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NOTICE 

This report was prepared as an account of Government-sponsored 
work. Neither the ·United States, nor the National Aeronautics 
and Space Administration (NASA), nor any person acting on 
behalf of. NASA: 

A.) Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, comp.Leteness, 
or usefulness of the information contained in this 
report, or that the use of any information, apparatus, 
method, or process disclosed in this report may not 
infringe p:.'ivately-owned rights; or 

B.) Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of, any infor
mation, apparatus, method or process disclosed in 
this report. 

As used above, "person acting on behalf of NASA" includes 
any employee or contractor of NASA, or employee of such con
tractor, to the extent that such employee or contractor of NASA 
or employee of such contractor prepares, disseminates, or 
provides access to any information pursuant to his employment 
or contract with NASA, or his employment with such contractor. 
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ABSTRACT 

Various investigations were made to evaluate 9Cr-IMo steel as a mercury 

containment material for use in the SNAP-8 boiler. Analysis and experimental data 

indicate that mercury corrosion of 9Cr-IMo can be described as a mass transfer 

process of soluble constituents of the steel into mercury. Mercury corrosion rate 

is maximum under wetted condition and only such data should be used in evaluating 

the suitability of the 9Cr-IMo steel. This report summarizes the corrosion studies 

made to evaluate 9Cr-LMo steel. 
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I. INTRODUCTION 

SNAP-8 is a 35 kwe turboelectric nuclear space power system using a mercury 

Rankine cycle, and powered by a NaK-cooled reactor. A simplified system schematic 

is shown in Figure 1. The operating life requirement for the system is a minimum 

of 10,000 hours. Inasmuch as the maximum temperature and liquid velocity of the 

mercury in the system occurs in the boiler, the operating condition of this com

ponent defines the requirement for a mercury containment material of this system. 

Based on. solubility of elements in mercury, refractory metals are most 

resistant to mercury corrosion (Figure 2). Of the conventional state-of-the-art 

alloy systems, however, the iron based alloys are preferred for minimal mercury 

corrosion potential. The 9Cr-lMo steel was selected as a candidate SNAP-8 mercury 

containment material based on its high temperature strength, oxidation resistance, 

and resistance to corrosion by mercury. At the time of this selection there was 

insufficient data to reliabily establish its corrosion rate under SNAP-8 operating 

conditions. Since the selection of 9Cr-lMo steel for the SNAP-8 system, a signif

icant body of mercury corrosion test data has been generated by Aerojet, TRW, and 

Lewis Research Center, among others. These tests indicate a corrosion rate that 

apparently is strongly dependent on system design and operating conditions. The 

data are insufficient to accurately determine the life of 9Cr-lMo steel in SNAP-8 

use. The capability of the material to meet SNAP-8 system life requirements was 

evaluated by the application of mass transfer theory and experimental data obtained 

in subscale mercury loop tests. This report summarizes this evaluation. 

A. HYPOTHESIS 

To determine the suitability of 9Cr-lMo steel for the SNAP-8 boiler, 

the hypothesis used is that corrosion is controlled by the diffusion of iron across 

liquid boundary layer adjacent to the surface of the 9Cr-lMo steel. This hypothesis 

permits confining the study to the pre-heat region of the boiler where maximum 

liquid velocity and maximum temperature occurs. The superheat region of the boiler, 

although operating at higher temperature, will not have as much liquid phase in 

contact with the steel surface. 

1 



B. METHOD OF SOLUTION 

Using the above hypothesis the method of solution was as follows: 

1. Develop an analytical expression to describe the corrosion along. 

the preheat section using the heat-mass transfer analogy. 

2. Calculate the co'rrosidn rate in the preheat region of test 

boilers using the above equation for comparison with. experimental va.lues. 

3. Compare the experimental values of corrosion rate obtained in 

loop tests with predicted values to validate the analytical expression. Earlier 

work on capsule and loop tests designed to screen materials for SNAP-8 boiler 'is 

not suitabl~ for the present purpose. The capsule does not have a geometry that 

defines liquid velocity.well~ Since the early loop tests were conducted, complete 

local wetting of the boiler surface was found to be n,ecessary to ensure reproduci

bility of tests. Complete wetting is necessary to obtain the boiler heat-transfer 

performance, but under such a,case the corrosion rate is also its maximum. A test 

series (designated 4A) was performed to test the hypothesis. 

4. Using the established' equation,predict the corr'osion expected 

in a SNAP-8 boiler after 10,000 hours of operation. 

C. 9Cr-lMo STEEL 

The 9Cr-lMo alloy is a ferritic steel alloy that has been used mainly 

for its resistance to sulphide corrosion and oxidation resistance to l300°F. The 

chemical composition of 9Cr-lMo steel is given below in weight percent. 

Carbon 0.015 Max. Chromium 8 to 10 

Molybdenum 0.90 to 1.10 Manganese 0.30 to 0.60 

'Phosphorus 0.03 Max. Sulphur 0.03 Max. 

Silicon 0.50 to 1.00 Iron Balance' 

The 9Cr-lMo alloy is used in the annealed condition for high-temperature 

service. The stability of 9Cr-lMo 'is good for long-time exposure to elevated . 

temperatures. 
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Typical values of elevated temperature tensile tests and effect of 

exposure to temperature are shown in Table 1. Figure 3 illustrates the creep and 

stress rupture properties of 9Cr-lMo steel. 

The ASME Boiler and Pressure Vessel Code, Section VIII, gives the 

following values for allowable stress at temperature: 

Temperature, of Stress, psi 

900 12,000 

1000 8,500 

1100 3,300 

1200 1,500 

As noted from the composition of 9Cr-lMo steel, this alloy has no 

intentional nickel alloy addition as do most high temperature strength alloys. At 

the operating temperatures of the SNAP-8 boiler" nickel is a hundred times more 

soluble in mercury than iron, and ten times more soluble than chromium (Figure 2). 

Therefore, 9Cr-lMo steel, which is a commercially available material, appeared to 

represent the best balance between the strength and oxidation requirements and the 

mercury corrosion resistance requirements for the SNAP-8 boiler. 
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II. CONCLUSIONS 

Analytical and controlled experimental studies conducted on the 9Cr-lMo 

corrosion by mercury leads to several conclusions regarding the use of this alloy 

in the SNAP-8 system. 

1. Corrosion of 9Cr-lMo by flowing mercury is by dissolution of the alloy 

components by mercury. 

2. Corrosion rate'is velocity dependent which suggests that the controlling 

mechanism is the tr~nsport of solute molecules,through the laminar sublayer by 

molecular diffusion. 

3. Corrosion rate can be predicted by the mass-transfer equation. 

4. Corrosion of 9Cr-lMo in a high-temperature region of the SNAP-8 system 

results in a mass-transfer deposit in a cooler region of the system. 

5. Corrosion of 9Cr-lMo calculated by the mass-transfer equation in a 

SNAI;>-8 system i,ndicates that,. under a fully wetted condition desired for the boiler 

p~rformance, 9Cr~lMo is not suitable for lO,OOO-hr service. 

6.. Lower velocity boiler plug such as the multipassage plug results in a 

lower corrosion rate. 

7. In the SNAP-8 boiler, a region of high temperature and high liquid 

velocity, materials insoluble in mercury, such as tantalum and columbium, are 

preferable to 9Cr-lMo steel. 
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III. INITIAL EVALUATION OF 9Cr-lMo STEEL MERCURY CORROSION RESISTANCE 

There. are three tests methods usually employed when evaluating the liquid 

metal corrosion resistance of engineering alloys such as 9Cr-lMo. These are: 

• Capsule tests 

• Thermal convection loop tests 

• Scaled dynamic loop tests 

When capsule tests and thermal convection loop tests are used, it is not 

possible to simulate in one test the conditions found in the mercury Rankine cycle 

that is used in the SNAP-8 system. In addition to the above laboratory tests, 

full-scale prototype component operation also provides corrosion data. In the 

evaluation of 9Cr-lMo steel for mercury corrosion resistance at SNAP-8 condit1ons 

all four types of tests mentioned above have been conducted and are summarized 

below. 

A. CAPSULE TESTS 

The capsules used in these tests were tubular, made of 9Cr-lMo, and 

had a small quantity of mercury sealed inside under vacuum. The capsules were 

oriented vertically and the bottom part of the capsule was heated causing the 

mercury to boil and condense in the cooler top part of the capsule. 

The corrosion found in these capsules showed a general solution attack 

on the top portion of the capsule where the mercury had condensed and run down the 

wall. The extent of corrosion was controlled by the temperature (1000 to l250°F) 

of the capsule. At the higher temperatures of l250°F, a roughening of the surface 

could be observed and some intergranular penetration. (Ref. 1, 2, 3, and 4) 

The capsules tests indicated that 9Cr-lMo steel was superior to other 

high-temperature alloys such as AISI Type 316 SS and Haynes 25, a cobalt base 

alloy. These alloys contain an appreciable nickel alloy addition that is readily 

dissolved by the mercury. Since the capsule test could not duplicate the expected 

conditions found in the SNAP-8 system, an estimate of corrosion penetration per 

unit time could not be calculated from these tests. 

5 



B. THERMAL CONVECTION LOOPS 

Thermal conve~tion loops of 9Cr-lMo steel were operated and evaluated 

to further evaluate this material for mercury corrosion resistance and to evaluate 

mercury corrosion product separators. This study is reported in Reference 5. 

These loops were operated with a boiling-condensing temperature of , 

1075c F, a superheat temperature of ll80c F and a subcooled temperature of 500c F. 

The operating time for each of the four loops was 1000 hr at an estimated mass 

flow of 7 Ib/hr. 

, The evaluation of these loops revealed tube wall'pitt~ng to a depth of 

0.0005 to 0.005 in. immediately' above the condenser and no detectable wall recession. 

As was the case for the capsule tests, no definite conclusion could be 

reached as to the rate of corrosion because of the extremely low mass flow in these 

loops (7 Ib/hr vs 12,000 Ib/hr in the full-scale system). 

C • SCALED DYNAMIC LOOP TESTS 

The data from the capsule and thermal convection test did not result 

in corrosion data that could be applied to the full-scale SNAP-8 system by any 

proven method. Therefore, three pumped corrosion test loops were operated that 

simulated the condition found in the SNAP-8 mercury'system. The mass flow of these 

loops was scaled down from the full-scale system. 

1. TRW Loop 

This loop was fabricated from 9Cr-lMo clad with Type 316 SS and 

was used to evaluate corrosion and corrosion product separator techniques. The 

mass flow of this loop was 100 Ib/hr while all other conditions (temperatures and 

pr~ssure) found in the SNAP-8 system were closely simulated. The results from 

this loop were reported in Reference 6. 

Corrosion evaluation of this loop revealed even solution attack 

and penetration from 0.0003 in. to 0.0027 in~ with the deepest penetration at the 

midpoint of the boiler. No appreciable attack was observed in the superheat 

section of the boiler. 
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2. Aerojet Loops 

Two scaled corrosion loops (Corrosion Loop 3 and 4) were 

constructed to study corrosion and mass transfer in the SNAP-8 mercury system. 

These loops were identical and had a mass flow of 500 Ib/hr of mercury. The loop 

is described in Section V, Experimental Study, of this report. 

Corrosion Loop 3 (CL3) was operated for 4400 hr and was then 

completely dismantled and evaluated. During the operation of this loop the problem 

of boiler conditioning, or changing boiler performance, was encountered. Corrosion 

I,oop 4 (cL4) was started with a boiler of the Damc dCDign as CL3, but when the 

boiler performance was poor, design changes were made to the boiler inlet plug to 

overcome this problem. After the boiler in CL4 had operated for approximately 

2500 hr, it was removed and replaced with another boiler. The experiments with 

the second boiler in CL4 are described in Section 'V of this report. 

A summary of the evaluation of CL3 and the first boiler operated 

in CL4 is given below: 

a. Corrosion Loop 3 (CL3) 

The components from the loop (described in Ref. 7) were 

disassembled and all tubing in the loop was split longitudinally for examination. 

Component evaluation other than the boiler are included in this summary to support 

the conclusion that the SNAP-8 mercury corrosion problem is confined to the boiler. 

The operating history of CL3 is given in Ref. 8 and 9. 

(1). Mercury Boiler 

The temperatures of the 9Cr-lMo steel tubing along 

the mercury boiler are considered to be those given by NaK-temperature profiles. 

As for the NaK side of the boiler, the corrosion found on the mercury side (interior 

of the tUbing) will be keyed in this discussion to the boiler profile after 2000 hr 

of operation. 

The boiler-inlet-plug region is 5-ft long. Pitting 

was found on the 9Cr-lMo steel plug in an area 7 to 21 in. from the boiler inlet. 
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The inner surface of the 9Cr-lMo steel tubing in the plug area was lightly pitted. 

The NaK~temperature profile of the boiler indicate~ practically no heat transfer in 

the plug regio~ after the liquid mercury was preheated in the first 2 ft of the 

boiler. This suggests that thecorrosion.in the first part of the plug was caused 

by solution attack until the mercury became saturated. After saturation, no attack 

on the 9Cr-lMo steel occurred until higher wall temperatures were encountered 

farther downstream. 

Visual examination of the interior of the 9Cr-lMo 

steel tubing following the plug region indicated heavy pitting in some sections. 

The maximum pitting depths are plotted in Figure 4,. and Figure 5 reproduces photo-
i 

graphs of boiler-tube sections where pitting was found. The heaviest pitting is 

associated with the boiler area where the heat transfer from the NaK to the mercury 

was the greatest, as indicated by the boiler-temperature profile. 

The microstructure of the interior of typical sections 
i 

of the tubing is shown in Figure 6. Tube cracking can again be seen in the boiler 

area where the maximum heat transfer occurred. Corrosion-product deposition is 

also shown. 

The pattern of corrosion and corrosion-product deposi

tion in the boiler suggests a relationship to the mercury flow pattern or hydro

dynamics during the boiling process. It is postulated that the flow consisted of 

large drops or globules of mercury from the plug. These drops were forced along 

at a low velocity and pitted the tubing by solution attack. As drop velocity was 

increased and drop size was reduced by the increase in quality, the swirl wires in 

the boiler tube became effective in breaking up the drops and increasing the heat 

transfer. As shown in Figure 5, at the beginning of the boiler (5 to 15 ft) the 

pitting was independent of the swirl wire but was predominant in the swirl-wire 

areas (15 to 28 ft) as droplet velocity increased. It may have been possible for. 

the swirl wires to trap several mercury droplets in the higher-velocity.regions; 

thereby increasing their residence time. In the first 5,to 15 ft of the boiler, 

the pitting was predominantly in the bottom of the tubing (with respect to gravity), 

indicating low droplet velocities and swirl-wire ineffectiveness. 
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Most of the corrosion-product deposition was found 

25 to 30 ft from the boiler inlet. As shown in Figure 4 this is the area where 

pitting depth decreases sharply. The corrosion products are deposited as the 

quality approaches 100% and the liquid mercury in the stream becomes supersaturated 

with the corrosion products. 

The change in the NaK-temperature profile with oper-
) 

ating time indicates that the mercury-flow pattern was changing constantly up to 

2000 hr of operation. This would account for the pitting and corrosion-product 

deposition observed 30 to 50 ft from the mercury inlet. 

(2). Choked Noz'zle 

The adjustable choke nozzle, which could not be 

adjusted during the last portion of CL3 operation, was disassembled (Figure 7) and 
", ,\,' 

examined visually. A sheared pin "as found in this operating mechanism. The 

Stellite 6B nozzle and pintle tip were not eroded by the mercury vapor; there was 

a slight amount of corrosion-product buildup in the nozzle, and the pintle tip and 

nozzle were wetted by the mercury. 

(3). Turbine-Simulator Heat Exchanger 

No significant evidence of corrosion or mass transfer 

was found in the turbine-simulator heat exchanger. The tubing appeared to be 

wetted in some areas. 

(4). Turbine Blade Section. 

The blade-section assembly was disassembled and the 

blade section was removed for inspection. Figure 8 compares the blade section 

before and after exposure. The vapor velocity through the blade section was 

estimated at 206 ft/sec, and the vapor quality was 75% at 715°F. Exposure to 

these conditions produced no corrosion, mass transfer, or erosion in the blade 

section. 
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(5). Condenser 

Examination of the tapered tubes on the mercury side 

of the condenser indicated very little corrosion of tube walls. No mass-transfer 

deposits were found in the condenser tubes. 

(6). Mercury Pumps 

, (a) 9Cr-IMo Steel Pump 

This pump was operated for a total of ;971 hr 

in CL;. It was then disassembled and inspected for wear, 'mass transfer deposits, 

and erosion. The inspection indicated some Teflon-journal wear (Figure 9, Parts 6 

and 12), a crack in the flange area of the front bearing housing (Figure 9, Part 4), 

and wear marks on the lower side of the hydraulic equalizing grooves. The journal 

wear amounted to approximately 0.025 in. The crack in the front bearing housing 

appears to have been caused by thermal stress in, a weld area. Considerable weld 

metal was machine,d off during the finishing operation, and the indications are that 

the heat buildup in this area was caused by rubbing of the impeller's hydraulic 

balancing vanes against the housing. 

There were also indications that the shaft was 

rubbing on the bottom of the shaft hole. The rub marks were all on the lower side 

of the case, indicating that the Teflon-journal wear was excessive and allowed the 

impeller shaft to drop and rub, thereby causing abnormal heat buildup. No mass

transfer d'eposits or erosion were found inside the impeller case or on the i.mpeller 

(Figure 9, Parts 1 and 2). 

The Type 405 ss pump was operated for 421 hr 

in CL; as a standby pump. Its total operating time was 1494 hr, including opera

tion, in a pump-test loop and in CL;, before disassembly. On visual inspection, 

the pump was found to be in satisfactory condition and reusable after the installa

tion of new Teflon journals. No mass-transfer deposits were found on the impeller 

or impeller case. 
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(7). Valves and Tubing 

Three valves and a check valve in the all-liquid 

section of the mercury system was disassembled.' The valve seats, valve parts, and 

tubing showed no indications of corrosion or mass-transfer buildup. 

(8). Discussion 

Evaluation of CL3 indicates that the main corrosion 

and materials problem with the SNAP-8 system is likely to arise in the mercury 

side of the boiler. The 9Cr-lMo steel has limited solubility in mercury at the 

expected boiler temperatures, and corrosion will occur. The mercury-flow pattern 

during boiling appears to control the location of boiler-tubing corrosion. 

Exterior and interior cracking of the 9Cr-lMo steel boiler tubing should also be 

of concern. The mechanism of this cracking has not been determined; because mo'st 

of it occurs in the area of greatest heat transfer, however, it is probably 
" :~! ,) 

associated with thermal stress or thermal fatigue. 

Other areas of the mercury system appear to be free 

of ' serious corrosion and mass-transfer problems when 9Cr-lMo steel is used. 

Essentially no mass-transfer deposits were found in the condenser and the liquid 

lines in the loop. The corrosion products generated in these areas apparently 

remained suspended in the merct~y and/or floated at the m~rcury interface, elim

inating the problem of tube restriction found in many liquid-metal systems. 

b. Corrosion Loop 4 (First Boiler) 

The CL-4 boiler was used for a variety of corrosion tests 

and boiler performance tests. During the boiler performance tests, the boiler 

inlet plug was changed frequently so the corrosion pattern in the boiler cannot 

be related to the operating time with a specific boiler inlet plug. 

In general, the pitting at the end of the mercury tubing 

(50 ft from the mercury inlet) in the boiler is considered to be associated with 

the first 600 hours of operation when the boiler was deconditioned and. the mercury 

boiling was taking place at the end of the boiler. The deep grooves in the boiler 

inlet plug section 17 to 26 in. from the mercury inlet are considered to be the 
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result of the last 1900 hours of operation when multipitch boiler inlet plugs were 

used. This boiler does illustrate the influence of heat-transfer performance on 

the corrosion pattern of theSNAP-B type of mercury boiler constructed of 9Cr-lMo. 

Various NaK temperature profiles were generated during the 

testing of this CL4 boiler. ~ost of these can be represented by the temperature 

profiles shown in Figure 10. Mercury boiling during the operation represented by 

Curve 1 occurred ,50 to 60 ft from the mercury inlet. Curve 2 indicates mercury 

~oiling took place 2 to B ft from the mercury inlet. 

caused by the design changes to the boiler inlet plug. 

these tests is ,given in Ref. 10 and 11. 

The shift in profile was 

A detailed description of 

After the boiler was removed from the loop, the tubing was 

split longitudinally for evaluation. 

(1). Coil Section 

One area of pronounced pitting occurred in the coiled 

section of the mercury boiler., This area was approximately 50 to 60 ft from the 

mercury inlet. The location of this pitting area coincides with the maximum heat 

flux area for the 600-hr corrosion run (Figure 10). The deepest pit in this area 

was 0.0065 in. The pits assumed one of three different configurations: isolated 

single pits~ pits 'combined into straight line segments, and pits combined in the 

form of circular dished out areas. The link segments were about.l-l/2 in. apart,' 

with the circular dished-out areas between them. 

Corrosion product deposition (Figure 11) was found 

immediately after the boiler ,i~etplug region (5 to 12 ft from the mercury inlet) 

with a maximum thickness of 0.004 in. There were minor deposits at the end of th~ 

boiler (50 ft from the mercury inlet) that were approximately 0.001 in. thick. 
, 

Examination' of the microstructure of the inside 

diameter of the tubing indicated a white layer approximately O.OOOl-in. thick along 

the coiled section of the tubing. Other than this layer, there were no other . . 
changes, in the microstructure of the 9Cr-lMo. No cracks were observed in the tube 

, wall originating from the inside diameter. 
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(2). Boiler Inlet Plug Section 

In the CL4 boiler, the area of major pitting was 17 to 

26 in. from ,the mercury inlet or in the preheat section of the boiler (Figure 12). 

In this a.rea, a large percentage of the pits had united to form transverse grooves 

(0.0265-in. deep.maximum) and shallower grooves at 200 from the transver.se position. 

The groove configuration indicates the effect of the tight-pitch region of the 

various multipitch plugs operated in this boiler •. The probability that some form 

of tube wall corrosion would appear in this area was high since corrosion was noted 

in the tight-pitch region of the multipitch plugs when they were removed after the 

boiler performance tests. 

Examination of the microstructure of the . tubing in 

this section showed no white layer on the surface. The mi'crostructures are typical 
I I " I - ,~\ 1: r 

of 9Cr-lMo exposed to general solution attack by mercury •. No cracking was observed 

in any of the tube sections examined. 

c. Corrosion Mechanism Loop 1 (CML-l) 

The CML-l was designed to define the relationship of flow 

velocity to corrosion when 9Cr-lMo steel was used. A complete description of this 

test is given in Ref. 12; the results are summarized below. 

The test was operated for 200 hr at a temperature of llOO°F 

with some difficulty in maintaining wetted conditions in the 9Cr-lMo test section. 

The measured rate of wall recession vs flow velocity was 

Flow Vel., ft/sec 

2.25 

4.5 

9·0 

d. Seventh-Scale Loop (SSL) 

Wall Recession Rate in./100 hr 

0.00044 

0.00075 

0.00225 

The.SSL was operated to investigate SNAP-8 boiler problems 

using a facility that would simulate one full-size tube of the seven-tube full-size 
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SNAP-8 boiler. The areas of investigation include boiler conditioning, boiler 

lifetime, and boiler stability. 

The first test section (designated SA-l) operated in the 

SSL was fabricated from 9Cr-lMo steel. A complete description of the test section 

is given in Ref. 13 and the operation and evaluation is sl~rized below. 

(1). Operation 

The SA-l test section was operated intermittently at 

elevated temperatures for 473 hours over the period of 19 April 1967 through 18 July 

1967. This period represen~ed the startup and checkout of the new SSL facility as 

well as the operation of a full-size single-tube model of the SNAP-8 tUbe-in-tube 

boiler. The test section operating history was as follows: 

Operating Time, hr 

1 . 58 

1 115 

1 5 

lA 27 

1 

lB 166 

lC 102 

Total 473 hr 

Remarks 

1st SSL startup. Loop shakedown and check
out. Data point at design flow and low NaK 
schedule. 

Loop shakedown and checkout. 

Loop shakedown and checkout. 

Hg tube soaked with lithium-mercury mixture 
at 950°F to improve performance. 

Mercury pump replaced. 

Startup after 1st Li-Hg treatment. Boiler 
performance still degraded. 

2nd Li-Hg mixture treatment. @ 950°F 

Startup after 2nd Li-Hg treatment. Improve
ment in boiler performance was noted. Heat
transfer survey at various mercury flows 
and NaK schedules. 

Additional heat transfer survey taken follow
ing installation of expanded range scales 
on test section temperature recorders. 
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(2). Evaluation 

Post-test disassembly and examination of the SA-l 

test section showed essentially no corrosion of the tight-pitch region. A heavy . , 

black deposit. (55% carbon) and a black film was found in the tight-pitch region. 

The black film was found in the loose pitch and unplugged regions. The origin of 

the deposit and film was thought to be the mercury pump silicone oil. released into 

the mercury stream during pump failure. It is postulated that decomposition of the 

pump oil prevented mercury wetting and resulted in poor test-section performance. 

Two lithium-mercury treatments could not remove the heavy surface contamination. 

Samples of the 9Cr-lMo containment tube were mounted, 

polished, etched and examined. The microstructures were typical of those observed 

in other 9Cr-lMo test sections operated in Corrosion Loop 3 and 4. 

D. FULL-SCALE BOILER TESTS 

1. Objectives and Conclusions 

The primary objectives of the tests summarized in this section 

was to determine the lifetime of a SNAP-8 system based on the mercury corrosion 

rate of 9Cr-lMo steel at SNAP-8 operating conditions. It was recognized that 

9Cr-lMo steel would corrode and mass-transfer products would collect in the system. 

The erratic heat-transfer performance of the mercury. boilers in 

the corrosion loops that closely simulated the actual SNAP 78 conditions made the 

results obtained from scaled loop difficult or impossible to apply to the full-size 

system. 

The key to both heat-transfer performance and consistent corro

sion results is considered to be the wetting of the containment material by the 

mercury. Wetting implies that there is no surface film to prevent the mercury 

from dissolving the containment material according to the solubility relationships. 

The pitting found in many of the 9Cr-lMo steel subscale mercury boilers is believed 

to have been caused by uneven wetting of the boiler tubing inside surface. If an 

area of the boiler tubing was wetted by mercury while an adjacent area was not, 

corrosion would take place in the wetted area forming a pit. 
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During full-scale boiler test section operation it was evident 

that satisfactory heat-transfer rates or conditioned performance was obtained when 

the mercury wet the inside surfaces of the boiler tubes. Wetting by the mercury 

could be induced by additives such as rubidium that lowered the surface tension of 

the mercury. The other mechanism for mercury wetting was the removal of all surface 

films ,on a metallic surface. 

If mercury could be made to wet a 9Cr-lMo boiler tube surface 

without the use of mercury additives, then satisfactory heat transfer should be 

achieved as well as 'consistent corrosion results. Data of this type would provide 

a firm base for assessing the potential of 9Cr-lMo steel as a containment material 

for the SNAP-8 system. 

2. Description of Testing 

A full-scale 9Cr-lMo steel boiler used in a breadboard system was 

evaluated af~er approximately 1400 hr of oper~tion. This boiler was a tube-in-shell 

design rather than the tube-in-tube boilers ,discussed in the subscale loop tests. 

The boiler was a combination cross-counter flow, tube-in-shell heat exchanger. The 

mercury flowed in four 60-ft-long tubes which were coiled on two double-lead 

helices. A plug to restrict the flow as placed in the inlet to each of the four 

parallel flow passages, giving a liquid velocity of 0.8 ft/sec. The plug in 

this restricted flow section was a solid rod spaced from the inside of the tube 

by a wire spring forming a spiral flow path for the mercury. This insert continued 

through the boiler for 10 ft. Downstream of the plug, the spiral flow was main

tained by a twisted ribbon insert which continued for the remainder of the boiler 

length. Thw swirl flow served to separate the high-density liquid from the vapor, 
, 

making the boiler operation insensitive to gravity and increasing heat-transfer 

rates., The mercury coils were surrounded by two concentric cylindrical shells 

which formed an annular flow passage for the reactor coolant, NaK-78 (the eutectic 

mixture of sodium and potassium). The Hg tubes were 0.902-in. ID by 0.125-in. 

wall 9Cr~lMo, steel, and the shells were 316 SS. The plug consisted of a 0.600-in. 

OD low-carbon steel rod and 0.135-in. dia. low carbon steel wire. The ribbon 

was also ,of low-carbon steel, 0.016 in. thick. 
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a. Operating History 

The rated design parameters of the Hg side of'the boiler, 

and typical performance characteristics during the test period, are shown in 

Tabie 2. ,The boiler started the test series with a less than satisfactory heat

transfer capability (unconditioned state), and saturated vapor was not produced 

(Ref~ 14). The boiler was operated intermittently for approximatefY 300 hr with a 

Rb additive in the Hg to promote full conditioning and attainment of rated boiler 

outlet conditions. Testing continued thereafter until a total 1415 hr of operating 

time was logged. During the last half of the total test period (approximately 

700 hr), boiler characterization tests were conducted under varying operating 

conditions. 

b. Evalua tion 

One of the four tubes contained mass-transfer deposits 

directly at the Hg outlet manifold (Figure 13). 'S~c'h a deposit wocld be expected 
, . 

at the manifold only if the tube operated with no superheat length for a major 

portion of the test period. It is not clear why only one of four tubes should 

exhibit mass-transfer deposits at the Hg outlet. 

The 0-4 tube, one of the two tubes coiled in the outer 

layer of the two-layer tube bundle, was completely 'dissected. The coil was cut 

transversely into sections comprising 1800 of a single turn. Each section was 

then cut longitudinally. The surfaces of the tube; twisted tape, and the Hg inlet 

plug and associated wire were examined for surface effects. Significant findings 

are summarized below and in Figures 13 and 14. 

(1). Macrographic Examination of Tube 0-4 

Surface effects found at the Hg inlet region (includ

ing the tube, plug, and wire) up to the 23-ft point are presumed to be liquid Hg 

corrosion effects. There appeared to be no orientation of the attack with-respect 

to gravity. The surface deposits resulted from the precipitation of soluble cor

rosion products from the liquid Hg as it vaporized. 
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(2). Microscopic Examination of Tube 0-4 

(a). Pitting 

Pitting was found in the first 23 ft of tube 

0-4 (measured from the Hg inlet). Figures 13 and 14 show photomicrographs of a 

section of the tube 11 ft from the inlet. The pits were approximately circular, 

with a diameter-to-depth ratio between 1 and 10 and a maximum depth of 5.5 mils. 

Figure 15 describes the maximum pit depth distribution along the tube length. 

There was no apparent orientation of pitting or maximum pit depth with respect to 

either gravity or centrifugal forces on the flowing Hg. 

(b). Mass Transfer 

Microscopic mass-transfer surface deposits were 

found in the area 13 to 57 ft from the Hg inlet end. The maximum depth at the 

47-ft point was 4 mils. It is postulated, confirmed by the operating history , 

(Table 2) that the boiler operated for significant time periods with a very short 

superheat length. This would explain the presence of deposits only 3 to 4 ft from 

the Hg outlet in this tube coil. 
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IV. FINAL EXPERIMENTAL STUDY 

A. LOOP DESCRIPTION 

Corrosion Loop 4 (cL4) was designed to simulate the SNAP-8 dynamic 

cycle conditions for corrosion study. This three-loop system consisted of (1) a 

heated primary NaK loop coupled through (2) a boiler-simulated mercury Rankine

cycle loop which rejects its heat through the condenser to (3) an air-cooled 

circulating NaK loop. Figure 16 is a flow diagram of the loop and Figure 17 

shows the arrangement. The three-loop system was constructed to high-vacuum 

standards. 

The NaK primary loop employed a direct resistance heater in which low

voltage electrical current was passed through a NaK-carrying tube and the NaK. The 

heater was in a coiled configuration with the two grounded leads on the loop side 

and an insulated low-voltage lead at the midpoiritof the coil. Since the resistance 

of each leg was fixed, the power input was varied'by controlling the voltage across 

the terminals. The voltage was regulated with a.saturable core reactor transformer. 

An electromagnetic pump maintained the NaK flow which was measured by a magnetic 

flowmeter. 

The mercury loop used two Chempump* Model CFRT-7 1/2-65 (one on a stand

by basis) for pumping the liquid mercury. A venturi flowmeter was used to measure 

mercury flow. 'Two semistandard valves were used for control and for imposing a 

resistance between the pump and boiler. An adjustable choked nozzle was located 

downstream of the boiler outlet to regulate boiler outlet pressure. The adjustable 

choked nozzle was a convergent-divergent nozzle in which the throat area could be 

varied with a movable pintle. The mercury vapor was then passed through a 

desuperheater and a turbine-blade test section before entering the condenser. The 

desuperheater and the blade section were not necessary for the boiler experiment, 

but were originally designed for corrosion study. The NaK-cooled mercury condenser 

was a counter-flow heat exchanger consisting of three tapered condensing tubes 

with a straight length-for subcooling. 

* Manufactured by Chempump Division of Fostoria Corp., Huntington Valley, Penn. 
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The rest of the mercury loop consistedof semiconventional liquid meta~ 

components such as bellows sealed valves, electrical resistance level probes, and 

a cover-gas system. 

B. TEST SECTION DESIGN 

Using the approach that decreasing the mercury mass velocity in the 

preheat region reduces ~ts corrosion rate, three test sections were specified for 

testing in 6L4. 

A test section (identified as 4A-3) simulating the'base case of the 

full-scale boiler was designed. A schematic of this test section is shown in 

Figure 18. The calculated corrosion performance of this test section is given in 

Figure 19. 

A constraint imposed upon the design effort was that the presently 

available 9Cr-lMo tubing be utilized. Therefore, the lower limit upon the mercury 

mass velocity would be an empty (no plug) tube. A test section (identified as 4A-4) 

was designed utilizing an empty tube for the preheat region. A schematic of the 

4A-4 is given in Figure 20. The calculated corrosion performance of this test 

section is given in Figure 21. 

During this phase of the analytical effort, other boiler design criteria 

(i.e., control of slug flow boiling length) dictated the use of a multi-passage plug 

insert in the SNAP-8 boiler. A test section (designated 4A-l) was adapted to the 

CL4 requirements. It was fortuitous as this particular design has a mass velocity 

between that of the base case and the empty tube. The 4A-l test section is shown 

schematicB:lly in Figure 22~ The calculated corrosion performance of this test 

section is given in Figure 23. 

C. 4A'SERIES TESTS 

The procedures used in the 4A tests were to install the test sections 

described above in the CL4 loop in series with the coiled boiler section. The test 

procedure included several short-term tests. Prior to a long corrosion run, the 

test section was wetted by the method described in the Appendix of this report. 
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The test sequence was: 

• Loop startup 

• Boiler heat-transfer survey 

• Loop shutdown 

• 
• 
• 
• 

Pre-wet the test section with,Hg-Li solution 

Restart loop 

Boiler heat-transfer survey 

Corrosion run 

• Boiler heat-transfer survey 

• Pressure drop test 

1. 4A-3 Test 

The 4A-3 test section was installed in CL4. Three boiler data 

points were taken to define the performance of the boiler before the Hg-Li pre

wetting solution was used. The boiler was "conditioned" in that the boiling was 

completed in 6 to 8 ft, but the local NaK temperature profile across the inlet plug 

was relatively flat. 

The loop was shut down and the test section was pre-wetted using 

a Hg-Li solution containing 351 ppm of Li using the procedure given in the Appendix. 

This solution was held in the boiler for 4 hr at 9500 F with an argon cover gas to 

suppress the boiling. After the 4-hr soak, the boiler was allowed to cool to 

approximately 3500 F and the Hg-Li solution was drained from the boiler. The Li 

content in the solution drained from the boiler was_2l6 ppm. 

Mercury boiling was re-started and three boiler data points were 

taken to define the boiler performance. There was no improvement in the performance 

of the boiler, especially in the inlet plug region and it was concluded the Hg-Li 

solution had not caused the 9Cr-lMo surfaces to be w,etted by the mercury. 

The loop was shut down and the pre-wetting procedure was repeated 

using a high Li content in the Hg-Li solution and an increase the soak time at 

9500 F from 4 to 16 hour. 
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The test section was retreated with Hg-Li solution containing 

574 ppm Li before the solution was introduced into the boiler. After a soak at 

9500 F for 16 hr, the boiler was allowed to cool to 5000 F and the Hg-Li solution was 

drained from the boiler. The Li content was 271 ppm. 

Mercury boiling was started and the NaK temperature profile 

(Figure 24) showed an improvement in the performance of the boiler inlet plug 

section. The corrosion run was started at this point since the pre-wetting treat-, 

ment had apparently promoted mercury wetting of the 9Cr-lMo boiler tube surfaces. 

After 30 hr of operation, theAP across the boiler inlet section 

began to increase gradually; the boiler inlet pressure increased from 442 psia to 

over 500 psi at 70 hr of operation. This was above the range of the boiler inlet 

pressure transducer, readout so that NaK flow was reduced to decrease the mercury 

boiler inlet pressure. 

After 90 hr running time, three boiler data points were taken; 

it was found that the increased 6P across the boiler plug insert suppressed the 

boiling and forced the liquid vapor interface almost to ~he end of the loose-

, I 

pitch section of the inlet plug. Normally, the boiler interface is near the end of 

'the tight-pitch section. The loop was operated for 120 hr after wetting was estab

lished then shut down intentionally so the cause of the high ~ in the inlet plug 

region could be determined. The total op~rating time on 4A-3 test section was 133 hr. 

After the loop had cooled,AP tests with mercury were made on the 

inlet section. The pressure drop of the inlet section. pad increased from 37 to 52 

, psi at 550 lb/hr mercury flow, indicating flow blockage. 

The test section was removed from CL4, decontaminated, and the 

NaK jacket removed. ,X-rays of the mercury containment tubing with the inlet plug in 

'place showed a deposit immediately after the tight-pitch section where the pitch 

flares from 0.200 to 1-1/2 in. The tubing was removed from the plug without dis

turbing the area where the blockage was observed. Figure 25 shows the location of 

the deposit (lower left and lower center photos) and its formation in one quadrant 

of the tubing. 
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The wall thickness of the 9Cr-lMo mercury containment tubing was 

measured and compared to the original measurements. Figure 26 illustrates the wall 

loss along ,the tube for the mercury inlet. In the area where the mass-transfer 

deposit was formed (24 in. from the Hg inlet), wall loss was found in areas where 

deposits had not built up. 

Measurements of the inlet plug revealed no dimensional change 

within the accuracy of the measurements and, therefore, no apparent corrosion of 

the inlet plug occurred. 

A spectrographic analysis was made of a sample of the mass-transfer 

deposits that cause the blockage in the section. The results showed the following: 

Hg = >~ 
Fe O~l to 1.0% 

, i", 

Cr 0.001 to 0.01% 

Li = Not detected 

A wet-chemical analysis was made of another sample of the mass

transfer deposit for Li; this analysis indicated 80 ppm Li. A microstructure of, 

the deposit is shown in Figure 27. 

2. 4A-l Test 

Mercury boiling was started and ~oiler data points were taken to 

define the performance of the boiler before the Hg-Li pre-wetting solution was used. 

The mercury vapor quality was approximately 25% at the test section outlet and this 

was in agreement with'the predicted results. 

The loop was then shut down and the test section was pre-wetted 

using a Hg-Li solution containing 538 ppm of Li. This solution was held in the 

boiler for 16 hr at a temperature of 950°F, with an argon cover gas to suppress the 

boiling. After the l6-hr soak, the boiler was allowed to cool to approximately 

350°F and the Hg-Li solution was drained from the boiler. The Li content of the 

solution was 451 ppm. Mercury boiling was restarted and no improvement in boiler 
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performance was noted. The corrosion run was started at this point since the test 

section was considered to be wetted by the Hg-Li solution treatment based on the 

experience with the 4A-3 test section. The loop was shutdown after a corrosion run 

of 304 hr. The total time on the 4A-l test section was 334 hr including the opera

ting time prior to the pre-wetting treatment. 

The test section was removed from c14, decontaminated, and the" 

NaK jacket removed. Since the tube was swaged over the plug the tube was split by 

milling two grooves through the wall 180° apart. Figure 28 shows the 4A-l test 

section disassembled, sev~ral photos of the multipassage plug, and the inside 

diameter of the 9Cr-lMo mercury containment tubing~ Figure 29 and Figure 30 are 

photomicrographs of the tube and plug surfaces that were in contact with mercury. 

Tubing wall thickness measurements were made at the areas where 

the grooves and tube wall formed the mercury channels. Adjacent areas of the tube 

wall not contacted by the flowing mercury were also measured. The inlet plug was 

measured for OD and the depth and width of the grooves. Figure 31 shows a plot of 

the average change in wall thickness of the five grooves ~long the 9Cr-lMo contain

ment tubing. 

3. 4A-4 Test 

Mercury boiling was started and boiler data points were taken to 

define the performance of the boiler before the Hg-Li pre"-wetting solution was used. 

The loop was shut down after 54 hr of operation •. 

The test section was pre-wet using a Hg-Li solution containing 

617 ppm Li. The solution was held in the boiler for 16 hr at 950°F with an argon 

cover gas to suppress the boiling. After the 16-hr soak the boiler was cooled to 

approximately 350°F and the Hg-Li solution was drained from the boiler. The Li 

content was 435 ppm. Mercury boiling was restarted and the loop was operated for 

304 hr for the corrosion run. The total operating time on the test section was 

358 hr. 
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The test section was removed from CL4, decontaminated, and the 

NaK jacket removed. The orifice carrier was cut from the mercury containment 

tubing by making transverse cuts in each side of the carrier. The tubing downstream 

of the orifice that contained the swaged-in plug was split longitudinally by milling 

two grooves in the tube 1800 apart. Figure 32 shows the 4A-4 test section and 

photos of the various parts of the section. Visual inspection revealed that the 

tungsten orifice had become loose in the 9Cr-lMo orifice carrjer because of corrosion 

of the 9Cr-lMo. This allowed the mercury to bypass the orifice and caused the 

decrease in pressure drop through the test section. There was no'visible change in 

the tungsten orifice. Figure 33 shows photomicrographs of the 9Cr-lMo tube and 

plug surface that were in 'contact with mercury. 

Wall thickness measurements were made on the tubing upstream of 

the orifice (preheat region) and the tubing downstream of the orifice to determine 

the corrosion rate and pattern. The change in wall thickness is shown on Figures 

34 and 35. 

D. DISCUSSION OF 4A TEST RESULTS 

The corrosion measured in the 4A tests is compared with the values 

calculated by the SNAP-Eight Corrosion and Thermal (SECAT) analyses (described 

in Section V) in a composite of curves shown in Figure 36. Examination of these 

curves indicates that the experimental data supports the corrosion model of 

dissolution of the 9Cr-lMo by mercury with the rate determined by a diffusion 

through the stagnant liquid boundary layer. 

The calculation utilized the available transport and solubility 

properties and also ignored the entrance effect. The latter would tend to give 

higher mass transfer rates at the entrance such as were obtained in the 4.5 ft/sec 

case. 

Metallurgical analyses also support the corrosion model potential. Photo

micrographs of the 9Cr-lMo surfaces corroded by mercury shows a dissolution pattern. 

Analysis of the mass-transfer deposits also shows the presence of iron and chromium. 
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The model predicts the worst case i.e. the case in which the 9Cr-lMo 

is fully wetted. As was stated previously, corrosion runs with the 4A test 

sections were made after a wetted condition was obtained with the Hg-Li trea~ment. 

A comparison of the 4A test data, in which wetting was obtained, with 

the data from nonwetted cases (Ref. 12, 13 and 15) shows that the corrosion in the 

nonwetted cases is much less than that measured corrosion in the 4A tests. 

Consequently, extrapolation of the nonwetted-testing data to 10,000 hours 'can 

lead to optimistic conclusions. In general, the heat-transfer performance in a 

nonwetted case is not acceptable. 
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v. ANALYTICAL TREATMENT OF CORROSION 

An analytical expression was developed to describe corrosion in the preheat 

region of the SNAP-8 boiler. Further, an analysis was conducted to determine the 

SNAP-8 tube-in-tube boiler design parameters that could be modified to minimize the 

corrosion potential of 9Cr-lMo steel in the preheat region, and to design tests to 

evaluate the analytical procedures. The analytical program was divided into the 

three phases: 

• Develop a method to predict corrosion performance in the preheat 
region of SNAP-8 type of boiler. 

• Perform analyses to determine which boiler design parameters could 
be modified to minimize corrosion. 

• Design and/or analyze several test sections to evaluate the corrosion 
prediction method. 

Each phase will be described in the following three sections. 

A. ANALYSIS - COMPUTER CODE SECAT 

As the mercury traverses the preheat region of the boiler, iron, 9Cr-lMo 

steel's main constituent, is dissolved by the mercury. The driving poten'tial for 

this dissolution process is the difference between the solubility of the iron 

evaluated at the wall temperature and the bulk mercury iron concentration. If it 

is postulated that the rate of dissolution of the 9Cr-lMo steel is controlled by 

diffusion rate of iron across the laminar boundary layer, it can be seen that what 

has been described and postulated is a mass transfer process. Apply the techniques 

used to analyze a mass transfer process to a differential length of the preheat 

region shown in Figure 37. Note that although Figure 37 depicts an annular geometry 

for both the NaK and mercury side, any geometry may be analyzed by using appropriate 

geometric factors and heat-transfer correlations in the following analysis. 

To predict corrosion rates, the heat-transfer performance of the preheat 

region must be known. Applying a heat balance to each of the fluids we obtain 
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q (1) 

(2) 

Ignoring the Nak side heat loss to environment, the rate-potential equation for 

the heat exchange process is 

Substituting Eq. (3) into both Eq. (1) and Eq. (2) yields the following: 

dTN UP 
0 

(TN - TH) d£ = 
WHCp 

H 

(4) 

dT
H 

UP 
0 

(TN - TH), = d£ WHCp 
H 

The mass flux of iron from the surface in contact with mercury 

(the mercury tube and the plug) may be expressed as: ' 

tube side: 
Nt = K (C~ - Cb ) PH (6 ) 

plug insert side: 

Np = K (C; - Cb ) PH 

The saturation concentration of the iron in mercury of the plug surface is 

evaluated at the bulk mercury temperature. The saturation concentration of iron 

in mercury of the tube wall is evaluated at the tube wall surface temperature (the 

mercury contact side). 
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equation: 

The mass-transfer coefficient, K, was calculated using the following 

K _ 
V -

0.023 (8 ) 

The above is derived using a Reynolds analogy on the Colburn equation for heat 

transfer. 

The solubility of iron in mercury, as a function of temperature, was 

evaluated from the following equation obtained from Ref. 16. 

= exp (1.217 - 2l13./Temperature, OR) 

Using the expressions for the mass flux given above, a mass balance 

for the bulk mercury iron concentration may be written. 

(10) 

Integration of the above equation yields the axial distribution of the bulk iron 

concentration in the mercury. Knowing this distribution, the wall recession rates 

is found by dividing the mass flux (given by eq. (6) and (7» by the iron density. 

The temperatures required to evaluate the transport and solubility properties are 

obtained by integrating Eq. (4) and (5). 

SECAT is given an IBM 7094 computer code, written in FORTRAN to 

predict the corrosion and thermal performance of the preheat region of the SNAP-8 

tube-in-tube boiler using the above equations. For a given set of operating 

conditions and NaK and mercury flow channel geometries, SECAT will calculate the 

required heat-transfer length and corrosion performance of the preheat region of 

the boiler. The method employ~d by the code is to numerically integrate, by a 

Range-Kutta scheme, the differential equations defining the spatial behavior of 

the heat transfer and corrosion processes. The code output is a tabulation of 

the calculated axial variation of the significant performance parameters in the 

preheat region. A sample output is given in Figure 38. 
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B. 

follows: 

PARAMETRIC ANALYSIS OF 9Cr-lMo CORROSION 

The manner in which the parametric analysis was conducted was as 

• 
• 

• 

The basic SNAP-8 tUbe-in-tube boiler design was examined 
to determine which parameters could 'be easily modified. 

Each of these parameters was varied, one at a time, over 
a small range to determine which yield the most significant 
reduction of corrosion. 

Combinations of the above 'parameters were varied over a 
large but reasonable range to determine their effect on 
corrosion. 

• The results are examined for signi~icant trends. 

,1 

2 

The parameters'selected to be varied were as follows: 

NaK jacket inside diameter, 

Mercury tube inside diameter, 

For the plug insert, the parameters varied were: 

3 Thread height 

4 Thread pitch 

5 Thread width 

6 The number of mercury'pas~ages per tube 

To facilitate interpretation of the results, all results of the 

parametric analyses were presented as a percentage change from the base geometry. 

The base geometry is that described in Ref. 17. A summary of the base geometry 

performance is given in Figure 39. The above listed parameters were varied by 

~5% (from the base geometry) and their effect on corrosion behavior calculated. 

The results are given in Tables 3 and 4. Since the heat-transfer performance 

will change with. the above parameters, the effect on heat-transfer performance 

(of these parameters) 1s also noted on the tables. Examination of the results 

indicate that increasing thread pitch, thread height, and number 'of mercury flow 
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channels per .tube yields the most significant reduction in the maximum penetration 

rate. However, the exit (preheat) mercury iron concentration increases with 

increasing number of channels. This is due to a longer preheat length being required, 

thereby distributing the corrosion over a larger area. The exit iron concentration 

is important from two aspects. First, the exit value represents the amount of 

material removed from the mercury tube and plug insert. Second, the same amount 

of material is later deposited somewhere in the system. The base case exit con

centration is equivalent to 0.3 lb of iron removed and deposited per 100 hr. 

Therefore, the only parameters that were considered further, in this phase, were 

the thread pitch and thread height. 

A series of cases was set up for SECAT which varied the thread pitch 

from 3/8 to 2 1/4 in. and the thread height from 0.062 to 0.122 in. The results are 

given in Table 5. 

Examination of Eq. (6) and (7) reveals that the wall recession rates are 

functions of K, CS and C
b

' Now interpret the results of the parametric analysis in 

terms of the effect of boiler geometry changes upon corrosion performance by using 

the above mentioned variables. 

The value of CS is evaluated at either. the plug or wall temperature. 

Although the plug wall temperature is at the fluid temperature, and therefore 

defined by the preheat requirements, the tube wall temperature is a function of 

the ratio between the mercury side resistance to the overall resistance. If the 

overall resistance is increased while maintaining the same mercury side resistance, 
s . 

the tube wall temperature, the C term, and the wall penetration should decrease. 

Increasing the NaK jacket diameter accomplishes this as shown by the results given 

in Table 3. The increase in exit iron concentration is due to the longer preheat 

length required. 

If the preheat length is increased by appropriate modification of the 

boiler geometry, corrosion will occur over a larger area which should result in 

(1) an increase in the total amount of iron dissolved in the mercury (Cb ); and 
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(2) a decrease in the maximum wall recession rate due to the lowered·driving 

potential for the dissolution of iron. (The term CS 
- C

b 
at Eq. (6) and (7) 

decreases.) 

Examine this supposition by applying it to the results of Table 4, . 

the effect of increasing the number of Hg passages per tube. The model used by 

SECAT assumes that the heat-transfer area is that portion of the tube in contact 

with mercury •. Since the thread pitch and width are held constant, doubling the 

number of channels per tube should increase the required preheat length by 24.7%. 

The results in Table 4 show a length increase of 24%. The lesser increase is due 

to the increased Hg side heat-transfer coefficient. The combination of increased 

length and doubling the number of channels results in.a net increase in the area 

exposed to.Hg by 34.7%. If the differential equation defining the Cb term is 

examined, Eq. (4), an approximate solution to it will be the fmllowing form: 

(11) 

If the base case results are used, the term aA may be calculated and 

found to be-O.7l8. If it is assumed that the a term is essentially invariant with 

the number of channels, the value of Cb for an iricreased (by 34.7%) corrosion area 

may be calculated. The increase in Cb is found to be 20.4% using Eq. (11) compared 

to 19.7% calculated by SECAT. This increase in the bulk iron concentration due to 

increase in the corrosion area should decrease the maximum wall recession rate 

(due to a lowering of the driving potential for dissolution). This effect is 

found in the results of Table 4. 

The mass transfer coefficient (K) is calculated from Eq. (8): Algebraic 

manipulation of this equation will reveal that K is proportional to the mass 

velocity (G) raised to the 0.8 power. Therefore, it would appear that, if the 

mass velocity is decreased, a proportionate decrease in the wall recession should 

result. Examine the effect of increasing in the thread height by 5%. This 5% 

increase corresponds to a 4.45% increase in flow area. This in turn results in a 

3.4% decrease in K. The results in Table 5 show that a 5% increase in thread 

height yields a 2.9% decrease in maximum wall recession rate. 
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Further examination of the ~esults revealed that decreases in both 

wall penetration and exit iron concentration were effected by changes in the boiler 

geometry that decrease the mass velocity of the mercury. To illust~ate this point, 

the results of Table III-3 were plotted in Figures 40 and 41 (corrosion performance 

versus mass velocity). It can be seen that both the maximum wall recession rate 

and 'preheat exit iron concentration decreases with decreasing mass velocity (or its 

equivalent liquid veloCity). 
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TABLE 1 

TYPICAL MECHANICAL PROPERTIES OF 9Cr-lMo STEEL 

TYpical Tensile Properties 

* ** Reduction 
UTS .2% Offset YS Elong. in 2 in. of Area 

Temp (oF) (ksi) (ksi) (% ) (%) 

70 82.0 45.0 35 72 

300 76.0 39.5 33 71 
700 65.5 36.0 31 68 

900 59.0 34.5 35 74 

1100 41.0 27.5 45 86 

1300 18.5 10.5 62 94 

EFFECT OF PROLONGED EXPOSURE OF 9Cr-lMo STEEL 
AT ELEVATED TEMPERATURES 

Impact Strength and Hardness 

At Room Temperature 

Impact Values (ft-lb) 

Brinnell Hardness 

Transition Temperature (oF) 
(15 ft-lb level) 

Stress Rupture 

Exposure & Testing Temp. 
(oF) 

*UTS: 
**YS: 

900 

1050 

1200 

Ultimate Tensile Strength 
Yield Strength 

Unexposed 

63 

161 

-100 

Stress for Rupture 
in 1000 hr before 
exposure (ksi) 

42.5 

16.3 

5.8 

TABLE 1 

at Exposed 10 z000 hr 
900°F 10500 F 12000 F 

50 

172 

- 80 

32 37 

119 140 

- 65 - 80 

Stress for Rupture in 
1000 hrs after exposure 
for 10,000 hrs without 
stress (ksi) 

39.0 

13.8 

5.5 



- TABLE 2 

SNAP-8 TUBE-IN-SHELL BOILER PERFORMANCE-HISTORY 

NaK Side 

Hg Side 

Total operation 

Nominal boiler design conditions 

Flow (lb /hr ) 

T t ( OF) empera ure 

Inlet 

Outlet 

Total operation 

With rubidium 

Nominal boiler design conditions 

Flow (lb/hr) 

T t (OF) empera ure 

Inlet 

Outlet 

Pressure (psia) 

Inlet 

Outlet 

Vapor outlet conditions (typical of 
various test periods) 

90% quality 

Saturated vapor 

9 ft superheat length 

27 ft superheat length 

42 ft superheat length 

2350 hr* 

32,000 

1300 

1100 

~41~ hr 

320 hr (Nov. 1964,to Mar. 1965) 

11,400 

513 

1265 

340 

270 

** 470 hr 

240 hr 

125 hr 

460 hr 

120 hr 

*Approximately the last 300 hr included a NaK purification system. 
**Flow was 50% of nominal to enhance conditioning. 

TABLE 2 
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TABLE 3 

EFFECT OF GEOMETRY ON THE PERFORMANCE CHARACTERISTICS OF 
THE PREHEAT REGION OF THE SNAP-8 BOILER 

* Percent Change in Performance Characteristics for 

5% Increase in Variable 5% Decrease in Variable 
Maximum Exit ** Preheat Hg Side Maximum Exit ** Preheat 

t-3 

Variable 

N aK Jacket ID 
*** Hg Tube ID 

Thread Height 

Thread Pitch 

Penetration 

-1.4 

- .11 

-2.9 

-2.2 

Concentration 

+1.6 

+ .04 

-2.0 

-3.0 

Length ~P Penetration Concentration 

+2.8 +2.8 +1.6 -1. 7 

-5.0 -0 + .27 - .16 

+ .69 -12 +3.1 +2.1 

- .49 -15 +2.3 +3.3 

6; Thread Width 
t"' 

+ .40 + .54 + .92 +2.9 - .36. - .54 -

I:1j 

w 

NOTE: 

*The change in the performance characteristics is that compared to the values calculated for the 
base geometrJ. The base geometry is that described in Reference 

**Preheat exit concentration of iron in the mercury. 

***The corresponding OD is changed to maintain a tube wall thickness of 0.09 inches. 

Length 

-3.0 

+5~2 

- .71 

+ .58 

- .91 

Hg 
~P 

-3.1 

-0 

+15 

+19 

- 3.3 



TABLE 4 

EFFECT OF THE NUMBER OF CHANNELS PER TUBE 
ON THE PERFORMANCE CHARACTERISTICS OF THE PREHEAT 

REGION OF THE SNAP-8 BOILER AT A CONSTANT MASS 
VELOCITY 

Percent Change in Performance (1) Characteristi cs 

No. of Channels Maximum Exit(2) Preheat Hg Side 
per tube Penetration Concentration Length liP 

2 -12 +18 + 24 + 34 

3 -31 ,+45 + 61 +116 

4 -58 +72 +133 +370 

5 -84 +82 +338 -15X 

2 - 5.4 +10 + 15 + 19 

3 -10 +19 + 29 + 40 

4 -15 +27 + 43 + 61 

5 -19 +33 + 57 + 83 

(1) The change in the performance characteristics is that compared to 
the values calculated for the base geometry. The base geometry is 
that described in Reference 18 

(2) Preheat exit concentration of iron in mercury. 

(3) Constant mass. velocity (G) maintained by increasing thread height. 

(4) Constant mass velocity (G) maintained by increasing thread pitch. 

TABLE 4 
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TABLE 5 

EFFECT OF THREAD HEIGHT AND PITCH ON THE PERFORMANCE 
CHARACTERISTICS OF THE PREHEAT REGION OF THE SNAP-8 BOILER 

Percent Change(l) in Performance Characteristi cs 
Thread Performance Thread Pitch 2 inches 

Height, in. Characteristic .375 .75 1.125 1.5 1.875 2.25 

.062 (3) -29 -42 -49 -54 -57 

.082 {MaXimum -16 -42 -53 -60 -63 -66 

.102 Corrosion Rate -27 -51 -61 -66 -69 -71 

.122 -36 -57 -66 -71 -64 -76 

.062 {EXit(2) (3) -34 -47 -53 -57 -59 

.082 -11 -44 -55 -60 -63 -65 

.102 Concentration -18 -49 -60 -64 -67 -68 

.122 -24 -54 -63 -67 -70 -74 

.062 (3) - 2.9 - 2.1 - 1.0 - 1.0 + .60 

.082 {preheat + 4.4 + 3.3 + 5.3 + 7.2 + 8.7 + 9.9 

.102 Length + 8.6 + 9.3 +13 +16 -18 +19 

.122 +12 +15 +18 +24 +27 +29 

.062 {~g Side 
( 3) -88 -96 -98 -98 -99 

.082 -54 -94 -98 -99 -99 -99 

.102 llP -74 -99 -99 (4) (4) (4) 

.122 -84 -98 -99 (4) (4) (4) 

NOTES: 

(1) The change in the performance characteristics is that compared to the values 
calculated for the base geometry. The base geometry is that described in 
Reference 18 

(2) Preheat exit concentration of iron in mercury. 

(3) Base case. 

(4) Greater than 99.5% increase. 

TABLE 5 
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'~***INPUT DATA FOR PR08L~M.TITLEO.** 

BASE CASE .,SPIRAL PLUGGEOHETRY~ARCH 23,19~6 

, SOlLER GEOMETRY SPECIFICATIONS 
~ ____ .~ ... .....;_.·.·_ .... ..:.:'_4. 

3CILER lOIIN) 3.990 ,NO.OF TUBES-" , - - .- ,7.0 TUBe OOHN) 0.832 ; 
• pp ••• ________ • 1'~ .;..._ ~ ___ - _____ -_ 

T~eE I!)( IN) 0.652 .THREAD HTUN) 0.062 THREAD PITCHt IN)" <- - .. '-' . 0.375-
.. -~ --p ........ _----.- . _._-...-.-

CHANNELS/TUBE f.o THREAD WIDTH(IN; 0.062 . DELTA"Z PRINT(JN) - 0:200 
- '.-. 

_',_''' ___ , ____ 0 __ ... ___ :.~~: _____ .. _;~: .. _~ __ :~.~: 

_, E'OILEP OPERATING CONDITIONS -. - --. - - . ..... j- .... :-

--'--.- - ... ----~ -~ .~,:::-- :,--:~-.-.. - .---.:.---
\A~ aUT( DEG. F >" 1110.0 'HG IN(DES.F), ,. :'500~OH'G OUT(DEG.F', .. ;- '1097.0 

.. -- - --:...--- -'-. .. - .... - -. --- ... _ ........ -'. . ~ .. ' ..... --"" _ .. --.. - ---
,~ :. ~ ;:.L ~ h ( LEI HR ) 41500.0 HG FLOW(lB/HR) . 11500.0 HG SID~ H MUlT, .~ - 'l~OOO. 

- --,-- --~-- -----------.----------..:.-
"Ai. SI:)E H·MULr- 1.COO "wALL- CONDCBTU/FT-OEG.FJ 15.67· MAX DElTA.TlOEG.FJ 5.000 

~ ~ • ;PIRAL PLUG GEOM~TRY * * * 

, . ***CALCULATED RESUlTS*** ' 
-- --. - ------------------------:;:----------------------------:..---------~.:..- ---=--'--~-_.- '. ----~- .. -=--:...-":-

".i,AlI: FLO~ AREA' SO.FT' '6.04GE-02 ~AI< WETTED PER (FT' " 2.569E 00' NAK EQ.CIA( FT) , _ 9.4C4f~02 -," 
. . .';:, ~ -,'. " '.,... .' ;! -

ur, Fl'Jioi ARE.\(SQ.FT' .. 1.,321E-C4 HG'WETTEO PER, (FT) ,- 5.626E-02., HG EQ.OIAIFT):- ;:9~391t:-03', 

~-'.!K f l8/SC.FT-:iEC) : 2.184E· 02 . '-G-HG( L~/SQ.FT-SEC)·~·~·-3~4~5·5E;~O~~--HG-~~·l -T~AV(FT ISEC i" -: -~:~i ~E~ ~o": 

Figure 38 
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Sample Output for Computer Code SECAT 
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- - -
DIST FROM 
He I~' I\:I 

0.000 ' 
.).200 
,.40Q, 

. ~.600 
o.~oo 

1.0JO-
1.,20e 
1.400 
1.bOO 
1.500 

2.JOO 
2.200 
2.400 
2.!>00 

» 2.300 

3.000 
3.200 
3.400 
3.600 
3.1300 

10.000 
10.200 
4.400 
4.600 
4.800 ' 

5.000 
5.200 
5.400 
5.600 
5.300 

6.000 
,10.200' 
6.400 
6.600 
6.800 

7.000 
1.200 
7.400 
7."00 
7.BOO 

- - - - - - - - - - - - - -
' .... -AXIAL DISTRIBUTION c~ PARAMETERS-PART ,I_ • - • 

PIt03LE" TITLE' -: -'3'A'SE 'CASE ·SPIRAl. PLUG GEO"'ETRY .. "ARC~,Z'3~1966 . 
~ 

NAil. BULK 
TE"PCfl 

1110.J 
1111.1 
111Z.1 
1113.1 

.. '1114.') 

1114.<; ~, 
1115.7 

, 1116.5 
1117.3 

, 1118.1 

1118.3 
1119.4 
1120.1 
1120.7 
1121.3 

1121.9 : 
1122.4 
1122.9 
1123.4 

"11Z3.9 

1124.3 
1124.8 
1125.2 
1125.6 

'" 1125.9 

1126.3 
1126.6' .' 

· 1127.0 
" '1127.3 

1127.6, 

1127.8 
, 1128.1 

1128.4 
llZ8.6 
1l28.9 . 

1129.1 
· 1129.3 

1129.5 
· 1129.7 

1129.9·. 

j. 

';;"', 

he :!UL< ":~HG WAll·, ..... IRGN tC"CEI';HATIO~'PP") • e'. 
TE~P(FI ,.! . JE~PCfJ .,? IPi HG : SAl' CHor) , .. "S!.!ICCl!JI 

500.0 
528.5-

.555.7' 
se 1. 7 
60b.!> 

630.4 .,' 
,653.2 

!>74.9 
. !>9S. 1 
'715.5 

734.4 
752.5 
769.7' 
7036.2 
5(;1.9 

-

. ~" 

. 607.5' 
. 630.4 
652.4 
673.5. 
693.9 

713,;Z . 
'731.8 

'- '749.7 
i' 766.7 .. 

.--~. 783.1 .. 

798.7. 
• 813.6 . 

,";.. :827.9 
841.6 
854.1 ' 

5 • .461tE-03 . 
. 5'; 512E-03 
5.728E-~3 
5.941E-03 
6.222£'-03 

6.582f-03 
7.034£-03 

. '7.589£-03 
.- 8.25EE-03 

'1. 74lE-OZ':~ 5.464E-03. 
2.179~-02· 7.64~E-C~, 
2.671E-OZ :' 1.0~5~-02 
3.223E-02 1.364~-~J 

3.S~5E-02 1.752E-Q2 

' 4.506E-02 2.7.m~-n2 -
S.232E-02 Z.717E-C2 
6. o 11 E:" 02 . 3·.2 Q 4E-·)2 
6.940£-0'2 3.932£-02 ' 

9.CS2E-03· -- "7. 7l4E-02 4.!>2°E-02 
- ....... .-: ~ - -

9.9B2E-03 8.1)29E-02 S';383E-0'2 
1.106E-02 9.581E-02 ~.199E-02 
1.229E-02 1.057£-01 . 7.045E-02 
1. 36f1E-02 . 1.1S8E-01 7.94510-02 
1.524£-02 1.261E-01 8.886E-02 

, . 
816.9 ....... --"867.L~:.:·~.1.698E-!)2 __ . 1.367E-Ol', .... 9.1'162£-02 
1!31.2 . ·879.1·~ .1.890£'-02 1.474E-01 .'. 1.087E-Ol 
844.9 " ..• 890.5·.· .. , 2.i01E-02 ___ ,. 1.582E-Ol ' 1.190E-Ol 
858.0 ,901.4. 2.330E-{)Z·. 1.691E-Ol .' 1.296;:-·)1 
610.4.'· .' ",:; .911.S .;'. 2.519£-02·. . ,.1.800E-01 1.40'1E-01 

ea2.3. :..; 
1393.7·. 
904.5 ,,' 
n4~~ 

'924.1 

. _~~. 921.7 .... :. 2.SLK>E-02 .. :. j:.909E-01 :. ,'., 1. SUE-Ill' 
. 931.2 c· 3.132E-02 >;. 2.ot·8E-OF· 1.621E-Ol 
940.3 " . 3.437E-02"· 2.127E-01_1. 731£-01 

~, 949.0", 3.161E-OZ < ,··2.234E-01·· 1.841€-~1 
:.. : _ 957.3 _ ,·4.103E-02:~·2.34~E~OL ,', . l.C;51E-!H 

q34.2 .~:. 9b';.2 .: __ .. , 4.463E-02 
943.1 ~ .- . 972. 7 ~ . '.4. 840E-OZ· 
951.7, ... :<.: '980.0' 5.235E-02 
959.9 " '.-' ·986.B 5.646E-02 
·967.S :. .. 993.10 - 6.073£-02' 

·2.446E-Ol ;.2.061E-"1'~' 
2.>;50E-Ol . '. '2.170E-n1 :' 
2.6S2E-Ol " 2.177E-0l 
2. 75'1E-Ol ::::'. :2.3"4~-C! 
2.~51E-01 ' . ~2.4S~E-Ol 

p~"Er~ATI~~ (~ILS'Y~J' 
. TU~; =.:. '. ;.: "uC; , 

~ , :'~ - .. ~ -..... . ... -

. !.ll ill: cit' :.;' J~OOC~:"3~ 
:.571~ ~1 2~~~~= 0' 
2.1n~~ '01 .,. 4.64BE 00 
?~'30"E· 'I 
~ ... 4qC; 'Jl 

B.COlE 00 
1.213E ':)1 

4.25~E 01 l.l0BE 01 
~.147~.'1 ,Z.28~E 01 
~.!Z5~ 01 2.Q56~~Ol 

7.!e5~ 01 ,3.711~ 01 
a.321~ 01' '.- 4.SS1E 01 

9.527'= :n 
1.J79€ '.)2. 
1.212~ 02 
1.349:. Q2 
1.490'= OZ 

: 1~633E 02 
1.77'l: 02 

'!.9271: '2 
2.n4;: 02 

·2.222E 02 

2.369E,02 
2.514E 02 
2.65~= 02 
?.19~E 'J1 
7.'il32E 02' 

'3.065E 02 
3.193E C2 
3.317E 02 
3.4351: 02 .' 
3.;49;:::;2 

'!.474E 01 
6.414~ 01, 

',' 7.54ae 01 
~.~9!!E 01 
9'.1I87E 01 

1.1l4E 02 
1.24JE O;? 
1.37E>E ')2 
1.51ZE n 

·1.650E 02 

1.73SE 02 
·1.92QE 02 
2.066E 02 
2.204~ 1)2 

- 2.340e- ~z 

2~474E 02 
2.60'5£ 'l2 
2. 7HE ~2 

:Z.!56E 1.)2 
2.<;'6E.02 

975.2 ; '~. -:"-. ' 999.7 6.515E-02, 2.9108~OI' "; 2.593E-Ol -~3~656E 02 
982.4'·--:-:::~:=::--io05.1"- -'·6.91ZE-02·- : . 3.!)42E-Ol . ...:. 2.695E-Ol .. :: "3.759£ 02 
989.2. ::'~",./ 1011.5 ,: 7.442E-02 __ .. ' 3.135E-Ol :2.795E-01 '. 3.255E 02:-: 
99'3.7 c':.: 1017.0. 7.926E-02, 3.Z25E-Ol,', 2~891E-01' _ 3.Q45E 02' 

3.09ZE 02 
. '3 .. 202E ;)2 
'. ·3.30SE 02 

3.408e 02 
3.503£ .,)2 1001.9 .' . 1022.2 .' .' 8'.421E~02. "3.313E-Ol 2.9~qE-Ol·· 4.030E 02 

. 1001.8, 1027 ~2 -'8.9Z9E-OZ· 3.398E-0(- ,,' ·'J.083E-Ol ". ;,,4.10ae 
ItJI3.5~"':--, l032~(;'~',-:-:-9~447E:-OZ ~ <, 3.1081E-01 _:~ 3.175E-Ol :.' ,:;4.18lE 
1018.9 '.'" 1036.5 '.: . 9.975E-02 ·'3.562E-01 .. 3.264E-I)I· 4.247E 

.- 1024.1:·" .: '"1040.9''' -'·1.051E-Ol,':_3.640E-Ol ','7 ·,3.351E-01":_: 4.30BE 
1029.0.'" .1045.0-' ,- 1.106E-Ol- 3.1l1E-Ol'·,.}.436E-OI '4.363E 

. -. "."->' ;-",,~, - , __ -_._ .- .... . - "1.- - ....... I· ., _~ ~ _ ' •. ~: 
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"'r·~ 

02 3.5Q2£ ~2' 
02: 3.676£.02 
02 3.754E'02 
!l2 • 3.827£ OZ·' 
02 :_: 3. 8~E 02' 

- -



-

OIST FRO"'! 
HG I~Il") 

0.000 
0.200 
0.400 
0.1)00 .. 
O.~OO 

'1.000 
1.:!OO 
1.4JO 
l.bOO 
I.S00 

-

2.000 
2.200 ' 
2.400 
2.600 
2.800 

3.000 
3.200 
3.400 
3.bOO.· 
3.1300 

4.000 
4.200' 
4.400 -
4.600 ' 
4.S00' 

5.000 
5.200 
5.400 
5.600 
5.8'.)0 

6.000 
6.200 
6.41)0 
6.600 . 
6.800. 

7.000' 
7.2!J0 
7.401) 
7.600 
7.300 

-

.• , •• ,.AXlAl',DI,S!RIBUT;IO~ Or,PAR~'{EfEPS'::PART ,z • •• ' •. , 
PReBLE'" TITLi: - '~-SASE ~CASE ,SPIRAL 'PLUG GEOMETRY ~. "'ARCH :23.1966 

'-

'. REYNOLDS NU~8ER' •. 0'. . , ,c 

"IAK . 'iG :,~, 

I.BI5E 
1.'HbE 

, I.Sl7E 
·I.SISE 
1.819E 

1.919E 
1.~20E 
lo-921E 
1.1322!: 
1.l3l2E 

:>5 
!lS 
05 
05 
05 : 

')5 
05 
05 
05· 
05 

1.a23E 05 
1.SZ4E ~S 
1.824E OS 

'l.825E OS 
1.82bE OS 

5.223: \)4 5.698E-03 ,,: 9.526E-03 
5.327E 04' ,5.69SE-03 ,9.199E-03 
5.42SE 04 : ·:5.693E~03 ': ,8.90BE-03 
5.51SE 04-- .' S.690E-03 8.650F-03 
5.b07E 04 ·5.698E~03' '··B.419E-03 

5.b90E 04" 
5.770E 04 
5.P46E,04' 
5.917E 04' 
5.(H!5E· 04 ' 

6.050E· 04 
b.lllE 04 
6.170E 04 

. 6.Z25E 04 
b.27SE 0 .. 

5.68bE-03 
5.683E-03 
S.6a1E-OJ 
5.680E-03, 
5.678E-OJ 

5.676E-03 
5.614E-1J) 
5.6HE-0) 
5.671E-03 
5.670E~03 

~,. 8.l1iE-0) 
8.02SE-0) 
7.855E-03 

,7.70Zf-03 
, , 1.562E-03-

.,7.434E-03 
1.317E-03 
1.210E-0) 
1.111 E-03 
1.020E-OJ': 

6.328E 04,'" .5.669E-03 '.::.6.936E-03 
6.376E 04' 5.667E-03 . 6.858E-03,. 
6.421E' 04', 5.666E-03;,' 6. 785E-03 -~ 

~HT T-:l.~::i~::·" Cf:I!F (~T'J:;H:»-$:I~iT-C:f.. ""AS5; TP.A~'>J:~' 
';Aa -ir;, l)'1EPALL ',': ,(,)I~TJ,",:l j J 

_.'_~ _ ... _'" .... " ••• .-p4 " .• - ~:''; ~ ~'_ ~ ... ,~_ .. ~ ,._. 

Z.166E Ot :, , • .:-.:. ':3 , ';. _~, I • ..-:!--,' :1.ll9!: ·')3 ',0 __ '5.2 ~6>: ;_' 
,2.023E 01 ?,-41',:?, : ").;.n~ 'n",. ····l •. 13'!E 03 ':". ';.514=,1::-

1.90aE 01 ,,2.24!.:::~ ··,.l""l~ 1)3, .. ":"~HE ';):~.: 5.7 .. 6E··'~ 
1.'303& 01 Z.241F :il3 __ ".L~;= .(;~.,."", 1.I'~3E 1)1' ,:".' 5.~".1: '.'0 
1. nOEO!': Z.Z4:!E ,c:! ,-, ,.,6';247" ·n-,. ,1.135: :)3::~: "."'-1~9~ '}I} 

1.628E 01 2.24::~ ,~~ :·.',-".2a~c '-:13: :1. 13"E"":)3 ~c., '~~J#'r.~ 'i: 
,1.555EOI :.;>40~' C',!. '~.3?'=j~,', !.1.37C:':)3'.:. ".~~3'= 
1."89E 01' '2.24'::' ':3 ",.I:.~o;.,r,.:-3: ,::").!.3i1:': .. 'l':',·::''>.l'S~t; it) 

, 1.430E 01 ~.24C=, ('3 , :>.::;~E,j:! v. :.~3'?E :.~~ '.: '. ,>.n:::' ::: 
1.377E 01, 2.24~f. v~ ~ . ,;' .. 4?r;):' !l3·., 1.1100f. :)3~,: .~.1J4= 10 

1.329E 01 ,2.24I)f o~: . ~ t>~~4BEO/"::: '·1.1~1~ .,~ ::::,.. ;.Z70f~.)i) 
I.ZeSE 01 ~2.23Q~ ,.')3~,.' . 6.475:': ~3.' ':'.:,,~1.14Z:':· ~1'-:" .. 1,.43H 10 

'1.246E 01' Z.239E, ~3' b'-SOJE 03' 1.143: -03", '7.Sa,;: ,j 
, 1.ZIOE 01 2.23'1E 93 6.523E:3,. 1.14 3€ ,1}3 . 7.734': ::;:: 

1.17"e 01. 2.239E 03 ; • .,46E.'OJ ~"'!.144!E 03 .' 1 .. 877: j: 

1.146E 01, Z.23~E'03 
I.1IdE 01 2.239: ~3 
1~Oq2f,Ol 2.239E 03 

1.826E 
1.8Z7E 
1.aZ7E 
1.aZSE 
1.S2aE 

05 
05 
05 
05 
05' 

6.464F04 5.665E-03· 6.7l8E-03,,, 1.C69E 01' .. , Z.?3Q ": fn 
e.~O~E .?4"';, __ 5~664E-:oi 6.6'56~03 ,,: _l.047E 01 Z.239E 03 

< 

1.8Z9E OS 
1.829E 05_. 
1.lJ29E 05 
1.830; •. 05 
I.S30E os 

, I.S30E 05 
1.831E 05 
1.!!)IE 05 
I.S31E 05 
1.93ZE 05 

, o.544E 04 : .. 5.66ZE-03 
c.5B1E 04 ,,.. 5.661E-03 
b.ol7E ,04 .:', 5.660E-03 
b.650E 04 ,5.659E-03 
6.683E,04~ ~'S.659E-03 

,,6.113E.04 , .. ,,5.658E-03 
'6.742E 04' 5.651E-03 
b.110E 04 ,5.656E-03 
6.796E 04 5.655E-03 
6.822E' 04 5.655E-03 

1.!32E 05 6.846E 04 5.654E-03 
1.33ZE 05'- 6.868E 04' 5.653E-03 
1.333~ ~5 6.b"lOE 04,' 5.653E-03 
1.eB: 05' 6.911: 04.' ·5.652E-03 
1~833E 05 6.931E O~' '5.65ZE-03, 

, ,~b.591E-03 
--' 6.543 f-03 

6. 492E-03 
. 6.444[-03 
6.399E-03 

6. 351E-03 
6.3Ief-0) 
6.281!:-03 
6.246E-03 
6.213f-03. 

6.182E-O~ 

a.IS3E-03 
, 6.126F-03 
'. 6.100E-03 

6.015E-03 

1.8)3E 05 6.950E 04 ~ 5.651E-03 - 6.1)52E-03 
1.1333f '.)5 ~ - b.96eE-'0'.r;--'-. 5:650E=6j--:-6~ 030E':03 ' 
l.e34E 05 ,!>.9S5f 04 '. 5.650E-03 6.009f-03 
1.834E 05 7.001E· 04' .- 5.650E-03 '5~990E-Q3 
1.834E 0'5 1.017E Olt " ·5.649E-03 " 5.911E-0) 

, - "" -" :-- . ~ ." . 

1.026E 01, "l.23QE 
, --, 'I~007E 01 " 2.23'1E 

n~' , . 
1)3 

- 9.898E 00 ,2.239: 
',9.734E· 01) .' Z.Z%E 
9~5g2E O~ c· 2.23~~ 

:>3 
03' 
~3' 

9.440E 00 '0 .23~~ :)3 
Cj.~07r.: 00 .l3 ar ::~' 
Q.l<:!3E 00 .'3:E !:,:~ 
q.CI~1E 00 .23>3E ,)3 
13.958E 00 .23i!f 1)3 

~.~'5'5£ 00 ,,- • > Z.23;:: .~~ 

·1l.7'59E 00 ?Z3'!;: ,,~ 

8.66qe 00 2.23'lF 03 
8.'584E'00 2.23'3E ~~ 

,8.505E 00 '.,~. 2.238: 03, 

. 
~.656E 03 .~ 

:'. b7lE 03 
:'.685: 03 
".699'.: .,3 

: 6.7nE ::3 

1.1471: :)3' 04.~!!:':: .::: ' 
1.14!1E ~)3",'" .;. 7::~~ ~: 
1,.1106: .J3.-'.'· ~.3~'Sf ;.1 
~.149; 0) ~40~=~:: 
1.1109E;03 ;.J2v~:~ 

-:.-724:'0) 1.149:,,03,- .'~.U~c 
~.1~;~ ~~ :-":.14~~ ~~~ ~~.:~~~ ~~ 
;,.74~E'·03' ,I.ISO!: '::;3', ,9.Z 7 ::.!:;:: 
6;1571: 0) 1.150f'~ > •• :).~~AC .j: 

'o.761!: 0) I.150~ 03"" .~ •• 3,!~ ':-~ 
... 0" ,-' -:. ~ 

- o. jioE \j3;' l.l51E -~~. - - ;.5:~~ ::--
6.1f,~f 1)3 - ,"1.151'.: ,~~l' .,- ~.57~~·:-:: 
'~."94: 03' . ,:1.151~~J3 ,~ ~.~41!:~::~ 
~.aOZI:~3, "l.151JE' or:·--~;'?:llt~ '0;. 
6.810E ?).~ .... ~.152E :)3.:,:~~r6SE~_'!~ 

~ -,,, ~ - '< • - ; ..... ~ - • ,.. 

'8.429EOO· ?23eE 03 6.al7E ,03 ',.-:'-152E-'03 ".': '~.=!;E· ~c ; 
·8.353E 00 2.238E 1)3 . 'o.B'~~ 03 . ',,1.1521: O~ '. :",=.·~'?9~ ).:-

8.292F 00 - 2.23~E 03· . C..B3l=- 03 c,;. 1.152: ':n ':::. '9.93:!;:" j~ . 
8.;228E 00 "'2.238E03 : ''>.840E 03 .~ 1.1~2E 03.',' .... ~.-1;31E.,'~~·~ 

". 8.169E 00 2.l38E. 03· , 6.~49E.·03· 1.1S3E 03 i ~l.i)~n=- ~:.'" 
~ -' .. '.~, --:---.: ... ~ .... ~ 

Figure 38 
Sheet 3 of 5 

- - - - - - - - -.- - - - -... -



- - - - - - - ... - - - - - - - - -

:'IST FqC" 
"u I'''' PO 

13.000 
8.20e 
!10400 ' 
9.600 
13.800 

9.000 
9.2JO 
9.400 
(j.600 
9.800 

10.000', ' 
le.200 
10.400 
IJ.600 
10.S00 

ll.OOO 
11.200, 
11.4~C 

11.600 
11.800 

12.000 
12.200 
12.356 

, ' 

•• ~ *AXIAl'OISTRIBUTION'OF PARAMETEqS-PART 1* ••• 

PR08lE~ TITLE - - -aASE CASE SPIRAL PLUG 'GEOMETRY '4/lPCH .23.1966, 

NAK BULl(. 
'TEMP,;:, 

1130.1 
1130.2 
1130.4 
1130. !t 
1130.7 

1130.9 
1131.0 
1131.1 
1131.2 
1I31.4 

1131.5 
1131.6 
1131.1 
1131.S ,#. 
1131.9 

, 1132.0,_ 
1132.1 
1132.1 
1132.2 
1132.3 

,1132.4 
1132.4 
1132.5 

HG 3Ulk . HG WAll . * * * IRON CONCE~TRATIONrpp~) ~ ~ * 
TE!4'P ( s: , TEI4P(F' IN HG . SAT r HOJJ SHr :;:t:~l 

1033.7 1049.0 1.161E-Ol 3.79:lE-Ol ~. ~l ~::-:'"'l 

1038.2 1052.8 1.211E-01 3.!!62E-Ol 3.'3q~=-r'; 
,'1042.5 1056.4 1.214E-Ol 3.931E-01 3.676::-01 
1046.6 ."", . 1059.9 1.331E-Ol 3.90 SE-Ol ' 3.751 E-\J! 
1050.5 1063.2 1;'389E-01 4.i)~3E-01 

1054.3 1066.4 1.447E-01 4.125E';"01· 
1051.8 1069.4 1.506E-01 . 4.185E-Ol 

,1061.2,' " 1072.3 1.564E-Ol . 4.244E-Ol' . 
10M.5 :. -- 1015.0 1.623f-01 1t.300E-OI 
1067.0 

1010.6 
1073.4 
1016.1 
1016.7 
1381.2 

: ~ -; 
1011~1 .. , :""l.682E-Ol. 0' 1t.354E-01 

.. 

,', --~:'1080.2.~·':: 1.7it2E-Ol-. '. 4'-406E';;'01 
'. ',':1082.6 "~;'l.801E~1:--" ,4.457E":OI' 
',"': '1084.9::·2;',1.860E-01:" ;:4.505£-01 

~', ,.1081.1",,·,-- 1.919E-01 ---4.552E-Ol 
" ,:',. 1089.2,: ~.',~~ __ l.~78E-Ol ',,":4.4)«;I7E-Ol 

3.8Z4E-Ol 

3.895E-'Q1 
3.963E-1)l 
4.0?QE-0l 
4.093E-01 

,:'.4.155E-~1 

.. 4.214~-0l 
: 4.272:-01 

,4.3Z7:-!H 
'.' 4.3etE-Ol 

, 4.432E-'Jl 

__ 10e3.0_':':"; " .1021.2.~:~.:~;J~oi ,~: >4~~40E-0~' ·4.481'=-01 
10es.e'1093.1 ~:<";'Z~096E-Ol" '4.6'82E-Ol 4.52 Q E-1)1 

, 1088.0 .. "~", 1094.9 :,:.',. 2.155~-Ol' .. ~:4. 72ZE-01, 4.5751:-01 
'1090.0 , '. "1096.6 .,2.213E-of '·4.760E-Q1 . ',4.61Q!:-('!· 

__ .109Z.0'_'J~_,::~,~098.3, .-..:, 2.21lE-Ol·· .. ,4.791£-01 " 4.bt.?,:-:-,) , 

1093:.9,~,..:..:..._1099.9 __ '_z.J2ef-Ol, .- 4.S32E-OF: ': 
.. 1095.1 " . 1101.4 '. 2.385E-Ol ., 4.!l66E-01 
, __ 1097.0 __ , __ . ,:,U02.9_:~:,: 2. 4 30E-0l.". 4.900E-Ol 

.~ :,.~ 

figUre 38 
Sheet 4 of 5 

. ' 
4~70?E-Ol . 
4 .. 14t:-!l! ' . 

.4.771:-:n: 

~€~~r~ATI~~ (~IlS/YRt 

r:J3f' ' . . PlU~ • 
" -=-. ~ 

... 41Z~ 02 3'. 956E' !J?, 

... .:.~5E :~, L.~llE n 

... 493E 02 4.062~· 02" 

... 5?5~ ~z . 4.I07E 02 
,~.~~3~ !'J2.~, :4.147E ,,2: 

~. .~ 

.•• 575E 02, 4.18ZE 02 
4.5~2E' 02. ':'~4.21ze ,02 

, 4.60S~ n~ ~ 4.237: 02 
,4.613E·02 ,4.Z57E \)1 
,4.617£ 02 '-" 4.273E. 02 

- ... f:17E 02 ' 4.2!14E I)Z 
4.613£ 02 4.291E'~? 
4.60SE n 4.2q4: ')2 --
4.593E 1)2 .4.2q4= 02 
4.518E Ol 4.Z89E 02, 

4.559E 02 4.281E 02 
4.5HE OZ 4.270: 02 
4.:;14~ ~z "'.25M: 02 

". 4.4e1: '2' " 4.238: OZ" 
".451E 02 :- .... Zl'= ,02 

-.425E 02 ,4.195£' 02 
4.3C!11E 02. . 4.170= .02' 
".31!)E 02 ,4.148: 01, 

- -



-

* - * -AXIAl_DISTRIBUTION,OF PARAHETERS-PAR~·2 •. ~ • * 

P.RC'BLE" TITLE - - ~aASE·· CASE SPIR41· PLUG GEOMETRY ~ARCH 23.1966 

>JIST f;t[J~. * REY~OlDS NUMBER - * • PRANOTl NUMBER • * SCrlMIDT NO '"IEAT .~.;::";:';:;~ :::;,:;: {~-; ';/rlR- ~:.FT-F I -asS T:U';~~:1't 

~G JNII"41 .. AK 4~ ~AK HG >iG - :'tA-'.> -.. 

8.000 1. l!34E. .05 _ _.7.032: ()4 S~6.o\.9f..--<lL ___ 5.953E.~03 . 8.112E 1)0 : 2.23::f '~3 
9.200 1.!!34E 05 7.046t' 04 5.61t8E-03 5. 937E-03 8 • .J59E 1;)0 . Z.23~~· ')~ 

5.400 1~834E 05 1.C60E :l4 ' 5.648E-03 5.921E-03 B.J09: 00 2.2?~~ I:'~ 

8.600 1.B35E 05 7.0BE 04 5.647E-03 5.906E-03 7.961: 00 2.239; 03 
~.aoo 1.835E CS. 1.085E 04 5.641E-03 . · .. 5.891E-03 1.9161: 00 2.238: :)3. 

9.000 ._. __ .1. 83S.L05 _ .. ...:.7 .. C'51f _Q4_'_' S •. 64.1.E=.Q3 __ ~.~t78E~_03_ 1.S73E 00' 2.238E O~·· 
Q.20C 1.!!35E as 1.108E 04 5.646E-03 5.86SE-03 7.933E 00 2.23!!: 03 
9.400 . 1.'.!35E 05 7.119E 04 5.646E-03 S.852E-03 7.794E 00 .2.23B: 03 
9.600· 1.835E 05 7.129E 04 5.646E-03 5.841E-03 7.7~9E 00 2.237: 0'3 
9.800 1.835E 05 7.139: '4 . ___ 5.61t6E-:o3 ..... 5.83,-,:-03 7.H3E 00 2.237: 03 

1:>.000 _.---1~83_b~ ,Q.5 __ 1~.1~.B.E_Q~ .. b~~E~03 __ : _5. 819E=O) ___ 1.,,91E. 00 2.237c 03 
i).20C 1.~B6E os. 7.157E· 04 5.645E-03 ·5.809E-D3 .7.66OE 00 2.237~ ~3 
:.-0.4:>0 1.S36E 05. 7.166: 04 0;.645E:-03_ ... 5.8CO~03 .. ~. 1.630E 00 2.231E 03 
1:>.6QO 1.836E 05 7.174: 04 5.645E-03 S.191E-03 .1.602E 00 2.231: 03 
10.800 1.836E 05 7.1!!lE.0.4 5.64:'oE.-:03 ____ ,.5~ 782E-03 : .. 7.575: .:>0 2.237£ ~:' . 

11.000 ___ 1.!\.~6E .. OS_~ .. ]..18.9E_04 __ 5 .•. 6lt~~=P)_'_5 • .1HE~03',:, " .. 3.50;0:._00_"_ .2.231E 03 
11.200 1.836E OS 7.196E 04 .5.644E-03 : .. 5.766E-03 " 1.526E ·00, 2.237: 03 
11.400 .1.1!36E .0.5 .. _. 7.Z03L04 _____ 5.644E-03 .. ·._ 5.158E-03 .• 7.503E 00 2.23"7: 03 
11.600 1.836E os 1.Z09E 04 5.643E-C3 5.15H-OJ·· 7 ... 811;- 00· .' 2.237: (;3 
11.800 __ ... __ 1.1334:. O.5._._· ___ 1.21..SLO~ ______ ~.A4.lE=:OJ. __ ' .. _.:?74:'oE::Q3, _: 7.461f 00: 2.:;'::7= J? 

_12.000--1 .. e.36L05 . __ 1.l2.1£j)_~ __ . ...5.61t.3~.o3--..:..:.5. 73.8E~03 _1 .. 441:: OC ... : 2.:?3n· ~3 
12.200 1.836E J5 7.227E 04. 5.643E-Q3 5.132£-03 7.422E 00., ,2.237~ ~~. 
12.356. _ 1.!!31E 05 1.23lE 04._ . 5.643E-OJ. _ _ :S.721E-03 >7.4u8= JC' 2.23':'': C? 

.... ' . 

. . -----~-- --.-.-- .. _- .----- ---- -

rHE-~AK-SlD~A p 3~727c-07 PSI lHE-MG SlOE nELIA_~&a16E_~1 P5~. 

- - - - - - --

Figure 38 
Sheet 5.of 5 

- - - - -

-4-:; ':!VE~AU. <:H.r:-r I ... ~ J' 
, , 

~. ~: .. r: 13 1.153E 'n; ·;l.:lIJi!r ~:. 
'-.~--~; ::? :.!~~E I)) ~·<:'.:1:?: )1 
-:.·::72:. '3 1.lS3E ~3 . :~!.:)l!)= ""'. 
=.;1~~ :~ 1.!53E '3':: .. 1.'21: n 

·~.E"r;~ ,.,3 !.l54E '13 "~:. :'.'24: .~!. 

:;). ?92E :n 1.154: :)3 1. :>2!!: ·:n 
:,.a~'!E ';3 .1.1;4: ')3 !.=l32: ;1 

. -..903: 1)3 :.154tE ~l !.:>3~~ 
6.';OqE'03 1.15ltE 03 . :.j~=!; :! 
6.914:.~3 1.154: :n !.0 .... 1£ J: 

0.91';E 03 1~155E 03· . 1.'j44; --. 
- f>.924: 1)3 1.155E 03 · . - ... -. 

6. Q 2'3E '3 1.1~5~ 0, !.l5::l J:' 
6.933E 03 :.155; :3 · -::~ ...... ~ . 
b.937E 03. .: -1.1'55E 03 .' 1 I'" ,,;: .. \,. --
6.941E 93 - 1.155r ~3 :"1. :":7: 
0.<;45: O? ' 1.15"~· ~3 · """-:. .- . ;--
~.9lt~€ 03 !.15~=~ 03 :.)0;2: 
:-.~S?: ~3 !.:'55£ 03 .:. ~.,-: 
,,>.'=o;5E "3 1.1 ~'5E .:;~ : • .)~'3: 

~ 

:;).95~E 03 -." 1.156f ,'13' -" l.=~:= :: 
e.961E 03. t .-15(;E 03 .. ':. ,.1. '}-;~r:. , 

'.>.926£ 03. : _1.155!: 03 . ~·l.'7:: , -

- - - - - -



r--
I 

II 
I 

II 
II 
II 
I 
I 
I' 
I 
I 
I 
I 
I 
I 

\D 

I 
~ 
r-l 

I 

~ 
I 

\D 

I 
\D 
co 

I 
I 

.. 
I-
Z 
W 

U 
u.. 
u.. 
w o 
u~ 

O<: ~ 
w""" u.. ..... 
V! 

Z 
<{ 
0<: 
l-
V! 
V! 

~ 

224~ 

2235 

800u 

600u 

11.0 

I 
•••• 1 • •• 

::' ~f~J.~:- : t4 : ' 
0' " : ,'- ::il ,!, 

'1\' ". 

'7 

I, " ,: ' " " :.. ~ , ,'" : :.j: i j: ,:' ' ~ ' .. ' : ' 1;0. " " ;, "" 
- I- f-:-'-f-'-'-','I+,':":'::+', ,-C.f' -"-' 4" =-1-:,:c.::-I--; -; _;: r+i~ :1 '" ,I :,,~,'III :,;: .. ',~, ~ I':, :',:: :::', ",,: -~ 

'. I"'" ". " .t, 

I 1" I I . I I j I : :; ~, 
, ' "" ':":!, ,', : ',",': > ;,!I Hg, :1',', :' 1--1---+-+--/--1---1- F---f--:-:-'F, ,,+:,~.:,+--:+, :, ,,: c' 

" 

" I': 

~ 
'+-:-+-- ,.:..,.' l-"~ , f- :': ~; ';-

I::, .;;: rpli ! ,!1 " " Hg ,', 
. , , i , . _ , .. : ;:'! :Ii: ',,' ',:: :!' "'" 

/ " ,;,'.';p,"" 
"-Ir----l--l--1f---~-I-:-:-'-+_-+--I-+_+-+___+.y.---,.J-f_:_.~.j.:.:..:.cJ._:..!4-IL+!_"...;.- j.:..' '-+-.-.t.j...,.4.- - ---c- --"-' 

5.0~~~~~~~-'~'~~~ .. ~, ~~~~~-~!,~:-~':'~< ~:~~:: W!:~: ~!~I~:~,~I ~:! ~; ~,~'~~~r:~~~ 

.. 
Z 
0 
I- 0.4 <{ 
0.: 
I-
Z 

E -'-w 
U c.. 
Z 

c.. 

0 0.2 
u 
Z 
0 
0.: 

0 

6 
~ f- -

z 
01: 
-0 
1-0 4 
<{~ 
0.: ......... 

'/ 'J!~ " , I ' I- V> 
w;= E E I--+-.+-+-+ _+-+-+"",oq.r / .. " '::', , : .. :i',:' - I "::' 

II i J ''_, .. t.. ,. 
~~ ~ " . " n:; :,;: :;! ',' ;::: ,: ' " 

2 ~ ~V ' " , ', I, 
1-P-II.-+---+---lI/-::l"~'--boI'"l-+--+--+--+--'-:+---+-+-HI-l" .,-.. ,-J..-:...:J.:-.!.-+, '----+-'-'--l--I--, ~ :' i ' 

--'" ~ 
o --o 2 4 6 8 10 12 

DISTANCE FROM START OF PREHEAT I in. 

Figure 39 

14 

OJ 
U) 

ctl 
o 
OJ 
U) 

&l 



l268-NF-1192 

..J 
-< z 
o 
iii 
z 
w 
~ 

o 
z o 
z 

1.0 

9 

8 

w 7 
V) 

-< 
u 
w 
V) 6 
-< 
CXl 

o .-
o 5 
w 
~ 

-< 
Q.. 

~ 
~ 4 
o 
~ 
-< 
~ 

z 
o 
~ 3 
~ .
z 
w 
U 
Z 
o 
u 
z 
o 
~ 

.- 2 
x 
w 

0.1 

® 

b 
® 

0 

x 

0 
r:1 

®x 0 

0 
(. 0 

®x 
X NOTE: 

{] ®{] 
THE BASE CASE IS THE TUBE-IN-TUBE 

0 BOILER DESCRIBED IN REFERENCE 18. 

2 3 4 5 6 7 

MASS VELOCITY RATIO (COMPARED TO BASE CASE), NONDIMENSIONAL 

Calculated Effect of Mass Velocity on Preheat Exi t Mercury Iron Concentrat ion 

Figure 40 

- - -- -- ---------

8 

I 
I 

1 
i 
I 
II 
II 
11 
11 

I 
I 
I 

I 
I 
I 
I 
I 
I 



I-

I 

II 
II 
II 
I ~ 

w 
V) 

<C( 
u 

I 
w 
V) 

<C( 
al 

0 
l-

I 0 
w 
~ 
<C( 
a.. 
~ 

I 0 
u 

0 
~ 
<C( 

I' ~ 

z 
0 
~ 

I 
<C( 
~ 
I-
W 
Z 
w 
a.. 

I ...J 
...J 
<C( 
~ 

I 
~ 
::> 
~ 

>< 
<C( 

~ 

I 
I 
I 
I 
I 
I 

II 

1268-NF-1l93 

1.0 

9 
x 

8 

(:) 
p 

7 

~ 

0 x 6 
...J 
<C( 
z 
0 
in 

(.) 
1.:1 5 

z 
w 
~ 

0 .,. 

0 
z 

0 ® 
0 
z 4 P 

1- NOTE: THE BASE CASE IN THE TUBE-IN-TUBE 
x 
O® 

BOILJ:R DESCRIBED IN REFERENCE 18 . 

3 0 

O® 

® 

® 

2 
0. 1 2 3 4 5 6 7 8 

MASS VELOCITY RATIO (COMPARED TO BASE CASE), NONDIMENSIONAL 

Calculated Effect of Mass Velocity on Maximum Wall Penetration Rate 

Figure 41 

----- -- - --

-

t---

l 
I 

9 1.0 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

APPENDIX 

MERCURY WETTING PROCEDURE 

This procedure describes the method of pre-wetting the boiler test section by 

a lithium and mercury solution. Test section is located in Corrosion Loop 4 and the 

mercury system is assumed to be fully checked out. 

A schematic of the apparatus for pre-wetting the test section is shown in 

Figure A-I. The numbers in each step below refer to points on the schematic. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

S. 

Close V-BOl, V-B02, v-B03, v-Bo4, v-B05, v-Bo6, v-B07, v-B08, v-809, V-810, 

V-Sll, V-S12, V-234, V-S13. 

Pump down on vacuum system to ~25 microns, or less, when both systems are 

leak tight. 

Open V-S07 and V-SIO. 

Open V-234 and evacuate Hg loop to 25 microns or less. 

Open v-S04 and V-S03 and evacuate setting system to 25 microns or less. 

Open V-Sal and V-S02 and equalize the systems under vacuum. 

Close V-253 and V-S02, V-S03~ v-S04; open V-229, V-250 and V-213. 
I , 

Pressurize Hg expansion tank to 15 psig. 

Open V-S03, then slowly open V-S02 until the three level lights (A, B, and C) 

are lighted; then quickly close V-S02. 

10. Release pressure on Hg expansion tank to atmosphere. 

11. Open V-Sal and drain down Hg in test section. 

12. Close V-SIO; open V-SI3 and bring loop pressure to 5 psig with argon. 

13. Close V-Sal and release loop pressure to atmospheric. 

14. Close V-S13, open V-SIO and evacuate loop. 

A-I 



15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

Close V-807, open V-80B and pressurize system to atmospheric; close v-BoB. 
.When reaqy for Step 15, be reaqy to open v-B06 quickly and remove Li from 
container and drop small pieces into tank with tweezers, making sure that 
Li is inserted into tank area and not stuck to sides of tubing or fittings. 

Close v-B06 and pressurize tank with argon to 1 psig. 

Turn on wetting tank guard heater and heat to 390/400oF. Leave on at this 
temperature for 12 hr. 

After the Li/Hg solution remains 12 hr at 390/400oF reduce to IBOoF. 

Hook up argon line to v-B09 and bubble to mix Hg/Li solution for 2 hr at 
8 to 12 psi. 

.. P~rge ~ 5 cc of Li/Hg mix from sampling valve v-B09; then withdraw ~1-3 cc 
of mix for analysis. 

If analysis is between 300-500 ppm Li, proceed with Step 24; if not, bubble 
with argon for additional hr and then repeat 21 and 22. 

Open v-Bo8 and pressurize wetting tank to 10 psig. 

Open V-B02, then open V-BoB slowly until the top (A) and middle (B) probe 
lights go out. Close v-B08 an'd V-802. 

Close V-BOB, open V-B07 slowly and evacuate the system over Li/Hg solution. 

Close V-810 and v-242; open V-B13 slowly and pressurize loop to 100 psig. 
" 

0 Start primary NaK loop and slowly heat up to 900 F. .Do not allow loop 
pressure to exceed 150 psia. Pressure can be reduced through V-B12. 

Slowly increase NaK temperature to 9500 F while maintaining loop pressure 
at 135 psia. 

Slowly reduce the Hg loop pressure until the Li/Hg solution is slowly 
boiling in the test section and Hg condensing takes place around the 
boiler outlet vertical riser. 
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30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

Hold the conditions in Step 27 for 16 hr. 

Shut off primary NaK heater and allow test section temperature to cool to 

300 to 500oF. 

Reduce Hg loop pressure to 50 psig. 

Open V-B02 and v-B04 and drain all Li/Hg mix into dump tank and remove from 

dump tank with v-B03 closed; Hg/Li solution will remain for next Li run. 

Drain test section to dump tank and sample for Li. 

Close V-B02, V-B13, open V-B12 and bleed off loop pressure to atmospheric. 

Open V-BIC and evacuate Hg loop. 

When Hg loop is less than 25 microns, proceed with standard loop # startup. 
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