22) and (6.3.25)

may be solved for P4. P5, and P6 . Then Eq. (6.3.1$), (6.3.19), (6.3.23) and

LI	 (6.3.2+) are solved for P2 and P3 . Finally Eq. (6.3,17) is used to find P1.

To summarize, instead of solving a system of (NPA + 1)NS ((NPA + 1)NS + 1)
2

equations to determine the Rieatti matrix, a system of NS N2+ 1 equations

(NP + 1)NP + 2)	 NS NS - 1is solved	 2t	 times and a system of ---— , equations is

%P +lsolved	 times. For example, if NS = 7 with two parameters (NPA = 2),2

the solution of a system of 231 equations is replaced by the solution of a 28

equation system 6-times and a 21 equation system 3 times. This is a substantial

reduction in computational effort.

With this computational approach, the SOC sensitivity problem is no more

difficult to solve than a SOC problem for the original system. Thus SOC has a

distinct computational advantage over other trajectory sensitivity formulations.

It now becomes feasible to apply the sensitivity techniques to practical problems.

6.4 Examples

A. First Order Example

Consider the first order system described by this differential equation.

x= a x+ b u

Assume that the value of a is not accurately known but that it lies somewhere

near a nominal value of -1 and let b = I. The sensitivity variable for this

problem is defined as follows.

-)x
z a a

Use the SOC sensitivity procedure to calculate a feedback control so that the

closed loop system is insensitive with respect to a.

in



or

?set

x= -

4
u

1

and

s12 = 521

a 1

^=
[ -1 ^

x+
1 -1	 —	 4

A A

s11 s12
S = yA

s
21

A

s22

A A
wU

w12

W = A	 . A

X21 "22

x
x=

z

A
u =

[u]

m
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i

•
x = (a-k) x ;	 u - - kx

Choose u to minimize J,

ca	 AJ=2 f (xT 3x+ fSx+x Wu+x Wu+uTQu)dt

0

sub jezt to

x+u

Z = - z + x + m

Pu P12

P =	 ; P12 v'

P21



sll	 0

S

0	 s22

1	 0

Q =

d	 1

123.

and

	

0	 d

W =

	

L0	 0

The Ricatti equation which defines the solution gain is given below.

ART P+PAR +S+K KT=0

	

k	 0
K=

	

0	 k

and

-2P11 -2pU k+2P12 + 
s1l+k2 _ 0

-2P12 (1 +k) +P22=0

-2 P22 (1 + k) + s22 + k2 = 0

and

(5.4.1)

k = p U

To illustrate the equivalent vctor notation, P can be found as a function of

k and thus k as a function of s3.1 and sue.

E ttPtt = - 
tt (S + W) it



124.

The coefficient matrix E is obtained from Eq. (6.4.1).

pil

	

VIPt1 =	 P12
P22

8  + k2

	

u	 ,^,_^ to
S + x^,tc	 0

s22 + k2

Thus,

-2-2k	 2	 0	 pu	 -s11-k2

	

0	 - 2 - 2k	 1	
p3.2 =
	 0	 (6.4.2)

	

0	 0	 -2-2k	 p	 -s -k2
22	 22

	

Then pl, as a function of k, s,, and s 	 may be determined.

s
l

 + k2	 s22 + k2-

	

p11=2 C l+k	 +
2(1+k)

3 	(6.4.3)

Since p = k, Eq. (6.4.3) can be used to define as equation in s , s , and k.
11	 11 22

-
k4 +4k3 +(2-sue) k2 +(2-2s^) k - sue 

s 

2 =0 (6.4.4)

A positive solution to this equation is sought since the positive definite

solution to the Rieatti equation is of interest (pll > 0). It is expected that

as the weighting on the sensitivity variable, s22, iri increased the corresponding

closed loop system will become less sensitive to chex,es in a.

Let the initial set of weightings be chosen as follows.

s3.1 - 1.0

s22 = .876



Equation (6.4.4) is

k =

The sensitivity weir

s11

s22

solved to obtain

0.5

^hting is increased.

= 1.0

= 15.0

125.

and Eq. (6.4.4) is solved to obtain,

k = 1.0

As this weighting is increased further, the feedback gain also increases. Clearly,

this leads to a decrease in the system sensitivity to a. For a off-nominal

value of a, a = 0, this is verified by the entries in Table 6.1. The optimal

trajectory is described by

x = - (ao + k) xo = - (1 + k) xo ; x( 0) = 1

while the off-nominal trajectory is described by

	

x= - (k) x;	 x(0) =1

This table also indicates integral square values of the sensitivity variable, z,

and trajectory dispersion A x = x - x°. Note the integral square values of these

variables decrease as the sensitivity weighting and feedback gain increase.

Although the actual value of the cost index may not be of any use, it

is ititeresting to look at the specific nature of the formal index. To do this
A	 A

explicit values of S and W may be found from their respective definitions.

From Eq. (6.4.2), with k = 1, s^ = 1.0, and s22 = 15.0, the Ricatti matrix. is

1	 1
P =

1	 4

c
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S22 k
00

XIdt
0

QOf Zsdt
0

1. X=dt
0

0.876 0.5 .333 .074 .3333

15.0 1.0 .250 .031 .0834

28.7	 103 10.0 .045 .0003 .0003

Table 6.1
FIRST ORDER SENSITIVITY EXAMPLE

S k

5firX -
0

2T2 dt--
O

kX4Xdt
0

0.005 1.73 5.78 10'' 3.51	 10-' 2.61	 10"'

0.1 1.75 5.71	 10'' 2.39	 10'' 2.57 10"'

1.0 L98 5.12	 10'' 2.46 10'' 1.65 10"

10.0 2.68 3.49	 10"' 9.46	 10'9 4.6610'

100.0 4.34 2.17	 1W 2.25 10"9 8.2210-3

1 .104 8.40 1.00	 1W 3.07 10-3 9.3010'4

1 . 106 26.6 2.65	 10 1.44	 10-4 3.63 10'3

Table 6.2
SECOND ORDER SENSITIVITY EXAMPLE
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1

f

The structure of W is somewhat simplified since all of the states, in this

ce.se one, are fed back. From the definition of W, given in Appendix D, end

noting that W = 0 and I3.12 = 0,

W11 2 [( I112(pR + 2	 0
11

A	 1 1	 1 0	 •2 -2

W12
	 2 [1 FBJI	 = - 2	 =

J lc
	
[1 ( 1 4	 0 1	 -P -8

W12	 2

See Appendix D for an explanation of this notation. Similarly

A
W21 =-2 [[FEB	 - -2

21

and

W = 2 '} L^I111 PE I] - RAll JC	 11 

1 1	 1	 1 G	 1 1	 [1 0
^	 1 4 ' Ill ^ -  0 0 1 4 = LO 1

Thus

w22=2(l-4)=-6

'hand

0 -2
W =

[-2 -6
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i

i

i

i

i
f'

I
f

^II

1.28 .

As a check

^T	 ^	 1 1	 0 -1	 1 0
iCT = (BT P+2) =	 +

1 4	 -1 -3	 0 1

Finally S is given by its definition. 

T̂ 0 -2
S = 2 (W+OT) _

-2 -6

A	 A
Using these values of S and W this SOC problem may be stated as choosing u

and m to minimize J.
ao

J = 2 f (x2 +9 z2 -4xz-2xm-2 zu - 6 mz + u 2 + m 2 ) dt
0

subject to

x = - x + u

Z = - z + x + m

with the solution

U = - x

M = - z

B. Second Order Example

To compare this rBthod with other technique s, consider the second order

damped oscillator example. Once again the differential equation describing this

system is given by

y+2 f tuy+cu y = u

Assume that the damping parameter f is susceptible to variations. The state

equations are
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Y
x =

[YI.

x= A x+ b u

-2	 cu	 -w2
A =

1	 0

1
b = []

0

and

-2w	 0
A -
q -

0	 0

Only the rate signal will be fed back. Thus

u = - k xl = - k y

and NS = 2, L = 1, NC = 1. For illustrative purposes, use the reduced formulation

described by the followin. equatious where each of the partition blocks is of

the proper dimension to allow consistent multiplication.

P1 	P2T

P =
P2 	P3

S1	S2T

S =
S2	S3
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0	 0
W=

0	 0

-k-2 f w -w

AK = A - BKT =

1	 0

k
K = L0

q	 0
Q =

0	 q

The reduced matrix equations describing the optimal solui;ions are

P1 AK + AK  P1 + P2  A  + A q T P2 + S1 + K Q KT = 0	 (6.4.5)

F2 AK + AK  P^) + P3 A  + S2 = 0	 (6.4.6)

	

P3 AK + AK  P3 + s3 + K Q KT = 0	 (6.4-7)

Let

1	 2	 1	 2

	

Pi 	pl	
r 

s1 	s1

P1

	

P 	

s1	

s2	 s3	1 	 1	 1	 1

1	 3	 1	 3

	

P2	p2	 s2	 s2

P2 =	
2	 4	

S2 =	
2	 4

	

P2	p2	
s2	

s2

1	 2	 1	 2

	

P
3
	 P3	 s3	 s3

P3= p2

	 p3	

S3= s

2	 s3

	

3	 3	 3	 3
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0
where the elements of these matrices are scalars. Assume that	 = 0	 and

cu = 1; then Eq.	 (6.4.7) can be written,

-2p 31 k+2p 32 + s31+qk2 =0

-p31 - p32k + p33 + s 32 = 0 (0.4.8)

-2p32+ s33
=0

Equation (6.4.6) becomes,

-kp21 +p23 - kp21+p22 - 2p31 +s21=0

-p21-kp23+p24 +so3=0
(x.4.9)

-kp22 +p24 -p21 -2p32 +s22 =0

- p22 - p23 + s2^ = 0

and Eq.	 (6.3.1) is equivalent to

-2p11 k+2p12 -4p21 +sl1 +qk2 =0	 J

- p11 - p12 k + p,3 - 2 p22 + s12 = 0 (6.1+.10)

- 2p12 +s13 
=0

The gain equation is
T	 1

b	
p1 111K	 =T
q

or
1

plk =
q

For the following set of weightings

1	 0 0 0^
S	 =1 ;	 S 2 =0	 1_ 0 0 I

.005	 0

s 3 = q =1
0	 .005
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Equation ( 16.4.8)_(6.4.11) can be solved to obtain

k = 1.73

As the sensitivity weighting

	

^s	 0

!	

S 3 =
	 0	 s

is increased, the resulting closed loop system becomes less sensitive to 	 as

shown in Table 6.2. The results entered in this table were obtained for a off-

nominal	 of -1.0. Again for this simple problem the insensitive nature is

obtained by an increase in the magnitude of the feedback gain so that for the

same value of parameter variation, the relative effect is diminished. F_gure 6.1

indicates the nominal and off-nominal time domain response to an initial condition

of y(0) = 1 for k = 1.73 and k = 8.4 while Fig. S.2 and 5.3 compare the

sensitivity variables and traje-t,ory dispersions.

A basic difference between the model reference and sensitivity tech-

niques is pointed out in the responses of Fig. 6.1. In the sensitivity approach

the feedback gains and hence the nominal trajectory are chosen to be insensitive

to parameter variations. In the model reference technique the nominal per-

formance of the system is independent of any sensitivity considerations. This

may be an advantagesince reduced sensitivity may correspond to degraded nominal

performance. 2he

	

It

	 paid for this model reference feature is the increased

complexity of the model reference controller.

As an indication of the feasibility of the SOC sensitivity approach,

it was compared with the method described by Dougherty. 36 Both methods were used

to solve the same second order problem which is similar to the problem discussed

above except that both position and rate information is fed-back. Dougherty's

IF
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initial control law was

u=- 2. 44 y -2.93Y

These gains can be obtained with the kIJOC sensitivity approach with the following

weightings.

10.9	 0
q = 1.0	 S1 =

	

0	 1.0

0	 0	 27.4	 0
S2	

0	 0	
S3	

0	 27.4 ]

Using Dougherty's technique a desensitized control law

u=-2.78y-4.16y

is obtained with an e.^ecution time of about fifteen minutes on an IBM model 360/;)

digital computer. This same control law can be obtained with SOC with the

following weightings; note the increase in sensitivity weighting.

[13-8	 0
q = 1 ;	 S1=

	

0	 1

0	 0	 281.	 0

s2 =	 s3 =

0	 0	 0	 281.

The execution time required to solve this problem using the SOCDES algorithm

was ten seconds! As the size of the problem considered increases the execution

_	 time requirements of the SOC technique increase but they still remain reasonable

as shown in Chapter VII where the technique is applied to the Saturn V launch

vehicle problem.

i
i
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Nomenclature

Matrices

A	 System matrix: NS by NS
A
A	 Augmented system matrix: (NPA + 1)NS by (NPA + 1)NS

A	 .augmented system matrix: (NPA + 1)NS by (NPA + 1)NS

AK	Closed loop augmented system matrix: (NPA + 1)NS by (NPA + 1)NS

AK	Closed loop system matrix: NS by NS

A 	 Partial derivat^tr- matrix: NS by NS
J

s	 Control coefficient matrix: NS by NC

B	 Augmented system control coefficient matrix: (NBA + 1)NS by (NPA + 1)NC

B	 Augmented system control coefficiet matrix: (NPA + 1)NS by NC

Di	Notational matrix

K	 Feedback gain matrix: NS by NC

K	 Augmented system feedback gain matrix: (NPA + 1)NS by (NPA + 1)NC

P	 Ricatti matrix: (NPA + 1)NS by (NPA + 1)NS

Pi	Component of Ricatti matrix: NS by NS

P^	 Symmetric part of Ricatti component matrix: NS by NS

P^	 Skew-Symmetric part of Ricatti component matrix: NS by NS

Q	 Symmetric control weighting matrix: (NPA + 1)NC by (NPA + 1)NC

A
S	 Symmetric state weighting matr'.x: (NPA + 1)NS by (NPA + 1)NS

S	 Symmetric state weighting matrix; class two: (NPA + 1)NS by (NPA + 1)NS

Si	Component of state weighting matrix: NS by NS

W	 Bilinear weighting matrix: (NPA + 1)N.3 ty (NPA + 1)NC

W	 Bilinear weighting matrix; class two: (NPA + 1)NS by (NPA + 1)NC

Z	 Sensitivity matrix: NS by NPA



Vectors

mi	Control vector of ith sensitivity vector: NC

g	 Parameter vector! NPA

dg	 Perturbation parameter vector: NPA

u	 System control vector: NC

A
	 Augmented system control vector: (NPA + 1)NC

X	 State vector: WS

A
	 Augmented system vector: (NPA + 1)NS

zi	Sensitivity vector of ith parameter: NS

139.
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ic Chapter VII

CASE STUDY: THE LAUTICH VEHICLE PROBLEM

7.1 Introduction

In this chapter, the techniques developed in the preceding sections are

demonstrated by their application to the significant engineering problem of the

altitude control of a large launch vehicle of the Saturn class. The vehicle

configuration is shown in Fig. 7.1. The first stage propulsion is obtained from

tifive liquid fuel engines each of which generates about 1.5 million pounds of

thrust. Control is obtained by gimballing or swivelling four of the five engines.

This vehicle is a large complex system which is difficult to control. Neither

classical nor currently available madern techniques have been particularly

effective in solving this problem.

There are two major sources of difficulty. The first stems from the physical

characteristics of the vehicle and is independent of any design technique. The

basic objective of this control prc' _em is to force the vehicle to remain in the

neighborhood of the programmed nominal trajectory despite environmental disturbances.

Each new generation of launch vehicles is larger than the last; the length to

width ratio decreases corresponding to an increase in the flexible nature of the

vehicle. For the Saturn V vehicle this length to width rate is about 10 to 1

and the flexible modes pose a serious problem. Under certain flight conditions

it is possible to excite these modes to such an extent that the vehicle destroys

itself. Thus an important objective of the control .vstem is stability of the

bending motions as well as control of the rigid motions of the vehicle.

r
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The study of the launch vehicle involves a s 4.gnificant modeling; problem.

Even after a reasonably satisfactory model structure has been determined, the

physical size of the •ehicle inhibits the accurate evaluation of the model p,xa-

j
	 meters. Some of these parameters, such as bending frequencies, may be critical

i
i
	

with respect to the accuracy of the model in that off nominal values of these

parameters may redder ineffective the control designed on the basis of the

nominal values. Present techniques for estimating these parameters include

physically shaking the vehicle and noting its behavior. For vehicles larger

than the Saturn V, this does not appear to be a feasible aoproach and analytic

techniques will have to be used. Moreover, the bending frequencies are functions

of the physical configuration of the vehicle and hence the payload which changes

from mission to mission. It would be advantageous to be able to use the same

launch !ehicle control system for a -variety of missions. Thus it is important

to be able to design a control system which is insensitive to inaccurate know-

ledge of the bending frequencies. More specifically the S:7•,tem - rill be designed

to give adequate control for variation in the bending frequencies of + 200.

The fuel for the liquid-fuel engines of the Saturn V booster is stored in

tanks. The dynamics of the vehicle are influenced by the movement or sloshing

of the fuel in the partially filled tanks. For the present study it is assumed

that the slosh modes are adequately damped by tank baffles.

In Fig. 7.2 the frequency spectrum of the launch vehicle is Shown. The

spectra of the engine and gimbal dynamics are indicated as well as those of the

bending and slosh. Some of the spectra are represented by bands indicating that

the frequencies change with time.
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The control problem is further complicated since the booster is aerodynamically

unstable for most of the launch trajectory. This is caused by the center of

pressure being forward of the center of gravity. The center of pressure is a

point at which the normal aerodynamic force is assumed to act while the booster

rotates around the center of gravity. Thus the force of the wind tends to

topple the vehicle.

The flexible nature of the vehicle introduces a measurement problem. At

`	 present, position and rate gyros are the available sensors. Unfortunately,

these devices measure local movements and thus their output is a combination of

rigid a-.d bending motions. Previous design approaches have used filters to

separate the rigid and bending signals, however this approach is hampered by

the lack of knowledge about the bending frequencies.

The second major source of difficulty becomes obvious when an attempt is

made to choose a satisfactory design technique. Many of the classical design

techniques are not suitable due to the complexity of the system and the parameter

variation problem. The current modern techniques are not satisfactory from a

computational point of view as well as the lack of an unavailable state capability.

Even if the rigid and bending modes are separated, the usual optimal control

approach would require the use of sensors to measure all of the states including

the angle-of-attack, engine dynamics, and any compensator states. This is

clearly an unreasonable requirement since adequate control has been obtained

using only pitch and pitch rate feedback.

The SOC approach is shown to be very useftl in the design of control systems

for the launch vehicle since many of the difficulties discussed above are

eliminated. In the following sections the equations of motion of the vehlcla

Ir



are derived, a state variable model is chosen, a control structure is proposed,

and the various SOC techniques are applied.

7.2 Launch Vehicle Model 
48,49

In order to design a control system for the launch vehicle it is necessary

to derive a mathematical model of its dynamical behavior. This model should be

complicated enough to allow an accurate description of the physical situation

and yet not so complicated as to prevent analysis.

y The launch vehicle has six degrees of freedom, three translational, and

three rotational. In this study only the motion of the vehicle in the pitch

plane is considered and a flat earth with constant gravity is assumed. The

inertial co-ordinate system (X, Y), is located at the launch point and defines

the local verticle. A second co-ordinate system (x, y) is aligned with the

longitudinal axis of the vehicle and centered at the center of gravity. A third

co-ordinate system (Xn, Y n ) defines the nominal trajectory of the vehicle; if

the vehicle follows a nominal trajectory the (x, y) and (X n , Yn) coordinates

will coincide, x
c 
= 0. See Fig. 7.3. It should be emphasized that the

a
equations of motions are written in the inertial space defined by (X, Y) but

the nature of the investigation requires that the equations be expressed in terms

of the other co-ordinate systems.

The result of the following derivation will be a set of linear differential

equations which will characterize the motion of the vehicle about its nominal

trajectory. These equations are obtained by applying the laws of Newtonian

mechanics. The basic assumption is made that the rigid and bending motions may

be modeled separately and then added to give an accurate representation of the

behavior of the vehicle.

it
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Since the control is obtained by gimballing some of the engines, a portion,

F, of the thrust acts along the longitudinal axis of the vehicle, while the

gimballed thrust, R', acts at an angle of P degrees with respect to the

centerline. The aerodynamic force is decoupled into two components; the drag

force 1 D. acts along the centerline of the vehicle while the normal force, N,

acts in a orthogonal direction to the centerline at the center of pressure. The

sum of the forces in the X direction is
n

F 
	 = (F + R' cos P - D) cos	 - mg cos ?C c - (N + R' sin P) sin	 (7.2.1)
n

while the sum of the forces in the Y direction is
n

FY = (F + R' cos	 - D) sin 0 + (N + R' sire 0) cos	 - mg sin x c	 (7.2.2)
n

while the sum of the moments about the center of gravity is given by

so

I 0 = - R' 1 c sin P - N 1 c

The velocity of the vehicle, v, is measured in the inertial frame but expressed

in the ncminal frame

v= v cos y	i+ v sinl'	 j	 (7.2.4)

where v = 11111 and i and j are unit vectors in the Xn and Yn directions

respectively.

Since (Xn, Y n ) is not an inertial frame of reference, the unit vectors

are timevarying and thus the acceleration of the vehicle expressed in this frame

is given by
di

a = dt cosY i - v sin'Ir aY i + v cos`	 dt-	 -

+ !L
t 

sinV'	- v cos1r dr	

d^
I + v sinT- d+	 (7.2.5)

If
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The angular velocity of the nominal co-ordinate system with respect to inertial

space is given by - `kcinthe k direction out of the pitch plane. Thus

di

dt=-xc kxi= -xcI

dj	
'V.
	 •

dt	 - ^` c k x-

The acceleration may be expressed as

a = (v cosy, - v cos-d-V + v sin tr x c ) i

+ (v sin L'' - v cos	 v cos it Xc )	 (7.2.6)

The acceleration can be decomposed into components lying in the X  and Y 

directions.

a i= ( Xn + v sin L x)

at

a	 _ ( Yn - v cos V i d

where
*.p
	 •	 d	 2r

Xn - dt Xn dt (v cos )

Yn	 dt (Yn )	 dt (v `'' in 7l )

Although the equations of motion are written in the inertial space, they may be

expressed in the nominal co-ordinate system.

m(Xn + v sin v x ) = (F + R' cos P-D) cos - N sin - R' sin P sin
- mg cos 2(c (7.2.7)

m(Yn - v cosU "X c ) _ (F + R' cos P-D) sin 0 + N cos 0 + R' sin ^ cos 0
- mg sin X. (7.2.8)
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The normal aerodynamic force is proportional to the angle of attack.

N=N' a

Using this relation Eq. (7.2.7) and (7.2.8) can be solved for X and Yn	 n

respectively.

__ (F + R' cos -D) cos 
0- 

ma 
sin 0 - v sin V )(c- m' sin sin - g cosXn	 m

Y. = (F + R' cos O-D) sin o+ N!a cos 0 + R' sin ^ r.os ¢ - g sin x + v costrn	 m	 m	 m	 c

These equations are linearized by using the following small angle apIroximations.

sin	 _ sin	 _ sin 71' = V sin ^ sin 0 = 0

cos	 = 1 cos	 = 1 cos h= l a sin 0= 0

of

Xn = F + m' -D 	 - v V )Cc - g cos x c	 (7.2.9)

I'n = (F + m' -D ) 
+ ma + m` P + v x c g sin x c	 (7.2.10)

..	 (R'1	 )
_ -	

Icg	
- N' 

1 C a
	 (7.2.11)

Since disturbances do not seriously effect the motions of the vehicle in the X 

direction, the equations are simplified by assuming that the origin of the

nominal co-ordinate system moves witi-I ',,he vehicle in that direction. 49 Also, the

nominal trajectory involves a gravity turn, that is

g sin x
c

x c = v

Then Eq. (7.2.10) and (7.2.11) become

Yn = (F + m' - DI 0 + m, a+ m, ^	 (7.2.12)

W,
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t

•.	 (R' leg)	 (N' lc 
p

)
^_-	 I ^' ^ -	 I 	 a	 (7.7.1:;;

The main source of additive disturbances is provided by the wind which is

assumed to blow in a horizontal plane only. The wind induces an additional

contribution, w, to the angle-of-attack. Figure 7.3 indicates an angular

relationship which relates the angle-of-attack to the variables of the above

equations.

Y

a- w =0 -vn 	 (7.7.14)

Equations (7.2.12)-(7.2.14) describe the rigid body motions of the vehicle about-

the nominal trajectory.

The bending equations are derived by the application of simple beam analysis

to the booster which is considered to be a slender beam with uniform mass and

stiffness. The model for each normalized bending mode is assumed to be a linear

second order lightly damped oscillator with a, forcing term proportional to the

engine gimbal angle. 49

2	 Yl(X^)
.p	 ►

	

i+2 
J i a'i ni ^ a'i ni = R 	 M.

To determine the actual bending at a point along the centerline of the vehicle,

Ai must be multiplied by the mode slope coefficient corresponding to that

point and the ith bending mode.

The pitch and pitch rate gyros are located at specified points on the vehicle

and measure local movement composed of rigid and bending motions. For this stucl

it was assumed that the first three modes dominate, hence the pitch gyro output is



(7•^)•i')

z

OD - 0 + Yi(`cD)	
^(i

i=1

and the rate gyro output is

3

OR = + Yi'(xR)

i=1

where xD
 
= 79.8 meters and N= '7.3 meters are the position and rate gyro

locations respectively, measured from the gimbal plane of the vehicle.

In summary, the linearized equations of motion which describe the vehicle

are given below.

..	 1	 t

Yn =	 +m - D ¢`^ + N 
a+m

• •	 R' 1	 N' 1

(7.2.10)

	

i + ? i ^i	 i. + W  1 i - R ^	 M.

a-a -0-n
w -	 v

(7.2.1;',)

3

OD = 0 +	 Yi(XD) l 

•	 3

0R+	 Yi(XR)^i

i=1

(7.2.x:0)
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7.3 Control Structure

Current control schemes use a feedback structure employing only pitch and
i

pitch rate information which is obtained by filtering the gyro outputs. This

work proposes a new approac' im which the actual sensor outputs are fed back

without attempting to filter out the individual bending frequencies. A second

crder low pass filter is used as a forward loop compensator in order to roughly
4

separate the rigi O and bending motions. The outputs of the gyros are fed back

to the input of the filter as shown in Fig. 7.4.

^c = - k  OD - k2 ^R

Tr.e filter chosen for this study had the following transfer function.45

P s	

50

^c 
s	

2s+10s+50
r

^.	 where the breakpoint was chosen to fall between thr lowest bending frequency and

highest slosh frequency.

The differential equation describing the filter is given by

P + 10 ^ + 50 B = 50 ^ c	(7.3.2)

7.4 State Equations

The equations of motion have been written using variables which relate the

movements of the vehicle to the nominal co-ordinate system. This viewpoint was

taken since it is desired to regulate the motion of the vehicle about the nominal

trajectory and hence drive these variables to zero.

There are two basic philosophies guiding the altitude control designs

minimum drift and load relief. In the former, the objective is to keep the

vehicle as close as possible to the nominal trajectory. However the excitation

of the bending frequencies results in bending motions which must be limited in
i

i
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order to preserve the structural integrity of the vehicle; hence the latter

approach. These two approaches are by nature somewhat in conflict. A design

objective of this study was to insure that the allowable bending moments did

not exceed certain limits over the entire flight of the vehicle despite in-

accurate knowledge of the bending frequencies. Since the bending moment is a

function of the gimbal angle, ^, and the angle-of-attack, a, the angle-of-attack

was chosen as a state variable instead of the position variat le Yn . With a

proper choice of weighting on a and P the SOC procedure may be used to

limit the bending moment.

One possible choice of state variables is indicated below where for con-

venience only one bending mode is considered.

xl

x2

x3 a

X -
x4 = ll

(7.4.1)

x5 ^1
X'-
K

x7

The state variable formulation requires that a system of first order differential

equations describing the states btu derived. In order to eliminate Y  and

derive an equation describing a, multiply Eq. (7.2.18) by v and differentiate

with respect to time.

to

Yn =v^+v^ -v(a- w) -v(a- w)

This equation and Eq. (7.2.15) are used to eliminate Y  and the resulting

equation is solved for a.
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(F+R'	 -D _v)
+^ - (Nt v) a- Rt ^+ (v a +a )

MV v my v my	 v w w

This equation along with Eq. (7.2.16) and (7.3.2) are used to formulate the

state variable model.

x = A x + b 
Pc

+ v ( t ); 2(t
0 ) = c (7.4.2)

where

0 1 0 0 0 0 0
N'1 R'1

0 0 -- G 0 -	 eg 0I I

-D_ v)
MV	 v \

-D
1 -(N̂ + V)

my	 v
0 0 - R' 0

my

A=	 0 0 0 0 1 0 0

0 0 0
2 p

-2 /	 wl
R' y1(Y^)

0-^ l M1

0 0 0 0 0 0 1

0 0 0 0 0 -50 -10

0	 0
0	 0
0

b - 0 ;	 v(t) = v w + aw

0	 0
0	 0

50	 0

0

The outputs of the system,	 that is the quantities measured by the sensors are

given by
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Y = C x

	

1	 0	 0 yl (xD )	 0	 0	 0

C =

L 0	 1	 0	 0	 yl(xR) 0	 0

It is possible to redefine the state erector so that the measureable quantities

appear as stat^s. This new formulation is consistent with the SOC approach in

which only the measurable or available states of the state vector are fed back.

Define the following state vector where again only one bending mode is considered.

x .D

x2 OR
x3 CX

x x4
1

X5 '^1
X6

where

OD = 0 + y1 (XD) ll

^R _ ^ + yl (XR) ^ 1

The first order differential equations describing these states are derived by

rearrangement of Eq. (7.4.2). It is assumed that the bending coefficients are

time invariant; this is a reasonable approximation for the first bending mode or

for a fixed time point model.
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l=^l (7.4.	 j

,.
^1= -W,

2	 ..
11 - 2J	 l l	 tl +R'

Yl(xQ)
Nil (7.4.4)

^D =	 + Y1( XI )''(,	 = SCR + (Yl ( XD ) - Y1 ( xR ))	 l ('T.4.,^)

OR = 0 +
N 1

yl(XR) ^1 =
R	 1

cg 3 - yl( XR ) a,,2 (1 - 2 y 	 wl yl (xR ) j 1

)
+ YI( xR ) R' 

y l((x

1

a= - (F+R' -D - V) + •	 N' +V a-
Rf + V a +amy	 v	 (mv v )	 my	 v w	 w

or

F+R' -D _v	 _ N' v 	F+R' -D _ v 3J	 va	
( my	 v) OD + OR 	 (m + v ) a + Yl'(

f
xL)( my	 v ) ` 1 + v ^w	 W

- yl(xR) ^ 1 - my

These equations plus those describing the filter states can be written in a

more compact form with the state variable notation.

x = A x + b Pc + v(t);	 x(to) = c	 (7.4.8)
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A = I

0 1 0 0 a15 0 0

0 0
a 2 a24 a25 a26 0

a31 1 a33 a34 a35 a36 0

0 0 0 0 1 0 0

0 0 0
a54 a55 a56 0

0 0 0 0 0 0 1

0 0 0 0 0 -50 -10.0

F+R' -D va31 = - (	
my	

_ v ) ;

N'	 v

a34 = *Y (F+RRv-D V)

a15 = Y1( xD) - Y,(xR)

a35 = - yl(xR)

	

R' 1^	 ^	 Yl(x^)
a26 = - I + yl ( xR ) R ' M1

a = R' Yl(x^)
56	 M1

N' 1
a^3=-

a24 = - yl (xR) W12

a54 = wl
2

a^5 - - 2 J l wl Yl(xR)

a55=-2f1a)1

Yl(x^)

a36 -
 

RI

	 M7.
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0	 0

0	 0
0

b s 0	 v(t) 
= v w#

0	 0

0	 a
50.1	 0

0

These two representations are equivalent and may be used interchangeably.

7.5 2om2utational Considerations

Various engineering considerations require that the feedback control law

employ constant values of feedback gains. The solutions to the SOC problems

with time invariant models will have this property. The nominal flight of the

booster extends from liftoff at t = 0. to shutdown of the first stage at

t = 140. seconds. The model of the booster for this trajectory is time-varying;

it was discovered that a suitable time invariant model could be generated by

freezing the coefficients at t = 80. This approach proved to be satisfactory

since designs made on the basis of this model provided adequate control for the

time-varying model over the entire trajectory. Appendix F contains a table with

the parameters as a function of the trajectory flight time.

The simulations were carried out on the R.P.I. model 360/50 digital computer

using a fourth order Gill version of the Runge Kutta algorithm. For the time-

varying simulations, linear interpolation was used to obtein the unspecified

values of the model parameters. The acceptability of the designs was judged by

initial condition responses of the fixed time point model. To provide a more

v

Q

s

3
t

t
I
1

1
1
B
D
D
9

1
A
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w v-Vw sin X c

(7.5.1)
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I
realistic test of the proposed designs, time-varying simulations over the entire

flight in the presence of a realistic wind disturbance were made.

From Eq. (7.4.$) it is clear that the only external disturbance acting on

the vehicle is wind. The wind is assumed to change the apparent angle-of-attack

by an amount equal to w . This angle is related to the velocity of the vehicle,

v, and the velocity of the wind, v. Figure 7.5 portrays the relationship

between the velocity vectors when the booster is on its nominal trajectory.

(a = 0 = O) From this figure it is clear that

Thus by knowing the nominal trajectory parameters and the velocity of the wind it

is possible to construct a realistic forcing function. From the data provided by

Marshall Space Flight Center 48, a 95% synthetic wind profile was constructed as

shown in Fig. 7.6. The 95% notation indicates that the magnitudes of these winds

exceed those of 95% of the actual winds measured from May to November at Cape

Kennedy. To further test the effectiveness of the control schemes, a wind gust

T was added to the profile in the region of maximum dynamic pressure (max. q). The

wind induced angle-of-attack, w, obtained from this wind profile via Eq. (7.5.1)

is indicated in Fig. 7.7.

7.6 Applic%tion of the SOC Techniques

7.6.1 Design Objectives

As described in Chapter TV, the SOC design procedure may be used to

ca'-ualate linear feedback controllers for linear systems with unavailable states.

Recall that the position and rate gyros measure a mixture of rigid and bending

motions; angle-of-attack meters are available but their use is to be avoided if
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possible. Consider the corrupted state model, that is the state vector which

contains the gyro outputs. This formulation is consistent with the SOC approach

when it is assumed that only the first two states of the state vector are avail-

able.

The actual design specifications are stated in terms of the time

domain response and are summarized below.

General Requirements

1. Stable closed loop system with respect to the fixed

time point model.

2. Well behaved initial condition responses.

3. Limits on the maximum ab_solute values of the states must

be maintained for the duration of the wind forced time

varying simulation.

4. At cut-off the pitch and pitch rate quantities must be

small to allow smooth staging,

Specific Requirements

For the time varying simulation with the design wind the following

limits must be maintained.

1. Engine deflection: 1014 50

2. Engine deflection rate: 144 50/second

3. Angle-of-attack: 1(44 100

4. Pitch angle: 101<  100

5. Engine cut-off: 10/4 10 ;1 14 to/second

6. Bending magnitude: 1 4114 .25 meters

7. Bending moment (Station 3256): BM < 5.45 x 105 kg.m.

r
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7.6.2 The SOC Design Procedure

In order to determine the effectiveness of the SOC design approach,

it was applied to the launch vehicle problem. The SOC problem was formulated so

that the feedback control law depended only or the noisy outputs of the two

sensors. The SOCDES program was used in an automatic mode, that is a series of

SOC problems were calculated with slightly different weightings. The results

were analyzed and compared via the graphical aids described in Chapter N.

Control Weighting Perturbations

To study the effect of variations in the control weighting, the

reverse problem was solved for the optimal design of reference 45,which was

obtained as a result of an "optimal" analog computer study using the following

set of weightings.

u=-k1 
OD -k2 R

k1 = - 0.8

k2 = -0.8

Q = 10.0

S=

SOD

0 • • - 0 1 0 .. 0

0
SO
R 0

a
• S - •

s •

• s^ 0 0

.	 0 0 S^ 0 0 1

I



1

t

166.

In Fig. 7.8 the k locus is shown; the entire locus may be obtained in about

five minutes of 360/50 execution time. The solid line indicates the region of

stable gains. In Fig. 7.10 the root locus corresponding to this k locus is

presented. The same scale increments are used for all curves. Parts a and c

show rigid body poles, part b corresponds to the first mode poles, and the filter

poles are graphed in part d. Note the interesting portion of the locus of part c

in which the rigid complex roots approach the real axis, remain there for a while

and then "ranch gut into the complex region again. This result can be obtained

by a conventional root locus analysis but not without considerable effort. 50 The

effP^t of the variation of Q on the integral square control effort is pictured

in Fig. 7.9; as expected the control effort increases as the control weighting

is decreased. The examination of these figures points out a basic property of

the booster.

Result:

The design of the launch vehicle altitude control system involves

a tradeoff between relative stability f the bending modes measured b theY	 g	 ^	 Y

real part of the first mode complex root pair, and the rigid body damping ratio.

(See Fig. 7.11)

As the control weighting is decreased the relative stability is increased and

rigid body damping is decreased. This tradeoff appears throughout the study of

this booster problem. If the bending frequences are below nominal then the

bending poles tend to migrate toward the imaginary axis and instability.

Although these designs were calculated for a seven state fixed time point model

at t = 84 sec., final evaluations were obtained by simulating the controls for
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a time varying model with three bending modes and the design wind. These

simulations corresponding to the various control laws were remarkably similar

in shape, with the only major differences being the magnitude of the peaks. The

nominal response is pictured in Fig. 7.22. To avoid the monotony of page after

page of similar graphs, only a few responses are included along with tables

containing values of peak magnitudes and integral square state values. For

example, Table 7.1 indicates that responses corresponding to various prints

along the k locus are similar except that the peak value of the pitch decreases

as Q decreases.

Insight into this problem may be obtained by varying the relative

magnitudes of the sta,,a weightings and then varying the control weightings as

indicated in Fig. 7.13. In his case the pitch state weighting is increased

and the loci generated by reducing the control weighting. For this problem

the entire stable gain space may be probed by changing the relationships between

the weightings and generating the gain loci.

State Weighting Perturbations

A similar approach can be taken for state weighting loci. For

example, the reverse problem was solved for the following set of weightings

3 0	 0

0 1
1	 '•	 G	 ^

S =	 0	 ; Q = 1.0

0 0

0	 0 0

with

-o.8
k =

-0.8
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and the s  weighting was varied to generate the locus shown in Fig. 7.14. In

general, as the gain locus approaches the stable gain boiu'dary, the SOC equations

become numerically sensitive and a new reverse problem may be solved and the

perturbations continued to extend the locus. As the s  weighting is decreased,

the k locus moves upward; when sa = 0, the reverse problem is resolved for the

following weightings.

30	 0	 -	 0

0	 10

•	 10
S =

	

	 0	 = 10
a

0

0 0

0	 0 0

and s  is again decreased to zero. This process is repeated and the locus is

extended. Again the tradeoff between damping and relative stability i.s Fvident

as shown in Fig. 7.12. As s  is decreased, the relative stability increases

and rigid body damping decreases. In additLin, the integral square value of a

decreases as s  increases. (Fig. 7.15) If different reverse problem weighting

combinations are employed or other weightings are varied, different areas of the

gain space are probed. The root locus corresponding to this k locus is shown

in Fig. 7.17. The results of the full wind simulations are shown in Table 7.2.

As the angle-of-attack weighting is decreased the peak value and integral square

value of a decrease.
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7.6.3 Application of SOC Sensitivity

Using the method outlined in Chapter VI, it is possible for the first

time to use sensitivity considerations in the design of control laws for realistic

problems. For the launch vehicle problem, the parameters of concern are the

bending frequencies. The SOC sensitivity problem was formulated as described in

Chapter VI and the reverse problem was solved for the following set of weightings.

1

SOD 	
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and the nominal control. law

u= -k1OD-k_
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To obtain the gain root locus Lhe sensitivity weighting is increased. (Fig. 7.19)

sZ = sZ = sZ = s
1	 2	 3

The locus moves almost vertically indicating that k l, the pitch gain, has little

-.5
effect on the sensitivity of the system. Note the point k =	 which was

1-.4
obtained by the Analog Sensitivity Design (ASD) method. 45 In Fig. 7.18 the root

locus is depicted while in Fig. `(.15 the d amping and relative sensitivity curves

are pictured. The desensitization is obtained by increasing the relative stability

at the expense of the rigid body damping. This result is in contrast with the SOC

sensitivity results for simple examples in which the magnitudes of the feedback

gains were increased to "swamp" out the effect of the parameter. Intuitively,

the inclusion of control effort weighting forces the SOC procedure to produce

the more subtle result if one exists.

To place the SOC olutions in -perspective, they are compared with

the ASD result and the nominal control law. Evidence of the reduction in

sensitivity can be obtained from a number of points of view. Figure 7.20 indicates

that as the sensitivity weighting is increased the integral sgr.are of the

sensitivity variables decreases. However, this curve does not indicate the

accuracy of the sensitivity variables in modeling the actual desensitization of

the trajectories.

The design objectives require that the control system maintain

adequate control for bending frequency variations of + 200. An increase in

bending frequency has a beneficial effect on the system performance sin--e the

relative stability is increased. However, the reduction of bending frequencies

poses a serious problem. As shown in Fig. 7.21 the closed loop system for the

I I
I I
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nominal control (s = 1) becomes unstable as w ---0--.8 w0 . Various SOC

sensitivity control laws as well as the ASD design are compared. Note that

SOC does not appreciably reduce the root dispersions, rather the nominal pole

fill'	 position is located so that as the bending frequencies are reduced, the closed

PS 	 loop system remains stable.
Based on the fact that the desensitized control laws are obtained

by increasing the sensitivity weighting it would appear that a tradeoff between

nominal performance modeled by,
m

V5	 Jx = f x  x dt,
0

and sensitivity characterized by changes in Jx is obtained. The conjecture

is verified graphically in Fig. 7.21. In this figure values of Jx are plotted

versus the bending frequency. As the sensitivity weighting is increased the

nominal performance d('eriorates slightly while the variations of Jx with

respect to u) remain finite and eventually become small.

This deterioration in nominal performance is relatively low as

evidenced by the r:sponses of Fig. 7.23, 7.24 and 7.25. That the actual trajectory

dispersion is low is verified by Fig. 7.26 in which the 	 and a state

dispersions are plotted. The time varying simulation ina:-;.cates that for 80%

nominal bending frequency and the nominal control. law the launch vehicle is

unstable. The SOC control laws

	

-.821	 -.921
[	 kl =	 and	 k2 =

	

-.500 
	

-.394

Fli	 are somewhat more desirable than the ASD design

P.
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[

-.500]

-.400

since the peak value of the pitch response is reduced for kl and k2 . Table 7.3

indicates that for the time varying simulation with design wind these control

laws do indeed reduce the sensii;ivity of the trajectory with very little de-

gradation of performance.

Result:

The SOC sensitivity problem involves a tradeoff between nominal

performance and sensitivity. For this launch vehicle problem the tradeoff is

mild and leads to a verS7 acceptable desensitized control law.

It should be noted that the designs were made using the seven state

fixed time point model with only one bending mode, but were checked by appli-

cation to the time varying model with three bending modes. Moreover, rapid

computation is a feature of the SOC sensitivity method since the entire k locus

may be calculated in about ten Minutes.

7.6.4 Application of SOC model Reference

Based on the insight obtained from the analysis of Chapter V it was
i

decided not to apply the model reference technique directly but rather combine

the model reference and sensitivity approaches. The basic idea is that the de-

terioration of nominal performance encountered in the sensitivity approach may

be eliminated. The inner loop gains are designed to provide the best nominal

performance while the model reference gains are found from the difference between

the composite and inner loop gains. The composite gains a.e calculated using
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the SOC sensitivity approach.

-.82J-.921
kl	

-.500	
k2	

-.394

The performance of the model reference systems with the desensitized composite

	

1 _ t	 loop gains is compared with the performance of the nominal and pure sensitivity

control systems. In Fig. 7.27 the responses are displayed for w = 0.8 cD0 with

	

s	

nominal inner loop gains and

[-.821
kl =

-.5

as the composite gains. Compare these curves with the sensitivity results of

Fig. 7.24. By definition the nominal responses of this model reference system

will be identical to the nominal response of Fig. 7.23. As the bending frequency

is decreased the rigid body performance improves slightly while the bending

performance deteriorates. As shown in Table 7.3 the model reference scheme is

slightly more effective in reducing the trajectory dispersions but these slight

improvements do not justify the implementation of the more co.nplex model refer-

ence control system.

7.6.5 Conclusions

As a result of the application of the SOC techniques, four general

points can be made.

1. Even for a practical problem, such as the booster, the

computational effort required by SOC is small. One iteration of the SOCDES

algorithm required four seconds; the solution of a typical SOC problem required

five iterations (20 seconds):
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2. The SOC procedures are very easy to use. Through the use

of the revertie SOC problem concept, very little effort is required to

initiate the computational procedure. The reverse problem generates an

initial set of weightings which correspond to equations which are numerically

{	 well behaved.

3. The use of the SOC approach to calculate a number of designs and

the interpretation of the results by using the graphic aids affords an insight

into and generates explicit information about complex problems.

4. By varying the relationship between the weightings and calcu-

1	 lating the various loci, it is possible to probe all the areas of the stable

gain space and thus determine the properties of the system being studied.

The solutions generated by the SOC approach are comparable to those

obtained from other methods with respect to the satisfaction of design

specifications. It appears that for this particular problem the SOC sensitivity
g	

control law is to be preferred over that of the SOC model reference. The

marginal improvement in performance does not warrant the additional complexity

of the implementation of the model reference scheme.

Fl.
Result:

3

	

	
Based on the preceding analysis the following SOC sensitivity feed-

back control law is proposed.

[-.821
k

-.500

With this control law the following limits are maintained for the duration of
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the time varying simulation with 95% design wind for any value of bending

frequency between nominal and 80% of nominal.

1 01  L 1.30

1^1 L .35o/second

Jul < 6.150

I a) L 1.30

111' e- .18 meters

112 i C .10 meters

I
n13 ' L .06 meters

Two areas of th is work that should be pursued are the further

development of the digital computer programs of the SOC procedures and the

investigation cf acUitional numerical methods. For example, using a recently

proposed 51 algorithm,it appears that a sensitivity gain root locus such as

that pictured in Fig. 7.18 could be generated for a 20th order system with about

forty-five minutes of 360/50 computation.



Nomenclature

Matrices

A Booster syetem matrix: 	 7 by 7

C Booster observation matrix:	 7 by 7

S Symmetric state weighting matrix: 	 7 by 7

S1 Symmetric state weighting matrix: 	 7 by 7

S 3 Symmetric sensitivity state weighting matrix:	 7 by 7

Vectors

a Acceleration of vehicle

b Booster control coefficient vector: 	 7 elements

D Drag force

F Centerline thrust

g Gravity

i Unit vector X	 direction
n

I Unit vector Yn direction

k Unit vector perpendicular to 
X 
	
Y 
	 plane

k Feedback gain vector

N Normal aerodynamic force

R' Gimballed thrust

X Additive disturbance vector

V Velocity of vehicle

VV
Wind velocity

4 Velocity of vehicle relative to wind

X State vector:	 7 elements

'97.



	

Scalars
	 198.

	Jx	 Cost index

kl,k2 Feedback gains

F

1 Thrust moment arm
cg

1 Normal force moment armcp

m Mass of vehicle

i'lii Equivalent engine mass

N' Normal force coefficier_L.

Q Control weighting

X Nominal -f -ame co-ordinaten

X Inertial frame co-ordinate

x Airframe co-ordinate

Y Nominal frame co-ordinaten

Y Inertial frame co-ordinate

y Airframe co-ordinate

yi (x) Slope of i th mode at point x

a Angle-of-attack

w Wind induced angle-of-attack

13 Gimbal angle

t

E

BC	 Control oignal

i	
Normalized bending

^-	 Angle between velocity vector and X  co-ordinai--e

0	 Pitch angle

OD	 Output of pitch gyro

Pitch rate

^R	Output of pitch rate gyro

J	 Nominal trajectory angle

^i	
Bending damping coefficient of i th mode

W	 Fending frequency of ith mode



1-'	 Chapter 8

I SUMMARY AND CONCLUSIONS

1	 8.1 Contributions of This Work

199.

The underlying theme of this work has been the Specific Optimal
aw

Control concept.	 This approach allows the advantages of the modern and

classical techniques of control theory to be combined by formulating

optimal control problems in which the primary goal is a solution control

law with certain specified properties.	 This control law is obtained by

sthe minimization of a cost index which has been structured to insure that

the optimal solution will possess these properties.

_ This concept was applied to the problem of calculating control

laws for systems in which not all of the states are available, the

unavailable state problem.	 The important feature of the linear SOC

problem and its solutions are listed below.

_ 1.	 The linear SOC problems are a class of linear optimal control

problems in which some of the weighting matrices are chosen to provide

a specified structure while others are chosen to obtain satisfactory

i
system response.

i
j 2.	 The basic control structure is linear feedback and the gains

S are independent of system initial conditions.

3.	 The SOC approach has unavailable state capabilities since those

feedback gains corresponding to unavailable states may be structured to

be zero.

F
I

F,



4. The steady state SOC control laws fox the time invariant problem

Iare as5^totically stable.

20%-

i

i

5. The linear SOC problem has desirable computational properties.

a) The optimal solution for the time invariant steady state problem is

characterized by systems of nonlinear algebraic equations. b) The

simple structure of these equations is independent of size or complexity

of the system. c) Efficient numerical methods are available for the

solution of the SOC necessary condition equations.

The linear SOC problem is justified from a mathematical point of

view by the study of the existence and uniqueness of the solutions to

the SOC necessary condition equations. It was shown that for any system

which can be controlled with a control law of the specified structure,

there are classes of weighting matrices for which solutions to the SOC

problem exist and are unique. One class of these weightings may be

determined by the solution of the Reverse SOC problem. That is, given

any control law for which the system response is square integrable, the

corresponding SOC problem with this control law as the optimal solution

can be found. Using this Reverse SOC problem as a starting point, it

is possible to vary the weightings and redesign the system response.

In addition, the concept of the Reverse problem may have application

to a wide range of optimal control problems. One of the main difficulties

concerned with the optimal approach is of a computational nature. It

is often very difficult to determine the proper computational parameters

or initial guesses which result in a well behaved numerical solution.

t`
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For example, a unique solution to the ordinary allstate linear quadratic

problem exists for any positive definite state and control weightings.

However for most problems, many choices of these weightings result in

necessary condition equations which are numerically difficult to solve.

The Reverse problem generates a set of well behaved equations which have

the known control law as a solution. The equations corresponding to new

problems obtained by perturbing the weightings, are usually well behaved.

Thus the effort and skill needed to use the method is reduced since

numerically well behaved problems are automatically formulated. This

technique is especially effective when the optimal procedure is being used

to improve or modify an existing control law.

j	 Most of the optimal control approaches are computationally bound

{	 since a large amount of computational effort is required to solve even

simple problems. An important feature of SOC is the relatively low

computational effort requirement. This feature is due to the basic

structure of the equations defining the optimal solutions and to the

new computational procedure, the SOCDES algorithm, which has been intro-

duced in this work. This algorithm solves the algebraic matrix Ricatti	 1`

equation which characterizes the steady state optimal solution. The

control concept of SOCDES is the indirect solution of the Ricatti equation;

the feedback gain equation is solved by Newton-Raphson iteration while

the Ricatti equation acts as a constraint relating the Ricatti Matrix

and the feedback gains. Although the execution time per iteration is

longer than that of the straight forward Newton Raphson solution of the

Ricatti equation, the rate of convergence of SOCDES measured in number of
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iterations is faster. The superiority of the SOCDESp	 Y	 algorithm becomes

apparent in most practical problems in which there are many states with

only a few control imariables.
r-

The Reverse SOC problem and these computational features have been

combined to form a systematic procedure for the analysis and synthesis

of linear feedback control systems. 	 The synthesis is carried out by a

systematic trial and error procedure in which the Reverse problem is

solved to obtain an initial set of weightings and the weightings are

perturbed to obtain a more satisfactory design.

.Analysis of and insight into a linear system is obtained by allow-

ing the SOCDES algorith;. , to calculate the solution for a number of weight-

ing matrices and interpreting the results in terms of the following

graphical aids, the feedback gain root locus which is a plot of the
I

feedback gains as a function of the weighting matrices and the weighting

j	 root locus which is a plot of the poles (characteristic roots) of the

closed loop system as a function of the weightings.
{
i

The SOC concept was applied to the model reference control problem

in which a control law is designed to maintain the trajectory of a system

in the neighborhood of the nominal or model reference trajectory despite

enviromental disturbances. The result of the SOC application is a model

reference control system with two loops, an inner loop deTi.gned to obtain

a nominal response and an outer loop designed with SOC which operates on

the difference between the actual and model trajectories. An important

feature of this technique is that the outer loop gains are independent
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of the nominal trajectory as well as system initial conditions. After

these feedback gains are chosen, the model reference trajectories may

be changed or modified without any redesign of the feedback gains.

Another approach to the problem of the effect of enviromental

changes on the controlled system is the use of sensitivity considerations.

Previous efforts employing the optimal control approach to sensitivity

have not been effective for realistic problems because of difficulties

encoui-tered in formulation and computation. The SOC sensitivity techniqu--

introduced in this work substantially reduces these difficulties. In

addition to the computational reduction resulting from the nature of

SOC, the sensitivity problem has been formulated so that the computational

effort required is about the same as for the unavailable state SOC problem

without sensitivity considerations. Moreover, this effort is relatively

independent of the number of parameters considered. Furthermore, this

technique has the unavailable state capability so that the unavailable

states do not have to be _,_easured or estimated nor do the sensitivity

variables have to be generated.

The efficacy of the SOC theory a n i the techniques described above

was demonstrated by simple examples and the study of a significant

engineering problem, the control of the Saturn V launch vehicle. As

indicated in Chapter VII, which describes the launch vehicle problem

in detail, the SOC approach may be very useful with respect to the study

of practical problems. The actual designs are comparable to other techniques

with respect to satisfying the design specifications with the advantages

of reduced computational effort and increased insight. The SOC sensitivity

approach appears to be especially effective.
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8.2 Future Work

In this work the SOC concept was applied to linear systems with emphasisp	 pp	 Y	 A

on the time invariant case. Most of these ideas expressed in the previous
^a

chapters are directly applicable to the time varying case. This particular

application of the SOC concept depends oi^ the structure of the equations de-

fining the optimal solution for the linear quadratic problem. A similar approach

may be used to apply the SOC concept to any linear problem which employs the

integral quadratic cost index. Thus, extensions to the discrete and stochastic

I}

problems are possible. Similarly, nonlinear problems may be attacked using the

second variational or neighboring optimal control problem approaches. Some work

F	 has already been done in these areas with encouraging results.

The further development of the SOC procedure as an automated design

technique appears to be feasible. There are indications that the use of SOC

to choose an 'optimal" compensator as well as the generation of an initial

set of stable gains are promising areas of future investigation.

The digital computer programs currently available were written in „

-'	 straight forward brute force manner to test the SOC techniques. No signifi-

cant effort was made to optimize the execution times, memory requirements or

the handling of input and output. Additional work along these lines might

lead to sets of programs th n+_ would comprise a useful design tool suitable

for time share library usage.

An effort should be made to investigate the relationships between the

SOC techniques and other optimal and classical approaches. This work might

involve a theoretical comparison as well as an empirical comparison involving

the solution of a number of problems with the various methods.
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IF U	 Appendix A

	

#._	 Derivation of the Formal SOC Necessary Conditions

This appendix is devoted to the derivation of the unreduced 200 necessary

conditions by the application of the calculus of variations -
47 	The SOC control

law, u, is chosen to minimize 	 J

t

J =2	 (xTSx+xTSx+x Wu+xT Wu+"T Qu)dt	 (A-1)

to
i

subject to the plant dynamics.

x=Axi°Bu;	 X(t0) =c	 (A-2)

Assume that the optimal control lax is known.

= A xo + B u°;	 x°(t0) = c	 (A-3)_xo

The necessary conditions will be determined by the consideration of a variation

{ in the control, t' u.	 That is

u=_u°+ Su

must satin	 theThe resulting system trajectory 	 satisfy	 dynamical contraints in order

to be admissabl+e.

x 	 +	 rJ'x

x= A x+ B u;	 x(t0) = c	 (A-4)

By subtracting (A-1) from (A-2) a differential equation is obtained which character-

izes any allowable variation about the optimal.

dx = x - xo -A J x + B off' u;	 Sx(t0) = 0	 {A-3 i

1^
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For suitably small and admissible variations in the control and trajectory, the

cost index may be expressed in terms of the optimal ibex and first and higher

order variations.

J = Jo + JJ+02

where 02 represents second and higher order variations of the cost index and

SJ = 2	 J^x(S + S) x + 1 Jx(w + W) uo
f

tf

2
t©

T	 A
+ X (W+W)O"u+ JuQcfu) dt

The calculus of variations requires that the first variation of the index be zero

for any suitably s=ell adml sable variations about the optimal. This corresponds

to the requirement of the first derivative being zero at an extreme= of an

ordinary calculus problem. The Euler-Lagrange equations may b^- derived by

adjoining the variational dynamics to the first variation by use of the costate

or Lagrange multiplier vector, 2.

t 
J'I = ciJ + 2	 '^'A f x + B J{-u - fig) dt = 0	 (A-7)

t0

Note that (.,I is zero for all admissible variations because the dynamics are

satisfied. Integration by parts of Eq. {A-7} leads to the following expression

for Si.

t 
I=2 1 [SE{{S+S) jo +2(W+W)uo +ATP +E)

to

+Jru{1 (WT +W) xo +Quo +BT g)^ dt

• Cr XT P	 = 0	 (A-8)

t=t f

(A-6)
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If the costate vector is required to satisfy the following equation,

p +ATp+(S+S)_x°O +2 (W+W)u°=0;	 p(tf) =0 	 ( A-9)

and since the variation in the control is arbitrary, the optimal control law is

described by the following equation.

Qu°+BT p + 2 T(W+W) x°=0	 (A-10)

or

u°=-Q1(BTp +2 (WT +WT )_x°)
	

(A-11)

Now, (A-1), (A-9), and (A-11) are the Euler-Lagrange or necessary condition

equations for the formal SOC problem.
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Appendix B

Newton Raphson Method

The Newton Raphson method is a powerful iterative numerical method which

is used extensively to solve nonlinear algebraic equations. This method has a

quadratic ra-L,e of convergence; convergence occurs provided the initial iterate

is suitably "close" to the solution. The recurrence relation which defines the

algorithm follows easily from the basic concept of the method as shown by the

following derivation for a scalar nonlinear equation with one independent variable.

Z = g (Y)
	

(B-1)

The centrol concept involves linearizing the nonlinear equation about the

current guess. That is, given a current solution guess, y i , expand the equation

in a Taylor series about y..
i

z = g (Y) = g(Yi ) + dy (Yi ) dY + Y2 	(B-2)

where y2 represents second and higher order terms. Only the linear term is

retained and a new guess is found by extrapolating along the tangent line until

the approximate functicn is zero as shown in Fig. B-1. That is,

z = g (Y)	 g (Y) = g (Yi ) +	 (Yi) dY

The new guess is chosen by requiring that

g(Yi+l) = 0

or

g(Yi+1) = 0 = g (Yi ) + ^ (Yi) (Yi+l - Yi )
	

(B-3)

t

T

r
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wher;; dy = y i+l - y
i
 . Then Eq. (B-3) may be soly?d for yi+l to obtain the^ 

recursive relation defining the Newton Raphson algoriti-im,

Yi+1 = Yi - g(Yi)/dgdy  (Yi)

Geometrically, this corresponds to finding the tangent to the equation at

y = y
i and extending the tangent line until it crosses the horizontal axis,

z = 0. The intersection of these two lines determines the new guess, yi+l'

The process is continued by finding the tangent to g(y) at y = yi+l and

extrapolating to determine y.
+ G .1

If convergence problems are encountered, the use of a convergence factor,

a, may help. By choosing values of a, 0 _ a 5 1, it may be possible to
i

alleviate convergence problems at the expense of rate of convergence. Geometric-

ally, the new iterate is found by only extrapolating part way along the tangent

line. That is, Yi+l is determined by the intersection of the tangent line and

z = C. where c = (1-a) g(y i).

In a similar manner the Newton Raphson algorithm in function space may

be derived. Consider a vector function equation with a vector of independent

variables.

z	 0

Given a guess, y the vector equation is lineared about

z = f (Y) = f (Yi ) + VY- f dy + f2

where	 f represents the Jacobian or gradient matrix of f with respect to
Yr —	 —

Y and f2 denotes second and higher order terms. The equation is linearized

by neglecting the higher order terms.

I
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n
z = f(y) = f(y) = f(yi ) + 7y f dy

The new iterate or guess is determined by the intersection of the tangential

plane and the plane ; z = 0.

A
f(y) = 0 = f(yi ) + P^ f dy

dX = yi+l - y,

The recursive relation is given by

Y-i+l = Zi - ( 0Y f)
-1
 f(Yi)

The actual implementation of this algorithm does not require that the Jacobian

matrix be inverted, rather the following linear system of equations is solved

for dy which leads to yi+l.

Q^ f dy _ - f(yil

yi+l dy + Xi

This is significant from a numerical point of view since fewer operations and

hence execution time and error are required to solve a single system of

equations as opposed to inverting the coefficient matrix of the system.

t
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APPENDIX C

Digital Computer Programs

To test the effecti^reness of the proposed theory, various digital computer

programs were coded, debugged, and used. Much of the computational effort was

devoted to the solution of steady state problems. Both the SOC-Kleinman and

SOCDES algorithms described in Chapter III were implemented and compared. The

SOCDES algorithm was found to be superior to SOC-Kleinman especially for the

launch vehicle problem. Two versions of the SOCDES algorithm are described in

this appendix; SOCDES I solves the steady state unavailable state problem of

Chapter IV as well as the unreduced sensitivity problem of Chapter VI while the

SOCSEN version solves the reduced SOC sensitivity problem. The basic block

diagram for both programs is shown in Fig. C-1. The only significant difference

between the two versions is found in the structure of the solution of the

Ricatti equations. In SOCDES I the Ricatti equation is formulated in terms of

the equivalent linear vector system described in Appendix E while SOCSEN de-

couples the Ricatti equation into the reduced form and successively solves each

of the partition equations via the equivalent vector approach.

The programs consist of a main program which is listed below, and various

subroutine programs. The names, call statements, and p'urrose of the subroutines

follow.

NAME: DLIN

USE: DLIN solves systems of linear equations by Gaussian elimination

with full pivotal condensation.

CX=Y

The matrices C, N by N. and Y, N by M. are known and X, N by M,

is to be found.

W'
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READ IN DATA

INITIALIZE VARIABLES

SOLVE

REVERSE PROBLEM?

NO

CALCULATE

GAIN FUNCTIONS

START

PRINT	 PRINT

YES	 SOI7VE REVERSE PROBLEM

CALCULATE W

FIGURE C-1
SOCDES I SOCSEN
BLOCK DIAGRAM

PRINT	 =	 PRINT

YES 	 SOLVE

CHARACTERISTIC EQUATION

FUNCTION TOLERANCE

SATISFIED?

NO
if

CALCULATE

JACOBIAN

CALCULATE

NEW GAINS

PRINT
	

PRINT

NO	 WEIGHTING

PERTURBATIONS?

YES

UPDATE

WEIGHTINGS
i

STOP	 PRINT



218.

CALL: CALL DLIN (R ) A, M, N, EPS, IER, ICODE)

R:	 Y is placed by columns in R; after execution X is placed

by columns in R.

A:	 C is placed by columns in A.

EPS: Pivot error tolerance.

IER: IER is set equal to zero before DLIN is called. 	 If C

is singular (pivot element less than EPS), rank of

matrix is stored in IER and control is returned to Main.

^- ICODE: If ICODE is zero, DLIN operates in a normal manner and

pivot information is saved. 	 If additional systems of

equations with identical coefficient matrices are to be

solved, ICODE is set to 1 and a new Y is entered and

equations are solved using saved pivot information at a

considerable saving ir. computational effort.

E

NAME: CHAREQ

USE: CHAREQ formulates characteristic equation of given system matrix.

CALL: CALL CHAREQ (C, N, CCEF)

C:	 C is the N by N system matrix

COEF: Coefficients of characteristic equation are placed in

COEF in descending order, that is coefficient of sn

is placed in position 1 of COEF.
E

f{

rf

i
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NAME: POTROT

USE: POTROT is used to set up characteristic equation for solution

by POLYRT.

CALL: CALL POTROT (C ) ICFL, TIME, K1, K2, K3, K4, K5, M)

C: C contains polynomial coefficients in descending order.

M: Order of polynomial.

TIME: Dummy variable.

ICFL: Output control variable.

K1 0 K2, K3 1 K4, K5: Feedback gain values.

NAME: POLYRT

USE: POLYRT finds roots of polynomials up to order 99 by Newton Raphson

iteration in complex plane.

CALL: CALL POLYRT (M, C, TOL1, RX ) RY, RMULT, NR, ISW, CFCTR, IDOUT, IDOUTI)

M: Order of polynomial

C: C contains polynomial coefficients in descending order.

TOL1: If distance between roots in less than TOL1, then roots

are assumed to be identical.

RX: Matrix of real parts of roots.

RY: Matrix of imaginary parts of roots.

RMU711: Matrix of scaling factors.

NR: Number of non-identical roots.

jr



ISW: If ISW = 1, the factored polynomial is re-multiplied

to form a comparison polynomial.

CFCTR: Matrix of differences between coefficients of original

and comparison polynomial.

IDOUT, IDOUTI: Diagnostic print variables.

POLYRT was developed by Ray Ash of the Systems Div:;.sion of R.P.I.

while the rest of these programs were developed by the author.
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/JOB	 4045	 CASSIDY,LINES=50
{ C
t' C

CJ`

C {
C PROGRAM RUSTRICTEC TO SCALAR CONTROL
C CERTAIN WRTTC STATEMENTS ARE ENTERED AS COMMENT CARDS. 	 IF TROUBLE
C DEVELrPS THE	 'C'	 MAY BE REMOVED AND THIS DIAGNOSTIC	 INFORMATION PAY
C BE PRINTED.

DOUELE PRECISION AOP(20,20)tCDEFF1100)
CI MENSIr N 	CS(10t10)t'IO)
DIMENSION GQADT ( 10910) 9 0(10)
DIMENSION	 S(1O91C),P(10910)
DI MENSION	 4(10 9 1C) 0(10tl)9FRG(1,10)
CIMENSIn"!	 AA^(1C,1n)tFSA(1t10)tF(10)tFS(10)
DIMENSION	 AIN(?8,7C),FHA(1,10),Ent784)tEG(28,10),EH(7C4)
DIMENSION	 FMK(28t?At10)tEK(10,10)tFHSA(1910),EFS(28)tFQS(28928)

DOUBLE	 PRECISION E(28120`tEE(784)tEF(784)tFO(28928)
1 FORD M 1615)
2 VORMAT(4c2^.5)

L
f

3 FORMAUIXOP10E13.4)
4 FORMAT(lx t lrfI0 )
6 FORMATt4C2C.5)

` 7 FORMAT(1X0910n13.4)
4 FORtMATU/ 2X9' (TERATIOM NUMBER	 '915)

11	 FORMAT(////T30,'AFTER	 ',I3,'	 ITERATinmS t THF STOPPING TOLERANCE WAS
1 REACHED.'//)
CALL	 TRAPS(Ot1t1C0000)

5C00 CONTINUE
C NOTE	 ***	 FBG=K

_ C READ	 IN	 AND	 1 %'ITIALIZE	 DATA
' ISS=1

REAO(111)	 IIS,IWCtISTAB
WRITF(394)	 ITS,IUCsISTAB
APPx=C.25E0
APF=C.1E4
APH=.CC1F0
AP, =l.CEC
KOUNT=C
READ(19•1)	 NS,NI,NU
NL-NS—tiU
NP=(NS*NS+NS)/2
WRITE ( 39 4 )	 NS I K I,	 t1,NLtNP
REAU(192)	 FPStTCLtESStSWTrL
WQTTF(393ti	 FPStTrL,ESS,SWTnL
SWTOL=SMTCL*SWTCL
TCL=TCL*TCL

i'

REAC( 1,2)	 ( (1(t t J) t I=lt"'S),J=L,NS)
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READ(1.2) t!^((,1),[=1,45!
hRITE(3 9 3) ((A(ltJ),I=1•14S),J=1**1S)
WRITE(3.3) t9(I,1),I=1,NS)
READ(172) ((S(19J),[=1,NS),J=1,NS)
URITE(3,3) ((S(1•J),1=1,AS)•J=1•NS)
IF(ITS—)) 320 9 325,370

320 CONTINUE
READ(1•7) ((OS([,J),I=1•NS),J=1,NS)
WRITF(393) ((n5(I,J),T=1,%,S),J=1,NS)
READ (1.2 ) PIC
WRITE(3,3) PCQ

325 CONTINUF
READ(1t2)
WRITE(3.3) 0

C
READ(1,2) (F9G(l,T)•I=1,NS)
kRITE(393) iF8&tl•I1•T=I,hS1
DO 15 I=1,NS
F(I)=O.Ee
FSA(1,1)=0.C4
W(T)=O.E^
00 15 J =1 •'1 S

15 AA(I,J)=-M ,J)
IF(IST A R-1) 334 . 332,334

332 CONT I'vUE
OC 336 1=1 •'`IS
Del 336 J=10S
AA(I,J)=C.CF4

336 AA(19J)=^.(I,J)—P(I.1)*FP.G(1•J)
WRITE(393) ((QAt[•J),I=1,kS1,J=1,NS!
00 337 I=19NU

337 FBG ( 1, I)=0.VE0
334 CPNTINUE

IF(IWC) 330.32P,310
32R REAC(1,21 (w([),1=1.11S)

WRITE(3.3) (Wtl),T=I,"'S1
330 CONTINUE

00 2f, 1=1,NP
DO 26 J=1,WQ
DO 27 L=1•f'U

27 EKK (I,J,L )-r.FC
26 CO NJ I NI L'

C E IS THE CnEFF(CIENT MATRIX OF THE ERi)IVALENT VECTOR SYSTEM.
C	 EKK = DER OF E WR TC FPG

CO 250 JK=19'VU
OC 340 1=19*'S
On 340 J=1 0S

34C EK(1,J)=^.E!'•
CO 35C I=W'S

350 EK(I,Jx)=—^(1.1)
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C	 WRITE(3,3) (FK(I,JK),I=1,NS)
DO 25C I=19`!S
DO 25C J=1,^!S
00 25C KL=1,NS
TI=NS-C.5*J
L=(J-1)*T1+KL
IF(KL — J) 2AI,2449244

243 TI=NS-C.5*KL
L=(KL-1)*TL+J

244 CO"'T I NUE
T2=NS-0.5* I
K= ( I-1) * T2+KL
IF(KL-I) 245,246046

245 T2=NS-C.5*XL
K=(KL-1)*T7+T

246 FAC=1.EC	 -
IF(I—KL) 248,2.47924R

247 FAC=2.EC
248 C01JINUE

EKK(K,L,JK)=FKK(K,L,JK)+FAC *EK(J,I)
250 CONTINUE

C	 UR ITE(3,3) (((EKK(K,L,JK),K=1,N'P),L=19"'P)•JK=1,MU)
1810 C WI TI"It E

NI=NI+1
CO 9C1C TDS=ISS,ITS
DP 9CC0 ITTT=100I
ITT=ITTT-1
WRITF(3, q ) ITT
IF(ITT) 17,100C,17

17 CONTINUE
C EG=CER (FBG*4: *FCC') *'nR *FBG

00 140 I=1,NS
DO 140 J=1,r)P

140 EG(J,I)=0.E0
C EC= " P"=-EI*(S+FCG*C*F(!Gl)

K=C
00 142 J=1,NS
DO 142 I =J, AIS
K=K +1
EG(K,J)=FuS(19I)*Q+EG(K?J)
EG(K,I)=FF,G(19J)*C+EG(K,I)
EO(K)=FF(K)

142 CONTINUE
C	 WRITE(3,3) ('E(:(K,I),K=1,,NP)91=1,NS)

DO 148 IK = 1 ,'VI)
CC 144 L=1,"'D
EH(L)=C.EC
00 144 LL=I*NP

I44 EH(L)=FH(L)-FKK(L,LL,TK)*ED(LL)
C	 WRTTE(393) (RI(L),L=19NP)
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C	 ICODE=Ir*ear* DLIN HAS BEEN INITIALIZED, NO NEED TO COMPLETELY
C	 RESOLVE SYSTEM OF EVIJATICNS.

ICODE=1
C EF=—EKK*"P' I—EG
C	 SCLVE	 ^'•P••=EF

00 145 L=1,vP
EF(L)=EH(L)—EG(L,IK)

145 CONTINUE
CALL DLI"l(CF,EE,NP,N^EO,EPSr IER, lCnDE)

C	 WRITE(3,7) (EE(K),K-1,NP)
K=0
DO 146 1=1,t7S
DO 146 J=I,NS
K=K+1
P(I•J)=EF(K)

146 P(J,I)=EF(K)
C	 WRITE(393) ((P(19J),I=..19NS) eJ=1,NS)

DO 148 KK=19NU
GRAD=0.Ef^
DO 147 .'=1,N5

147 GRAD=Gr2AP+9(J,1)*P(J,KK.) /C
IF(IK.—KK) 151,149,151

149 GRAD=GRAr'-1.OE0
151 CONTINUE

C	 GRADiFNT=GRAD=CI* P'*P—I
C	 WRITE(3,1) KK
C	 WR 1 TE (3, 3 ) GRAD

GRADT(K.K,IK)=GRAC
148 CO NI T I NUE

WRITE(393) ((GR ACT(I,J),I=1,NU)tJ=I,NU)
94 CONTINUE

NEA=1
IER=O-

91 ESS=I.CEO
DO 8t' I=19":U

88 D(I)=F(1)
89 CONTINUE

C	 WRITE(393) (0(1),I=1,NU)
K=0
DO 92 I=19"!U
EF(I) = 1)(I )
DO 92 J = l ,NlJ
K=K+1

92 EE (K)=GRA0T(J,I)
ICODE=C
CALL DLT!"(CF,FE,NU,NEPtEPS,IER,ICnrjE)

C	 WRITE(3,7) (EF(I)•I=1,NU)
DO 93 I=ItNtl
FSA(1,1)=FPC,(I,I)

93 FBG(l,i)=F^G(l,i)—ESS*APH*EF(I)
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WRITE(3.3) (FSA(19I),I=1•NS)

	

i	 WRITF(3,3! (FBG(1•I),l=1•NS)
?.	 1000 C(1'ITIMUE

C	 A= AA-E*FnG•

	

i	 DO 1C I=ItNs
DO 10 J=IINS

10 A(t,J)=AM ,J)-FRG(1,J)*P(I,1)
C	 WRITE(3,3) ((A(t,.J),I=1tNS),J=19NS)
C	 FORMULATE E **fi

DO 20 K=1,NP
DO 20 L=I,NP

	

'	 20 E(Y,L)=C.DC
( DO 40 I=1,NS

DO 40 J=19NS
DO 40 KL=1,NS

	

i	 C	 J,KL****L
T1=NS-0.5*J
L=(J-1)*T1+KL
IF(KL-J) 215,220,220

215 TI=NS-0.5*KL
L=(KL-1)*T1+J

22C CONTINUE
C	 I,KL*****K

T2=NS-0.5*1

	

(	 K=(I-1)*T2+KL
IF(KL-I) 2259230,230

225 T2=NS-0.r^*KL
K=•KL-1)*T?*I

230 FA,;=1.0
IF(I-KL) 236035036

235 FAC=2.0
236 CONTINUE

E(K,L1=E(K,L)+FAC*A(J,I)
40 CONTINUE

C	 6RITE(3,7) (t*tK,L)sK=1,NP),L=1,NP)
WRITE(3,7) ((E(K,L),K=1,NP),L=1,NP) 	 f

ICOCE=C
K=0

C	 EF= - • +S+F2 f'7 *C*FC Gu'	 ••

00 55 I =1,NS
•	 DO 55 J=I,NS

K=K+1
55 EF(K)=-S(I,J)-FRG(1,t)*t3*FBG(1,J)

	

(	 C	 WRtTE(3,7) (FF(K),K=1,*P)

	

J	 WRITE(3,7) (EF(K),K=19NP)
K=0

t	 00 70 J=I,NN
#j	 CC 7C I=1r"'n

	

{	

K=K+1

1



EE(K)=E(I,J)
70 CO N17 I NUE

IER=C
WRITF(394) IER
CALL OLIN(FF,FE,t^P,NEC,CPS,IER,ICODE)

C	 CALCUL Tr P
C	 WRITF(397) (EF(K),K=1,NP)

K=0
(	 C	 EF=	 11011

DO 90 I=1,NS
00 90 J=1,NS
K=K+1
P(I,J)=EF(K)

}	 90 P(J,Il=EF(K)
C	 URITE(393) ((P(I,J),!-1,NS)9J=1,NS)

WRTTE(3,3) ((P(I,.1),I=1,NS),J=1,NS)
C	 F=QI*P- I *P+CI&W'-FBG	 W=•W • /2

DO 111 I=11WU
FS(I)=F(t)
F(I)=0.E0
00 110 .)=1,NS

4	 110 F(I)=FtI}+"tJ,1)^!'(J,I1/0
111 Fti)=FtI}-F^_.Gil,t)+w(T)!0

C	 W CF PROGRAM IS 112 W OF THEORETICAL CEVELOPMENT.
I%RITF(3,3) (FS(I),I=IINU)

f	 WRITE(393) (F(I)9I=191\'U)
WRTTE(l,l) (W(I),1=1,Nl ► )

C	 hRITE(393) (FHSA(l,t),I=1,NS)
C	 WRITE(3,3) (FHA(l,i),I=1,NS)

IF(ISW-1) 1'1,132,131
131 CONTINUE

IF(ITT) 112,80+CO3112
j	 8000 IF(IVC-1) 9000,800?,9C00

C	 CALCULATE W
8CO2 DO 8001 1=1,NU

F(t)=C.C'--O
8001 CONTINUE

IWC=2
f	 WRITP-(3,3) t'r'(I),I=1,"^U}

WRITE(3.3) ((S(I,J),t=1,NS) ► J=1,NS)
}	 GO TO 9001

112 CONTINUE
15C CONTINUE
132 CONT I NOF

i	 C	 CHECK GA IN'S
00 154 I=1,1U
CD=F(t)
CD=CD*C0
IF(DC-TQL) 154,160,160

226.
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154 CONTI'NU'E
WRITE(3,11) ITT

WRITF(393) ((n(I,J),I=1,KS),J=1,NS)
GO TC 5CO1

16C KOUNT=KCUNT+1
SCCC CD`'TINUE
9C01 CONT I NI!E

CO 9CC5 1=1,NS
CO 9CO5 .I=1,ktS

9CO5 S(I,J)=S(1,Ji+P.S(T,J)
WRITF(3,?) ((S(I,J),I=1,NS),J=1,NS)
Q=^+CCU
WR1TE(3,3) 0
CO 90CP T=1,NS
DO 9CO8 J=1,14S

}	 9CO3 ADP(I,.J)=A(I,.I)
#	 CALL CNAREO(ADPINS,COEFF)

NSS=NS+1
WRITE(3,7) (CnEFF(I),I=1,MSS)
TIDE=0.0E0
A3=0.0F0

(	 A4=C.OEC
A5=0.CEC

_	 A1=FBG(1,1)
A2=FPG(1.2)
ICFL=C
CALL POTQCT(COEFF,ICFL,TINE,AI,A2,43,A4,45,NS)

9010 CONTINUE
3	 Gr Tr 5000

END

Y 	 r
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/JOB 4045	 CASSIDY,LINES=50

- C=	 l C

C ** f4	 SOCSFN	 I	 •+:::

j C

t. C
._ C

r_ C PROGRAM RESTRICTED TO SCALAR CONTROL
,t C CERTAIN WRITF. STATEMENTS ARE ENTERED AS COMMENT CARDS.	 IF TROUBLE
_ C DEVELOPS THE	 ,r" I	 MAY BE REMOVED .AND THIS DIAGNOSTIC 	 INFORMATION MAY

C BE PRINTED.
DOUBLE PRECISICN ADP(20,20),COEFF(100)
DIMENSIn'	 CRAT(14,14)
DIMENSION GRADT(14914),D(14)

{ DIMENSION	 A(14,14)jB(I4,1),FSG(1,14)
DIMENSION	 AA(14,14),FSA(1,14),F(14),FS(14)

DIMENS10 "I 	V (14) ,P(14,14')
^. DIMENSION	 ErtIn5),FG(105,14),EH(105)

DIMENSION EKK(105910512)
' DIMENSIOM FK(14tl4)

DIMENSION	 AO(797),SI(7,7),S2(7,7):S3(7,7),DS1(7,7)tt)S2(797)
D•IMENSICN DS3(797)

-= DOUBLE PRECISIC% DE(184)
DOUBLE PRECISICN F1(28,28)
DOUBLE	 PRECISICN E(2R,?8)9EE(784),F_Ft784)

1	 FORMAT(1G15)
2 FORMAT(4E2G.5)
3	 FORMAT(1X,.1P10F13.4)
4 FORMAT(IX910110)

g 6 FORMAT(4D20.5)
7 FORMAT(IX,IP10D13.4)
9 FORMAT(//2W ITERATION NUMBER 19I5)
11 FORMAT(////T30 9 1 AFTER	 1 ,I3 9 9	ITERATInNS,THE STOPPING TOLERANCE WAS

I REACHED.#//)_
5C00 CONTINUE

C PROGRAM SLVFS SOC SENSITIVITY PRORLFm VIA REDUCED PKOKLEM
C FORMULATION.
C PROGRAM LIMITED TO SINGLE PARAMETER RUT STRUCTURE ALLOWS EXTENSION
C TO MULTIPLE PARAMETERS.
C IF LCW ORDER SE*ISIfIVITY PRPRLEM 	 IS Tn RE SOLVFD, THEN IT MAY 3E
C FCIRMULATED IN UNREDUCED FORM AND SOLVED WITH SOCOES 	 .1.

• C NS2	 IS THE GIRDER OF ORIGINAL SYSTEM,
C READ	 IN AND	 I P ITIALI7F.	 DATA
C NOTE	 ***	 FBG=K

ISS=1
1 READ(1,1)	 IIS,IWC

WRITE(394)	 IIS*TWC
APH=C.25FO

^'
APH=O.IEC
APH-.COIEO
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APH=I.OEO
KOUNT=O
REAOtl,l) MS,MI,NU
NL-NS-NU
NP=(NS *NS+NS)/2
KS2-NS/2
NS3=NS2-1
NP2=tNS2*NS2+NS2)/2
INRITE(3 9 4) rIS,N'I#NU,NL,NP
READ(1 ,2) EPS,TOL,ESS,SWTPL
WRITE( 3 1 3) EPSrTCL,ESS,SWTOL
SWTOL=SWTCL*SWTOL
TLIL-TCL*TEL
READ(1,2) ((AA( I,J),I=1,NS2) , J=1,NS2)
READ(197) ((AOtt,J)9I=1,NS2),J=19NS21
REAV(1,2) (F(I,1),I = 10fS2)
READ(1,2) ((Sl([,J),I=1,NS2),J=1,NS2)
REAC(1,2) t(S2([,J),1=1,NS2)9J=1,NS2)
READ(192) ((S3(I,J),I=1,NS2)9J=1,NS2)
WRTTE(393) (tAA(I,J),[=ltN,S2),J-1,N'S2)
WRITE(3,3) ((A0( t,J),I=1,NS2),J=I,NS2)
6RITE(3,3) t0([,1),I=1,NS2)
WRITE (393) ((S)(1,J) , 1=1,MS2) , J=1gNS2)
WRITE(30) ((S2(I•J),I=1,RS2),J=1,NS2)
WRITE(3 , 3) fIS3(I , J),I=1,NS21 , J=1,NS2)
IF(IIS-1) 320,325,320

32C CONTINLE
READtl,2) tf0S1t1,J),I=l,NS2),J=1,NS2)
READ(1,2) (tt)S2(I,J),I=1,NS2),J=1,NS?)
READ(192) ((Ii S3(19J)91=1,"IS2),J=lvMS2)
WRITE(30) ((DS1!I,J),I=1,NS2),J=1,NS2)
WRITE(393) ((OS2(I,J),T=1,NS2),J=I,NS7)
WRITE(393) t(OS3(t,J)9I=1,MS2),J-I,MS2)

325 CONT INUE
DO 13CO T = t tNS2
II=T+NS2

130C 3(It,l)=0.CEO
READ(1,2) C
URITE(3,3) 0

C
READ(1,21 (FCG(1,1)9I=1,NS)
WRITE(3 t 3) (F6G(1,1),1=1,NS)
DO 15 I=19NS
F(I)=O.EO
FSA(1,I)=O.FO
W(T)=O.En

15 CONTINUE
IF(IWC) 330132PO30

328 READ(1,2) (Wtt),t=1,VS)
WRITE(3 9 3) (ktI),T=l,NS)
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330 CONTINUE
DO 26 t = I , NP
DO 26 J-19vP
00 27 L=19NU

.27 EKK(t,J,L) =0.E0
26 CONTINUE

C E IS THE COEFFICIENT MATRIX OF THE EQUIVALENT VECT01
C	 EKK = DER Or E WR TO FAG

DO 250 JK=19411
DO 340 I=WIS
00 34C J=19!+1S

340 EKfI,J)=C.FA
JKK=JK+N'S2
00 350 I=19NS2
II =1+NS2
EK(II,JKK) =-R(I,1)

350 EK(I,JK)=EK(It,JKK)
C	 WRITE(39,3) (CK(19JK),I=1,NS)

DO 250 t=1,MS
00 250 J=1,NS
DO 25C KL=I#NS
T1=NS-0.5*J
L=(J-1)*T1+KL
IF(KL-J) 2439244044

243 T1 =NS-0.5*KL
L=(KL-1)*T1+J

244 CONTINUE
T2=NS-0.5*I
K=tl-1) *T2+KL
IF(KL-I ) 245,746,266

245 T2=NS-0.5*KL
K=(KL- 1)*T?+1

246 FAC=I.EC
IF(I-KL) 2489247,248

247 FAC=2.EO
248 CONTINUE

EKK(K,L,JK)=EKK(K,L,JK)+FAC*EK(J,t)
250 CONTINUE

C	 WRITE(393) (( ( EKK(K,L,JK),K=1,NP),L=1,NP)•JK=1,NU)
NI=NI+1
DO 901C IDS=tSS,tTS
DO 9CCC ITTT=1,Nt
ITT=ITTT-1
WRITE(39 q ) ITT
IFtITT) 1791000,17

17 CONTINUE
C EG= CER nF f (FnG*Q*F^G •) BAR ) WIt TO FSG

IF( [NO- 1) 136 9 1359136

135 INO=0
GO TO 94
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136 CONTINUE
15CO CONTINUE

on 140 I=l,••!S
DO 140 J=1,NP

140 EG(J,I)=n.Ef
C	 ED z	 11 P' ll	 =-FI*#'((S+(FBG *t)*rBGI)RAR)+l

K=0
DO 142 J=19NS
DO 142 t=J,^,S
K-K+1
EG(K,J)=FPG(1,I)*O+EGIK,J)
EG(K,I)=FHG(1,J)*O+EG(K,I)
ED(K) =Q(19J)

142 CONTINUE
K=NP-NP?
00 480 J=1,',!S2
DO 480 I=J,NS2
K=K+l
EG(K,J)=FrG(1,I)*0+EG(K,J)

480 EG(K,I)=F8G(1,J)*0+EG(K,I)
C	 WRITE(30) (tEG(K,I),K=1,N'P),I=1,NS)

Djl 148 IK=1,NU
DO 144 L =1914P
EH(L)-O.EC
DO 144 LL=1,NP

144 EH(L)=EH(L)-FKK(L,LL,TK)*ED(LL)
C	 WRITE(30) (FH(L),L=1,NP)
C	 ICODE=1****tu DLIN HAS REEK INITIALIZED. NO NEED TO COMPLETELY
C	 RESOLVE SYSTrM OF ECUATIrNis.

ICODE=1
C EF--EKK* "P "-FG
C	 SOLVE	 F"Pft=EF
C Tfr, SAVE NEMCRY, P IS USED IN MANY DIFFEREMT WAYS.
C SINCE THERE IS ONLY CNF PARAMETER, THE UNREDUCED RICATTI MATRIX IS
C DECOUPLED INTO THCEE M NS2 BY NS2 BLOCKS.

L=P,
on 145 J=19lIS

00 145 I=J,NS
L=t.+1
P(I,J)=EH(L)-EG(L,IK)
P(J,I)=P(I,J)

145 CONTINUE
C SALVE FCR P3 9 E " P3'$=-*v(P3)f'

K=0
II=NS2+1
DO 1410 T=II,"!S
DO 1410 J=I,"-!S
K Y+l

1410 EF(K)=?( t!J)
ICrDE=1
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CALL CLIN(EF,EE,NP2,NEA,EPS,IER,iconE)
C	 ONLY P1 PUST BF SAVED.

K-0
II=NS2+1
00 142 1%, t=tI,NS

	

"	 DO 1420 J=I,NS
K=K+1
P(ItJ)-EF(K)

	

, T	 1420 P(J,1)=P(t,J)
Kq0

C DRAT=-1/2 P2-1/2P3.AC
DO145C J=1,NS2
DO 1450 1=1,111ST
II=I+NS2

}	 K=K+1
DRAT(I,J)-P(11,J)*0.5
00 1450 L=t,NS?.

_	 LL=L+'NS2
1450 CRAT(I9J)=VRAT(19J)-0.5+(P(11#LL)*AO(L,J))

C SOLVE FOR THE SKEW+SYPPETRIC PORTION OF P2.
C	 SOLVE DRAT-CRAT.T

KP0
DO 1452 JzltNS3
J1 =J+1
00 1452 t=J1,RS2
K=K+1

1452 EF(K)=rRAT(I,J)-DRAT(J,i)
I C(IDE=1
CALL CLCNtFF,nF,NP3 9 NEC,EPS, IER, ICnnE)
K-0
P(NS,NS2)=C.OEO
00 1453 J =19NS3
J1=J+1'
JJ=J+NS2
PtJJ,J) =C.rEo
DO 1453 t=J1, "!S2
K=K+1
II=I +NS2
P(JJ,I)=-EF(K)

1453 P(It,J) =EF(K)
C SOLVE FOR THE SYMMETRIC PORTION OF P2.
C	 SOLVE. CRAT+CPAT.T

Klq0
DO 1455 J=194S2
DO 145E t =J,NS2
K=!!+1

1456 EF(K)=nRAT(I,J)+DRAT(J,I)
ICfjDE=1
CALL CLIN(EF,EE,NP2,NE0,EPS,IER,ICf,DF)
K-0



!	
a

233.

i

ul

ET

}
{

00 1457 J=19,NS2
00 1457 I-J,N-52
K=K+1
II=I+NS2
JJ=J+NST
P(II,J)=EF(K)+P(II,J)
IF(I-J) 13A2,138391382

1383 P(JJ9I)=P(II,J)
GO TP 1384

1382 P(JJ9I)zP(JJ,t)+EF(K)
1384 CONTINUE

P(J,II)-Ptlf#J)
P(I,JJ)=P(JJ,I)

1457 CONTINUE
K=0
Oil 1470 J=19AS2
00 1470 t=J9NS2
K=K+1
EF(K)=P(19J)
00 1470 L=19NS2
LL=L+NS2

1470 EF(K)=EF(K)-P((.l,t)*AQ(L,J)-AQ(L,t)*P(LL,J)
C SOLVE FOR PI	 E •' P1 "=-" ( P2' *AQ+AQ' * Q2P+1) "

ICODE-1
CALL DLIN(EF,EC,NP2,NFQ,EPS,tER,ICi1DE)
K=0
DO 1480 J-1,NS2
00 1480 I- J,.14S2
K=K+ 1
P(19J)-EF(K)

1480 P(J,I)=P(19J)
C	 URITE(397) (FE(K),K-19NP)
C	 WRITE(J,3) ( (P(I,J) 9I=1,NS),J=19NS)

00 148 KK=1,NU
GRAD=C.F_C
00 147 J=1,".'S

147 GRAD=GRAS+"(J,1)*P(J,KK)1Q
IF(IK-KK) 15191499151

149 GRAD=GRAD.-1.0E_0
151 CONTINUE

C	 GRArIENT=GRAn-Qt*8'*P-I
C	 URTTE(391) KK

WRITE(30) KK
C WRITE(30) GRAD

WRtTE(3,3) GRAD
GRADT(KK,tK)=GRAC

148 CnNTINUF
WRITE(3,3) ((GRArT(19J)9I=1,NU),Ja1,N(f)

94 CONTINUE
NEQz l
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g IER=0
91 ESS=I.OEO

DO 88	 1=1961U
8R D(I)=F(I)
89 CONTINUE

C WRITE(3,3)	 (0(1),T=194-U)
K-0
DO 92 t=1,NU
EF(T)=Ctt)
DO 92 J=1,RU
K=K*1

92 EE(K)=G46DT(J,I)
ICOOE=0
CALL DLIK'(EF,EE, AU,NEC , EPS,IER,ICOOE)

C WRITE (397) 	 (EF( I),I =1,NU)
DO 93	 I =I,R'.0
FSA(19I)=FMG(I,It

93 FBG(1,I)=FPGt t,I)-ESS*APH*EF(I)
WRITE ( 393)	 (=SA ( 1,I10 =1,yS)

_ ! WRITE(393)	 (F8G(I,1),I=1,NS)
ICCO CON71NUE

C A-AA-P*FPG'
DO 1C I=I#NS2
DO IC J=1,NS2

C
10 A(I,J) =AA(I*J)'-FPG(I,J) *K(I,1)

WRITEt3, 3) 	 t(4(I,J) , I=1g4s),J=1,NS)
C FORKULATE E .**

DO 2C K=2,KP2
DO 20 L=19**02
EI(K,L)=0.rn0

20 E(K,L)=O.CC
DO 4C 1=19KS2
00 4C ^=19RS2
00 4C KL=19452

C J:KL****L
T1=NS2-0.5*J
FTI=1.OEO
L=(J-1)*TI+KL
IF(KL-J) 2159220020

215 T1=tiS2-0.5*KL
FTI=-FT1
L=tKI-1!*T1rJ

'
220 CONTINUE

C I,KL*****K
T2=NS2-0.5*I
K=(I-1)*T2*KL
IF(KL- t) 225 9 230.230

22S T2=NS?-0.5*KL
FTI=-FTI
K=(KL-I)*T?+(



i

230 FAC=1.0

IF (I-KL )	 2369235, 736
235 FAC=2.0
236 CONTINUE

E(K,L)=F(K,L)+FAC*A(J,I)
E1(K,L)=F1(K,L)+FTIeFAC*A(J,I)

40 CONTINUE
C NRITE(397)	 ((E(K,L),K=19NP),L=1,NP)
C SOLVE FCR P3	 E •9 P3"	 =-•*(S+rBG*Q*FBG•)••

NEO=1
ICOCE=O
K=C

C EF= -•"•S+FEG*C*FSG•	 „

C CALCULATE P3=-S3-KCKT
DO 55 I=I,NS2
no 55 J=i,N,s2
K=K +1

55 EF( K)=-S3(I,J)- FPG(19I)*C•FBG(19J)
C WRITE(3,7)	 (EF(K),K=Itkp)

K=0
00 70 J=I,NP2
Da 7C	 I=1,R'P2
K=K+1
EE(K)=E(I,J)

70 CONTINUE
IER=C
WRITE(3 t 4)	 TER
CALL DLIN (EF,FE,NP?,NEC,EPS,IER,ICODE)}

C CALCULATE P
-' C WRITE(397)	 (E'F (K),K=1,NP)

K=0
II=NS2+1
00 9C	 I= II, *!S

DO 90 J=T,NS
K=K+1
P(I,J)=EF(K)

90 P(J,I)-EF(K)
C FORM	 -S2-P3AC	 12

K=0
DO 3CO J=I tMS2
DO 3CC I=IVNS?
II=I+NS2
K-K+I
ORAT(I,J)=-7.5*S2(I,J)
00 300 L=I,!NS2
LL=L+NS2

3CC	 DRAT(I,J)=PRAT(I,J)-0.5*(P(II,LL)*Al'(L,J))
C CRAT=-112 S?-112 P3aA0
C SOLVE FCR THE SKEW*SY PP ETRIC PnKTIrN OF P2.

4

r

C SOLVE	 DRAT-ORAT.T

1

fill

235.
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C EE IS THE CCEFFICIENT MATRIX FOR EGIVALFNT SKEW*SYMMETRIC VECTOR SYSTEM.
K=0
on 1336 J=19*IS3
J1=J+I
00 1336 I=J1,NS2
K=K+1

1336 EF(K)= DRAT(I,J)-DRAT(J,I)
NP3=NP7-NS'
ICODE=O

C	 FORM NEW EE FROM OLD E.
K=0

KJ=C
DO 1369 J =1914S2
00 1369 I=J*NS2
KJ=KJ+1
I F ( J-1) 1361, 1369,1361

1361 KI=4
DO 1362 JJ=19NS2
DO 1369 ii=JJ,RS2
KI=KI+1
IF(JJ-II) 13649136£,1364

1364 KFK+1
DE(K)=E1(KI,KJ)

1368 CONTINUE
1369 CONTINUE

CALL CLO'4(EF,DE,NP3,NEC,EPS,IER,ICODE)
K=0
CO 133E J=1,NS3
JJ=J+NS2
J1=J+1
P(JJ,J) =0.DE0
DO 1338 I=J1,MS2
K=K+1
II=I+NS2
P(JJ,I)= -EF(KY

1338 P(II,J)=FF(K)
C	 SOLVE CRAT+CRAT.T

K=0
DT; 1339 J=19NS2
00 1339 T=JvNS2
K=K +1

1339 EF(K)=rRAT(I,J)+CRAT(J,I)
C SOLVE FOR THE SYF'F'ETRIC PPRTION OF P2.

ICC,'DE = 1	 -
CALL Dt_IN(EF,EF,NP2,NEC,EPS,IER,ICODE)
P(N'S,NS2)=C.OFO
K=0

C SOLVE FOR P1 E I'Pl " =- " (P2'*AQ +AQI *P2+SI+FRG*Q*FBG')"
DO 1340 J=19%IS2
DO 1340 I =J tMS7_
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K=K+1
II=I+NS2
JJ=J+NS2
P(II,J)=PtTI,J)+EF(K)
IF(I-J) 1372,1373,1372

1373 P(JJ,I)=P(II,J)
GO TO 1374

1372 P(JJ9I)=P(.IJ,l1+EF(K)
1374 CONTINUE

P(I,JJ)=PtJJ,I i
1340 P(J,II)=P(t(,J)

C	 CALCULATE 0 1,	 LHS=-P2T ¢A,-AQ*P2-S1-KnKT
K=C
DO 1350 J=1,NS2
DO 1350 I=J,^VS2
K=K+1
EF(K)=-S1(I,J)-FBG(19t)+Q*FBG(19J)
DO 1350 L=1. NS2
LL=L+NS2

1350 EF (K)=EF(K)-P(LL,I)*AO(L,J)-AQ(L, I )*P(LL,J)
ICCCE=1
CALL CLI"'(FF,EL,AP29'4FQ, EPS, IER.ICODE)
K=O
DO 1360 3=1914S2
DO 1160 I =J, 4S2
K=K+1
P(19J)=EF(K)

1360 P(J,I)=P((,J)
C	 WRITE(3,3) ((P(I,J),I=1,^'S),J=1,1S)

WRITE ( 393) ((P(I,J) • I=1,P:S),J=1,NS)
C	 F=QT •B**P+CT*'ri•- FEG 	 W=•W•/2

DC 111 I=19mu
FStI)=Fti)
Ftl)=C.En
DO 110 J=19NS

110 FtI) =F(I1+"tJ,i) *P(J,I)/Q
111 F(I)=F(I)-FP;(1,I)+W(I)

C	 W CF PRrGRA" IS 112 W (IF THEORETICAL DEVELOPMENT.
WRITE(3,3) tFS(I),I=1,NU)
WRITE(30) (F(I),I=1,'Nt1)
WRITE(3.3) (t(I)0=10111)

C	 WRTTE ( 3,3) (FHSA(l,t),I=1,NS)
C	 WRITE(3t3) (FH1!(1,I),I=1,NS)

IF(ISU-1) 131,132,131
131 CCU' NNUE

C	 CHECK S 1 7E C+ FHHA
FSPAX=FUF'AX
FUFAX=G._0
DO 156 1=1,"!U



T
Y

235.

i

I'

D3=F(I)+FtI)
IF(D3—iU"AX) 15691569153

153 FUMAX=03
156 CONTINUE

IF(ITT) 112j80009112
8400 TF(IWC-1) 9COO,H002,9000
ECO2 DO 8001 1=19-Nil

h(I)=—F(I)
F(I)=0.0F0

8C01 CONTINUE
TWC=2
WRITE(3 9 3) tktT1•T=1,*^U)
WRITE(3.3) ((S1(I,J)•1=1,NS2),J=1,NS2)
WRITE(30) ((S2(I•J)•T=T,NS2),J=1,NS?)
URTTE(3.3) ((S3(I•J),1=1,k!S2),J=1,N'S2)
GO TO 9001

112 CONTINUE
132 CONTINUE

C	 CHECK GAIR'S
DO 154 I=1,NU
DD=F(I)
CD=CD*PD
IF(CO—TOL) 154,160,160

154 CONTINUE
6RITE(3.11) ITT
WRITE(3.3) ((P(I•J),I=1,RJS),J=1,NS)
GO TO 90+-1

160 KOUNT=KOUNT+1
IF(ISW- 1) 161 0CC09161

161 CONTINUE
9CCC CONTINUE
9001 C0 1"T I RUE

00 9CO5 I=1,`aS2
DO 9CC5 J=1052
S1(I,J)=S1(I,J)+DSL(I,J)
S2(I,J)=S?tI,J)+DS2([,J)

CCO5 S3([•J)=S3(I,J)+DS3([,J)
kRITE(3,3) ((Sl(I•J)9I=1,NS2)9J=1•NS2)
WRITE(30) ((S2(I,J),I=1,"JS2),J=1,'^'S2)
WRTTE(3,3) ((S3(19J)•T=1,NS2)9J=1,NS2)
DO 9CCP I=I#NS2
00 9CC8 J=1,152

9CO8 ADP(I,J)=.A((,J)
CALL CNAREC(APP,NS29C(1FFF)
NSS=KS2+t
WRITE(397) (CnEFF(I),I=1,^'.SS)
TIME=C.0=O
A3=C.CEO
44=C.OFC
A5=0.OE0
A1=FPG(1,l)
A2=FPG(1,2)
ICFL=C
CALL PCTROT!CnFFF,TCFL,TIFE9Al•A2,43,A4,A5,NS2)

9010 CONTIMUE
GO TO 5000
ENV



Appendix D

Derivation of the S and W Definitions for the

SOC Sensitivity Problem
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A

The rationale which governs the choice of S and W is the same as that

A
of the ordinary SOC problem. That is, W is chosen to insure that the desired

Again structure is obtained and S is chosen to simplify the structure of the

equations. Recall that the general steady state or infinite time interval SOC

index is of the following form

CO

	

1	 AT ^ AT ^ ^ AT A ^T ^ A AT A

	

J= 2 	(x Sx+x Sx+x Wu +x Wu+u Qu)dt
t
0

and the unreduced Ricatti equation and control law are given below.

_	 n	 T
AT P+PA + S+S - (PB+ W2W) Ql(BT P + W2W } =0

A = - K x

(D-1)

(D-2)

(D-3)

KT 
= Q-1W 

P + 
W 

+0T)	 (D-4)

Suppose that the last L states of the system state vector are unavailable and

note that the SOC sensitivity structure requires that the first NS - L states

} of each sensitivity partition block in the augmented state vector have gains
y_	

identical to the available state gains while the last L gains of each block

are to be zero. To facilitate the discussion partition W into blocks and
1

define the matrix II'J as follows:



A	 A

W11	 W1, NPA+l
W =

n	 A

WNPA+l, 1	 WNPA+l, NPA+1

A
where WI'T is a NS by NC partition block matrix and

0	 0	 0

II ^J = 06 	INS, NS	
4

•	 0	 0

0 - -	 0	 0

where II'T is NS(NPA+l) by NS(NPA+1) and INS NS is a NS by NS

identity matrix and it occupies the I,J block position. Note that the expression
A	 n	 A

II'T W isolates the WIT block of W and thus may be used to define these

blocks. To separate the portions of each block corresponding to the available

and unavailable states the following notation is useful.

0 .. 0	 u I	 0 M	 .
0 - * 0	 -

1	 •
II,J =	 INS, NS •

	

0	 0

0	 •	 0 •0

when this Matrix is identical to 
IIJ 

except that the last L diagonal elements

ofAn additional matrix I2^ T is defined as follows:T1^TS,NS are zero. 

=I,T = I
I'T - 

=I,T	
(D-6)

I V_
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As a final notational consideration, let CCAl)I'J be a matrix which is

equal to the I,J portion block of the matrix A.

To obtain the desired gains structure for the system states, W^ is chosen

as follows:

W11 _ - 2 tC Ill (PB + 2)]^ l ^ l	 (D-7)

To insure that these gain values are repeated for the sensitivity blocks, the

4
remainder of W is chosen as follows. For I = J

WI'J 
= 2	 ^11(PB + 2)]] l,l - [[PB + 211	 ( D-8)

I,J

and for I # J

WI,J = - 2 [[PE + 2,I	 (D-9)
I,J

With these definitions the feedback gain matrix assumes this structure.

KT 0 .	 - 0

KT = , `	 . 0

0 • 0 KT

and

K	 t[Ill(PB + 2) Q-111
1, l	 1, l

A
As in the unavailable state problem, S is required to be symmetric and is chosen

to cancel the W and W terms. Bence,

S = 2 ((W +) f + K(WT +T))	 (D-10)
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With these definitions the reduced Ricatti equation becomes

— T	 — f - 0AR P + P AR + 8 + X Q	 (D-11)

and the optimal value of the index may be expressed as

0	
t 
f	 T	 A T

J°	 f (10 S AXO+ uo Q U^') dt,	 P	 (D-12)
2 -

t0
 

t-t 
0

C^

Ell
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I
Appendix E

Derivation of Equivalent System of
f=

Linear Vector Equations

-`	 Since it is often difficult to handle the Ricatti equation in its matrix

i	 form, it is convenient to formulate a vector from the elements of the Ricatti

t
matrix and derive the equivalent vector equation. Consider the matrix equation

t -.
F(D) A, P) - ATP + PA - D	 (E-1)

where the matrices are NS by NS. This matrix equation is equivalent to (NS)2

scalar equations. If D is symmetric and a unique solution to (E-1) is assumed,

and since P and PT satisfy (E-1), P is also symmetric. In this case the

number of independent equations reduces to NP = NS N 2 + 1 corresponding to the

diagonal and either upper and lower triangular terms.

It is clear that (E-1) is linear in P; for reasons of notation and manipu-

lation it is convenient to formulate (E-1) in the standard format for linear
f

equations which is denoted below. That is

AT P + PA = D	 (E-2)

or in terms of the Kroreelaer product notation

AT*I + I*A P = D	 E-3

The equivalent vector expression is

"A ll
	 a nDtr	 (E-4)

where "P" and "Dtt are NP element vectors formed from P and D as follows.

{	 rr uT _	 .P	 - (Pl^l,...;PNS,1; P2,2; ... ,PNS,2;...,PRS,NS)

ttDttT = {D1^1; ... 
;DNS,l' D2, 2'	 DNS, 2;	 DNS, NS)

P.-
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and "A" m "(AT*I + I*A)" is a NP by NP coefficient matrix formed with the

elements of A. The straightforward procedure for determining this matrix is to

simply write down the scalar equations and place the coefficients of the elements

of P in the proper positions. For purposes of implementation on a digital

computer, a more systematic approach is dezirable.

To develop this approach it is helpful to derive an expression which relates

the position of an element, ( P)I,J , in the matrix form to its position

in the vector form, that is

( ttptt ) 
LO (P)K	 I,J

This transformation is given below and may be verified by in.peetion.

K = T(I, J)	 (E-5)

where

(I-1) INT(NS - 2) + J	 I : J

T(I,J)-

(J-1) MT(NS - ) + I	 I J

and 3NT(M) indicates the truncation of M to an integer value.

Consider the I, Jth scalar equation of (E-2). The notation (PA)I,J

refers to the I, Jth element of the matrix PA.

(ATP) 1'j + ( PA)I"J = (D)I,J

or

Ns

V (A)KL, I (P)KL,J + (P)I,.KL (A)KL,J ` (D)I,J
KI^1

(E-6)

(E-7)

This expression is required to be identical to the K th component of the vector

equation.
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K = T(I, J)

l	 NP

(D)I,J
 = ( t#D" )K =	 ("All 	

(tiPtt)KK = ( "A ll 11p,1 ) K	 (E-6C3 )^	 J	 ("All 

1G{ 1

f	 Thus the elements of A in(E-7) will form the Kth row of "A". The column

position of an element of A, (A)KL,J in the Kth row of "A" depends on the

element of P which multiplies it, (P) I,KL . Hence from the terms (P) I'KL (A)KLjJ,

(A)XL"J is placed in the K = T(I, J) row position and the L = T(I, KL) column

pr "tion of "A". To generate the remaining elements of "A", the lower triangular

term- of ATP and PA are considered and the elements of A are allocated to

the proper position in "A". It is possible that more than one element of A is

p1w.-ed in the same position of "A" and in that case that coefficient is equal

to the sum of all such elements.

Since P is symmetric the implementation of this scheme on a digital computer

may be simplified by considering only terms in PA. Instead of checking the lower

triangular terms the lower and upper triangular terms are checked with the

diagonal terms considered twice.

The matrix equation G(P, A, H) = ATP + PA - H where H and P are assumed

to be skew symmetric, (H = - HT, P = - PT), may be treated in a similar manner.

In this case the equations corresponding to the 6.i.agoaal positions of G are

trivially satisfied because of the skew symmetry. Then the equivalent vector

equation system consists of NQ = NS NS-12	
equations corresponding to the lower

or upper off-diagonal triangular terms. Thus

- ATP +PA=H

or
'At 1 P t _ OW

11

n
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where

'P'T = (P2,1; ... ;PNS,l: P3,2;.."PNS,NS-1)

'H'T = (H21; ...;H=,l, H3,2; ... ; HNS,NS-1)

and 'A' is obtained as "A" ezoept that only off-diagonal terms in the products

ATP and PA are considered. In addition the skew symmetry requires that same

of the elements of A are multiplied by -1 before being planed in the 'A'

matrix.

To illustrate this p-=edure for a symmetric P and D, consider a second

order exa=J .

All A21	 P11 P12	 P11 P12	 All Al2	 D31 D12

112 22	 P21 P22	 P21 P22	 A''1 A22	 D21 D22

Sin`. D12 = D21 and P12 = P21 this matrix equation may be written in terms

of the following se: of scalar equations corresponding to the lower triangular te;!ms.

2 All P11 + 2 A21 P21 = D11

Al2 P11 + (A22 + All) P21 + A21 P22 _ D21

2 Al2 P21 + 2 A22 P22 = D22	 i

(B-q)

Then "A" "P" = "D"

2 All 2 A21

Al2	 A_e2+All

0	 2 Al2

0 PI1 D1,

A21 P21 D21

2" -22 J L P22 A

(5-10)
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This same coefficient matrix can be obtained by considering the elements of PA.

P11 P12	 All 	12
PA =

P21 P22	 A21 A22

P^ A
3.1 + P12 A21
	

Pll 12 + P12

P21 All + P22 A21
	

Pa Al2 + P22 A22

In particular,

(PA)21 = P2l All P22 A21

The elements All and A2, will be placed in the second roar of "A" since

K = T(2, 1) = 2

This column position is determint. ,L by the multiplying P element.

P2, All  	 = T(2, 1) - 2

P22 A2,	 L = T(2, 2) = 3

Thus All is placed in 2, 2 position of "A" and A 21. is placed in 2, 3

position of "A". Note that this placement agrees with (E-10).

This systematic procedure is easi?y programed for use on a digital computer

as indicated below. Note that this procedure is simpler than that of referece 46,

since only simple "IF" ratier than logical "IF" statements are required.

Given a matrix equation

ATP +PA=D

w..._ F

3
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where all matrices are NS by NS and D is s3mwtric the following code

generates the coefficient matrix for the equivalent vector system of equations.

E "P" _ „A" HP11 _ "D"

where NP = NS NS+1 and E is NP by NP.

DO 20 K = 1, NP

DO 20 L = 1, NP

20 E(K, L) = 0.0

DO 40 I = 1, NS

DO 40 J = 1, NS

D0 40 KL = 1, NS

C	 L = T(J, KL)

T1 = NS - 0.5*J

L = (J-1)*Tl + KL

g'(KL-J) 22, 24, 24

22 Tl = NS - 0.5*KL

L = (KL-1)*Tl + J

24 COQ

C	 K = T(I, KU)

T2 = NS - 0.5*I

K = (I-1)*T2 + KL

IF(xL-I) 26, 28, 28

26 T2 = NS - 0.5*KL

K = (M-1)*T2 + I

C	 DIAGONAL TEIM MUST BE CONSIDENSD TWICE

28 FAC = 1.0

1F(I-KL) 32, 30, 32

30 FAC = 2.0

32 carnm

E(K, L) = E(k, L) + FAC*A(J, I)

40 CORTIM

r

r
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Appendix F

Time Varying Model

An eleven state time varying model was used to evaluate the

proposed control laws.

(}

t

i

t`

1
F

f

3

3

F

e

(F-1)x= A°+ b S
c
 + v;

—	 — x(to) = C

where

X =

a

^' 1

;'2

t^ 2

-'3

3

0

13

FOD

OR
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A=

b =

0 1 0 0 0 0 0 0 0 0 0

0 0 A(2,3) 0 0 0 0 0 0 A(2,10) 0

A(3,7) 1 A(3,3) 0 0 0 0 0 0 A(3,10) 0

0 0 0 0 1 0 0 0 0 0 0

0 0 o A(5,4) A(5,5) 0 0 0 o A(5,10) 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 A(7,6) A(7,7) 0 0 A(7,10) 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 A(9,8) A(9,9) A(9,10) 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 -50 -10

0 0
0 ; o

0
j+v w w

0
i

0

0
v 0

0 0
o 0

0 °

of o
50

0
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f
i	

0 0 0	 c(1,4)	 0	 c(l,b)	 0	 c(1,8)	 0	 0	 0'
C =

i
	

0	 0	 0	 0	 c(2,5)	 0	 c(2 ,7)	 0	 c(2,9)	 0	 0

i
l

	

	
The following pages contain these parameter values at four second

intervals for the duration of the trajectory. Linear interpolation was

used to obtain the coefficient values for values of time not given in

the table.
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1- O.tcpN •80.tcDN .DO.tĉ N•pO^t^+CN•80.tAN•pO^fiCGN .00.tGN.00

0-40-+NNNMM4 4.T 0Ulk %0 NO 0 r- wMA C, Q` 0 0O	 N N N M M 4



253.

M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M f'•1
O b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

^+	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1I f 1 W W W W W W W W W W W W W W W W W W W W W W W W W W W LL! W, W LL i W W W W W
^ O O O O O O O O b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N O O O O O O O O O O O O O O O O O O O O O O O O O C O 0 0 0 0 0 0 0 0 0
^- O O O O O O O O O O O O O O O O O O O O O O O O O A 0 0 O O 0 0 0 0 0 0
U 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O O O O t^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O O O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
h h h h f+ h h h h h h h h h h I+ h h h h h h h h l` • h h h l► h h h h h l^ h

N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-' 	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 i	 1	 1	 1	 1	 i	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 t	 1	 1	 1	 1
^ O O O O O O O O O O O O O O O O O O O O O O O 7 0 0 0 0 0 0 0 0 0 0 0 0
.+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
--- OOOOOOOOOOOOOOOOOOOOOOOQO00000000000v 000c000000000000c0000000000000000000

0 UN Ut t!10 N 0 {11000 to 6*10 to 111 Lm 00 In 0 M0 toto 0 0  0 0 in u1 00 m ....................................
.^ -.• .r .. .r .. -r .r ..i .,	 .^ .....f .^ .^ .^ •.^ ^.....^ .•• .r ..f .^ .r	 .• ..i -a ..f .^ .r .r .n •r

N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

r-4 W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W LL: W W W W
SOON 	Nh %D UNM0— N11'1O+N0 %0M0%t0Mf>,t111n1-4 %0NNN0in4

,n Sm%DN •-dhItNOf- NOh O.Dh 440% .0 %OhMJh
.^ N0II %0 0+MhN4mw 0% w=P-0CY% -t000k 44NMMtm-0% CO'DN %0 Lm %t-0
Q O% ON 4P-w •4m40--a 4h 0-th. 4 4 1---440 -+t110. Mt04 -$0+00`N4N-t

0'00000 .4 -W -- "W NNNM	 J UNUl'^6f %Q 4 4f--	 O'01-4-W rt-0M
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
r+ N N N N N N N N N N 4 N N N N N N N N N N N N N N N N N N M M M M J;

•r .r 94 .W f+ rl .A -.1 -d .r .d .-o .r .d .-+ Ad -.1 -r -•r -r -•- pw r --r "W ..4 .d .+ •-0 •w .d r+ -d -d .r .r
C d 0 0 0 0 0 0 0 0 C O 0 0 0 0 0 0 0 0 0 C O 0 0 0 d C O 0 0 0 d 0 0 0

^+	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 I	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1111 U.i W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W
•	 0' P.-N1110`0'h0'-T	 %.r +O'-'4 .-4 MMO	 COOC>rOtll 	 P-0'OM

Ln CwUIN 0%00 ('IN	 1l' m %Of^JrwM F.-000 .40 %0f^wu^z	 rM-.WwC7, 0N0
— wNh N%DNf-OLn0ul1TSwN%00- rMN.D0%rM0 .40C, M M M ap400`.-f0
Q	 %r U) LIN 10 z P- ?I- M w Cl a, C^00	 NNmfei	 SStl1L'1ul^	 G` 17%

N N N N N N N N N N N N M M M M M M M M M M M M M M M M M M Men M M S J
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

.^ .+ ..f .r .a --f -.+ .-a --f .r .^ ^ -+f .r .^ .r -r --1 .-1 .•I r+ ...f -.r .^ ...^ .r .r .r 
I	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 i	 l	 l	 l	 l	 l	 l	 l	 l	 l	 i	 l	 l	 l	 i	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l

.d -4 .+ -r .r -d -a -0 -a -4 14 -4 .r -4 .-4 - 0 .+ .d -W -d .r -4 -r -r -a -a .r -J .4 nW -d .r .4 .r --1 w
O p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 p 0 0 0 0 0 0

w
^t WW WWLLWtL WWWLL'W WWWW LWW WLL'WLL i LLLL'Wu. WW LL , LL:WWWWW

M O` 1-- O 'D t11 O O M w P.- f.- m 'r %0 0 co N N 0 --+ C co %a N co M -o N f,l f- P- . 4 %D %t LA
111 M.+M 0`NU'%NhlilNP- -r 1M Z. 4P- h P*—M ==f1 N 0 Q NX A+ NNONI► h
-+ JJ M-r-r t11 0'.w ..rNJNM C M6'1C 111 OV% ZNtT 0O' M -r p+ -d ilk OJ tiO`M %0
4 CN1l w -iJhOMZO`NIl1hCMZ= -sMZC.w %tZ0,NJCC.+JCMO`hh

000'0 C, 000-+-+.r.+NNNMMMMJ J.t.t0LnW" k 0 %a ZD Qr- P- P- 00'0

MMMMSJ.tJS1JJJ.tS^'^tJ^tJ.tJ^tJ^t^tJ.t^tJ JSv ^t^t111
I	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 i	 l	 l	 l	 l	 l	 l	 l	 l	 l	 i	 l	 l	 l	 i	 l	 l	 l	 l	 l	 l

W 000000000000000000000000000000000000
^ O O O O O O O O Q O O O O O O O O O G O C O C O O O O O O G O O C C O O
1• OS W N.00JNN.00S NN^DOS W N.00J CCNOO.t 00ND OS c0N0O

-+--^NNNMM^t 1S 410 ,0^04f*-h M MMCI M00O.+r+NNNMMJ



254.

M K1T M M M M M T M M M M M T M M M M M T M M T M M T M M M M M M M M M000d00000000000000000000000000000000—	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1(	 I	 I	 I	 I	 I	 i	 l	 l	 r	 l	 t	 l	 l	 i	 l	 l	 l	 l	 l(^ W W W W W W LJ W W W W W W W W W W W W W W W W W W W W W WW W W W W W W
^ OOOOOOOOOOOOt,:^O000OdOd000O0001^00OO000
N O O O O O O O O O O O O O O O O O O O O . O O O O O O O O O O O O O O O O
^► O0OCO.tO .tW%Ccc000000%tcc%D W aW%astNaNJ%0W0evQtccJO
u 4NWJ NOW %Otfl.t JJJ.J.t .tJ.t.tmm.woCO1nNf► NI-Nr70.r.t%0coo

.t 61%	 fl- N a	 M J to %0 r-	 O - N M fM1 %t 0 uM 4 %0 f- f- O W 0 0 O.
• • • • • • • • • • • • • • • • • • • • • • • • • • •	 • • • • • • •

MMMMMMMMMJ ^t lJJ.tJ.t.T.l V; W; n1A A11 '11t U;U
•

1	 N
• 

tl1Y11n1t1Ir&AU;
I	 l	 l	 l	 l	 l	 l	 l	 l	 i	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 i	 l	 l	 l	 l	 l	 t	 l	 l	 l

IM'1rM1fM1R1MMIMIMMMMMMMMTTMTMMM.t.t.t du1J ^t.t.t JMM MM
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

'► 	 I	 l	 l	 i	 l	 i	 l	 i	 l	 i	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l(	 1	 1	 1	 1	 1	 1
^ ^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
.• O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

OOOOOO^ON^OmO .taD^Ot:DO^ONOS^O^DO0000000On^OSS,^t'O
rJ P o" f" M .dCJ	 ONO,	 .tw

%0%CIn%tM.-r0O+f-111 rN0MNO 4 pocy f-J N 0 N 0 T W 0 N O^?I-.r0NM4
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
.tJ.tJ .t^t.t MMMMMMNNNN^.-^.^^+.^W ^OM^NN^t1l1r► 0:...^^1.^

1	 1	 1	 1	 1	 1	 1	 1	 1	 1

N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

^ :iJ W W W W W W W W W W W W W W W W W W W W W W W W W W W W :L W W W W W W
^ MIn ONO= W %O%0NIANJNJ %0QOtrf► --+NJ.rJ .-40,%0.4 — f- •-1 f► %01nm

1M1f^^t J J COtf1N1N - • tX10 W N %0JJM "wf- F- 010m .4* Ol NT .4 In%DmNo4 W0
.i O+O0MM.r00% 40% NOW 04 M.00^J--+WInf*- 6iC% 0.t.f MInNWJOv3NNQ M!^ N .ON W %t — O+ r*- %0 Lm 0 In In In .tJM0WMO •••M In U,% e1tll.ONO NWf-dM0

NNMMJ .tIn^O%Of+ COCY% 0 NMJIn.O Nf+ 000O0% 0% O` O% C O^TO% OON.t %O
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

MMMTMMMMMMMf r1JJJ J.tJ.7'J.t.tJ.t JJ.tJ.t.tJll1tn41U'N0
1	 1(	 I	 l	 l	 l	 l	 i	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l

0-4 .r .-0 .-d r4 .r .d 9-4 -d . d 0-1 .O •-1 .-1 .-d w4 .r .d r4 r4 •-1 .-d omd .r .d .-/ .-d .-d •r .d •-1 1-1 •-/ .--1 .r .d
O O O O O O O O C O O O O O O O O O O O O O O O O O O O O O O O O O O O

I	 I	 1	 1	 1	 •1	 I	 l	 l	 l	 l	 l	 t	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 t	 l	 l	 l	 l	 l	 l
ti W LL W W W LL: W W W W W W W W LL W W W W W W W W W W W W W W W W W W W W W
• vtf+ ^tNO' P^'lvtvt0' ' M^O.-+IntnC In CCvTh WJtn^O^ONvtO^JO^tc>r ^Ovt1^T0'
ti J C	 O	 f^-.-t.oO N %0 01 JOC Ol .OMIn In fl,	 C COO

M 0%,01M% NC 0% C, OwM.O C Nt*- •r.ON g MCs Ir1.w%o -1 .00 Mo p-a, O—^T.t
Q	 +P-INM4InttA 00001 0-4 N.t 0 f--MOI-+MJ.0M C-WNMIn%01'-M0—NMJ

NNNNNNNNNNMfM1MMMMMJ.t.tJJ4JInIntoJ, inInto %0^0NO%0V0
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
N N N N N N N N N N N N N N N N N N N N N N N N N N N N N t1. N N R N N N
1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

N N N N N N N N N N N N N N N N N N N N N N N N N N N CV N N N N N N N N
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C E O 0 0 0 0 0 0 0

^O WWWWWWWWWW WWLL'WWWWWIL'WWWLL WLL'WWWLL'W 6UWWWW W
• m P- W 0 It O M M M• f %t C N N O W N fM1 -w 1- 0 UM W 0 M 0 m In M 	 M 17, / 0

f+	 W04%G1*-I*-0000 ` 0•-+0.-1.+.+«./JC*t,-O In0NN C, .O %0f-x.+.O.tM%0	 cO
J NC`P- %00 Nor- C7, 	-4 ^DNa, ZO rN — .-+OO`CO zoNCtn.+%0OJdMf-

Q NMMJU*iZF-OC`. + lV J Inr- M 0N.t Z M 0 -+M6"?1-0, •-d N r 01 1-00.-iM %t
NNNNNNNNNI^mmmm •1 .t .t .t vt.tln Intnln0tn Q.0%0-4zr-?I- f-
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1(	 1	 1	 1	 1	 1

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
^ 0 0 0 0 0 0 0 0 0 0 0 0 G 0 0 C G O O O O O O O O O G O G 0 0 0 0 0 0 0
F^ OJON OO.tION.00J^DN.O G.tCCIN0O .TODN..1O.t WN^^O.r W N.0O

.^-+NNNMP''1^t JJtntn .O0Gr^r^cOt^D p̂ O` O"OOO^+ •-/NNNMfr1 J
.r .r .r 14 •-d ..i . W .-• .-• .r •-•



255.

MMMR'MMMM MMM MMMMMMMMMM MMMMM.f ^O ^t ^tMMMMMN'10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 0 0 0 0 0 0
'+	 1!	 I	 I	 I	 i	 1	 1	 1	 1	 1	 1	 I	 1	 1	 1	 1	 1	 1	 1	 1	 t	 1	 1	 1	 I	 l	 l	 t	 l	 l	 l	 l	 t	 1	 1
^ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O .O 0 0 0 0 0 0
N OOOOOOOOOOOOQOOd00000000000.+00000000
-- O.ONJNO .ONCD.TON40%t0 %rCDN.00^t)N000O .rO00CD^0000V N.r.rOON mom C% U,%"+JP me WN4WNoomONOW %racoom Nr•0%1►

Lt1IM LM	 MMN.+0O^ CO1*-111M .r0%•OMO` .f 0N0OA . Il- 40 ty0s+M

std'dddd^t .tit.t .l^l^t^fM('r1MP*1MMNNPv +•«r.+1f1m •t0^^-+^Nfr1^t1A
1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 l	 l	 i	 l

MMMMM MMM MMf•1MMMMf•1MMNNNNNNNNNNNNNN NNNN
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

--	 11	 1	 1	 t	 I	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 t	 l	 l	 t	 l	 l
C• 000000000000000000000000000000000000
•'+ o000000000000n0000000m^Oa0000N^OO.ONL^oJo.► ONJCC)^ONJOOOm40%tN00 0PlC% - r--r MMMMmP.awcj%i1Pf%.1.0 Lf14MMtf11-OM M*tOwl*-WF4%+ OP^ON0r-OM"OC4 Not'. ONMo'Of+mI^f- f -̂ f•F^- f• mw 0O%OO.rNJ0tiw0000•-••r•+•rNNNMMMM•nmm

mmmmmm 44440: ;09 O';O';; •-0 r• "r+ 4 .04 4 4 44 r-•..r 4 ..• .10 144
1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1!	 1	 1	 1	 1

N N N N N N N N N N N N N N N N N N N N N N N N N N N N M N N N N N N N
O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O

^ W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W W
0 N J LM -.41- J 1-4 %0 -W w -t S. u1 0` w O% P O %0 a, 0 0 0 0 0- N m m -4 0% N O O •4

C\ OJ•+ON040M %rw00 0 LAP-f-aJmQ^0%1-0.4 4Ne0M0%0%Mf-r+fk.0
. i J 4f*- .r .0 %t.-4 N d w %t N •W O O UN O 1^4 M I+ N N 0 %O 0% O 0% 04 o 0` —t ti O fb-
Q 0 pftw.rdmJOf-o40 .O 000mr.- •'• 1C10% N r o,mP- -W 00NNr4f-N-000.r rr r-1 f J N N M %t %t 61% .O f*- w O^ -d N M 0 00 f- 0` O -+ N N M N -W O 0 %O M •d O' P- 611

4
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 	 • • • 

M
•

f 449MMMMR1MMf1' 49;JJJ JJJLALALAO L;V;W1&l V1^tJJ
•
 ;MM

.r r+ rr rd r. r4 PW . d .r r WW PO ..+ ... wr .r W4 rd r+ rd rr .+ .d .r .-1 r-1 rr r.• .A rw -W r-+ .A OW r-1 P-0000000000000000000c0000c000000000co
•-	 I	 l	 l	 l	 l	 t	 l	 l	 l	 l(	 l	 t	 l	 l	 l	 i	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 t	 l	 l	 lC% W WWLLWW WW WWW WW W WW WLLWWW WWLIIWLL WWLLW WUJU.IWWW
• CC M %C Ol N M o ?-- C' %r 0' "W M0%C 00 01 0 %Q 0 Ln CO --i CC LA -4 CC UA 0' %t OPr' O`NJ%O

O^ OCCJLf1hPl"-1► f+ 0. 0a 01 W%Q t r• O1 t-WNNhM0' 1)-d%0N%0N000 •WJ^OCD
^► o0"A NJ 1!li CC--LM0'DJt - V-M LrNCCCC.44MM u"1 •+f.- JNf.- •'+J O` ^ •O MO
Q	 .-r r.a .r ..r r.r 4 	(#'1 M  1l1 .O f• CD O -'MC CC .-+ J ti.-+ J CONS 0' NJ N C .rM

N N N N N N N N N N N N N N N N m t o) m m m%t.t J tl1LAUl% C 44 ti ti P-w0

^'r1 M M M N'► M M M M M f •'1 M M t+1 !r1 tt1 M M M M M M M M M M M M M M; ^ M MMM M
I	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 t	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l!	 1	 1	 1

NNNNNNNNNNN' ^:bNNNNNNtVNNNNN NNN NNNNNNNO O O O O O O O p 0 0 0 0 0 0 C O 0 0 0 0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 0
eA W'WLLWWW WW WU. , W WLL WwwWW WWLL I WWWWW WWW WW W W WLL'W
• 0 •a ti 0' •-+ M O` J M J 1- (71 UM N C B CC N N w PI- 0 -4 M O4 C OC f^ N r! P- d w %O NO
T .+M M-.rCGN 00 s JP-00?*-O` NU%.r f-000'N%t -0 %0?-,• 	 ^OM {f1J ONO" W
Q 	 ti ti COCCCC O'TOOr+M er 0 p -O`NoCON'^O.+JNCJJ •r CL^J0^0.-r^OOfr 0

to 6% 0 0 Lf% Lr 0 M NO %0 Z %0 NO Z %C %O P► f"' P- CC O O` 0' 0 0 —4 N N M J %1' 1.1 119 %0 .0 %0
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

NhNNNNNNNNNNNNN !\ n^NNNNhNR1(^f1e+1tY'tMMf^MMR^MM
I	 l	 l	 t	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l	 l(	 I	 I	 I	 1	 1	 1(	 1	 1	 1	 1

W O O O O O O O O O O O O O O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U G C O O O O O O C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C O O C O O O O O O J C

M O J W N D O J CD N •O O J CO N O O J CO N C O yT CO N .D O J CO N ^0 O J CC N 'D O
r•.r NhNPr MJJ' 3 u11!'^•0 .0 `Of^1^000CCOO C`C 00.+ -+NNNf^tMJ..r .r ..+ 14 1.4 .-. r-' .4 .-0



256.

aoa000wa^aoaoeomaoeotncammmaeeoa+ aoaac+̂ mmvmoomcoc^m^rsca^omoaola000a000000000a000000cooa000Oaaao
WW WWWWWWWU.IWWWWWWWWW WWWWWWWII.tWI+JWWWWW WWx  CON w4 0' h M .00l wN,a cpk --t Ir 0%0 r-'r* %D " In M -40MaP-N wOMa CC %0N1•X 1 I-NtirrMN.t0`%+0 %0IL10' N%t%0m 0 %rNN.ta, in 004 .tw0%CY, ^OM IN- N,.+O%«+t9 0NNw0% %0P4LMMCY% I-M%0 %04 WI ,,-NN %G%t,O0N0r- NNN00W(: , Cy, 0

]L OCO.Dot,- • 0^1`S POW U1NM%rOt L'+ OIt10% NiAll- 001 0%0mO% NNQrNtt1OMm

	

^+ ltl.t	 N N N	 00Q% 0a0P• ,Otm rMN .rCY, w-4 tN01.4M0%
m CD CO CO m Gb Cn t7D S0 tp 00 0LI to W CD m CO f^ P • 1^ f^ f► P f`- P- I► I^ ^O ^A ^O Q r? 111 t41 if1 ^t

OOOOOQOOOd00000 •+000.•+-r.r.+.w.-1w.. .I .r ..r..•,^000-r
O O O O O O O O O O O O O O O O O O O O O O O O O O o O Q a 0 0 0 0 0 0
W W W W W W W W W W W W W W W W W W W W UJ W W W tL W W W W W W W W W W Wf1 .•, wM U', f`C• wr ul(^N.rti^O^t OtiTM •0O`%0 ti0` CQ COmak U MN0' %a tt14CO%01► %0t.^Y M1^ •-+ O^tiNOm wNCOtr1fTN ,00^f^ NNoM .w .•re>7NNM404 It 4 Pl -4mIn

J •+ 0 O! 0% f- 4 Z 0MN O %0 M.041.+00M&LA00MO.-dMNraI-MN00Ln0 0
NP4a 0 .C"0m 01-0000 4 1^ON000O mN .t w P- MOh +-+41-0 - mQ%a
mfg• +OMwQtiU1.400ftnr400w4.4P4	 .4t't14	 mmNN.+OO.am%00
CO CO CD O O CC f^ f• f► ^D 0 it't ^t N w tf1 N ^0 CO wr .^ .r P• .^ w .-• w .r .4 w w ..+ O` O' Ot •r
i	 i	 l	 l	 l	 i	 i	 l	 i	 l	 l	 l	 l	 l	 1	 1	 1	 1	 1	 1	 t	 t	 l	 i	 l	 l	 l	 l	 l	 l	 f	 i	 1	 1

.4 .4 .4 .-1 P4 w .d ..4 w4 w4 .4 1-0 ,.4 14 «4 P4 .-1 .-. w P1 w w .-• ..r w .•• " .d .r P.4 " wA .4 .1 .•t .dooa00000000000000000000000000OOOOOOo
WWWWWW WtJWWW WW WWWI.uILiWWWIJWWWW'.UWI:JWW WWWW W

M.. M fl- w+OxN.-+ 0%	 0%MM4NMf^.1-P00m0,InMN:r^cu'I4-gN.t•0
Q 	 0010` co%010u1 fl) N0%%OM.AU't00N00M0 ' M • -•.-•coNNen4t,,% tr4tA 0 0 tm LA IN
X-+ 1-+00000000ON 01 01 t:.1*-0 0f-0 + M.tLAtA 0.0 0-+	 P4 0 NP^MO^

N-^OO.Oit\tY+ .4 JON JN•+ •• N0`f^ 0 .0N'0enLm 0 . NML1.O J !1l► ap-OM '4coa).0^OLM t LM0 0 %t.t MMNON P- 04% 0 m%?04NuiIn ^tmU1u14-1	 v`+0
• f • • • r • • • • f s • • • • • • • • • • • • • • • • • • • • • • • r

r^MMMMMMMMMMe^ 9f4 44r4 e4t^1^fi^t^t^t^7'.t ^t ^t.t.t^i'^1 v`.t1 ^fitt1

P+ .-r .-t w w w 6-4 P+•-1 w w4 rw..a w w p.l w4 M w4#4 w4 r+raw 4 ..d..1 p+•.+-4..t w Pa P+P+r_0000000a000c^ooc^oc^00000cccocc^^000000
Wt1 t1tt litouwWWWlLWtt,wWtW I U WW luWw I-t.'• U-' WuJUltoW.lU."i Iii IVW-afi

1.D-- OCCOOCOOOOOOO0000OOOOOOCCOOCOCOOOOOou^ ooaocc000a00000cococcooc^oc000clrc.0000X-+ C` 0`0N.4 41N1'-^r N.-I .aMP-N^`il+ LID -4 a,' zr- N - tAft , - V% 'tt- C,'00't't.t
M M S %t J .t U" 41 .0 1`• co 0` O --+ +"'t .t v) CO •4 M .,7 0, M f• 4 -O •-1 1` .t - C C* tT 0 -' COf^ tiPI- P- P.- - f- f- f- l"^cc co maCCO 000` 0' C C. o0 4.4 NNm't -ItUM.04:,T0
NN NNNNNNNNN 4N44NNNNN44Mt4t, M,' r4A' t, 4 4A4 4 ;

.7 .0 10 .0 .0-D 10.0 .01010 10.0 ,0 .0 •4 .010 .010.0 )%0 717 .0.0 .0 .0 10 VO10-C U1 M Ut^ 0 cc 0000000 c 000 CDC, Ono	 0 00 000 00000
WWWlu w LUwtL•ry tuU. 1 1.'wt1.'W rult':t:JWt'* r.C. LL'11 l i. tLV.U.4LJ1L• IUWLUWtt:U. W0.. to .t ••4 0 1:^, V1 M N 0 47 ^ U1 *q1 N	 a0 L	 611 ^- N 0e c 14N -+ 0 t~` Q U, M .+ ^: O M

V) 0	 0 U*A - tm C` .t 0% 'r C- %t	 M M r.'3 ,,-'^ +- N r-	 r- N .a -• ,.,) %C	 0. LM 0 U'% C* 0 .0
Q V	 Nt'? 'l1.JN- 0f-.n 0.0 M C,	 0%'A N  0 - •+ 1̂3 J	 P- -4t 	 Z-•iMC C` -tT

.7 C3 !A a %r C S C7 : ^ ,r N !'- .-+	 -+ trl O V'N C% -C" C% 0 f4	 h	 r•d -C	 Ln .0 4 WN N ti

	

- 10 0 'A 4 %r M M N N •• : • 0 C', C 7` 'J f-- .'- •J -0 t!` +1 ,t 11'	 %I	 N - ^ • .^ tT d `:.
N	 N N C^ N h N N N ,1r N N Cl. I~J r+ ..O r-• -.1 r + P•. .t . + .r ,-1 .10 v .0 . •	 :-+ . 14 r+ 1.0 C C- C0•

tuu 00000 C 0000000 0a 0000:7000) :^ `v000 C-)C oon00
zw OOCCLO OOCOC .COcr_OO. :::^/^,.,t- c+^c3.:C)/:CC c
h-	 b.t t^-J i] 0	 N.004 IV 6I •.703' T ,ti 001 :c (,j ". 0 CJ 	 -DO

	

►1 .-4 N N N fl '^ M r •.	 4:1 T .N 0 1C ^) M1 `• ,7 ;r .r. C ^ J 0 0(4 ^ : N ni r1 M -t



257.

oa000000u000000000000000000 ©00000000
a 000000000000000OOOOOOCOOOa000aACOOOo
=	 WWWWWWWWWWWW WWWWtL'WWWWWWW WtL'LL'WLL:WLL(WWIJ_WWIL o0000000a00000000000000000a000000Oao^ o000000a0000000000000000000000000000a o00000000000000000000000a000000c0000
2	 OOCsO.^Ntne^0^0.0004^e00NC000OON00'a^.00^N.t3r10M.OK10
V	 .00 .0.00 .O.0^G•0f- r-MLh0 mf` t7M0in r  MN.NN.r-4Oa`0%a,O► Ott

- -NNA1fr)t'(') tr)f•)M.t.t.t.t.t.t.t.tdd.t.t.t.tV'.t.t.t.tMt•)MMMtw1tM)0 0 0 0 0 0 0 0 0 0 0 0 0 C: O O O C A O O O O O p 0 0 0 0 0 0 0 0 0 0 0
Al,

I^WWWWWW WWWWW WWUJWLL'WW WW WWW WU.iWWW WWL1tWWtLW
= OOpOG^00g00000000000000000JOOtiPt*0^04^0

d^ 000001 4 P.. NN%0OWL% VN.OLl%OwP-0% m400 NNrl-AP,N
2 OO 1A MWXMti=.tONO`t-.-•.GMC%••+O( r4w •••tOP+toO•0.OM..•P .tO.tO►
•r 00ma0 14 -rw0.fiLfl0r-NMN .t.r 4 •o%0M 4 MN0*tNt► .04MNN4P

ONti •ON E+MtOt+ a• •r.t P--y .tO •-+.t•0Nt► ONO 40 It- 4-+N61r—q%.tti0
O.ON^•^+NM.! OiO ^+- r ^NNNMM MMt•)M+nNNN •••.+t .-+ T t` u1.tM NN

•4.4--4-+•'4-4- P-4NNNNNN N N N N N N N N N N N N N M MONNMMMMMO O O O O O O O O O O O O O O O O O O O O O o O 0 0 0 rJ 0 0 0 0 0 0 0 0
t- 0 W %U wwWW W WWLUW WLUW WL11U1W W t4j I.uLL'tUuJWLt., W'LW Wu+1JLLJwWUJ
••W a0000a000a AOOO OOOOOOOOOOOOI.^otA000OOOo
ufin a 00000000% 1-u1 - 4NMr P 0N'*3—Ntllf-ML*1?I-MO•-+M0r-0t+'L0%A
Q\ 0C% 0 %rNMP (71 w 0% -4 4 0 0% = N N 'A wP-N.t •0- C% N •• ,aP-i00% %- w(a O.1
Jf O Nin 474 _t- 4 -44-r A 0% 4 NN 11.-4 0% 0 0 tAa of M ^?I.=?^- 4%c, to 0% NIA 00
L •- 00 04 Mf %l Nc>7tA"M00 NtI %--40% M r %r C t 'OM0z p- 0 -N M -r •OP • 010

O'-* NM.t lO1+ 0 -0.•9 -+.0 N NN11 M9 1 1 r1t; f 9 0; cco 0• .0 .." "o • ••••••':*•N

.tJ.t .t0Lf^ if% 61Otto6"Ir L' + V% Z Z.0 •C ,0 0%0.0 %C %:N M IV' In+1+ it". .rU`•4 •t.t.t
OtCOCGCJOJOOCO00A00tOGc^COt.CC:OC7 r'^c:c: r:GO^.O
I tl '.L W LL W tU W LL+ L1: W W LL 1!3 LL Lt LU t +_ 111 LL' t=i !d L!J tL' V- t:' U) 1 1 ; W Lid Uj LL Ll. !(. W UJ W

00% 0 cc O P-?-	 %C O co C M .0 N %o m O '-Cl .J S	 C%O N O O M O
•tz % 0' tr ON Lr •0 %0 ".0 w +r Nti •-+ to C c% ^f- N cC`..0— C::. CP. 	 G;^.' O
K	 O eJti..aer' ^: ^^ to P^- G . N'7toN^^ ^^•O0 C, I	 NP.,r -.r+2 t.`. ••tiM•JNP••
O	 rn0' P ^h• C.t 0"'t N4 •0MNM .- • Nto--4- — r ? N C M 'Z.Ot- 1 (71 P- co 'r

L1C17`MMt-Nin4.co- + CC0P. P. o 01 ?1- •tN0	 .l •r N(ei NCCP- OM

M.ttoOl•9..0 tip NNNMMNh	 -+ NN .r. " ... 1.1. ' .04	 L9 .t 9 t'v1"( •-" 0 •0 (^ C4

!` 1'r	 P• ti p. ^• `ti (` I` (^ ^. t► ti	 ^.	 ti v tom. ^. !.. ►. t.. +. ;. ` r p-
r; c  C c l7. (Di;3r• ^i ^(z C? c:oc, o a o o a

N	 LL CL.( ' !J W LL' LU W U. W W IL' U—' U: W L+ ' U; 1 :' I(_ +U- ' Y. U. L +. U: t?: !G L:' IW 0- LL. ((_ +J- W LU Wit;
IS •^ c' .0 ^ 0 r N .t , A .0 s — C, ... f.l, O M N M N i	 :	 r) LT	 o M

0 ?'J `•:± N M 	 t!^ N ^`` ^'' r t iy :`- ^• f: {^ O .-+ 1 .\ N	 N Lt1 }'r
'.^	 L1 `0 ^` 6•1 %- 	 rJ .r V^ N .-( ..• M 'jl h	 .7 r'r :•-,	 ^.. - ^. +. "• .V	 _^	 r. ,^ 0+ L.

f.'. M a a 0 . ♦ N` 0 Pte• OT (V LM :C .a %r ti Ij ^^ LJ :^	 .! ' ^ • :	 - r ' r ;	 S + : t.; .0
M f+` M M.t ^' ti `; .t .t 'r U1 '11 .J 	 `• ti Zv f• ^^	 7	 C t:

f 1 f(` +'(• t ^1 f 1 .r1 M M Pl M f 1 i^5 f+'i M f"1 P r' ; r' .t^ +'	 :.` • r ,*,	 1.4	 P^	 (l (+`

r tL U O C O C? a r t] !'! O O O r> r7 4 C)	 U 0 Q t; 0 0 0 c} c, ttl 'J O • ^ r+-	 U t. <7 t7 0
t:J 0 C tJ 00C i`(	 0 IL) 0O V 0C.)	 0%.r: t^+^	 •^ r; [:''^c`t+^

U ► • v) •	 •	 s	 •	 •	 •	 •	 •	 •	 •	 •	 •	 •	 •	 •	 •	 r	 •	 •	 •	 •	 •	 •	 •	 •	 •	 •	 •	 •	 •	 r •	 •	 •	 •
t.. cJ .T r1; N J .,	 fv	 G .	 N •4 G7	 LL	 : ^7 ,t + = `^	 v	 N	 '^ r •'7 4


	GeneralDisclaimer.pdf
	1969009682.pdf
	0034B03.pdf
	0034B04.pdf
	0034B05.pdf
	0034B06.pdf
	0034B07.pdf
	0034B08.pdf
	0034B09.pdf
	0034B10.pdf
	0034B11.pdf
	0034B12.pdf
	0034C01.pdf
	0034C02.pdf
	0034C03.pdf
	0034C04.pdf
	0034C05.pdf
	0034C06.pdf
	0034C07.pdf
	0034C08.pdf
	0034C09.pdf
	0034C10.pdf
	0034C11.pdf
	0034C12.pdf
	0034D01.pdf
	0034D02.pdf
	0034D03.pdf
	0034D04.pdf
	0034D05.pdf
	0034D06.pdf
	0034D07.pdf
	0034D08.pdf
	0034D09.pdf
	0034D10.pdf
	0034D11.pdf
	0034D12.pdf
	0034E01.pdf
	0034E02.pdf
	0034E03.pdf
	0034E04.pdf
	0034E05.pdf
	0034E06.pdf
	0034E07.pdf
	0034E08.pdf
	0034E09.pdf
	0034E10.pdf
	0034E11.pdf
	0034E12.pdf
	0034F01.pdf
	0034F02.pdf
	0034F03.pdf
	0034F04.pdf
	0034F05.pdf
	0034F06.pdf
	0034F07.pdf
	0034F08.pdf
	0034F09.pdf
	0034F10.pdf
	0034F11.pdf
	0034F12.pdf
	0035A02.pdf
	0035A03.pdf
	0035A04.pdf
	0035A05.pdf
	0035A06.pdf
	0035A07.pdf
	0035A08.pdf
	0035A09.pdf
	0035A10.pdf
	0035A11.pdf
	0035A12.pdf
	0035B01.pdf
	0035B02.pdf
	0035B03.pdf
	0035B04.pdf
	0035B05.pdf
	0035B06.pdf
	0035B07.pdf
	0035B08.pdf
	0035B09.pdf
	0035B10.pdf
	0035B11.pdf
	0035B12.pdf
	0035C01.pdf
	0035C02.pdf
	0035C03.pdf
	0035C04.pdf
	0035C05.pdf
	0035C06.pdf
	0035C07.pdf
	0035C08.pdf
	0035C09.pdf
	0035C10.pdf
	0035C11.pdf
	0035C12.pdf
	0035D01.pdf
	0035D02.pdf
	0035D03.pdf
	0035D04.pdf
	0035D05.pdf
	0035D06.pdf
	0035D07.pdf
	0035D08.pdf
	0035D09.pdf
	0035D10.pdf
	0035D11.pdf
	0035D12.pdf
	0035E01.pdf
	0035E02.pdf
	0035E03.pdf
	0035E04.pdf
	0035E05.pdf
	0035E06.pdf
	0035E07.pdf
	0035E08.pdf
	0035E09.pdf
	0035E10.pdf
	0035E11.pdf
	0035E12.pdf
	0035F01.pdf
	0035F02.pdf
	0035F03.pdf
	0035F04.pdf
	0035F05.pdf
	0035F06.pdf
	0035F07.pdf
	0035F08.pdf
	0035F09.pdf
	0035F10.pdf
	0035F11.pdf
	0035F12.pdf
	0036A02.pdf
	0036A03.pdf
	0036A04.pdf
	0036A05.pdf
	0036A06.pdf
	0036A07.pdf
	0036A08.pdf
	0036A09.pdf
	0036A10.pdf
	0036A11.pdf
	0036A12.pdf
	0036B01.pdf
	0036B02.pdf
	0036B03.pdf
	0036B04.pdf
	0036B05.pdf
	0036B06.pdf
	0036B07.pdf
	0036B08.pdf
	0036B09.pdf
	0036B10.pdf
	0036B11.pdf
	0036B12.pdf
	0036C01.pdf
	0036C02.pdf
	0036C03.pdf
	0036C04.pdf
	0036C05.pdf
	0036C06.pdf
	0036C07.pdf
	0036C08.pdf
	0036C09.pdf
	0036C10.pdf
	0036C11.pdf
	0036C12.pdf
	0036D01.pdf
	0036D02.pdf
	0036D03.pdf
	0036D04.pdf
	0036D05.pdf
	0036D06.pdf
	0036D07.pdf
	0036D08.pdf
	0036D09.pdf
	0036D10.pdf
	0036D11.pdf
	0036D12.pdf
	0036E01.pdf
	0036E02.pdf
	0036E03.pdf
	0036E04.pdf
	0036E05.pdf
	0036E06.pdf
	0036E07.pdf
	0036E08.pdf
	0036E09.pdf
	0036E10.pdf
	0036E11.pdf
	0036E12.pdf
	0036F01.pdf
	0036F02.pdf
	0036F03.pdf
	0036F04.pdf
	0036F05.pdf
	0036F06.pdf
	0036F07.pdf
	0036F08.pdf
	0036F09.pdf
	0036F10.pdf
	0036F11.pdf
	0036F12.pdf
	0037A03.pdf
	0037A04.pdf
	0037A05.pdf
	0037A06.pdf
	0037A07.pdf
	0037A08.pdf
	0037A09.pdf
	0037A10.pdf
	0037A11.pdf
	0037A12.pdf
	0037B01.pdf
	0037B02.pdf
	0037B03.pdf
	0037B04.pdf
	0037B05.pdf
	0037B06.pdf
	0037B07.pdf
	0037B08.pdf
	0037B09.pdf
	0037B10.pdf
	0037B11.pdf
	0037B12.pdf
	0037C01.pdf
	0037C02.pdf
	0037C03.pdf
	0037C04.pdf
	0037C05.pdf
	0037C06.pdf
	0037C07.pdf
	0037C08.pdf
	0037C09.pdf
	0037C10.pdf
	0037C11.pdf
	0037C12.pdf
	0037D01.pdf
	0037D02.pdf
	0037D03.pdf
	0037D04.pdf
	0037D05.pdf
	0037D06.pdf
	0037D07.pdf
	0037D08.pdf
	0037D09.pdf
	0037D10.pdf
	0037D11.pdf
	0037D12.pdf
	0037E01.pdf
	0037E02.pdf
	0037E03.pdf
	0037E04.pdf
	0037E05.pdf
	0037E06.pdf
	0037E07.pdf
	0037E08.pdf
	0037E09.pdf
	0037E10.pdf
	0037E11.pdf
	0037E12.pdf
	0037F01.pdf
	0037F02.pdf
	0037F03.pdf
	0037F04.pdf
	0037F05.pdf
	0037F06.pdf
	0037F07.pdf
	0037F08.pdf
	0037F09.pdf
	0037F10.pdf
	0037F11.pdf
	0037F12.pdf




