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LIST OF SYMBOLS

D planar domain.

L closed curve of length |L|, a boundary of D.

P vector point in D at (x, y).

P vector point on L at (x, y).

q vector point on L with coordinates (xo, vy ).

n, s unit vectors normal and tangent respectively to L.

n, s coordinates measured in the direction of n and s
respectively.

£, N rectangular coordinates measured in the direction of

n and s with origin at p on L.

X stress function biharmonic in D.
o, P harmonic functions in D.
log|P—q| the natural logarithm of the scalar distance between

P(x, yv) and q(x, y).

0,, O . T stress components.
x> yT Ry
O s Ty normal and shear stress components tangent to L at p.
on normal stress component perpendicular to L at p.
0 total stress, 8 =0 4+ 0 = o + g, .
X v n t
FX, Fy x- and y- components of the stress vector on L.
2 32 32
v Laplace's operator V° = — + —— .
= 2 2
9x v
O, Uy, P source densities defined on L.
a, b semi-major and semi-minor axes of an ellipse.
af
£'(p) ga-evaluated at p.



IMPROVEMENT OF AN INTEGRAL EQUATION METHOD IN PLANE ELASTICITY
THROUGH MODIFICATION OF SOURCE DENSITY REPRESENTATION
By Kwan Rim and Allen S. Henry

Department of Mechanlecs and Hydraulics
The University of Iowa
Iowa City, Iowa

SUMMARY

This report is a sequel to the work presented by the authors in "An Integral
Equation Method in Plane Elasticity," NASA Contractor Report, MASA -CR-779. The
preceding report presented numerical results obtained from a formulation of the
biharmonic stress function for the first fundamental boundary-value problem in
plane elastostatics in terms of two single-layer potentlals, each containing an
unknown source density function.

The research reported herein shows that greater accuracy in calculated bound-
ary stress components can be obtained if the numerically-determined, piece-wise
constant source density functions are replaced by functions which, with their
first derivatives, are continuous on the boundary. In contrast to other reported
results, this modification permits one to compute unknown boundary stress compo-
nents directly from the approximate stress function without recourse to such
indirect techniques as extrapolation, numerical differentiation, and others. As
the result, a direct comparison between the specified boundary stresses and those
boundary stresses consistent with the approximate biharmonic stress function is
now made possible; and thereby the usefulness of the integral equation method in
plane elasticity is considerably enhanced.

INTRODUCTION

This report is a sequel to the earlier report "An Integral Equation Method
in Plane Elasticity," NASA Contractor Report, NASA CR-779 written by the same
authors. The preceding report presented a direct numerical method for solving
the first fundamental boundary-value problem of plane elastostatics. The method
involved the formulation of the biharmonic stress function in terms of two single-
layer potentials, each containing an unknown source density function. Discrete
values of the source density functions were obtained numerically by assuming the
source density functions to be piece-wise constant around the boundary of an
elastic region.

Numerical results presented in the preceding report (ref. 1) indicate that
the integral equation method is extremely accurate at a distance away from the
boundary of an elastic region but that, in general, the accuracy of the numerical
solution decreases as the point at which computations are performed approaches
the boundary. Although reasonably accurate boundary stresses were obtained in some
instances by using the computational method given in (ref. 1),the results obtained
from the study of problems involving an elliptical hole in an infinite elastic



region indicates that the technique used does not vield accurate boundary stresses
on portions of the boundary where, from one interval to another, the change in the
value of the source demsity is relatively large. It is apparent from these results
and from other published results (refs. 2 and 3) that an improvement in the accu-
racy of boundary stress computations must be made if this numerical method is to
be fully exploited.

There is considerable motivation for calculating stress components at the
boundary directly from the approximate stress function. This has not been done
in (ref. 1) or in other published results. The use of extrapolation (ref. 2) or
numerical differentiation (ref. 3) of the stress function is an indirect method
and the results obtained are not consistently accurate. The method of computa-
tion used in (ref. 1) is simpler than either of the above methods and fits easily
into the framework of analysis; however, it "begs the question' to the extent that
only the total stress 1s computed directly and the specified boundary tractions
are used in conjunction with the computed total stress to determine values of
individual stress components.

All the methods that have been used to compute boundary stresses have the
same deficiency; that is, they do not permit a direct comparison between the
specified boundary tractions and those that are implied by the existence of the
stress function. The idea involved here is that the stress function satisfies
the field equation automatically and one should be able to compute the boundary
tractions with which the stress function is consistent. The comparison between
the specified boundary tractions and the computed tractions provides an excellent
criterion for assessing the accuracy of approximate solutions.

If directly computed boundary tractions are not available, the only means
available to evaluate the validity of a solution is to establish convergence of
numerical solutions. Convergence can only be assessed by solving the problem
repeatedly with increasingly finer boundary subdivisions until no appreciable
change in results is observed. From the results in (ref. 1), it is clear that
the rate of convergence is slowest on or near the boundary and that, in many in-
stances, the present computational capability may not be sufficient to establish
convergence of a numerical solution at all points. As the simultaneous algebraic
equations used to determine source density values inherently become more ill-con
ditioned as the number of boundary subdivisions increases, the problem of obtain-
ing convergent solutions quickly degenerates to the various problems met in dealing
with imperfect computing machinery.

The technique used to overcome these difficulties is to replace the pilece-~
wise constant source density functions with density functions which, with their
first derivatives, are continuous on the boundary. These continuity conditions
are required if the boundary stress components are to be defined directly in terms
of the appropriate second derivatives of the approximate biharmonic stress function.

For the sake of completeness, the integral equation method presented in the
preceding report (ref. 1) is briefly described in the following section. Subse-
quent sections present: 1) source density continuity requirements, 2) representa-
tions of the source density functions, 3) formulas for boundary stress components,
and 4) the computational techniques. Finally, numerical results are presented
and discussed for an exterior problem,



THE INTEGRAL EQUATION METHOD

The problem of determining the stress field in a planar region, subjected
to specified boundary loadings, may be posed mathematically as one of finding
a stress function x which is related to the stress components by the equations

2
g = —= o = 2X = - 22X

> 7 Txy T amdy W

The stress function will satisfy the compatibility and equilibrium equations pro-
vided it is a solution to the biharmonic equation within the region of interest;
that is,

v292y(P) = 0, P(x,y) in D. (2)

The stress components defined by (1) must be consistent with the state of
stress specified on the boundary L of the domain D. If Fx and Fy are the stress

components in the x and y directions specified on L, then the boundary conditions
may be written, using equations (1), as

2 2
_p =S ¥y dy 9%
% dn 3y dn 9x3y

on L (3)

2 2
-F =y 2y dx %
y dn 9x dn 9xdy

where n is the normal to L directed inward toward D. The notation employed is
depicted in Figure 1.

2]

Note: TFor an exterior
problem, the directions
of n and S are reversed.

Figure 1. -Sign convention for an interior domain.
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The general representation taken for the biharmonic function is

x(P) = p2(P) (P) + y(P) ()

where r(P) = (x2 + y2)l/2

, and both ¢ and ¢ are harmonic functions;

V24(P) = 0, V2y(P) = 0; P in D.

The single-layer potentials

$(P) = [ o(q) log |P - q| dq (5)
L

P(P) = S u(q) log |P - q| dq (6)
L

are both harmonic within D, as ¢ and p are defined only on L and log [P - q[ is
harmonic. Integration is over the entire boundary and dq is a scalar element
of arc on L. Substitution of (5) and (6) into (4) yields

x(P) = r2(P)/ o(g)log|P - qldq + S u(q)log|P - gldq (7)
L L

which is a biharmonic function involving two unknown functions ¢ and u, commonly
termed source density functions. '

The representation given by (7) is complete only for a simply-connected
interior domain. If an exterior domain is under consideration, then, in order
to insure single-valued displacements, it is necessary to reguire that
fo(gq)dg = 0 and a constant must be added to the representation given by (7) to
L
insure completeness.

Equations (3) may be used to derive the canonical boundary conditions:

S 4x s s ay s
x(s) = - f_ L/ Fyds]ds + S, 35 [/, Fdslds + ax + By + v (8)
0 0 0 0
and
dx(s) % g s W pasaa &y g Y (9)
dn d S Y dn 4 X dn dn



where s is measured along the boundary L; s_. designates an arbitrary point on

0
L; and a, 8, and vy are constants of integration which may be set to zero for
problems involving either interior or exterior domains. Note that equations (8)

and (9) permit x and g%-to be computed directly once the boundary tractions and
the boundary geometry are specified.

The boundary-value problem originally defined by (2) and (3) is now presented
in canonical form by (2), (8) and (39). Since the representation of x provided by
(7) automatically satisfies (2), the boundary-value problem is solved formally
by requiring (7) to satisfy (8) and (9). These two boundary equations lead to
two coupled integral equations for the determination of o(q) and u(q). It is
generally impossible to solve the coupled integral equations exactly; therefore,

a numerical method is used to obtain approximate solutions.

The numerical solution is accomplished by subdividing the boundary L into
m subdivisions numbered in the direction of increasing s. Within each interval
the 06(q) and u(q) are assigned unknown constant values o, and s i=1,2, ... m.

The length of the i-th interval is denoted by hi' Because the source densities

are assumed to be piece-wise constant, the integral equations become simultaneous
algebraic equations if one requires the boundary conditions (8) and (9) to be
satisfied at each interval center point pj; j=1, 2, ... m. These equations

may be solved for the unknowns Oi and ui; i=1,2, ... m. For the work presented

in (ref. 1), the numerical solution took the following form

x(P) = p2(P)
i

™3
W~ g

o, fi log|P - qldq +

] uy Sy log|P - qldq (10)
1 i

1

where fi indicates integration over the i-th interval.

With this background concerning the basis of the integral equation method,
let us proceed to consider the modifications implemented to improve the accuracy

of the approximate solution and to permit the direct computation of boundary
stresses.

CONSIDERATION OF SOURCE DENSITY CONTINUITY

In order to compute boundary stresses directly from the approximate stress
function, it is necessary to impose certain continuity conditions on the approxi-
mate source density functions. These conditions are suggested by the following
discussion.

Consider a portion of the boundary L to be a line segment of length h and
the boundary point p under consideration to be at a midpoint of this segment.
As shown in Figure 2, locate a coordinate system with origin at p with axes n
and € respectively tangent and perpendicular to the line segment.



~h/2 Y

Figure 2. -Notation used in considering source density continuity.
The limiting values of the second derivatives of the potential
I=/ p(q)log|P - qldq (11)

will be derived as the field point P located as shown in Figure 2 approaches p
along the line n = 0 (fh represents integration over the line segment). For this

example, the source density function p is represented by

pl(n) = Py * tyn + vin?, 0 <n <h/2 (12)
p2(n) = p. + t.n + v n2, - h/2 <n <o0. (13)
2 2 2 —
The limits to be evaluated are
—_ 2
T, © lim —a—-g- (14)
e+0 9x
n=0
and
— 2
T = lim o2 (15)
Yy e+0 Xdy
n=0



2 2
27 = 9¢1 - _ 9-1 = - _ T .
Note that V41 0 so that pyws 3;2- and, therefore, Iyy Ixx’ provided

the limit indicated in (14) exists. Using (xn, yn) to denote a point q on the

line segment, it follows from (11) that

o(MI(y - yn)2 - (x - xn)2]dn

321
Erval 2fh (16)
|P - q|"
and
827 p(n)(y - yn) (x - xn)dn
-i)—x—é—}; = - th (17)
[P - ql*
where

2 2.2
P - ql* = [(x - x)° + (y - y)°]
n n
Since P is located on the line n = 0, it is clear that
X - xn = g cos vy + n sin v,
y - yn =-g sin vy + n cos v,
P - q|% = (2 + n?)2,
where vy is the angular coordinate as shown in Figure 2.
The integrals obtained by substituting the above relations, equations (12)

and (13) into (16) and (17) can be evaluated analytically. When € << h/2,
equations (16) and (17) can be reduced to as follows:

-2
527 —-E-(pl + pz) cos 2y - (t2 - tl) cos 2y log €

(92 - pl) sin 2y

T .
+ . - 5—(tl + t2) sin 2y

h
+ §(vl + v2) cos 2y
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2 . s
5§5§-+ E-(pl + p2) sin 2y + (t2 - tl) sin 2y log €

(o, - pl) cos 2y

T
- 5—(tl + t2) cos 2y + =

h .
+ 5'(v1 + v2) sin 2y

From the above expressions it can be seen that the limits T;x and T;y given by

equations (14) and (15) exist only when Py B P, and t, =t From equations

=
(12) and (13), it is evident that these conditions are equivalent to requiring
that p(n) and its first derivative be continuous at p. Note that no restrictions

are imposed on the coefficients vy and v, so that a bounded discontinuity in the

second derivative of a source density function is permissible. It is evident

from the above discussion that the representation of the source densities as
piece-wise constant functions automatically precludes the possibility of computing
boundary stresses directly from an approximate stress function having the form
given by equation (10).

REPRESENTATION OF THE SOURCE DENSITY FUNCTIONS

Within each of the m boundary subdivisions of the boundary L, the source
density functions are represented in terms of the coordinate s measured in the
direction of s as follows:

(18 a)

1]
)—l
“
N
-
3

i .
0 (s) =0, + t g VE Vv i

ui(s) (18 b)

1]
=
+
ct
<
+
<
<
™
"
[
v
N
3

where v = (s - s,)/h, (0
1777

I A

v < 1) and sS4 is the value of s at the beginning of

the ith interval.

One must require continuity of the source densities and their derivatives

. . Lo i 2 .
at each interval end-point. Hence, if p (s) = os + tiv + VsV represents either

ol(s) or ul(s); i=1,2, .. .m, it is necessary that
i . ixl
p (Si+l) =p (S’+1) i
i i+l
do™(s;,;) ) do™ "(s;,4)
ds ds )
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These two equations yield the relations

oy + ti + Ve T pgaqs 1 1, 2, « « . m-1 (19 a)
and
t., + 2v, t.
L. hl+l s i=1,2,...mn1, (19 b)
i i+l
while for the case when 1 = m one has
P + tm + v, =0 (19 ¢)
and
(tm + 2vm)/hm = tl/hl . (19 d4)

In the case of an exterior problem, it is necessary to insure that
fLo(s)ds =0 .

In terms of the representation given above, this constraint is equivalent to

m 1
r h{o. + =t
i 2

C+Ev =0 (20)
. o1 3 oi
i=1 .

In order to completely specify a source density function using (18), it is
necessary to determine the 3m coefficients Py ti, and K 1=1,2, . . . m,

subject to the 2m constraints given by (19). Therefore, if one value of a source
density is known within each boundary subdivision, it is possible to form equations
in the 3m unknowns whose solutions completely specify a source density function in
terms of the assumed representation (18). In the case of an exterior problem, the
system of equations becomes overdetermined because equation (20) provides another
constraint. Of course, the known value of g within each Interval should have been
determined in accordance with a constraint analogous to (20) so that this constraint
will always be nearly satisfied by the solutions to the 3m equations. It is a sim-
ple matter then to make a slight adjustment to the valuer of the o4 which insures

that (20) is satisfied.

If the problem under consideration has symmetry with respect to both the
x and y axes, then the number of coefficients which must be determined to specify
each source density function is only 3m/4. In this instance the system governing
the unknown coefficients is overdetermined in any circumstance because, in order



to preserve the symmetry, it is necessary to require that the derivative of each
source density be zero at the points where the boundary intersects the x and y

axes. That is, if k = m/4, then tl, tk+l’ t2k+l’ and t3k+l must be zero when

p represents either o or u. This overdeterminacy presents no real problem, how-
ever, and in fact, can be used to simplify the determination of the unknown coef-
Ficients. Suppose that the value of each source density is known at the interval
end point; that is, the p; are specified. Then, using the fact that Ty is equal

to zero, we can determine v, from the first of the equations (19) by considering

1

the case i = 1. Then t, can be determined from the second equation and the whole

process can be repeated for 1 = 2, 3, . . . m. In this way all the required coef-
ficients can be determined without having to solve a large set of simultaneous
equations.

Prior to determining these unknown coefficients in this manner, conditioning
of the known p; must be performed in order to insure that tk+l is equal to zero.

Let Pso i=1,2, .. .mtl, be the known values of a source density at the interval

L,

end points. Let pi" be those values of the source density which insure that tk+l

is equal to zero. It can be shown that

t,, = 20-DF 1 (Do, -0 s

k+1

n~Mx

i=1

hence, one obtains

0= 2-1% (-1 L, - 0D

i

H ™M=

1
This condition will be satisfied provided we compute the D; from the equation

afa
£

i
p; = P; * a(-1)

where

o =

H™Mmx

3
(_l) (pj+l - P -) .

£
2k 3

j=1
Note that as the number of boundary intervals is increased, the difference between

Yo
P

s and the Ch will decrease. Tor the numerical examples considered, the parameter

¢ is quite small and this conditioning process has little effect on the accuracy
of the specified source densities.

The final step in the conditioning process is performed after the constants
ti and Vis i=1, 2, . . . k, have been determined. To insure that fLo(s)ds = 0,

10



one computes the quantity

and

ofaote
E

If the numbers o, are used in the representation of o(s), all necessary condi-

tions will be satisfied by the representations of the source density functions.

ol
Nl

Note that the o i=1,2, .. . k+1l, still satisfy the equation
k k i, i et
0 = 2(-1) iEl(—l) (Gi+l -0 )

ata ote 3.
(34

as the difference between c; and o; is a constant for all i. 1In the work that

follows it can be assumed that source density coefficients have been conditioned
properly. Asterisks will no longer be used to indicate proper conditioning.

REPRESENTATIONS FOR BOUNDARY STRESSES

In order to completely specify the state of stress at a given point p(x,y)
on L, the total stress and the normal and shear stress tangent to the boundary
will be calculated. The total stress, 6, is simply V2x. To develop formulas
for the shear and normal stresses, define a rectangular coordinate system_with
origin at p(x,y) and the axes n and e measured in the direction of s and n
respectively. Then the tangential stress, O s is defined in terms of the stress

function by the equation

2
o, = lim 3x(®) (21)
e~>0 3e2
n=0
and the shear stress, T.s is given by
2
T, = -lim 93%%21 (22)
e+0 n
n=0

11



Therefore, in order to calculate the boundary stresses directly from equation
(7), one must evaluate expressions of the following type.

° = 1im S, Iz = 1im %5, (23 a,b)
e>0 P e>0 de
n=0 n=0
. 938 . 2
1° = 1im % 1 =a1im 25, (23 c,d)
n _— £EE -_—
e>0 9n >0 N2
n=0 n=0 €
and
. 228
Iﬁe = lim o, (23 e)
e+0 9e9dn
n=0
where
8, = pr(q)loglP—q|dq (24)

and we have used p to represent either o or u.

The formulas at p(x,y) for the total stress and the shear and normal stresses
parallel to the boundary can be written in terms of the above expressions as:

.0 3r2 o . 9r? o X
6(p) = 41" + 2[—‘—"‘8€ IE + -a—n-—— In] 5 (25 a)
2.0 r? o . 32p2 g u
ot(p) = p IEE + 25 IE 57 + I s (25 b)
_ 2_o ar2 o or? _o 3%r? g u '
rt(p) = -r Ine T Ie e In - 3e9m I° - Ine . (25 ¢)

Equations (25 a-c) give representations for the boundary stress components, and
the next section deals with the evaluation of the limits appearing in these equations.

BOUNDARY APPROXIMATIONS AND LIMIT FORMULAS

Though, ideally, one would like to have formulas which permit the calculation
of boundary stresses using equations (25) at any point p(x,y) on the boundary, the
following discussion will be restricted to the evaluation of the required limit
when the point under consideration is an interval end point. There is no special
reason for such a restriction; that is, it is possible to use equations (25)
wherever boundary continuity conditions are met. However, the development of a

12




computational scheme to handle any boundary point would be fraught with notational
difficulties. It is simpler to perform the partitioning of the boundary so that
the selected computational points correspond to interval end points. With this
understanding, let us proceed to develop formulas for the evaluation of equations
(25) at interval end points.

Assume the point p(x,y) to be at the beginning of interval i+l (at s = Si+l)'

It is clear that except in the intervals i and i+l the integrands of the potential
functions and their derivatives are well-behaved. Therefore, one may consider

each of the integrals in equations (23) to be the sum of two integrals. One inte-
gral extends over the i and i+l intervals while the other extends over the remainder
of the boundary. For integrals of the latter type, the required limits may be
formed by simply replacing P by p in the integrals. The resulting integrals may

be evaluated accurately using Simpson's rule.

In evaluating the limits of integrals over intervals i and i+l, it is neces-
sary to perform the required integration and differentiation and to substitute
zero for n prior to taking the indicated limit.

The fundamental approximation made in evaluating the integrals over the i
and the i+l intervals is to replace the boundary segments within each of these
intervals by circular arcs tangent at the point p. Associated with each of these

arcs are radii Ri and Ri+l and included angles Gi and 6i+l respectively. Angular

coordinates o and o as well as other notations are illustrated in Figure 3.%

Figure 3. -Boundary approximation used to evaluate limits.

*The formulas derived from the geometry shown in Figure 3 do not cover all possible
situations, since in this figure, the coordinate e is directed away from the centers
of both arcs. In the general case, the coordinate € may be directed toward or away
from the center of either arc depending on the shape of the boundary.

13



From the geometry illustrated in Figure 3 it can be shown that
2 2 . 2 2
IP-q[i = (2Ri + 25Ri) (l-cos a) + 2R, n sin a + e + n

for 0 < a :-Gi’ and that

2 2
lP_q|i+l = (R

T i T+ 2 2
+ 1. - - [
2€Pl+l)(l cos a) 2Pl+ln sin a + €% + n

for 0 < > < 8

i+l °
In terms of the parameters o and &, the representations of the source densities

. t .
pl(s) and pl l(s) become respectively,

5 o aZv,
p (a) = Piyl = Ef{ti + 2vi) + " (26)
i §.<
i
i+l — a-ti+l a2vi+l
o (a) = p. , + + (27)
i+l §. 2
i+l S, .
i+l
The continuity conditions imposed on p(s) can be written as #
Py + ti + Ve = Piq (28)
LtV i
2% =3 (29)
i i i+17i+1

If EE is the contribution to Sp, equation (24), from integration over intervals

i and i+l, then one has

“#The notation p(s) is used as before to signify either o(s) or u(s).

14



Ry 85 3 2
o =3 fo p (a)log[(?Ri

+ 2€Ri)(l—cos a) + 2Rin sin a + €2 + n?lda

. §. .
i+l i+l i+l 2 —
- fo p (a)log[(2R1+l + 2€Ri+l)(l—cos o)

- T 2 214an
2Ri+ln sin o + €4 + n<]ldo . (30)
If Hp, HE, Ha, Hze’ and st are the limits given by equatims (23) when §; is
substituted for Sp, then, using equations (26) through (30), the following re-
sults can be obtained.®
Ry 9% 2
HP = = st oM (a)10gl2R, “(1-cos a)lda
R S i1 2
+ - i o (a)logl 2R, . (1l~cos a)lda (31 a)
2 i+l
0 1 (ti + 2vi) v, Gi
He = Pgpq (M 508, +8;40) - m 8, * 7%
t. v,
i+l i+l
P S T e % (31 b)
(l-cos §.) §. [v.a2- a8.(t. + 2v.)] sin oda
HeP = lp loa i + 1 s i i it 71 i
n  27i+17 °(l-cos &, .) 28,7 "o l-cos a
i+l i
2 -
o I‘Si+1 fotiy 8541 T @ Vg1 sin ada (31 o)
26§+l o l-cos o

%The derivation of these results 1s outlined in Appendix A.
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o Pyl . Gi + 7 ctn(§6i) S. + 7 ctn(ES. )

i+l i+l
H = - - + + + }
€e 2 Ry Ry Rie1 Rie1
2
+ i+l f6i+l o cos odo Vi fai o cos ado
- 4 -
2Ri+l 5i+l éi l-cos o 26i Ri o l-cos o
Vil i+l a2cos ada
+ 2R 52 fo l-cos o (31 d)
i+17i+1 4
0 l-cos i+l Tt
Hpe - ;+l Log( s i ) + . 1+§
n i i+l i+l
l-cos—
i
ti+l <5i o sin odo 6i+l o sin adoa
T 3R, s, { fo T-cos a fo “1-cos a }
i+l i+l
v. §. 2 v. S. 2.

+ i+l I i+l a“4sin ado i s i d4sin ada (31 e)
e - . :
2R, . 6. o l-cos o 2R.8.4 "0 l-cos a

i+l i+l 11

where r, = (Ri + Ri+l)/2. The variable o appears only as a variable of integration
in equations (31) so that there is no reason to distinguish between o and a.
Some comments are in order with regard to equations (31). First some ex-

pressions are left in terms of integrals for the sake of conciseness. The first
integral appearing in equation (31 d) can be written as

2 2 .1
S. 8§, - 6§ ” sin =9,
i+l a cos ada i i+l 2 i+l
I = + 2 log (——=—=)
S, l-cos a 2 .1
i sin 561

1 1
- 854q0tn 505,y F Sjctn S8,

The last two integrals in equation (31 d) can be evaluated from the formula:

3 23
c 2 3 bl (-1)-B,.8
8§ a‘cos ada _-6° 2 1 - 27
fo l-cos @ 3 §%ctn 56 + U8 jEO (25+1)(29)!
where {BQj: j =0, 1,2, .. .} are the Bernoulli numbers. All remaining integrals
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=3

may be reduced to the following type:
23

8

K 5 k s
I7(8) = fo o log(l-cos a)da = E:i-[log(l—cos §) - 2'2

(-l)jB .68
. 23 1;
0 (25+k+1)(25)14°

as

fd aksin adao k

) B 8 k-l
o I-cos o - §" log(l-cos §) - k fo o

log(l-cos a)da .

It should be noted that the first term on the right-hand side of equation (31 e)
cannot be derived if the boundary is approximated as shown in Figure 3. The tan-
gent circular arcs create a boundary with a discontinuity in the curvature at p.
3s
This discontinuity causes the expression 1lim EE%E.tO have a logarithmic singu-
€+0
n=0

larity in the term with coefficient I The term given in equation (31 e) is

1
an adequate approximation to the results obtained from more detailed analysis
which establishes the existance of the limit provided there is no discontinuity

in the curvature of the boundary.

The relations given by equations (31 a) through (31 c) are simply special
presentations of well-known results in potential theorv., The results given in
equations (31 d) and (31 e) have not been found in any publications. It is
emphasized that the limits represented by these equations do not exist, no matter
what boundary geometry is assumed, unless the source densities and their first
derivatives with respect to the variable s are continuous on L.

THE MUMERICAL CALCULATION OF BOUNDARY STRESSES

The results given in the preceding chapters permit the development of a
computational scheme to calculate the boundary stresses at interval end points
using equations (25). The computational method developed will be outlined in
this section.

o]

Lvaluation of Ip, IE o

10, 10

o]
, and I’
n ne

As discussed in the preceding section, each of the limits appearing in
equations (25) is considered as the sum of two parts. If the selected boundary

peint is at Sii1 (the beginning of interval i+l), then one part is the limit

of the integration over intervals i and i+l while the other part is the limit
of the integration over the remainder of the boundary. The former limits can be

evaluated using the formulas for Hp, Hg, Hg, Hze, and ng given by eguations (31).
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The integration formulas given in the discussion following these equations can be
used to evaluate the required integrals.

The limits of integrals over the boundary complement of intervals i and i+l
are evaluated using Simpson's rule. For j =1, 2, . . . m; j # 1i-1, i, i+l, or
i+2; integrands are evaluated at interval end and center points for substitution
into Simpson's rule. That is, if

F(p) = fj f(p,q)daq: 3 # i-1,-1i, i+l, i+2

represents the integral to be evaluated, one uses

h,
L Jdre .
F(p) = -—fo(p,q_j_%) t 4f(p,05) + f(p,qj%ﬂ- (32)

In practice, instead of using Simpson's rule to evaluate the first and sec-
ond derivatives of integrals of this type with respect to the variables € and n,
Simpson's rule is used to calculate the required derivatives with respect to
x and y. Then the chain rule for differentiation is used to determine the required
derivatives with respect to ¢ and n.

Integration Over Intervals i-1 and i+2

The reason for not using equation (32) to evaluate integrals over intervals
i-1 and i+2 is indicated by Figure 10 in (ref. 1). The curves shown in this
figure illustrate that if the ratio of the minimum distance from the interval to
the length of the interval is less than 1.25, an integration error of greater
than one percent can occur if only interval end and center points are used in
Simpson's rule. Therefore, within intervals i-1 and i+2, intecrands are evaluated
at several boundary points to maintain integration accuracy. Mote that if the
boundary is divided into intervals of greatly different lengths, then equation
(32) may not be sufficiently accurate even when the point p(x,y) is approximately
two interval lengths awav from the interval of integration.

The method used to evaluate integrals is illustrated below for interval i+2.
As shown in Figure 4, this interval is approximated by a circular arc with radius

R. and an included angle of §. .. The center of this arc is located at (x , vy )
i+2 - i+2 r r

with respect to the x-y axes. A coordinate system with axes x and v is located
as shown in Figure Uu.

If (E;, §;) is the location of a variable point on the interval it+2 relative

to axes x and y, then using the notation shown in Figure 4, one can write

ig = d cos(wty), ;; = d sin (w+y)
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Figure 4. -Description of Interval i+2.
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where
v = l{"_a) d = 2R, .sin y/2
2 3 i+2
o1 Y. _
m=tanl(_-£), xr=Xr"XS
% it+2
s
and
; - y -— y .
r r Sit+2
Since
X, =x_-% s Y. =Y. - Y >
s s 149 S T8 TS840
one has

(y -y -y )2 . (33)

S.
i+2

-+

2 —
lp-alf,, = (x - % -x_ )
i+2 s si+2

All integrals of the potential function and its derivatives can be formed using

equation (33) over interval i+2. The quantities §;, §;, cl+2(s), and ul+2(s) are

expressed in terms of the angle a so that all integrands can be evaluated at in-
cremented values of a. These results are used in Simpson's rule to compute all
required integrals as accurately as necessary.

Summary of the Computational Technique

Equations (25) provide general formulas from which boundary stresses can be
determined. The limits appearing in these formulas can be evaluated at interval
end points using the formulas (31) and the methods just discussed.

To use the computational formulas it is necessary to represent the source
density functions as described in one of the preceding sections called Representa-
tion of the Source Density Functions. The contents of that section also indicate
how the coefficients used in the representations may be evaluated if values of
source densities are known at one point within each boundary interval. The source
density functions derived using the indicated methods are not exact and, in fact,
for the same known source density values more than one set of coefficients 955
t .5V .y H,p t .,andv ., 1=1, 2, .. . m, can be derived. Further, if the

ol® "gi’ "i’ Tpi pi
known values of the source densities are obtained through a numerical method, then
there is some inaccuracy in these values. Therefore, the accuracy of the source
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density representations can be determined only by comparing the specified boundary
tractions with those calculated from the computed boundary stresses. In general,

it is necessary to make a series of adjustments in the coefficients of v in equations
(18 a) and (18 b) in order to obtain the required accuracy in the approximate stress
function.

The boundary data required to compute boundary stresses includes the infor-
mation necessary to perform the computations reported in (ref. 1) and also the
information needed to approximate the boundary intervals by circular arcs. The
method used to develop these boundary approximations is to compute the radius of
curvature at the end and center points of each interval and to subsequently assign
the boundary arc a radius equal to the average of these three values. The in-
cluded angle for each arc is the ratio of the interval length to the average radius.
The location of the center of the arc can be found using the coordinates of the
interval end points and the values of the radius and the included angle.

NUMERICAL EXAMPLES

The example problem chosen to test the described method for calculating bound-
ary stresses 1s that of the elliptic hole in an infinite plate subjected to internal
pressure. This problem was discussed as Example 2 in (ref. 1) and relevant nota-
tion is described therein. This problem is chosen as an example for the following
reasons:

1) Changes in the boundary contours can be accomplished by changing the axis
ratio.

2) From results given in Figure 14 of (Ref. 1), it can be seen that changes
in boundary geometry have a significant effect on the behavior of the source
density functions.

3) The presence of a stress concentration gives the problem practical rele-
vance because in such situations the accurate prediction of boundary stresses
is of critical importance.

Discussion of Results for the Ellipse With a/b = 2

The computation of boundary stresses was first attempted for the problem with
a/b = 2. Each quadrant of the elliptical boundary was divided into 32 subdivisions
of equal length, denoted by h. Finally, the coefficients necessary to specify
the source density functions within each boundary interval were determined.
The assignment of known values of the source densities at each interval end point
was accomplished using results obtained from the numerical solution to the bihar-
monic equation. TFigure 5 presents analytical values of the tangential and shear

stresses, o and Ty respectively, in terms of the parameter Hs/lL[ vhere s = 0 is

aty = b, x = 0 and |L| is circumference of the ellipse. Note that for this problem
the specified value of T, on the boundary is zero.
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8 - Total Stress

—— - Analytical Values

© - Calculated Values, First Trial

Figure 6. -Total stress and %ﬁ-on the elliptic boundary,

first trial, a/b = 2, a = 2.
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The results in Figure 5 illustrate that the approximate stress function only
crudely represents the exact stress function. However, consideration of thesze
results lead to a quite profitable examination of the characteristics of the an-
proximate solution. The results of this examination and subsequent improvemen%g
in the accuracy of the approximate stress function are discussed below.

Figure 6 shows calculated and analytical values of the total stress and A

The total stress depends on the source density o(s), not on u(s). llowever,

9 . .

Sg-depends on both source density functions. The excellent agreement hetween the
calculated and analytical values strongly implies that the source density functions
used are accurate. However, further examination of the numerical results discloces

that the procedure for determining the source densitv coefficients toi’ Vaie tis
Wi

and v i from the specified end point values (oi and ui) causes considerable fluc-

tuation in the slope of the approximate density functions. These fluctuations are
not consistent with the appearance of the plotted values of the known source den-
sities, They are introduced because conditioning of the known source densities
values is required and because the coefficients tos and tui depend on the difference

of known values. Small inaccuracies in the known values become magnified and lead
to considerable distortion in the first derivatives of the density functions with

respect to s. TFigure 7 shows a plot of the parameter hggr (p = 0 or u) for the

first trial at the problem. The significance of the fluctuations of the source

density slopes is found in the comparison of h%%— and the calculated values of Ty

It can be noted from Figures 5 and 7 that the relative extremums in the values
of these two quantities correlate with one another. In comparing the two figures,

it 1s possible to decide which values of h%g-are high and which are low. The re-
sults of such a comparison is supported by calculations which show that the origin

of the shear fluctuations are the terms with coefficient t, in equation (31 e)

i+l
for His when p = u. Note that there is much less fluctuation in h%% than in h%%
. do ., du g
and also that the magnitude of hds is generally much less than hdS for TfT > .5

so that the coefficients tos make only a small contribution to the shear fluctua-
tions shown in Figure 5.

In addition to the information previously discussed, Figure 7 also shows the
values of toi and tui used in the final trial. A comparison between the source

density values implied by these slopes and the known source density values is
shown in Figure 8.

%#Because boundary intervals of equal length h are chosen at interval end points,

dp . = =
the parameter hds is equal to toi when p = ¢ and tui when p = u.
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Figure 7. -First and final values of -g—z— ,a/b =2, a-=2.
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Figure 9. -Normal stress and shear stress
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Figure 10. -Normal stress perpendicular to the elliptic boundary, a/b = 2.

28



For the final attempt at the problem of the elliptical hole with a/b = 2,
source density functions with the properties given in Figures 7 and 8 were used.
Calculated values of the tangential stress and shear stress components are shown
in Figure 9. Analytical values are also shown. The results are excellent and
show considerable improvement from those reported in Figure 5. Note that the
computed values of shear stress are roughly an order of magnitude less than those
shown in Figure 5. Also the adjustment in source density slopes gave considerable
improvement in the accuracy of the computation for e

The final results presented for this example are given in Figure 10. Shown
in this figure are the calculated values of the normal stress component, o » per-

pendicular to the boundary. The value of this stress component is known to be -1
because of the specified boundary loading. Results are shown for both the first
and final trials for the problems and indicate the same improvement noted with

regard to the shear stress calculation. For the range .4 < %%r < .7, the value of
ol is nearly constant at -1.08. For this range of the parameter %§T3 Figure 9

shows that Ittl is less than .025, an excellent approximation to the specified

boundary condition., The reason that the normal stress component stabilizes at
-1.08 instead of -1.00 is indicated in Figure 8 where it can be seen that the
values of u used in the final trial are slightly greater than those determined
by the numerical solution of the integral equations.

Discussion of Results for the Ellipse With a/b = 5

For the problem of the ellipse with a/b = 5 and a = 1, each quadrant was di-
vided into 51 intervals. Near the intersections of the boundary with the x axis,
the rapid rate of change of the boundary curvature made 1t necessary to use bound-
ary intervals of decreasing length in order to obtain an adequate approximation to
the boundary using circular arcs. Figure 11 shows the behavior of the source den-
sity functions for this problem. The solid curves represent the source densities
used in performing the boundary stress calculation while the plotted points indi-
cates the piece-wise constant values determined by the numerical solution of the
integral equations. As before, the data is plotted in terms of us/|L|, where
s=0at x=0andy = 0.2, and 4s/|L] = 1 at x =1 and y = 0. Values of ¢ are
not shown for 4s/|L|<.13 as this density function decreases rapidly to -36 at
s = 0.

Figures 12 and 13 show calculated and analytical values of the tangential
stress, o,_, and the total stress, 8, on the boundary. It can be seen that the
results depict quite well that the stress concentration at x = a and the stress
variation around the boundary. In order to produce these results, it was again
necessary to smooth the slopes of the source density functions. In this instance,
however, the task was more difficult because, near x = a, derivatives of both
density functions were nearly equal so that simultaneous and consistent adjust-
ments in both functions were required.

Figure 14 shows the calculated values of the shear stress, Teo and the nor-

mal stress, dn. The values specified for these components due to the boundary
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Figure 11. -Source density functions
¢ and u, for the ellipse with a/b = 5, a = 1.
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Figure 12. -Normal stress tangent to
the elliptic boundary for a/b = 5.
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Figure 13. -Total stress on the elliptic boundary for a/b = 5.
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loading are zero and -1 respectively. The difficulty in satisfying the boundary
conditions near s = 0 is caused by the behavior of the source density o(s) in this
area. No great effort was made to correct this situation as the stress pattern

in this region is not of crucial importance.

Considerable effort was expended in making adjustments to the source density
. bs . . s
functions for TET > ,5 in order to minimize the shear stress on the boundary. As
shown in Figure 14, the results are excellent. Greater accuracy in the calculated
values of o, would be desirable; however, the error is much less than the maximum

tangential stress o, and does not create any significant distortions in the behavior

of this stress component around the bhoundary. The results from this example indi-
cate that the method and formulas used for calculating boundary stresses are accu-
rate and are a valuable complement to the integral equation method given in (ref. 1).

General Comments on the Numerical Results

There are three comments of a general nature which relate to the numerical
results presented in this section. TFirst, results are presented for only one
partitioning of the boundary for each example. Since a comparison between speci-
fied and calculated boundary tractions, rather than convergence, is the criterion
for assessing the validity of a solution, there is no need to examine results from
a series of boundary partitionings to decide which results are valid and which are
of questionable reliability. However, in order to calculate boundary stresses
accurately, it is necessary to make enough subdivisions of the boundary so that an
adequate approximation of the boundary geometry 1s possible. The easiest way to
insure that this goal has been accomplished by a particular partitioning is to
construct a finer one and then to compare numerical results. Such a procedure
was followed for both the numerical examples presented.

Second, it should be noted that the discrete values of the source densities
determined as in (ref. 1) provide the basis for the source density functions used
in the boundary stress calculation. Therefore, these discrete values should be
determined with a view toward the subsequent boundary stress computation. That
is, emphasis should be placed on determining a relatively high number of discrete
values on those portions of the boundary where high stresses are expected. For
example, it would be considerably simpler to obtain accurate results near x = a
for the ellipse problem (a/b = 5) if more source density values were known on this

portion of the boundary.

The final comment relative to the numerical results presented are that they
are by no means unique. In the course of obtaining the results presented for the
second example, several slightly different specifications of the source densities
near X = a were used. Each represented a solution to a problem with slightly
different boundary loading.
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CONCLUDING REMARKS

The method presented for the direct computation of boundary stresses hinges
directly on the determination of source density functions (satisfying the required
continuity conditions) from discrete values of the source densities determined by
the method outlined in (ref. 1). No standard or unique method for accomplishing
this task has been developed; s» the presentation of a direct, step-by-step,
method for a solving a given problem to within a specified accuracy is not yet
available. However, the capability of calculating boundary stresses directly
from an approximate stress function accomplishes at least two significant objec-
tives. These include: '

1) The attaimment of good accuracy in approximate solutions on and close
to the boundary through the use of more sophisticated representations
of the source density functions.

2) The elimination of convergence as the criterion by which the accuracy
of a numerical solution has been previously established. This feature
is particularly important as it effectively removes the capability of
computational machinery as a limitation on the applicability of the
integral equation method.

A pertinent additional remark is that some of the ideas presented herein are
applicable to harmonic problems (ref. 4) formulated and solved by a numerical
method analogous to that presented in (ref. 1). Of particular significance is the
idea of developing a more sophisticated source density representation based upon
the discrete values of the source density. For harmonic problems, only the un-
known function and its first derivatives are generally of interest on the boundary.
Therefore, in order to be consistent with the physical situation, continuity in
the one source density is only required. Here again a direct evaluation of the
accuracy of the numerical solution through a comparison of computed and specified
boundary quantities is possible and the necessity of using convergence as a criterion
for accuracy can be eliminated.

The fundamental disadvantage of the method used to calculate boundary strercses
is that there is no general method by which all the information required concerning
the source density functions can be automatically generated. The data obtained by
the method presented in (ref. 1) serves as a starting point. In general, a detailed
examination of the characteristics of the approximate solution in regions of interest
is required in order to attain acceptable accuracy.
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APPENDIX A

DERIVATION OF LIMIT FORMULAS

The derivation of formulas for the limits given by (31) is outlined in this
appendix. To obtain the expressions for Hp, Hz, Hz, HZE, and Hze given by (31),

it is necessary to evaluate the limits in the equations

~
H° = 1im § Hz = lim 88
e->0 e e+0 _§%
n=0 n=0
H? = 1im 3§, H? = 1im 328
n [ € >
>0 _Bn e-+0 YA
n=0 n=0
and
P = 1im 32% (A.1 a-e)
€ p
€0 5
n=0 Y

where Sp is given by equation (30).

The derivation of the required limits is aided by the use of two theorems
from advanced calculus (ref. 7).

Theorem 1:
If F(e) = fif(e,a)da and f is continuous for a < a < b, c < € <d, then

1im F(e) = fbf(s ,0)do
a o
g>e

o
if ¢ < e < d.
82
Theorem 2:
If F(e) = fzf(e,a)da and f and %g-are continuous for a < a <b and ¢ < e < 4,

then

b 9f
| -
F'(e) = fa sz-da

A general result in potential theory (ref. 1) is that the single-layer poten-

tial is continuous onto the boundary. Hence, equation (31 a) for H° is formed
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simply by substituting € = 0 and n = 0 into (30) and defining the resulting ex-
pression to be wP.
To establish the remainder of the formulas (31), first assume € > g% > 0 so

that Theorem 2 can be used to justify reversing the order of integraticn and dif-
ferentiation. Then n is set equal to zero in the resulting integrals.

After these operations, one obtains

, 8. p (a)[R,(l-cos a) + elda
P _ 1. i i
He = 1im [R, fo )

e+0 i

8. p1+l(a)[Ri+l(l—cos a) + elda

+1
+R, . f* ] (A4.2)
i+l o Di+l
and
2,51 p1(a) sin od
HP = 1im [RSS T R 12) Sin ada
(o] D,
>0 i
2 6i+l pl+l(a) sin ada
- R o D 1 (A.3)
i+l
where D, = 2(R§ + eRi)(l—cos a) + 52. The source density functions p'(a) and

pl+l(a) are given by (26) and (27) and satisfy the continuity conditions given by
(28) and (29). To evaluate the above limits, one first integrates over the range
0 < a < A where X < min {6i’8i+l} is chosen small so that one may take l-cos a =

a2/2 and sin o = a. The resulting integrals may be evaluated analytically. Sub-
stituting the results into (A.2) and (A.3), passing to the limit in € (using
Theorem 2 where necessary) yields the following results:

8

H° = mp. . + limflei pi(ajda + X i+l pi+l(a) da]
€ i+l A+0'2 A 27 A
and
o }p' Log (1l-cos Gi)
n_ 27it+l (1-cos 51+1)

1.9 Gi [a2v. - ad.(ti + 2vi) sin ada
+ lim[=6% S = =

x>0 2717 l-cos o
2 .
1 f6i+l Lad; 1Ti41 ¥ @ Viyyl sin “d“]
26§+1 A 1l -cos a

37



The integrands above are continuous for 0 < a :-Gi and 0 < a :-Gi+l’ so the

above expressions reduce directly to (31 b) and (31 c¢).

Reversing the order of integration and differentiation in (A.1 d) (justified
by Theorem 2 for € > 0) and setting n = 0 gives the expression

§ 8
P _ . i i+l
Hes = Pie llm[fo G(e, Ri’ a)do + fo G(e, Ri+l’ a)da]
e>+0
t, 8. (t. + 2v.) 6,
+ lim[giii fol+l aGi+lda - ——&—E———i—-fol aGida]
e>0 i+l i
v, 6, v, S.
+ liml— S 1 426.da + —%ii-f 1l aQG. dal (A.u4)
§¢ "o i 84 e} i+l
e>0 1 itl

where 5 o
R, [(2R, + 2eR.)(1l-cos a)-2(R.(l-cos a) + )7

G(e, Ry,a) = = = 5 = = 55 =G, . (A.5)

[(2Ri + 2€Ri)(l—cos a) + 7] +

The limits in (A.4) are denoted by I I2, and I_ respectively.

1’ 3
The integrals in the first limit, Il’ can be evaluated analytically. Letting

€ approach zero yields the result

§. + ™+ ctn éé. S. + 7 + ctn l&
1 21

I =__}{ + i+l 2 1+l] (A.6)
1 2 R. . .
i i+l
Note that 12 can be rewritten as
t. 8.
_ 1+l i+l
12 =5 IG, G(o, Ri+l’ a)do
i+l i
s, ti41 (ti + 2vi)
+ 1lim S ta(=cle, R, ., a) - ———2 G(e, R,, a))da , (A.7)
o S, i+l S, i
>0 i+l i
since G is continuous for 0 < € and Gi <a i-si+l and hence Theorem 1 applies.
As
T ) (ti + 2vi)
- E)
Ri+:|.6i+l Riai
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the 1limit in (A.7) can be written as

t. S.
= i+l i
I, = ——FF—— 1lim alR, .G, - R.G.Jda , (A.8)
2 Ri+l 141 es0 le] i+l i+l i1

To evaluate Té, one defines A small (A>0) so that he can use cos a = l—a2/2,

(A<m1n{6i, 6i+l})' Then (A.5) becomes

_ o?(r? - €R,) - 2e2 - %Ri ot _
G(e, Ry, o) = ~— 55 =G, . (A.9)
[(Ri + eRi)u + 7]
The integral formed by substituting E& and §£+l into (A.8) and changing the

upper limit to A can be evaluated analytically. Then it can be shown that

1im fx o[R
o

- R.G.1da = 0
i1
e+0

1+1%1+1

independent of A. Hence A can be chosen as small as one pleases, justifying the

approximation that cosa = l—a2/2. Since A>0, then by Theorem 1, 12
ten as

may be writ-

= _ _tNin
2 Ri+1 i+l A0

—

1im 16 al[R, lG(O, R

i » @) - R,0(0, R, @)]da .

i+l

cos a

Now 6(0, Ry» @) = 3% (1-cos o)

, so that the integrand above 1s identically =zero.

Therefore I.Z 0 and (A.7) reduces to

2
t. 8.
_ 141 i+l
Ly=g. s, 80 Ry @)da
i+1 i
or
t. 8,
Ip = 2R l+§ f61+l ?ijcggaa) ) (A.10)
i+17i+1 i
fi41
Note that the coefficient s is simply the derivative of the source density
i+l7i+4l

function with respect to s at the common end-point of intervals i and it+l. The

reduction of I, to the form given by (A.10) is not possible unless this derivative

is continuous. If the derivative is discontinuous, the limit 12 does not exist.

To evaluate I the third limit in (A.4), again one may introduce the angle

3,
A>0, use the approximation cosa = 1 - a2/2 and perform the indicated integration.
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After letting e approach zero, one finds that

) 2
RS P S SN S R T S
3 52 Ry BRT 52 Ry Ry
i i+l
Vi Gi a2cos oda vi+l 6i+l a2cos ado
+ —F f J T ios a
28 2R A l-cos o oR 62 A l-cos o
il Ti+17i+l
Then lim I3 reduces to the final result
A->0
_ Vi 6i a2cos odo Vit 6i+l a2cos oado
I, = S i —_—, (A.11)
3 262R o l-cos o 2R 62 o l-cos o
ii i+l i+1

The derivation of formula (31d) for HZE is now complete since by definition

o .
HY, = 05, I + I, + I and I,

(A.11) respectively.

12, and I3 are given by equations (A.6), (A.10)

To obtain the limit formula for ng, one may interchange the order of inte-

gration and differentiation in (A.le) and, setting n=0, obtain

S, S,
. i+l 1
iig[fo F(e, Ri+l’ a)do - fo F(e, Ri’ a)dal

o _
Hen = Pis1

t. + 2v, &, ti+l Gi+l
S o

+ lim[~>——= s * oF.do - F. .da]
£+0 Gi o) i s+l o i+l
v, S. v, §.
P T e S TR S N TY (A.12)
2 o i+l 2 o b
>0 &, S,
i+l i
where
+ QR? sin o [Ri(l—cos a) + €]
F(e, R;, @) = ; 55 = Fi (A.13)
[(2Ri + 2eRi)(l—cos a) + €7] .
Denote the limits appearing in (A.12) by Jl, J2, and J3 respectively:
H? =, J. +J.+J (A.18)

en i+l71 2 3.
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The evaluation of limits J2 and J3 can be accomplished using the methods described

to obtain the formula for ng. In order to evaluate J2, it is necessary to use

the continuity condition on the derivative of the source density function. The
limits J2 and J, are given by

3
- Trti+l 1 ti+l 6i o sin ada 6i+l o sin ada
J2 "R, .6 tSR. 8 [fo l-cos o fo (1-cos a)] (A.15)
i+17i+] i+l7i+l
and
J. = Vitl f6i+l a2sin ada _ Vi fsi azsin ado (A.16)
3 2Ri+l6§+l e} l-cos o zRidi o 1l-cos o

In attempting to evaluate Jl’ a difficulty is encountered. Formally, one can

write
S,
_ i+l
Jl = fsi F(Os Ri""l: a)da
8
+ iig[fo [F(e, Ri+l’ a) ~ F(e, Ri’ a)lda . (A.17)

If the 1limit in (A.17) is denoted by 3;, performing the indicated integrations

yields
J, = l‘(Ri _ Ri+l) log(l~cos §.)
1~ 2 TR.R, 2 i
i1+l
+ 1lim {—i-log £ . = log =—=} .
R. R. R. R.
>0 i 1 i+l i+l

However, 1t is evident that the limit indicated above does not exist unless

Ri = Ri+l’ in which case Jl = 0. It is apparent that the source of the difficulty

is the discontinuity in the boundary curvature artificially introduced by the use
of tangent circular arcs to approximate the boundary contour.

A more detailed analysis of the contribution to Hﬁs from the coefficient of
Ps,q Vas performed using the assumption that the parametric equations in terms of
s for the boundary contour could be expanded in a Taylor series about the point
S;,q Over intervals i and i+l. The results indicated that the contribution to Hz
was of the order of (min{hi, hi+l})3. Therefore, it was decided to neglect this

contribution (effectively assuming R, = Ri+l)' In order to account for the dif-

41



ference in interval length, a term r, = (Ri + Ri+l)/2 was defined and Jl was

written as

1'IJ'.+1/P1
Jl = fh./r - F(o, r., a)do
i
or

(1l-cos l+l)

Jl = }_1; log’ —-————-——-—h 1 . (A.l8)
(1-cos —=)

T

This completes the discussion of HZn' Suhstitution of equations (A.1l5),

(A.16), and (A.18) into (A.14) gives the formula (3le).
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