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ABSTRACT

In this paper the baslic equations of motion for space
vehicles with various passive CMG configurations are presented.
As the exact equations of motion are nonlinear, linear models or
linearized expressions have been established. This is of major
importance especlally for system design as the linearized
equations allow one to determine explicitly the influence of
system parameters on performance. It was found that for step
and sinusoidal input functions, the errors due to linearization
are less than 17%. ;

Special attention was given to friction phenomena, i.e.,
viscous and Coulomb friction, which arise in connection with the
motion of the CMGs about their respective gimbal axes. It was
found that friction decisively influences system performance.
Coulomb friction, in general, severely restricts the attitude
stabilization capability of the CMGs until the space vehicle
has attained a certain angular velocity.
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TECHNICAL MEMORANDUM

1.0 INTRODUCTION

It 1s of interest to inquire into attitude stablliza-
tion of space vehicles by passlve Control Moment Gyros for pos-
sible use 1n the Apollo Applications Program.

A Control Moment Gyro (CMG) 1s basically a gimballed
reaction wheel with, in general, two gimbals. In this arrange-
ment, 1t 1is a 2-degree of freedom device 1f it is assumed that
the angular velocity of the wheel stays constant. Otherwise, a
third degree of freedom 1s obtalned. Torquers at each gimbal
provide that the orientation of the CMG's spin angular momentum
vector can be changed with respect to a reference frame, i.e., a
coordlnate system which is fixed to the space vehicle. The
passive CMG consldered in thils paper has one degrece of freedom;
one gimbal stays locked 1n a certaln angular position. Secondly,
the term passive 1s used to 1indicate that no external torque is
applied on the CMG through the torquer c¢f the free gimbal. Then
the CMG moves about this gimbal axis only under the influence of

torques which are due to coupling effects from the motion of the
space vehicle.

In this paper the basic equations of motion for space
vehicles with various CMG configurations are presented. As the
exact equations of motlon are nonlinear, linear models or linear-
ized expressions have been established. This is of major impor-
tance especlally for system design as the linearized equations
allow one to determine explicitly the influence of system parameters
on performance.

Special attention was given to friction which arises
in connection with the motion of the CMGs about their respective
gimbal axes. It was found that friction decisively influences
system's performance.

Investigations on AAP-cluster stabilization by passive

control moment gyros, the results of which are presented in [8],
are based on this report.
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2.0 DESCRIPTION OF THE SYSTEM

2.1 General Explanations

In its most general configuration the system which will
be analyzed in thils paper 1s composed of a rigid body, called
the carrler, and of an arbltrary number of single degree of free-
dom Control Moment Gyros (CMGs) mounted within the carrier. How-
ever, 1n the paper, the detalled analysis 1s restricted to confilg-
urations with at most 3 CMGs. The so called SIXPAC CMG conficura-
tion, as 1s shown in Flgure 1, represents one possible CMG arrange-
ment [1]. These CMGs have basically 2 degrees of freedom, put by
locking any one of the two gimbals of each CMG, single degree of
freedom devices are obtalned. If the particular gilmbals are lock-
ed at certain angular positions, specific 1nitlal orientations of
the spin angular momentum vectors of the CMGs can be arranged. It
is important to select the 1initial orientations in such a way as to
make the best use of the stabilization properties of the CMGs in

the presence of the external torques that act on the carrier in 1ts
desired attitude.

The CMGs are designated by the index k, (k 1,2,3) ,with

the corresponding angular momentum vector ﬁ and the outer and
inner gimbal angles o and Bk

2.2 Coordinate Systems and System Vectors (See Figure 2)

For the analysis the followlng right hand Cartesian
coordinate systems and vectors are introduced:
a. The inertially fixed x¥yF7Y peference system.
b. A XbeZb coordinate system which is fixed to the carrier
having 1its origin at the carrier's center of mass (c.m.)b
This coordinate system rotates with respect to the iner-
tial system with the angular velocity ¢. The system

vector Qk which 1s referred to f.his coordinate system
goes from (ec.m. )b to the center of mass (c¢.m.) s Of the

x*P_cmg.

c. The XYZ coordinate system with origin at the center of
mass, c¢.m., of the total configuration (carrier and CMGs).

The system vectors ﬁk and P which are referred to
this coordinate system, go from c¢.m. to (c.m. )k and c.m.
to (c.m.)b, respectively. The respective XYZ and XbeZb

coordlnate axes shall always be parallel.

e R . SE O
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d. With 1ts origin at the center of mass, (c.m.)k, of the

kth - CMG there 1s a XkYka coordinate system.
It 1s assumed here that the (c.m.)k is identical with

the center of mass of the CMG's flywheel. This coor-

dinate system is fixed to the flywheel. It rotates with

respect to the carrler wlth the anjular velocity 5k.

Also, the free gimbal of the CMG sliall go through (c.m.)k.

The orientation of the XkYka coordinate system with

respect to X°Y°zP is glven by the transformation

xK xP
(1) (Yk) - (Ak)(Yb)
K /D

where (A%) is, in general, a 2 x 3 matrix.

For the vector P the expression is cobtained [2]
E: Mk@k
Kk

M° + 2: &

k

o)
]
!

(2)

th b

where MS is the mass of the kUP-CMG and M° the mass of the carrier,

respectively.

3.0 EQUATIONS OF MOTION. GENERAL EXFRESSTCNS

3.1 Carrier

The angular momentum of the total configuration, carrier
and CMGs, wlth respect to c.m. 1s given by the expression [2],

ok
Eguation (20), @ = 0

(3) L= I+ 2 TR 4 QWS & (3 x 3,
k k




BELLCOMM, INC. -4 -

The vector

(4) §g=§+’9’k

is the total angular velocity of thils CMG with respect to inertial

space. Ib 1s the inertia tensor of the carrier,without the CMGs,

referred to the XbeZb coordinate system, and I~ represents the

inertia tensor of the flywheel of the kth-CMG, referred to XYZ
coordinates. The third term in (3) takes into consideration
the locations of the CMGs wlthin the carrier. Because, the last

term 1s a linear function of the angular velocity 3, one can add
its components directly to the components of the filrst terms in

(3), thus essentially changing the value of the elements of Ib.
For the investigation in this paper, the third term in (3) will be
neglected. Its influence 1s, generally, very small and, as has
been Just outlined, thls term produces analytically no additional
problems.

From Newton's law the equation for the carrier vehlcle's
attitude motion is given by the expression [3]

(5) N=f+8xt

with N as the vector of the external torque which acts on the
carrier, the angular momentum vector if which is expressed in (3),

and its rate of change with respect to time L. In order to evaluate

(5) explicitly, the vectors have to be expressed in the XbeZb

coordinate system.

The translational motion of the c¢c.m. is gilven by the
equation

=M+ ng] d—i-m

where ¥ 1s the vector of the total external force which acts on

this configuration and ¥ 1s the translational velocity of the c.m.
Since it is assumed that every CMG gimbal axis goes through the
center of mass of the respective CMG, there 1is no coupling between
the translational motion of c.m. and the attitude motions of the
CMGs.
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th_oyg

3.2 K
, f;k . th .,
The total angular momentum of the k" '=CMG with
respect to (c.m.)k is

k _ .k 2k
(6) X =1 58

The equation of motion for thilis CMG 1s given by the expression [3]
>
(7) RE = 1K 4 ﬁg x ¥ + friction terms

-
where ﬁk is the external torque that acts on this CMG and ﬁk is
the time rate of change of the angular momentum 3k. Because the
stabilization of the carrier by passive CMGs is consldered in this

paper, all vectors ﬁk are zero. Here ﬁk 1s identical with

the external torque which 1s provided by torquers. Any other
external torques, e.g., a torque due to gravity gradlient phenomenon,
will be neglected. In addition to the inertial terms in (7), which
are obtained by applying Newton's law to (6), frictional torques have
to be taken into account. These arise from friction phenomena due

to the motion about the CMG's gimbal. In order to evaluate (7)

explicitly, all vectors have to be expressed in the XkYka coordinate

system. The components of the inertla terms must be resolved along
the respective gimbal axes. The addition of the appropriate friction
terms finally yields the total equation of motion. The friction terms
conslidered in this paper are viscous friction and Coulomb friction.
Both phenomena are treated as functions of gimbal angular velocity.

4,0 EXACT EQUATIONS OF MOTION FOR VARIOUS CMG CONFIGURATIONS

4,1 The 2-CMG Configuration

-+ > +> =

Figure 3 shows the vectors H, &1, (k=1), and Hi, 53,

(k=3) (spin angular momentum and gimbal angular velocity) of the
two CMGs of this configuration. The selection of the CMGs and the
orientation of their respective spin angular momentum and gimbal
angular velocity vectors is such as to obtain for the carrier the
best attitude stakilization properties with respect to external
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torques about the vehicle's Zb coordinate axls., Both spin angular
momentum vectors can move in the szb coordinate plane, and their

respective gimbal angular velioclty vectors are parallel to the Yb

axls.

4,11 Derivation of the Transformation (Al)

i According to (1) the transformation

x* xP
. (8) (Yl) = (ah) (yb)
Zl Zb

glves the orientation of the XlYlZl coordinate system with respect
bbb

to XY 'Z". According to Figure 4, (Al) 1s obtalned from two succes-

. ive right hand rotations through the angle 0q s about the Yb axis,
§ and the angle Ty about the x* axis, respectively. It is
i y
é (9) (Al) = (nl)(ul)
3 +)
i where
(10) )y =1{ o 1 0
Sal 0 Cal.
1 0 0
(11) (wl) = |0 Cmy Smy
0 -Snl Cﬂl
and explicitly
™ n
Cal 0 ~Sa1
1, _
(12) (A7) = SﬂlSal Cwl SnlCal
ntSal -Swl CwlCal_
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The comvonents of the angular velocity 31 are

(.

1
Qx 1
i1
(13) ﬂy a; cos my
l .
Qz \'al sin Ty

4,12 Derivation of the Transformation (A3)

Analogously to (8) there is the transformation

x3 xP
(14) ¥3 ] = (a3 ¢P
73 7P

between the orientation of the X°Y°zP and the x3¥3z3 coordinate
systems. (A3) is derived from two successive right hand rotations:
through the angle 83, about the Yb axis, and through the angle T3
about the Z3 axis,

It is
(15) (a3) = (3)(83)
where
C8 0 -S8,
(16) (83) =] 0 1 0
S8 0 Ce,
c 3 0 \
1r3 D 1T3
(17) (13) = Sty Ong O
0 0 1




=
;
i
!

BELLCOMM, INC. -8 -

and explicitly
, Cn3CB3 Sn3 -Cn3833
(18) (AY) = -Sn3063 Cn3 Sn3883
863 0 083

The componets of the angular veloclty 53 are

B.S8in

3

“:; 3 3
(19) 953’ /- B3cos ms

“z ﬂ3

4,13 Expressions for the Angular Momentum Vectors

4,131 Carrier

In order to establish the equations of motion of the
carrier, the components of the carrier angular momentum vector

f have first to be expressed in the XYZ coordinate system.
With this in mind one obtains from (3), if vhe third term in

that formula 1s omitted, in matrix notation the expression

. -1 -1 .
(L) = (1) + (ah) “(hal) + (a3 (13 adH )
(20) -1 -1
+ (Al Taahel) + a3y T3y (ed)

1

where (Al)'1 and (A3) " are the inverse matrices of (Al) and

(A3), respectively. It is assumed that

Ib

- 0 0
(22) by = 0 1P
(1) vy ¢
0 0 P
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iy 0 0 I. 0 0
aly = [ o 2 o |=]8 1, o
(22) Sy X T
0 0 Izzl 0 0 IT
. and accordingly for the case of ldentical CMGs
’ IT 0 0
3
(23) (1°) = | 0 Ip 0
0 0 IS

o A

and
; b 2 2 2 2
& Ip, >> Igleos®a; + sing,) + Ip(sin®a; + cos™83),
§ 2 2 2 2
: b
I, >> IS(sin ay + cos 63) + IT(cos a) + sin 83)
and
b
Iyy 5> QIT
Hy = Hy = H
where
H, = I.n =




D - S v+ e A oL
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Then from (20) the components of T, are explicitly

o 0 C. ($28.,-82 ; 2
Lx Ixx ' 1l B3 %1 X
o]

: 0 I Q
(24) Ly yy g y

Lz _p1(8263-s2a1) 0 IZz i LQZA

Cal + SB3 ‘ .
-
+ H 0 + .;.T al 63
where
= 1 _

4,132 QControl Moment Gyros

In matrix notation and referred to the respective CMG
coordinates the following expressions for the components of 31
and 73 are obtained from (6), observing (8) and (14)

Ly = (z1) reh) + (al)(e)]

(25) (L

(26) (L3) = (13) (23 + a3 ()]

4,14 Equations of Motion

The exact equatlons for the attitude motion of the
carrier and the equations of motlon for the CMGs are derived
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from (24), (25), (26) according to (5) and (6), respectively.
For the carrier one obtains explicitly

b o
N, = Ixxnx + cl{[s'zz + 9x9y1[8233 - Szalj
. . b b
(27) + 292[830283 - «,C20,]1} + szyszz[Izz - Iny

- QZIT[al + 333 + H{[szy + 333033 - [ny + al]Sal}

=bo o e 2_2 - )
Ny Inyy + IT[a + 33] + cl[szZ nx][szs3 szal]
b b
(28) + QxQZ[Ixx - Izz] + H{nx[sal - 063] + QZ[Cal + SB3]}
-bo [ [
Nz = Izz“z + cl{[nx - QynZ][szs3 - szal] + 29x(e30233
. b b . .
- alC2a1]} + nxny[Iyy - Ixx] + QXIT[al + 33]

(29)
- H{[Qy + aljcal + [Qy + 633863}

The equations of motlon for the two CMGs about the respective
gimbal axes are

0 = IT[al + Qy] + H[QZCal + QxSal]
(30) + [Iq - I,0([0° - 21 s24, + .0 C2a.)}
3 S T X z-2 1 x"'z 1
+ friction terms
0 = IT[B3 + ay] + H[nzse3 - QxCB3]
+ [Iq - I ]{[92 - 21ds28. - a.0.c28.)
(31) S T z x-2 3 x"'z 3

+ frictlion terms
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Retaining only the major terms in (27) through (31) ylelds the
following set of 5 equations which together describe finally the
attitude motion of the carrier.

? - b b - b 2
(32) Nx = Ixxax + Qyﬂz[Izz Iyy] + H{[Qy + 333053

- [Qy + al]Sal}

_ . b b
(33) Ny = Iyyay + QXQZEIXX - IZZJ + H{QZ[Cal + SB3]

+ Qx[Sal - 063]}

(34) N, = ID &+ gxgytlsy - 101 - Hla, + 83158,
+ Lo, + aq1Cay)

(35) 0 = Ipa; + H[2 Sa; + 0,Ca;] + friction terms

(36) 0= IT§3 + H[®,885 - ,C8;] + friction terms

4,2 The 1-CMG Configuration

The following equations of motion for this case hold
for a configuration as it is shown in Figure 3 or Figure U4 except

that ﬁ3 is zero now. Again, only the terms of major influence
have been retained [U4]

) - b b4 b b .
(37) Nx Ixex+ QyQZ[IZZ - Iyy] - H[Qy + a1]Sa1
- b ¢ b b
(38) Ny Inyy + QXQZ[IXX - Izz] + H[QxSal + chalj
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_ b e b _ b 4 _ .
(39) N, = I,,0, + 9,001, - I.,J1-Hle, + a)]Cay
(40) 0 = ITal + H[s’zXScz:L + QzCal] + friction terms

4.3 The 3-CMG Configuration

Analogously the equatlons of motion for a 3-CMG
configuration can be obtained. Here they are presented for the

v case shown in Flgure 5. The spin angular momentum vector ﬁg of
the third CMG can_ move in the Ybe coordinate plane. The gimbal
angular velocity é2 is parallel to the Xb axis. The equations are [4],

again retaining the major terms,

_ <b b _ +b $ e
é (41) N,o= I .9 *+ QyQZ[IZZ Iny + H{[Qy + B51C8,
- [Qy + al]Sal + QySB2 - QZCBE}
(42) N = Ib O+ Q.0 [Ib - Ib 1 + H{9_ Sa, - [0 + B.138
y yy ¥y X zZ-TXX %% x 1 X 2 2
% - nxcs3 + QZ[Cal + 833]}
S o b b .
(43) NZ = IZZQZ + ngy[Iyy - IXX] + H{[szX + 523062

- [ny + a1]Ca1 - [Qy + 33]833}

(uh) 0 = ITal + H[QXSal + QZCal] + friction terms
(45) 0 = IpB, + H[Qy862 - 92062] + friction terms
(46) 0 = ITB3 + H[QZSB3 - QXCBBJ + friction terms
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5.0 DERIVATION OF LINEAR MODELS

5.1 Linearization and Laplace Transformation of the Exact
Equatlons of Motion

Froim the equatilons of motion which have been established
for variocus CM¢ configurations, linear expression are now obtained.
Subsequently they are Laplace-~transformed. These expressions are
the basls for the linear models.

First the equations of motion are linearized by Taylor
serles expansions about certain lnitial values of the respective
variables which are marked by the index 0, namely in this paper

“10 0\ %0 “10
(47) 320 = 0 ; Qyo =0 ; ?20 = 0
B30 /2 2,0 B30

.

As for the friction terms, 1t is assumed that they can be represent-
ed by speed proportional viscous friction terms. Thus, Dl&l, D2é2
and D3é3 are these terms for the 0 62 and 63 gimbal axlis, respec-

tively. However, in Chapter 6,1t will be shown how Coulomb friction
phenomena can also be incorporated in these models. The results of
executing the previously described steps can be represented by the
following expression where the index j, (J = I,II,III), refers to the

1- , 2« and 3-CMG configuration, respectively.+

(48) (nd (s)) = (19 (s)) 0w’ (1))

where

nx(s) _ nx(s) nx(s)
(n™(s)) =[n ()} 5 (™) =[n ()] 5 (e =[ng(s)
n,(s) n (s) n,(s)

0 0 0

0 0

| 0

+)
S is the operator of the Laplace transform. All variables in
(n) (n) (n)

the time domain, except for the gimbal variables ay5 Bos 83 are

represented by capital letters; transformed variables by small
letters [5].
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wx(S) wx(S) wXES)
w. (s) w,(s) w. (s)
I ¥ IT Y , III Y,
(w™(s)) = wZ(S) 3 (W (s)) = wZ(S) 3 (w7 (s)) = wZ(S)
aq(s) ?1(8) ?1(5)
83(8) ?2(8)
P oy
b
Ixxs 0] 0 0
0 Ib S H 0
I vy b
(T (s)) = 0 -H Izzs -H
0 0 H I.s + D
L 7 1
b
LS 0 0 0 0
0 0 5 0 0 0
II vy b
(T~ (s)) = 0 0 IS -H q
0 0 H ITs + D1 0
0 0 -H 0 Ips + D
q
ﬂ
P
b
I, .S 0 -H 0 0 0
0 I° o 0 0 0
vy
H 0 1P § -H H H
(rtil(sy) = i
0 0 H ITs + Dl 0 0
0 0 -H 0 Ips + D, 0
0 0 -H 0 0 Ips + Dy
.
—
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5.2 Transfer Functlons and Elgenfrequenciles

From (48), the general expression for the transfer
functions which relate the variables of the matrices (wJ(s)) to
the external torque matrices (nJ(s)), one obtains

(49) Wl (s)) = (M) Lnd(s))

where (’l"j(s))-1 is the inverse form of (TJ(S)). It will be shown

later how Coulomb friction affects the behavior of such a system.
Here it suffices to say that depending on the values of the Coulomb

frietion terms ,the carrier must first have attained an angular
velocity in order that motion or a breakaway of the gimbals is
possible. With this in mind and assuming a simultaneous breakway

of all gimbals, one obtains for a certain CMG configuration 2 sets
of transfer functions. The first set describes the behavior of the

respective system as long as no breakway has occured. Then the
variables al(t), Bg(t) and 63(t) are constants and no motion about

the gimbals occurs. The (TJ(S)) matrices are reduced to 3 x 3
matrices. Here they are marked by a star index, i.e., (T*J(s)).

The second set of transfer functions holds for the system
after breakaway has occured.

If breakaway does not occur simultaneously for all gimbals,
more sets of transfer functions are necessary to describe the system's
behavior. One can provide for this analytilcally by suitable linear-
izations of the exact equations of motion.

Furthermore, the breakway-go-stop-etc. behavior of a
gimbal which is a characteristic phenomenon of Coulomb friction

can, as it will be seen, also be represented by suitably chosen
transfer functions.

Assuming that the viscous friction terms are zero, the
following Eigenfrequencies Qg are obtained from (48)

a) from matrices (Ti(s)), before breakaway

I H IT _ . IIT _ H

(50) Q = H Q = 0 s 2 =
e [Ib Ib 11/2 e e [Ib Ib ]l/2

yy zz XX 22
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(b) from matrices (Tj(s)), after breakaway

I H I
(51) Q- = 3 Q7 =H (
e b 1/2 e b
[1,,Ip] I° I

e b
zzIT)

1/2
JIIT H( 3 )
I

Thus there is the ratio for the frequencies of (51)

(52) ol: oll. QiII = 1:/2:/3

Comparing the values of Qg in (50) with those of (51),one notes

the significant difference between the Eigenfrequencies. Those
of (51) are, in general, much higher,

If viscous friction is present, the resulting expressions
are too complicated to show explicity in general form.

Figure 6 is a representation of the transfer functions
for the 1-CMG configuration. As long as no breakaway of the gimbal
has occured, this system 1s represented by the first three blocks

where 0q = 0,

5.3 Influence of Viscous Friction Terms on Characteristic Equations

It is straightforward to obtain from (48) the Eigenfre-
quencies of the characteristic equations for CMG configurations
with no viscous friction. However, for the general case having
viscous friction, the relevant expressions are much more complicated.
One of the most important items which can be derived from the
characteristic equation is whether or not the system 1s stable.
Therefore, in this section, the analysis is concerned with the in-
fluence of the viscous friction coefficients Dl’ D2 and D3 on the

stability of the respective systems with those CMG configurations.
From the application of the Hurwitz stability criterion [6] to the
characteristic equations obtained from (48), one can summarize the
results as follows:
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a) The l-and 2-CMG confilgurations will always be stable for
any values of the viscous friction coeffilcients Dl and D3.

b) With respect to the range of the investigpations which
have been carried out, the 3-CMG configuration will
always be stable for any values in (ft. lb. sec) D; < 1,

Dy 2 1, D3 < 1. This configuration 1s probably stable
for all values of the D's, but thilis has not been
established analytically.

5.4 Accuracy of Linear Models

Of course, 1t is absolutely essential, to establish the
accuracy the linear models (48) relative to the resuvlts obtained
from the computer simulation of the exact equations of motion. It
was found that for step and sinusoidal input functions, provided
the gi?bal angles did not exceed 10 degrees, those errors were less
than 17%.

6.0 INFLUENCE OF COULOMB FRICTION

6.1 Friction as Function of Gimbal Angular Velocity

The models for the representation of the Coulomb friction
coefficient Fo as a functlon of the respective gimbal angular

velocity are shown in Figure 7 and Figure 8. In Pigure 7 the
Coulomb friction coefficient F has the constant value A as fune-

[ S ]

tion of the gimbal angular velocity ¢ and changes sign sLmultaneous—
ly with 5. The behavior of Fg in Figure 8 is somewhat different.

However, this 1s a more precise model for the dependency of Coulomb
friction on speed. The initial value or static friction level is
again designated Ac. After the gimbal angular velocity has attain-

ed the value 6d, the friction coefficient drops to the value Bc and
stays there for any o > 5d' For negative angular gimbal veloclties

the behavior is analogous. The combination of Coulomb and viscous
friction ylelds the total frictional torque for a particular gimbal.
The friction model according to Figure 8 together with a speed
propoirtional viscous friction probably gives the simplest friction
model wnich can be established without losing much accuracy. This
statement is based on data which shows the actual behavior of fric-
tilon for various types of bearings as a2 function of speed and pear-
ing load, see in particular [7] page 178 and page 197.
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Certainly, there is no sudden drop but, lnstead, a
smooth transition from friction level A to B . Yet according

to [7], this change occurs within a very small interval Ag of

the angular veloclty. The advantage of Introducing Coulomb
friction 1in this way 1s twofold, namely, flrst it can be pro-
grammed easlly for the computer simulations and secondly, thils
representation 1s probably the only one which 1s sultable for the
linear analysis of the system.

As first impression from either Fig.7 or Flg. 8, one
recognlzes that for any value of W(al) <A, W(e ) < A and
%y 2

W(B3) <A, in (35), (36); (40); or (44), (45) and (46) where
3
W(al) z H[chos ay + stin alj
(53) W(Bz) = H[stin B, = 0,C08 82]
W(33) = H[QZsin 63 - 2 cos 633

there wlll be no motion about that particular gimbal. In order
that a motion can start or the CMG can breakaway, the wvalues
W(o), (o = %15 Bps 53),must exceed A . At this instant, the

carrier has attained an angular veloclty 0
condition can be formulated as

be The breakaway

(54) W(g) > A

Up to the time of gimbal breakaway the orientation of the relevant .-
spin angular momentum vector 1s fixed with respect to the carriers
thus acting essentially as a fixed reaction body. This severely
stricts the capability to stabilize the carrier's attitude.

Detailed information on this subject can be readily
obtained, e.g., from the discussion in the previous Chapter 5. For
the 2-CMG configuration the Coulomb friction phenomena prevents a
stablillzation effect before gimbal breakaway since the two CMGs stay
at their initial orlientation where the sum of splin angular momentums
is zero. In this connection refer to Equations (50) and (51), which
are expression for the Eigenfrequenclies of the carrier.




BELLCOMM, INC. - 20 -

It is of consiserable interest to know that, depend-
ing, on the value of Ao and on the behavior of the external torque

N as funetion of time, there may be no breakaway at all for a
glven CMG configuration. Thils can be 1lllustrated by the folliow-
ing example. Assume a carrier and a 2-CMG configuration. The
external torque may be glven as

N = Nz = K sin Qot

For instance, both, gravity-gradlent torque and also the aero-
dynamlec torque acting con a space vehlcle which 1s in an orhit
about the earth, can be represented by sinusoidal functions. Now
the angular velocitles about the vehlcle's coordinate axes are
obtained from (49). Explicitly it is wx(s)=0, wy(s)=0, but

K@

(55) wZ(S) = 5 5 2

2
LZZS(S + QO)

or in the time domain

K
(56) Q_ =

2 b
IZZQO

(1 - cos ﬂot)

Now from (56), (54) and (53), respectively, follows that if

R 2HK
(57) A > 5

ZZQO

the CMGs will not breakaway.

6.2 Examples of Coulomb Friction Influence on Attitude Motion

In order to illustrate the influence of Coulomb friction
on the attitude of the carrier some simulation results obtained
from equations (32) through (36) are presented. They hold for a
carrler with a 2-CMG configuration. The external torque function

N and the Coulomb friction coefficlents FU are the variable pa-

rameters. At first, the constant parameters are listed:
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{3 0 0
(1°) = 10°% 0 2 ort. 1b. sec?.; I, = 1.2 £t. b, sec?,
G 0 2
/
H = 2000 ft. 1b. sec.; A = 0.06 ft. 1b.
Initially ﬁl and ﬁ3 are in the Xbecoordinate plane and the
. external torque has only a component about the vehlcles Zb axls.

6.21 External Torque is Step Function

Flgure 9 through Figure 13 show the carrier angular
veloclty Qz together wilth the glmbal angular veloclty &1 as
functions of time with the variable parameter F_,(o = %qs 83).
The external torque 1s the step function

; 0 3 £ <0
N, =
5 ft. 1b. 3 £t > 0

e T .

s

Furthermore, there 18 no viscous friction, -1.e., Dl = Ol’ D3 = 0,
i Because of the nature of the input functlon and with the assumpticon
P ]Fa | = lwx |, it can be readily established that
1 “3
al = - 63 s al = "83

Therefore, 1t suffices to discuss the behavior of just one gimbal,
there the aq gimbal. The calculation ylelds for the breakaway

speed the value sz = 1.72 x 10-3°/sec and breakaway occurs after

12 seconds. With respect to these figures the following explanation
are offered:

Figure 9, F, = constant. After breakaway the angular
velocities @, and &l are
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Qz = sz + 7.9x10-5 sinf gIt°/sec

iy = - 0.715x107% cos (1-Q§It) °/sec
where

Qil = 1.83 1l/sec

The second term of the first equation 1s shown separately on a
larger scale. It would correspond to the time behavior of QZ if

no Coulomb friction was present.

Flgure 10. F_ drops from the value A_ = .06 ft. 1b.
to BG = 0.03 ft. 1b. right at breakaway so that &d = 0, At time
t = 13.83 sec the gimbal stops as &l would change sign there. But

no breakaway can occur now because w(al) < Aa . Therefore, the

1
gimbal remains fixed in the particular angular position

t
S
61 =fald1:

tb

which it has attained now since breakaway. Subsequently the carrier
is spun again by the external torque. Qz increases linearly until

a new breakaway can occur, i.e., for Qz > sz. Comparing the
maximum values of oy in both figures shows clearly the most signif-
icant influence of friction drop on the behavior of oy . The ratio
of the amplitudes amounts to &l(Fig. 10)/ &1 (Fig. 9) * 6 here.

. Figure 11 through Figure 13. Now the frietion drop occurs
at a =-0.0034°/sec., The curves have been obtained for various values

1
of B, namely (ft. 1b), 0.05, 0.03 and 0.01 for Figures 11, 12, and

13, respectively. All Figures show the steep increase of the value
of the gimbal angular velocity which begins the instant of the
friction drop. Basically the behavior of the variables is the same,
Especially from Figure 11 this typical pattern for the motion of the
gimbals of the CMGs can be seen: breakaway, steep increase of gimbal

angular velocity from time of friction drop, stop and subsequent
gimbal rest, new breakaway etc.

k=L RSN Y -
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6.22 External Torque 1s a Sine Functilon

The torque shall be gilven by the expression
NZ = 3,123 sin(not-w)

where 2, = 2.21352x10'3 1/sec. Thils frequency correspond: 50

twice the orbital rate of a space vehicle in a circular orbit at
a height of 270 nautical miles and it takes 5677 seconds to complete
one orbit. Figure 14 shows as the results of a computer simulation

?he external torque NZ together with Qz’ ¥, where y=Q,, w(al),

ays and O respectlvely. It was assumed that Dl=0.l ft. 1lb. and
D3=O.1 ft. 1b. There 1s no drop in Coulomb friction. Again the
motlon of the 63 gimbal 1s equal but opposite in sign with respect
to the motion of the oy gimbal. The viscous friction now damps

out the motion which 1s due to the Eigenfrequency of the system.
The damping has the greatest influence on the time behavior of a.

This can be seen from the splkes 1n &l(t) where in order to
facllitate the drawing, only the highest and the lowest values of
&1 have been indicated.

This Eigenfrequency effect is also present with the
variables 2, and W(al), but in it is so minor that it does not show

up in the figure. That 1s a consequence of the high value of the
breakaway angular velocity 2y

All the phenomena which have iLeen described can readily
be derived from linear analysis, i.e., from Equation (49).

6.3 Attitude Error and Coulomb Friction Drop

Let X Y'z" be an inertially fixed right hand Cartesian
coordinate system and (D), (D)=(%)(0)(Y¥), a transformation matrix
with the three Euler angles vy, 0, ¢ such that [4]

XI"
(D) (Yr)
| "

G)
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and the components of the carrier's angular velocity 8 are given
in terms of these Euler angles as

Qx = ¢ - ¥ sineo
(59) 2, = O cosS¢ + ¥ sin® coso
q, = -0 sind + ¥ cosd coso

so that for small angles (59) may be approximated

>
ce
e

De

(60) 9)

’60

QO
e 22

It follows from the discussions in the previous two Sections 6.21
and 6.22 where only Qz was present that the angular deflection or

attitude error AY of the carrier

(61) AY = y(t) - ¥y = det

had as function of F0 its maximum value when no friction drop
occurred. Thus the case of having a constant value for Fo yield-
ed an upper bound for AvY.

Obviously this statement can now be generalized at least
for all cases where the approximation (60) holds.

7.0 EXTENSION OF LINEAR MODEL TO INCLUDE COULOMB FRICTION

The linear models which have been derived in Chapter 5
can be extended to include the previously described Coulomb friction
phenomena. Here the extension will be presented for the cases which
are discussed in Section 6.2 and are shown in Figure 9 through
Figure 14. Analogously, the respective linear models can be obtain-
ed also for other cases., But, 1n general, it can be noted that
except for simple or speclal cases the linear models will probably
turn out to be too complicated and too laborious for explicit eval-
uations without using computers.
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Such a linear model is established in sections. The

first sectlon covers the interval from the beginning of the
angular motion of the carrier at time zero untll gimbal break-
away occurs at t=tb. Subsequently follows the section from time

of gimbal breakaway to the instant of Coulomb friction drop at
t=td. The third section starts here and ends at time t=ts, when

the gimbals come to a ston. With the fourth section this cycle
starts agaln with the spinning up of the carrier until gimbal
breakaway occurs again.

Explicitly one obtains now:

Section 1: 0 <t < ¢t

b

0 0

(62) 0 = (ritsn | o
wZ(S) nz(s)

where for t=tb

Section 2: t, < t < ¢t

b = d
9] -st
(63) (0(s)) = 22 4+ e P(rt(s))™H(n(s)
where
0 /o
0 0
(w(s)) = wZ(S) ;3 (n(s)) = nZ(s)
&l(s) 0

é3(S) \0 /
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and

a) for the case of having the step function torque, Figure 9
through Filgure 13

n
4

nZ(s) N S

b) for the sine function input, Figure 14

NZ = 3.12 sin(ﬂot + Ty - ¥) 3 Py = 958,

Because at time t=tb, ¥00.2°. Therefore, 1t can be neglected.
Thus -

N_ = 3.12 sin(a_t + T)
and [5H] .

Q _ cos Pb + s sin Pb

0
2 2
S +Qo

Sectlon 3: tg 2t < bt

Q -st -
(u(s)) = =22 + e P(rtl(s)) (n(s))

-st
re  drtl(s))

Q QOO O

where

C = A - B
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i.e., because &1, is negative, Cm1 will be negative here,

and analogously, C will have a positive sign. It 1s further

B

3
assumed that during time interval t, = t <ty the changes of the
respective variables are so small that the matrix (TII(s)) from
the previous section 2 can also be used.

Section 4: t > tg

New spin up of the carrier with both gimbals at rest until next
gimbal breakaway can occur.

Compared wilth the computer runs, the accuracy of the
results which were obtained from this linear model is such that
the errors are less than 19%.

8.0 ACKNOWLEDGMENT

The author sincerely wishes to thank B. D. Elrod,
C. 0. Guffee, and J. Kranton for thelr invaluable suggestions
and assistance during the preparation of this paper.

A

1022=-JWS-=mef J. W.[Schindelin

Attachments
References
Figures 1-14




BELLCOMM, INC.

[1]

2]

[3]

[4]

(5]

[6]

7]

£81]

REFERENCES

Bendlx Eclipse Ploneer
MT-14, 101, 1967: The

Division, Teterboro, N. J.
Descriptlion of the CMG and its

Application to Space Vehicle Control.

Schindelin, J. W.: Bewegpyngsgleichungen elnes Systems
gekoppelter starrer Flugkorper. Zeltschrift fir

Flugwissenschaften, 15,

(1967), No. 11, pp. 432-434,

Goldstein, H.,: Classlical Mechanics. Addison-Wesley
Publishing Co., Inec., 1956, U4th printing.

Elrod, B. and J. Kranton: Unpublished notes on the

Stabilization of space
1967.

vehicles by CMGs. Bellcomm, Inc.,

Doetsch, G.: Anleiltung zum praktischen Gebrauch der

Laplace-Transformation,

Solowdownikow, W, W.:
Regelung. Vol. I., R.

R. Oldenbourg, Munich, 1956.

Grundlagen der selbsttaetigen
Oldenbourg, Munich, 1959.

Akademischer Verein Huette, E. V. (editor): Huette,

Vol. II, 27th printing.
1949,

Wilhelm Ernst and Sohn, Berlin,

Schindelin, J. W.: AAP-Cluster Stabilization by Passive
Control Moment Gyros.

Bellcomm, Inc. TM=-68-1022-7.




INNER GIMBAL

OUTER GIMBAL

OUTER GIMBAL TORQUER

\. INNER GIMBAL TORQUER
FLYWHEEL

FIGURE | - SIXPAC CMG CONFIGURATION




FIGURE 2 - COORDINATE SYSTEMS AND VECTORS




FIGURE 3 - 2-CMG CONFIGURATION. ORIENTATION OF SPIN ANGULAR
MOMENTUM AND GIMBAL ANGULAR VELOCITY VECTORS
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FIGURE 4 ~ DERIVATION GF THE TRANSFORMATIONS (A!) AND (A3)




FIGURE 5 - 3-CMG CONFIGURATION. ORIENTATION OF SPIN ANGULAR
MOMENTUM AND GIMBAL ANGULAR VELOCITY VECTORS
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