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ABSTRACT

In this paper the basic equations of motion for space
vehicles with various passive CMG configurations are presented.
As the exact equations of motion are nonlinear, linear models or
linearized expressions have been established. This is of major
importance especially for system design as the linearized

4	 equations allow one to determine explicitly the influence of
system parameters on performance. It was found that for step
and sinusoidal input functions, the errors due to linearization
are less than 1%.

Special attention was given to friction phenomena, i.e.,
viscous and Coulomb friction, which arise in connection with the
motion of the CMGs about their respective gimbal axes. It was
found that friction decisively influences system performance.
Coulomb friction, in general, severely restricts the attitude
stabilization capability of the CMGs until the space vehicle
has attained a certain angular velocity.
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1.0 INTRODUCTION

.

It is of interest to inquire into attitude stabiliza-
tion of space vehicles by passive Control Moment Gyros for pos-
sible use in the Apollo Applications Program.

A Control Moment Gyro (CMG) is basically a gimballed
reaction wheel with, in general, two gimbals. Tn this arrange-
ment, it is a 2-degree of freedom device if it is assumed that
the angular velocity of the wheel stays constant. Otherwise, a
third degree of freedom is obtained. Torquers at each gimbal
provide that the orientation of the CMG's spin angular momentum
vector can be changed with respect to a reference frame, i.e., a
coordinate system which is fixed to the space vehicle. The
passive CMG considered in this paper has one degree of freedom;
one gimbal stays locked in a certain angular position. Secondly,
the term passive is used to indicate that no external torque is
applied on the CMG through the torquer of the free gimbal. Then
the CMG moves about this gimbal axis only under the influence of
torques which are due to coupling effects from the motion of the
space vehicle.

In this paper the basic equations of motion for space
vehicles with various CMG configurations are presented. As the
exact equations of motion are nonlinear, linear models or linear-
ized expressions have been established. This is of major impor-
tance especially for system design as the linearized equations
allow one to determine explicitly the influence of system parameters
on performance.

Special attention was given to friction which arises
in connection with the motion of the CMGs about their respective
gimbal axes. It was found that"friction decisively influences
system's performance.

Investigations on AAP-cluster stabilization by passive
control moment gyros, the results of which are presented in [8],
are based on this report.
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2.0 DESCRIPTION OF THE SYSTEM

2.1 General Explanations

In its most general configuration the system which will
be analyzed in this paper is composed of a rigid body, called
the carrier, and of an arbitrary number of single degree of free-
dom Control Moment Gyros (CMGs) mounted within the carrier. How-
ever, in the paper, the detailed analysis is restricted to config-
urations with at most 3 CMGs. The so called SIXPAC CMG configura-
tion, as is shown in Figure 1, represents one possible CMG arrange-
ment [1]. These CMGs have basically 2 degrees of freedom, out by
Locking any one of the two gimbals of each CMG, single degree of
freedom devices are obtained. If the particular gimbals are lock-
ed at certain angular positions, specific initial orientations 6f
the spin angular momentum vectors of the CMGs can be arranged. It
is important to select the initial orientations in such a way as to
make the best use of the stabilization properties of the CMGs in
the presence of the external torques that act on the carrier in its
desired attitude.

The CMGs are designated by the index k, , (k=1, 2 , 3) ,with

the corresponding angular momentum vector 9k and the outer and
inner gimbal angles a  and ak.

2.2 Coordinate Systems and System Vectors (See Figure 2)

For the analysis the following right hand Cartesian
coordinate systems and vectors are introduced:

a. The inertially fixed XrYr Zr reference system.

b. A Xb Yb Zb coordinate system which is fixed to the carrier
having its origin at the carrier's center of mass (c.m.) b*

This coordinate system rotates with respect to the iner-

tial system with the angular velocity Q. The system

vector 4k which is referred to this coordinate system
goes from (c.m.) b to the center of mass (a.m.) k , of the

kth-CMG.

c. The XYZ coordinate system with origin at the center of
mass, a.m., of the total configuration (carrier and CMGs).

The system vectors gk and P which are referred to
this coordinate system, go from c.m. to (c.m.) k and c.m.

to (c.m.) b , respectively. The respective XYZ and X b Y b Z b

coordinate axes shall always be parallel.
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d.	 With its origin at the center of mass,	 (c.m.) k , of the

kth - CMG there is a XkYkZk coordinate system.
It is assumed here that the (c.m.) k is identical with

the center of mass of the CMG's flywheel.	 This coor-
dinate system is fixed to the flywheel.	 It rotates with

respect to the carrier with the an ular velocity 2
Also, the free gimbal of the CMG shall go through (c.m.)k.

The orientation of the XkYkZ k coordinate system with

respect to XbYb Z b is given by the transformation

Xk	Xb

(1)	 Y 	 =	 (Ak )	 Y 

'Zk	 z 

whore (Ak ) is, in general, a 3 x 3 matrix.

For the vector	 the expression is obtained [2]

Mkk

(2)	 _ -	
k

Mb +	 Mk
k

where Mk is the mass of the kth-CMG and Mb the mass of the carrier,
respectively.

g'
3.0	 EQUATIONS OF MOTION.	 GENERAL EXFRESSTCNS

3.1	 Carrier

The angular momentum of the total configuration, carrier
and CMGs, with respect to c.m. is given by the expression [2],u }

Equation (20), Qk = 0

(3)	 L=lbsi+	 iSZk +Mk { Rk x (sixk)}
gk	 k
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The vector

(4)
^k = si + 4k

is the total angular velocity of this CMG with respect to inertial

space. I  is the inertia tensor of the carrier without the CMGs.

referred to the 
XbY:bZb 

coordinate system, and I represents the

Inertia tensor of the flywheel of the k th—CMG, referred to X'YZ
coordinates. The third term in (3) takes into consideration
the locations of the CMGs within the carrier. Because, the ;Last

terra is a linear function of the angular velocity si, one can add
its components directly to the components of the first terms in

(3), thus essentially changing the value of the elements of :Lb.
For the investigation in this paper, the third term in (3) will be
neglected. Its influence is, generally, very small and, as laas
been just outlined, this term produces analytically no additional
problems.

From Newton's law the equation for the carrier vehicle's
attitude motion is given by the expression C31

(5) N -- L + Si x L

with N as the vector of the external torque which acts on the

carrier, the angular momentum vector L which -,is expressed in (3),

and its rate of change with respect to time L. In order to evaluate

(5) explicitly, the vectors have to be expressed in the XbYbzb
coordinate system.

The translational motion of the c.m. is given by the
equation

[Mb +	 Mk] dt(l)

where P is the vector of the total external force which acts on

this configuration and V is the translational'velocity of the c.m.
Since it is assumed that every CMG gimbal axis goes through the
center of mass of the respective CMG, there is no coupling between
the translational motion of c.m. and the attitude motions of the
CMGs.

z
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3.2 Kth-CMG

The total angular momentum & of the kth-CMG with
respect to (c.m.) k is

tk = Ik.^k
g

The equation of motion for this CMG is given by the expression r31

(7)
	

qk = Lk + ^k x tk + friction terms

(6)

where k is the external torque that acts on this CMG and Lk is

the time rate of change of the angular momentum tk . Because the
stabilization of the carrier by passive CMGs is considered in this

paper, all vectors Nqk are zero. Here Nk is identical with
the external torque which is provided by torquers. Any other
external torques, e.g., a torque due to gravity gradient phenomenon,
will be neglected. In addition to the inertial terms in (7), which
are obtained by applying Newton's law to (6), frictional torques have
to be taken into account. These arise from friction phenomena due
to the motion about the CMG's gimbal. In order to evaluate (7)

explicitly, all vectors have to be expressed in the X 
k Y k Z k coordinate

system. The components of the inertia terms must be resolved along
the respective gimbal axes. The addition of the appropriate friction
terms finally yields the total equation of motion. The friction terms
considered in this paper are viscous friction and Coulomb friction.
Both phenomena are treated as functions of gimbal angular velocity.

4.0 EXACT EQUATIONS OF MOTION FOR VARIOUS CMG CONFIGURATIONS

4.1 The 2-CMG Configuration
4-	 +	 - ► -►

Figure 3 shows the vectors H l , a l , (k=1), and 
H3' s3'

(k=3) (spin angular momentum and gimbal angular velocity) of the
two CMGs of this configuration. The selection of the CMGs and the
orientation of their respective spin angular momentum and gimbal
angular velocity vectors is such as to obtain for the carrier the
best attitude stabilization properties with respect to external
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torques about the vehicle's Z b coordinate axis. Both spin angular

momentum vectors can move in the X b z b coordinate plane, and their
brespective gimbal angular velocity vectors are parallel to the Y

axis.

4.11 DerJvation of the Transformation (A

According to (1) the transformation

X	 X b

(8) Y	 (Al	 Y b
Z	 z b

gives the orientation of the X 1 Y 1 z I coordinate system with respect
b b b	 1to X Y Z	 According to Figure 11, (AI ) is obtained from two succes-

Ive right hand rotations through the angle al., about the Y b axis,
and the angle	 about the X axis ,, respectively. It is

(9) (A1)

where

Cal	 0	 -3

(10) 0	 1	 0
Sal	0	 Ca

1	 0	 0

IT	 0	 C IT	 S IT

0

	

-S IT	
IT
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The components of the angular velocity ^l are
A

1
^x	 ^l

(13) ny = a l cos 7r1

S21 4 
l 

sin 7r
1

4.12 Dertvation of the Transformation (A3)

Analogously to (8) there is the transformation

X 3	 X 
(14) ,Y 3 a (A 3 ) Y 

Z3	 z 

between the orientation of the XbYb Zb and the X 3Y 3 Z 3 coordinate
systems. ( A 3 ) is derived from two successive right hand rotations:
through the angle S 3 , about the Y  axis, and through the angle 7r3,

about the Z3 axis,
It is

(15) (A3) 	 Or 3 ) (03)

where

0s3

(16) (03)	 0

so
3

C7r3

(17) (7r3) _ -S 7r 3

0

0	 —so3

1	 0

0	 CO3

S7r 3 	0

C7r 3	 0

0	 1
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and explicitly

C,r3CO3	 S
it 	 -CTr3S$3

(18)	 (A3)	 -STr CO 3 Cfr 3	c^ 
so 3	 3

so  0	 C O3

velocity ^3 are

^3

"3

The componets of the angular
to

	

0X	 s3sin

(19)	 Sly	 cos

	

3	
3

	

I z	
'r 3

4.13 Expres sions for the Angular Momentum Vectors

4.131 Carrier

In order to establish the equations of motion of the
carrier, the components of the carrier angular momentum vector

t have first to be expressed in the XYZ coordinate system.
With this in mind one obtains from (3), if the third term in
that formula is omitted, in matrix notation the expression

(L) _ {(I°) + (A1)-1(I1)(A1) + ( A 3 ) 1(13)(A3) )(11 )

(20)+ ( A1 )
-1 ( I1 ) ( f21 ) + (A3)-1(13)0'3)

where ( A1 ) -1 and ( A 3 ) -1 are the inverse matrices of ( Al ) and

(0), respectively. It is assumed that

Ib	 0	 0xx

( 22 )	 (Ib) =	 0	 Ib	 0
yy

0	 0	 Ib
zz
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^ I

11x	
0	 0	 1	 0 0

x	
I	

S

(22) (1	 0	 1 
yy	

0	 0 
IT 	 0

0	 0	 11	 (0 0 1Zz	 T

and accordingly for the case of identical CMGs

IT 0	 0
(23) (13)	 0	 1T	0

0	 0	 IS

and

lb >> I (cos 2 a
1 
+ sin 2	 + IT (sin 2 a

1 
+ Cos 

2 
a )

xx	 S 

I b >> I (sin 2 a
1 

+ Cos 2 
3 + I

T 
(Cos 2 a

1 
+ sin 2

zz	 S 

I b >> 21
yy	 T

H	 H	 H1	 3

and

where

H 1 = 1 .1 ;1 .4 	 H 3 = is; 3

films
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Then from (20) the components of t are explicitly

r	 F
(24)

b
Lx 	 Ixx

L 
	 =	 0

L 
	 C1(S203-S2a1)

0	 C1(S2S3-S2a1)	 S1x

b
Iyy	 0	 y

0	 I b	 S2
zz	 z

Ca l + So 	 0

+ H	 0	 + I^, a l + ^3

1C 3 - Sal	0

where

C1 = ! (I S - IT)

4.132 Control Moment GSrrns

In matrix notation and referred to the respective CMG

coordinates the following expressions for the components of L1

and t 3 are obtained from (6), observing (8) and (14)

(25) (Ll) = ( I1 ) [01 1 + (AI (s^) J

(26) (0) = (1 3 ) [W) + (A3)(g)J

4.14 Equations of Motion

The exact equations for the attitude motion of the
carrier and the equations of motion for the CMGs are derived
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from (24), (25), (26) according to (5) and (6), respectively.
For the carrier one obtains explicitly

Nx	
Ixx 'hx + C

l ([6 z + St X Q ] [S 2s 3 - S2a 1 ]

(27)	 + 2St z [ s 3 C20 - a 1 C2a 1 1) + st y s2 z [I zz - Iyy]
x

SZzIT[al + s 3 ] + H{[Sty + s 3 1CS 3 - [Sa y + a1]Sal}

N	 Ib 6 + I [a + S ] + C E n  - St 2 ][S2S - S2a ]y	 yy y	 T	 3	 1 z	 x	 3	 1

(2$)	 + St x St z [Ixx - IZ Z ] + H { SZ X [Sa 1 - C s 3 ] + St z [ca 1 + so 3]}

Nz	 IZZ 6	 + C
1 {[ 6X 

- St y S I ES20 - S2a 1 I + 2Stx (^ 3C20

- a 1 C2a 1 ]} + S2 x SZ y [
Ib

- IXx ] + Q IT [ al + 63]

(29)
- H { [St y + a 1 Ic a 1 + [sty + s3 ] S S3}

The equations of motion for the two CMGs about the respective
gimbal axes are

0 = IT [oi 1 +Shy ] + H[Q z Ca 1 + QXSa11

(30) + [ IS - IT ] { [Sa 2 - 0 211 S2a 1 + St X0 C2a 1 }

+ friction terms

0 = IT [ S 3 + Sty ] + H[St zsa 3 	0xCS31

(31) + [ IS - IT ]{[SZz - QX]2S 2 0 3 - QxS1zC2s3}

+ friction terms

r`
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Retaining only the major terms in (27) through (31) yields the
following set of 5 equations which together describe finally the
attitude motion of the carrier.

(32) Nx=Ib6 +0 Q [ Izz -Ib y I+H{[Sty + A lcsxx

- [St y + a1ISa1}

(33) NY = Iby^ + S x 0 z [Ixx - I I + H{St z [Ca l + Ss3 I

+ 0x [Sa l - cs3D

(34) Nz = IZ Z s2 z + St x 0	 [ Iyy - IXx I - H{[sty +	 ^ 31Sa3

+	 [St y + a l Ica l }

(35) 0 = ITa l + H[Q Sa l + Q Ca l ] + friction terms

(36) 0 = IT $ 3 + H[92 z so 3 - 92 x CS 3 1 + friction terms

4.2 The l-CMG Configuration

Thefollowing equations of motion for this case hold
for a configuration as it is shown in Figure 3 or Figure 4 except
that ^ 3 is zero now. Again, only the terms of major influence

have been retained [4]

(37) Nx = Ib 6 + S2y 92	 [Ib
zz - Ib ] - H[Q	 + al]Sal

YY Y

(38) N = Ib SZ	 + 0 Q [Ib - Ib ] + H[Q Sa	 + St Ca1	 1
Y

yy y	 x z	 xx zz x	 z
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(39) Nz - Izz^z + gxpy [Ib - 
IXx ] - H[Q + u 1l Ica l

(40) 0 = I Ta 1 + H[Sz xSa 1 + S1 zca 1 + friction terms

4.3 The 3-CMG Configuration

Analogously the equations of motion for a 3-CMG
configuration can be obtained. Here they are presented for the

case shown in Figure 5. The spin angular momentum vector H 2 of
the third CMG can movein the Y 

b z b coordinate plane. The gimbal
angular velocity 0 2 is parallel to the Xb axis. The equations are [4],

again retaining the major terms,

(41) N 	 Ixx^x + 0y 0 z [I zz — Iyy ] + H{[ny + R3lc^

- [St y + a 1 ]SU 1 + Qy SR 2 - QzcR2}

(42) N  = I Yy0y + 0 x 0 z [Ixx - I Zz ) + H{52 x ,Sa 1 - [st x + a21%

- 0 x ca 3 + St z [ca l + SR3]}

(43) Nz	 I z	 + 0 x 0y[1b	 Ixx] + I-i{[Stx + ^2]c^

- EQy + a l ]ca l - EQy + a3]s^3}

(44) 0 = I T a 1 + H[Q Sa l + 0 ca l ] + friction terms

(45) 0 = IT 6 2 + H[Q yso 2 - 0 z ca 2 ] + friction terms

(46) 0 = ITS 3 + H [ S2 z S R3 - 1xca 3 ] + friction terms
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5.0 DERIVATION OF L'I'NEAR MODELS

5.1 Linearization and Laplace Transformation of the Exact
Equations of Motion

From the equations of motion which have been established
for various CM ("F configurations, linnor expression are now obtained..
Subsequently they are Laplace-transformed. These expressions are
the basis for the linear models.

First the equations of motion are linearized by Taylor
series expansions about certain Initial values of the respective
variables which are marked by the index 0, namely in this paper

a10	 0	 x0	 10
(47) 1320 =	 0	 zyo = 0	 ;	 A20 = 0

$ 30	 -7r/2	 IQZo	 R3o

As for the friction terms, it is assumed that they can be represent-

ed by speed proportional viscous friction terms. Thus, Dlal, D2132

and D3 3 are these terms for the a l , 13 2 and 13 3 gimbal axis, respec-

tively. However, in Chapter 6,i_t ,rill be shown how Coulomb friction
phenomena can also be incorporated in these models. The results of
executing the previously described steps can be represented by the
follow-ing expression where the index J, (ti = I, IIJII) , refers to the
1- , .9- and 3-CMG configuration, respectively.+)

(48) (n`l(s)) _ (T.j(s) )'.^''(x^,))

where

	

n (s)	 n (s)	 n (s)

	

(n (s)) _ nx(s)	 (nI:C(^)) = nx ( s) 	 (n	 (s)) = nx(s)
	n z (s)	 nz(s)	 nz(a)

0	 0	 0
0	 0

0

+)^
s is the operator of the Laplace transform. All variables in

(n) (n) (n)
the time domain, except for the gimbal variables al, 132-1 	 are

represented by capital letters; transformed variables by small
letters [5].

.a
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wx (s)	 wx(s)	 / WX (s)
T	

wy(s)	
II	

WV(s)	 w 

y 

(s)

	( w (s)) = w Z (s)	 ;	 ( w	 ( s )) = w Z (s) (w	 (s)) = 	w(s)

	

a l (s)	 a1(s)	 az(S)

Y
s)	

1

 s2(s)

A3( s)

r
a

Ixx s 0 0 0

0 b s
yy

H 0

(TI(s))	
= 0

-H IzZS -H

0 0 H IT 	 + D1

b
XX S 0

0 b  syy 0 0	 0

(T	 (S)=
0 0

I zs
-H	 H

0 0 H ITs + D1	 0
0 0 ,:ri 0	 1 T + D?

(TIII(s))

b
Ixxs 0 -H 0 0 0

0 Ib yy 0 0 0 0

H 0 IZZs -H H H

0 0 H ITs + D1 0 0

0 0 -H 0 ITs + D2 0

0 0 -H 0 0 1 T + D3
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5.2 Transfer Functions and Eigenfrequencies

From (48), the general expression for the transfer

functions which relate the variables of the matrices (w` ) (s)) to

the external torque matrices (n J (s)), one obtains

(49)	 (wi(s)) _ (TJ(s))-1(nJ(s))

where (TJ (s)) -1 is the inverse form of (TJ (s)). It will be shown
later how Coulomb friction affects the behavior of such a system.
Here it suffices to say that depending on the values of the Coulomb
friction terms,the carrier must first have attained an angular
velocity in order that motion or a breakaway of the gimbals is
possible. With this in mind and assuming a simultaneous breakway
of all gimbals, one obtains for a certain CMG configuration 2 sets
of transfer functions. The first set describes the behavior of the
respective system as long as no breakway has occured. Then the
variables a 1 (t), S 2 (t) and a 3 (t) are constants and no motion about

the gimbals occurs. The (T J (s)) matrices are reduced to 3 x 3

matrices. Here they are marked by a star index, i.e., (T*J(s)).

The second set of transfer functions holds for the system
after breakaway has occured.

If breakaway does not occur simultaneously for all gimbals,
more sets of transfer functions are necessary to describe the system's
behavior. One can provide for this analytically by suitable linear-
izations of the exact equations of motion.

Furthermore, the breakway-go-stop-etc. behavior of a
gimbal which is a characteristic phenomenon of Coulomb friction
can, as it will be seen, also be represented by suitably chosen
transfer functions.

Assuming that the viscous friction terms are zero, the

following Eigenfrequencies See are obtained from (48)

a) from matrices (T*(s)), before breakaway

r
P

_
(50)	 QI	 H

e	 Ib I 	 1/2
YY zz^

II
- 0	

III	 H
^e	 ' ^e	

- ^Ib 
I  1 1 2

xx zz

L_
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(b) from matrices (T^(s)), after breakaway

1/2
(51) Ste =	 b 

H 
1/2 ; ^eI = H	 b 2

[IzzIT^

	
IT

VIII = 
H	

3 1/2

e	
IzzIT)

Thus there is the ratio for the frequencies of (51)

(52) Ste : Q I : QIIII = 1: v:

Comparing the values of St e in (50) with those of (51),one notes

the significant difference between the Eigenfrequencies. Those
of (51) are, in general, much higher.

If viscous friction is present, the resulting expressions
are too complicated to show explicity in general form.

Figure 6 is a representation of the transfer functions
for the 1-CMG configuration. As long as no breakaway of the gimbal
has occured, this system is represented by the first three blocks
where al = 0.

5.3 Influence of Viscous Friction Terms on Characteristic Equations

It is straightforward to obtain from (48) the Eigenfre-
quencies of the characteristic equations for CMG configurations
with no viscous friction. However, for the general case having
viscous friction, the relevant expressions are much more complicated.
One of the most important items which can be derived from the
characteristic equation is whether or not the system is stable.
Therefore, in this section, the analysis is concerned with the in-
fluence of the viscous friction coefficients D1. D2 and D3 on the

stability of the respective systems with those CMG configurations.
From the application of the Hurwitz stability criterion [6] to the
characteristic equations obtained from (48), one can summarize the
results as follows:
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a) The 1-and 2-CMG configurations will always be stable for
any values of the viscous friction coefficients D.

1
	D3,

b) With respect to the range of the investigations which
have been carried out, the 3-CMG configuration will
always be stable for any values in (ft. lb . sec) Dl < 1,
D2 < 1, D3 < 1. This configuration is probably stable

for all values of the D's, but this has not been
established analytically.

5.4 Accuracy of Linear Models

Of course, it is absolutely essential, to establish the
accuracy the linear models (48) relative to the resilts obtained
from the computer simulation of the exact equations of motion. It
was found that for step and sinusoidal input functions, provided
the gimbal angles did not exceed 10 degrees, those errors were less
than 1%.

6.0 INFLUENCE OF COULOMB FRICTION

6.1 Friction as Function of Gimbal Angular Velocity

The models for the represen,ation of the Coulomb friction
coefficient F  as a function of the respective gimbal angular

velocity are shown in Figure 7 and Figure 8. In Figure 7 the
Coulomb friction coefficient 

FCr 
has the constant value A

G	 func-
tion of the gimbal angular velocity Q and changes sign simultaneous-

ly with Q. The behavior of F  in Figure 8 is somewhat different.

However, this is a more precise model for the dependency of Coulomb
friction on speed. The initial value or static friction Level is
again designated A a . After the gimbal angular velocity has attain-

ed the value Q d , the friction coefficient drops to the value B  and

stays there for any cr > ca d . For negative angular gimbal velocities

the behavior is analogous. The combination of Coulomb and viscous
friction yields the total frictional torque for a particular gimbal.
The friction model according to Figure 8 together with a speed
proportional viscous friction probably gives the simplest friction
model wnich can be established without losing much accuracy. This
statement is based on data which shows the actual behavior of fric-
tion for various types of bearings as a function of speed and bear-
ing Load, see in particular C71 page 178 and page 197.

4
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Certainly, there is no sudden drop but, instead, a
smooth transition from friction level A to B . Yet according

Cr
to 171, this change occurs wit hin a very small i nterval Aa of
the angular velocity. The advantage of introducing Coulomb
friction in this way is twofold,, namely, first it can be pro-
grammed easily for the computer simulations and secondly, this
representation is probably the only one which is suitable for the
linear analysis of the system.

As first impression from either Fig.7 or Fig. 8, one
recognizes that for any value of W(a l ) < Aa

l 
.9 W(a 2 ) < AB 

2 
and

W(s 3 ) < A $ in (35), (36); (40); or (44), (45) and (46) where
3

W(aI)	 H[SZ zCos al + Q xsin all

(53) W(R2) = HEOysin S2	 QzCos X21

W(s 3 ) = H[Q sin	
- lx cosR3^

there will be no motion about that particular gimbal. In order
that a motion can start or the CMG can breakaway, the valuesWO,

(a = a I , ^ 2 , R 3 )^must exceed Air . At this instant, the

carrier has attained an angular velocity b, The breakaway
condition can be formulated as

(54) W(a) > Aa

Up to the time of gimbal breakaway the orientation of the relevant
spin angular momentum vector is fixed with respect to the carrierf--'y
thus acting essentially as a fixed reaction body. This severely
stricts the capability to stabilize the carrier's attitude.

Detailed information on this subject can be readily
obtained, e.g., from the discussion in the previous Chapter 5. For
the 2-CMG configurat".on the Coulomb friction phenomena prevents a
stabilization effect before gimbal breakaway since the two CMGs stay
at their initial orientation where the sum of spin angular momentums
is zero. In this connection refer to Equations (50) and (51), which
are expression for the Eigenfrequencies of the carrier.

.m	 _
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It is of cons.derable interest to know that, depend-
ing on the value of Ac and on the behavior of the external torque

9 as function of time, there may be no breakaway at all for a
given CMG configuration. This can be illustrated by the follow-
ing example. Assume a carrier and a 2-CMG configuration. The
external torque may be given as

9-Nz=K sin Qot

For instance, both, gravity-gradient torque and also the aero-
dynamic torque acting on a space vehicle which is in an orbit
about the earth, can be represented by sinusoidal functions. Now
the angular velocities about the vehicle's coordinate axes are
obtained from (49). Explicitly it is wx (s) = 0, wy (s) =Q, but

Kf2
(55) w (s) _ .^	

o

z	 1 zzs (s 2 + Q0 )

or in the time domain

(56) Q z	
T 

b K 
(1 - cos Pot)

zz0o

Now from (56), (54) and (53), respectively, follows that if

(57) A ; 2HK

6 Izz^o
the CMGs will not breakaway.

6.2 Examples of Coulomb Friction Influence on Attitude Motion

In order to illustrate the influence of Coulomb friction
on the attitude of the carrier some simulation results obtained
from equations (32) through (36) are presented. They hold for a
carrier with a 2-CMG configuration. The external torque function

rJ and the Coulomb friction coefficients F a are the variable pa-

rameters. At first, the constant parameters are listed:

z

2

r1
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.3 0 0

(xb ) = 10 6 0. 2 0 ft. lb . sect.; I  = 1.2 ft. lb . sect.

0	 2.
r

Ii = 2000 ft. lb . sec.; A. = 0.06 ft. lb .

initially fl 1 and it  are in the x Yb coordinate plane and the

external torque has only a component about the vehicle's Z b axis.

6.?l external Toraue is Step Function

Figure 9 through Figure 13 show the carrier angular
velocity n z together with the gimbal angular velocity a 1 as

functions of time with the variable parameter Fa ,(a	 a 1 , s3).

The external torque is the step function

0	 ; t < 0

5 ft^ lb. ; t > 0

Furthermore, there is no viscous friction, , i.e., D1	01 , D3	0.

Beca,u -e of tho nature of the input, function and with the assumption
IF Ck  ( = I r' $_, 1, it can be readily established that

a1 = - R3 , a1 
= --^3

Therefore, it suffices to discuss the behavior of just one gimbal,
there the a 1 gimbal. The calculation yields for the breakaway

speed the value Gb = 1.72 x 10-3 °/sec and breakaway occurs after

12 seconds. With respect to these figures the following explanations
are offered:

Figure 9. FCj = constant. After breakaway the angular

velocities 0 Z and a1 are
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s

St Z = SZ zb + 7.9x10
-5

 sinil IIt9/sec

a l = - 0.715x10
-1
 cos (1-Pli t) 0/sec

where

QII 
= 1.88 1/see

The second term of the first equation is shown separately on a
larger scale. It would correspond to the time behavior of ^Z if

no Coulomb friction was present.

Figure 10. F. drops from the value AQ = .06 ft. lb .

to B^ = 0.03 ft. lb . right at breakaway so that ad = 0. At t.;.iae

t = 13.83 sec the gimbal stops as a l would change sign there. But

no breakaway can occur now because W(a 1 ) < Aa1 . Therefore, the
gimbal remains fixed in the particular angular position

is

0	 =	 oc1d. t

tb

which it has attained now since breakaway. Subsequently the carrier
is spun again by the external torque. 0 Z increases linearly until

a new breakaway can occur, i.e., for Q  ? ozb . Comparing the

maximum values of al in both figures shows clearly the most signif-

icant influence of friction drop on the behavior of a l . The ratio

of the amplitudes amounts to a1 (Fig. 10)/ al (Fig. 9)	 6 here.

Figure 11 through Figure 13. Now the friction drop occurs
at a	 6.00340/sec. The curves have been obtained for various values

of B6 namely (ft, lb), 0.05, 0.03 and 0.01 for Figures 11, 12, and

13, respectively. All Figures show the steep increase of the value
of the gimbal angular velocity which begins the instant of the
friction drop. Basically the behavior of the variables is the same.
Especially from Figure 11 this typical pattern for the motion of the
gimbals of the CMGs can be seen: breakaway, steer increase of gimbal
angular velocity from time of friction drop, stop and subsequent
gimbal rest, new breakaway etc.

4	
^ 1
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6.22 External Torque is a Sine Function

The torque shall be given by the expression

NZ
 = 3.123 sin(pot-Y)

where Q 0 = 2.21352x10 -3 1/sec. This frequency correspond o

twice the orbital rate of a space vehicle in a circular orbit at
a height of 270 nautical miles and it takes 5677 seconds to complete

r	 one orbit. Figure 14 shows as the results of a computer simulation

the external torque N  together with Q z , y, where ^=Q Z , W(al)3

a l , and a l , respectively. It was assumed that D 1 =0.1 ft. lb . and

D3=0,1 ft. 1b. There is no drop in Coulomb friction. Again the

motion of the R 3 gimbal is equal but opposite in sign with respect

to the motion of the a l gimbal. The viscous friction now damps

out the motion which is due to the Eigenfrequency of the system.
The damping has the greatest influence on the time behavior of a.

This can be seen from the spikes in a l (t) where in order to

facilitate the drawing, only the highest and the lowest values of

&I have been indicated.

This Eigenfrequency effect is also present with the
variables 0 z and W(a1 ), but in it is so minor that it does not show

up in the figure. That is a consequence of the high value of the
breakaway angular velocity Qzb'

All the phenomena which have *teen described can readily
be derived from linear analysis, i.e., from Equation (49).

'	 6.3 Attitude Error and Coulomb Friction Drop

Let X r Y r Z r be an inertially fixed right hand Cartesian
coordinate system and (D), (D)=(O (e)(Y), a transformation matrix
with the three Euler angles T. e, (D such that [4]
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and the components of the carrier's angular velocity si are given
in terms of these Euler angles as

0X = 1 - ^ sine

(59)	 Shy = o coso +	 sino cose

!	 nz = -o sinO +	 coso cose

so that for small angles (59) may be approximated

X

(60)^y ti e

S2 z ti
t

It follows from the discussions in the previous two Sections 6.21
and 6.22 where only Q  was present that the angular deflection or

attitude error AT of the carrier

t

(61)	 AT	 Y(t) - Y0 =	 0zdt

0

had as function of F  its maximum value when no friction drop

occurred. Thus the case of having a constant value for F 6 yield-

ed an upper bound for AYE.

Obviously this statement can now be generalized at least
for all cases where the approximation (60) holds.

7.0 EXTENSION OF LINEAR MODEL TO INCLUDE COULOMB FRICTION

The linear models which have been derived in Chapter 5
can be extended to include the previously described Coulomb friction
phenomena. Here the extension will be presented for the cases which
are discussed in Section 6.2 and are shown in Figure 9 through
Figure 14. Analogously, the respective linear models can be obtain-
ed also for other cases. But, in general, it can be noted that
except for simple or special cases the linear models will probably
turn out to be too complicated and too laborious for explicit eval-
uations without using computers.

F

I
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I

Such a linear model is established in sections. The
first section covers the interval from the beginning of the
angular motion of the carrier at time zero until gimbal break-
away occurs at t =t b . Subsequently follows the section from time

of gimbal breakaway to the instant of Coulomb friction drop at
t=t d . The third section starts here and ends at time t=t s , when

the gimbals come to a stop . With the fourth section this cycle
starts again with the spinning up of the carrier until gimbal
breakaway occurs again.

Explicitly one obtains now:

Section 1: 0 < t < t 

0	 0

( 62)	 0	 = (T 	 -1 0

w z (s)	 nz(s)

where for t=tb

0

(^) = 0
0 zb

Section 2: t  < t < td

(63)	 (W(s)) _ "zb + e-stb(TII(s))-1(n(s))s

where

0

0

(w(s))	 Wz(s)

al(s)

s3(s)

0

0

(n(s))	 nz;s)

0

0

u
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and

a) for the case
through Figu

n z (s) _

b) for the sine

of having the step function torque, Figure 9
re 13

n
z
s

function input, Figure 14

NZ = 3.12 sin(a 0t + rb	 T) ' rb	 9otb

Because at time t=t b , T ,0.2 0 . Therefore, it can be neglected.

Thus

.Nz = 3.12 sin(O0t + r b )

and 151

Q  cos rb + s sin rb
n Z(s) _ 3.12	 2	 ,2

s + Q 

Section 3: t d < t < is

-st
(W(s)) = Sb+ 	 e	 b(7.'II(s))(n(s))

0
-std (TII (s)) ^e 

Cal

^s
where	 3

L = A - Ba l	a1	 al

C $3 
= A a 3 — 

B 
a 3
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i.e., because al , is negative, C a will be negative here,
1

and analogously, C s will have a positive sign. It is further
3

assumed that during time interval tb < t < td the changes of the

respective variables are so small that the matrix (T II (s)) from
the previous section 2 can also be used.

'	 Section 4:	 t > is

•	 New spin up of the carrier with both gimbals at rest until next
gimbal breakaway can occur.

Compared with the computer runs, the accuracy of the
results which were obtained from this linear model is such that
the errors are less than 1%.
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