General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Rersselaer Polytechnic Institute

Troy, New York 12181

Final Report - Vol. III
Contract No. NAS8-21131
Covering period May 4, 1967-Nov. 3, 1968
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Optimal Control With Unavailable States
by John F. Cassidy Jr.

Submitted on behalf of
Rob Roy
Professor of Systems Engineering

BECECING PAGE BLANK NOT FILMEE.

TABLE OF CONTENTS

Page
LIST OF TABLES v
LIST OF FIGURES vi
ACKNOWLEDGEMENTS viii
ABSTRACT ix
I. INTRODUCTION 1
1.] Motivation 1
1.2 The SOC Concept 2
1.3 Statement of the SOC Problem and Scope of the Work 5
1.4 Historical Review 8
1.4.1 Unavailable State Problem 8
1.4.2 Model Reference Control Problem 14
1.4.3 Trajectory Sensitivity Control Problem 16
II. THE SOC PROBLEM 19
2.1 Basic Equations 19
2.2 SOC Properties 25
2.3 Example 42
III. COMPUTATIONAL CONSIDERATIONS 50
3.1 Introduction 50
3.2 Solution by Numerical Integration 52
3.3 Iterative Solution of the Steady State Equation 53
3.4 Comparison of Algorithms 62
IV. THE UNAVAIILABLE STATE SOC DESIGN PROCEDURE 64
4.1 Introduction 64
4.2 SOC Design Procedure 56
4.3 Systematic Choice of Perturbation Weighting Matrices 70
4.4 Design Loci 79
V. THE SOC MODEL REFERENCE PROBLEM 85
5.1 Introduction 85
5.2 Formulation of the SOC Model Reference Problem 88
5.3 Example 98
Page
VI. THE SOC SENSITIVITY PROBLEM 108
5.1 Introduction 108
5.2 Problem Formulation 108
5.3 Problem Simplification 115
6.4 Examples 121
VII. CASE STUDY: THE LAUNCH VEHICLE PROBLEM 140
7.1 Introduction 140
7.2 Launch Vehicle Model 145
7.3 Contrcl Structure 152
7.4 State Equations 152
7.5 Computational Considerations 159
7.6 Application of the SOC Techniques 150
7.5.1 Design Objectives 160
7.5.2 The SOC Design Procedure 1.65
7.6.3 Application of SOC Sensitivity 1.77
7.6.4 Application of SOC Model Reference 190
7.6.5 Conclusions 121
VIII. SUMMARY AND CONCLUSIONS 199
8.1 Contributions of this Work 100
8.2 Future Work 204
IX. LITERATURE CITED 205
X. APPENDICES 209
A. Derivation of the Formal SOC Necessary Conditions 209
B. Newton Raphson Method 212
C. Digital Computer Programs 216
D. Derivation of the \hat{S} and \hat{W} Definitions for the SOC 239
Sensitivity Problem
E. Derivation of Equivalent System of Linear Vector Equations 243
F. Time-Varying Launch Vehicle Model 249

LIST OF TABLES

\hat{F}Table $5.1 \quad J_{x}(k, J)$ 102
Table S.l First Order Sensitivity Example 126
Table 万. 2 Second Order Sensitivity Example 126
Table 7.1 Q Variation Simulations 170
Table 7.2 S Variation Simulations 176
Table 7.3 Sensitivity and Model Reference Simulations 194

LIST OF FIGURES

Page
FIGURE 1.1 System Block Diagram 4
FIGURE 2.1 Second Order Example Block Diagram 43
FIGURE 4.1 Unavailable State SOC Design Procedure 58
FIGURE 4.2a S_{1} Root Locus 81
FIGURE 4.2 b k Locus 81
FIGURE 4.3a Q Root Locus 81
FIGURE 4.3b k Locus 81
FIGURE 4.4 k Locus and Stable Gain Region 83
FIGURE 5.1 Model Reference Control System 87
FIGURE $5.2 a$ Rate Response x_{1} 104
FIGURE 5.2 b Position Response x_{2} 105
FIGURE 6.1 Initial Condition Response 133
FIGURE 6.2 Sensitivity Variables 134
FIGURE 6.3a Rate Trajectory Dispersion 135
FIGURE 6.3h Position Trajectory Dispersion 136
FIGURE 7.1 Vehicle Configuration 141
FIGURE 7.2 Booster Frequency Spectrum 143
FIGURE 7.3 Free Body Diagram 146
FIGURE 7.4 Launch Vehicle Block Diagram 153
FIGURE 7.5 Wind Angle of Attack 161
FIGURE 7.6 Synthetic Wind 162
FIGURE 7.7 Wind Angle of Attack, α_{W} 163
FIGURE $7.8 \quad Q-k$ Locus 167
FIGURE $7.9 \int_{0}^{\infty} u^{2} d t$ vs. Q 157
FIGURE 7.10 Q Root Locus 158
FIGURE 7.11 Damping and Relative Stability vs. Q 171
FIGURE 7.12 Damping and Relative Stability vs. S 111
FIGURE 7.13 Various k Locus 172
FIGURE $7.14 \mathrm{~s}_{\alpha}-k$ Locus 172
Page
FIGURE $7.15 \int_{0}^{\infty} \alpha^{2} d t$ vs. s_{α} 174
FIGURE 7.16 Damping and Relative Stability vs. S_{3} 1.74
FIGURE $7.17 S_{\alpha}$ Root Locus 175
FIGURE 7.18 Sensitivity Root Locus 179
FIGURE 7.19 Sensitivity k Locus 180
FIGURE 7.20 $\int_{0}^{\infty} \underline{z}^{T} Z$ dt vs. Sensitivity Weighting 180
FIGURE 7.21 ω Root Locus 181
FIGURE 7.22 J vs. ω 181
FIGURE 7.23a Nominal Control Law ω_{0} : Rigid Body 183
FIGURE 7.23b Nominal Control Law ω_{0} : Bending 184
FIGURE 7.24a SOC Sensitivity Contrei Iaw ω_{0} : Rigid Body 185
FIGURE 7.24 b SOC Sensitivity Control Law ω_{0} : Bending 186
FIGURE 7.25a SOC Sensitivity Control Law, $8 \omega_{0}$: Rigid Body 187
FIGURE 7.25b SOC Sensitivity Control Law . $8 \omega_{0}$: Bending 188
FIGUPE 7.25 Trajectory Dispersions 189
FIGURE 7.27a Model Reference Svstem Response . $8 w_{0}:$ Rigid Body 192
FIGURE 7.27b Model Reference System Response . $8 \omega_{0}:$ Bending 193
FIGURE B-1 Newton Raphson Method 213
FIGURE C-1 SOCDES/SOCSEN Block Diagram 217

ACKVOWLEDGMENTS

The author wishes to thank his colleagues, Dr. Ed Smith, Dr. James Fillings, and Mr . Chester Winsor, for the invaluable discussions and comments which helped to guide this work.

To Dr. Rob Roy, the author owes a debt of gratitude for his astute advice and firm guidance.

Also, Dr. Hans Hosenthien, Dr. Michael Borelli, and Mr. Stan Carroll of the Astrionics Laboratory of NASA's Marshall Spaceflight Center made many helpful suggestions.

The patience and skill of Miss Rosana Laviolette and Mrs. Joan Hayner, the typists and Mr. Gerard Maenhout who drew many of the figures is appreciated.

ABSTRACT

Despite the significant research effort that has been directed toward the modern control theory areas, relatively few applications have been made to practical problems. One explanation for this is that the implementation of mist closed loop optimal control laws requires hat all of the state variables be ineasured and fed back. In addition consideraile computational effort is usually involved in obtaining the optimal solutions.

The Linear Specific Optimal Control Problem (SOC problem) that is formulated and solved in this document is an attempt to combine some of the practical features of the classical approaches with the analytic power of the modern theory. The formulation is based on the linear quadratic optimal control problem and has the following features.

1. Linear feedjacli control laws.
2. Unavailable state capbility.
3. Low computational effort.

A technique which allows the calculation of closed loop control laws which do not depend on all of the states is said to have an unavailable state capaility. The above properties are obtained by specifying the structure of some of the weighting matrices of the cost index. The explicit values of these matrices are not knuwn until the problem is solved; that is, yart of the solution to a SOC problem involves the completion of the formulation.

This approach is justified from a mathematical point of view oy the proof of the local existence and uniqueness of the $50 C$ solutions and from an
engineering point of view by the successful application of the soc technique to three general control problems, the unavailable state control problem, the model reference control problem, and the trajectory sonsitivity control problem. In addition numerical methods are developed which allow these techniques to be applied with relatively low computational effort.

Of the three methods, the SOC Sensitivity approach appears to be the most promising. A significant feature of this problem is that the computational effort is relatively independer.t of the number of parameters considered and is of the same order as an unavailable state problem with no sensitivity considerations.

The $S O C$ problem is the result of the application of the $S O C$ concept, which involves the formulation of optimal control problems so that the optimal solutions have certain specified properties. The main emphasis of these rormulations is on the properties of the solutions rather than the explicit values or interpretations of the cost index.

This theory is demonstrated by simple examples and the consideration of a significant engineering problem, the attitude control of the Saturn V launch vehicle. The aerodynamic instability and the flexible nature of the vehicle are factors which complicate this control problem. Critical parameters of the mathematical model of the booster are the bending frequencies, for a control system designed on the basis of a model with inaccurate bending frequencies may prove to be ineffective when applied to the actual booster. Wind gusts may cause the bending modes to be excited to such an extent that the structural integrity of the vehicle is violated. The application of the soc sensitiviiy
technique resulted in a feedback control law which desensitized the rigid body responses of the vehicle to inaccurate knowledge of the bending frequencies. That is, the rigid body responses to a design test wind for bending frequencies from 80% to 100% of nominal were almost identical.

Chapter I

INTRODUCTIOA

1.1 Motivation

The control problem may be defined in loose terms as the manipulation of certain variables or inputs of a system to obtain a desired result or output. Almost all of man's activities may be considered as some type of a control problem. With the advent of technology, control problems on a simple scale became obvious. The water clock, windmills, and the steam engine governor were control problem solutions developed through the use of empirical methods.

Since World War II the art of control theory has come of age. Spurred on by the wartime demands, the pioneers at MIT's Lincoln Labs initiated the work which lead to a mathematical treatment of control theory. The design techniques of Bode, Evans, and Nichols, although based on mathematics, are of a cut and try nature. An initial solution for the problem is guessed, the system is analyzed by one or more of the techniques, and then another guecs is made based on the results of the analysis. The effectiveness of this approach depends to a large extent on the nature of the problem and the experience of the user. Although these techniques have been used with great success, they are not very effective in attacking many of the large complex problems encountered today. Thus a more analytical approach to control systems design has been sought. Work by Wiener ${ }^{1}$ and Newton, fould, and Kaiser ${ }^{2}$ were initial steps in this direction. Encouraged by their results, it was assumed that the power of the analytical approach wculd all but eliminate the art from control system design.

However, this has not been the case. In recent years much effort has been devoted to the analytical aspect of modern control theory with the study of the state space approach, stability theory, and optimization techniques. Unfortunately, relatively few applications of this theory have been made to problems of practical interest. These are three major difficulties preventing the widespread use of this theory. In the first place, it is often difficult to define the desired behavior or characteristics of the controlled system in precise mathematical terms. Secondly, once the problem has been formalated, it may be ill-posed erom a mathematical point of view or tre solutions may be difficult to calculate even with the aid of a. high speed digital computer. Lastly, the solutions do not lend themselves to practical implementation.

This author feels that these difficulties do not arise from a basic limitation of the analytical approach but rather from an inappropriate formulation of the problem. It is the purpose of this work to formulate and solve an optimal control problem which will serve as a link between the theoretical and the practical. The Specific Optimal Control Problem or SOC problem presented in later sections attacks directily the last two difficulties indicated above and this theory may be used in a design rocodure to reduce the first difficulty.

1.2 The SOC Concept

The SOC problem is an optimal control problem which is formulated so that its solutions have certain desirable properties. To place $S O C$ in the proper perspective, the concept of the optimal control problem is reviewed.

The basic objective of an optimal control problem is to choose a control or set of input variables in some optimal fasinion so that the output of a process or system meets certain specifications. The words process or sysitm are used to indicate anything which involves a cause and effect relationship as shown in Fig. 1.1. In order to proceed in a precise manner the problem must be expressed in mathematical terms. The control is chosen to minimize (maximize) a mathematical function, the cost index, which in some sense reflects the desired system response or characteristics. The actual process or system is approximated by a mathematical austraction or model which usually consists of a system of differential or difference equations which characterize the state of the system. ${ }^{3}$ The cost index may be an integral with an integrand which is a function of the stat: and control.

$$
\begin{align*}
& \underline{x}=\underline{f}(\underline{x}, \underline{u}, t) ; \underline{x}\left(t_{0}\right)=\underline{c} \tag{1.2.1}\\
& J=\int_{t_{0}}^{t_{f}} g(\underline{x}, \underline{u}, t) d t \tag{1.2.2}
\end{align*}
$$

Thus, the control, \underline{u}, is chosen to minimize the cost index, Eq. (1.2.2), subject to the constraint of the dynamics, Eq. (1.2.1). The necessary conditions which sharacterize an extremum of this problem consist of a system of differential equations which comprise a two point boundary value problem. In general, the determination of these necessary conditions and the solution of the two point boundary value problem are not trivial tasks. Moreover, it is often very difficult to translate the desired system response into the mathematical cost index function. Also, the control laws are usually of an open loop nature, that is they are not a function of the states, and tiey do not lend themselves to convenient implementation.

FIG. I-I

The SOC approach attempts to combine the analytical power of optimal control theory with some of the practical aspects of the classical design techniques. To achieve this end, an optimal control problem is formulated which emphasizes certain properties of the solution. The explicit value of the cost index or its precise interpretation in terms of desired system characteristics is not of paramount importance. Rather, the optimal control formulation is used to provide a well defined structure which leads to control laws with the desirable properties. These ideas are summarized in the following definition of the $S O C$ concept.

Definition 1 (D.1)-SOC Concept
The Specific Optimal Control Concept involves the formilation of optimal control problems so that the solutions have certain specified properties. The important consideration is not the explicit value of the cost index but rather that the minimization procedure serves as a well defined method to determine the control laws.

Thus by picking properties which allow the control laws to be of practical use, the $S O C$ concept may generate practical analytical design procedures. The validity of the $S O C$ approach is demonstrated by the success of the resulting techniques. Although, the $S O C$ concept is applicable to the most general of systems, this work is concerned primarily with the study of linear systems and hereafter SOC will refer to the Linear Specific Optimal Control Problem.

1.3 Statement of the SOC Problem and Scope of the Work

The formulation of this $S O$ problem involves the specification of properties that the solution control laws will have and the formulation of an optimal control problem that leads to such solutions.

For reasons of sensitivity and implementation, closed loop control laws are usually specified. For linear systems, linear feedback control laws have proven to be adequate. However, care must be taken, for by closing the loop it is possible to generate stability problems. Also, the computational effort involved in calculating the control laws should not be excessive.

One of the tenents of modern control theory is that all of the states should be fed back in order to achieve optimal performance. ${ }^{4}$ In most realistic situations it is difficult if not impossible to measure or estimate all of the states. Thus the ability to handle the unavailable state problem is of concern.

To summarize, the desired properties of the $S O C$ solutions are listed below.

```
1. Linear feedback control law structure
2. Stability
3. Lov computational effort
4. Un&vililable state capabilities
```

Thus, the purpose of this work is to formulate and solve an optimal control problem with these properties. The proposed formulation, developed in later sections, is based on the linear quadratic optimal control problem. Properties of this formulation and its solutions are developed and discussed. This SOC theory is applied to three general control problems, design of controls with unavailable states, a model reference control problem, and a trajectory sensitivity control problem. Some of the properties of these techniques are discussed, examples presented, and their practical use is demonstrated by the solution of a non-trivial engineering problem, the design of a control system for the Saturn launch vehicle.

To place this work in a proper perspective a brief review of available theory and techniques is presented in the next section. In order to provide a basis for comparison the general control problems are defined below.

Definition 2 (D.2) - Unavailable State Problem
Given a model of the process or system to be controlled, a closed loop control system based on the available states is to be designed so that the controlled system meets certain specifications.

A significant problem with respect to the design of control systems for real systems concerns the relationship of the model to the actual process. Since the mathematical model is at best an approximation of the real situation. the modelling problem is in many cases a signtficant one. After the structure of the model is chosen, values of the parameters for this model must be obtained. For many practical problems it is very difficult to obtain accurate values for the parameters. In addition, component aging and other environmental changes lead to changes in the characteristics of the process and hence parameters of the model.

A control law designed on the basis of a nominal model may be inadequate when applied to the actual system. Thus it is important to be able to design control laws which compensate for these parameter variations. Model reference and trajectury sensitivity techniques have been used to attack this problem. In this work, $S O C$ theory is used to develop model reference and trajectory sensitivity techniques with practical properties.

Definition 3 (D.3) - Model Reference Control Problem
In the model reference control scheme, the output of the actual system is compared with the output of a model which generates a nominal trajectory. A control system is designed, in this case with SOC techniques, to
null the error between the actual and the nominal trajectories.

Definition 4 (D.4) - Sensitivity Control Problem

In the trajectory sensitivity approach, sensitivity variables are defined which are a measure of the sensitivity of the system trajectory to changes in system parameters. The sensitivity variables are placed in a cost index which is minimized by the choice of the control law. Thus, a tradeoff between system response and sensitivity may be obtained.

1.4 Historical Review

1.4.1 Unavailable State Problem

There are two basic approaches to the study of the problem of unavailable states. In the first, Kalman, ${ }^{5}$ Luenberger, ${ }^{6}$ and others have attacked the problem by estimating the unknown states. These estimates may then be used to formulate the control. Although the theory has been well developed, there are practical disadvantages involved in the use of this approach. The addition of the filter or state estimator to the system may unduly complicate the controller since satisfactory system performance may be obtained with controls based only on the available states. Furthermore, the use of the Kalman filter requires approximations for the statistics of the process which may not be meaningful in practical situations.

Thus, the second approach, that of calculating control laws which are a function of the available states has practical appeal. However, the theory of this approach is not as well developed as that of the first, although two basic methods have emerged. In their books Newton, Gould, and Kaiser ${ }^{2}$ and lierrian' describe a straight forward parameter optimization approach. For a linear time invariznt system, a linear feedback control structure depending
on the available states is chosen. A set of design initial conditions is picked and an integral index with squared output and control terms is formu. lated. Parsevals Theorem is used to transform the integral intc the frequency domain, the integration is carried out, and an expression for the index in terms of the feedback gains is obtained. This expression is minimized with respect to the gains by methods of ordinary calculus. This procedure suffers from a number of disadvantages since the gains areinitial condition depender. and the method is restricted to time invariant single-input single-output systems. Also, the nonlinear functional dependence of the index expression on the gains becomes more and more complicated as the order of the system increases; for these higher order problems there is no systematic way to find this function.

In an attempt to remove the derendence of the solution upon the initial conditions, techniques employing max.-min. procedures have been developed. 8,9 A control structure is specified and a cost index is formulated as a function of the state and control. The cost index is maximized with respect to an initial condition set and then minimized with respect to the feedback gains. Although this technique is applicable to nonlinear systems. the problem of choosing an appropriate design initial condition set is not well defined and the computational effort involved in this max.-min. problem may be enormous for all but trivial examples. A recent contribution by Rekasius ${ }^{10}$ employs a cost index which is a measure of the effectiveness of the chosen control structure to a control structure using all of the states. For linear systems, he has derived an analytical expression for the maximum of this expression with respect to all initial conditions. Thus the problem
is reduced to the parameter optimization problem of picking the gains and accordingly suffers from similar disadvantages.

It is believed the $S O C$ procedure described in this document is a new approach to the unavailable state problem. It is an application of the SOC concept of Definition 1 and is based on a linear optimal control problem with quadratic cost index. This problem was chosen as the basic structure because of the practical nature of its solutions. A brief description of the linear problem is presented so that the nature of $S O C$ and its relationship to this theory is made clear. For a more complete exposition, the reader is referred to Kalman, ${ }^{11,12}$ Schultz and Melsa, and Athans and Falb. ${ }^{13}$

Anticipating that the $S O C$ formulation will apply to the unavailable state problem. the linear quadratic optimal control problem will be referred to as the allstate problem. It is important to discuss the properties of the allstate problem since many of them will be extended to the SOC case. It is assumed that the process or system to be controlled is modeled by a system of linear differential equations.

$$
\begin{equation*}
\underline{\dot{x}}=A \underline{x}+B \underline{u} ; \quad \underline{x}\left(t_{0}\right)=\underline{c} \tag{1.4.1}
\end{equation*}
$$

The integral cost index contains quadratic terms in state and control.

$$
\begin{equation*}
J=\frac{1}{2} \int_{t_{0}}^{t_{\hat{N}}}\left(\underline{x}^{T} S \underline{x}+\underline{u}^{T} Q \underline{u}\right) d t \tag{1.4.2}
\end{equation*}
$$

Thus \underline{u} is chose ${ }_{i}$ to minimize Eq. (1.4.2) subject to Eq. (1.4.1). The necessary conditions which describe an extremum of the problem are given below and derived for the more general SOC problem in Chapter II.

Costate equation	$-\dot{p}$	$=A^{T} \underline{p}+S \underline{x} ;$
Dynamics	$\underline{p}\left(t_{f}\right)=\underline{0}$	
Control equation	$\underline{x}=A \underline{x}+B \underline{u} ;$	$\underline{x}\left(t_{0}\right)=\underline{c}$
	$\underline{u}=-Q^{-1} B^{T} \underline{p}$	

where p is the costate or multiplier vector.
These necessary conditions comprise a two point boundary value problem (TPBVP). It is well known that this TPEVP may be decoupled by use of the Ricatti transformation ${ }^{11}$

$$
\begin{equation*}
\underline{p}=P \underline{x} \tag{1.4.6}
\end{equation*}
$$

where P is the Ricatti matrix. An equivalent set of necessary conditions may be written in terms of the Ricatti matrix.

Allstate Diffarential Ricatti Equation

$$
\begin{equation*}
-\dot{F}=A^{T} P+P A+S+P B Q Q^{-1} B^{T} P ; \quad P\left(t_{f}\right)=0 \tag{1.4.7}
\end{equation*}
$$

Dynamics

$$
\begin{equation*}
\underline{x}=A \underline{x}+B \underline{u} ; \quad \underline{x}\left(\ddot{u}_{0}\right)=0 \tag{1.4.8}
\end{equation*}
$$

Control Law

$$
\begin{equation*}
\underline{u}=-K^{T} \underline{x} \tag{1.4.9}
\end{equation*}
$$

Allstate Feedback Gains

$$
\begin{equation*}
K^{T}=Q^{-1} B^{T} P \tag{1.4.10}
\end{equation*}
$$

Note that the computational effort involved in solving this problem is rejuced since the TPEVP has been decoupled. The Ricatti equation may be integrated backwards in time from t_{f} to obtain P and K. Then integration of the dynamics in forward time generates the system trajectory. Other
important features are the linear feedback control structure and the fact that the gains are independent of initial conditions. Furthermore, if the infinite time interval problem is considered, that is

$$
\begin{equation*}
J=\frac{1}{2} \int_{t_{0}}^{\infty}\left(\underline{x}^{T} S \underline{x}+\underline{u}^{T} Q \underline{u}\right) d t \tag{1.4.11}
\end{equation*}
$$

the Ricatti matrix and the feedback gains heve constant values and are characterized by algeriaic equations as opposed to differertial equations.

Allstate Algebraic Ricatti Equation

$$
\begin{equation*}
A^{T} \underline{p}+P A+S+P B Q^{-1} B^{T} P=0 \tag{1.4.12}
\end{equation*}
$$

Allstate Feedback Gains

$$
\begin{equation*}
K^{T}=Q^{-1} B^{T} P \tag{1.4.13}
\end{equation*}
$$

Existence and uniqueness or solutions to the allstate problem ${ }^{11}$ are guaranteed provided the control weighting is positive definite and the plant is completely controllable. A system (A, B) is said to be completely controllable if there exists some control $\underline{u} \in C^{\prime}$ such that for any initial condition vector, the state of the system is brought to zero in some finite time. This condition is equivelent to requiring that at least NS of the NS NC columns of $\left(B, A B, \ldots, A^{N S-1} B\right)$ be Iinearly independent. ${ }^{14}$ The existence proof hinges on this restriction since it serves to provide a bound on the optimal solution to the Ricatti matrix.

Stability of the optimal closed loop system, $A-B K^{T}$, of the infinite time interval problem can be guaranteed by proper choice of weighting matrices and proven by a Lyapunov argument. Stability follows if (A, B) is
completely controllable, the control weighting is positive definite, the state weighting is positive semi-definite, and (A,H) is completely observable. Since the state weighting, S, is positive semi-definite, it may be expressed in terms of the matrix H as 15

$$
\begin{equation*}
S=H^{T} \bar{i} \tag{1.4.14}
\end{equation*}
$$

A system

$$
\begin{aligned}
& \underline{\dot{x}}=A \underline{x}+B \underline{u} \\
& \underline{y}=H \underline{x}
\end{aligned}
$$

is said to be completely observable ${ }^{14}$ if it is possible to reconstruct any set of initial conditions given y over a finite time interval. This condition is equivalent to requiring that there be NS linearly independent columns of $\left(H^{T}, A^{T} H^{T}, \ldots, A^{N S-1} I^{T} H^{T}\right)$

Thus many of the properties listed in Section 1.3 are inherent features of the allstate problem solutions. For a given design problem, the design objectives may not be modelled exactly in the quadratic index, however it has been shown that the allstate solutions result in closed loop sustems which have desirable properties in terms of the classical requirements of overshoot, damping, etc. Moreover if an initial solution of the problem leads to unsatisfactor r_{y} system response, the weightings may be changed and the problem resolved.

The one pronerter that is definitely missing is the unavailable state =apabili+y. However, it is clear that it is possible to stabilize certain systems by partial state feedback. Moreover, Kalman ${ }^{12}$ has indicated that for any staile set of gains there exists a linear optimal control problem for
which the given gains are the optimal control law. Thus it appears reasonablc to expect that the allstate problem can be reformulated so that a specified control law structure is maintained in which only the available states are fea back. Chapter II is devoted to the formulation and solution of such a problem, the linear SOC problem. Although the SOC formulation and that of the allstate problem are similar in many respects, neither one is a subproblem of the other. The problems are different since different restrictions are made on the plants and weighting matrices. If the allowable weichtings and plants are considered as sets in some abstract space, then neither set is a subset of the other although they may overlap.

1.4.2 Model Reference Control Problem

The basic objective in the model reference approach is to design a control system so that the error between the ideal output of the model and that of the actual system is nulled; two basic approaches have been used. In the first, termed mocal reference adaptive, on line adaptive changes in the feedback gains are made to reduce the error. Modern cuntrol theory has been applied to the design of such systems with some success. Osborn and Whitaker ${ }^{17}$ formulated an integral cost :ndex containing a quadratic term in the error between the system and model tra.jectories. An error measurement is ootained and the gradient of the index with respect to the gains is calculated on line. The gradient information is used to change the gains in order to minimize the index. Donalson and Leondes ${ }^{18}$ employing a similar concept. added error derivative terms to the index. Dressler ${ }^{19}$ introduced a related scheme which reduced the amount of on line computation. The most important consideration in these techniques is the stability of the adaptation procedure. A
tradeoff between this stability and the rate of adaptation is obtained by the choice of the adaptation constants. There does not seem to be a well defined method for choosing these constants and an inappropriate choice often leads to instability.

In order to reduce the stability problem Farks ${ }^{20}$ and Shackcloth ${ }^{2 l}$ have taken an Lyapunov approach. A Lyapunov function with terms in the error. error derivative, and adaptation parameiers is formulated and used to define the adaptation process. This approach insures that the adaptation procedure as well as the model reference system is stable. In order to implement this method it is necessary to be able to adapt all of the elements of the closed loop system matrix independently. For most systems this is not possible. From a practical point of viev other disadvantages become apparent. The basic schemes involve on-line computation and measurement of all the states and in some cases state derivatives. The feasibility of such a complex control system for most realistic problems is in doubt.

The second approach to the design of model reference systems has been called model following. In this method optimal techniques are employed and the calculations are done off-line. Tyler ${ }^{22}$ has proposed two methods. In one, the model is included in the cost index while in the other the model is incorporated into the system as a prefilter. The usual optimal control problems are present since all states must be known and the open loop terms of the control law are a function of the systems initial conditions and the input to the model. Recently, Asseo ${ }^{23}$ has used a SOC-like concept to design a model following system which is indepencient of the model input.

The SOC model reference problem considered in Chapter V is of the model following type since the computations are done off-line. The sOC approach allows unavailable state capabilities and results in a control law which is independent of the nominal trajectory and hence the model input.

1.4.3 Trajectory Sensitivity Control Problem

The problem of sensitivity has always been of concern to control system designers. Bode, ${ }^{24}$ in his pioneering work, made the basic definition of transfer function sensitivity. This measure of sensitivity is a ratio of the percent, change in the transfer function to the percent change in the parameter. The reduction of sensitivity has long been advanced as a reason for using a feedback control law. Horowitz ${ }^{25}$ made this reasoning precise with his definition of the return difference. In addition he indicated ${ }^{26}$ that an adaptive control scheme with its inherent complex implementation might be replaced with a desensitizing feedback control law. Other frequency domain techniques such as pole zero and root locus sensitivities have been examined by $K u o^{27}$ and Huang ${ }^{28}$. The basic disadvantages of these techniques involve their restriction to linear time inrariant systems and the lack of information obtained about time domain sensitivity characteristics.

The development of the time domain approach has occurred relatively recentiy. Miller and Murray ${ }^{29}$ made significant contributions in their study of the error involved in the numerical solution of differential equations. Dorato, Rohrer and Sobral ${ }^{31}$, and Pagurek ${ }^{32}$ have applied optimal control techniques in their studies of the problem of cost index sensitivity. Holtzman and Horing 33 were concerned with the effect of parameter variations on terminal conditions of fixed endpoint optimal control problems.

The fundamental work which led to the Sensitivity Control Problem of Definition 4 was done by Tomovic, ${ }^{34}$, Tuel, ${ }^{35}$ and Dougherty ${ }^{36}$. Tomovic investigated various measures of sensitivity and proposed a parameter design procedure. Tuel conceived the idea of adding sensitivity variables to the cost index to be minimized by the choice of the control, and developed a design procedure for open loop controls. Dougherty extended these concepts to the closed loop case and formulated a design procedure based on control signal and parameter optimization techniques.

The optimal control approach leads to the computationally difficult two point boundary value problem, to the measurement of all the states, and to the dependency of the solution on the state initial conditions. In addition the augmented state vector formulation suffers from a dimensionality problem. For each parameter that is considered, the dimension of augmented state vector increases by the dimension of the original system state vector. For any system of any size with more than one parameter the dimension of this sensitivity problem becomes unwieldy. The soc sensitivity problem is formulated in Chapter VI.

Nomenclature

Matrices

A System matrix: NS by NS
B Control coefficient matrix: NS by NC
H Observability matrix: NS by NS
P Ricatti Matrix: NS by NS
Q Symmetric control weighting matrix: NC by NC
S Symmetric state weighting matrix: NS by NS

Vectors

c State initial condition vector: NS
p Costate or multiplier vector: NS
u Control vector: NC
x State vector: NS

Scalars

J Cost index
t Time

Chapter II

THE SOC PROBLEM

2.1 Basic Equations

In this section the basic equations defining the $S C C$ problem and its solution are derived. The SOC concept leads to the formulation of optimal control problems for which the solution control laws have certain specified properties. In this case, the property of importance is an unavailable state capability. For the allstate problem each of the feedback gains will in general be non-zero. The unavailable state capability is obtained by choosing some of the weighting matrices so that the gains corresponding to the unavailable states are zero. Thus, the crux of the sOC formulation involves the use of two classes of weighting matrices. The first class of weightings is chosen in the usual manner to obtain desirable system response and a tradeoff between state error and control effort and to insure the stability of the resulting closed loop system. The desired feedback structure is imposed by choosing the second class of matrices as a function of the unknown Ricatti matrix so that the unavailable state gains are forced to be zero. However, the necessary conditions are derived assuming that these weightings are known. By using these functional relations between the class two weightings and the Ricatti matrix, the formally derived necessary conditions reduce to a well defined set of equations similar to the allstate necessary conditions which do not depend on the weightings of class two. It is shown that the remaining weightings can be chosen to guarantee the existence and uniqueness of solutions to the reduced equations and hence existence and uniqueness of solutions to the formal SOC problem. The "cart before the horse" nature of
this development is justified by the properties of the solutions and the effectiveness of the related techniques. If the reader is bothered by this pragmatic approach he may wish to view SOC as a Lyaponov stability design technique with a well defined procedure for generating the Lyaponov functions and the feedback control laws. However, $S O C$ is much more than that as indicated in later sections.

The $S O C$ control law is obtained from the minimization of an integral quadratic index, J, which contains bilinear terms between the state and control as well as the usual quadratic terms in state and control.

$$
\begin{equation*}
J=\frac{1}{2} \int_{t_{0}}^{t_{f}}\left(\underline{x}^{T} S \underline{x}+\underline{x}^{T} \hat{S} \underline{x}+\underline{x}^{T} w \underline{\underline{u}}+\underline{x}^{T} \hat{W} \underline{u}+\underline{u}^{T} Q \underline{u}\right) d t \tag{2.1.1}
\end{equation*}
$$

The matrices marked with a caret, \hat{S} and \hat{W} belong to class two and are chosen to generate the specified $S O C$ control structure. It is assumed that the dynamics of the systems to be controlled are modeled by a system of linear differential equations.

$$
\begin{equation*}
\underline{\dot{x}}=A \underline{x}+B \underline{u} ; \quad \underline{x}\left(t_{0}\right)=\underline{c} \tag{2.1.2}
\end{equation*}
$$

Thus, \underline{u} is chosen to minimize the cost index, Eq. (2.1.1), subject to the constraints of the dynamics, Eq. (2.1.2) . The necessary conditions or EulerLagrange equations are given below and derived in Appendix A through the use of the calculus of variations.

Euler-Lagrange Equations

Costate equation

$$
\begin{equation*}
-\dot{p}=\left(\frac{W}{2}+\frac{\hat{W}}{2}\right) \underline{u}^{0}+(S+\hat{S}) \underline{x}^{0}+A^{T} \underline{p}=\underline{0} ; \quad \underline{p}\left(t_{f}\right)=\underline{0} \tag{2.1.3}
\end{equation*}
$$

21.

Control Law

$$
\begin{equation*}
\underline{u}^{0}=Q^{-1}\left(B^{T} \underline{p}+\left(\frac{\hat{W}^{T}+\hat{W}^{T}}{2}\right) \underline{x}^{0}\right) \tag{2.1.4}
\end{equation*}
$$

Dynamics

$$
\begin{equation*}
\underline{x}^{0}=A \underline{x}^{0}+B \underline{u}^{0} ; \quad \underline{x}\left(t_{0}\right)=\underline{c} \tag{2.1.5}
\end{equation*}
$$

where the superscript zero indicates the optimal.
These equations comprise a two point boundary value problem which may be decoupled by the use of the Ricatti transformation.

$$
\begin{equation*}
\underline{p}=P \underline{x} \tag{2.1.6}
\end{equation*}
$$

Equation (2.1.6) is used to eliminate p from Eq. (2.1.3) and (2.1.4) which results in an equivalent set of decoupled necessiary conditions.

Unreduced Ricatti Equation

$$
\begin{equation*}
-\dot{P}=A^{T} P+P A+S+\hat{S}-\left(\frac{W+\hat{W}}{2}+P B\right) Q^{-1}\left(\frac{W^{T}+\hat{H}^{T}}{2}+B^{T} P\right)=0 ; \quad P\left(t_{f}\right)=0 \tag{2.1.7}
\end{equation*}
$$

Control Law

$$
\begin{equation*}
\underline{u}=-K^{T} \underline{x} \tag{2.1.8}
\end{equation*}
$$

Feedback Jain Equation

$$
\begin{equation*}
\kappa^{T}=Q^{-1}\left(\frac{W^{T}+\hat{W}^{T}}{2}+B^{T} P\right) \tag{2.1.9}
\end{equation*}
$$

Dynamice

$$
\begin{equation*}
\underline{\dot{x}}=\left(A-B K^{T}\right) \underline{x} ; \quad \underline{x}\left(t_{0}\right)=\underline{c} \tag{2.1.10}
\end{equation*}
$$

The Ricatti matrix, P, and the feedbeck gain matrix, K, are found by the backward time integration of the Ricatti equation, Eq. (2.1.7); the trajectory is generated by the forward time integration of the dynamics. Hote thai these
equations reduce to the allscate equations of Bection 1.2 if the bilinear terms are zero.

From Eq. (2.1.9) it follors that \hat{W} can be chosen as a function of W and P such that some of the feedback gains ane identically zero. There is no loss of generality in requiring the gains to be zero since any other non-zero value may be obtained by redefining the aystem A mairix and then sec.ing zero gains. Thus if the last L states of the state vector are unavailable, define \hat{W} as follows.

Definition 5 (D.5) - \hat{W}

$$
\begin{equation*}
W=-2 I_{2}\left(F B+\frac{W}{2}\right) \tag{D.5}
\end{equation*}
$$

where $I_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & I_{L}\end{array}\right]$ is a NS by NS matrix and I_{L} is the L by L identity matrix. For later use define

$$
I_{1}=\left[\begin{array}{cc}
I_{N S-L} & 0 \\
0 & 0
\end{array}\right]
$$

which is a NS by NS matrix and $I_{\text {NS-L }}$ is the NS-L by NS-L identity matrix and

$$
I_{1}+I_{2}=I
$$

the NS by NS identity matrix. Since $I_{1} I_{2}=0$,

$$
I_{1} \hat{W}=0
$$

It is clear Irom (D.5) that the lower elrments of W have no effect on the control law and hence on the closed 100 p system trajectories. Thus there is no loss in generality in assuming that they are chosen to be zero.

$$
\begin{equation*}
I_{2} W=0 \tag{2.1.11}
\end{equation*}
$$

Now $\hat{\boldsymbol{S}}$ is chosen to simplify the soc necessary conditions by ineuring that \hat{A} will not appear in the reduced equations. Also $\hat{\boldsymbol{B}}$ is required to be symmetric since only a symmetric portion of a matrix has any significance in a quadratic term.

Definition $6(D .6)-\hat{S}$

$$
\begin{equation*}
\hat{S}=\frac{1}{2}\left((W+\hat{W}) K^{T}+K\left(W^{T}+\hat{W}^{T}\right)\right) \tag{D.6}
\end{equation*}
$$

Using the definitions of \hat{W} and \hat{S} the optimal value of the cost index may be expressed as follows

$$
\begin{equation*}
J^{0}=\frac{1}{2} \int_{t_{0}}^{t_{f}}\left(\underline{x}^{0^{T}} s \underline{x}^{0}+\underline{u}^{o^{T}} Q \underline{u}^{0}\right) d t \tag{2.1.12}
\end{equation*}
$$

This does not imply that $50 C$ is optimal with respect to a cost index of only quadratic terms but rather that the optimal index may be expressed as such. In fact, Kalman ${ }^{12}$ has indicated that for a cost index of the form of Eq. (2.1.12) 011 of the states must be fed back.
D. 5 and D. 6 mey be used to eliminate \hat{W} and \hat{S} from Eq. (2.1.7)-(2.1.10) to obtain the following:

Beduced Necessary Conditions
SOC Ricatti Equation
$\dot{P}+A^{T} P+P A+S-E Q^{-1} E^{T}+I_{2} E Q^{-1} E^{T} I_{2}+\frac{W}{2} Q^{-1} E^{T} I_{1}+I_{1} E Q^{-1} \frac{W^{T}}{2}=0 ;$

$$
\begin{equation*}
P\left(t_{f}\right)=0 \tag{2.1.13}
\end{equation*}
$$

where

$$
E=\frac{W}{2}+F B
$$

and

$$
I_{2} W=0
$$

SOC Control Law

$$
\begin{equation*}
\underline{u}=-K^{T} \underline{x} \tag{2.1.14}
\end{equation*}
$$

Feedback Gain Equation

$$
\begin{equation*}
K^{T}=Q^{-1}\left(B^{T} F+\frac{W^{T}}{2}\right) I_{1} \tag{2.1.15}
\end{equation*}
$$

Dynamics

$$
\begin{equation*}
\underline{\dot{x}}=\left(A-B K^{T}\right) \underline{x} ; \quad \underline{x}\left(t_{0}\right)=\underline{c} \tag{2.1.1}
\end{equation*}
$$

Note the similarity between the reduced SOC equations and the allstate equations. In fact, if $W=0$ the only difference is that the quadratic terms in the Ricatti equation and the feedback gains corresponding to the unavailable states are missing.

It is convenient to rewrite the Ricatti equation in terms of the closed loop system matrix and the feedback gains. It is shown later that the two forms of the Ricatti equation are equivalent.

$$
\begin{align*}
& A_{K}=A-B K^{T} \tag{2.1.17}\\
& K^{T}=Q^{-1}\left(B^{T} P+\frac{W^{T}}{2}\right) I_{1} \tag{2.1.19}\\
& \dot{P}+\dot{A}_{K}^{T} P+P A_{K}+S+K Q K^{T}=0 ; \quad P\left(t_{f}\right)=0 \tag{2.1.19}
\end{align*}
$$

For comparison purposes the equivalent allstate equations are given below. Note that the structure of these Ricatti equations are identical, except that the $S O C$ gains corresponding to the unavailable states are zero.

$$
\begin{equation*}
A_{\bar{K}}=A-B \bar{K}^{T} \tag{2.1.20}
\end{equation*}
$$

$$
\begin{align*}
& \bar{K}^{T}=Q^{-1}\left(B^{T} P+\frac{W^{T}}{2}\right) \tag{2.1.21}\\
& \dot{P}+A_{\bar{K}}^{T} P+P A_{\bar{K}}+S+\bar{K} Q \bar{K}^{T}=0 ; \quad P\left(t_{f}\right)=0 \tag{2.1.22}
\end{align*}
$$

Steady State SOC Problen

If a system to be controlled is time invariant, and an infinite time interval problem with constant weiEhtings is considered, that is $t_{p} \rightarrow \infty$, the solution to the Ricatti differential equation may approach a steady state value. Hence the feedback gains assume a steady state or constant value. In this case the difierential equations describing the Ricatti matrix are replaced by nonlinear algebraic equations.

Steady state Ricatti equation

$$
A^{T} P+P A+S-E Q^{-I} E^{T}+I_{2} E^{-I} E^{T} I_{2}+\frac{W}{2} Q^{-I_{E} T^{T}} I_{I}+I_{1} E Q^{-1} \frac{W^{T}}{2}=0 \quad \text { (2.1.23) }
$$

where

$$
E=P B+\frac{W}{2}
$$

$$
\begin{equation*}
A_{K}^{T} P+P A_{K}+S+K Q K^{T}=0 \tag{2.1.24}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{K}=A-B K^{T} \\
& K^{T}=Q^{-1}\left(B^{T} P+\frac{W^{T}}{2}\right) I_{I} \tag{2.1.25}
\end{align*}
$$

In the following sections the properties which indicate that soc may be a useful tool for the study of linear systems are described.

2.? SOC Properties

In Section 2.1 the basic equations of the SOC problem were formally derived. In this section the sigrificance and usefulness of the SOC problem is indicated by the examination of the properties of the SOC equations
and solutions.
In order to guarantee that the $S O C$ solutions will have certain properties it is necessary to make restrictions on the allowable systems and weighting matrices. The reasons for these restrictions will become clear as the properties are developed.

Restriction 1 (R.1) - Weighting Matrices
The control weighting, Q, must be a symmetric positive definite matrix.

The state weighting matrix, S, mast be a symmetric, positive semidefinite, SOC observable matrix.

Definition 7 (D.7) - SOC Observability

Since S is positive semi-definite, it may be expressed ${ }^{15}$ as

$$
S=H^{T} H
$$

where H is a NS by NS matrix. Now a system, A, and weighting matrix, S, are said to be SOC Observable if the matrix pair (A, H) is completely observable as defined by Kalman. 14

Note that this definition differs from the Kalman allstate definition since the former involves a portion of the state weighting while the latter involves all of the state weighting. A further restriction on the allowable systems must be made, since it makes no sense to talk about the minimization of a cost index if there are no control laws (feedback gains) which result in a finite value of that index.

Definition 8 (D.8) -. SOC Controllability

A system, $A, i s$ said to be SOC Controllable with respect to a specified feedback structure provided there exist finite values of feedback gains, $K \in C^{\perp}$, such that all initial condition responses are square integrable.

Let

$$
\underline{\dot{x}}=\left(A-B K^{T}\right) \underline{x}=A_{K} \underline{x} ; \quad \underline{x}\left(t_{0}\right)=\underline{c}
$$

and

$$
\underline{x}(t)={\underset{I}{K}}\left(t, t_{O}\right) \underline{c}
$$

where $\Phi_{K}\left(t, t_{0}\right)$ is the state transition matrix for the closed loop system A_{K}. Then for all c such that $\|c\|<\infty$

$$
V=\int_{t_{0}}^{t_{f}} \underline{x}^{T} \underline{x} d t=c^{T}\left\{\int_{t_{0}}^{t_{f}} \Phi_{K}^{T}\left(\tau, t_{0}\right) \Phi_{K}\left(\tau, t_{0}\right) d \tau\right\} s<\infty
$$

For a linear time invariant system and the steady state problem, this condition is equivalent to the existence of a set of constant feedback gains such that the closed loop system in stable.

Existence and Uniqueness

The motivation for the SOC Controllability definition is provided by the following lemma which states a necessary condition for existence. The proof of this lemma follows directly from the definition.

Lemma 1:

A necessary condition for the existence of the solution to a sOc problem is that the plant and chosen feedback control structure be SOC Controllable.

A distinction must be made between existence and uniqueness properties of the 3 equations in reduced and unreduced forms. That is, given all the weightings of the formal SOC index the existence and uniqueness of the solutions to the necessary conditions may be demonstrated in exactly the same way as in the allstate case.

However, in order to use the $S O C$ theory the question of the existence of the solutions to the reduced equations must be answered. The important point is that the choice of the class two matrices leads to a well defined set of equations (the reduced equations) in which these matrices do not appear. The existence of solutions to these equations is a justification of the $S O C$ approach. If solutions exist to the reduced equations, the SOC procedure is shown to be valid from a mathematical point of view and only the interpretation of or motivation for the $S O$ problem from an engineering point of view is of concern.

The finite time interval and steady state problems lead to the study of systems of nonlinear differential and algebraic equations, respectively. These equations are very similar to the allstate equations. However, the approach used in the proof by $K a l \operatorname{man}^{11}$ does not appear to be applicable in the SOC case. Demonstrating the existence of solutions to these problems is equivalent to proving the existence of solutions to the Ricatti equations. The fundamental point of Kalman's proof involves the derivation of a bound on the solution to the Ricatti equation. An attempt to follow this same path for the $S O C$ Ricatti equation fails, since it leads to a bound that is a function of the Ricatti matrix. Despite significant effort along these lines, no general existence theorem has been developed. However, for scme specific examples it is possible to say something positive about general existence. See the example at the end of this chapter.

It is fairly easy to prove local existence of a special nature with the aid of the Reverse $S O C$ problem described below. This reverse problem provides an initial solution to the reduced soc equations. A perturbation of
the weighting matrices leads to a new set of equations which in some sense are close to the reverse problem equations. Thus the question of existence and uniqueness may be answered in terms of the solutions to equations containing parameters.

Since both differential and algebraic Ricatti equations are encountered, two types of existence proofs must be demonstrated. The results are stated in theorem form for preciseness and clarity and the proofs involve the application of certain well known theorems of analysis and differential equation theory.

Definition 9 (D.9) - Reverse soc Problem

Given a set of feedback gains, determine if there exists a SOC index such that the gains are the SOC control law.

In order for the steady state reverse problem to have a solution, the allowable feedback gain must be stable, that is, the closed loop system is stable, while for the finite time interval problem any set of finite gains contained in C^{l} will suffice.

Theorem 1:
For all SOC controllable systems with any set of allowable feedback gains, there exists a nonunique SOC problem with weighting matrices satisfying (R.1) and for which the given gains are the optimal control law.

Proof A: Steady State Problem

Choose any S and Q which satisfy (R.I) and such that $S+K Q K^{T}$ is positive definite. For example S and Q might be the appropriate dimensioned identity matrices. Since the feedback gains are stable by assumption and $S+K Q K^{T}$ is positive definite, there exists a unique positive
definite solution, P, to the $S O C$ Ricatti equation. 37

$$
\begin{equation*}
A_{K}^{T} P+P A_{K}=-S-K Q K^{T} \tag{2.2.1}
\end{equation*}
$$

Note that $S+K Q K^{T}$ is symmetric and since P^{T} also satisfies Eq. (2.2.1) which has a unique solution, the Ricatti matrix is symmetric. The feedback gain equation is used to find W,

$$
\begin{align*}
& W^{T} I_{1}=2\left(Q K^{T}-B^{T} P I_{1}\right) \tag{2.2.2}\\
& W^{T} I_{2}=0
\end{align*}
$$

while \hat{W} and \hat{S} are determined from their respective definitions. Thus the reverse SOC problem for which the given gains are optimal is specified. This problem is not unique since the choice of S and Q is not unique.

Proof B: Finite Time Problem

Again choose a S and Q which satisfy (R.1). The Ricatti matrix P is found by solving the $S O C$ Ricatti differential equation where K, A, S, and Q are known.

$$
\dot{P}+A_{K}^{T} P+P A_{K}+S+K Q K^{T}=0 ; \quad P\left(t_{f}\right)=0
$$

$$
t_{0} \leq t \leq t_{f}
$$

To show that a unique, positive definite solution to this differential equation exists, the following lemma will be useful.

Lemma 2:

The value of the optimal $S O C$ index may be expressed in terms of the Ricatti matrix which is necessarily positive definite if (R.l) is satisfied.

$$
\begin{equation*}
J^{0}=\frac{1}{2} \underline{c}^{T} P\left(i_{o}\right) \underline{c}=\frac{1}{2} \int_{t_{0}}^{t_{f}}\left(\underline{x}^{o^{T}} S \underline{x}^{0}+\underline{u}^{o^{T}} Q \underline{u}^{o}\right) d t \tag{2.2.4}
\end{equation*}
$$

where P is the solution to the $S O C$ Ricatti equation, Eq. (2.2.3), and c is a state initial condition vector.

Proof:
Equation (2.2.4) is derived by the manipulation of the SOC necessary conditions. Adjoin the dymamics to the cost index with the costate vector and integrate by parts.

$$
J^{0}=\frac{1}{2} \int_{t_{0}}^{t_{f}}\left[\underline{x}^{o^{T}} S \underline{x}^{0}+\underline{u}^{o^{T}} Q \underline{u}^{0}+\underline{p}^{T}\left(A_{K} \underline{x}^{0}-\dot{x}^{0}\right)\right] d t
$$

or

$$
J^{0}=\frac{1}{2} \int_{t_{0}}^{t_{f}}\left(\underline{x}^{o^{T}} S \underline{x}^{0}+\underline{u}^{o^{T}} Q \underline{u}^{0}+\underline{p}^{T} A_{K} \underline{x}^{0}+\underline{p}^{T} \underline{x}^{0}\right) d t-\left.\frac{1}{2} \underline{x}^{T} p\right|_{t_{0}} ^{t_{f}}
$$

Using the Ricatti transformation, terminal conditions on p, and the control 1aw equations leads to

$$
J^{0}=\frac{1}{2} \int_{t_{0}}^{t_{f}}\left[\underline{x}^{o^{T}}\left(s+K Q K^{T}+P A_{K}+A_{K}^{T} P+\dot{P}\right) \underline{x}^{0}\right] d t+\frac{1}{2} \underline{c}^{T} P\left(t_{0}\right) \underline{c}
$$

But the expression in the integral is the Ricatti equation, hence for any t_{0} and t_{f}

$$
J^{0}=\frac{1}{2} c^{T} P\left(t_{0}\right) \underline{c}
$$

(R.i) requires S to be positive semi-definite and Q to be positiva definite. The SOC observable requirement insures that $X^{T} S x$ will not be zero for any allowable trajectory. ${ }^{37}$ Thus J^{0} is positive for any c and hence P is positive definite.

Now P can be expressed in terms of the state transition matrix for the closed loop system.

$$
\begin{gathered}
\underline{\dot{x}}=\left(A-B K^{T}\right) \underline{x} ; \quad \underline{x}\left(t_{0}\right)=\underline{c} \\
\underline{x}(t)=\Phi_{K}\left(t, t_{0}\right) \underline{c}
\end{gathered}
$$

then

$$
J^{0}=\frac{1}{2} \underline{c}^{T} P \underline{c}=\frac{1}{2} \int_{t_{0}}^{t_{f}}\left[c^{T} \Psi_{K}^{T}\left(\tau, t_{0}\right)\left(s+K Q K^{T}\right) \bar{\Phi}_{K}\left(\tau, t_{0}\right) c\right] d \tau
$$

or

$$
\begin{equation*}
P\left(t_{0}\right)=\int_{t_{0}}^{t_{f}} \Phi_{K}^{T}\left(\tau, t_{0}\right)\left(s+K Q K^{T}\right) \Phi_{K}\left(\tau, t_{0}\right) d \tau ; t_{0} \leq \tau \leq t_{f} \tag{2.2.6}
\end{equation*}
$$

Since Eq. (2.2.5) holds for all $t_{0}, t_{0} \leq t_{f}$, Eq. (2.2.6) defines $P(t)$.

$$
P(t)=-\int_{t_{f}}^{t} \Phi_{K}^{T}(\tau, t)\left(s+K Q K^{T}\right) \Xi_{K}(\tau, t) d \tau
$$

Recall that $\Phi_{K}(t, t)=I$ and $\frac{d}{d t} \underline{\Phi}_{K}=A_{K} \Phi_{K}$. Taking the time derivative of Eq. (2.2.7) leads to

$$
\dot{P}(t)=-S-K Q K^{T}-A_{K}^{T} P-P A_{K}
$$

which is the Ricatti equation. Thus the existence and positive definiteness of P is established. Since Eq. (2.2.3) satisfies a Lipschitz condition, the uniqueness is demonstrated by the application of a standard theorem of differential equation theory.
A_{B} in the case of the steady state problem, W is chosen to satisfy the gain equation and \hat{S} and \hat{W} are found from their definitions.

It has been shown that the Reverse problem determines well behaved solutions to the $S O C$ necessary conditions. Existence properties of these equations may be studied by considering the waighting matrices as parameters. For sets of weighting matrices which are suitably close to those of the Reverse problem, something may be said about the uniqueness and existence of the solutions to the corresponding SOC problems. To facilitate the discussion consider the following notation. A weighting vector g is formed from all the independent elements of S, Q, and W in column order. (Only the lower or upper triangular elements of the symmetric matrices are considered.) The weighting vector g may be pictured as a point in a finite dimensional Euclidean space, where the corresponding norm may be denoted by $\|g\|$. With this notation the consept of one set of weightings being close to another can be made precise.

Theorem 2:

Given a Reverse problem solution for a finite time interval problem, characterized by a weighting vector g_{0}, solutions to the SOC problem exist and are unique for all weightings in some neighborhood \&y of g_{0}.

Proof:

The existence of asolution to the $S O C$ problem is equivalent to the existence of a solution to the SOC Ricatti equation over the time interval of interest. since P is symnetric, this matrix differential equation can be written as a vector differential equation of dimension $N P=\frac{\operatorname{NS}(N S+1)}{2}$

$$
\begin{array}{r}
" \underline{P} "=-"\left(A^{T} P+P A+S-E Q^{-I_{E} T}+I_{2} E Q^{-1} E^{T} I_{2}+\frac{W}{2} Q^{-1} E^{T} I_{2}+I_{1} E Q^{-1} \frac{W^{T}}{2}\right)^{\prime \prime} \\
" \underline{P^{\prime \prime}}\left(t_{f}\right)=\underline{0} \tag{2.2.8}
\end{array}
$$

where $E=P B+\frac{W}{2} ; I_{2} W=0$ and "D" indicates a vector formed from the matrix D as follows.

$$
{ }^{\prime \prime} D^{\prime T}=\left(D_{1,1} ; D_{2,1} ; \ldots ; D_{N S, 1} ; D_{2,2} ; \ldots ; D_{N S, N S}\right)
$$

or symbolically

$$
\begin{equation*}
\text { " } \underline{P} "=\underline{F}(" \underline{P} ", g) ; \quad " \underline{P} "\left(t_{f}\right)=0 \tag{2.2.9}
\end{equation*}
$$

From Eq. (2.2.8) it is clear that partial derivatives of E with respect to the elements of P exist and are continuous and thus satisfy a Lipschitz condition in some neighborhood of g_{0}. The existence and uniqueness of the solutions in some neighborhood, \mathcal{V}, of g_{0} is a standard result from the theory of different'al equations. See Theorem 7.5 of Reference 38.

A similar theorem for the steady state problem may be demonstrated with the aid of the Implicit Function theorem. To clarify the discussion, consider each set of feedback gains as a point in some Euclidean space. This point is denoted by the feedback gain vector $\hat{\underline{k}}$ formed by the column ordering of the feedback gain matrix K.

Theorem 3:

Given a solution to a steady state Reverse sOC problem with gain vector \hat{k}_{0} and weighting vector g_{0}, there exists a unique solution to the SOC problem for weightings in some neighborhood $2 f$ of g_{0}. Moreover, the stable feedback gains are continuous functions of the weighting vector.

Proof:
The proof will be carried out by the application of the Implicit Function theorem to a feedback gain vector function. Consider the steady state SOC equations

$$
\begin{align*}
& A_{K}^{T} P+P A_{K}+S+K Q K^{T}=0 \tag{2.2.10}\\
& K^{T}=Q^{-1}\left(B^{T} P+\frac{W^{T}}{2}\right) I_{1} \tag{2.2.11}
\end{align*}
$$

Since the eigenvalues of the closed loop system are continuous functions of the feedback gains, A_{K} is stable for all feedback gain vectors $\hat{\underline{x}}$ contained in a suitably small neighborhood of $\hat{\underline{n}}_{0}, K$. Since A_{K} is stable, P may be found as a unique function of K, S, Q, and W. Using the equivalent vector notation introduced above, Eq. (2.2.10) may be rewritten as a linear system of NP equations.

$$
\begin{aligned}
& E " P "=-"\left(S+K Q K^{T}\right) " \\
& " P{ }^{\prime \prime}=-E^{-1} "\left(S+K Q K^{T}\right) "
\end{aligned}
$$

or symbolically

$$
" P "=F_{1}(\underline{k}, \underline{g})
$$

where

$$
E="\left(I * A_{K}+A_{K} T^{* I}\right) "
$$

and * reprasents the Kronecier product. The matrix E is simply the Kronecker matrix manipulated in the appropriate manner to form the coefficient matrix for the linear system. Both the matrix and vector forms represent the same system of scalar equations, with a particular form chosen by the context of the discussion.

To return to the proof, a vector gain function can be written as follows.

$$
\underline{F}(\underline{\hat{k}}, \underline{g})={ }^{\square}\left(Q^{-1} B^{T} P(\underline{k}, \underline{g})-K^{T}\right)^{Q}=0
$$

The notacion ${ }^{D} \underline{D}^{"}$ indicates that a vector has been formed from the matrix D by column ordering.

$$
\underline{D}^{D T}=\left(D_{1,1} ; \ldots ; D_{\mathrm{NS}, 1} ; D_{1,2} ; \ldots ; D_{\mathrm{HS}, \mathrm{HS}}\right)
$$

How the Implicit Function theorem may be applied to this equation ${ }^{39}$, provided that
$\mathbf{C l}: \underline{F}(\hat{k}, g)=0$ at $\underline{\hat{k}}, g_{0}$
Ce: $\quad \underline{(k}, \underline{g}) \in C^{1}$
C3: Jacobian at $\left(\dot{x}_{0}, g_{0}\right)$ is nonzero.
The Jacobian is the determinant of the partial derivative matrix of \underline{F} with respect to \hat{k}.

$$
J=\operatorname{det}\left(\frac{\partial \underline{F}}{\partial \underline{k}}\right)
$$

where

$$
\left(\frac{\partial F}{\partial \underline{E}_{i j}}=\frac{\partial \underline{F}_{i}}{\partial \underline{E}_{j}}\right.
$$

This theorem indicates that within some suitably small neighborhoods, x_{0}^{i} and K_{0} of g_{0} and \hat{k}_{0} respectively, there exists a unique continuous vector function Θ such that
$\hat{\underline{\hat{k}}}=\underline{\underline{g}}(\underline{\mathrm{~g}})$
$F(\underline{\theta}(\underline{g}), \underline{g})=0 \quad \underline{g} \in \mathscr{V}_{0} \quad \underline{k} \in K_{0}$
Since only stable gains are of interest, the neighborhood of g is further restricted so that for any $g \in \bar{y}, \underline{k} \in \mathbb{K}$ is a stable gain vector.

It is clear that conditions C1 and C2 are satisfied while C3 must be considered more closely.

Lenma 3:

For any stable set of gains \hat{k}_{0}, it is possible to find a Reverse SOC problem characterized by g_{0} such that the Jacobian is non-zero $J\left(\hat{\underline{A}}_{0}, \underline{\underline{g}}_{0}\right) \neq 0$.

Proof:
Note that the gein function equation can be written as

$$
\underline{E}(\underline{\hat{k}}, \underline{g})={ }^{D} Q^{-1} \mathrm{~B}_{B} T_{P}^{D}-\hat{\hat{k}}^{T}
$$

Then

$$
\begin{equation*}
\frac{\partial \frac{F}{\hat{\hat{k}}}}{}=Q^{\mathbf{a}} \mathrm{Q}^{-1} \frac{\partial \mathrm{P}^{\mathbf{a}}}{\partial \underline{\hat{k}}}-I \tag{2.2.12}
\end{equation*}
$$

If $J\left(\underline{\underline{k}}_{0}, g_{0}\right)=0$, then at least one eigenvalue of $\frac{\partial F}{\partial \hat{k}}$ mast be zero. Thus, from Eq. (2.2.12) it follows that at least one eigenvalue of $Q^{\square} B^{-1} \frac{C^{\prime \prime}}{J_{k}}$ is equal to 1. However, by s proper choice of g_{0}, that is S and Q it is possible to insure that this is not the case.

Consider the $\frac{\partial^{\prime} p}{\partial \hat{k}}$ term of the matrix in question. For convenience examine the equivalent matrix

$$
\frac{\partial " P^{\prime \prime}}{\partial \underline{\hat{k}}}
$$

Again this is a notational switch to allow for convenient manipulation. Since $\quad " \underline{P} "=-E^{-1} "\left(S+K Q K^{T}\right) "$

$$
\frac{\partial " P^{\prime \prime}}{\partial \underline{\hat{k}}}=-\frac{\partial \mathbb{E}^{-1}}{\partial \underline{\hat{k}}} "\left(S+K Q K^{T}\right) "-E^{-1} \frac{\partial "\left(S+K Q K^{T}\right) "}{\partial \underline{\hat{k}}}
$$

If the Jacobian is zero it is possible to pick new values of S and Q to insure that the Jacobian is not zero. Thus C3 is satisfied and the proof is complete.

The local existence properties are sufficient to allow the practical use of the SOC theory as indicated in later chapters. Stability

For the steady state SOC problem, the feedback control law consists of constant feedback gains. A linear system with such a control law is said to be stable if all the eigenvalues of the closed loop systems have megative real parts. In addition these feedback gains are said to be stable. It should be emphasized that an optimal control law is not necessarily a stable control law: It is possible to formulate an optimal control problem for an unstable plant for which the optimal control law and the cost index are identically zero. The steady state SOC problem has been structured so that the resultant closed loop system is nece' sarily stable.

Theorem 4:

Consider a SOC problem with a $S O C$ controllable plant and weighting matrices which satisfy (R.1). For any constant feedback gain matrix, K, a necessary and sufficient condition that K be a set of stable $S O C$ feedback gains is that there exist a Ricatti matrix, P, with the following properties.

$$
\begin{aligned}
& C 1: A_{K}=A-B K^{T} \\
& C 2: K^{T}=Q^{-1}\left(B^{T} P+\frac{W^{T}}{2}\right) I_{1} \\
& C 3: A_{K}^{T} P+P A_{K}=-S-K Q K^{T} \\
& C 4: P \text { is positive definite and symmestric }
\end{aligned}
$$

Proof:

Necessity - By definition, if K is a matrix of stable SOC feedback gains the necessary conditions, Eqs. (2.1.23) and (2.1.25) are satisfied. Substitution of (2.1.16) and (2.1.25) into (2.1.23) leads to (2.1.24) and C3. The positive definiteness was demonstrated in Lemma 2 and the symmetry is easily shown. Since K is stable, there exists a unique solution P to $C 3$. Since S and Q are symmetric P^{T} also satisfies $C j$, hence $P^{T}=P$.

Sufficiency - Let K be a constant matrix of feedback gains for a system, A. Let S and Q be matrices which satisfy (R.1) and let p and W be matrices such that C1, C2, C3 and C4 are si ssfied. Constant values of \hat{S} and $\stackrel{\prime}{W}$ of the $S O C$ index may be calculated using P, S, and W. Then it is clear that P is the solution to Eq. (2.1.7), the unreduced Ricatti equation.

The stability property is presented in the following lemma.
Lerma 4:
Given that the weighting matrices satisfy the hypothesis of the theorem and that $C 1, C 2, C 3$ and $C 4$ are satisfied A_{K} is asymptotically stable. Proof:

The lemina is proved by a Lyapunov argument. Let $V=\underline{x}^{T} P \underline{x}$ be a positive definite Lyapunov function. Then

$$
\dot{V}=-\underline{x}^{T}\left(S+K Q K^{T}\right) \underline{x}
$$

and asymtotic stability is guaranteed since V is negative over any possible trajectory. ${ }^{4}$ Requiring S to be positive definite would be sufficient to insure the negative definiteness of V, but the soc Observable restriction of (R.i) guarantees that $\underline{x}^{T} S \underline{x}$ will not, be zero along any possible trajectory. This weaker requirement was introduced by Kalman ${ }^{12}$ for the allstate problem.

40.

The proof will be complete provided the unreduced steady state Ricatti equation has a unique positive definite solution. In that case the steady state solution to Eq. (2.1.7) and the solution to $C 3$ must be identical. This uniqueness property can be shown by reformulating the SOC problem into an allstate problem and applying Kalman's allstate result.

An allstate control \underline{u} is chosen to minimize

$$
\begin{equation*}
J=\frac{1}{2} \int_{t_{0}}^{t_{f}}\left(\underline{x}^{T} \bar{S} \underline{x}+\underline{u}^{T} Q \underline{u}\right) d t \tag{2.2.13}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\underline{\dot{x}}=\bar{A} \underline{x}+\bar{B} \underline{u} ; \quad \underline{x}\left(t_{0}\right)=\underline{c} \tag{2.2.14}
\end{equation*}
$$

Define the following relationship between the SOC cortrol \underline{u}, and the allstate control $\underline{\underline{u}}$.

$$
\begin{equation*}
\underline{\bar{u}}=\underline{u}+Q^{-1}\left(\frac{W^{T}+\hat{W}^{T}}{2}\right) \underline{x} \tag{2.2.15}
\end{equation*}
$$

Then

$$
\begin{aligned}
\underline{\underline{u}}^{T} Q \underline{\underline{u}} & =\underline{u}^{T} Q \underline{u}+\frac{1}{2} \underline{x}^{T}(W+\hat{W}) \underline{u}+\frac{1}{2} \underline{u}^{T}\left(W^{T}+\hat{W}^{T}\right) \underline{x} \\
& +\frac{1}{4} \underline{x}^{T}(W+\hat{W}) Q^{-1}\left(W^{T}+\hat{W}^{T} \cdot \underline{x}\right.
\end{aligned}
$$

or

$$
\begin{equation*}
\underline{u}^{T} Q \underline{u}+\underline{x}^{T}(W+\hat{W}) \underline{u}=\underline{u}^{T} Q \underline{\bar{u}}-\frac{1}{4} \underline{x}^{T}(W+\hat{W}) Q^{-1}\left(W^{T}+\hat{W}^{T}\right) \underline{x} \tag{2.2.16}
\end{equation*}
$$

'The SOC index is given by

$$
\begin{equation*}
J=\frac{1}{2} \int_{t_{0}}^{t_{f}}\left(\underline{x}^{T}(3+\hat{s}) \underline{x}+\underline{x}^{T}(W+\hat{W}) \underline{u}+\underline{u}^{T} Q \underline{u}\right) d t \tag{2.2.17}
\end{equation*}
$$

Substıtuting Eq. (2.2.15) into (2.2.17) leads to

$$
\begin{equation*}
J=\frac{1}{2} \int_{t_{0}}^{t_{f}}\left(\underline{x}^{T}\left(S+\hat{S}-\frac{1}{4}(W+\hat{W}) Q^{-1}\left(W^{T}+\hat{W}^{T}\right)\right) \underline{x}+\underline{\underline{u}}^{T} Q \underline{\underline{u}}\right) d t \tag{2.2.18}
\end{equation*}
$$

To insure that both problems have the same trajectory, require that the dynamics be equal.

$$
\underline{\dot{x}}=A \underline{x}+B \underline{u}=A \underline{x}+B\left(\underline{\bar{u}}-Q^{-1}\left(\frac{W^{T}+\hat{W}^{T}}{2}\right) \underline{x}\right)
$$

or

$$
\underline{\dot{x}}=\bar{A} \underline{x}+\bar{B} \underline{\bar{u}}
$$

where

$$
\begin{aligned}
& \bar{A}=A \cdot B Q^{-1}\left(\frac{W^{T}+\hat{W}^{T}}{2}\right) \\
& \bar{B}=B
\end{aligned}
$$

By requiring the indices to be equal, Eq. (2.2.13) and (2.2.18), the definition for S is obtained

$$
\bar{S}=s+\hat{S}-\frac{(W \div \hat{W}) Q^{-1}\left(W^{T}+\hat{W}^{T}\right)}{4}
$$

Thus the problems are equivalent and choosing $\underline{\bar{u}}$ to minimize Eq. (2.2.j3) will give the same answer as choosing u to minimize Eq. (2.1.1). Kalman ${ }^{11}$ has shown that there is a unique positive definite solution to the steady state allstate Ricatti equation. Since the Ricatti equations for the two problems discussed above are identical, this result also holds for the unreduced SOC equations. Kalman's proof depends on the scructure of the equations and not on his restrictions on the state weighting of the allstate problem; it is possible that $\overline{\mathrm{S}}$ may not satisfy the Kaiman restrictions. Thus the proof of Theorem 4 is complete.

In addition to demonstrating the stability of the SOC controi lew this theorem has characterized the optimalilty of a feedback control law in terms of the existence of a positive definite solution to a system of nonifnear equations, the steady state $S O C$ Ricatti equation.

2.3 Example

To clarify the formulation and indicate some of the properties of $S O C$, a simple second order damped oscillator examole is presented. For a more practical example see Chapter VII which is a case study of the use of SOC to design a control system for a large flexible launch vehicle.

The state space representation of the example is given below and pictured in Fig. 2.1.

$$
\begin{aligned}
& \ddot{y}+2 \rho \omega \dot{y}+\omega^{2} y=u \\
& x_{1}=\dot{y} \\
& x_{2}=y \\
& \underline{x}=A \underline{x}+B u ; \quad \underline{x}\left(t_{0}\right)=\underline{c}
\end{aligned}
$$

where

$$
A=\left[\begin{array}{cc}
-2 \rho \omega & -\mu)^{2} \\
1 & 0
\end{array}\right] ; \quad B=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Assume that a rate feedback control law structure has been specified.

$$
u=-k x_{1}=-k \dot{y}
$$

Now NS $=2$, $\mathrm{NC}=1$, and $L=1$. Let

$$
Q=q ; \quad S=\left[\begin{array}{ll}
S_{1} & S_{2} \\
S_{2} & S_{3}
\end{array}\right] ; \quad P=\left[\begin{array}{ll}
P_{1} & P_{2} \\
P_{2} & P_{3}
\end{array}\right] ; \quad W=\left[\begin{array}{l}
W_{1} \\
0
\end{array}\right]
$$

FIG. 2-1

1
$[$
Γ
Γ
$[$
IT

$$
44 .
$$

The control u is chosen to minimize the following SOC index.

$$
J=\frac{1}{4} \int_{0}^{\infty}\left(\underline{x}^{T} S \underline{x}^{\infty} \underline{x}^{T} \hat{S} \underline{x}+\underline{x}^{T}(W+\hat{W}) u+q u^{2}\right) d t
$$

The SOC steady state matrix Ricatti equation may be written as a system of three scalar equations.

$$
\begin{equation*}
A_{K}^{T} P+P A_{K}=-S-K Q K^{T} \tag{2.3.1}
\end{equation*}
$$

or

$$
\begin{align*}
& 2 P_{1}(-2 J \omega-k)+2 P_{2}=-S_{1}-q k^{2} \tag{2.3.2}\\
& -P_{1} \omega^{2}+P_{2}(-2 J \omega-k)+P_{3}=-s_{2} \\
& -2 \omega^{2} P_{2}=-s_{3} \tag{2.3.4}
\end{align*}
$$

The scalar gain is found from

$$
\begin{align*}
& K^{T}=Q^{-1}\left(B^{T} P+\frac{W^{T}}{2}\right) I_{1} \tag{2.3.5}\\
& K=\left(\frac{P_{1}+\frac{W_{1}}{2}}{q}\right) \tag{2.3.6}
\end{align*}
$$

The elements of the Ricatti matrix and the feedback gains are found by the siaultaneous solution of Eq. (2.3.2) $-(2.3 .4$) and (2.3.6). Recall that the positive definite solution is sought.

$$
\begin{align*}
& P_{1}=-2 q J_{\omega}+\sqrt{4 q^{2} \rho^{2} \omega^{2}+S_{1} q+\frac{W_{1}}{4}+\frac{S_{3} q}{\omega^{2}}} \tag{2.3.7}\\
& P_{2}=-\frac{S_{3}}{20^{2}} \tag{2.3.8}\\
& P_{3}=P_{1} \omega^{2}+P_{2}(2 \boldsymbol{J} \omega+k)-s_{2} \tag{2.3.9}\\
& k=\frac{W_{1}}{2 q}-2 \dot{J_{\omega}}+\frac{1}{q} \sqrt{4 q^{2} j^{2} \omega^{2}+s_{1} q+\frac{w_{1}}{4}+\frac{s_{3} q}{\omega^{2}}} \tag{2.3.10}
\end{align*}
$$

The appropriate equations are used to find the matrices which complete the formulation of the sOC problems.

$$
\begin{aligned}
& I_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& \hat{W}=-2 I_{2}\left(P B+\frac{W}{2}\right)=\left[\begin{array}{c}
0 \\
-2 P_{2}
\end{array}\right] \\
& S=\frac{1}{2}\left((W+\hat{W}) K^{T}+K(W+\hat{W})^{T}\right) \\
& \hat{S}=\left[\begin{array}{ll}
\hat{S}_{1} & \hat{S}_{2} \\
\hat{S}_{2} & \hat{S}_{3}
\end{array}\right] \\
& \hat{S}_{1}=W_{1} k=\frac{W_{1}\left(2 P_{1}+W_{1}\right)}{2 q} \\
& \hat{S}_{2}=-\frac{P_{2}\left(2 P_{1}+W_{1}\right)}{2 q} \\
& \hat{S}_{3}=0
\end{aligned}
$$

To be more specific, consider some typical numbers. Let $\mathcal{=}=0$ aid $\omega=1$ and choose

$$
s=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] ; \quad W=\left[\begin{array}{l}
0 \\
0
\end{array}\right] ; \quad q=1
$$

From Eggs. (2.3.7)-(2.3.10)

$$
\begin{aligned}
& P_{1}=\sqrt{2} \\
& P_{2}=\frac{1}{2} \\
& P_{3}=\frac{3}{2} \sqrt{2} \\
& k=\sqrt{2}
\end{aligned}
$$

Thus

$$
A_{K}=A-B K^{T}=\left[\begin{array}{cc}
-\sqrt{2} & -1 \\
1 & 0
\end{array}\right]
$$

Note that the closed loop systems has a characteristic frequency of 1 radian $/ \mathrm{sec}$. and a damping ratio, ρ, of .707 . The remaining $s 0 C$ weighting matrices are given by

$$
\hat{W}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

and

$$
S=\left[\begin{array}{cc}
0 & -\frac{\sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2} & 0
\end{array}\right]
$$

Finally, the SOC index may be written as

$$
J=\frac{1}{2} \int_{t_{0}}^{\infty}\left(x_{1}^{2}-\sqrt{2} x_{1} x_{2}+x_{2}^{2}-x_{2} u+u^{2}\right) d t
$$

From Eq. (2.3.4) it is seen that ω must be non-zero in order that the solutions to the $S O C$ problem exist. What does this imply? An examination of tise properties of the A matrix with $\omega=0$ indicates that with a rate feedback control law, the system is not SOC controllable. The characteristic equation for the closed loop system is given below.

$$
\operatorname{det}\left(S I-A_{K}\right)=0
$$

where

$$
A_{K}=A-B K^{T}
$$

47.

Thus

$$
\operatorname{det}\left[\begin{array}{cc}
S+k & 0 \\
-1 & S
\end{array}\right]=0
$$

or

$$
s(s+k)=0
$$

The characteristic roots are

$$
\begin{aligned}
& S_{1}=0 \\
& S_{2}=-k
\end{aligned}
$$

Clearly, there exists no value of k such that the closed loop system is asymtotically stable; thus this particuiar system and control structure is not $80 C$ controllable.

For this example, $S O C$ solutions exist for any set of matrices which satisfy (P.1). Note that any positive gain is sufficient for asymtotic stability of the closed loop system and any positive semi-definite S is SOC observable. From Eq. (2.3.10) any pcsitive definite S with positive q leads to a positive value of gain for any W_{1} and hence existence of SOC solutions.

In the chapters to follow, the computational aspects of the $S O C$ problem are discussed and the $S O C$ concept is applied to various general cuntrol problems of current interest.

Nomenclature

Matrices

A System matrix: WS by NS
$\overline{\mathrm{A}}$ Equivalent allstate system matrix: IS by NS
$A_{\bar{K}} \quad$ Allstate closed loop system matrix: NS by NS
A_{K}
B Control coeficient matrix: NS by NC
$\stackrel{\rightharpoonup}{\mathbf{B}}$
Equivalent allstate control coefficient matrix: NS by NC
D Notational matrix
E Notational matrix
H Observability matrix: NS by NS
I_{1} Notational matrix
I_{2} Notational matrix
$I_{\text {L }} \quad$ Notational matrix
K SOC feedback gain matrix: NS by NC
$\overline{\mathrm{K}} \quad$ Allstate feedback gain matrix: NS by MC
P Ricatti matrix
Q Symmetric control weighting matrix: NC by NC
S Symmetric state weighting matrix: NS by NS
\hat{S} Symmetric state weighting matrix, classtwo: NS by NS
\bar{S} Equivalent allstate weighting matrix: NS by NS
W Bilinear weighting matrix: NS by NC
\hat{W} Bilinear weighting matrix, class two: NS by NC
$\underline{\Phi}_{\mathrm{K}}$ Closed loop state transition matrix: NS by HS

Vectors

c State initial condition vector: NS
g Weighting vector
$\hat{\mathbf{k}}$ Feedback gain vector
p Costate or multiplier vector: NS
"P" Equivalent Ricatti vector: NP
u Control vector: $\mathbb{H} C$
x State vector: NS

Scalars

J Cost index
V Netational scalar

Chapter III

COMPUTATIONAL CONSIDERATIONS

3.1 Introduction

If the theory of the preceding chapters is to be of any practical use, efficient computational procedures should be available. Even for modest problems, most of the modern control theory techniques tax even the amazing capabilities of state of the art digital computers. One of the goals of this work was to develop a design technique with reduced computational requirements. This technique should be programable on almost any digital facility and might de very useful as a time-share library routine. Hopefully, the procedure would have low execution times and would be easy to use. In this chapter, numerical methods are developed for the $S O C$ problem with these properties.

SOC has a decided advantage over other optimal schemes, since the structure of the necessary condition equations leads to reduced computational effort. There are four main considerations.

Point 1: The two point boundary value problem has been eliminated.
Comment: The Ricatti matrix has been used to decouple the two point boundary value problem of the necessary conditions. That problem has been replaced with a system of simultaneous nonlinear differentialor algebraic equations.

Point 2: The structure of the necessary conditions is independent of the size and complexity of the system.

Comment: The necessary conditions of an equivalent parameter optimization problem are a system of nonlinear equations which mast be s lived to obtain the optimal feedback gains. The structure of the equations becomes more and more
complicated as the size and complexity of the system increases. Moreover there is no systems iic wa, to formulate these equations. In contrast, the well defined SOC necessary conditions have a quadratic structure which is independent of the size of the problem.

Point 3: The SOC feedback gains are independent of the state initial conditions.

Comment: This fact is clear from the structure of the SOC necessary conditions. The feadback gains are a function of the Ricatti matrix which is independert of the state as a result of the decoupling of the two point boundary value problem. Thus, the feedback gains comprise a control law which is optinal for all initial conditions. Since most other schemes generate control laws which depend on the initial conditions, a suitable choice of design initial conditions must be made. In some cases, attempts have been made to develop a systematic procedure for picking a design initial condition vector. These procedures usually involve a large amount of computational effort.

Point 4: There exist efficient numerical methods for the solution of the SOC equations.

Comment: For almost all problems with NS larger than two, it is impossible to obtain an analytical solution to the Ricatti equation. There are two basic numerical approaches. The finite time interval and steady state problems may be solved by numerical integration of the Ricatti differential equation or the steady state problem may be solved by the direct solution of the steady state Ricatti equation.

3.2 Solution by Numerical Integration

Since the two point boundary value problem was decoupled by the Ricatti transformation, the finite time interval problem may be solved by straightforward numerical integration. The Ricatti equation is integrated backwards in time from t_{f} to obtain the Ricatti matrix which is used to calculate the feedback gains. Then the dynamics are integrated in the forward time direction to simulate the system trajectory.

The integration approach may be used to calculate the solution to the steady state problem, although not in a straightforward manner. The SOC index contains weighting matrices, \hat{W} and \hat{S}, which are functions of the unknown steady state Ricatti matrix. Thus integration of the unreduced Ricatti equation is impossible. However the reduced Ricatti differential equation may be used. Note that this equation is not equivalent to the unreduced SOC Ricatti equation. This is clear since \hat{W} of the unreduced equation is a function of the steady state Ricatti matrix while \hat{W} corresponding to the reduced equation is a function of the time varying Ricatti matrix. However if a steady state solution of the reduced equation exists, this matrix will also be a solution to the steady state unreduced SOC Ricatti equation. The general conditions for existence of the solution to the reduced differential equation have not been established, although numerical evidence suggests that the solution of most steady state SOC Ricatti equations may be obtained by the solution of the corresponding reduced Ricatti equation. This may be a moot point since the next section describes the direct solution of the steady state equation by iterative means. This approach is usually more effective than numerical integration from accuracy and execution time considerations.

3.3 Iterative Solution of the Steady State Equation

The direct solution of the allstate Ricatti equation has been proposed by various authors. $40,41,42,43$ For the most part these methods can be extended to the $S O C$ problem. The concepts of some of these methods are described briefly and an extension of one of the more promising is derived. In addition, a new method applicable to the allstate as well as the SOC equations is proposed.

MacFarlane ${ }^{40}$ and Bass ${ }^{41}$ have dereloped procedures which require calculation of eigenvalues. To determine these eigenvalues is not a trivial task especially for large systems. Blackburn ${ }^{42}$ irtroduced a procedure based on the Newton Raphson method. See Appendix B for a brief description of the Newton Raphson (N.R.) concept. The Blacixburn algorithm involves the direct application of the N.R. approach to the algebraic Ricatti equation. In a similar way this approach can be applied to the reduced steady state $S O C$ equations.

$$
A^{T} P+P A+S-E Q^{-1} E^{T}+I_{2} E Q^{-1} E^{T} I_{2}+\frac{W}{2} Q^{-1} E^{T} I_{1}+I_{1} E^{-1} \frac{W^{T}}{2}=0
$$

where

$$
\begin{aligned}
& E=P B+\frac{W}{2} \\
& I_{2} W=0
\end{aligned}
$$

The major drawback of this algorithm is that an initial guess for the Ricatti matrix must correspond to a set of stable gains. That is, if P^{0} is the initial guess then ($A-B Q^{-1} B^{T} P^{0}$) must be stable. In most cases it is a difficult task to find a suitable value of P°.

Recently Kleinman ${ }^{43}$ introduced an algorithm which is also a Newton Raphson method. However, the structure of this algorithm is different from that of the usual N.R. approach and it possesses regional rather than local convergence
properties. Moreover, only a set of stable gains is required to initialize this method. With a little effort, the Kleinman method may be extended to the SOC problem. However, the Kleinman-SOC algorithm must be started with a P° corresponding to stable gains. This algorithm is to be preferred over the Blackburn algorithm since the implementation of the former is somewhat simpler and for the allstate case it does not require the knowledge of a stable P°. The basic concept of the Kleinman algorithm involves the simplification of the Newton Raphson algorithm by recognizing certain properties of the Ricatti equation. Consider the all tate Ricatti equation

$$
F(P)=A^{T} P+P A+S-P B Q^{-1} B^{T} P=0
$$

or in terms of the closed loop system matrix

$$
\begin{equation*}
F(P)=A_{K}^{T} P+P A_{K}+S+K Q K^{T}=0 \tag{33.2}
\end{equation*}
$$

and the recursive relation defining the standard Newton Raphson method in function space is,

$$
P^{i+1}=P^{i}-\left.\left(\frac{d F}{d P}\right)^{-1}\right|_{P=P^{1}} F\left(P^{i}\right)
$$

where the $\left(\frac{d F}{d P}\right)^{-1}$ indicates the inverse of the differential matrix, $\frac{d F}{d P}$. That is, if

$$
d F=\frac{d F}{d P} d P
$$

then

$$
d P=\left(\frac{d F}{d P}\right)^{-1} d F
$$

To derive this matrix, take the total differential of $F(P)$.

$$
d F=A^{T} d P+d P A-d P B Q^{-1} B^{T} P-P B Q^{-1} B^{T} d P
$$

Since for the allstate problem $K^{T}=Q^{-1} B^{T} P$ and $A_{K}=A-B K^{T}$ this equation may be rewritten

$$
d F=A_{K}^{T} d P+d P A_{K}
$$

or

$$
\begin{equation*}
\frac{\partial F}{\partial P}=\left(A_{K}{ }^{T} * I+I * A_{K}\right) \tag{3.3.4}
\end{equation*}
$$

where * indicates the Kronecker product. Thus

$$
\left(\frac{d F}{d P}\right)^{-1}=\left(A_{K}^{T} * I+I * A_{K}\right)^{-1}
$$

and the inverse exists if A_{K} is stable. Equation (3.3.3) may be rewritten as

$$
P^{i+1}=P^{i}-\left(A_{K^{i}}{ }^{T} * I+I * A_{K^{i}}\right)^{-1}\left(A_{K^{i}} T_{P^{i}}+P_{K^{i}}^{i} A+S+K^{i} Q K^{i^{T}}\right)
$$

By definition

$$
\left(A_{K^{i}}{ }^{T} * I+I * A_{K^{i}}\right)^{-1}\left(A_{K^{i}} P^{i}+P^{i} A_{K^{i}}\right)=P^{i}
$$

Thus the Kleinman recursive equation is obtained

$$
P^{i+1}=-\left.\left(\frac{d F}{d P}\right)^{-1}\right|_{P=P^{i}}\left(S+K^{i} Q K^{i^{T}}\right)
$$

or

$$
A_{K^{i}}^{T} P^{i+1}+P^{i+1} A_{K^{i}}=-S-K^{i} Q K^{i^{T}}
$$

Using this same concept, a similar algorithm can be formulated for the SOC Ricatti equation. However, in this case, P^{i} is no: eliminated from the recursive relation. Thus a P^{0} corresponding to stable gains is required to start the Kleinman-SOC procedure. Write the SOC Ricatti equation in terms of P and let

$$
\begin{aligned}
& I_{2} W=0 \\
& F(P)=P A+A^{T} P+S-I_{1}\left(P B+\frac{W}{2}\right) Q^{-1}\left(B^{T} P+\frac{W^{T}}{2}\right) I_{1} \\
&-I_{1}\left(F B+\frac{W}{2}\right) Q^{-1} B^{T} P I_{2} \\
&-I_{2} P B Q^{-1}\left(B^{T} P+\frac{W^{T}}{2}\right) I_{1} \\
&+\frac{W}{2} Q^{-1}\left(B^{T} P+\frac{W^{T}}{2}\right) I_{1}+I_{1}\left(P B+\frac{V}{2}\right) Q^{-1} \frac{W^{T}}{2}=0
\end{aligned}
$$

Taking the total differential

$$
\begin{aligned}
d F=d P A+A^{T} d P & -I_{1}(d P B) Q^{-1}\left(B^{T} P+\frac{W^{T}}{2}\right) I_{1}-I_{1}\left(P B+\frac{W}{2}\right) Q^{-1}\left(B^{T} d P\right) I_{1} \\
& -I_{1}(d P B) Q^{-1} B^{T} P I_{2}-I_{1}\left(P B+\frac{W}{2}\right) Q^{-1}\left(B^{T} d P\right) I_{2} \\
& -I_{2}(d P B) Q^{-1}\left(B^{T} P+\frac{W^{T}}{2}\right) I_{1}-I_{2} P B Q^{-1}\left(B^{T} d P\right) I_{1} \\
& +\frac{W}{2} Q^{-1}\left(B^{T} d P\right) I_{1}+I_{1}(d P B) Q^{-1} \frac{W^{T}}{2}=0
\end{aligned}
$$

This equation can be written in terms of the closed loop system.

$$
\begin{aligned}
d F=d P A_{K}+A_{K}^{T} d P & \cdot I_{1} d P B Q^{-1}\left(B^{T} P I_{2}-\frac{N^{T}}{2}\right) \\
& -\left(I_{2} P B-\frac{W}{2}\right) Q^{-1} B^{T} d P I_{1}
\end{aligned}
$$

or

$$
d F=H d P
$$

where

$$
\begin{aligned}
H=I * A_{K}+A_{K}^{T} * I & -I_{1} I * B Q^{-1}\left(B^{T} P I_{2}-\frac{W^{T}}{2}\right) \\
& -\left(I_{2} P B-\frac{W}{2}\right) Q^{-1} B^{T} * I I_{1}
\end{aligned}
$$

The Newton Raphson recursive relation may be written as

$$
P^{i+1}=P^{1}-H^{-1} F\left(P^{1}\right)
$$

Anticipating that the desired structure is

$$
P^{1+1}=-H^{-1} G\left(P^{i}\right)
$$

rewrite $F\left(P_{1}\right)$ as follows

$$
P^{1} A_{K^{1}}+A_{K^{1}} T P^{i}+S+K^{i} Q K^{1^{T}}=0
$$

or adding zero

$$
F\left(P^{i}\right)=F^{1} A_{K^{i}}+A_{K} X^{T} P^{i}+S+K^{1} Q K^{1^{T}}-D^{1}+D^{-}-D^{1^{T}}+D^{i^{T}}
$$

where

$$
D^{1}=I_{1} P^{1} B Q^{-1}\left(B^{T} P^{1} I_{2}-\frac{W^{T}}{2}\right)
$$

From the definition of H

$$
P^{1+1}=P^{1}-H^{-1} F\left(P^{i}\right)=P^{1}-P^{1}-H^{-1}\left(S+K^{i} Q K^{1^{T}}+D_{1}+D_{1}^{T}\right)
$$

Thus

$$
P^{1+1}=-H^{-1} G\left(P^{i}\right)
$$

where

$$
G\left(P^{i}\right)=S+K^{1} Q K^{i^{T}}+D^{i}+D^{1^{T}}
$$

If $I_{2}=0$, which is true for the allstate problem, this algorithm reduces to Kleinman's algorithm. To summarize, the Kleinman-SOC algorithm is an application of the Newton Raphson concept to the solution of the $S O C$ Ricatti equation. An initial guess for the Ricatti matrix corresponding to a set of stable gains
is required. For convenience the method is implemented in terms of the equivalent vector from, " P ", and require a single solution of a system of NP linear:
equations for each iteration.

$$
N P=\frac{\operatorname{NS}(\mathrm{NS}+1)}{2}
$$

A New Algorithm

The proposed algorithm is unique in that the Ricatti equation is not solved directly. Instead a feedback gain equation is solved for the gains with the Ricatti matrix acting as a constraint relating the feedback gains and the Ricatti matrix. The steady stete SOC equations are given below.

$$
\begin{align*}
& A_{K}=A-B K^{T} \tag{3.3.5}\\
& A_{K}^{T} P+P A_{K}+S+K Q K^{T}=0 \tag{3.3.6}\\
& Q^{-1}\left(B^{\square} P+\frac{W^{T}}{2}\right) I_{1}-K^{T}=0
\end{align*}
$$

The $S O C$ Ricatti equation is used to find P as a function of K which leads to a gain equation in terms of K. It will be convenient to formulate the matrix equations in terms of a vector equation. Recall that the notation ${ }^{[}{ }^{\square}$ indicates a vector formed by the column ordering of the matrix D.

$$
\underline{F}\left({ }^{D} K^{D}\right)=Q^{0}\left(B^{T} P(K)-\frac{W^{T}}{2}\right) I_{1}^{E}-E_{K}^{0}=0
$$

This notation is slightly redundant since the gain functions corresponding to unavailable state gains are identically zero. This equation is solved by Newton Raphson iteration. With this approach the reduction in the number of equations to be solved may be significant. The direct solution of the Ricatti equation requires that $\frac{\operatorname{NS}(N S+I)}{2}$ nonlinear equations be solved while the proposed algorithm requires the solution of (NS-L)NC equations. For example, if NS $=7, L=5$, and NC $=1$ there are 28 unknown Ricatti elements and only

2 unknown gains. An additional advantage of this new scheme is that only a stable set of gains is required to start the method.

The recursive relation defining the algorithm is given by

$$
\square_{\underline{K}}^{\square_{i+1}}=\square_{\underline{K}}^{D i}-\left\{\nabla \omega_{K} \square^{F}\left({ }^{0} K^{\square 1}\right)\right\}^{-1} \underline{E}\left({ }^{\square} K^{\square i}\right)
$$

where $\nabla_{\square_{K}} F$ represents the Jacobian matrix of first derivatives such that

$$
\nabla_{\square_{K}}{ }^{F} \quad d^{\square} \underline{K}^{\square}=d F
$$

The central concept of the algorithm concerns finding P as a function of K and calculating the Jacobian. Manipulations may be carried out more conveniently in terms of the equivalent vector equations. Recall that "P" represents a NP element vector found from P as follows:

$$
{ }^{\prime P^{\prime T}}=\left(P_{1,1} ; \ldots P_{N S, 1} ; P_{2,2} ; \ldots ; P_{N S, N S}\right)
$$

The Ricatti equation may be rewritten in vector form,

$$
E \quad " P "=-"\left(S+K Q K^{T}\right) "
$$

where

$$
E="\left(A_{K}^{T} * I+I * A_{K}\right) "
$$

and

$$
" P "(K)=-E^{-1} "\left(S+K Q K^{T}\right) "
$$

The inverse of E exists as long as A_{K} dces not have two eigenvalues, λ_{i}, λ_{j} such that $\lambda_{i}+\lambda_{j}=0.44$ Now

$$
\frac{\partial^{\prime P} P^{\prime}}{\partial_{K_{j}^{Q}}^{D}}=-\frac{\partial_{E^{-1}}^{\partial^{D} K_{j}^{D}}}{} "\left(S+K Q K^{T}\right) "-E^{-1} \frac{\partial^{\prime \prime}\left(S+K Q K^{T}\right)^{"}}{\partial^{D} K_{j}^{D}}
$$

where $\left(\frac{\partial^{\prime P} P^{\prime \prime}}{\partial K_{j}}\right)$ is the partial derivative of the l th element of " $\underline{P}^{\text {" }}$ with
respect to the $j^{\text {th }}$ element of ${ }^{\Delta} K^{\Delta}$. Since

$$
\begin{align*}
& \frac{\partial E^{-1}}{\partial{ }^{\square} K_{j}^{a}}=-E^{-1} \frac{\partial E}{\partial{ }^{\square} K_{j}^{a}} E^{-1} \\
& \frac{\partial^{\prime \prime} P^{\prime \prime}}{\partial^{\square} K_{j}^{a}}=E^{-1} \frac{\partial E}{\partial^{\square} K_{j}^{a}} E^{-1} "\left(S+K Q K^{T}\right) "-E^{-1} \frac{\partial}{\partial^{D} K_{j}^{a}}\left(" K Q K^{T}{ }^{T}\right) \tag{3.3.10}
\end{align*}
$$

Thus
where

$$
\frac{\partial_{F}}{\partial^{\square} K_{j}^{D}}={ }^{\square}\left(Q^{-1} B^{T} \frac{\partial_{P}}{\left.\partial_{K_{j}^{\square}}^{D} I_{1}\right)^{\square}-\frac{\partial^{D} K^{\square}}{\delta^{\square} K_{j}^{D}}, ~}\right.
$$

 the matrix form.

At each iteration two basic tasks must be performed. In the first

$$
\frac{\partial " P "}{\partial_{K_{j}}{ }^{\prime \prime}} \quad 1 \leq j \leq N C(N S-L)
$$

is calculated by solving $\operatorname{NC}($ NSS-L $)$ systems of $N P$ linear equations, all with the same left hand side. This is significant since after the initial solution, there is very little effort involved in solving additional systems with the same coefficient matrix. Note that Eq. (3.3.10) can be rewritten as

To calculate this matrix, first solve the following system of NP linear equations for "P".

$$
E " P "=-"(S+K Q K) "
$$

Since $\frac{\dot{y}^{E}}{\partial^{\nu} K_{j}^{\mu}}$ is independent of ${ }^{\square}{ }^{\square}$ it may be computed once and stored. Secondly, the vectors, $\frac{\mathcal{D}^{\prime P} P^{\prime}}{d^{K_{j}^{D}}}$ are found by solving

$$
E \frac{\partial)^{P} P^{\prime}}{\nu_{K_{j}}^{\dot{L}}}=\frac{D_{E}}{\partial_{K_{j}}^{D_{j}}} " P "-\frac{\partial}{\partial^{\nu} K_{j}^{\sigma}}\left(" K Q K^{T}{ }^{T}\right)
$$

This involves the solution of NC(NS-L) additional linear systems 211 with the same coefficient matrix. With this data, the Jacobian of the gain function equation may be formulated.

The second phase of each iteration involves the computation of the gain perturbations by the solution of a system of NS - L $]^{\text {a }}$:ar equations

$$
\nabla_{\Delta K^{D i}} F \cdot \Delta^{\Delta} \underline{K}^{\omega}=-F\left(K^{\square}{ }^{i}\right)
$$

followed by the calculation of the new values of the gains

$$
\underline{\underline{V}}^{\square i+1}=\underline{K}^{\Delta i}+\Delta_{\underline{K}}^{\Delta}
$$

Thus, to execute one iteration of this algorithm, NC(NS-L) +1 systems of $\frac{N S(N S+1)}{2}$ order linear equations all with the same coefficient matrix and a linear system of NS - L equations must be solved. This new method has been called the SOCDES algorithm since it plays a role in the $S O C$ design procedure described in the next chapter.

3.4 Compurison of Algorit.ims

To solve the finite time varying problem numerical integration must be used. It has been found that the simpler algorithms such as Fourth order Runge Kutta give more satisfactory results than some of the more sophisticated methods such as Hamming predictor corrector or the Bulirsch - Stoer technique. Care must be taken when using these methods since an improper choice of integration step size or other algorithin parameters may lead to excessive execution times or erroneous results.

For the steady state problem, it is usually advisable to follow the iterative path. If a suitable initial guess can be found, then the iterative techniques have faster execution times and a simple control over the accuracy of the results. Of these procedures the Kleinman SOC or SOCDES methods appear to be superior. The former requires an initial guess for the Ricatti matrix corresponding to stable gains while SOCDES needs only the stable gains. Since Kleinman SOC has a simpler structure, execution time per iteration is less than that of SOCDES. However, it has been found that SOCDES usually converges in a fewer number of iterations. Thus even if a suitable starting value for the Kleinman SOC method is known, it may be more efficient to use SOCDES especially for the many practical problems in which the number of feedback gains is small with respect to the number of Ricatti elements. For example, a third order SOC problem with one feedback gain was solved in 12 seconds by SOCDES, 18 seconds by Kleinman $S O C$ and 150 seconds by Runge Kutta integration.

Nomenclature

Matrices

A System matrix: NS by NS
$A_{K} \quad$ Closed loop system matrix: NS by NS
B Control coefficient matrix: NS by NC
E Equivalent vector equation coefficient matrix: NP by NP
$\overline{\mathrm{E}} \quad$ Notational matrix
$\frac{\mathrm{dF}}{\mathrm{dP}} \quad$ Differential matrix: NS by NS
$I_{1} \quad$ Notational matrix
$I_{2} \quad$ Notational matrix
K Feedback gain matrix: NS by NC
P Ricatti matrix: NS by NS
Q Symmetric control weighting matrix: NC by NC
S Symmetric state weighting matrix: NS by NS
W Biiinear weighting matrix: NS by NC
$\nabla_{0_{K}} F \quad$ Jacobian matrix: NC.NS by NC.NS

Vectors
${ }^{\Sigma} \underline{K}^{\text {i }} \quad$ Feedback gain vector: NC.NS
"P" Equivalent Ricatti vector: NP
$\frac{\partial^{\prime \prime} P^{\prime}}{\partial^{D} K_{j}^{D}}$
Partial derivative vector: NI

4.1 Introduction

The basic SOC theory and computational considerations have been examined in previous chapters. It has been shown that the optimal control law of the SOC problem is linear feedback with only the available states fed back. In addition eff. ient numerical procedures are available for the calculation of these control laws. The theory and the numerical methods are tied together to form a design procedure which may be useful for the study of realistic unavailable state problems.

To apply these techniques to a problem, a state variable representation of the systems must be obtained. From a block diagram or differential equations describing the system a set of first order linear differential equations of the following form is determined.

$$
\underline{\dot{x}}=A \underline{x}+B \underline{u}
$$

where \underline{x} is the state of the system and \underline{u} the control or input vector. This model should be formulated so that the last L states of the state vector are the unavailable or unmeasurable variables. Note that in many cases an engineering decision is made as to which states are available. That is, there may exist sensors which can measure some of the unavailable states, but for economic or other reasons it may be decided to assume that these states are unavailable.

In addition, the control law structure and design specifications or goals must be determined. Some of the specifications might include closed loop stability, an inherent property of SOC, a maximum peak value of one or more of the states to a particular input, and a well damped initial condition response.

A SOC cost index is formulated and S and Q are chosen to model the design specification. This choice of S and Q is somewhat arbitrary since some of the specifications are not explicitly represented in the quadratic index. However, previous work has shown that the use of the quadratic index leads to systems which are satisfactory with respect to the classical specifications of overshoot, damping, etc. After the initial SOC problem has been solved, the response of the system is compared with the design requirements. In some cases, this initial design may be unsatisfactory. Then the weightings are changed in a logical manner so as to correct the unacceptable features of the current design. The SOC problem is solved and again the response is evaluated. This concept is different from the usual trial and error procedure for two reasons. First, the interpretation of $S O C$ as an optimal control problem removes some of the art from the design process. At each step, the new weighting are chosen in a systematic manner rather than in an intuitive marner. For example if the peak or integral square values of the states are too large than the state weighting would be increased and or the control weighting decreased in order to reduce this state error. The choice of the perourbation in the weighting matrices is discussed in a nore precise way in section 4.3 . Second, the whole procedure may be programmed to run
automatically on a digital computer. Thus in a short time a number of designs can be made and evaluated allowing the engineer to gain insight into the problem.

It is possible that after a careful evaluation of the system, through the application of $S O C$, no satisfactory design is found. This may indicate that the äasign specifications are inconsistent with respect to the sys'jem and the chosen control structure. Then the control structure, the system, or the design specifications may be changed and the design procedure repeated. This approach is not in elixir but it has been found to be a very useful tool for the study and design of linear control systems.

4.2 SOC Design Procedure

In this section an explicit systematic procedure for the design of control lews based on the concepts of section 2.1 is proposed. The certral concept is to use the Reverse SOC problem to obtain an initial set of weighting matrices. These weightings are perturbed in a systematic manner to obtain a more satisfactory design. For each set of weightings the SOC equations are solved by numerical integration for finite time interval problems and by SOCDES for the steady state problem. A digital computer prosram SOCSES I based on this method has been developed. See Appendix C for the description, flow chart and listing of the program. The reduced running time and user effort compared with other optimal design contro? programs, indicate that SOCDES I may be a very useful design tool. In Chapter VII SOC is applied to the prublem of controlling a large flexible launch vehicle.

In Fig. 4.I, a block didsram of the method is shown and it is described below.

Step 1: Determine System Specifications

Comment: Based on the problem to be solved a reasonable set of specifications must be determined. SOCDES I may be helpful in pointing out inconsistent requirements.

Step 2: Select a Ccintrol Configuration
Comment: As indicated above, the unavailable states must be specified. In addition, compensation in the form of a filter or network may be ised. It may be considered as part of the system to be controlled and some of its parameters may be chosen by feeding back some of the filter states.

Step 3: Solve the Reverse SOC Problem

Comment: For the finite time interval problem any set of finite continuous feedback gains may be used in the solution of the Reverse problem. However, for the steady state problem a stable set of gains must be obtained. For the many physical systems which are stable, zero gains are sufficient. For those that are unstable it is usually not very difficult to generate a set of gains with stability as the only criterion. Even for the complex booster of Chapter VII, a calculation of the Routh array leads to a stable set of gains.

Note that the existence and uniqueness properties of Chapter II and the convergence properties of the iterative schemes of Chapter III are of a local nature. SOCDES I may be used to exterd these properties to a region. For example if during the design procedure the Jacobian disappears or the equations become numerically difficult to solve, it is

FIG. 4.1
possible to resolve the reverse problem and thus define a new neighbozhood of existence and convergence which allows the design process to be continued.

Step 4: Choose New Weightings

Comment: See Section 4.3

Step 5: Calculate the SOC Control Law

Commert: The new SCi prublem is solved by one of the numerical techniques of Chapter 3.

Step 6: Are the Specifications Met?

Comment: The current design is checked to see if the design specifications are met. This may include simulation of the closed loop system or other calculations such as finding the closed loop poles. If specifications are met, the design is complete; if not the design procedure is continued.

Step 7: Has the Control Configuration Been Extensively Investigated? Comment: If the current control configuration has been carefully examined and no satisfactory design has been obtained then two choices are available. First, the analysis done so far may point out a new set of feasible specifications. Second, a new control structure may be chosen. This might include a new choice of available states or the use of a d"fferent compensator. Once a choice is made the design returns to step 3 and the cycle continues. Since the computational effort involved in implemeating this procedure is low it may be feasible to examine various configurations
and compare the results. In this way it may be possible to gain insight into the choice of a "best" controller configuration.

4.3 Systematic Choice of Perturbation Weighting Matrices

After each iteration in the SOC design procedure new weightings must be chosen to improve the design. A tradeoff between syster error and control effort can be obtained by varying the relative magnitudes of S and Q. Intuitive reasoning indicates that by increasing the state weighting, S, the integral state error will decrease while increasing the control weighting, Q, will lead to reduced values of the integral square control effort. Since the control law is of a closed loop nature, the integral square values of sontrol effort and state error are related. Assume that the state weighting is increased. In general, this will cause the magnitude of the feedback gains to increase and the staie error to decrease. The control effort may increase or decrease corresponding to the relative magnitudes of these changes. These inituitive concepts have been substantiqted by numerous examples. Moreover, it is possible to derive an expression which indicates the effect of perturbing the weighting matrices.

Given ar expression which represents the properties of interest, say $\hat{J}_{x}=\int_{t_{0}}^{t} \underline{x}^{T} \underline{x} d t$, then determine the gradient of this expression with respect to the weightings. Again let g represent a weighting vector formed from the independent elements of S, W, and Q. Then the perturbation d \hat{J}_{x} due to weighting changes is given by

$$
d \hat{J}_{x}=\frac{\partial J_{x}^{T}}{\partial g} d g
$$

where $\frac{\hat{J}_{x}}{\partial g}$ is a vector such that $\left[\frac{\partial \hat{J}_{x}}{\partial_{g}}\right]_{i}=\frac{\hat{\sigma}_{x}}{\hat{J}_{g_{i}}}$

This approach is not restricted to integral square quantities and may be applied to any design characteristics which can be represented by a mathematical expression. Moreover, an indication of the consistency of the design requirements may be obtained. Form a vector composed of NN design specification expressions, $\hat{J}_{i}, I \leq i \leftrightharpoons \mathrm{NN}$.

$$
\underline{\hat{J}}=\left[\begin{array}{l}
\hat{J}_{1} \\
\vdots \\
\vdots \\
\hat{J}_{\mathrm{M}}
\end{array}\right]
$$

Then calculate the gradient of this vector with respect to the weighting vector.

$$
\begin{equation*}
\mathrm{d} \underline{\mathrm{~J}}=\nabla_{\mathrm{g}}^{\underline{J}}{ }^{\hat{\mathrm{J}}} \mathrm{dg} \tag{4.3.1}
\end{equation*}
$$

where

$$
\nabla_{\underline{g}} \hat{J}=\left[\frac{\partial J_{1}}{\partial_{\mathrm{g}}}, \cdots, \frac{i J_{\mathrm{NNV}}}{\partial \mathrm{~g}}\right]
$$

If for a particular design specification change, $\hat{d} \hat{J}$, a solution to Eq. (4.3.1) exists, then the change is consistent and may be obtained with dg as the weighting change.

Consider $\hat{J}_{x}=\int_{t_{0}}^{\infty} \underline{x}^{T} \underline{x} d t$
and for simplicity assume a scalar control and the corresponding gain vector k of N elements. Using the chain rule

$$
\frac{\partial \hat{J}_{x}^{\prime}}{\partial \underline{g}}=\nabla_{\hat{g}} \underline{k} \frac{\partial \hat{J}_{x}^{\prime}}{\partial \underline{k}}
$$

where

$$
\nabla_{\mathrm{g}}=\left[\frac{\partial_{1}}{\hat{\mathrm{k}}_{\underline{\mathrm{g}}}}, \ldots, \frac{\partial_{\mathrm{N}}}{\mathrm{y}_{\mathrm{g}}}\right]
$$

The vectors, $\frac{\partial k_{i}}{\partial g}$, can be calculated easily using the SOC necessary condition equations.

$$
\begin{aligned}
& k^{T}=Q^{-1}\left(B^{T} P+\frac{W^{T}}{2}\right) I_{1} \\
& A_{k}^{T} P+P A_{k}+S+\underline{k} Q \underline{k}^{T}=0
\end{aligned}
$$

or using the equivalent vector notation

$$
" P "=-E^{-1}\left(N+\underline{k} Q \underline{k}^{T}\right) "
$$

Note that the weighting elements enter into these equations in a simple manner leading to easy calculations.

The calculation of $\frac{j J_{x}}{\ni \underline{k}}$ is not as trivial a matter, since a straightforward approach is not feasible. However, by interpreting J_{x}
as a cost index and using Lemma 2 of Chapter II it is possible to determine these terms. Let J_{x} be a function of the lower time integration limit and require that J_{x} have a quadratic representation.

$$
J_{x}(t)=\underline{x}(t)^{T} D_{\underline{x}}(t)=\int_{t}^{\infty} \underline{x}^{T} S \underline{x} d t
$$

where $S=I$ and \jmath is a constant matrix to be determined. Differentiating with respect to t leads to

$$
\text { Since } \quad \dot{x}=A_{k} \underline{x}
$$

$$
\begin{align*}
& \frac{d J_{x}}{d t}=\underline{x}^{T} D x+x^{T} D \dot{x}=-x^{T} S x \\
& \dot{x}=A_{k} \underline{x} \tag{4.3.2}\\
& \underline{x}^{T} A_{k}^{T} D \underline{x}^{T}+\underline{x}^{T} D A_{k} \underline{x}=-x^{T} S x
\end{align*}
$$

Since Eq. (4-3.2) is required to hold for all x .

$$
\begin{equation*}
\dot{A}_{k}^{T} D+D A_{k}=-S=-I \tag{4.3.3}
\end{equation*}
$$

If A_{k} is stable, Eq. $(4.3 .3)$ may be solved for D and expressed in the vector notation $0 . s$

$$
" D "=-E^{-1} " I "
$$

Thus

$$
\frac{\partial^{\prime \prime} D^{\prime \prime}}{\partial k_{i}}=-\frac{\partial E^{-1 .} I^{\prime \prime}}{\partial{k_{i}}}=E^{-1} \frac{\partial E}{\partial_{k_{i}}} E^{-1} " I "
$$

For an initial condition vector

$$
J_{x}=\underline{c}^{T} D \underline{c}
$$

and

$$
\frac{\partial J_{x}}{\partial k_{i}}=\frac{\partial\left(\varepsilon^{T} D \varepsilon\right)}{\partial k_{i}}=\underline{c}^{T} \frac{\partial D}{\partial k_{i}} \underline{c}
$$

where $\frac{\partial " D "}{\partial k_{i}}$ can be calculated and manipulated to oistain $\frac{\partial D}{\partial k_{i}}$.
Note that Eq. (4.3.4) appears in the SCCDES algorithm and thus it would be easy to calculate these gradients and implement the automatic choice of new weightings.

Using this approach the intuitive effect of varying the weightings may be verified for the second order example. The pertinent data for this example is given below.

$$
\begin{aligned}
& A_{k}=\left[\begin{array}{cc}
-2 f \omega^{-k} & -\omega^{2} \\
1 & 0
\end{array}\right] \\
& b=\left[\begin{array}{l}
1 \\
0
\end{array}\right] ; \quad s=\left[\begin{array}{cc}
S_{1} & S_{2} \\
S_{2} & S_{3}
\end{array}\right] ; \quad w=\left[\begin{array}{c}
W_{1} \\
0
\end{array}\right]
\end{aligned}
$$

Let $\dot{f}=0$ and $\omega=1$ then from Eq. $(2 \cdot 3 \cdot 10)$

$$
\mathrm{k}=\frac{\mathrm{W}_{1}}{2 q}+\frac{1}{q} \sqrt{S_{1} q+\frac{W_{1}}{4}+S_{3} q}
$$

The parameter vector g has the following components

$$
\underline{g}=\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
w_{1} \\
q
\end{array}\right]
$$

and let

$$
\hat{J}_{x}=\int_{t_{0}}^{\infty} \underline{x}^{T} \underline{x} d t
$$

Using the chain rule

$$
\frac{\partial \hat{J}_{\mathrm{x}}^{n}}{\dot{\partial}_{\mathrm{g}}}=\frac{\partial{\stackrel{N}{J_{\mathrm{x}}}}_{\partial \mathrm{z}}^{\partial_{\mathrm{k}}}}{\partial_{\mathrm{g}}}
$$

where

$$
\frac{\partial k^{T}}{\partial g}=\left[\frac{\partial k}{\partial s_{1}}, \frac{\partial k}{\partial s_{2}}, \frac{\partial k}{\partial s_{3}}, \frac{\partial k}{\partial w_{1}}, \frac{\partial k}{\partial q}\right]
$$

and from Eq. (1..3-5)

$$
\begin{aligned}
& \frac{\partial k}{\partial s_{1}}=\frac{1}{\sqrt{s_{1} q+\frac{W_{1}}{2}}+s_{3} q} \\
& \frac{\partial k}{\partial s_{2}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial k}{\partial s_{3}}=\frac{\partial k}{\partial s_{1}} \\
& \frac{\partial k}{\partial W_{1}}=\frac{1}{2 q}\left[1+\frac{W_{1}}{4 \sqrt{S_{1} q+\frac{W_{1}^{2}}{4}}+S_{z} q}\right] \\
& \frac{\partial k}{\partial q}=\frac{-W_{1}}{2 q^{2}}-\frac{1}{q^{2}} \sqrt{S_{1} q+\frac{W_{1}}{4}+S_{3} q}+\frac{1}{2 q} \sqrt{S_{1}+S_{3}} \\
& \sqrt{S_{1} q+\frac{W_{1} \varepsilon}{4}+S_{3} q}
\end{aligned}
$$

Using the definition of A_{K} and the fact that

$$
E="\left(A_{K}^{T} * I+I * A_{K}\right) "
$$

it is easily shown that for this example

$$
E=\left[\begin{array}{rrr}
-2 k & 2 & 0 \\
-1 & -k & 1 \\
0 & -2 & 0
\end{array}\right]
$$

If this notation is bothersome, recall that this matrix may be obtained by writing the Ricatti matrix as a system of three scalar equations and simply identifying the coefficients as shown in Appendix E.

Now

$$
E^{-1}=\left[\begin{array}{ccc}
-\frac{1}{2 k} & 0 & -\frac{1}{2 k} \\
0 & 0 & -\frac{1}{2} \\
-\frac{1}{2 k} & 1 & -\frac{1}{2}\left(k+\frac{1}{k}\right)
\end{array}\right]
$$

and

$$
\text { "I" }=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Thus
or if $D=\left[\begin{array}{ll}D_{1} & D_{2} \\ D_{2} & D_{3}\end{array}\right]$

Thus

$$
\begin{aligned}
& \frac{\partial D_{1}}{\partial k}=-\frac{1}{k^{2}} \\
& \frac{\partial D_{2}}{\partial k}=0 \\
& \frac{\partial D_{3}}{\partial k}=-\frac{1}{k^{2}}+\frac{1}{2}
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{\partial J_{x}}{\partial k} & =\frac{\partial\left(c^{T} D_{c}\right)}{\partial k}=-\frac{c_{1}^{2}}{k^{2}}+\left(\frac{1}{2}-\frac{1}{k^{2}}\right) c_{2}^{2} \\
\text { where } \quad \underline{x}\left(t_{o}\right) & =\underline{c}=\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right]
\end{aligned}
$$

Consider the specific values of the weightings used in the example of Chapter II which were

$$
S_{1}=S_{3}=1, \quad S_{2}=0, \quad q=1, \quad W_{1}=0
$$

which lead to the optimal SOC feedback gain,

$$
k=\sqrt{2}
$$

Assume that

$$
c=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Then

$$
\begin{aligned}
& \frac{\partial \hat{J}_{x}}{\partial S_{1}}=\frac{\partial \hat{J}_{x}}{\partial S_{3}}=\frac{\partial \hat{J}_{x}}{\partial \mathrm{k}} \frac{\partial \mathrm{k}}{\partial \mathrm{~S}_{3}}=-\frac{1}{2} \cdot \sqrt{\frac{2}{2}}=-1 \frac{\overline{2}}{8} \\
& \frac{\partial \hat{J}_{x}}{\partial \mathrm{~T}}=\frac{\hat{\partial}_{\mathrm{J}}}{\partial \mathrm{~J}} \frac{\partial_{\mathrm{k}}}{\partial_{\mathrm{q}}}=-\frac{1}{2} \cdot-\frac{\sqrt{2}}{2}=\sqrt{\frac{2}{2}}
\end{aligned}
$$

Hence the intuitive notions are verified since increases in the state weighting, S_{1} or S_{3}, causes the state error \hat{J}_{x} to aecrease, while increasing the control weighting, q, causes the state error to increase.

Calculations of this type may be made to verify or establish the effect of perturbing the weightings. It is possible to systematically vary the weightings based on this information to obtain changes in the design characteristics and hence proceed to a acceptable design in a logical manner. If desired this gradient procedure could be added to the SOCDES I program and the weighting perturbations could be calculated automatically.

Moreover, the SOCDES I program could be used as a computational method for solving other optimal problems. Suppose that it was desired to minimize

$$
\hat{J}_{x}=\int_{t_{0}}^{\infty} \underline{x}^{T} \underline{x} d t
$$

for some set or initial conditions. Then SOCDES i scuid be used as a gradient procedure to solve this optimal problem and possibly avoid some of the formulations and numerical difficulties $0_{\text {. }}$ the parameter optimization approach.

'r. 4 Design Loci

One of the most useful of the ciassical techni ques for the study of single input single output time invariant syste is is the root locus. Essentially it is a graphical technique which plots the loci of the closed loop poles (system eigenvalues) as a function of the loop gain. This technique provides insight as well as explicit infirmation about the behavior of the system. A similar procedure has been proposed for $S O C$ through the use of the SOCDES I program. This technique involves determining the loci of the closed loop pules as a function of the weighting matrices. The SOCDES I program is used to solve the SOC problems for various values of the weightsings. For each step, the characteristic equation is solved and the poles obtained. Thus these poles as a function of the weightings are plotted.

Another locus which has been of use is the gain locus which involves
the plotting of the feedback gains as a function of the weightings. From this locus, the gradient of the gains with respect to the weigntings may be obtained and used to determine the effect of the weightings on the design criterion.

As an example of these loci again consider the second order example.
Let

$$
Y^{\prime}=0, \quad \omega=1, \quad s_{1}=s_{3}=1, \quad q=1, W_{1}=0,
$$

then

$$
\text { Since } \quad k=\sqrt{2}
$$

$$
\begin{aligned}
& k=\sqrt{2} \text { and the characteristic equation is given by } \\
& \operatorname{det}\left[\begin{array}{ll}
S+k & -1 \\
1 & S
\end{array}\right] \\
& k=\sqrt{2} \\
& S=-\sqrt{2}+j \sqrt{2} \frac{\sqrt{2}}{2}
\end{aligned}
$$

Consider the loci of these roots and the gain as S_{1} is varied which is plotted in Fig. 4.2a and 4.2b. As S_{1} is increased the gain increases and the poles approach the real axis. As S_{1} is decreased, k approaches one and the roots approach $-\frac{1}{2} \pm j \sqrt{\frac{3}{2}}$. In a similar manner consider the loci as a function of the control weighting, q. Then the trend is In the opposite direction since as q is increased the gain decreases and the poles approach the imaginary axis. By varying q it is possible to obtain all stable values of the feedback gain. See Fig. 4.3a and 4.3b.
k LOMUS

FIG.4.2-b
FIG.4.2-a

Q ROOT LCCUS

FIG.4.3-a

Note that the S_{1} and q root loci coincide where they both exist. Since various combinations of weightings may give the same gain it is possible to get identical root loci for different weighting sets.

Another useful tool is the graphical representation of the feedback gains corresponding to stable poles. Since the poles are a continuous function of the gains it is possible to plot the set of stable gains \mathcal{H} ir some region of a Euclidean space. Then the K locus may be plotted on the same graph. For a problem with two gains,

$$
\underline{k}=\binom{k_{1}}{k_{2}}
$$

a typical plot is shown in Fig. 4.4
83.

1

FIG. 4.4

Nomenclature

Matrices

> A System matrix: NS by NS
> B Control coeificient matrix: NS by NC
> D Notational matrix
> E Coefficient matrix for equivalent vector equation: NP by NP
> K Feedback gain matrix: NS by NC
> P Ricatti matrix: NS by NS
> Q Symmetric control weighting matrix: NC by NC
> S Symmetric state weighting matrix: NS by NS
> 万D Matrix of partial derivatives
> $\nabla_{\underline{g}}$ \underline{J} Jacobian matrix of \underline{J} with respect to g
> $\nabla_{\underline{g}} \underline{k}$ Jacobiar matrix of \underline{k} with respect to \underline{g}

Vectors
" D " Vector equivalent of D
"I" Vector equivalent of I
g Weighting vector
\hat{J} Vector of design criterion
k Vector of feedback gains
" P " Vector equivalent of P
x State vector: NS
u Control vector: NC

Scalars

$\hat{J}_{\underline{x}}$ Design criterion expression

Chapter V THE SOC MODEL REFERFNCE PROBLEM

5.1 Introduction

In order to design a control system, a mathematical abstraction or model of the process to be controlled must be obtained. In any practical situation this model is only an approximate representation of the actual process. The effectiveness of the control system designs depends to a large extent on the accuracy of this model.

Once the model has been chosen and the nominal design completed, additional design factors must be considered. These factors include the effect of possible environmenta? changes, such as additive disturbances or plant parameter variations. Many of the current design techniques allow the consideration of additive disturbances; however, the plant parameter variations are not as easy to handle. These plant parameter variations may be of two types; there may be actual changes in the plant caused by component aging or the parameter estimates for the model may be inaccurate. For this study, the term variations does not refer to changes with time but rather to the fact that the constant parameters have unknown off-nominal values.

In recent y sars, the plunt parameter problem has been attacked by sensitivity methods and by the model reference approach. The objective of these control schemes is to cause the trajectory of the system to remain close to the nominal in spite of plant parameter variations. The model reference scheme does this by attemping to null the error between
the actual trajectory and the ideal nominal trajectory generated by a model. Note that the term "model" has been used in two different ways. The first usage referred to the mathematical description of a physical process while the second referred to a "black box" which may or may not have a physical reelization and which generates the desired nominal system trajectory.

The scheme proposed in this section consists of two feedback loops. The inner loop is designed with the aid of conventional or optimal techniques on the basis of the assumed nominal process model in order to obtain satisfactory respons to command inputs in the presence of additive disturbances. The outer feedback loop is designed with the SOC technique to compensate for inaccuracies in the process model parameters as well as any additive disturbances. An advantage of the model reference approach over that of trajectory sensitivity, is that the nominal model reference trajectory may be chosen independently of any sensitivity considerations, while the sensitivity approach involves a tradeoff between the nominal trajectory and sensitivity. The model reference approach pays for this advantage with increased controller complexity.

To be more specific, consider the regulator control problem of driving the output of a system to zero. The following development is easily extended to the more general case of a non-zero command input. In Fig. 5.1 the model reference scheme is pictured. The inner feedback gain matrix, K_{o}, is designed on the basis of the nominal process model. In the outer loop, the control is obtained by feeding back the difference between the actual system output and that of the output of the model.

The outer loop gain matrix, K, is found by the application of the SOC procedure. It is shown that this gain matrix depends on the process model and desired response characteristics but that it does not depend on the nominal trajectory. This property may be of practical significance. Consider the Saturn launch booster problem. Aside from the difficulties involved in generating an accurate process model, the actual flight of the vehicle is subject to severe additive wind disturbances. For a particular flight, the guidance command is a function of the mission requirements and the wind patterns, hence nominal trajectories vary from one flight to the next. Using this model reference scheme it is possible to precompute the feedback gains and hence the controi law and then simply change the model input based on the nominal trajectory.

5.2 Formulation of the SOC Model Reference Problem

Previous sections have described the SOC theory and considered its application to control problems with unavailable states. The design of the outer control loop in order to keep the system trajectory close to the model reference trajectory in spite of parameter variations can be formulated as an unavailable state problem.

Assume that the inner control loop and the command input, which for the regulator problem is zero, are given. Consider the effect of parameter variations on the system trajectory. A perturbation model Which describes this effect can be obtained by the linearization of the plant and the nominal feedback control about the nominal trajectory and parameter values. The parameter variations are considered as additional state variables and the SOC theory is used to determine a linear feed-
back control law that does not depend on the parameter states. Since the gains operate on the perturbed states, in the actual implementation they operate on the difference between the actual and nominal trajectories as shown in Fig. 5.1. Strictly speaking the analysis applies to small perturbations, although in many cases it has been found that the SOC model reference scheme gives satisfactory control for a wide range of parameter values.

Derivation of the Perturbation Model

Let the nominal process model with a inner loop control and a command input be described by a linear system of differential equations.

$$
\begin{equation*}
\dot{\underline{x}}=\left(\mathrm{A}\left(\underline{g}^{0}\right)-B K_{0}^{T}\right) \underline{x}^{0}+B \underline{m} ; \underline{x}\left(t_{0}\right)=\underline{c} \tag{5.2.1}
\end{equation*}
$$

where q° is a vector of NPA parameters and K_{o} is the matrix of inner loop gains. The superscript ${ }^{\circ}$ indicates a nominal quantity.

By expanding Eq. (5.2.1) about the nominal parameter vector and trajectory, an expression for the differential equation system describing the off nominal trajectory can be obtained.
where $\frac{\vec{\partial}}{\hat{\partial} q}$ denotes the matrix of partial derivatives evaluated at the
nominal,

$$
\left[\frac{\because A}{\because g \lambda]_{i j}}=\frac{\therefore[A]_{i j}}{\lambda q}\right.
$$

and 0^{2} denotes second and higher order terms.

If the perturbations are suitably small, the higher ordered terms may be neglected and a linear model is obtained.

$$
d \dot{x}=\dot{x-x^{\circ}}=\left(A\left(q^{\circ}\right)-B K_{o}^{T}\right) d x+\sum_{\ell=1}^{N P A} \frac{i^{\prime} A}{i^{\prime} q} \underline{x}^{o} d q \chi+B d m
$$

The SOC problem is formulated in terms of an augmented state vector.

$$
\underline{y}=\left[\begin{array}{c}
\frac{d x}{d g}
\end{array}\right]
$$

The dynamics which describe this state vector are obtained from the linear perturbations model and the fact that the parameter vector is assumed to be time invariant.

$$
\begin{equation*}
\dot{\underline{y}}=\bar{A} \underline{y}+\bar{B} \underline{u} ; \quad \underline{x}\left(t_{0}\right)=\underline{c} \tag{5.2:3}
\end{equation*}
$$

where

$$
\bar{A}=\left[\begin{array}{ccccccc}
A-B K_{0} & : & A_{q_{1}} \underline{x}^{0} & \cdots & A_{q_{N P A}} & \underline{x}^{0} \\
0 & 1 & 0 & \cdot & \cdot & 0 \\
\cdot & \cdot & \cdot & & & \cdot \\
\cdot & : & \cdot & & & \cdot \\
0 & & \cdot & & \cdot & 0
\end{array}\right]
$$

$$
A_{q_{i}}=\frac{n A}{\therefore q_{i}}
$$

$$
\bar{B}=\left[\begin{array}{c}
B \\
\cdots- \\
0 \\
\cdot \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& \underline{\bar{c}}=\left[\begin{array}{c}
0 \\
\cdots a g
\end{array}\right] \\
& \underline{u}=d \underline{m}
\end{aligned}
$$

The upper elements of the initial condition vector are zero since it is assumed that the perturbations in the parameters do not effect the system initial conditions.

Formal Statement of SOC Problem ?

The SOC control \underline{u} is structured so that the unavailable perturbation states and the parar.eter states are not fed back. This control, \underline{u}, is chose ${ }_{\Perp}$ uv minimize J.

$$
J=\frac{1}{2} \int_{t_{0}}^{t_{f}}\left(\underline{y}^{T} S \underline{y}+\underline{y}^{T} \hat{\underline{S}} \underline{y}+\underline{y}^{T} W \underline{u}+\underline{y}^{T} \hat{W} \underline{u}+\underline{u}^{T} Q \underline{u}\right) d t
$$

subject to the dynamics of Eq. (5.2.3. Since x° is a function of time, \bar{A} is; and it would appear that this is a time varying SOC problem. Thus the SOC feedback gains would be time varying and would be characterized as follows.

$$
\begin{gathered}
\bar{K}^{T}(t)=Q^{-1}\left(\bar{B}^{T} P(t)+\frac{W^{T}}{2}\right) I_{1} \\
-\dot{P}(t)=\bar{A}_{\hat{K}}^{T} P+P \dot{A} \hat{K}+S+\bar{K} Q \dot{K}^{T} ; P\left(t_{f}\right)=0
\end{gathered}
$$

where

$$
\overline{\mathrm{K}}=\left[\begin{array}{c}
\mathrm{K} \\
0
\end{array}\right]
$$

However, a close examination of these equations indicates that the gains are independent of $A_{q_{i}}$ and x° : This surprising result implies that insofar as the linearization model is accurate the model reference scheme compensates for any parameter variation around any nominal trajectory. Moreover, although the SOC problem has been formulated as a time varying problem, constant values of the model reference gains can be found by considering a time invariant process model and inner feedback gains and a SOC index terminal time of ∞.

To demonstrate this result a matrix partitioning notation will te used. For convenience assume that there are two parameters and let

$$
\begin{aligned}
& \hat{A}_{\mathrm{K}}=\left[\begin{array}{cc:c}
A-B\left(K^{T}+K_{0}^{T}\right) & A_{q_{1}} \underline{x}^{0} & A_{q_{2}} \underline{x}^{0} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& S=\left[\begin{array}{lll}
S_{1} & S_{2}^{T} & S_{3}^{T} \\
S_{2} & S_{4} & S_{5}^{T} \\
S_{3} & S_{5} & S_{6}
\end{array}\right]
\end{aligned}
$$

$$
\begin{align*}
& W=\left[\begin{array}{cc}
W_{1} \\
-- \\
-\underline{o} \\
- \\
\cdots
\end{array}\right] \tag{5.2,4}\\
& P=\left[\begin{array}{ccc}
P_{1} & P_{2}^{T} & P_{3}^{T} \\
P_{2} & P_{4} & P_{5}^{T} \\
P_{3} & P_{5} & P_{6}
\end{array}\right]
\end{align*}
$$

With this notation the matrix differential Ricatti equation can be decomposed and written in terms of six conponent equations.

$$
\begin{equation*}
K^{T}=Q^{-1}\left(B^{T} P_{1}+\frac{W_{1}}{2}\right) I_{*} \tag{5.2.3}
\end{equation*}
$$

where $\quad I_{*}=\left[\begin{array}{c:c}I & 0 \\ \hdashline 0 & 0\end{array}\right] \quad$ is NS by NS
and I is a NS-L by NS-I identity matrix. The last I states of the original state vector are assumed to be unavailable.

$$
\begin{align*}
A_{\hat{K}}^{n} & =A-B\left(K^{T}+K_{o}^{T}\right) \tag{5.2.5}\\
-\dot{P}_{1} & =P_{1} A \hat{K}^{\prime}+A_{K}^{T} P_{1}+S_{1}+K Q K^{T} ; P_{1}\left(t_{f}\right)=0 \tag{5.2:6}\\
-\dot{P}_{2}^{T} & =P_{1} A_{q_{1}} \underline{x}^{o}+S_{2}^{T}+A_{K}^{T} P_{2}^{T} ; P_{2}^{T}\left(t_{f}\right)=0 \\
-\dot{P}_{3}^{T} & =P_{1} A_{q_{2}} \underline{x}^{O}+S_{3}^{T}+A \hat{K}^{T} P_{3}^{T} ; P_{3}^{T}\left(t_{f}\right)=0 \tag{5.2.8}
\end{align*}
$$

$$
\begin{array}{lll}
\dot{P}_{4}=P_{2} A_{q_{1}} \underline{x}^{4}+\underline{x}^{0^{T}} A_{q_{1}}^{T} P_{2}^{T}+S_{4} & ; & P_{4}\left(t_{f}\right)=0 \\
-\dot{P}_{5}^{T}=P_{2} A_{q_{2}} \underline{x}^{0}+\underline{x}^{T} A_{q_{1}}^{T} P_{3}^{T}+S_{5}^{T} & ; & P_{5}\left(t_{f}\right)=0 \\
\dot{P}_{6}=P_{3} A_{q_{2}} \underline{x}^{0}+\underline{x}^{0^{T}} A_{q_{2}}^{T} P_{3}^{T}+S_{6} & ; & P_{6}\left(t_{f}\right)=0 \tag{5.2.11}
\end{array}
$$

From Eq. (5.2.5)and(5.2.6) it is clear that the feedback gains depend only on P_{I} which is independent of the other P partition blocks. Thus, the SOC gains are independent of $A_{q_{1}}, A_{q_{2}}$ and \underline{x}°. If the time invariant steady state problem is considered, the SOC model reference gains are determinea from a algebraic matrix Ricatti equation.

$$
\begin{equation*}
P_{1} A \hat{K}+A \hat{K}^{T} P_{1}+S_{1}+K Q K^{T}=0 \tag{5.2.i2}
\end{equation*}
$$

anà

$$
\begin{equation*}
\dot{x}=\left(A-B\left(K_{0}^{T}+K^{T}\right)\right) x \tag{5.2.13}
\end{equation*}
$$

The nominal composite closed loop sysiem, $A_{\hat{K}}$, that is the system with feedback gains equal to the sum of the inner and outer loop gains is stable.

$$
A_{\hat{K}}^{\hat{1}}=A-B\left(K_{0}^{T}+K^{T}\right)
$$

This can be shown by choosing the fcllowing Lyapunov function.

$$
V=\underline{x}^{T} P_{1} \underline{x}
$$

where P_{1} is positive definite and is cbtained $1 . \sim m$ the partitioned Ricatti matrix. From Eq. (5.2.12) ard (5. c .13)

$$
\dot{V}=-\underline{x}^{T}\left(S_{1}+K Q K^{T}\right) \underline{x}
$$

which is negative for any allowable system trajectory. With the application of the Lyapuiov Stability Theorem, the result is obtained. If the parameter variations are suitably small so that the linearized dymamics are valid,

$$
\dot{d \underline{x}}=\left(A\left(q_{0}\right)-B K_{0}^{I}\right) d x+\sum_{i=1}^{i N F A} \frac{\sum_{A}}{d a} \underline{x}^{0} d a \eta+B d_{-} m
$$

and

$$
\mathrm{d} \underline{m}=-K^{T} \underline{d x}=\underline{u}
$$

Or, in terms of the composite system matrix,

Assume that the nominal trajectory is stable, then

$$
\underline{x}^{0} \longrightarrow 0 \text { as } t \longrightarrow \infty
$$

Since the composite system is stable, its state transition matrix $\Phi_{\hat{K}}\left(t_{1} t_{0}\right)$ approaches zero as t approaches infinity. If the last terms of Eq. (5.2.14) is considered as a forcing term, the trajectory despersion can be written as

$$
\underline{\mathrm{xx}}(t)=\int_{\mathrm{t}_{0}}^{\mathrm{t}} \sum_{\ell=1}^{\mathrm{NPA}} \phi_{\mathrm{K}}(\mathrm{t}, \tau) \frac{\partial_{\mathrm{A}}}{\partial_{\mathrm{g}}} \underline{x}^{0}(\bar{i}) \mathrm{dg} \dot{\ell} d i
$$

and

$$
\begin{equation*}
\underline{x}(t) \approx \underline{x}^{0}(t)+d \underline{x}(t) \tag{5.2,15}
\end{equation*}
$$

Thus, the dispersion remains b sunded since it can be shown that the integrand is bounded by some negative exponential.

From the block diagrams of Figure 5.1, it is seen that the differential equations describing the model reference system can be written in two ways

$$
\underline{\dot{x}}=\left(A-B K_{0}^{T}\right) \underline{x}-B K^{T}\left(\underline{x}-\underline{x}^{0}\right)
$$

or

$$
\dot{x}=\left(A-B\left(K_{0}^{T}+K^{T}\right) \underline{x}+B K^{T} \underline{x}^{0}\right.
$$

The solution for this second equation can be expressed as

$$
\underline{x}(t)=\phi_{\hat{K}}\left(t, t_{0}\right) \underline{c}+\int_{t_{0}}^{t} \phi_{\hat{K}}(t, \tau) B K^{T} \underline{x}^{0}(\tau) d \tau
$$

From this viewpoint it is clear that the model reference system will remain stable as long as the parameter variations do not cause the composite system, $A_{K}^{\hat{K}}$, to become unstable. Note that Eq. 5.2 .15$)$ is an approximate relation derived from the linearized model which is used to calculate the outer loop, while Eq. 5.2 .16) is an exact expression derived from the consideration of the model reference system block diagram.

A important feature of this model reference approach is the fact that the nominal response of the system, which is independent of the outer loop gains, may be designed to achieve the "best" system response without regard to parameter sensitivity considerations. Thus, the model reference gain, K^{T}, could be chosen so that the composite system is insensitive to parameter variations. If the parameters have nominal values, the "best" performance is obtained while if there are parameter variations, the response may deteriorate slightly but the entire system will remain stable.

Although most of the blocks of the Ricatti matrix do not effect the calculation of the feedback gains, they may provide useful information. Suppose that all of the blocks of the state weighting matrix, S except S_{1} are chosen to be zero. Then the optimal index may be expressed as

$$
J^{0}=\frac{1}{2} \int_{t_{/ j}}^{t_{f}}\left(\underline{x}^{T} S_{1} \underline{i}+\underline{u}^{T} Q \underline{u}\right) d t
$$

Using the definition of the control law and Lemma 2 of Charter II it is possible to rewrite this equation as

$$
J^{0}=\frac{1}{2}\left[\frac{d x}{-\frac{d_{g}}{-}}\right]^{T} P\left[\frac{d x}{-\underline{d_{q}}}\right]=\frac{1}{2} \int_{t_{0}}^{\infty}\left(d \underline{x}^{T}\left(S_{1}+K Q K^{T}\right) \underline{d x}\right) d t
$$

The elements of P indicate the relative effect of the various parameters on the trajectory dispersion. The value of the cost index, which is an integral weighted square of the dispersion due to the parameter variations, dg , can be found in terms of the Ricatti matrix slements. For example for the system and Ricatti matrix of (Eq. 5.2 . 4) the value of the index resulting from the variation dq_{1} is given by

$$
J_{1}^{0}=d q_{1}^{2} P_{4}
$$

Similarly, for a perturbation in $q_{2}, d q_{2}$

$$
J_{2}{ }^{0}=d q_{2}{ }^{2} P_{6}
$$

With this information the designer has an indication of the relative effects of the various parameters. If $J_{1}{ }^{\circ}$ is large compared with
$J_{2}{ }^{\circ}$, then it might be important to know the value of q_{1} in a precise manner while q_{2} might not have a significant effect on the system response.

5.3 Example

In order to illustrate the calculations and effectiveness of this model reference scheme, a second order damped oscillator example is considered. It is assumed that only the rate state is available. The model reference scheme is designed to compensate for lack of kncwledge of the damping ratio, \mathcal{J}. The differential equation defining the system is given below and the block diagram is shown in Fig. 2.1.

$$
\ddot{x}+2 \int \omega \dot{x}+\omega^{2} x=v(t)
$$

Let $\dot{f}^{\circ}=0$ and $\omega=1$ and use as the nominal inner loop gain the SOC control law of the example of Chapter II.

$$
k^{\circ}=\sqrt{2}
$$

The formal model reference problem required the choice of the perturbation control us to minimize

$$
J=\frac{1}{2} \int_{t}^{\infty}\left(y^{T} S \underline{y}^{T}+\underline{y}^{T} \hat{S} \underline{y}+\underline{y}^{T} W u+\underline{y}^{T} \hat{W} u+u^{2} Q\right) d t
$$

subject to

$$
\dot{\underline{y}}=\overline{\mathrm{A}} \underline{y}+\underline{\mathrm{b}} u ; \underline{y}\left(t_{0}\right)=\underline{\bar{c}}
$$

The augmented state vector is

$$
\underline{y}=\left[\begin{array}{l}
d \dot{x} \\
d x \\
d y^{\prime}
\end{array}\right]
$$

and

$$
\begin{aligned}
& \bar{A}=\left[\begin{array}{ccc}
-2 \mathcal{J}^{0} \omega-k & -\omega^{2} & -2 \omega \dot{x}^{0} \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \underline{\underline{b}}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& \underline{\bar{c}}=\left[\begin{array}{c}
0 \\
0 \\
d \varphi
\end{array}\right] \\
& Q=q, a s c a l a r
\end{aligned}
$$

The solution control law has the following structure.

$$
u=-k d \dot{x}
$$

Instead of calculating the formal problem, the reduced problem was solved for various weighting matrices. The equations which characterize this reduced problem are

$$
\begin{align*}
& K=Q^{-1}\left(B^{T} P+\frac{W^{T}}{2}\right) I_{*} \\
& A_{\hat{K}} \hat{T}^{T} P_{1}+P_{I} A \hat{K}+S_{I}+q K K^{T}=0 \tag{5.3.1}
\end{align*}
$$

where

$$
\begin{aligned}
& A_{k}^{\wedge}=\left[\begin{array}{cc}
-2 j^{0} \omega-k-k^{0} & -\omega^{2} \\
1 & 0
\end{array}\right] \\
& P_{1}=\left[\begin{array}{ll}
p_{1} & p_{2} \\
p_{2} & p_{3}
\end{array}\right] \\
& S_{1}=\left[\begin{array}{ll}
s_{1} & s_{2} \\
s_{2} & s_{3}
\end{array}\right]
\end{aligned}
$$

Eiq.(5.3.1) can be wititen as an equivalent set of scalar equations and for convenience the values of ρ and ω have been substituted and it is assumed that $W=0$.

$$
\begin{aligned}
& k=\frac{p_{1}}{q} \\
& 2 p_{1}\left(-k_{0}-k\right)+2 p_{2}=-s_{1}-q k^{2} \\
& -p_{1}-k p_{2}+p_{3}=-s_{2} \\
& -2 p_{2}=-s_{3}
\end{aligned}
$$

or

$$
k=-k_{0}+\frac{1}{q} \sqrt{q^{2} k_{0}^{2}+s_{1} q+s_{3} q}
$$

These equations were solved for the following three sets of weighting matrices.

1) $S=\left[\begin{array}{lll}1.91 & 0 \\ 0 & 1.91\end{array}\right], q=1, \quad W=0$
$k=1$
2) $S=\left[\begin{array}{l}8.760 \\ 08.76\end{array}\right], \quad q=1, \quad W=0$
$\mathrm{k}=3$
3) $\mathrm{S}=\left[\begin{array}{cc}53.08 & 0 \\ 0 & 53.08\end{array}\right], \quad \mathrm{q}=1, \mathrm{~W}=0$
$k=9$

These solutions are compared by perturbing the parameter, \mathcal{P}, simulating the system and calculating

$$
J_{x}=\int_{t_{0}}^{t} x(t)^{2} d t
$$

with $t=10$ seconds. To provide a basis for comparion the system was simulated with onl: the inner loop control for the various values of parameters. The numerical integration was done vith a fourth order Runge Kutta algorithm. Three off-nominal values of \mathcal{H} were examined and the resultsare logged in Table 5.1. Note that $\mathcal{Y}^{\prime}=-1.664$ with the nominal gain alone corresponds to an unstable system as indicated by

J_{x}	k				
	0		1.0	3.0	9.0
5	0	.354	.354	.354	.354
	-.414	.500	.448	.414	.380
	-1.164	1.960	.807	.562	.436
	-1.664	∞	1.501	.722	.480

$5^{\circ}=0$
$k^{\circ}=\sqrt{2}$

Table $5.1 \quad J_{x}(k, \zeta)$
the entry of ∞ in the table. As expected the value of J_{x} for an off nominal parameter decreases as the model reference gain increases. This corresponds to the tradeoff between state error and control effort. In Fig. 5.2, the simulation results for the nominal control and parameters are compared with an off-nominal parameter with inner loop control only, and the full model reference system. Note that the model reference scheme succeeds in keeping the trajectory close to the nominal in spite of the parameter variation. In Chapter VII this model reference scheme is applied to launch vehicle problem.

Nomenclature

Matrices

A Systen matrix: NS by NS
$\vec{A} \quad$ Perturbation system matrix: NPA + NS by NPA + NS
B Control coefficient matrix: NS by NC
B Perturbation system control coefficient matrix: NS + NPA by NC
K Model reference feedback gain matrix: NS by NC
K_{o} Inner loop feedback gain matrix: NS by NC
$\hat{\mathrm{K}}$ Composite feedback gain matrix: NS by NC
$\bar{K} \quad$ Perturbation model feadback gain matrix: NS + IVPA by NC
P Ricatti matrix: NE by NS
Q Symmetric control weighting matrix: NC by NC
$S \quad$ Symmetric state weighting matrix: NS + NPA by NS + NPA
A
S Symmetric state weighting matrix, class two: NS + NPA by NS + TMA
S_{1} Component matrix of S : NS by NS
W Bilinear weighting matrix: NS + NFA by NC
$\hat{W} \quad$ Bilinear weighting matrix: NS + NPA by NC
W_{1} Component matrix of W : NS by NC
$\frac{A}{3_{\mathrm{q}}} \quad$ Matrix of partial derivatives

Vectors

c	Initial condition vector: NS	
$\underline{\bar{c}}$	Perturbation model initial condition vector:	NS + NSA
\underline{m}	System input vector: NC	
dm	Perturbation model control vector: NC	
\underline{q}	Parameter vector: NPA	
dg	Perturbation parameter vector: NPA	
\underline{u}	Perturbation model control vector: NC	
\underline{x}	System state vector: NS	
\underline{y}	Perturbation model state vector: NS + NPA	

Chapter VI THE SOC SENSITIVITY PROBLEM

6.1 Introduction

The concepts of optimal control have been applied to the problem of plant parameter sensitivity in order to calculate control schemes which are relatively insensitive. The basic concept is to define a variable which represents the sensitivity of the trajectory or cost index to changes in system perameters. These sensitivity variables are considered as additional state variables and are placed in the cost index to be minimized. Since most of the closed loop control laws of optimal control require knowledge of all of the state variables, the adaitional sensitivity states must be generated, adding to the complexity of the controller. It is clear that for a given feedback control structure, certain values of gains lead to less sensitive closed loop systems than others. Thus it appears feasibl so formulate a SOC problem which determines a control law that does not feed back any sensitivity states, and yet allows a tradeoff between system error, sensitivity, and control effort. Using this approach feedback control laws may be designed with sensitivity considerations, rather than designing and then analyzing for sensitivity characteristics.

6.2 Problem Formulation

Previous work $34,35,36,45$ has defined and developed the concept of trajectory sensitivity functions as outlined below. Assume that the state or trajectory of a system may be described by a system of first order linear differential equations, which are a function of a vector of constant parameters, g.

$$
\begin{equation*}
\dot{\underline{x}}^{0}=A\left(\underline{g}^{0}\right) \underline{x}^{0}+B \underline{u}^{0} ; \quad \underline{x}\left(t_{0}\right)=\underline{c} \tag{6.2.1}
\end{equation*}
$$

where the superscript 0 indicates the nominal. Consider the effect of a small change in the parameter on the system trajectory. The resulting offnominal trajectory is described by the following system of differential equations.

$$
\underline{\underline{x}}=A\left(\underline{q}^{0}+d \underline{q}\right) \underline{x}+B \underline{u} ; \quad \underline{x}\left(t_{0}\right)=\underline{c}
$$

This trajectory ray be represented by a Taylor series expansion about the nominal parameter.

$$
\underline{x}=\underline{x}^{\circ}+\frac{\partial \underline{x}}{\partial \underline{g}} d \underline{g}+0^{2}
$$

where 0^{2} represents second and higher order ter and $\frac{\partial \underline{x}}{\partial g}$ is a matrix of partial derivatives.

$$
\left[\frac{\partial \underline{x}}{\partial g}\right]_{i, j}=\frac{\partial x_{i}}{\partial q_{j}}
$$

Similarly the trajectory dispersion is given by

$$
\begin{equation*}
\Delta \underline{x}=\underline{x}-\underline{x}^{0}=\frac{\partial \underline{x}}{\partial \underline{q}} d \underline{q}+0^{2} \tag{6.2.2}
\end{equation*}
$$

Assuming that the first order terms are sufficient to describe the trajectory dispersion, it is clear that for a given parameter perturbation the dispersion can be made small by limiting the magnitude of $\frac{\partial \underline{x}}{\partial g}$. Thus, define the sensitivity matrix, Z, as follows.

Let \underline{z}_{j} denote the $j^{\text {th }}$ sensitivity vector corresponding to the $j^{\text {th }}$ parameter and the $j^{\text {th }}$ column of Z. These sensitivi;y vectors are adjoined to the system state vector to form an augmented state vector.

$$
\underline{z}_{j}=\left[\begin{array}{c}
\frac{\partial x_{1}}{\partial q_{j}} \tag{6.2.4}\\
\cdot \\
\cdot \\
\frac{\partial x_{M S}}{\partial q_{j}}
\end{array}\right] ; \quad \hat{\underline{x}}=\left[\begin{array}{c}
\underline{x} \\
\underline{z}_{1} \\
\cdot \\
\vdots \\
\underline{z}_{\mathrm{NPA}}
\end{array}\right]
$$

The augmented state vector is to be placed in a SOC cost index; by appropriate choice of weighting matrices a tradeoff between system performance and sensitivity mey be obtained. The formulation of the $S O C$ problem requires that a differential equation describing the behavior of the state vector be known. Fortunately, such an equation may be easily derived. Since by assumption g is independent of time and the first order partial derivatives are cont muous, the differential operators may be interchanged.

$$
\begin{equation*}
\stackrel{\stackrel{\rightharpoonup}{z}}{j}=\frac{\partial \underline{z}}{d t}=\frac{d}{d t}\left(\frac{\partial \underline{x}}{\partial q_{j}}\right)=\frac{\partial}{\partial q_{j}}\left(\frac{d \underline{x}}{\partial t}\right)=\frac{\partial \stackrel{\dot{x}}{ }}{\partial q_{j}} \tag{6.2.5}
\end{equation*}
$$

Note that the partial derivatives are taken with respect to the nominal. Using Eq. (6.2.1) this expression becomes

$$
\underline{\dot{z}}_{j}=\frac{\partial A}{\partial q_{j}} \underline{x}+\left(A+B \frac{\partial \underline{u}}{\partial \underline{x}}\right) \frac{\partial \underline{x}}{\partial q_{j}} ; \quad \frac{\partial \underline{x}}{\partial q_{j}}=\left.\underline{0}\right|_{t=t_{0}}
$$

or

$$
\begin{equation*}
\dot{\underline{z}}_{j}=\frac{\partial A}{\partial q_{j}} \underline{x}+\left(A+B \frac{\partial \underline{u}}{\partial \underline{x}}\right) \underline{z}_{j} ; \quad \underline{z}_{j}\left(t_{0}\right)=\underline{0} \tag{6.2.6}
\end{equation*}
$$

The initial conditions are zero, since the parameter variations have no effect on the systems initial conditions. If the control law is linear feedback,

$$
\underline{u}=-\mathrm{K}^{T} \underline{x}
$$

then Eq. (6.2.6) reduces to

$$
\begin{equation*}
\ddot{\underline{z}}_{j}=\frac{\partial A}{\partial q_{j}} \underline{x}+\left(\Lambda-B K^{T}\right) \underline{z}_{j} ; \quad \underline{z}_{j}\left(t_{0^{\prime}}\right)=0 \tag{6.c.1}
\end{equation*}
$$

The differential equation system describing the augmented state vector may be written in convenient state variable notation.

$$
\hat{\underline{x}}=\left[\begin{array}{l}
\underline{x} \tag{6.2.8}\\
\underline{z}_{1} \\
\vdots \\
\underline{z}_{\mathrm{NPA}}
\end{array}\right]
$$

$$
\dot{\hat{\hat{x}}}=\hat{A} \hat{\underline{\hat{x}}}+\hat{B} \underline{\underline{u}} ; \quad \hat{\underline{X}}\left(\dot{\sigma}_{0}\right)=\left[\begin{array}{c}
\underline{c} \tag{6.2.9}\\
\underline{0} \\
\vdots \\
\underline{0}
\end{array}\right]
$$

where

$$
\frac{\partial A}{\partial q_{j}} \triangleq A_{q_{j}}
$$

$$
\hat{\mathrm{B}}=\left[\begin{array}{c}
\mathrm{B} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Consider the problem of formulating a quadratic index in terms of the state and sensitivity variables and solving for the optimal control law. It is well known that the solvtion to the linear quadratic problem is a linear feedback controller. Note that the term, $\frac{\dot{j} \underline{\underline{x}}}{\partial \underline{x}}$, appears in the sensitivity differential equation. This term prevents the direct use of the linear approach since the necessary conditions defining the optimal solution are derived assuming that the \hat{A} matrix is independent of the control and hence the feedback gains. Thus a straightforward application of the SOC concept is not possible since the gain matrix K^{T} appears in \hat{A}.

However, it is possible to reformulate the problem and remove this difficulty. Define a new control vector

$$
\underline{u}=\left[\begin{array}{l}
\underline{u} \tag{6.2.10}\\
m \\
\vdots \\
m \\
-\mathrm{NPA}
\end{array}\right]
$$

Anticipatink thet the $S O C$ control law is linear feedbeck, formulate the SOC sensitivity problen so that $\underline{\underline{u}}$ and \underline{m}_{j} have the folluning structure.

$$
\begin{aligned}
& \underline{u}=-K^{T} \underline{x} \\
& \underline{m}_{j}=-{\underset{\sim}{r}}^{T} \underline{z}_{j} \quad I \leq j \leq N P A
\end{aligned}
$$

where the NS by NC gain matrices in all the equations are required to be identical. This is a differeat application of SOC than was used in the unavailable state problein. In this sace tre gains are required to have equal but unknown values which will be determined by the solution of the SOC problem. In addition, the unsvaileble state property is used to insure that naither the unavailable states
nor the sensitivity variables are fed back. Now, the dynamics may be rewritten.

$$
\begin{equation*}
\dot{\hat{\hat{x}}}=\bar{A} \underline{\hat{x}}+\bar{B} \underline{\hat{u}} \tag{6.2.11}
\end{equation*}
$$

where

The SOC sensitivity control law, $\underline{\underline{u}}$, is chosen to minimize

$$
\begin{equation*}
J=\frac{1}{2} \int_{t_{0}}^{\infty}\left(\underline{\hat{x}}^{T} S \underline{\hat{x}}^{\prime}+\underline{\hat{x}}^{T} \hat{\hat{s}} \underline{\hat{x}}+\underline{\hat{x}}^{\underline{I}} W \underline{\hat{u}}+\underline{\hat{x}}^{T} \hat{W} \underline{\hat{u}}+\underline{\hat{u}}^{T} Q \underline{\hat{u}}\right) d t \tag{6.2.12}
\end{equation*}
$$

subject to the dynamics

$$
\dot{\hat{\hat{x}}}=\overrightarrow{\mathrm{A}} \underline{\underline{\hat{x}}}+\underline{\underline{u}} ; \quad \hat{\underline{\hat{x}}}\left(t_{0}\right)=\left[\begin{array}{c}
\underline{c} \tag{6.2.13}\\
\underline{0} \\
\vdots \\
\underline{0}
\end{array}\right]
$$

and the $S O C$ structure constraints.

$$
\begin{aligned}
& \underline{u}=-K^{T} \underline{x} \\
& \underline{m}_{j}=-K^{T} \underline{z}_{j}
\end{aligned}
$$

or

$$
\underline{\underline{u}}=-\bar{K}^{-T} \underline{x}
$$

where

The selection of \hat{S} and \hat{W} and the derivation of the necessary conditions are SOC Sensitivity Ricatti Equation

$$
\begin{equation*}
A_{\bar{K}}^{T} P+P A_{\bar{K}}+S+\bar{K} Q \bar{K}^{T}=0 \tag{6.2.14}
\end{equation*}
$$

where

$$
\begin{array}{ll}
A_{\bar{K}}=\left(A-B K^{T}\right): & (N P A+1) N S \text { by }(N P A+1) N S \\
A_{K}=\left(A-B K^{\prime}\right): & \text { NS by NS }
\end{array}
$$

and

Feedback Gain Equation

$$
\bar{K}^{T}=\left[\begin{array}{ccccc}
K^{T} & 0 & \cdot & \cdot & 0 \\
0 & & \bullet & \ddots & 0 \\
\vdots & \cdot & & & \ddots
\end{array}\right)
$$

where

$$
K^{T}=Q^{-1}\left(B^{T} P+\frac{W^{T}}{2}\right) I_{11}^{1}
$$

and $I_{11}^{I}=\left[\begin{array}{cc}I_{\text {NS-L }} & 0 \\ 0 & 0\end{array}\right]$ is a $(N P A+1)$ NS by $(N P A+1)$ NS matrix with $I_{\text {NS-L }}$ the NS-L by NS-L identity matrix.

6.3 Probls - Simplification

The computational effort involved in solving the optimal trajectory sensitivity problem by other methods 35,36 may be very large. The use of sic reduces the computational requirements. However, the dimension of the augmented state vector may become unwieldy. For each parameter of the parameter vector the dimension of the augmented vector is increased by NS. For NS system states and NPA parameters, $\underline{\hat{x}}$ has (NPA + 1)NS elements and the Ricatti matrix has $\frac{(N P A+1) N S((N P A+1) N S+1)}{2}$ elements. For example, with a system of 7 states and 1 parameter the augmenied state vector has 14 states and the symmetric Ricatti matrix has 105 independent elements. To obtain the solution to this Ricatti equation would require the solution of 105 simultaneous nonlinear equations, which is not a trivial task. If two additional parameters are considered, the corresponding Ricatti equation would involve 406 elements. If the SOCDES
iterative approach is used to solve these equations, two linear systems of dimension equal to the number of unknown Ricatti elements must be solved at each iteration. Accuracy and running time considerations would indicate that this approach is not feasible for most practical problems.

However, a careful examination of the $S O C$ sensitivity equations indicates that this "curse" of dimensionality may be reduced significantly. It is shown below that the computational effort involved in solving the sensitivity problem is approximately equal to the effort involved in solving a soc problem for the original system, regardiess of the number 'Jf parameters. That is, systems of equations on the order of $\frac{N S(N S+1)}{2}$ must be solved for any number of parameters.

To demonstrate this reduction, the matrices of the Ricatt equation are partitioneu into blocks of NS by NS elements. For convenience, a parameter vector of two elemfits is considered, NPA $=2$.

Thus,

$$
A_{K}^{-}=\left[\begin{array}{ccc}
A_{K} & 0 & 0 \\
A_{q_{1}} & A_{K} & 0 \\
A_{q_{2}} & 0 & A_{K}
\end{array}\right]: \text { 3NS by 3NS }
$$

where $A_{K}=A-B K^{T}$
$P=\left[\begin{array}{lll}P_{1} & P_{2}^{T} & P_{3}^{T} \\ P_{2} & P_{4} & P_{5}^{T} \\ P_{3} & P_{5} & P_{6}\end{array}\right]:$ 3NS by 3NS
$s=\left[\begin{array}{lll}S_{1} & S_{2}^{T} & S_{3}^{T} \\ S_{2} & S_{4} & S_{5}^{T} \\ S_{3} & S_{5} & S_{6}\end{array}\right]:$ 3NS by 3NS

$$
\begin{aligned}
& Q=\left[\begin{array}{lll}
Q_{1} & 0 & 0 \\
0 & Q_{2} & 0 \\
0 & 0 & Q_{3}
\end{array}\right]: \text { 3NC by 3NC } \\
& \bar{K}^{T}=\left[\begin{array}{ccc}
K^{T} & 0 & 0 \\
0 & K^{T} & 0 \\
0 & 0 & K^{T}
\end{array}\right]: 3 N C \text { by 3NS }
\end{aligned}
$$

and

$$
\bar{K} Q^{\stackrel{n}{n}^{n}}=\left[\begin{array}{ccc}
K Q_{1} K^{T} & 0 & 0 \\
0 & K Q_{2} K^{T} & 0 \\
0 & 0 & K Q_{3} K^{T}
\end{array}\right] \cdot 3 N S \text { by 3NS }
$$

Using this notation the SOC sensitivity Ricatti equation may be written as a set of 6 NS by NS matrix equations.

$$
\begin{align*}
& \underline{P_{1} A_{K}+A_{K}^{T} P_{1}}+P_{2}^{T} A_{q_{1}}+A_{q_{1}}^{T} P_{2}+P_{3} A_{q_{2}}+A_{q_{2}}^{T} P_{3}+S_{1}+K Q_{1} K^{T}=0 \\
& \underline{P_{2} A_{K}+A_{K}^{T} P_{2}}+P_{4} A_{q_{1}}+P_{5}^{T} A_{q_{2}}+S_{2}=0 \tag{6.3.2}\\
& \underline{P_{3} A_{K}+A_{K}^{T} P_{3}}+P_{5} A_{q_{1}}+P_{6} A_{q_{2}}+S_{3}=0 \tag{6.3.3}\\
& \underline{P_{4} A_{K}+A_{K}^{T} P_{4}}+S_{4}+K Q_{2} K^{T}=0 \\
& \underline{P_{5} A_{K}+A_{K}^{T} P_{5}}+S_{5}=0 \\
& \underline{P_{6} A_{K}+A_{K}^{T} P_{6}}+S_{6}+K Q_{3} K T=0
\end{align*}
$$

and

$$
\begin{equation*}
K^{T}=\left[Q_{1}^{-1} B^{T} P_{1}+Q_{1}^{-1} \frac{W_{1}^{T}}{2}\right] I_{11}^{1} \tag{6.3.7}
\end{equation*}
$$

Since P and S are symmetric, the diagonal blocks of the partitioned representation will also be symmetric while in general the off-diagonal elements wil? not be. Note the recurring underlined portions of the above. equations and consider general matrix equations of the same fora.

Type I:

$$
\begin{equation*}
P_{i} A_{K}+A_{K}{ }^{T} P_{i}=D_{i} \tag{6.3.8}
\end{equation*}
$$

where P_{i} is symmetric.
Type II:

$$
\begin{equation*}
\underline{P_{j} A_{K}+A_{K}^{T} P_{j}}=D_{j} \tag{6.3.9}
\end{equation*}
$$

where P_{j} is not symmetric.
In Eq. (6.3.1)-(6.3.7), P_{1}, P_{4}, and P_{6} are symmetric while P_{2}, P_{3}, and P_{5} are not. If the SOCDES approach is used to solve the SOC problem, a stable K matrix is known at each iterpition and Eq. (6.3.1)-(6.3.7) must be solved for P_{i} and P_{j}.

Since A_{K} is stable, there exists a unique solution to equations of Type I which may be iound by the solution of an equivalent set of $\frac{N S}{2}(N S+1)$ linear equations. Denote this equivalent set by

$$
\begin{equation*}
\text { "A } A_{K}{ }^{"} P_{i} "={ }^{\prime} D_{i} " \tag{6.3.10}
\end{equation*}
$$

This equivalent system of equations is described in detail in Appendix E. The manipulations involved in this transformation do not seem to be well known as evidenced by a recent publication. 46 The Type II equations may be reformulated
so as to reduce the solution effort. Consider Eq. (6.3.9) and its transpose.

$$
\begin{align*}
& P_{j} A_{K}+A_{K}^{T} P_{j}=D_{j} \tag{6.3.11}\\
& P_{j}^{T} A_{K}+A_{K}^{T} P_{j}^{T}=D_{j}^{T} \tag{6.3.12}
\end{align*}
$$

Define symmetric and skew symmetric matrices as follows:

$$
\begin{aligned}
& \bar{P}_{j}=\frac{P_{j}+P_{j}^{T}}{2} ; \quad \bar{P}_{j}=\bar{P}_{j}^{T} \\
& \bar{P}_{j}=\frac{P_{j}-P_{j}^{T}}{2} ; \quad \overline{\bar{P}}_{j}^{T}=-\overline{\bar{P}}_{j}
\end{aligned}
$$

and

$$
P_{j}=\vec{P}_{j}+\overline{\bar{P}}_{j}
$$

By adding and subtrarting Eqs. (6.3.11) and (6.3.12) equations for \bar{P}_{j} and $\overline{\bar{P}}_{j}$ are derived

$$
\begin{align*}
& \bar{P}_{j} A_{K}+A_{K}^{T} \bar{P}_{j}=\left(D_{j}+D_{j}^{T}\right) / 2 \\
& \bar{P}_{j} A_{K}+A_{K}^{T} \overline{\bar{P}}_{j}=\left(D_{j}-D_{j}^{T}\right) / 2
\end{align*}
$$

Note that Eq. (5.3.13) is of Type I; thus the equivalent linear system of $\frac{\text { NS }}{2}$ (NS +1) equations can be written as

$$
\begin{equation*}
" A_{K} " \bar{P}_{j} "="\left(D_{j}+D_{j}^{T}\right) " / 2 \tag{6.3.15}
\end{equation*}
$$

Since $\overline{\mathrm{P}}_{\mathrm{J}}$ is skew symmetric, only $\frac{\text { NS }}{\mathrm{C}}$ (NS - 1) elements must be found, corresponding to the lower or upper off diagonal triangular elements. Thus Eq. (6.3.14) is not of Type I but is closely related. An equivalent linear system can be found for these unknowns.

$$
{ }^{\prime} A_{K}^{\prime} '_{P_{j}}^{Z}={ }^{\prime}\left(D_{j}-D_{j}^{T}\right)^{\prime} / 2
$$

' A^{K} ' is generated in much the same fashion as " A_{K} " except that minus signs are involved since $\overrightarrow{\vec{P}}_{j}$ is skew symmetric. Thus, $\mathrm{Eq} .(6.3 .1)-(6.3 .7)$ can be written in terms of the equivalent linear systems.

$$
\begin{align*}
& { }^{\prime \prime} A_{K}{ }^{\prime \prime} P_{1}{ }^{\prime \prime}=-"\left(P_{2}^{T} A_{q_{1}}+A_{q_{1}}^{T} P_{2}+P_{3}^{T} A_{q_{2}}+A_{q_{2}}^{T} P_{3}+S_{1}+K Q_{1} K^{T}\right) " \tag{6.3.17}
\end{align*}
$$

$$
\begin{align*}
& { }^{"} A_{K}{ }^{\prime \prime} P_{4}{ }^{\prime \prime}=-"\left(S_{4}+K Q_{2} K^{T}\right)^{\prime \prime} \tag{6.3.20}\\
& { }^{n} A_{K}{ }^{n}{ }^{n} \bar{P}_{5} "=-"\left(S_{5}+S_{5}^{T}\right) " / 2 \tag{6.3.21}\\
& \text { " } A_{K}{ }^{"} P_{6} "=-"\left(S_{6}+K Q_{3} K^{T}\right) " \tag{6.3.22}\\
& { }^{\prime} A_{K}^{\prime}{ }^{\prime} \mathcal{P}_{2}^{\prime}=-{ }^{\prime}\left(P_{4} A_{q_{1}}-A_{q_{1}}^{T} P_{4}+P_{5}^{T} A_{q_{2}}-A_{q_{2}}^{T} P_{5}+S_{2}-S_{2}^{T}\right)^{\prime / 2} \\
& { }^{\prime} A_{K} \cdot{ }^{\prime} \overline{\bar{P}}_{3} \cdot=-{ }^{\prime}\left(P_{5} A_{q_{1}}-A_{q_{1}}^{T} P_{5}^{T}+P_{6} A_{q_{2}}-A_{q_{2}}^{T} P_{6}+S_{3}-S_{3}^{T}\right) \cdot / 2 \tag{6.3.24}\\
& { }^{\prime} \mathrm{A}_{\mathrm{K}} \prime^{\prime} \overline{\bar{P}}_{5}^{\prime}=-{ }^{\prime}\left(\mathrm{S}_{5}-\mathrm{S}_{5}^{\mathrm{T}}\right)^{\prime} / 2 \tag{6.3.25}
\end{align*}
$$

Equations (6.3.17)-(6.3.22) are six systems of $\frac{\text { NS }(N S+1)}{2}$ equations with the same coefficient matrix, while Eqs. (6.3.23)-(6.3.25) are three systems of $\frac{\operatorname{NS}(N S-1)}{2}$ equations with the same coefficient matrix. This is significant since after an initial solution to a system of linear equations is obtained, the computational effort involved in obtaining solutions for different right hand side vectors is relatively very low.

Thus, using this approach, Eq. (6.3.20), (6.3.21), (6.3.22) and (6.3.25) may be solved for P_{4}, P_{j}, and P_{6}. Then Eq. (6.3.18), (6.3.19), (6.3.23) and (6.3.24) are solved for P_{2} and P_{3}. Finally Eq. (6.3.17) is used to find P_{1}. To summarize, instead of solving a system of $\frac{(N P A+1) N S((N P A+1) N S+1)}{2}$ equations to determine the Ricatti matrix, a system of $\frac{\mathrm{NS}(\mathrm{NS}+1)}{2}$ equations is solved $\frac{(N P+1)(N P+2)}{2}$ times and a system of $\frac{\text { NS }(N S-1)}{2}$ equations is solved $\frac{\mathrm{NP}(\mathrm{I} P+1)}{2}$ times. For example, if $\mathrm{NS}=7$ with two parameters (NPA=2), the solution of a system of 231 equations is replaced by the solution of a 28 equation system 6 times and a 21 equation system 3 times. This is a substantial reduction in computational effort.

With this computational approach, the SOC sensitivity problem is no more difficult to solve than a $S O C$ problem for the original system. Thus SOC has a distinct computational advantage over other trajectory sensitivity formulations. It now becomes feasible to apply the sensitivity techniques to practical problems.

6.4 Examples

A. First Order Example

Consider the first order system described by this differential equation.

$$
\dot{x}=a x+b u
$$

Assume that the value of a is not accurately known but that it lies somewhere near a nominal value of -1 and let $b=1$. The sensitivity variable for this problem is defined as follows.

$$
z=\frac{\partial x}{\partial z}
$$

Use the SOC sensitivity procedure to calculate a feedback control so that the closed loop system is insensitive with respect to a.

$$
\dot{x}=(a-k) x ; \quad u=-k x
$$

Choose $\hat{\underline{u}}$ to minimize J,

$$
J=\frac{1}{2} \int_{0}^{\infty}\left(\underline{\hat{x}}^{T} s \underline{\hat{x}}+\underline{\hat{x}} \hat{\mathrm{~s}} \underline{\hat{x}}+\underline{\hat{x}}^{T} W \underline{\hat{u}}+\underline{\hat{x}}^{T} \hat{w} \underline{\underline{\hat{u}}}+\underline{\hat{u}}^{T} Q \underline{\hat{u}}\right) d t
$$

subject to

$$
\begin{aligned}
& \dot{x}=-x+u \\
& \dot{z}=-z+x+m
\end{aligned}
$$

or

$$
\dot{\underline{\hat{x}}}=\left[\begin{array}{cc}
-1 & 0 \\
1 & -1
\end{array}\right] \hat{\underline{\hat{x}}}+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \underline{\hat{u}}
$$

and

$$
s=\left[\begin{array}{ll}
\hat{s}_{11} & \hat{s}_{12} \\
\hat{s}_{21} & \hat{s}_{22}
\end{array}\right] ; \quad s_{12}=s_{21}
$$

$$
W=\left[\begin{array}{ll}
\hat{w}_{11} & \hat{w}_{12} \\
\hat{w}_{21} & \hat{w}_{22}
\end{array}\right]
$$

$$
\underline{\hat{x}}=\left[\begin{array}{l}
x \\
z
\end{array}\right]
$$

$$
\underline{\hat{u}}=\left[\begin{array}{l}
u \\
m
\end{array}\right]
$$

Let

$$
P=\left[\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right] ; \quad p_{12}=p_{21}
$$

$$
\begin{aligned}
& s=\left[\begin{array}{ll}
s_{11} & 0 \\
0 & s_{22}
\end{array}\right] \\
& Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

and

$$
W=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

The Ricatti equation which defines the solution gain is given below.

$$
\begin{aligned}
& \bar{A}_{\bar{K}}^{T} P+P \bar{A}_{\bar{K}}+S+\bar{K} Q \bar{K}^{T}=0 \\
& \bar{K}=\left[\begin{array}{ll}
k & 0 \\
0 & k
\end{array}\right]
\end{aligned}
$$

and

$$
\left.\begin{array}{l}
-2 p_{11}-2 p_{11} k+2 p_{12}+s_{11}+k^{2}=0 \tag{6.4.1}\\
-2 p_{12}(1+k)+p_{22}=0 \\
-2 p_{22}(1+k)+s_{22}+k^{2}=0
\end{array}\right\}
$$

and

$$
k=p_{11}
$$

To illustrate the equivalent v ector notation, P can be found as a function of k and thus k as a function of s_{11} and s_{22}.

$$
E{ }^{\prime} P^{\prime \prime}=-"\left(S+\bar{K} Q \hat{K}^{T}\right) "
$$

The coefficient matrix E is obtained from Eq. (6.4.1).

$$
" P "=\left[\begin{array}{l}
p_{11} \\
p_{12} \\
p_{22}
\end{array}\right]
$$

$$
\prime s+R Q K^{\prime \prime}=\left[\begin{array}{c}
s_{11}+k^{2} \\
0 \\
s_{22}+k^{2}
\end{array}\right]
$$

\square Thus,

$$
\left[\begin{array}{ccc}
-2-2 k & 2 & 0 \tag{6.4.2}\\
0 & -2-2 k & 1 \\
0 & 0 & -2-2 k
\end{array}\right]\left[\begin{array}{l}
p_{11} \\
p_{12} \\
p_{22}
\end{array}\right]=\left[\begin{array}{c}
-s_{11}-k^{2} \\
0 \\
-s_{22}-k^{2}
\end{array}\right]
$$

Then p_{11} as a function of k, s_{11}, and s_{22} may be determined.

$$
p_{11}=\frac{1}{2}\left[\frac{s_{11}+k^{2}}{1+k}+\frac{s_{22}+k^{2}}{2(1+k)^{3}}\right]
$$

Since $p_{11}=k$, Eq. (6.4.3) can be used to define an equation in s_{11}, s_{22}, and k.

$$
\begin{equation*}
k^{4}+4 k^{3}+\left(\frac{9}{2}-s_{11}\right) k^{2}+\left(2-2 s_{11}\right) k-s_{11}-\frac{s_{22}}{2}=0 \tag{6.4.4}
\end{equation*}
$$

A positive solution to this equation is solight since the positive definite solution to the Ricatti equation is of interest ($p_{11}>0$). It is expected that as the weighting on the sensitivity variable, $s_{2}{ }_{2}$, if: increased the corresponding closed loop system will become less sensitive to chariges in a.

Let the inftial set of weightings be chosen as follows.

$$
\begin{aligned}
& s_{11}=1.0 \\
& s_{22}=.876
\end{aligned}
$$

Equation (6.4.4) is solved to obtain

$$
k=0.5
$$

The sensitivity weighting is increased.

$$
\begin{aligned}
& s_{11}=1.0 \\
& s_{22}=15.0
\end{aligned}
$$

and Eq. (6.4.4) is solved to obtain,

$$
k=1.0
$$

As this weighting is increased further, the feedback gain also increases. Clearly, this leads to a decrease in the system sensitivity to a. For a off-nominal value of $a, a=0$, this is verified by the entries in Table 6.1. The optimal trajectory is described by

$$
\dot{x}^{0}=-\left(a^{0}+k\right) x^{0}=-(1+k) x^{0} ; \quad x(0)=1
$$

while the off-nominal trajectory is described by

$$
\dot{x}=-(k) x ; \quad x(0)=1
$$

This table also indicates integral square values of the sensitivity variable, z, and trajectory dispersion $\Delta x=x-x^{\circ}$. Note the integral square values of these variables decrease as the sensitivity weighting and feedback gain increase.

Although the actual value of the cost index may not be of any use, it is interesting to look at the specific nature of the formal index. To do this explicit values of \hat{S} and \hat{W} may be found from their respective definitions. From Eq. (6.4.2), with $k=1, s_{11}=1.0$, and $s_{22}=15.0$, the Ricatti matrix is

$$
P=\left[\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right]
$$

S_{22}	k	$\int_{0}^{\infty} x_{0}^{2} d t$	$\int_{0}^{\infty} z^{2} d t$	$\int_{0}^{\infty} \Delta x^{2} d t$
0.876	0.5	.333	.074	.3333
15.0	1.0	.250	.031	.0834
$28.7 \quad 10^{3}$	10.0	.046	.0003	.0003

Table 6.1
FRST ORDER SENSITIVITY EXAMPLE

S	k	$\int_{0}^{6} x^{\top} x d$	$\int_{0}^{5} \underline{z}^{T} \underline{z} d t$	$\int_{0}^{5} \Delta x^{\top} \Delta x d t$
0.005	1.73	5.7810^{-1}	$3.51 \quad 10^{-1}$	$2.61{ }^{10^{-1}}$
0.1	1.75	$5.71{ }^{10^{-1}}$	2.39 10-1	2.5710^{-1}
1.0	1.96	$5.12 \quad 10^{-1}$	2.4610^{-1}	I. 6510^{-1}
10.0	2.68	3.49 10-1	$9.46 \quad 10^{-2}$	4.6610^{-2}
100.0	4.34	$2.17 \quad 10^{-4}$	2.2510^{-2}	$8.22{ }^{10^{-3}}$
$1 \cdot 10^{4}$	8.40	$1.00 \quad 10^{+1}$	3.0710^{-3}	9.3010^{-4}
$1 \cdot 10^{6}$	26.6	2.65 10\%	1.4410^{-4}	3.6310^{-5}

Table 6.2
SECOND ORDER SENSTTIVITY EXAMPLE

The structure of \hat{W} is somewhat simplified since all of the states, in this case one, are fed back. From the definition of \hat{W}, given in Appendix D, end noting that $W=0$ and $I_{11}{ }^{2}=0$,

$$
\begin{aligned}
& \hat{W}_{11}=-2\left[\left[I_{11}^{2}\left(P \bar{B}+\frac{W}{2}\right)\right]\right]_{11}=0 \\
& \hat{W}_{12}=-2[[P \dot{B}]]_{1<}=-2\left[\left[\left(\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array} \left\lvert\,\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right.\right]\right]^{2}=\left[\left[\begin{array}{ll}
-2 & -2 \\
-2 & -8
\end{array}\right]\right]=-8\right.
\end{aligned}
$$

$$
\hat{W}_{12}=-2
$$

See Appendix D for an explanation of this notation. Similarly

$$
\hat{W}_{21}=-2[[\mathrm{~PB}]]_{21}=-2
$$

and

Thus

$$
\hat{\mathbf{w}}_{22}=2(1-4)=-6
$$

${ }_{\text {and }}$

$$
\hat{w}=\left[\begin{array}{rr}
0 & -2 \\
-2 & -6
\end{array}\right]
$$

$$
\begin{aligned}
& \hat{\dot{w}}_{i 22}=2\left\{\left[\left[I_{11}^{1} P \bar{B}\right]\right]_{11}-[[P \bar{B}]]_{22}\right\} \\
& F \bar{B}=\left[\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right] ; \quad I_{11}^{1} P \bar{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

As a check

$$
\overline{K^{\prime}}=\left(B^{T} P+\frac{\hat{W}}{2}\right)=\left[\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right]+\left[\begin{array}{cc}
0 & -1 \\
-1 & -3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Finally
is given by its definition.

$$
\hat{S}=\frac{1}{2}\left(\hat{W}-T H+\hat{W} \hat{W}^{T}\right)=\left[\begin{array}{cc}
0 & -2 \\
-2 & -6
\end{array}\right]
$$

Using these values of \hat{S} and \hat{W} this SOC problem may be stated as choosing u and m to minimize J.

$$
J=\frac{1}{2} \int_{0}^{\infty}\left(x^{2}+9 z^{2}-4 x z-2 x m-2 z u-6 m z+u^{2}+m^{2}\right) d t
$$

subject to

$$
\begin{aligned}
& \dot{x}=-x+u \\
& \dot{z}=-z+x+m
\end{aligned}
$$

with the solution

$$
\begin{aligned}
& \mathrm{u}=-\mathrm{x} \\
& \mathrm{~m}=-\mathrm{z}
\end{aligned}
$$

B. Second Order Example

To compare this method with other techniques, consider the second order damped oscillator example. Once again the differential equation describing this system is given by

$$
\ddot{y}+2 \rho \omega \dot{y}+\omega^{2} y=u
$$

Assume that the damping parameter ρ is susceptible to variations. The state equations are

$$
\begin{aligned}
& \underline{x}=\left[\begin{array}{l}
\dot{y} \\
y
\end{array}\right] \\
& \underline{\dot{x}}=A \underline{x}+\underline{b} u \\
& A=\left[\begin{array}{cc}
-2 \rho \omega & -\omega^{2} \\
1 & 0
\end{array}\right] \\
& b=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\end{aligned}
$$

and

$$
A_{q}=\left[\begin{array}{cc}
-2 \omega & 0 \\
0 & 0
\end{array}\right]
$$

Dinly the rate signal will be fed back. Thus

$$
u=-k x_{1}=-k \dot{y}
$$

and $\mathbb{N S}=2, L=1, \mathbb{N C}=1$. For illustrative purposes, use the reduced formulation described by the following equatious where each of the partition blocks is of the proper dimension to allow consistent multiplication.

$$
\begin{aligned}
& P=\left[\begin{array}{ll}
P_{1} & P_{2}^{T} \\
P_{2} & P_{3}
\end{array}\right] \\
& S=\left[\begin{array}{ll}
S_{1} & S_{2}^{T} \\
S_{2} & S_{3}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& W=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& A_{K}=A-B K^{T}=\left[\begin{array}{cc}
-k-2 \rho \omega & -\omega^{2} \\
1 & 0
\end{array}\right] \\
& K=\left[\begin{array}{l}
k \\
0
\end{array}\right] \\
& Q=\left[\begin{array}{ll}
q & 0 \\
0 & q
\end{array}\right]
\end{aligned}
$$

1 The reduced matrix equations describing the optimal solutions are

$$
\begin{align*}
& P_{1} A_{K}+A_{K}^{T} P_{1}+P_{2}^{T} A_{q}+A_{q}^{T} P_{2}+S_{1}+K Q K^{T}=0 \tag{6.4.5}\\
& F_{2} A_{K}+A_{K}^{T} P_{2}+P_{3} A_{q}+S_{2}=0 \tag{6.4.6}\\
& P_{3} A_{K}+A_{K}^{T} P_{3}+S_{3}+K Q K^{T}=0 \tag{6.4.7}
\end{align*}
$$

Let

$$
\begin{array}{ll}
P_{1}=\left[\begin{array}{ll}
p_{1}^{1} & p_{1}^{2} \\
p_{1}^{2} & p_{1}^{3}
\end{array}\right]: & s_{1}=\left[\begin{array}{cc}
s_{1}^{1} & s_{1}^{2} \\
s_{1}^{2} & s_{1}^{3}
\end{array}\right] \\
P_{2}=\left[\begin{array}{ll}
p_{2}^{1} & p_{2}^{3} \\
p_{2}^{2} & p_{2}^{4}
\end{array}\right]: \quad s_{2}=\left[\begin{array}{ll}
s_{2}^{1} & s_{2}^{3} \\
s_{2}^{2} & s_{2}^{4}
\end{array}\right] \\
P_{3}=\left[\begin{array}{ll}
p_{3}^{1} & p_{3}^{2} \\
p_{3}^{2} & p_{3}^{3}
\end{array}\right]: \quad s_{3}=\left[\begin{array}{ll}
s_{3}^{1} & s_{3}^{2} \\
s_{3}^{2} & s_{3}^{3}
\end{array}\right]
\end{array}
$$

where the elements of these matrices are scalars. Assume that $\mathfrak{V}^{\circ}=0$ and $\omega=1$; then Eq. (6.4.7) can be written,

$$
\left.\begin{array}{l}
-2 p_{3}^{1} \mathrm{k}+2 \mathrm{p}_{3}^{2}+\mathrm{s}_{3}^{1}+\mathrm{q} \mathrm{k}^{2}=0 \tag{6.4.8}\\
-\mathrm{p}_{3}^{1}-\mathrm{p}_{3}^{2} \mathrm{k}+\mathrm{p}_{3}^{3}+\mathrm{s}_{3}^{2}=0 \\
-2 \mathrm{p}_{3}^{2}+\mathrm{s}_{3}^{3}=0
\end{array}\right\}
$$

Equation (6.4.6) becomes,

$$
\begin{align*}
& -k p_{2}^{1}+p_{2}^{3}-k p_{2}^{1}+p_{2}^{2}-2 p_{3}^{1}+s_{2}^{1}=0 \\
& -p_{2}^{1}-k p_{2}^{3}+p_{2}^{4}+s_{2}^{3}=0 \tag{5.4.9}\\
& -k p_{2}^{2}+p_{2}^{4}-p_{2}^{1}-2 p_{3}^{2}+s_{2}^{2}=0 \\
& -p_{2}^{2}-p_{2}^{3}+s_{2}^{4}=0
\end{align*}
$$

and Eq. (6.3.1) is equivalent to

$$
\left.\begin{array}{l}
-2 p_{1}^{1} k+2 p_{1}^{2}-4 p_{2}^{1}+s_{1}^{1}+q k^{2}=0 \\
-p_{1}^{1}-p_{1}^{2} k+p_{1}^{3}-2 p_{2}^{2}+s_{1}^{2}=0 \\
-2 p_{1}^{2}+s_{1}^{3}=0
\end{array}\right\}
$$

The gain equation is

$$
K^{T}=\frac{b^{T} P_{1} I_{11}^{1}}{q}
$$

or

$$
\begin{equation*}
\mathrm{k}=\frac{\mathrm{p}_{1}{ }^{1}}{\mathrm{q}} \tag{6.4.11}
\end{equation*}
$$

For the following set of weightings

$$
\begin{aligned}
& S_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] ; \quad S_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \\
& S_{3}=\left[\begin{array}{cc}
.005 & 0 \\
0 & .005
\end{array}\right] ; \quad q=1
\end{aligned}
$$

Equation (6.4.8)-(6.4.11) can be solved to obtain $k=1.73$

As the sensitivity weighting

$$
s_{3}=\left[\begin{array}{ll}
s & 0 \\
0 & s
\end{array}\right]
$$

is increased, the resulting closed loop system becomes less sensitive to J as shown in Table 6.2. The results entered in this table were obtained for a offnominal \mathcal{J} of -1.0 . Again for this simple problem the insensitive nature is obtained by an increase in the magnitude of the feedback gain so that for the same value of parameter variation, the relative effect is diminished. Figure 6.1 indicates the nominal and off-nominal time domain response to an initial condition of $\dot{y}(0)=1$ for $k=1.73$ and $k=8.4$ while Fig. 5.2 and 5.3 compare the sensitivity variables and trajentory dispersions.

A basic difference between the model reference and sensitivity techniques is pointed out in the responses of Fig. 6.1. In the sensitivity approach the feedback gains and hence the nominal trajectory are chosen to be insensitive to parameter variations. In the model reference technique the nominal performance of the system is independent of any sensitivity consjderations. This may be an advantage since reduced sensitivity may correspond to degraded nominal performance. The "price" paid for this model reference feature is the increased complexity of the model reference controller.

As an indication of the feasibility of the SOC sensitivity approach, it was compared with the method described by Dougherty. ${ }^{36}$ Both methods were used to solve the same second order problem which is similar to the problem discussed above except that both position and rate information is fed-back. Dougherty's
I

time
initial condition response
FIG. 6.1

VARIABLES
SENSITIVITY
FIG. 6.2

FIG. 6.3-0 RATE TRAJECTORY DISPERSION

initial control law was

$$
u=-2.44 y-2.93 \dot{y}
$$

These gains can be obtained with the SOC sensitivity approach with the following weightings.

$$
\begin{aligned}
q=1.0 & S_{1}=\left[\begin{array}{cc}
10.9 & 0 \\
0 & 1.0
\end{array}\right] \\
S_{2}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] & S_{3}=\left[\begin{array}{cc}
27.4 & 0 \\
0 & 27.4
\end{array}\right]
\end{aligned}
$$

Using Dougherty's technique a desensitizeã control law

$$
u=-2.78 y-4.16 y
$$

is obtained with an esecution time of about fifteen minutes on an IBM model 360i>) digital computer. 'This same control law can be obtained with SOC with the following weightings; note the increase in sensitivity weighting.

$$
\begin{array}{ll}
q=1 ; & s_{1}=\left[\begin{array}{cc}
13.8 & 0 \\
0 & 1
\end{array}\right] \\
s_{2}=\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right] ; & s_{3}=\left[\begin{array}{cc}
281 . & 0 \\
0 & 281 .
\end{array}\right]
\end{array}
$$

The execution time required to solve this problem using the SOCDES algorithm was ten seconds! As the size of the problem considerel increases the execution time requirements of the $S O C$ technique increase but they still remain reasonable as shown in Chapter VII where the technique is applied to the Saturn V launch vehicle problem.

Nomenclature

Matrices

A System matrix: NS by NS
A Augmented system matrix: $(N P A+1) N S$ by $(N P A+1) N S$
A Augmented system matrix: (NPA +1)NS by $(N P A+1) N S$
$\mathrm{A}_{\mathrm{K}} \quad$ Closed loop augmented system matrix: $\quad($ NPA +I)NS by (NPA +1)NS
AK Closed loop system matrix: NS by NS
$A_{q_{J}} \quad$ Partial derivatirr matrix: $N S$ by NS
i Control coefficient matrix: NS by NC
$\bar{B} \quad$ Augmented system control coefficient matrix: (NBA +1)NS by (NPA +1)NC
$\hat{B} \quad$ Augmented system control coefficiet matrix: (NPA +1)NS by NC
$D_{i} \quad$ Notational matrix
K Feedback gain matrix: NS by NC
$\overline{\mathrm{K}} \quad$ Augmented system feedback gain matrix: $(\mathrm{NPA}+1) \mathrm{NS}$ by (NPA +1)NC
P Ricatti matrix: (NPA +1)NS by (NPA +1)NS
$P_{i} \quad$ Component of Ricatti matrix: NS by NS
$\bar{P}_{j} \quad$ Symmetric part of Ricatti component matrix: NS by NS Skew-Symmetric part of Ricatti component matrix: NS by NS

Q Symmetric control weighting matrix: (NPA + 1)NC by (NPA + 1)NC
$\hat{\mathbf{S}}$ Symmetric state weighting matr'x: (NPA + 1) NS by (NPA +1)NS
S Symmetric state weighting matrix; class two: (NPA + 1)NS by (NPA + 1)NS
S_{1} Component of state weighting matrix: NS by NS
Bilinear weighting matrix: (NPA + I)NS̈ by (NPA + I)NC
Bilinear weighting matrix; class two: (NPA + 1)NS by (NPA + 1)NC Sensitivity matrix: NS by NPA

Vectors

m_{i} Control vector of $i^{\text {th }}$ sensitivity vector: NC
g Parameter vector: NPA
dg Perturbation parameter vector: NPA
u System control vector: NC
人 \quad Augmented system control vector: (NPA +1)NC
$\underline{\mathrm{x}} \quad$ State vector: ivis
$\hat{\hat{x}} \quad$ Augmented system vector: (NPA +1)NS
\underline{z}_{i} Sensitivity vector of $i^{\text {th }}$ paraneter: NS

Chapter VII

CASE STUDY: THE LAUNCH VEHICLE PROBLEM

7.1 Introduction

In this chapter, the techniques developed in the preceding sections are demonstrated by their application to the significant engineering problem of the altitude control of a large launch vehicle of the Saturn class. The vehicle configuration is shown in Fig. 7.1. The first stage propulsion is obtained from five liquid fuel engines each of which generates about 1.5 million pounds of thrust. Control is obtained by gimballing or swivelling four of the five engines. This vehicle is a large complex system which is difficult to control. Neither classical nor currently available modern techniques have been particularly effective in solving this problem.

There are two major sources of difficulty. The first stems from the physical characteristics of the vehicle and is independent of any design technique. The basic objective of this contrcl pre eem is to force the vehicle to remain in the neighborhood of the programmed nominal trajectory despite environmental disturbances. Each new generation of launch vehicles is larger than the last; the length to width ratio decreases corresponding to an increase in the flexible nature of the vehicle. For the Saturn V vehicie this length to width rate is about 10 to 1 and the flexible modes pose a serious problem. Under certain flight conditions it is possible to excite these modes to such an extent that the vehicle destroys itself. Thus an important objective of the control svstem is stability of the bending motions as well as control of the rigid motions of the vehicle.

FIG. 7-I VEHICAL CONFIGURATION

The study of the launch vehicle involves a significant modeling problem. Even after a reasonably satisfactory model structure has been determined, the physical size of the rehicle inhibits the accurate evaiuation of the model prameters. Some of these parameters, such as bending frequencies, may be critical with respect to the accuracy of the model in that off nominal values of these parameters may reider ineffective the control designed on the basis of the nominal values. Present techniques for estimating these parameters include physically shaking the vehicle and noting its behavior. For vehicles larger than the Saturn V, this does not, appear to be a feasible approach and analytic techniques will have to be used. Moreover, the bending frequencies are functions of the physical configuration of the vehicle and hence the payload which changes from mission to mission. It would be advantageous to be abie to use the same launch vehicle control system for a variety of missions. Thus it is important to be able to design a cortrol system which is insensitive to inaccurate knowledge of the bending frequencies. More specificaily the system rill be designed to give adequate control for variation in the bending frequencies of $\pm 20 \%$.

The fuel for the liquid-fuel engines of the Saturn V booster is stored in tanks. The dynamics of the vehicle are influenced by the movement or sloshing of the fuel in the partially filled tanks. For the present study it is assumed that the slosh modes are adequately damped by tank baffles.

In Fig. 7.2 the frequency spectrum of the launch vehicle is shown. The spectra of the engine and gimbal dynamics are indicated as well as those of the bending and slosh. Some of the spectra are represented by bands indicating that the frequencies change with time.

FREQUENCY (hertz)

The control problem is further complicated since the booster is aerodynamically unstable for most of the launch trajectory. This is caused by the center of pressure being forward of the center of gravity. The center of pressure is a point at which the normal aerodynamic force is assumed to act while the booster rotates around the center of gravity. Thus the force of the wind tends to topple the vehicle.

The flexible nature of the vehicle introduces a measurement problem. At present, position and rate gyros are the available sensors. Unfortunately, these devices measure local movements and thus their output is a combination of rigid ard bending motions. Previous design approaches have used filters to separate the rigid and bending signals, however this approach is hampered by the lack of knowledge about the bending frequencies.

The second major source of difficulty becomes obvious when an attempt is made to choose a satisfactory design technique. Many of the classical design techniques are not suitable due to the complexity of the system and the parameter variation problem. The current modern techniques are not satisfactory from a computational point of view as well as the lack of an unavailable state capability. Even if the rigid and bending modes are separated, the usual optimal control approach would require the use of sensors to measure all of the states including the angle-of-attack, engine dynamics, and any compensator states. This is clearly an unreasonable requirement since adequate control has been obtained using only pitch and pitch rate feedback.

The SOC approach is shown to be very useful in the design of control systems for the launch vehicle since many of the difficulties discussed above are eliminated. In the following sections the equations of motion of the vehicle
are derived, a state variable model is chosen, a control structure is proposed, and the various SOC techniques are applied.
7.2 Launch Vehicle Model ${ }^{48,49}$

In order to design a control system for the launch vehicle it is necessary to derive a mathematical model of its dynamical behavior. This model should be complicated enough to allow an accurate description of the physical situation and yet not so complicated as to prevent analysis.

The launch vehicle has six degrees of freedom, three translational, and three rotational. In this study only the motion of the vehicle in the pitch plane is considered and a flat earth with constant gravity is assumed. The inertial co-ordinate system (X, Y), is located at the launch point and defines the local verticle. A second co-ordinate system (x, y) is aligned with the longitudinal axis of the vehicle and centered at the center of gravity. A third co-ordinate system $\left(X_{n}, Y_{n}\right)$ defines the nominal trajectory of the vehicle; if the vehicle foliows a nominal trajectory the (x, y) and $\left(X_{n}, Y_{n}\right)$ co-ordinates will coincide, $\chi_{c}=0$, See Fig. 7.3. It should be emphasized that the equations of motions are written in the inertial space defined by (X, Y) but the nature of the investigation requires that the equations be expressed in terms of the other co-ordinate systems.

The result of the following derivation will be a set of linear differential equations which will characterize the motion of the vehicle about its nominal trajectory. These equations are obtained by applying the laws of Newtonian mechanics. The basic assumption is made that the rigid and bending motions may be modeled separately and then added to give an accurate representation of the behavior of the vehicle.
146.

FIG. 7.3 FREE BODY DIAGRAM

Since the control is obtained by gimballing some of the engines, a portion, F, of the thrust acts along the longitudinal axis of the vehicle, while the gimballed thrust, R^{\prime}, acts at an angle of β degrees with respect to the centerline. The aerodynamic force is decoupled into two components; the drag force, D, acts along the centerline of the vehicle while the normal force, N, acts in a orthogonal direction to the centerline at the center of pressure. The sum of the forces in the X_{n} direction is

$$
\begin{equation*}
F_{X_{n}}=\left(F+R^{\prime} \cos \beta-D\right) \cos \phi-m g \cos \chi_{c}-\left(N+R^{\prime} \sin \beta\right) \sin \phi \tag{7.2.1}
\end{equation*}
$$

while the sum of the forces in the Y_{n} direction is

$$
\begin{equation*}
F_{Y_{n}}=\left(F+R^{\prime} \cos \beta-D\right) \sin \phi+\left(N+R^{\prime} \sin \beta\right) \cos \phi-m g \sin \chi_{c} \tag{7.2.2}
\end{equation*}
$$

while the sum of the moments about the center of gravity is given by

$$
I \ddot{\phi}=-R^{\prime} I_{c g} \sin \beta-N I_{c p}
$$

The velocity of the vehicle, \underline{v}, is measured in the inertial frame but expressed in the ncminal frame

$$
\begin{equation*}
\underline{v}=v \cos r \quad \underline{i}+v \sin r \quad \underline{j} \tag{7.2.4}
\end{equation*}
$$

where $v=\|\underline{v}\|$ and \underline{i} and \underline{j} are unit vectors in the X_{n} and Y_{n} directions respectively.

Since $\left(X_{n}, Y_{n}\right)$ is not an inertial frame of reference, the unit vectors are timevarying and thus the acceleration of the vehicle expressed in this frame is given by

$$
\begin{align*}
\underline{a}= & \frac{d v}{d t} \cos \gamma \quad \underline{i}-v \sin \gamma \quad \frac{d v}{d t} \underline{i}+v \cos \gamma \frac{d i}{d t} \\
& +\frac{d v}{d t} \sin v \quad \dot{j}-v \cos \gamma \frac{d v}{d t} \underline{j}+v \sin \gamma \frac{d \underline{j}}{d t} \tag{7.2.5}
\end{align*}
$$

The angular velocity of the nominal coordinate system with respect to inertial space is given by $-\dot{\chi}_{c}$ in the \underline{k} direction out of the pitch plane. Thus

$$
\begin{aligned}
& \frac{d \underline{i}}{d t}=-\dot{X}_{c} \underline{k} \times \underline{i}=-\dot{X}_{c} \underline{j} \\
& \frac{d \underline{j}}{d t}=-\dot{X}_{c} k \times \underline{j}=\dot{\chi}_{c} \underline{i}
\end{aligned}
$$

The acceleration may be expressed as

$$
\begin{align*}
\underline{a}= & \left(v \cos v-v \cos v \dot{v}+v \sin v \dot{X}_{c}\right) \dot{i} \\
& +\left(\dot{v} \sin v-v \cos v \dot{v}-v \cos v \dot{X}_{c}\right) \dot{j} \tag{7.2.6}
\end{align*}
$$

The acceleration can be decomposed into components lying in the X_{n} and Y_{n} directions.

$$
\begin{aligned}
& \underline{a} \cdot \underline{i}=\left(\ddot{X}_{n}+v \sin v \dot{X}_{c}\right) \\
& \underline{a} \cdot \underline{\dot{j}}=\left(\ddot{v}_{n}-v \cos v \dot{X}_{c}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& \ddot{X}_{n}=\frac{d}{d t} \dot{X}_{n}=\frac{d}{d t}(v \cos v) \\
& \ddot{Y}_{n}=\frac{d}{d t}\left(\dot{Y}_{n}\right)=\frac{d}{d t}(v \sin v)
\end{aligned}
$$

Although the equations of motion are written in the inertial space, they may be expressed in the nominal co-ordinate system.

$$
\begin{array}{r}
m\left(\ddot{X}_{n}+v \sin v \quad \dot{X}_{c}\right)=\left(F+R^{\prime} \cos \beta-D_{j} \cos \varnothing-N \sin \varnothing-R^{\prime} \sin \beta \sin \varnothing\right. \\
-m g \cos X_{c} \\
m\left(\ddot{Y}_{n}-v \cos v \dot{X}_{c}\right)=\left(F+R^{\prime} \cos \beta-D\right) \sin \phi+N \cos \varnothing+R^{\prime} \sin \beta \cos \varnothing \\
-m g \sin \chi_{c} \tag{7.2.8}
\end{array}
$$

The normal aerodynamic force is proportional to the angle of attack.

$$
N=N^{\prime} \alpha
$$

Using this relation Eq. (7.2.7) and (7.2.8) can be solved for \ddot{X}_{n} and \ddot{Y}_{n} respectively.

$$
\begin{aligned}
& \ddot{X}_{n}=\frac{\left(F+R^{\prime} \cos \beta-D\right)}{m} \cos \phi-\frac{N^{\prime} \alpha}{m} \sin \phi-v \sin v \dot{X}_{c}-\frac{R^{\prime}}{m} \sin \beta \sin \phi-g \cos \chi_{c} \\
& \ddot{Y}_{n}=\frac{\left(F+R^{\prime} \cos (3-D)\right.}{m} \sin \phi+\frac{N^{\prime} \alpha}{m} \cos \phi+\frac{R^{\prime}}{m} \sin \beta \cos \phi-g \sin X_{c}+v \cos r^{r}
\end{aligned}
$$

These equations are linearized by using the following small angle aprroximations.

$$
\begin{align*}
& \sin \phi=\varnothing \quad \sin \beta=\beta \quad \sin V=v \quad \sin \beta \sin \phi=0 \\
& \cos \phi=1 \quad \cos \beta=1 \quad \cos v=1 \quad \alpha \sin \phi=0 \\
& \ddot{X}_{\mathrm{n}}=\frac{F+R^{\prime}-D}{m}-v v \dot{\chi}_{c}-g \cos \chi_{c} \tag{7.2.9}\\
& \ddot{Y}_{n}=\frac{\left(F+R^{\prime}-D\right)}{m} \phi+\frac{N^{\prime} \alpha}{m}+\frac{R^{t}}{m} \beta+v \dot{X}_{c} g \sin X_{c} \tag{7.2.10}\\
& \ddot{\phi}=-\frac{\left(R^{\prime} I_{c g}\right)}{I} \beta-N^{\prime} I_{c p} \alpha \tag{7.2.11}
\end{align*}
$$

Since disturbances do not seriously effect the motions of the vehicle in the X_{n} direction, the equations are simplified by assuming that the origin of the nominal co-ordinate system moves with the vehicle in that direction. ${ }^{49}$ Also, the nominal trajectory involves a gravity turn, that is

$$
\dot{\chi}_{c}=\frac{g \sin \chi_{c}}{v}
$$

Then Eq. (7.2.10) and (7.2.11) become

$$
\ddot{Y}_{n}=\frac{\left(F+R^{\prime}-D\right)}{m} \emptyset+\frac{N^{\prime}}{m} \alpha+\frac{R^{\prime}}{m} \beta
$$

$$
\begin{equation*}
\ddot{\phi}=-\frac{\left(R^{\prime} I_{c g}\right)}{I} \beta-\frac{\left(N^{\prime} I_{c p}\right)}{I} \alpha \tag{7.7.13}
\end{equation*}
$$

The main source of additive disturbances is provided by the wind which is assumed to blow in a horizontal plane only. The wind induces an additional contribution, α_{w}, to the angle-of-attack. Figure 7.3 indicates an angular relationship which relates the angle-of-attack to the variables of the above equations.

$$
\alpha-\alpha_{w}=\phi-\frac{\dot{Y}_{n}}{v}
$$

Equations (7.2.12)-(7.2.14) describe the rigid body motions of the vehicle about the nominal trajectory.

The bending equations are derived by the application of simple beam analysis to the booster which is considered to be a slender beam with uniform mass and stiffness. The model for each normalized bending mode is assumed to be a linear second order lightly damped oscillator with a forcing term proportional to the engine gimbal angle. ${ }^{49}$

$$
\ddot{\eta}_{i}+2 \rho_{i} \omega_{i} \dot{\eta}_{i}+\omega_{i}^{2} n_{i}=R^{\prime} \frac{y_{i}^{\prime}\left(x_{\beta}\right)}{M_{i}} \beta
$$

To determine the actual bending at a point along the centerline of the vehicle, η_{i} must be multiplied by the mode slope coefficient corresponding to that point and the $i^{\text {th }}$ bending mode.

The pitch and pitch rate gyros are located at specified points on the vehicle and measure local movement composed of rigid and bending moticns. For this study it was assumed that the first three modes dominate, hence the pitch gyro output is

$$
\phi_{D}=\phi+\sum_{i=1} y_{i}^{\prime}\left(x_{D}\right) \eta_{i}
$$

and the rate gyro output is

$$
\dot{\phi}_{R}=\dot{\phi}+\sum_{i=1}^{3} y_{i}^{\prime}\left(x_{R}\right) \dot{\eta}_{i}
$$

where $x_{D}=79.8$ meters and $x_{R}=67.3$ meters are the position and rate gyro locations respectively, measured from the gimbal plane of the vehicle.

In summary, the linearized equations of motion which describe the vehicle are given below.

$$
\begin{align*}
& \ddot{Y}_{n}=\frac{\left(F+R^{\prime}-D\right)}{m} \not{ }^{m}+\frac{N^{\prime}}{m} \alpha+\frac{R^{\prime}}{m} \beta \tag{7.2.15}\\
& \ddot{\phi}=-\frac{R^{\prime} 1_{C B}}{I} \beta-\frac{N^{\prime} l_{c p}}{T} \alpha \tag{7.2.16}\\
& \ddot{\eta}_{i}+\supseteq \jmath_{i} \omega_{i} \dot{\eta}_{i}+\omega_{i}^{2} \eta_{i}=R^{\prime} \frac{y_{i}^{\prime}\left(x_{\beta}\right)}{M_{i}} \beta \quad i=1,2,3 \tag{7.2.17}\\
& \alpha-\alpha_{w}=\phi-\frac{\dot{Y}_{n}}{v} \tag{7.2.18}\\
& \phi_{D}=\phi+\sum_{i=1}^{3} y_{i}^{\prime}\left(x_{D}\right) \eta_{i} \tag{7.2.13}\\
& \dot{\phi}_{R}=\dot{\phi}+\sum_{i=1}^{3} y_{i}^{\prime}\left(x_{R}\right) \dot{\eta}_{i} \tag{7.2.20}
\end{align*}
$$

7.3 Control Structure

Current control schemes use a feedback structure employing only pitch and pitch rate information which is obtained by filtering the gyro outputs. This work proposes a new approact in which the actual sensor outputs are fed back without attempting to filter out the individual bending frequencies. A second crder low pass filter is used as a forward loop compensator in order to roughly separate the rigir and berding motions. The outputs of the gyros are fed back to the input of the filter as shown in Fig. 7.4.

$$
\begin{equation*}
\beta_{c}=-k_{1} \phi_{D}-k_{2} \dot{\phi}_{\mathrm{R}} \tag{7.3.1}
\end{equation*}
$$

Tre filter chosen for this study had the following transfer function. 45

$$
\frac{\beta(s)}{\beta_{c}(s)}=\frac{50}{s^{2}+10 s+50}
$$

where the breakpoint was chosen to fall between the lowest bending frequency and highest slosh frequency.

The differential equation describing the filter is given by

$$
\begin{equation*}
\ddot{\beta}+10 \dot{\beta}+50 \beta=50 \beta_{c} \tag{7.3.2}
\end{equation*}
$$

7.4 State Equations

The equations of motion have been written using variables which relate the movements of the vehicle to the nominal co-ordinate system. This viewpoint was taken since it is desired to regulate the motion of the vehicle about the nominal trajectory and hence drive these variables to zero.

There are two basic philosophies guiding the altitude control design, minimum drift and load relief. In the former, the objective is to keep the vehicie as close as possible to the nominal trajectory. However the excitation of the bending frequencies results in bending motions which must be limited in

FIGURE 7.4 LAUNCH VEHICLE BLOCK DIAGRAM
order to preserve the structural integrity of the vehicle; hence the latter epproach. These two approaches are b_{y} nature somewhat ir conflict. A design objective of this study was to irsure that the allowable bending moments did not exceed certain limits over the entire flight of the vehicle despite inaccurate knowledge of the bending frequencies. Since the bending moment is a function of the giribal angle, \dot{f}, and the angle-of-attack, α, the angle-of-attack was chosen as a state variable instead of the position variakle Y_{n}. With a proper choice of weighting on α and β the SOC procedure may be used to limit the bending moment.

One possible choice of state variables is indicated below where for convenience only one bending mode is considered.

$$
\underline{x}=\left[\begin{array}{l}
x_{1} \tag{7.4.1}\\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{E} \\
x_{7}
\end{array}\right]=\left[\begin{array}{c}
\phi \\
\dot{\phi} \\
\alpha \\
\eta_{1} \\
\dot{\eta}_{1} \\
\beta \\
\dot{\beta}
\end{array}\right]
$$

The state variable formulation requires that a system of first order differential equations describing the states bes derived. In order to eliminate Y_{n} and derive an equation describing α, multiply Eq. (7.2.18) by v and differentiate with respect to time.

$$
\ddot{Y}_{n}=v \dot{\phi}+\dot{v} \phi-\dot{v}\left(\alpha-\alpha_{w}\right)-v\left(\dot{\alpha}-\dot{\alpha}_{w}\right)
$$

This equation and Eq. (7.2.15) are used to eliminate Y_{n} and the resulting equation is solved for $\dot{\alpha}$.
$\dot{\alpha}=-\left(\frac{F+R^{\prime}-D}{m v}-\frac{\dot{\mathrm{v}}}{\mathrm{v}}\right) \phi+\dot{\phi}-\left(\frac{\mathrm{N}^{\prime}}{\mathrm{mv}} \div \frac{\dot{\mathrm{v}}}{\mathrm{v}}\right) \alpha-\frac{R^{\prime}}{\mathrm{mv}} \beta+\left(\frac{\dot{\mathrm{V}}}{\mathrm{v}} \alpha_{\mathrm{w}}+\dot{\alpha}_{\mathrm{w}}\right)$

This equation along with Eq. (7.2.16) and (7.3.2) are used to formulate the state variable model.
where $\quad \underline{\dot{x}}=A \underline{x}+\underline{b} \beta_{c}+\underline{v}(t) ; \quad \underline{x}\left(t_{0} j=\underline{c}\right.$
$A=\left[\begin{array}{ccccccc}0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\frac{N^{\prime} I_{c p}}{I} & 0 & 0 & -\frac{R^{\prime} I_{c g}}{I} & 0 \\ -\left(\frac{F+R^{\prime}-D}{m v}-\frac{\dot{v}}{v}\right) & 1 & -\left(\frac{N^{\prime}}{m v}+\frac{\dot{v}}{v}\right) & 0 & 0 & -\frac{R^{\prime}}{m v} & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -\omega_{1}{ }^{2} & -2 \rho_{1} \omega_{1} & \frac{R^{\prime} y_{1}\left(x_{B}\right)}{M_{1}} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$

$$
\underline{b}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
50
\end{array}\right] ; \quad \underline{v}(t)=\left[\begin{array}{c}
0 \\
0 \\
\frac{\dot{v}}{v} \alpha_{W}+\dot{\alpha}_{w} \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The outputs of the system, y, that is the quantities measured by the sensors are given by

$$
\left.\begin{array}{l}
\underline{y}=C \underline{x} \\
C=\left[\begin{array}{cccccc}
1 & 0 & 0 & y_{1}^{\prime}\left(x_{D}\right) & 0 & 0 \\
0 \\
0 & 1 & 0 & 0 & y_{1}^{\prime}\left(x_{R}\right) & 0
\end{array} 0\right.
\end{array}\right]
$$

It is possible to redefine the state vector so that the measureable quantities appear as statos. This new formulation is consistent with the SOC approanh in which only the measurable or available states of the state vector are fed back. Define the following state vector where again only one bending mode is considered.

$$
\underline{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{c}
\phi_{1} \\
\dot{\phi}_{\mathrm{R}} \\
\alpha \\
\eta_{1} \\
\dot{\eta}_{1} \\
\beta \\
\dot{\beta}
\end{array}\right]
$$

where

$$
\begin{aligned}
& \phi_{D}=\phi+y_{1}^{\prime}\left(x_{D}\right) \eta_{I} \\
& \dot{\phi}_{R}=\dot{\phi}+y_{1}^{\prime}\left(x_{R}\right) \dot{\eta}_{I}
\end{aligned}
$$

The first order differential equations describing these states are derived by rearrangement of Eq. (7.4.2). It is assumed that the bending coefficients are time invariant; this is a reasonable approximation for the first bending mode or for a fixed time point model.

$$
\begin{align*}
& \text { I } \\
& 1 \quad \dot{\eta}_{1}=\dot{\eta}_{1} \tag{7.4.3}\\
& 157 . \\
& \ddot{\eta}_{1}=-\omega_{1}^{2} \eta_{1}-2 \rho_{1} \omega_{1} \dot{\eta}_{1}+R^{\prime} \frac{y_{1}^{\prime}\left(x_{B}\right)}{M_{1}} \beta \tag{7.4.4}\\
& \dot{\phi}_{D}=\dot{\phi}+y_{1}^{\prime}\left(x_{D}\right) \dot{i}_{1}=\dot{\phi}_{R}+\left(y_{1}^{\prime}\left(x_{D}\right)-y_{1}^{\prime}\left(x_{R}\right)\right) \cdot \dot{\eta}_{1} \tag{7.4.5}\\
& \ddot{\phi}_{R}=\ddot{\phi}+y_{l}^{\prime}\left(x_{R}\right) \ddot{\eta}_{1}=-\frac{N^{\prime} I_{c p}}{I} \alpha-\frac{R^{\prime} I_{c g}}{I} \beta-y_{l}^{\prime}\left(x_{R}\right) \omega_{1}^{2} \eta_{I}-2 \jmath_{1} \omega_{1} y_{1}^{\prime}\left(x_{R}\right) \dot{\eta}_{1} \\
& +y_{1}^{\prime}\left(x_{R}\right) R^{\prime} \frac{y_{1}\left(x_{\beta}\right)}{M_{1}} \beta \tag{7.4.6}\\
& \dot{\alpha}=-\left(\frac{F+R^{\prime}-D}{m v}-\frac{\dot{v}}{v}\right) \phi+\dot{\phi}-\left(\frac{N^{\prime}}{m v}+\frac{\dot{v}}{v}\right) \alpha-\frac{R^{\prime}}{m v} \beta+\frac{\dot{v}}{v} \alpha_{W}+\dot{\alpha}_{W}
\end{align*}
$$

or

$$
\begin{gather*}
\dot{\alpha}=-\left(\frac{F+R^{\prime}-D}{m v}-\frac{\dot{v}}{v}\right) \phi_{D}+\dot{\phi}_{R}-\left(\frac{N^{\prime}}{m}+\frac{\dot{v}}{v}\right) \alpha+y_{l}^{\prime}\left(x_{L}\right)\left(\frac{F+R^{\prime}-D}{m v}-\frac{\dot{v}}{v}\right) \eta_{1}+\frac{\dot{v}}{v} \alpha_{w}+\dot{\alpha}_{w} \\
-y_{1}^{\prime}\left(x_{R}\right) \dot{\eta}_{1}-\frac{R^{\prime}}{m v} \beta \tag{7.4.7}
\end{gather*}
$$

These equations plus those describing the filter states can be written in a more compact form with the state variable notation.

$$
\begin{equation*}
\underline{\dot{x}}=A \underline{x}+\underline{b} \beta_{c}+\underline{v}(t) ; \quad \underline{x}\left(t_{o}\right)=\underline{c} \tag{7.4.8}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{ccccccc}
0 & 1 & 0 & 0 & a_{15} & 0 & 0 \\
0 & 0 & a_{23} & a_{24} & a_{25} & a_{26} & 0 \\
a_{31} & 1 & a_{33} & a_{34} & a_{35} & a_{36} & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & a_{54} & a_{55} & a_{56} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & -50 & -100
\end{array}\right]
$$

$a_{31}=-\left(\frac{F+R^{\prime}-D}{m v}-\frac{\dot{V}}{v}\right) ;$
$a_{23}=-\frac{N^{\prime} I_{c p}}{I}$
$\mathrm{a}_{33}=-\left(\frac{\mathrm{N}^{\prime}}{\mathrm{mv}}+\frac{\dot{v}}{\mathrm{v}}\right) ;$
$a_{34}=y_{1}^{\prime}\left(x_{D}\right)\left(\frac{F+R^{\prime}-D}{m v}-\frac{\dot{v}}{v}\right) ;$
$a_{24}=-y_{1}^{\prime}\left(x_{R}\right) \omega_{1}{ }^{2}$
$a_{54}=\omega_{1}{ }^{2}$
$\mathrm{a}_{15}=\mathrm{y}_{1}^{\prime}\left(\mathrm{x}_{\mathrm{D}}\right)-\mathrm{y}_{1}^{\prime}\left(\mathrm{x}_{\mathrm{R}}\right) ;$
$a_{25}=-2 \int_{1} \omega_{1} y_{1}^{\prime}\left(x_{R}\right)$
$a_{35}=-y_{1}^{\prime}\left(x_{R}\right)$
$a_{55}=-2 \rho_{1} \omega_{1}$
$a_{26}=-\frac{R^{\prime} I_{C g}}{I}+y_{1}^{\prime}\left(x_{R}\right) R \cdot \frac{y_{1}^{\prime}\left(x_{\beta}\right)}{M_{1}} ;$
$a_{36}=R^{\prime} \frac{y_{1}^{\prime}\left(x_{\beta}\right)}{M_{J}}$
$a_{56}=R^{\prime} \frac{y_{1}^{\prime}\left(x_{\beta}\right)}{M_{1}}$

$$
\underline{b}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
50
\end{array}\right] ; \quad \underline{v}(t)=\left[\begin{array}{c}
0 \\
0 \\
\dot{\mathbf{v}} \\
\frac{\alpha_{w}}{}+\dot{\alpha}_{w} \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

These two representations are equivalent and may be used interchangeably.

7.5 Computational Considerations

Various engineering considerations require that the feedback control law employ constant values of feedback gains. The solutions to the soc problems with time invariant models will have this property. The nominal flight of the booster extends from liftioff at $t=0$, to shutdown of the first stage at $t=140$. seconds. The model of the booster for this trajectory is time-varying; it was discovered that a suitable time invariant model could be generated by freezing the coefficients at $t=80$. This approach proved to be satisfactory since designs made on the basis of this medel provided adequate control for the time-varying model over the entire trajectory. Appendix F contains a table with the parameters as a function of the trajectory flight time.

The simulations were carried out on the R.P.I. model $360 / 50$ digital computer using a fourth order Gill version of the Runge Kutta algorithm. For the timevarying simulations, linear interpolation was used to obtrin the unspecified values of the model parameters. The acceptability of the designs was fudged by initial condition responses of the fixed time point model. To provide a more
realistic test of the proposed designs, time-varying simulations over the entire flight in the presence of a realistic wind disturbance were made.

From Eq. (7.4.8) it is clear that the only external disturbance acting on the vehicle is wind. The wind is assumed to change the apparent angle-of-attack by an amount equal to α_{w}. This angle is related to the velocity of the vehicle, \underline{v}, and the velocity of the wind, ${\underset{W}{W}}$. Figure 7.5 portrays the relationship between the velocity vectors when the booster is on its nominal trajectory. ($\alpha=\varnothing=0$) From this figure it is clear that

$$
\begin{equation*}
\alpha_{w}=\frac{v_{w} \cos \chi_{c}}{v-v_{w} \sin \chi_{c}} \tag{7.5.1}
\end{equation*}
$$

Thus by knowing the nominal trajectory parameters and the velocity of the wind it is possible to construct a realistic forcing function. From the data provided by Marshall Space Flight Center ${ }^{48}$, a 95% synthetic wind profile was constructed as shown in Fig. 7.6. The 95% notation indicates that the magnitudes of these winds exceed those of 95% of the actual winds measured from May to November at Cape Kennedy. To further test the effectiveness of the control schemes, a wind gust was added to the profile in the region of maximum dynamic pressure (max. q). The wind induced angle-of-attack, α_{w}, obtained from this wind profile via Eq. (7.5.1) is indicated in Fig. 7.7.

7.6 Application of the SOC Techniques

7.6.1 Design Objectives

As described in Chapter IV, the SOC design procedure may be used to ca' -ulate linear feedback controllers for linear systems with unavailable states. Recall that the position and rate gyros measure a mixture of rigid and bending motions; angle-of-attack meters are available but their use is to be avoided if

FIG. 7-7 WIND ANGLE OF ATTACK
possible. Consider the corrupted state model, that is the state vector which contains the gyro outputs. This formulation is consistent with the SOC approach when it is assumed that only the first two states of the state vector are available.

The actual design specifications are stated in terms of the time domain response and are summarized below.

General Requirements

1. Stable closed loop system with respect to the fixed time point model.
2. Well behaved initial condition responses.
3. Limits on the maximum absolute values of the states must be maintained for the duration of the wind forced time varying simulation.
4. At cut-ofi the pitch and pitch rate quantities must be small to allow smooth staging,

Specific Requirements

For the time varying simulation with the design wind the following limits must be maintained.

1. Engine deflection: $|\beta|<5^{\circ}$
2. Engine deflection ratis: $|\dot{B}|<5^{\circ} /$ second
3. Angle-of-attack: $|\alpha|<10^{\circ}$
4. Pitch angle: $|\phi|<10^{\circ}$
5. Engine cut-off: $|\phi|<1^{\circ} ;|\dot{\phi}|<1^{\circ} /$ second
6. Bending magnitude: $|\eta|<.25$ meters
7. Bending moment (Station 3256): $\mathrm{BM}<5.45 \times 10^{5} \mathrm{~kg} . \mathrm{m}$.

7.5.2 The SOC Design Procedure

In order to determine ine effectiveness of the SOC design approach, it was applied to the launch vehicle problem. The SOC problem was formulated so that the feedback control law depanded only on the noisy outputs of the two sensors. The SOCDES program was used in an automatic mode, that is a series of SOC problems were calculated with slightly different weightings. The results were analyzed and compared via the graphical aids described in Chapter IV.

Control Weighting Perturbations

To study the effect of variations in the control weighting, the reverse problem was sulved for the optimal design of reference 45 , which was obtained as a resuit of an "optimal" analog computer study, using the following set of weightings.

$$
\begin{gathered}
u=-k_{1} \phi_{D}-k_{2} \dot{\phi}_{\mathrm{R}} \\
\mathrm{k}_{1}=-0.8 \\
\mathrm{k}_{2}=-0.8 \\
Q=10.0
\end{gathered}
$$

In Fig. 7.8 the k locus is shown, the entire locus may be ohtained in about five minutes of $360 / 50$ execution time. The solid line indicates the region of stable gains. In Fig. 7.10 the root locus corresponding to this k locus is presented. The same scale increments are used for all curves. Parts a and c show rigid body poles, part b corresponds to the first mode poles, and the filter poles are graphed in part d. Note the interestirg portion of the locus of part c in which the rigid complex roots approach the real axis, remain there for a while and then iranch sut into the complex region again. This result can be obtained by a conventional root locus analysis but not without considerable effort. 50 The effent of the variation of Q on the integral square control effort is pictured in Fig. 7.9; as expected the control effort increases as the control weighting is decreased. The examination of these figures points out a basic property of the booster.

Result:
The design of the launch vehicle altitude control system involves a tradeoff between relative stability of the bending modes, measured by the real part of the first mode complex root pair, and the rigid body damping ratio. (See Fig. 7.11)

As the control weighting is decreased the relative stability is increased and rigid body damping is decreased. This tradeoff appears throughout the study of this booster problem. If the bending frequences are below nominal then the bending poles tend to migrate toward the imaginary axis and instability. Although these designs were calculated for a seven state fixed time point model at $t=80$ sec., final evaluations were obtained by simulating the controls for

FIGURE 7.8 Q-k LOCUS

a time varying model with three bending modes and the design wind. These simulations corresponding to the various control laws were remarkably similar in shape, with the only major dieferences being the magnitude of the peaks. The nominal response is pictured in Fig. 7.22. To avoid the monotony of page after page of similar graphs, only a few responses are included along with tables containing values of peak magnitudes and integra? square state values. For example, Table 7.1 indicates that responses corresponding to various pcints along the k locus are similar except that the peak value of the pitch decreases as Q decreases.

Insight into this problem may be obtained by varying the relative magnitudes of the staue weightings and then varying the control weightings as indicated in Fig. 7.13. In chis case the pitch state weighting is increased and the loci generated by reducing the control weighting. For this problem the entire stable gain space may be probed by changing the relationships between the weightings and generating the gain loci.

State Weighting Perturbations

A similar approach can be taken for state weighting loci. For example, the reverse problem was solved for the following set of weightings

$$
S=\left[\begin{array}{cccccc}
3 & 0 & \cdot & \cdot & \cdot & 0 \\
0 & 1 & \cdot & & & \\
0 & \cdot & 1 & & & \cdot \\
\cdot & \cdot & & 0 & & \cdot \\
\cdot & & & \cdot & 0 & \cdot \\
\cdot & & & & \cdot & 0 \\
0 & \cdot & \cdot & \cdot & 0 & 0
\end{array}\right] ; Q=1.0
$$

with

$$
\underline{\mathrm{k}}=\left[\begin{array}{l}
-0.8 \\
-0.8
\end{array}\right]
$$

TABLE 7.I Q VARIATION SIMULATIONS

FIGURE 7.11 DAMPING and RELATIVE STABILITY vs. Q

FIGURE 7.12 DAMPING and RELATIVE STABILITY vs. S_{a}

FIGURE 7.13 VARIOUS k ROOT LOCUS Q

and the s_{α} weighting was varied to generate the locus shown in Fig. 7.14. In general, as the gain locus approaches the stable gain bous ary, the soc equations become numerically sensitive and a new reverse problem may be solved and the perturbations continued to extend the locus. As the s_{α} weighting is decreased, the k locus moves upward; when $s_{\alpha}=0$, the reverse problem is resolved for the following weightings.

$$
S=\left[\begin{array}{cccccc}
30 & 0 & \cdot & & \cdot & \cdot \\
0 & 10 & \cdot & & & \\
\cdot & \cdot & 10 & & & \\
\cdots & & & 0 & \cdot & \\
\cdots & & \cdot & 0 & \cdot & \cdot \\
\cdot & & & & \cdot & 0
\end{array}\right] ; Q=10
$$

and s_{α} is again decreased to zero. This process is repeated and the locus is extended. Again the tradeoff between damping and relative stabiliiy is fvident as shown in Fig. 7.12. As s_{α} is decreased, the relative stability increases and rigid body damping decreases. In addition, the integral square value of α decreases as s_{α} increases. (Fig. 7.15) If different reverse problem weighting combinations are employed or other weightings are varied, different areas of the gain space are probed. The root locus corresponding to this k locus is shown in Fig. 7.17. The results of the full wind simulations are shown in Table 7.2. As the angle-of-attack weighting is decreased the peak value and integral square value of α decrease.

FIGURE $7.17 \quad \mathbf{S}_{\boldsymbol{a}}$ ROOT LOCUS

$\mathbf{S}_{\boldsymbol{a}}$	k	$\max \|\phi\|$	$\max \|a\|$	$\max \|\geqslant\|$	$\int_{0}^{140} \phi^{2} d t$	$\int_{0}^{140} a^{2} d t$	$\int_{0}^{140} 7^{2} d t$
$1 \mid 3.0$	$\begin{array}{r} -.849 \\ -.941 \\ \hline \end{array}$	1.05°	6.07°	. 10 m .	164.	22210^{4}	1.40
$1 \mid 1.0$	$\left[\begin{array}{l} -.800 \\ -.800 \end{array}\right.$	1.16°	6.11^{*}	. 10 m	197.	2.2310^{4}	1.41
4/10.	$\begin{array}{\|l} -.655 \\ -.612 \\ \hline \end{array}$	1.49°	6.23°	.11 m .	328.	2.2510^{4}	1.51
6\|5,0	$\begin{aligned} & -.522 \\ & -.482 \end{aligned}$	$2.03{ }^{\circ}$	6.44°	. 12 m.	558.	2.2810^{4}	1.66
710.0	$\begin{aligned} & -.454 \\ & -.421 \end{aligned}$	$2.46{ }^{\circ}$	$6.62{ }^{\circ}$.12 m.	821.	2.3210^{4}	1.79

SIMULLATIONS

7.6.3 Application of SOC Sensitivity

Using the method outlined in Chapter VI, it is possible for the first time to use sensitivity considerations in the design of control laws for realistic problems. For the launch vehicle problem, the parameters of concern are the bending frequencies. The SOC sensitivity problem was formulated as described in Chapter VI and the reverse problem was solved for the following set of weightings.

$$
\mathrm{S}_{j}=\left[\begin{array}{cccc}
\mathrm{s}_{\mathrm{Z}_{1}} & 0 & \cdot & 0 \\
0 & \cdot & & \\
0 & \cdot & & \cdot \\
& & \cdot & 0 \\
0 & \cdot & 0 & \mathrm{~s}_{\mathrm{Z}_{7}}
\end{array}\right]=\left[\begin{array}{ccccccc}
1 & 0 & \cdot & & \cdot & \cdot & 0 \\
0 & 1 & \cdot & & & & \cdot \\
\cdot & \cdot & 1 & \cdot & & & \\
\cdot & & \cdot & 0 & 0 & \cdot & \cdot \\
0 & \cdot & \cdot & \cdot & 0 & 0
\end{array}\right]
$$

and the nominal control. law

$$
\begin{aligned}
& u=-k_{1} \phi_{\mathrm{D}}-\mathrm{k}_{2} \dot{\phi}_{\mathrm{R}} \\
& \mathrm{k}=\left[\begin{array}{c}
-0.8 \\
-0.8
\end{array}\right]
\end{aligned}
$$

To obtain the gain root locus the sensitivity weighting is increased. (Fig. T.19)

$$
s_{Z_{1}}=s_{Z_{2}}=s_{Z_{3}}=s
$$

The locus moves almost vertically indicating that k_{l}, the pitch gain, has little effect on the sensitivity of the system. Note the point $\underline{k}=\left[\begin{array}{l}-.5 \\ -.4\end{array}\right]$ which was obtained by the Analog Sensitivity Design (ASD) method. 45 In Fig. 7.18 the root locus is depicted while in Fig. 7.15 the domping and relative sensitivity curves are pictured. The desensitization is obtained by increasing the relative stability at the expense of the rigid body damping. This result is in contrast with the SOC sensitivity results for simple examples in which the magnitudes of the feedback gains were increased to "swamp" out the effect of the parameter. Intuitively, the inclusion of control effort weighting forces the SOC procedure to produce the more subtle result if one exists.

To place the SOC olutions in nerspective, they are compared with the ASD result and the nominal control law. Evidence of the reduction in sensitivity can be obtained from a number of points of view. Figure 7.20 indicates that as the sensitivity weighting is increased the integral sqrare of the sensitivity variables decreases. However, this curve does not indicate the accuracy of the sensitivity variables in modeling the actual desensitization of the trajectories.

The design objectives require that the control system meintain adequate control for bending frequency variations of $\pm 20 \%$. An increase in bending frequency has a beneficial effect on the system performance sinee the relative stability is increased. However, the reduction of bending frequencies poses a serious problem. As shown in Fig. 7.21 the closed loop system for the

FIGURE 7.19 SENSTIVITY \underline{k} LOCUS

FIGURE $7.20 \quad \int_{0}^{\infty} \underline{Z}^{\top} \underline{Z} d t$ vs. SENSITIVITY WEIGHTING

nominal control $(s=1)$ becomes unstable as $\omega \rightarrow .8 \omega_{0}$. Various SOC sensitivity control laws as well as the ASD design are compared. Note that SOC does not appreciably reduce the root dispersions, rather the nominal pole position is located so that as the bending frequencies are reduced, the closed loop system remairs stable.

Based on the fact that the desensitized control laws are obtained by increasing the sensitivity weighting it would appear that a tradeoff between nominal performance modeled by,

$$
J_{x}=\int_{0}^{\infty} \underline{x}^{T} \underline{x} d t
$$

and sensitivity characterized by changes in J_{x} is obtained. The conjecture is verified graphically in Fig. 7.21. In this figure values of J_{x} are plotted versus the bending frequency. As the sensitivity weighting is insreased the nominal performance de eriorates slightly while the variations of J_{x} with respect to ω remain finite and eventually become small.

This deterioration in nominal performance is relatively low as evidenced by the responses of Fig. 7.23, 7.24 and 7.25. That the actual trajectory dispersion is low is verified by Fig. 7.26 in which the \emptyset zid α state dispersions are plotted. The time varying simulation indicates that for 80% nominal bending frequency and the nominal control law the launch vehicle is unstable. The SOC control laws

$$
\underline{k}_{1}=\left[\begin{array}{l}
-.821 \\
-.500
\end{array}\right] \quad \text { and } \quad \underline{k}_{2}=\left[\begin{array}{l}
-.921 \\
-.394
\end{array}\right]
$$

are somewhat more desirable than the ASD design
Pan

II

185.

BODY
LAW ω_{\bullet} : RIGID
CONTROL
CONTKOL LAW w. • RGID BODY
soc

186.

CONTROL LAW w.: BENDING
SENSITIVITY
8

FIGURE

$\eta_{1} \cdot \eta_{2}$
$\infty \quad(8.010 \mathrm{~m})$

LAW $8 \omega_{0}$: RIGID BODY
CONTROL
ALIAIHSNSS
oss
FIGURE 7.25-a
188.

$$
\underline{k}=\left[\begin{array}{l}
-.500 \\
-.400
\end{array}\right]
$$

since the peak value of the pitch response is reduced for \underline{k}_{1} and \underline{k}_{2}. Table 7.3 indicates that for the time varying simulation with design wind these control laws do indeed reduce the sensiuivity of the trajectory with very little degradation of performance.

Result:

The SOC sensitivity problem involves a tradeoff between nominal performance and sensitivity. For this launch vehicle problem the tradeoff is mild and leads to a ver. acceptable desensitized control law.

It should be noted that the designs were made using the seven state fixed time point model with only one bending mode, but were checked by application to the time varying model with three bending modes. Moreover, rapid computation is a feature of the $S O C$ sensitivity method since the entire \underline{k} locus may be calculated in about ten minutes.

7.6.4 Application of SOC Model Reference

Based on the insight obtained from the analysis of Chapter V it was decided not to apply the model reference technique directly but rather combine the model reference and sensitivity approaches. The basic idea is that the deterioration of nominal performance encountered in the sensitivity approach may be eliminated. The inner loop gains are designed to provide the best nominal performance while the model reference gains are found from the difference between the composite and inner loop gains. The composite gains are calculated using
the SOC sensitivity approach.

$$
k_{1}=\left[\begin{array}{c}
-.821 \\
-.500
\end{array}\right] ; \quad \underline{k}_{2}=\left[\begin{array}{l}
-.921 \\
-.394
\end{array}\right]
$$

The performance of the model reference systems with the desensitized composite loop gains is compared with the performance of the nominal and pure sensitivity control systems. In Fig. 7.27 the responses are displayed for $\omega=0.8 \omega_{0}$ with nominal inner loop gains and

$$
\mathrm{k}_{1}=\left[\begin{array}{l}
-.821 \\
-.5
\end{array}\right]
$$

as the composite gains. Compare these curves with the sensitivity results of Fig. 7.24. By definition the nominal responses of this model reference system will be identical to the nominal response of Fig. 7.23. As the bending frequency is decreased the rigid body performance improves slightly while the bending performance deteriorates. As shown in Table 7.3 the model reference scheme is slightly more effective in reducing the trajectory dispersions but these slight improvements do not justify the implementation of the more complex model reference control system.

7.6.5 Conclusions

As a result of the application of the SOC techniques, four general points can be made.

1. Even for a practical problem, such as the booster, the computational effort itequired by SOC is small. One iteration of the SOCDES algorithm required four seconds; the solution of a typical SOC problem required five iterations (20 seconds).

$.8 \omega$.

REFERENCE S
RIGID BODY
7300W
FIGURE 7.27-a
-6.5° - $1.5^{\circ}-$
2.

(18

$k_{1}=\left[\begin{array}{c} -.821 \\ -500 \end{array}\right] \quad k_{3}=\left[\begin{array}{c} -.8 \\ -8 \end{array}\right]$	MR = MODEL REFERENCE ; S=SOC SENSITIVITY ASD = ANALOG SENSITIVITY DESIGN ; NOM=NOMINAL					
$k_{2}=\left[\begin{array}{l} -.921 \\ -.394 \end{array}\right] \quad k_{4}=\left[\begin{array}{l} -.5 \\ -.4 \end{array}\right]$	$\max \|\phi\|$	$\max \|\mathbb{Q}\|$	$\max \|\eta\|$	$\int_{0}^{140} \phi^{2} d t$	$\int_{0}^{140} a^{2} d t$	$\int_{0}^{140} \eta_{1}^{2}$
$k_{1}, M R, \omega=\omega_{0}$	1.16	6.11	. 10	197	2.2210^{4}	1.41
$k_{1}, M R, \omega=.8 \omega_{0}$	1.11	6.09	. 17	197	2.2210^{4}	3.43
$k_{2}, M R, \omega=\omega_{0}$	1.16	6.11	. 10	197	$2.22 \quad 10^{4}$	1.41
$k_{2}, M R, \omega=.8 \omega$	1.11	6.09	. 16	197	2.2210^{4}	343
$k_{1}, S, \omega=\omega_{0}$	I. 26	6.13	. 11	164	$2.22 \quad 10^{4}$	1.44
$k_{1}, S, \omega=.8 \omega_{0}$	1.21	6.12	. 18	164	2.2210^{4}	3.48
$k_{2}, S, \omega=\omega_{0}$	1.18	6.10	. 12	164	$2.21 \quad 10^{4}$	1.44
$k_{2}, S, \omega=.8 w_{0}$	1.13	6.08	. 18	131	$2.21 \quad 10^{4}$	3.50
$h_{3}, N O M, \omega=\omega$	1. 16	6.11	. 10	197	2.2210^{4}	1.41
$k_{4}, A S D, \omega=\omega$	2.23	6.53	. 12	624	$2.30 \quad 10^{4}$	1.72
$k_{4}, A S D, \omega=.8 \omega_{0}$	2.17	6.50	. 18	624	$23010{ }^{4}$	4.16

2. The SOC procedures are very easy to use. Through the use of the reverse SOC problem concept, very little effort is required to initiate the computational procedure. The reverse problem generates an initial set of weightings which correspond to equations which are numerically well behaved.
3. The use of the SOC approach to calculate a number of designs and the interpretation of the results by using the graphic aids affords an insight into and generates explicit information about complex problems.
4. By varying the relationship between the weightings and calculating the various loci, it is possible to probe all the areas of the stable gain space and thus determine the properties of the systern being studied.

The solutions generated by the SOC approach are comparable to those obtained from other methods with respect to the satisfaction of design specifications. It appears that for this particular problem the SOC sensitivity control law is to be preferred over that of the SOC model reference. The marginal improvement in performance does not warrant the additional complexity of the implementation of the model reference scheme.

Result:

Based on the preceding analysis the following SOC sensitivity feedback controi law is proposed.

$$
\underline{k}=\left[\begin{array}{l}
-.821 \\
-.500
\end{array}\right]
$$

With this control law the following limits are maintained for the duration of
the time varying simulation with 95% design wind for any value of bending frequency between nominal and 80% of nominal.

$$
\begin{aligned}
& |\phi|<1.3^{\circ} \\
& |\dot{\phi}|<.35^{\circ} / \text { second } \\
& |\alpha|<6.15^{\circ} \\
& |\beta|<1.3^{\circ} \\
& \left|\eta_{1}\right|<.18 \text { meters } \\
& \left|\eta_{2}\right|<.10 \text { meters } \\
& \left|\eta_{3}\right|<.06 \text { meters }
\end{aligned}
$$

Two areas of this work that should be pursued are the further development of the digital computer programs of the SOC procedures and the investigation of additional numerical methods. For example, using a recently proposed ${ }^{5 l}$ algorithm, it appears that a sensitivity gain root locus such as that pictured in Fig. 7.18 could be generated for a 20 th order system with about forty-five minutes of $360 / 50$ computation.

Nomenclature

Matrices

A Booster syatem matrix: 7 by 7
C Booster observation matrix: 7 by 7
S Symmetric state weighting matrix: 7 by 7
$S_{1} \quad$ Symetric state weighting matrix: 7 by 7
$S_{3} \quad$ Symmetric sensitivity state weighting matrix: 7 by 7

Vectors

a Acceleration of vehjele
b Booster control coefficient vector: 7 elements
D Drag force
$F \quad$ Centerline thrust
8 Gravity
1 Unit vector X_{n} direction
1 Unit vector Y_{n} direction
$\underline{k} \quad$ Unit vector perpendicular to $X_{n} Y_{n}$ plane
k Feedback gain vector
N Normal aerodynamic force
$R^{\prime} \quad G i m b a l l e d$ thrust
$\underline{v} \quad$ Additive disturbance vector
$\pm \quad$ Velocity of vehicle
v. Wind velocity
v_{f} Velocity of vehicle relative to wind
x State vector: 7 elements

Scalars

Jx	Cost index
$\mathrm{k}_{1}, \mathrm{k}_{2}$	Feedback gains
1 cog	Thrust moment arm
$l_{\text {cp }}$	Normal force moment arm
m	Mass of vehicle
M_{i}	Equivalent engine mass
N^{\prime}	Normal force coefficier ${ }^{\text {L }}$
Q	Control weighting
X_{n}	Nominal same co-ordinate
X	Inertial frame co-ordinate
\mathbf{x}	Airframe co-ordinate
Y_{n}	Nominal frame co-ordinate
Y	Inertial frame co-ordinate
y	Airframe co-ordinate
$y_{i}(\mathrm{x})$	Slope of $i^{\text {th }}$ mode at point x
α	Angle-of-attack
α_{w}	Wind induced angle-of-attack
β	Uimbal angle
B_{c}	Control こignal
η_{i}	Normalized bending
v	Angle between velocity vector and X_{n} co-ordinaie
\varnothing	Pitch angle
ϕ_{D}	Output of pitch gyro
$\dot{\phi}$	Pitch rate
$\dot{\phi}_{\mathrm{R}}$	Output of pitch rate gyro
χ	Nominal trajectory angle
ρ_{i}	Bending damping coefficient of $i^{\text {th }}$ mode
ω_{i}	Fending frequency of $i^{\text {th }}$ mode

SUMMARY AND CONCLUSIONS

8.1 Contributions of This Work

The underlying theme of this work has been the Specific Optimal Control concept. This approach allows the advantages of the modern and classical techniques of control thecry to be combined by formulating optimal control problems in which the primary goal is a solution control law with certain specified properties. This control law is obtained by the minimization of a cost index which has been structured to insure that the optimal solution will possess these properties.

This concept was applied to the problem of calculating control laws for systems in which not all of the states are available, the unavailable state problem. The important feature of the linear SOC problem and its solutions are listed below.

1. The linear SOC problems are a class of linear optimal control problems in which some of the weignting matrices are chosen to provide a specified structure while others are chosen to obtain satisfactory system response.
2. The basic control structure is linear feedback and the gains are independent of system initial conditions.
3. The SOC approach has unavailable state capabilities since those feedback gains corresponding to unavailable states may be structured to be zero.
4. The steady state $S O C$ control laws for the tine invariant problem are asymptotically stable.
5. The linear SOC problem has desirable computational properties. a) The optimal solution for the time invariant steady state problem is characterized by systems of nonlinear algebraic equations. b) The simple structure of these equations is independent of size or complexity of the system. c) Efficient numerical methods are available for the solution of the SOC necessary condition equations.

The linear SOC problem is justified from a mathematical point of view by the study of the existence and uniqueness of the solutions to the SOC necessary condition equations. It was shown that for any system which can be controlled with a control law of the specified structure, there are classes of weighting matrices for which solutions to the SOC problem exist and are unique. One class of these weightings may be determined by the solution of the Reverse SOC problem. That is, given any control law for which the system response is square integrable, the corresponding SOC problem with this control law as the optimal solution can be found. Using this Reverse SOC problem as a starting point, it is possible to vary the weightings and redesign the system response.

In addition, the concept of the Reverse problem may have application to a wide range of optimal control problems. One of the main difficulties concerned with the optimal approach is of a computational nature. It is often very difficult to determine the proper computational parameters or initial guesses which result in a well behaved numerical solution.

For example, a unique solution to the ordinary allstate linear quadratic problem exists for any positive definite state and control weightings. However for most problems, many choices of these weightings result in necessary condition equations which are numerically difficult to solve. The Reverse problem generates a set of well behaved equations which have the known control law as a solution. The equations corresponding to new problems obtained by perturbing the weightings, are usually well behaved. Thus the effort and skill needed to use the method is reduced since numerically well behaved problems are automatically formulated. This technique is especially effective when the optimal procedure is being used to improve or modify an existing control law.

Most of the optimal control approaches are computationally bound since a large amount of computational effort is required to solve even simple problems. An important feature of SOC is the relatively low computational effort requirement. This feature is due to the basic structure of the equations defining the optimal solutions and to the new computational procedure, the SOCDES algorithm, which has been introduced in this work. This algorithm solves the algebraic matrix Ricatti equation which characterizes the steady state optimal solution. The control concept of SOCDES is the indirect solution or the Ricatti equation; the feedback gain equation is solved by Newton-Raphson iteration while the Ricatti equation acts as a constraint relating the Ricatti Matrix and the feedback gains. Although the execution time per iteration is longer than that of the straight forward Newton Raphson solution of the Ricatti equation, the rate of convergence of SOCDES measured in number of
iterationsis faster. The superiority of the SOCDES a.lgorithm becomes apparent in most practical problems in which there are many states with only a few control variables.

The Reverse SOC problem and these computational features have been combined to form a systematic procedure for the analysis and synthesis of linear feedback control systems. The synthesis is carried out by a systematic trial and error procedure in which the Reverse problem is solved to obtain an initial set of weightings and the weightings are perturbed to obtain a more satisfactory design.

Analysis of and insight into a linear system is obtained by allowing the SOCDES algorith: to calculate the solution for a number of weighting matrices and interpreting the results in terms of the following graphical aids, the feedback gain root locus which is a plot of the feedback gains as a function of the weighting matrices and the weighting root locus which is a plot of the poles (characteristic roots) of the closed loop system as a function of the weightings.

The SOC concept was applied to the model reference control problem in which a control law is designed to maintain the trajectory of a system in the neighborhood of the nominal or model reference trajectory despite enviromental disturbances. The result of the SOC application is a model reference control system with two loops, an inner loop designed to obtain a nominal response and an outer loop designed with SOC which operates on the difference between the actual and model trajectories. An important feature of this technique is that the outer loop cains are independent
of the nominal trajectory as well as system initial conditions. After these feedback gains are chosen, the model reference trajectories may be changed or modified without any redesign of the feedback gains.

Another approach to the problem of the effect of enviromental changes on the controlled system is the use of sensitivity considerations. Previous efforts employing the optimal control approach to sensitivity have not been effective for realistic problems because of difficulties encourtered in formulation and computation. The SOC sensitivity technique introduced in this work substantially reduces these difficulties. In addition to the computational reduction resulting from the nature of SOC, the sensitivity problem has been formulated so that the computational effort required is about the same as for the unavailable state SOC problein without sensitivity considerations. Moreover, this effort is relatively independent of the number of parameters considered. Furthermore, this technique has the unavailable state capability so that the unavailable states do not have to be measured or estimated nor do the sensitivity variables have to be generated.

The efficacy of the SOC theory and the techniques described above was demonstrated by simple examples and the study of a significant engineering problem, the control of the Saturn V launch vehicle. As indicated in Chapter VII, which describes the launch vehicle problem in detail, the SOC approach may be very useful with respect to the study of practical problems. The actual designs are comparable to other techniques with respect to satisfying the design specifications with the advantages of reduced computational effort and increased insight. The SOC sensitivity approach appears to be especially effective.

8.2 Future Work

In this work the SOC concept was applied to linear systems with emphasis on the time invariant case. Most of these ideas expressed in the previous chapters are directly applicable to the time varying case. This particular application of the $S O C$ concept depends on the structure of the equations defining the optimal solution for the linear quadratic problem. A similar approach may be used to apply the $S O C$ concept to any linear problem which employs the integral quadratic cost index. Thus, extensions to the discrete and stochastic problems are possible. Similarly, nonlinear problems may be attacked using the second variational or neighboring optimal control problem approaches. Some work has already been done in these areas with encouraging results.

The further development of the SOC procedure as an automated design technique appears to be feasible. There are indications that the use of sOC to choose an "optimal" compensator as well as the generation of an initial set of stable gains are promising areas of future investigation.

The digital computer programs currently available were written in a straight forward "brute force" manner to test the SOC techniques. No significant effort was made to optimize the execution times, memory requirements or the handling of input and output. Additional work along these lines might lead to sets of programs the ${ }^{+}$would comprise a useful design tool suitable for time share library usage.

An effort should be made to investigate the relationships between the SOC techniques and other optimal and classical approaches. This work might involve a theoretical comparison as well as an empirical comparison involving the solution of a number of problems with the various methods.

LITERATURE CITED

1. Wiener, N. Extrapolation, Interpolation, and Smoothing of Stationary Time Series. Technology Press, Cambridge, Mass., 1949.
2. Newton, G., L. Gould and J. Kaiser. Analytic Design of Linear Feedback Controllers. Wiley and Sons, New York, 1957.
3. DeRusso, P., R. Roy and C. Close. State Variables for Engineers. Wiley and Sons, New York, 1965.
4. Schultz, D. and J. Melsa. State Functions and Linear Control Systems. McGraw Hill, New York, 1967.
5. Kalman, R. and R. Bucy. "New Results in Linear Filtering and Prediction Theory." Transactions ASME, Journal of Basic Engineering, Series D, Vol. 83, pp. 95-108, March 1961.
6. Luenburger, D. "Observing the State of a Linear System." IERE Trans. on Military Electronics, Vol. MIL-8, No. 2, pp. 74-80, April 1964.
7. Merriam, C. W. III. Optimization Theory and the Design of Feedoack Control Systems. McGraw Hill, New York, 1964.
8. Hass, V. and S. Murtuza. "On the Design of Specific Optimal Controllers." Purdue University School of Electrical Engineering, May 1967.
9. Agarwal, G. and R. Sridhar. "Design of Specific Optimal Control Systems." IEEE Region Six Conference, Tucson, Arizonia, 1966.
10. Rekasius, Z. "Optimal Linear Regulators with Incomplete State Feedback." IEEE Trans. on Automatic Control, Vol. AC-12, pp. 296-299, June 1967.
11. Kalman, R. "Contributions to the Theory of Optimal Control." Bol. Soc. Mat. Mexicana, pp. 102-119, 1960.
12. Kalman, R. "When is a Linear System Optimal?" RIAS Technical Rept. 63-5, March 1963.
13. Athans, M. and P. Falb. Optimal Control. McGraw Hill, New York, 1966.
14. Zadeh, L. and C. Desoer. Linear System Theory. McGraw Hill, New York, 1963.
15. Ayres, F. Matrices. Schaum Outiine Series, New York, 1962
16. Rynaski, E., P. Reynolds and W. Shed. "Design of Linear Flight Control Systems Using Optimal Control Theory." Air Force Flight Dynamics Laboratory, Wright Patterson A.F.B., ASD-TDR-63-376, 1964.
17. Osborn, P. and H. Whitaker and A. Kezer. "New Developments in the Design of Model-Reference Adaptive Control Systems." Paper No. 61-39, IAS 29th Annual Meeting, January 1961.
18. Donalson, D. and C. Leondes. "A Model Referenced Parameter Tracking Technique for Adaptive Control Systems." IEEE Trans. on Applications and Industry, Vol. 82, pp. 241-262, September 1963.
19. Dressler, R. "An Approach to Model-Referenced Adaptive Control Systems." IEEE Trans. on Automatic Control, Vol. AC-12, pp. 75-80, February 1967.
20. Parks, P. "Lyapunov Redesign of Model Reference Adaptive Control Schemes." IEEE Trans. on Automatic Control, Vol. AC-11, pp. 363-367, July 1966.
21. Shackcloth, B. "Design of Model Reference Control Systems Using a Lyapunov Synthesis Technique." Proc. IEEE, Vol. 114, pp. 299-307, February 1967.
22. Tyler, J. "The Characteristics of Model-Following Systems as Synthesized by Optimal Control." IEEE Trans. on Automatic Control, Vol. AC-9, pp. 485-498, October 1964.
23. Asseo, S. "Application of Optimal Control to 'Perfect' Model Following." 1968 JACC Preprints.
24. Bode, H. Network Analysis and Feedback Amplifier Design. D. Van Nostrand, New York, 1945.
25. Horowitz, I. Synthesis of Feedback Systems. Academic Press, New York 1963.
26. Horowitz, I. "Plant Adaptive vs. Ordinary Feedback Control Systems." IRE Trans. on Automatic Control, pp. 48-57, January 1962.
27. Kuo, F. "Pole-Zero Sensitivity in Network Functions." IRE Trans. on Circuit Theory, December 1958.
28. Huang, J. "The Sensitivity of the Poles of Linear, Closed Loop Systems." AIEE Trans. Part II, Yol. 77, 1958.
29. Miller, K. and F. Murray. "A Mathematical Basis for an Error Analysis of Differential Analyzers." Journal of Math. and Physics, July 1953.
30. Dorato, P. "On Sensitivity in Optimal Control Problems." IEEE Trans. on Automatic Control, pp. 256-257, July 1963.
31. Rohrer, R. and M. Sobral. "Sensitivity Considerations in Optimal Systems Design." IEEE Trans. on Automatic Control, pp. 43-49, January 1965.
32. Pagurek, B. "Sensitivity of the Performance of Optimal Control Systems to Plant Parameter Variations." IEEE Trans. on Automatic Control, pp. 178-180, April 1965.
33. Holtzman, J. and S. Horing. "The Sensitivity of Terminal Conditions of Optimal Control Systems to Paramicer Variations." IEEE Trans. on Automatic Control, pp. 420-427, October 1965.
34. Tomovic, R. Sensitivity Analygis of Dynamic Systems. McGraw Hill, New York, 1955.
35. Tuel, W., P. DeRusso, and I. Lee. "Synthesis of Optimal Control Systems with Sensitivity Considerations." 3rd IFAC Conference, London, June 1966.
36. Dougherty, H., I. Lee and P. DeRusso. "Synthesis of Optimal Feedback Control Systems subject to Parameter Variations." 1967 JACC Preprints.
37. Kalman, R. and J. Bertram. "Control System Analysis and Design Via the "Second Method" of Lyapunov." Trans. ASME, Journal of Basic Engineering, June 1960.
38. Coddington, E. and N. Levinson. Theory of Ordinary Differential Equations. McGraw Hill, New York, 1955.
39. Cooper, R. Functions of Real Variables. D. Van Nostrand, London, 1966.
40. MacFarlane, A. "An Eigenvector Solution of the Optiwal Linear Regulator Problem." Journal of Electronics and Control, Vol. 14, pp. 643-654. June 1963.
41. Bass, R. "Machine Solution of High Order Matrix Ricatti Solutions." Douklass Paper No. 4538, 1967.
42. Blackburn, T. "Solution of the Algebraic Matrix Ricatti Equation via Newton Raphson Iteration." 1968 JACC Freprints.
43. Kleinman, D. "On an Iterative Technique for Ricatti Equation Computations." IEEE Trans. on Automatic Control, Vol. AC-13, pp. 114-115, February 1968.
44. Gantmakher, F. The Theory of Matrices. Chelsea, 1959.
45. Rillings, J. "Analog Sensitivity Design." Final Report, Vol. II, Contract No. NAS8-21131, NASA, 1968.
46. Chen, C. and L. Shiek. "A Note on Expanding $P A+A^{T} P=-Q . "$ IEEE Trans. on Automatic Control, Vol. AC-13, pr. 122-124, February 1968.
47. Gelfond, I. and Fomin, S. Calculus of Variations. Prentice Hall, New Jersey, 1965.
48. Data Pack for Saturn V - Appollo. NASA, Astrionics Laboratory, Mor shall Spaceflight Center. Huntsville, Alabama, 1967.
49. Ēarner, D. "Control Theory Handbook." NASA TM X-53036, April 1964.
50. Smith, E. "Analysis of Saturn Booster Performance by Conventional Control Theory Techniques." Final Report Vol. I, Contract No. NAS8-21131, NASA, 1968.
51. Davison, E. and Man, F. "The Numerical Solution of $A^{T} Q+Q A=-C . "$ IEEE Trans. on Automatic Control, Vol. AC-13, pp. 448-449, August 1968.

Appendix A

Derivation of the Formal SOC Necessary Conditions

This appendix is devoted to the derivation of the unreduced 900 necessary conditions by the application of the calculus of variations. ${ }^{47}$ The $30 C$ control law, u, is chosen to minimize J

$$
\begin{equation*}
J=\frac{1}{2} \int_{t_{0}}^{t_{1}}\left(\underline{x}^{T} s \underline{x}+\underline{x}^{T} \hat{s} \underline{x}+\underline{x}^{T} W \underline{u}+\underline{x}^{T} \hat{W} \underline{u}+\underline{a}^{T} Q \underline{u}\right) d t \tag{A-1}
\end{equation*}
$$

subject to the plant dynamics.

$$
\begin{equation*}
\dot{\underline{x}}=A \underline{x}+B \underline{u} ; \quad \underline{x}\left(t_{0}\right)=\underline{c} \tag{A-2}
\end{equation*}
$$

Assume that the optimal control law is known.

$$
\begin{equation*}
\underline{x}^{0}=A \underline{x}^{0}+B \underline{u}^{0} ; \quad \underline{x}^{0}\left(t_{0}\right)=\underline{c} \tag{A-3}
\end{equation*}
$$

The necessary conditions will be determived by the consideration of a variation in the control, δ u. That is

$$
\underline{u}=\underline{u}^{0}+\delta \underline{u}
$$

The resulting system trajectory must satisfy the dynamical contraints in order to be admissable.

$$
\begin{align*}
& \underline{x}=\underline{x}^{0}+\delta \underline{x} \\
& \underline{x}=A \underline{x}+B \underline{u} ; \quad \underline{x}\left(t_{0}\right)=\underline{c} \tag{A-4}
\end{align*}
$$

By subtracting (A-1) from (A-2) a differential equation is obtained which characterizes any allowable variation about the optimal.

$$
\begin{equation*}
\delta \underline{\underline{x}}=\underline{\underline{x}}-\dot{\underline{x}}_{0}=A \quad \delta \underline{x}+B \delta \underline{u}_{;} \quad \delta \underline{x}\left(t_{0}\right)=\underline{0} \tag{A-5}
\end{equation*}
$$

For suitably small and admissable variations in the control and trajectory, the cost index may be expressed in terms of the optimal index and first and higher order variations.

$$
\mathbf{J}=\mathbf{J}^{0}+\delta \mathbf{J}+0^{2}
$$

where 0^{2} represents second and higher order variations of the cost index and

$$
\begin{align*}
\delta J=2 & \int_{t_{0}}^{t_{f}} \delta \underline{\underline{x}}(s+\hat{s}) \underline{x}^{0}+\frac{1}{2} \delta \underline{\underline{x}}(w+\hat{w}) \underline{u}^{0} \\
& \left.+\frac{1}{2} \underline{x}^{\underline{T}}(w+\hat{w}) \delta \underline{u}+\delta \underline{u} Q \delta \underline{u}\right) d t \tag{A-6}
\end{align*}
$$

The calculus of variations requires that the first variation of the index be zero for any suitably small admissable variations about the optimal. This corresponds to the requirement of the first derivative being zero at an extremum of an ordinary calculus problem. The Euier-Lagrange equations may te derived by adjoining the variational dynamics to the first variation by use of the costate or Lagrange multiplier vector, p-

$$
\begin{equation*}
\delta I=\delta J+2 \int_{t_{0}}^{t_{f}} \underline{p}^{\Phi}\left(\dot{A} \delta_{\underline{x}}+B \delta \underline{u}-\delta \underline{\dot{x}}\right) d t=0 \tag{A-7}
\end{equation*}
$$

Note that $\mathcal{U} I$ is zero for all admissable variations because the dynamics are satisfied. Integration by parts of Eq. (A-7) leads to the following expression for \mathcal{S}.

$$
\begin{align*}
& I=2 \int_{t_{0}}^{t_{f}}\left[\delta \underline{x}^{T}\left((S+\hat{S}) \underline{x}^{0}+\frac{1}{2}(W+\hat{W}) \underline{u}^{0}+A^{T} \underline{p}+\dot{p}\right)\right. \\
&\left.+\delta \underline{u}^{T}\left(\frac{1}{2}\left(w^{T}+\hat{W}^{T}\right) \underline{x}^{0}+Q \underline{u}^{0}+B^{T} p\right)\right] d t \\
&+\left.\delta \underline{x}^{T} \underline{p}\right|_{t=t_{f}}=0 \tag{A-8}
\end{align*}
$$

1. If the costate vector is required to satisfy the following equation,

$$
\begin{equation*}
\text { I } \dot{p}+A^{T} p+(s+\hat{S}) \underline{x}^{0}+\frac{1}{2}(W+\hat{W}) \underline{u}^{0}=\underline{0} ; \quad \underline{p}\left(t_{f}\right)=\underline{0} \tag{A-9}
\end{equation*}
$$

described by the following equation.

$$
\begin{equation*}
Q \underline{u}^{0}+B^{T} \underline{p}+\frac{1}{2}\left(W^{T}+\hat{W}^{T}\right) \underline{x}^{0}=\underline{0} \tag{A-10}
\end{equation*}
$$

For

$$
\begin{equation*}
u^{\circ}=-Q^{-1}\left(B^{T} p+\frac{1}{2}\left(W^{T}+\hat{W}^{T}\right) \underline{x}^{o}\right) \tag{A-11}
\end{equation*}
$$

Now, (A-1), (A-9), and (A-11) are the Euler-Lagrange or necessary condition equations for the formal $S O C$ problem.

Appendix B

Newton Raphson Method

The Newton Raphson method is a powerful iterative numerical method which is used extensively to solve nonlinear algebraic equations. This method has a quadratic rate of convergence; convergence occurs provided the initial iterate is suitably "close" to the solution. The recurrence relation which defines the algorithm follows easily from the basic concept of the method as shown by the following derivation for a scalar nonlinear equation with one indeperdent variable.

$$
\begin{equation*}
z=g(y) \tag{B-1}
\end{equation*}
$$

The centrol concept involves linearizing the nonlinear equation about the current guess. That is, given a current solution gress, y_{i}, expand the equation in a Taylor series about y_{i}.

$$
\begin{equation*}
z=g(y)=g\left(y_{i}\right)+\frac{d g}{d y}\left(y_{i}\right) d y+y^{2} \tag{B-2}
\end{equation*}
$$

where y^{2} represents second and higher order terms. Only the linear term is retained and a new guess is found by extrapolating along the tangent line until the approximate function is zero as shown in Fig. B-1. That is,

$$
z=g(y) \approx \hat{g}(y)=g\left(y_{i}\right)+\frac{d g}{d y}\left(y_{i}\right) d y
$$

The new guess is chosen by requiring that

$$
\hat{g}\left(y_{i+1}\right)=0
$$

or

$$
\begin{equation*}
\hat{\mathrm{g}}\left(\mathrm{y}_{\mathrm{i}+1}\right)=0=\mathrm{g}\left(\mathrm{y}_{\mathrm{i}}\right)+\frac{\mathrm{dg}}{\mathrm{dy}}\left(\mathrm{y}_{\mathrm{i}}\right)\left(\mathrm{y}_{\mathrm{i}+1}-\mathrm{y}_{\mathrm{i}}\right) \tag{B-3}
\end{equation*}
$$

I
where $d y=y_{i+1}-y_{i}$. Then Eq. (B-3) may be solved for y_{i+1} to obtain the recursive relation defining the Newton Raphson algoritim,

$$
y_{i+1}=y_{i}-g\left(y_{i}\right) / \frac{d g}{d y}\left(y_{i}\right)
$$

Geometrically, this corresponds to finding the tangent to the equation at $y=y_{i}$ and extending the tangent line until it crosses the horizontal axis, $z=0$. The intersection of these two lines determines the new guess, y_{i+1}. The process is continued by finding the tangent to $g(y)$ at $y=y_{i+l}$ and extrapolating to determine y_{i+2}.

If convergence problems are encountered, the use of a convergence factor, α, may help. By choosing volues of $\alpha, 0<\alpha \leq 1$, it may be possible to alleviate convergence problems at the expense of rate of convergence. Geometrically, the new iterate is found by only extrapolating part way along the tangent line. That is, y_{i+1} is determined by the intersection of the tangent line and $z=c$, where $c=(1-\alpha) g\left(y_{i}\right)$.

In a similar manner the Newton Raphson al zorithm in function space may be derived. Consider a vector function equation with a vector of independent variables.

$$
\underline{z}=\underline{I}(\underline{y})=0
$$

Given a guess, y_{i}, the vector equation is lineared about X_{i}.

$$
\underline{z}=f(\underline{y})=f\left(\underline{y}_{i}\right)+\nabla_{\underline{y}} \underline{f} d \underline{y}+\underline{f}^{2}
$$

where $\nabla_{\underline{y}} \underline{f}$ represents the Jacobian or gradient matrix of \underline{f} with respect to \underline{y} and \underline{f}^{2} denotes second and higher order terms. The equation is linearized by neglecting the higher order terms.

$$
\underline{z}=\underline{f}(\underline{y}) \approx \hat{\underline{f}}(\underline{y})=f\left(\underline{y}_{i}\right)+\nabla_{\underline{y}} \underline{f} d \underline{y}
$$

The new iterate or guess is determined by the intersection of the tangential plane and the plane; $\underline{z}=0$.

$$
\begin{aligned}
& \underline{f}(\underline{y})=0=\underline{f}\left(\underline{y}_{i}\right)+\nabla_{\underline{y}} \underline{f} d \underline{y} \\
& d \underline{y}=\underline{y}_{i+1}-\underline{y}_{i}
\end{aligned}
$$

The recursive relation is given by

$$
\underline{y}_{i+1}=\underline{y}_{i}-\left(\nabla_{\underline{y}} \stackrel{f}{ }\right)^{-1} \underline{f}\left(\underline{y}_{i}\right)
$$

The actual implementation of this algorithm does not require that the Jacobian matrix be inverted, rather the following linear system of equations is solved for $d y$ which leads to \underline{y}_{i+1}.

$$
\begin{aligned}
& \nabla_{\underline{y}} £ d \underline{y}=-\underline{f}\left(\underline{y}_{i}\right) \\
& \underline{y}_{i+1}=d \underline{y}+y_{i}
\end{aligned}
$$

This is significant from a numerical point of view since fewer operations and hence execution time and error are required to solve a single system of equations as opposed to inverting the coefficient matrix of the system.

APPENDIX C

Digital Computer Programs

To test the effectiveness of the proposed theory, various digital computer programs were coded, debugged, and used. Much of the computational effort was devoted to the solution of steady state problems. Both the SOC-Kleinman and SOCDES algorithms described in Chapter III were implemented and compared. The SOCDES algorithm was found to be superior to SOC-Kleinman especially for the launch vehicle problem. Two versions of the SOCDES algorithm are described in this appendix; SOCDES I solves the steady state unavailable state problem of Chapter IV as well as the unreduced sensitivity problem of Chapter VI while the SOCSEN version solves the reduced SOC sensitivity problem. The basic block diagram for both programs is shown in Fig. C-l. The only significant difference between the two versions is found in the structure of the solution of the Ricatti equations. In SOCDES I the Ricatti equation is formulated in terms of the equivalent linear vector system described in Appendix E while SOCSEN decouples the Ricatti equation into the reduced form and successively solves each of the partition equations via the equivalent vector approach.

The programs consist of a main program which is listed below, and various subroutine programs. The names, call statements, and purpose of the subroutines follnw.

NAME: DLIN

USE: DLIN solves systems of linear equations by Gaussian elimination with full pivotal condensation.

$$
C X=Y
$$

The matrices C, N by N, and Y, N by M, are known and X, N by M, is to be found.

CALL: CALL DLIN (R, A, M, N, EPS, IER, ICODE)
R: Y is placed by columns in R; after execution X is placed by columns in R.

A: C is placed by columns in A.
EPS: Pivot error tolerance.
IER: IER is set equal to zero before DLIN is called. If C is singular (pivot element less than EPS), rank of matrix is stored in IER and control is returned to Main. ICODE: If ICODE is zero, DLIN operates in a normal manner and pivot information is saved. If additional systems of equations with identical coefficient matrices are to be solved, ICODE is set to I and a new Y is entered and equations are solved using saved pivot information at a considerable saving ir computational effort.

NAME: CHAREQ

USE: CHAREQ formulates characteristic equation of given system matrix.

CALL: CALL CHAREQ (C, N, CCEF)
C: $\quad C$ is the N by N system matrix

COEF: Coefficients of characteristic equation are placed in COEF in descending order, that is coefficient of s^{n} is placed in position 1 of COEF.

NAME: POTROT

USE: POTROT is used to set up characteristic equation for solution by POLYRT.

CALI: CALL POTROT (C, ICFL, TIME, K1, K2, K3, K4, K5, M)
C: C contains polynomial coefficients in descending order.
M: Order of polynomial.
TIIE: Dummy variable.
ICFL: Output control variable.
K1, K2, K3, K4, K5: Feedback gain values.

NAME: POLYRT

USE: POLYRT finds roots of polynomials up to order 99 by Newton Raphson iteration in complex plane.

CALL: CALL POLYRT (M, C, TOLI, RX, RY, RMULT, NR, ISW, CFCTR, IDOUT, IDOUTI) M: Order of polynomial

C: Contains polynomial coefficients in descending order.
TOLI: If distance between roots in less than TOLl, then roots are assumed to be identical.

RX: Matrix of real parts of roots.
RY: Matrix of imaginary parts of roots.
RMULI: Matrix of scaling factors.
NR: Number of non-identical roots.

ISW: If ISW $=1$, the factored polynomial is re-multiplied to form a comparison polynomial.

CFCIR: Matrix of differences between coefficients of original and comparison polynomial. IDOUT, IDOUT1: Diagnostic print variables.

POLYRT was developed by Ray Ash of the Systems Division of R.P.I. while the rest of these programs were developed by the author.

```
/JOB
                                4045
                    ***** ScCOES I
    PROGRAN RESYRICTEO TO SCALAR CONTROL
        CERTAIN WRITE STATFNFNTS ARE ENTERED AS CONMENT CARDS. IF TROUBLE
C DEVELRPS THE 'C' MAY BE REMOVED AND THIS DIAGNOSTIC INFGRMATION MAY
BE PRINTEN.
DOURLE PriECISION ADP(20,20),COEFF(100)
CIMENSITN ES(10,10),W(10)
DIMENSION GRADT(10,10),0(10)
DINENSION S(10,10),P(10,10)
DINENSION A(10,1C),R(10,1),FRG(1,10)
CIMENSIOM AA(1C,IO),FSA(L,10),F(10),FS(10)
CIMENSION \triangleIN(7R,78),FHA(1,10),ED(784),EG(28,10), EH(7E4)
CINENSION FKK(28, 2g,10), EK(10,10),FHSA(2,10), EFS(28),FOS(23,28)
DOURLE PRECISITN E(28,28!,EE(784),EF(784),FD(28,28)
    1 FORMAT(1GI5)
    2 FORMAT(4C2?.5)
    3 FORNAT(1X,1P10F13.4)
    4 FORNAT(1x,1OI101
    6 FORNAT(4C2C.5)
    7 FORMAT(1X,1010D13.4)
    9 FORMAT(///2X,'ITERATION NUNRER •.(5)
        11 FORNATI////T30,'AFTER ',I3,' ITERATIONS,THF STOPPING TOLERANCE WAS
        l REACHEN."///
            CALL TPAPS(0,1,1C0000)
        SCOO CONTINUE
C NOTE ** FBG=K
C REAC IN ANO INITIALIZE DATA
ISS=1
READ(1,1) IIS,INC,ISTAB
WRITE(3.4) IIS,IKC:ISTAP
APH=C.25E0
APF=C.1ED
APH=.CCIEO
APH=1.CEO
KOUNT = C
READ(1,.1) NS,NI,NU
NL =N!S-4L
NP=(NSENS+NS)/2
KRITE(3,4) NS,NI, U,NL,NP
REAU(1,2) FPS,TCL,ESS,SWTML
WRITE(3,3) EPS,ICL,ESS,SWTOL
SWTOL=SWTCL*SHTCI.
TOL=TCL*TCL
REAO(1,2) ((A(I,J),I=1,NS),J=1,NS)
```

```
    REAO(1,2) (B(1,1),1=1,NS)
    MRITE(3,3) ((A(I,J),I=1,NS),J=1,NS)
    WRITE(3,3) (S(I,I),I=1,NS)
    READ(1,2) ((SII,J),I=1,NS),J=1,NS)
    WRITE(3,3) ((S(I,J),1=1,NS),J=1,NS)
    IF(IIS-1) 320,325,320
    320 CONTINUE
    READ(1,?) ((DS(I,J),I=1,NS),J=1,NS)
    WR[TE(3,3) ({NS(I,J),I=1,NS),J=1,NS)
    READ(1,2) PJG
    WRITE (3,3) nca
        325 CONTINLF
    REAO(1,2) Q
    WRITE(3,3) Q
C
    READ(1,2) (F3G(1,T),I=1,NS)
    WRITE(3,3) (FGG(1,1),I=1,NS)
    DO 15 I=1, AS
    F(I)=0.EC
    FSA(1,I)=0.FO
    W(I)=0.E?
    DO 15 J=1,NS
        15 AA(I,J)=A(I,J)
        IF(IST.1B-1) 334.332.334
        332 CONTINUE
            DC 336 I= 1,NS
            DO 336 J=1,NS
            AA(I,J)=C.CEO
        336 AA(I,J)=A(I,J)-R(I,1)*FP,G(1,J)
            WRITE(3,3) ((AA(I,J),I=1,NS),J=1,NS)
            DO 337 I= 1, NU
        337 FBG(1,II=0.0؟O
        334 CRNTINUS
        IF(IHC) 330.329.330
    32A REAC(1,2) (i)(1),I=1,NS)
        WRITE(3,3) (W(I),I=1,N:S)
    330 CONTINLE
    DO 26 I=1,NP
    DO 26 J=1,N:P
    CO 27 L=1,NU
    27 EKK(I,J,L)=r.FC
    26 CONTINUE
C E IS THE CNEFFICIENT NATRIX OF THE EOUIVALENT VECTOR SYSIEM.
        EKK = DEQ OF 5 , \R TC FRG
            CO 250 JK=1,VU
            DC 340 I=1.N.S
            DO 340 J=1.vS
        34C EK(I,J)=?.F%
            CO 35C I=1,N'S
        350 EK(I,JY)=-n(I,1)
```

```
C WRITE(3,3) (FK(I,JK),I=1,NS)
    DO 25C I=1,9!S
    00 250 J=1,NS
    OO 250 KL=1,NS
    T1=NS-C.5*J
    L=(J- l):Tl+KL
    IF(KL-J) 243.244,244
    243 T1=NS-0.5akL
    L=(KL-1)*T L +J
    244 CONTINLE
    T2=NS-0.5*1
    K=(I-1)*T2+K.L
    IF(KL-I) 245,246.246
    245 T2=NS-0.5*KL
    K=(KL-1)*T )+I
    246 FAC=1.EO
    IF(I-KL) 248,747,248
    247 FAC=2.EC
    248 CONTINUE
    EKK(K,L,JK)=EKK(K,L,JK) +FAC#EK(J,I)
    250 CONTINUF
C WRITE(3,3) (((EKK(K,L,JK),K=1,NP),L=1,N!P),JK=1,NU)
    1810 COMTINUE
            NI=NI+I
            CO 9CIC IOS=ISS,IIS
            DO 9CCO ITTT=1,NI
            ITT=ITTT-1
            WRITE(3,7) ITT
            IF(ITT) 17,1000,17
            17 CONTINUE
C EG=CER(FBG*C*FEG*)*AR*FBG
            DO 140 I=1,NS
            OO 140 J=1,NP
        140 EG(J,I)=0.EO
C ED= 'P员:=-EI*(S+FBG*C*FEG*)
            K=0
            DO 142 J=1,NS
            DO 142 I=J,MS
            K=K+1
            EG(K,J)=FSG(1,I)*O+EG(K,J)
            EG(K,I)=FFG(l,J)*C+EG(K,I)
            ED(K)=FF(K)
            142 CON!TMUE
            WRITE(3,3) (!EG(K,I),K=1,NP),I=1,NS)
            DO 143 1K=1,VIJ
            CC 144 L=1,ND
            EH(L)=0.FC
            OO 144 LL='.*?
        I44 EH(L)=FH(L)-FKK(L,LL,IK)*ED(LL)
            WRITE(3,3) (EH(L),L=1,NP)
```

```
    C ICODE=1*** DLIN HAS BFEN INITIALIZEO. NO NEED TO COMPLETELY
    C RESCLVE SYSTEM OF EQUATICNS.
        ICODE=1
    C EF=-EKK*'PP!'-EG
    C SCLVE E:'PI'=EF
        DO 145 L=1,NP
        EF(L)=EH(L)-EG(L,|K)
    145 CONTINUE
        CALL DLIN(EF,EE,NP,NEQ,EPS,IER,ICONE)
        WRITE (3,7) (EE K),K=1,NP)
        K=0
        DO 146 I=1,NS
        DO 146 J=I.NS
        K=K+1
        P(I,J)=EF(K)
        146 P(J,I)=EF(K)
    WRITE(3,3) ((P(I,J),I=1,NS),J=1,NS)
    DO 14& KK=1,NU
    GR AD=O.E?
    OO 147 . 1=1.NS
    147 GR\triangleD=GRAD+?(J,1)*P(J,KK)/C
    IF(IK-KK) 151,147,151
    149'GRAD=CRAR-1. OEO
    151 CONTINUE
            GRADIFNT=GRAR=GI*R'*P-I
    C
    C
    WRITE(3,1) KK
    WRIIE(3,3) GRAD
    GRADT(KK,[K)=GRAC
    148 CRNTINUE
    WRITE(3,3) ((GRACT(I,J),I=1,NU),J=1,NU)
    94 CONTINUE
    NEO=1
    IER=0.
        91 ESS=1.CEO
            DO 8e I= 1, A:U
    8 C(I)=F(I)
    89 CONTINUE
    KRITE(3,3) (D(I),I=1,NU)
    K=0
    DO 92 I= 1, N!U
    EF(I)=1)(I)
    OO 92 J=1,N(1
    K=K+1
    92 EE(K)=GPMDT(J,I)
        ICODE=C
        CALL DLIM(EF,FE,N:U,NES,EPS,IER,ICODEI
        WRITE(3,7) (EF(I),I=1,NU)
        CO 93 I= 1,NU
        FS\triangle(1,I)=FPG(1,1)
        93 FBG(I,I)=F\G(1,I)-ESS*APH*EF(I)
```

```
            WRITE(3,3) (FSN(1,[),I=1,NS)
            WRITE(3,3) (FHG(1,I),'=1,NSI
    lCCO CONTINUE
    A=^^-E#FRG'
            DO 1C I=I,NS
            DO 10 J=1,N'S
        10 A(I,J)=A1(I,J)-FRG(1,J)*P(I,1)
            WRITE(3,3) ((A(I,J),I=1,NS),J=1,NS)
            FORMULATE F
            DO 20 K=1,NP
            DO 20 L=L,NP
        20 E(Y,L)=C.DC
            DO 40 I=1,NS
            DO 40 J=1,NS
            DO 40 KL=1.NS
            J,KL****L
            T1=NS-0.5%J
            L=(J-1)*T l+KL
            IF(KL-J) 215,220,220
        215 T1=NS-C.5*KL
            L=(KL-1)*TI+J
        22C CONTINUE
            I,KL###**K
            T2=NS-C.5EI
            K=(1-1)*T 2*KL
            IF(KL-I) 225,230,230
    225 T2=N S-C.F*KL
                            K='KL-1)*T?+1
    230 FA:%=1.0
            IF(I-KL) 235,?35,?36
    235 FAC=2.C
    236 CONTINUE
        E(K,L)=E(K,L) +FAC*A(J,I)
        40 CONTINUE
            WRITE(3,7) ((: (K,L),K=1,NP),L=1,NP)
            WRITE(3,7) ((E)K,L),K=1,NP),L=1,NP)
            NEC=1
            ICOCE=C
            K=0
                EF=-''SAFOS*C#FEG' '1
            DO 55 I=1,NS
            00 55 J=I,NS
            K=K+1
        55 EF(K)=-S(I,J)-FRG(1,I):0*FBG(1,J)
            WRITE(3,7) (EF(K),K=1,NP)
            WRITE(3,7) (EF(K),K=1,NP)
            K=0
            DO 7C J=1,NH
            CO 7C I= 1,N:N
            K=k+1
```

```
        EE(K)=E(I,J)
        70 CONTINUE
            IER=C
            WRITF(3,4) IER
            CALL DLIN(FF,FE,NP,NEG,EPS,IER,ICHOE)
            C CALCULATS P
C WRITE(3,T) (EF(K),K=1,NP)
    K=0
        EF= 1.0:1
        00 90 I=1,NS
        DO 90 J=I,NS
        K=K+1
        P(I,J)=EF(K)
        90 P(J,I)=EF(K)
    KRITE(3,3) ((P(I,J), :=1,NS),J=1,NS)
        WRITE(3,3) ((P)I,N),I=1,NS),J=1,NS)
C F=QI*C'#P+CIE*'-FBG W= W*** 
    DO 111 I=1,NU
    FS(I)=F(I)
    F(I)=0.EC
    DO 110, =1,NS
        110F(I)=F(I)+!(J,1)*!(J,I)/C
        111 F(I)=F(I)-FCO(l,I)+W(I)/0
        W CF PROGRAR! IS 1/2 W OF THEORETICAL DEVELOPMENT.
        WRITE(3,3) (FS(I),I=1,NU)
        KRITE(3,3) (FII),I=1,NU)
        WRITE(3,3) (W(I),I=1,N!!)
C WRITE(3,3) (FHSA(I,I), I=1,NS)
C WRITE(3,3) (FHA(1,1),I=1,NS)
    IF(ISW-1) 1?1,132.131
        131 CONTINUE
            IF(ITT) 112,80c0,112
        8CCO IFIILC-1) 9000,8002,9000
C CALCULATE W
    8002 DO 8001 I=1,VU
        h(I)=-F(I)
        F(I)=0.CFO
    8001 CONTINLE
        IWC=2
        WRITE(3,3) (b(I),I=1,NU)
        WRITE(?,3) (\S(I,J),I=1,NS),J=1,NS)
            GO TG 9001
        112 CONTINUE
        15C CONTINUE
        132 CONTINUE
C CHECK GAINS
            DC 154 I=1,NU
        CD=F(I)
        CD=CD*CD
        IF(DO-TOL) 154,160,160
```

```
    154 CONTINUE
    WRITE(3,11) ITT
    WRITE(3,3) ((P(I,J),I=1,NS),J=1,NS)
    GO TC SCOL
    160 KOUNT=RCUNT+1
SOCC COMTINUE
gcol CONTINUE
    CO 9CC5 I=1.NS
    C0 9CC5 J=1,"5
SCOS S(I,J)=S(I,J;+חS(I,J)
    WRITE(3,3) ((SII,J),I=1,NS),J=1,NS)
    O=O+CC=
    WRITE(3,3) Q
    DO 900: I=1,NS
    DO SCOB J=1,NS
9CO3 ADP(I,J)=A(I,J)
    CALL CHAOEC(ADP,NS,COEFF)
        NSS=NS+l
    WRITE(3,7) (CNEFF(I),I=1,NSS)
    TINE=C.OEO
    \Delta3=0.OEO
    A4=C.0EO
    A5=0.CLC
    Al=FBG(1,1)
    A2=FRG(1,2)
    ICFL=0
    CALL POTPOTICOEFF,ICFL,TINE,A1,A2,A3,14,A5,NS)
9010 CONTINUE
    GO TO 5000
    ENO
```

228.

CASSIOY,LINES=50
/JOB
C

4045
*****SOCSFN
progran restricted to scalar control
Certain write statenents are entered as comment cards. if trouble DEVELCPS THE IG: MAY EE REMOVED AND THIS DIAGNOSTIC INFORMATION MAY
C be printed.
DOUBLE PRECISICN AOP $(20,20)$, COEFF(100)
CINENSION RRAT (14.14)
DIMENSION GRADT(14,14),0(14)
DIMENSIUN A(14,14), B(14,1),FRG(1,14)
DIMENSION AA(14,14),FSA(1,14),F(14),FS(14)
DIMENSIOM $\mathrm{V}(14)$.p(14,14)
DIMENSION ER(105),FG(105,14), EH(105)
DIMENSION EKK(105,105,2)
DINENSION FK (14,14)
DIMENSION AC(7,7),S1(7,7),S2(7,7),53(7,7), OS1(7,7),0S2(7,7)
DIMENSION DS3(7,7)
CCUBLE DRECISICN DE(TB4)
DOUBLE PRECTSICN E1(28,28)
DOUBLE PRECISION E(28,28),EE(784),EF(784)
1 formatilets)
2 FORMAT(4E2C.5)
3 FORMAT(1X.1P10E13.4)
4 FORMAT(1x,ICILO)
6 FORMAT 4020.51
7 FORMAT(1X,1P10013.4)
9 Fornati//2x, 'iteration number ', I5)
11 FORMATI////T30, 'AFTER, I3,' ITERATIOMI, THE STOPPING TOLERAVCE WAS
1 REACHED.'//1
5coo continue
C PROGRAM
C FORMULATION.
program liniten to single parameter but structure allows extension to multiple parameters.
if Lew grder sevsifivity pherlem is ti be solvfd, then it nay be
C formulated in unreducen form and solven with socdes i.
NS2 IS THE JRDER OF ORIGINAL SYSTEM.
C reac in and initialije data
C NOTE *** FBG=K

ISS=1

READ(1,1) IIS,IWC
KRITE 3,4) IIS,IWC
$A P H=0.25 E 0$
$A P H=0.1 E 0$
$\triangle P H=. C O L E O$
$A P H=1 . O E O$
KOUNT =0
READI1,11 NS,N1,NU
NL=NS-NU
$N P=(N S * N S+N S) / 2$
NS2=NS/2
NS3 $=$ NS2-1
NP2 = (NS2*NS2+NS2)/2
hRITE(3,4) MS,NI,NU,NL,NP
READ $(1,2)$ EPS, TOL,ESS, SWTOL
WRITE (3,3) EPS,TCL,ESS,SWTOL
SWTOL = SWTOLESHTOL

READ(1,2) ((AA(1,J), $I=1, N S 2), J=1, N S 2)$
READ(1,2) ((AQ(I, J), $I=1, N S 2), J=1, N S 2)$
READ(1,2) (P(I, 1), $1=1, N S 2)$
READ (1,2) ((S1 (I, J), I=1, NS2), J=1, NS2)
REAC(1,2) (5 (S ($1, \mathrm{~J}), I=1, N S 2), J=1, N S 2)$
READ(1,2) ((S3(I, J), $I=1, N S 2), J=1, N S 2)$
KRITE(3,3) ((AA(I, J), I=1,NS2), J=1, NS2)
WRITE $(3,3)((A \cap(I, J), I=1, N S 2), J=1, N S 2)$
WRITE(3,3) (A(1,1), $1=1$, NS2)
WRITF(3,3) $((S 1(I, J), I=1, N S 2), J=1, N S 2)$
WRITE (3,3) ($(52([, J), I=1, N S 2), J=1, N S ?)$
WRITE(3,3) (IS3(1, J), $I=1, N S 2), J=1, N S 2)$
IF(IIS-1) $320,325,320$
320 COntINUE
$\operatorname{READ}(1,2)((0 S 1(1, J), I=1, N S 2), J=1, N S 2)$
READ $(1,2)([$ OS2 $(I, J), I=1, N S 2), J=1, N S 2)$
READ (1,2) ((DSS3($[, J), I=1, N(S 2), J=1$, NS 2$)$
WRITE (3,3) ((OSI!I, J), I=1,NS2),J=1,NS2)
WRITE $(3,3)((D S 2(I, J), I=1, N S 2), J=1$, NS? $)$
WRITE(3,3) (IDS3(I, J), $I=1, N S 2), J=1, N S 2)$
325 CONTINUE
DO 13CO $I=1$, VS2
$I I=I+N S 2$
1300
B(II.1)=0.CEO
READ(1,2) G
WRITE(3,3) Q
C
READ(1,2) (FGG(I,I),I=1,NS)
WRITE(3,3) (FBC(1,I),I=1,NS)
DO 15 I=1, NS
$F(I)=0 . E O$
FSA(1,I)=0.EO
W(I)=O.EO
15 CONTINUE
IF(IWC) 330.32 ?. 330
328 READ (1,2) (4(I),Ix1,VS)
WRTTE(3,3) (W(I),I=1,NS)

```
    330 CONTINUE
            DO 26 I=1,NP
            DO 26 J=1,NP
            DO 27 L=1,NU
        .27 EKK(I,J,L)=0.EO
        26 CONTINUE
C E IS THE COEFFICIENT NATRIX OF THF EQUIVALENT VECTOR SYSTEM.
C EKK = DER OF E WR TO FRG
            DO 250 JK=1,N|I
            DO 340 I=1,NS
            DO 34C J=1,NS
        340 EK(1,J)=C.EO
            JKK=JK+NS2
            00 350 I=1,NS?
            II=I+NS 2
            EK(II,JKK)=-R(1,1)
        350 EK(I,JK)=EK(II,JKK)
            KRITE(3,3) (EK(I,JK),I=1,NS)
            DO 250 1=1,NS
            DO 250 J=1,NS
            DO 25C KL=1,NS
            T1 =NS-0.5*J
            L=(J-1)*T1+KL
                            IF(KL-J) 243,244,244
        243 T1=NS-C.5*KL
                            L=(KL-1)*T1+J
    244 CONTINUE
    T2=NS-0.5*I
    K=(I-1)*T2+KL
    IF(KL-1) 245,746,21,6
    245 T2=NS-0.5*KL
    K=(KL-1)*T?+1
    246 FAC=1.EO
            IF(I-KL) 248,247,248
    247 FAC=2.EO
    248 CONTINUE
    EKK(K,L,JK)=FKK(K,L,JK)+FAC*EK(J,I)
    250 CONTINUE
C WRITE(3,3) ((IEKK(K,L,JK),K=1,NP),L=1,NP),JK=1,NU)
    NI=NI+1
    DO 9010 IDS=ISS,IIS
    DO 9CCC ITTT=I,NI
    ITT=ITTT-1
    HRITE(3.9) [TT
    IFIITT) 17.1000.17
        17 CONTINUE
C EG= DER MF((FPG*C*FSG')RAR) WR TO FBG
            IF(INO-1) 136.135,136
        135 INO=0
            G0 10 94
```

```
    136 CONTINLE
    15CO CONTINUE
        DO 140 I=1, 昭S
        DO 140 J=1,NP
        140 EG(J,I)=n.ER
    C ED = 'IP:' =-FI*'(IS+(FBG*O*FBG')RAR)''
        DO 142 J=1,NS
        DO 142 I=J,NS
        K=K+1
        EG(K,J)=FR(G(1,I)*O+EG(K,J)
        EG(K,I)=FPG(1,J)*O+EG(K,I)
        ED(K)=O(I,J)
        142 CONTINUE
            K=NP-NP?
            DO 480 J=1,N!S?
            DO 480 I=J,NS2
            K=K+1
            EG(K,J)=FrG(1,I)*n+EG(K,J)
            480 EG(K,I)=FQG(1,J)*04FG(K,I)
            C WRITE(3,3) (IEG(K,I),K=1,NP),I=1,NS)
            DO 148 IK=1,NU
            DC 144 L=1,9!P
            EH(L)=0.EO
            DO 144 LL=1,NP
        144EH(L)=EH(L)-FKK(L,LL,IK)*ED(LL)
            C WRITE(3,3) {FH(L),L=1,NP)
            C ICODE=1****#: DLIN HAS REEN INITIALITED. NO NEED TO COMPLETELY
            C RESOLVE SYSTTM OF EOUNTITNS.
            ICODE=1
C EF=-EKK*'IP:I-FGG
            SCLVE FI'PII=EF
    TO SAVE NEMCRY, P IS USED IN MANY DIFFERENT WAYS.
C SINCE THERE IS ONLY CNE PARANETER, THE UNREDUCED RICATTI MATRIX IS
C DECOUPLED INTC THREE(3) NS2 BY NS2 BLOCKS.
            L=0
            DO 145 J=1.1.4S
            DO 145 I=J,NS
            L=L+1
            P(I,J)=EH(L)-EG(L,IK)
            P(J,I)=P(I,J)
        145 CONTINUE
C SOLVE FOR O3, E 'P3'%=-'1(P3):'
            K=0
            II=NS2+1
            CO 1410 I=II, A!S
            DO 1410 J=I,NS
            - K=K+1
1410 EF(K)=?(1,J)
            ICRDE=1
```

CALL DLIN(EF,EE,NPZ,NED,EPS,IER,ICODE)
C ONLY PI MUST HF SAVFD.
$K=0$
$11=N S 2+1$
DO 1420 $I=11, \mathrm{NS}$
DO 1420 J=I,NS
$K=K+1$
$P(I+J)=E F(K)$
$1420 P(J, I)=P(I, J)$
$K=0$
C DRAT $=-1 / 2 \mathrm{P} 2-1 / 2 \mathrm{P}$ 3:AO
DO 145C $J=1$, NS2
DC $1450 \quad I=1$, NS ?
$I I=I+N S 2$
$K=K+1$
ORAT (I, J)=P(II, J)*0.5
DO $1450 \mathrm{~L}=\mathrm{I}$, NS ?
$L L=L+N S 2$
$1450 \operatorname{CRAT}(1, J)=$ DRAT (I,J)-0.5*(P(II,LL)*AO(L,J)) C SOLVE FOR THE SKEW*SYNMETRIC PORTION OF PZ.
C SOLVE DRAT-ERAT.T
$\mathrm{K}=0$
$001452 \mathrm{~J}=1, \mathrm{~N} 3$
$\mathrm{Jl}=\mathrm{J}+1$
DO 1452 [xJ1, N1S2
$K=K+1$
1452 EF (K) $=$ ПRAT (I, J)-DRAT (J, I)
ICODE = 1
CALL CLON(EF,DE, NP3,NEG,EPS,IER,ICNDEI
$K=0$
$P(N S, N S 2)=C . C E O$
DO $1453 \mathrm{~J}=1$.NS 3
$\mathrm{J} 1=\mathrm{J}+1$
$J J=J+N S 2$
P(JJ,J)=C.CED
CO $1453 \quad 1=\mathrm{J} 1$, N1S2
$K=K+1$
$I I=I+N S 2$
$P(J J, I)=-E F(K)$
1453 P(II,J)=EF(K)
C SOLVE FOR THE SYMNETRIC PORTION OF P2.
C SCLVF CRAT+CFAT.T
$K=0$
DO $1456 \mathrm{~J}=1$. NS 2
$001456 \quad I=\mathrm{J}, \mathrm{NS} 2$
$K=K+1$
1456 EF $(K)=$ ORAT($1, J)+$ DRAT (J, I)
IC.JDE = 1
CALL CLIN(EF,EE,NP2,NEQ,EPS,IER,ICNDF) $K=0$

```
        00 1457 J=1,NS2
        00 1457 I=J,VS?
        K=K+1
        II=I+NS2
        JJ=J+NS?
        P(II,J)=EF(K)+n(II,J)
        IF(I-J) 13%2,1383.1382
        1383 P(JJ,I)=P(II,J)
        GO Tח 1384
    1382 P(JJ,I)=P(JJ,I)+EF(K)
    1384 CONTINUE
        P(J,II)=P(II,J)
        P(I;JJ)=P(JJ,I)
        1457 CONTINUE
        K=0
        D# 1470 J=1,NS2
        00 1470 I=J.NS2
        K=K+1
        EF(K)=P(I,J)
        OO 1470 L=1,NS2
        LL=L+NS2
        1470 EF(K)=EF(K)-P(I.L,I)*AQ(L,J)-AQ(L,I)*P(LL,J)
C SOLVE FOR P1 E''P1'I=-''(P2'*AQ+AQ'*O2P+1)'"
    ICODE=1
    CALL DLIN(EF,EE,NP2,NFQ,EPS,IER,ICODE)
    K=0
    00 1480 J=1,NS2
    00 1480 I=J,NS?
    K=K+1
    P(I,J)=EF(K)
    1480 P(J,I)=P{I,J)
    KRITE(3,7) (FE(K),K=1,NP)
    WRITE(3,3) ((P)({,J),{=1,NS),J=1,NS)
    OO 148 KK=1.NU
    GRAD=C.EC
    DO 147 J=1, M!S
    147 GRAD=GRAN+!(J,1):P(J,KK)/Q
    IF(IK-KK) 151,149,151
    149 GRAD=GRAD-1.OEO
    151 CONTINUE
                GRAOIENT=GRAD=OI*R'*P-I
    GRITE(3,1) KK
    WRITE(3,1) KK
    KRITE(3,3) FRAO
    KRITE(3,3) FRAD
    GRADT(KK,IK)=GRAC
    148 CNATINLF.
        WRITE(3,3) ({GRAMT(I,J),I=1,NU),J=1,N(I)
        94 CONTINUE
    NEQ=1
```

IER=C
91 ESS=1.0EO
DO $88 \quad I=1$, 1 M
$88 \mathrm{D}(1)=\mathrm{F}(1)$
89 CONTINUE
C
HRITE(3,3) (O(I),I=1,NU)
$K=0$
$00921=1$, NU
EF(I)=C(1)
DO $92 \mathrm{~J}=1$, NU
$K=K+1$
92 EE(K)=GRADI(J.I)
ICODE = 0
CALL DLINIEF,EE,NH,NEQ,EPS,IER,ICODEI
C WRITE\{3,7) (EFIII,I=1,NU)
DC $93 \quad I=1, N(U$
FSA(1,1)=FUG(1.1)
93 FBG(1, II)=FPC(I,I)-ESS*APH=EF(I)
WRITE (3,3) (ESA(1, I), I=1,NS)
WRIIE (3,3) (FRG(1,1), I=1,NS)
$10 C 0$ CONTINUE
C $\quad A=A A-P=F P G:$
$0010 \quad 1=1$, VS2
DO $10 \mathrm{~J}=1, \mathrm{NS} 2$
10 A(I, J)=AA(I,J)-FPG(1,J)=B(I, 1)
C
NRITE(3,3) (IA(1, J), IxI, NS), J=1,NS)
C FORMULATEE E*:
$002 C K=1.1 P 2$
D0 $20 \mathrm{~L}=1,4 \cdot n 2$
EI(K,L)=C.cno
$20 E(K, L)=0 . C C$
DO 4C $I=1$, NS2
DO 4C J=1, N:S2
DO 4 C KL=1, NS2
C
J.KLE**

T1=NS2-0.5EJ
FT1=1.0EC
$L=(J-1)+T 1+K L$
IF(KL-J) 215,220,220
215 T1=NS2-0.5EKL
FTI=-FII
$L=(K L-1) * T 1+J$
220 COnTINUE
I, KLE****K
T2=NS2-C.5:I
$K=(1-1) * 12+K L$
IFIKL-II 275.230.230
225 12=NS2-0.5*KL
FTI=-FTI
$K=(K L-1)=17+1$

230 FAC=1.0
IF(I-KL) 236,235,?36
235 FAC $=2.0$
236 CONTINUE
$E(K, L)=F(K, L)+F A C * A(J, L)$
$E 1(K, L)=E 1(K, L)+F T 1 * F A C * A(J, I)$
40 Continue
C hRITE $(3,7)((E(K, L), K=1, N P), L=1, N P)$
 NEO $=1$ ICOCE=0 $\mathrm{K}=\mathrm{C}$
C $\quad E F=-$ 'TS+FEG*G*FBC
C CALCULATE P3=-S3-KQKT
DO $551=1, \mathrm{NS}$?
DO $55 \mathrm{~J}=1, \mathrm{~N}, 52$
$\mathrm{K}=\mathrm{K}+1$
$55 \operatorname{EF}(K)=-S 3(1, J)-F P G(1,1)=Q * F B G(1, J)$
C
WRITE(3,7) (EF(K),K=1,NP)
$K=0$
DO $70 \mathrm{~J}=1$, NP2
CO $70 \mathrm{I}=1, \mathrm{NP} 2$
$\mathrm{K}=\mathrm{K}+1$
EE(K)=E(I,J)
7C Continue
IER=0
WRITE(3,4) IER
CALL CLIN(EF, EE,NPD,NEC,EPS,IER,ICODE)
c calculate p
C WRITE $(3,7)$ (EF $(K), K=1, N P)$
$K=0$
II=NS2+1
00 9C I=II.n.
CO 90 J=I.NS
$\mathrm{K}=\mathrm{K}+1$
P(I,J)=EF(K)
90 P(J, I) $=E F(k)$
C $\quad \mathrm{K}=0$ FORM -S2-P3AC 12
$K=0$
$003 \mathrm{CO} \mathrm{J}=1, \mathrm{NS} 2$
00 3CC $I=1$,NS?
$\mathrm{II}=\mathrm{I}+\mathrm{NS}$?
$\mathrm{K}=\mathrm{K}+1$
DRAT(I, J) $=-0.5$:52(1, J)
DO $300 \mathrm{~L}=1, \mathrm{NS} 2$
$L L=L+N S 2$

C CRAT=-1/2 S?-1/2 P3:10
C SOLVE fCR THE SKEWzSYNMETRIC POKtICN OF P2.
C SOLVE DRAT-DRAT.T

C EE IS THE CCEFFICIENT MATRIX FOR EGIVALFNT SKFW*SYMMETRIC VECTOR SYSTEM. $K=0$
OD $1336 \mathrm{~J}=\mathrm{L}$, NS 3
$J 1=J+1$
DO $1336 \quad \mathrm{I}=\mathrm{J} 1, \mathrm{NS} 2$
$K=K+1$
$1336 \operatorname{EF}(K)=$ DRAT $(I, J)-D R A T(J, I)$
NP3 = NP T-NS?
ICODE = 0
C FORN NEW EE FRGN CLO E.
$K=0$
$K J=C$
DO $1369 \mathrm{~J}=1$, NS2
DO $1369 \quad 1=\mathrm{J}, \mathrm{VS} 2$
$K J=K J+1$
IF(J-1) 1361.1369,1361
1361 KI =0
DO $1368 \mathrm{JJ}=1$, NS2
DO 1368 II=JJ,NS2
$K I=K I+1$
IF(JJ-II) 1364,1366,1364
$1364 K=K+1$
$D E(K)=E 1(K I, K J)$
1368 CONTINUE
1369 CONTINUE
CALL CLON(EF,DE,NP3,NEC,EPS,IER,ICODEI
$K=0$
DO $1330 \mathrm{~J}=1$, NS 3
$J J=J+N!2$
$J 1=J+1$
$P(J J, J)=0.0$ ©
DO $1338 \quad \mathrm{I}=\mathrm{Jl}, \mathrm{NS} 2$
$K=K+1$
$I I=I+N S 2$
$P(J J, I)=-E F(K)$
$1338 \mathrm{P}([I, \mathrm{~J})=F F(\mathrm{~K})$
C SOLVE CRAT+CQNT.T
$K=0$
DC $1339 \mathrm{~J}=1$, NS2
DO $1339 \quad I=J .!$:S2
$K=K+1$
$1339 \operatorname{EF}(K)=$ CRAT (I, J) + CRAT(J,I)
C SOLVE FOR THE SYFMETRIC PORIION OF P2.
ICODE = 1
CALL DLIMIFF,FE,NP2,NER, EPS,IER,ICODEI
$\mathrm{P}(\mathrm{NS}, \mathrm{NS} 2)=\mathrm{C}$. OFO
$K=0$

DO $1340 \mathrm{~J}=1$, NS 2
$001340 \quad I=J, N S ?$

```
    K=K+1
    II=I+NS2
    JJ=J+NS2
    P(II,J)=P(II,J)+EF(K)
    IF(I-J) 1372,1373,1372
    1373 P(JJ,I)=P(II,J)
    G0 TO 1374
    1372 P(JJ,I)=P(JJ,I I+EF(K)
    1374 CONTINUE
    P(I,JJ)=P(JJ,I)
    1340 P(J,II)=P(II,J)
C CALCULATE D1, LHS=-P2T*AG-AO*P2-SI-KOKT
K=0
    DO 1350 J=1,NS2
    DO 1350 I=J,NS2
    K=K+1
    EF(K)=-SI(I, J)-FBG(1,I)*Q*FBG(1,J)
    DO 1350 L=1.* *S2
    LL=L+NS2
    1350 EF(K)=EF(K)-P(LL,I)*AO(L,J)-AQ(L,I)*P(LL,J)
        ICCCE=1
        CALL CLIN(EF,EE,AP2,NFO,EPS,IER,ICODE)
    K=0
    nO 1360 J=1.vS2
```



```
    K=K+1
    P(I,J)=EF(K)
    1360 P(J,I)=P(1,J)
C KRITE(3,3) ((P(I,J),I=1,N,S),j=1,\YS)
WRITE(3,3) ((P)(I,J),I=1,N!S),J=1,NS)
C F=QI*B'#P+CIs%-FES
                                    W='W'/2
    CC 111 I=1,NU
    FS(I)=F(I)
    F(I)=C.E@
    DO 11C J=1,NS
    110 F(I)=F(I)+I(J,I)*P(J,I)/0
    111F(I)=F(I)-FRG(1,I)+W(I)
    C 'W(I)'=CINV.W(I)/?
    C W CF PREGRA: IS 1/2 W OF THEORETICAL DEVELOPNENT.
        WRITE(3,3) (FS(I),I=1,NU)
        WRITE(3,3) (FIII,I=1,N!)
        WRITE(3,3) (WII),I=1,NI!)
        WRITE(3,3) (FHSA(1,I), I=1,AS)
        WRITE(3,3) (FHA(1,I),I=1,NS)
            IF(ISW-1) 131,132,131
        131 COMIINUE
C CHECK SITE OF FHHHA
        - FSNAX=FURAX
    FUNAX=O.EO
    CO 156 I=1, A!U
```

03=F(I)*F(I)
IF(D3-FU':AX) $156,156,153$
153 FUMAX=D3
156 CONTINUE
(F(ITT) 112,80C0,112
8000 IF(IWC-1) 9000,8002,9000
EC02 DO $8001 \quad 1=1$. NU
$h(1)=-F(1)$
$F(1)=0.0 \mathrm{O}$
8col CONTINUE
$\mathrm{I} W \mathrm{C}=2$
WRITE(3,3) (W(I),I $=1$, NU)
KRITE $(3,3)((S 1(I, J), I=1, N S 2), J=1, N S 2)$
WRITE $(3,3)((S 2(I, J), I=1, N S 2), J=1, N S ?)$
HRITE(3,3) $((S 3(1, J), I=1, N(S 2), J=1, N(S 2)$
GO TO 9COI
112 CGNTINUE
132 CONTINUE
C
CHECK GAIMS
DO $154 \mathrm{I}=\mathrm{I}, \mathrm{NU}$
$00=F(I)$
$C D=C D * D O$
IF(DD-TOL) $154,160,160$
154 CONTINLE
hRITE(3.11) ITT
WRITE(3,3) ($(P(I, J), I=1, N S), J=1, N S)$
GO TO 9001
160 KOUNT=KOUNT+1
IF(ISW-1) 161.9CC0.161
161 CONTINUE
SCCC CONTINUE
9001 COMTINUE
DC 9C05 $1=1$. 152
DO 9CC5 $\mathrm{J}=1$, VS2
S1(I,J)=S1(I,J)+CSI(I,J)
$S 2(I, J)=S 2(1, J)+D S 2(1, J)$
$\operatorname{ccos} S 3(I, J)=S 3(I, J)+D S 3(I, J)$
hRITE(3,3) ((SI(I, J), $I=1, N S 2), J=1$, NS 2)
WRITE (3,3) (IS2(I,J),I=1, NS2), J=1, NS2)
WRITE(3.3) ((S3(I, J). I=1,NS2), J=1,NS2)
DO 9CC: $1=1$, NS2
DO 9CCE $J=1$, YS?
SCO8 ADP (I,J)=A(I,J)
CALL CHAREC(ACP,NS2,COEFF)
NSS=NS2+1
WRITE(3.7) (COEFF(I),I=1, N:SS)
TINE=C.CEO
A3 = C. CEO
$\triangle 4=C .0 F C$
$A 5=0.0 F O$
$A 1=F P G(1,1)$
$\Delta 2=F P G(1,2)$
ICFL=C
CALL PCTRCTICOFFF,ICFL,TINE,A1, A2, A3, A4, A5,NS2)
9010 CONTIANE
GO TO 5COO
ENT

Appendix D

Derivation of the \hat{S} and \hat{W} Definitions for the
SOC Sensitivity Problem

The rationale which governs the choice of \hat{S} and \hat{W} is the same as that of the ordinary SOC problem. That is, \hat{W} is chosen to insure that the desired gain structure is obtained and \hat{S} is chosen to simplify the structure of the equations. Recall that the general steady state or infinite time interval $S O C$ index is of the following form

$$
\begin{equation*}
J=\frac{1}{2} \int_{t_{0}}^{\infty}\left(\underline{\hat{x}}^{T} S \underline{\hat{x}}+\underline{\hat{x}}^{T} \hat{S} \underline{\hat{x}}+\underline{\hat{x}}^{T} W \underline{\hat{u}}+\underline{\hat{x}}^{T} \hat{W} \underline{\hat{u}}+\underline{\hat{u}}^{T} Q \underline{\hat{u}}\right) d t \tag{D-1}
\end{equation*}
$$

and the unreduced Ricatti equation and control law are given below.

$$
\begin{align*}
& \bar{A}^{T} P+P \bar{A}+S+\hat{S}-\left(P B+\frac{W+\hat{W}}{2}\right) Q^{-1}\left(\bar{B}^{T} P+\frac{W+\hat{W}^{T}}{2}\right)=0 \tag{D-2}\\
& \hat{\underline{u}}=-\bar{K}^{T} \underline{\hat{x}} \tag{D-3}\\
& \bar{K}^{T}=Q^{-1}\left(\bar{B}^{T} P+\frac{W^{T}+\hat{W}^{T}}{2}\right) \tag{D-4}
\end{align*}
$$

Suppose that the last L states of the system state vector are unavailable and note that the $S O C$ sensitivity structure requires that the first NS - L states of each sensitivity partition block in the augmented state vector have gains identical to the available state gains while the last L gains of each block are to be zero. To facilitate the discussion partition W into blocks and define the matrix $I_{I, J}$ as follows:

$$
\hat{\mathrm{w}}=\left[\begin{array}{lll}
\hat{W}_{11} & \cdots & \hat{\mathrm{w}}_{1,}, \mathrm{NPA}+1 \tag{D-5}\\
\vdots & & \vdots \\
\hat{W}_{\mathrm{NPA}+1}, & \cdots & \hat{\mathrm{w}}_{\mathrm{NPA}+1}, \mathrm{NPA}+1
\end{array}\right]
$$

where $\hat{W}_{I, J}$ is a NS by NC partition block matrix and

$$
I_{I, J}=\left[\begin{array}{ccccccc}
0 & \cdot & 0 & \cdot & \cdot & \cdot & 0 \\
0 & \ddots & \cdot & & & \cdot \\
0 & \vdots & I_{N S, N S} & & & 0 \\
\vdots & & \cdot & & 0 & 0 & 0 \\
0 & \cdot & \cdot & 0 & 0 & 0
\end{array}\right]
$$

where $I_{I, J}$ is $\operatorname{NS}(N P A+1)$ by $N S(N P A+1)$ and $I_{N S, N S}$ is a NS by NS identity matrix and it occupies the I,J block position. Note that the expression $I_{I, J} \hat{W}$ isolates the $\hat{W}_{I J}$ block of \hat{W} and thus may be used to define these blocks. To separate the portions of each block corresponding to the available and unavailable states the following notation is useful.

$$
I_{I, J}^{I}=\left[\begin{array}{cccccc}
0 & \cdot & 0 & \cdot & \cdot & \cdot \\
\dot{0} & \cdot & 0 & \cdot & & \\
\cdot & 0 & \cdot & \cdot \\
\cdot & \cdot & I_{\mathrm{NS}, \mathrm{NS}} & \cdot & \cdot \\
\cdot & & \cdot & & 0 & \cdot \\
\cdot & & & \cdot & \cdot & 0 \\
0 & \cdot & \cdot & \cdot & 0 & \cdot \\
0
\end{array}\right]
$$

when this matrix ic identical to $I_{I J}$ except that the last L diagonal elements of $I_{N S, N S}^{1}$ are zero. An additional matrix $I_{I, J}^{2}$ is defined as follows:

$$
\begin{equation*}
I_{I, J}^{2}=I_{I, J}-I_{I, J}^{I} \tag{D-6}
\end{equation*}
$$

As a final notational consideration, let $[[A]]_{I, J}$ be a matrix which is equal to the I, J portion block of the matrix A.

To obtain the desired gains structure for the system states, \hat{W}_{11} is chosen as follows:

$$
\begin{equation*}
\hat{W}_{11}=-2\left[\left[I_{11}^{2}\left(\overline{\mathrm{~B}}+\frac{W}{2}\right)\right]\right]_{1,1} \tag{D-7}
\end{equation*}
$$

To insure that these gain values are repeated for the sensitivity blocks, the remainder of \hat{W} is chosen as follows. For $I=J$

$$
\begin{equation*}
\hat{W}_{I, J}=2\left\{\left[\left[I_{11}^{I}\left(P B+\frac{W}{2}\right)\right]\right]_{1,1}-\left[\left[P \bar{B}+\frac{W}{2}\right]\right]_{I, J}\right\} \tag{D-8}
\end{equation*}
$$

and for $I \neq J$

$$
\begin{equation*}
\hat{W}_{I, J}=-2\left[\left[P B+\frac{W}{2}\right]\right]_{I, J} \tag{D-9}
\end{equation*}
$$

With these definitions the feedback gain matrix assumes this structure.

$$
\bar{K}^{T}=\left[\begin{array}{ccccc}
K^{T} & & 0 & \cdot & \cdot \\
0 & \cdot & & \cdot & 0 \\
\cdot & \cdot & \cdot & \cdot & 0 \\
\cdot & & \cdot & \cdot & { }^{T} \\
0 & \cdot & \cdot & 0 & K^{T}
\end{array}\right]
$$

and

$$
K=[[\bar{K}]]_{1,1}=\left[\left[I_{11}\left(P \bar{B}+\frac{W}{2}\right) Q^{-1}\right]\right]_{1,1}
$$

As in the unavailable state problem, \hat{S} is required to be symmetric and is chosen to cancel the W and \hat{W} terms. Hence,

$$
\begin{equation*}
\hat{S}=\frac{1}{2}\left((W+\hat{W}) \bar{K}^{T}+\bar{K}\left(W^{T}+\hat{W}^{T}\right)\right) \tag{D-10}
\end{equation*}
$$

With these definitions the reduced Ricatti equation becomes

$$
\begin{equation*}
\bar{A}_{\mathbb{K}} T P+P \bar{A}_{\bar{K}}+S+\bar{K} Q \bar{K}^{T}=0 \tag{D-11}
\end{equation*}
$$

and the optimal value of the index may be expressed as

$$
\begin{equation*}
J^{0}=\frac{1}{2} \int_{t_{0}}^{t_{f}}\left(\underline{\underline{x}}^{0^{T}} s \underline{\hat{x}}^{0}+\underline{\hat{u}}^{0^{T}} Q \underline{\hat{u}}^{0}\right) d t=\left.\frac{1}{2} \hat{\underline{x}}^{T} P \underline{\hat{x}}\right|_{t=t_{0}} \tag{D-12}
\end{equation*}
$$

Appendix E Derivation of Equivalent System of Linear Vector Equations

Since it is often difficult to handle the Ricatti equation in its matrix form, it is convenient to formulate a vector from the elements of the Ricatti matrix and derive the equivalent vector equation. Consider the matrix equation

$$
\begin{equation*}
F(D, A, P)=A^{T} P+F A-D \tag{E-1}
\end{equation*}
$$

where the matrices are NS by NS. This matrix equation is equivalent to (NS) ${ }^{2}$ scalar equations. If D is symmetric and a unique solution to ($\mathrm{E}-\mathrm{l}$) is assumed, and since P and P^{T} satisfy ($E-1$), P is also symmetric. In this case the number of independent equations reduces to $N P=\frac{\operatorname{NS}(N S+1)}{2}$ corresponding to the diagonal and either upper and lower triangular terms.

It is clear that ($\mathrm{E}-\mathrm{l}$) is linear in P; for reasons of notation and manipulation it is convenient to formulate (E-l) in the standard format for linear equations which is denoted below. That is

$$
\begin{equation*}
A^{T} P+P A=D \tag{E-2}
\end{equation*}
$$

or in terms of the Kronecker product notation

$$
\begin{equation*}
\left(A^{T} I+I * A\right) P=D \tag{E-3}
\end{equation*}
$$

The equivalent vector expression is
"A" "P" = "D"
where " P " and " D " are NP element vectors formed from P and D as follows.

$$
\left.\begin{array}{l}
{ }^{" P^{\prime \prime}}=\left(P_{1,1} ; \ldots ; P_{N S, 1} ; P_{2,2} ; \cdots ; P_{N S}, 2 ; \cdots ; P_{N S, N S}\right) \\
{ }^{n D^{\prime \prime}}=\left(D_{1,2} ; \ldots ; D_{N S}, 1 ; D_{2,2} ; \ldots ; D_{N S}, 2 ; \cdots ; D_{N S}, N S\right.
\end{array}\right)
$$

and "A" = "(ATH + I*A)" is a NP by NP coefficient matrix formed with the elements of A. The straightformard procedure for determining this matrix is to simply write down the scsiar equations and place the coefficients of the elements of P in the proper positions. For purposes of implementation on a digital computer, a more systematic approach is denirable.

To develop this approach it is helpful to derive an expression which relates the position of an element, $(P)_{I, J}$, in the matrix form to its position ("P") X_{K} In the vector form, that is

$$
(" P)_{K} \text { 人 }(P)_{I, J}
$$

This transformation is given below and may be verified by in pection.

$$
\begin{equation*}
K=T(I, J) \tag{E-5}
\end{equation*}
$$

where

$$
T(I, J)= \begin{cases}(I-1) \operatorname{INI}\left(N S-\frac{I}{2}\right)+J & I \leq J \\ (J-1) \operatorname{INI}\left(N S-\frac{J}{2}\right)+I & I>J\end{cases}
$$

and $\operatorname{INT}(M)$ indicates the truncation of M to an integer value.
Consider the $I, J^{\text {th }}$ scalar equation of $(E-2)$. The notation $(P A)_{I, J}$ refers to the $I, J^{\text {th }}$ element of the matrix $P A$.

$$
\begin{equation*}
\left(A^{T} P\right)_{I, J}+(P A)_{I, J}=(D)_{I, J} \tag{E-6}
\end{equation*}
$$

or

$$
\sum_{K L=1}^{N S}(A)_{K L, I}(P)_{K L, J}+(P)_{I, K L}(A)_{K L, J}=(D)_{I, J}
$$

This expression is required to be identical to the $K^{\text {th }}$ component of the vector equation.

$$
\begin{align*}
& K=T(I, J) \\
& (D)_{I, J}=(" D)_{K}=\sum_{2 \rightarrow r, ~}^{N P}(" A ")_{K, K K}\left(" P^{\prime \prime}\right)_{K K}=\left(" A "^{\prime \prime} P^{\prime \prime}\right)_{K}
\end{align*}
$$

Thus the elements of A in ($\mathrm{E}-7$) will form the $K^{\text {th }}$ row of "A". The column position of an element of $A,(A)_{K L}, J$ in the K th row of " A " depends on the element of P which multiplies it, $(P)_{I, K L}$. Hence from the terms $(P)_{I, K L}(A)_{K L, J}$, ${ }^{(A)} X_{K, J}$ is placed in the $K=T(I, J)$ row position and the $L=T(I, K L)$ column pr etion of " A ". To generate the remaining elements of " A ", the lower triangular term. of $A^{T} P$ and $P A$ are considered and the elements of A are allocated to the proper position in "A". It is possible that more than one element of A is plas:ed in the same position of "A" and in that case that coefficient is equal to the sum of all such elements.

Since P is symmetric the implementation of this scheme on a digital computer may be simplified by considering only terms in PA. Instead of checking the lower triangular terms the lower and upper triangular terms are checked with the diagonal terms considered twice.

The matrix equation $G(P, A, H)=A^{T} P+P A-H$ where H and P are assumed to be skew symmetric, ($H=-H^{T}, P=-P^{T}$), may be treated in a similar manner. In this case the equations corresponding to the diagonal positions of G are trivially satisfied because of the skew symmetry. Then the equivalent vector equation system consists of $N Q=\frac{M S(N S-1)}{2}$ equations corresponding to the lower or upper off-diagonal triangular terms. Thus

$$
A^{T} P+P A=H
$$

or

$$
' A^{\prime} \quad P^{\prime}=' H '
$$

where

$$
\begin{aligned}
& { }^{P^{\prime}, T}=\left(P_{2,1} ; \ldots ; P_{\mathrm{NS}, 1} ; P_{3,2} ; \ldots ; P_{\mathrm{HS}, \mathrm{NS}-1}\right) \\
& { }^{\prime} \mathrm{H}^{\prime}{ }^{T}=\left(\mathrm{H}_{21} ; \ldots ; H_{\mathrm{NS}, 1} ; \mathrm{H}_{3,2} ; \ldots ; \mathrm{H}_{\mathrm{HS}, \mathrm{HS}-1}\right)
\end{aligned}
$$

and ' A ' is obtained as " A " except that only off-diagonal terms in the products $A^{T_{P}}$ and $P A$ are considered. In addition the skew symmetry requires that some of the elements of A are multiplied by -1 before being placed in the ' A ' matrix.

To illustrate this p.ocedure for a symetric P and D, consider a second order exsmple.

$$
\left[\begin{array}{ll}
A_{11} & A_{21} \\
A_{12} & A_{22}
\end{array}\right]\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]+\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right]
$$

Sirse $D_{12}=D_{21}$ and $P_{12}=P_{21}$ this matrix equation may be written in terms of the folloring set of scalar equations corresponding to the lower triangular teims.

$$
\left.\begin{array}{l}
2 A_{11} P_{11}+2 A_{21} P_{21}=D_{11} \\
A_{12} P_{11}+\left(A_{22}+A_{11}\right) P_{21}+A_{21} P_{22}=D_{21} \\
2 A_{12} P_{21}+2 A_{22} P_{22}=D_{22}
\end{array}\right\}
$$

Then "A" "P" = "D"

$$
\left[\begin{array}{lll}
2 A_{11} & 2 A_{21} & 0 \tag{5-10}\\
A_{12} & A_{22}+A_{11} & A_{21} \\
0 & 2 A_{12} & 2 A_{22}
\end{array}\right]\left[\begin{array}{l}
P_{11} \\
P_{21} \\
P_{22}
\end{array}\right]=\left[\begin{array}{l}
D_{11} \\
D_{21} \\
D_{22}
\end{array}\right]
$$

This same coefficient matrix can be obtained by considering the elements of PA.

$$
\begin{aligned}
P A & =\left[\begin{array}{ll}
P_{11} & P_{12} \\
P_{21} & P_{22}
\end{array}\right]\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \\
& =\left[\begin{array}{ll}
P_{11} A_{11}+P_{12} A_{21} & P_{11} A_{12}+P_{12} A_{22} \\
P_{21} A_{11}+P_{22} A_{21} & P_{21} A_{12}+P_{22} A_{22}
\end{array}\right]
\end{aligned}
$$

In particular,

$$
(\mathrm{PA})_{21}=P_{21} A_{11}+P_{22} A_{21}
$$

The elements A_{11} and A_{21} will be placed in the second row of " A " since

$$
K=T(2,1)=2
$$

This colurn position is determinu by the multiplying P elerent.

$$
\begin{aligned}
& P_{2 I} A_{11} \rightarrow \therefore=T(2,1)=2 \\
& P_{22} A_{21} \rightarrow L=T(2,2)=3
\end{aligned}
$$

Thus A_{11} is placed in 2,2 position of "A" and A_{21} is placed in 2,3 position of " A ". Note that this placement agrees with ($\mathrm{E}-10$).

Tais systematic procedure is easily programmed for use on a digital computer as indicated below. Note that this procedure is simpler than that of referece 46 , since oniy simple "IF" ratier than logical "IF" statements are required.

Given a matrix equation

$$
A^{T} P+P A=D
$$

where all matrices are NS by NS and D is symmetric the following code generates the coefficient matrix for the equivalent vector system of equations.

$$
\begin{aligned}
& \text { E "P" = "A" "P" = "D" } \\
& \text { where } N P=\frac{N S(N S+1)}{2} \text { and } E \text { is NP by NP. } \\
& \text { DO } 20 \mathrm{~K}=1 \text {, } \mathrm{NP} \\
& \text { DO } 20 \mathrm{~L}=1 \text {, NP } \\
& 20 \mathrm{E}(\mathrm{~K}, \mathrm{~L})=0.0 \\
& \text { DO } 40 \mathrm{I}=1 \text {, } \mathrm{NS} \\
& \text { DO } 40 \mathrm{~J}=1 \text {, NS } \\
& \text { DO } 40 \mathrm{KL}=1 \text {, NS } \\
& \text { C } \quad L=T(J, K L) \\
& \text { TI = NS }-0.5 * J \\
& L=(J-1) * T L+K L \\
& \text { IF(KIT-J) 22, 24, } 24 \\
& 22 \mathrm{Tl}=\mathrm{NS}-0.5 * \mathrm{KL} \\
& L=(K L-1) * T 1+J \\
& 24 \text { continue } \\
& \text { C } \quad K=T(I, K u) \\
& \text { T2 = NS - 0.5*I } \\
& K=(I-1) * T 2+K L \\
& \text { IF(KI-I) 26, 28, } 28 \\
& 26 \text { T2 = NS - 0.5*KL } \\
& K=(K L-1) * T 2+I \\
& \text { C DIAGONAL TERNS MUST BE COISIDERED TWICE } \\
& 28 \text { FAC }=1.0 \\
& \text { 1F(I-KW) 32, 30,32 } \\
& 30 \quad F A C=2.0 \\
& 32 \text { consinus } \\
& E(K, L)=E(k, L)+F A C * A(J, I) \\
& 40 \text { conitive }
\end{aligned}
$$

Appendix F

Time Varying Model

An eleven state time varying model was used to evaluate the

 proposed control laws.$$
\begin{equation*}
\underline{\dot{x}}=A \underline{x}+\underline{b} B_{c}+\underline{v} ; \quad \underline{x}\left(t_{o}\right)=\underline{c} \tag{F-1}
\end{equation*}
$$

Abstract

where $$
\underline{x}=\left[\begin{array}{c} \\ \phi \\ \dot{\phi} \\ \alpha \\ i_{1} \\ i_{1} \\ i_{2} \\ i_{2} \\ i_{3} \\ i_{3} \\ \beta \\ \dot{\beta} \end{array}\right] \quad ; \quad \underline{y}=\left[\begin{array}{c} \phi_{D} \\ \phi_{R} \\ \dot{\phi}_{R} \end{array}\right]
$$

$$
\mathbf{A}=\left[\begin{array}{ccccccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & A(2,3) & 0 & 0 & 0 & 0 & 0 & 0 & A(2,10) & 0 \\
A(3,7) & 1 & A(3,3) & 0 & 0 & 0 & 0 & 0 & 0 & A(3,10) & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & A(5,4) & A(5,5) & 0 & 0 & 0 & 0 & A(5,10) & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & A(7,6) & A(7,7) & 0 & 0 & A(7,10) & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & A(9,8) & A(9,9) & A(9,10) & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -50 & -10
\end{array}\right]
$$

$c=\left[\begin{array}{ccccccccccc}0 & 0 & 0 & c(1,4) & 0 & c(1,6) & 0 & c(1,8) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & c(2,5) & 0 & c(2,7) & 0 & c(2,9) & 0 & 0\end{array}\right]$

The following pages contain these parameter values at four second intervals for the duration of the trajectory. Linear interpolation was used to obtain the ceefficient values for values of time not given in the table.

 OOOOOOOOOOONOOOOOOOOOOOOOOOOOONOOOO

 -

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNOOONONNNNNNNNNNNNNNNNNNNNNN

©

0.00000 E-0 $0.00000 E$
1.02900 E

 9.56900 E
 1.84610 E $\xrightarrow[\sim]{\text { N }}$

告 U
N
N
O
in 11
0
0
0
0
0
ís等

