@ https://ntrs.nasa.gov/search.jsp?R=19690011517 2020-03-12T07:32:05+00:00Z

NASA CR-72514
PWA FR-3015

INTERIM REPORT

STUDY OF
INDUCER LOAD AND STRESS

by

H. J. Barten, L. L. Coons, and R. E. vavis

PRAIT & WHITNEY AIRCRAFI
FLORIDA RESEARCH AND DEVELOPMENT CENTER

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center
Contract NAS3-11216
D. D. Scheer, Proivct Manager

N -20879
¥ (ACCESSION NUMBER) (THRU)
o / S T -

-, Pd
. 23
v 3 (PAGES) (CoDE)
VR g 22
N ‘.':z/l / A
\NASA CR OR TMX OR AD MUMBER) (CATEGORY)




NOTICE

This report was prepared as an account of Government-sponsored work.
Neitiicr the United States, nor the National Aeronautics and Space Admin-
istration (NASA), nor any person acting on behLalf of NASA:

A)) Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the infor-
mation contained in this report, or that the use of any information,
apparatus, method, or process discloscd in this report may not in-
fringe privately owned rights; or

B.) Assumes any liabilities with respect to the use of, or for damages
resulting from the use of, any information, apparatus, method, or
process disclosed in this report.

As used above, “person acting on behalf of NASA” includes any employee
or contractor of NASA, or emmployee of such contractor, to the extent that
such employee or contractor of NASA or employee of such contractor pre-
pares, disseminates, or provides access to ary information pursuant to his
employment or contract with NASA, or his employment with such
contractor.

Requests for copies of this report should be referred to:

National Aeronautics and Space Administration
Scientific and Technical Informaticn I (cility
P.O. Box 33

College Park, Md. 20740
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FOREWORD

This interim report presents a summary of the work conducted under
the first three tasks of Contract NAS3-11216, by the Florida Research
and Development Center of Pratt & Whitney Aircraft, Mr. W. E. Young,
Program Manager. The Contract is sponsored by the Lewis Research Center
of the National Aeronautics and Space Administration, Cleveland, Ohio,
and was administered under the technical direction of the Chemical Rockets
Division with Mr. D. D. Scheer, Project Manager. This report covers
the period 15 February 1968 to 15 October 1968.
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ABSTRACT

A program of analysis, design, fabrication and testing is being con-
ducted to develop computer programs for predicting rocket engine turbo-
pump inducer hydrodynamic loading, stress magnitude and distribution,
and vibration characteristics. This interim report covers the analysis
and design portion of the program. Methods of predicting blade loading,
stress, and vibration characteristics were selected from a literature
search and used as a basis for the computer programs. A test inducer
was designed representative of typical rocket engine inducers and instru-
mentation was selected to provide measurements of blade surface pressures
and stresses for correlation with the prediction system. Subsequent fabri-
cation and testing will be covered in the final report.
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SUMMARY

Cavitating inducers are widely used in rocket engine turbopump
designs to prevent cav.’'. tion in the pump main stages. This results
in higher turbopump opeiuting speeds and/or reduced pump inlet pressure
requirements. Inducer hydrodynamic performance can be accurately pre-
dicted from empirical loss and deviation data. The prediction of oper-
ating stresses presents a problem, however, because (1) there is a lack
of information on blade pressure loading and (2) the complexity of the
inducer blade shape prevents simple steady and vibratory stress analysis.
Consequently, inducer mechanical design is usually based on several
approximations, with liberal safety factors being applied. This approach
results in relatively heavy inducers with undesirably thick blades.

This study was therefore undertaken to provide analytic tools, in the
form of computer programs, for the prediction of (1) design and off-design
hydrodyramic blade loading under cavitating and noncavitating conditions,
(2) stresses due to hydrodynamic and centrifugal loading, and (3) blade
resonant frequencies and relative stress distribution. The study con-
sists of (1) a literature survey to establish the current state-of-the-
art, (2) formulation of computer programs and correlation with existing
data, (3) design and fabrication of a test inducer and test rig, (4) a
tes’ program in which blade pressures, resonant frequencies, and stresses
are measured and compared with predictions, and (5) development of the
computer programs based on the test result:.

The literature survey, analytic formulations, and test rig designs
have been completed and the results are presented in this report. Inducer
internal flow was calculated from a mean streamline analysis using firite
increments. Stress and vibration characteristics were calculated using a
matrix analysis of finite triangular elements.

Computer program predictions were compared with experimental data or
exact solutions for inducer cavitating and noncavitating performance,
inducer resonant frequencies, cantilevered plate resonant frequencies,
inducer siress (bladder between blades), and flat plate stress. The
correlation was satisfactory in all cases.

An inducer and test rig were designed with provisions for measure-
ment of blade steady and vibratory pressures with resultant steady and
vibratory strains. These data will later be compared with computer
program predictions for further refinement of the programs.
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SECTION I
INTRODUCTION

Inducers are universally used as the first stage in liquid rocket engine
turbopumps because of the weight reduction and performance gains they pro-
vide. Inducers can operate at low inlet pressures, reducing the required
propellant tunk pressure. Low tank pressures mean lighter propellant tanks.
At the same time, the inducer supplies the main stage of the turbopump with
a much higher pressure than is possible by tank pressurization, thus allowing
the turbopumps to operate at much higher speeds. Higher turbopump speeds
mean lighter and more efficient pumps. As might be expected, the inducer
must pay the penalty for the advantages realized by the engine system.
Because of the low tank pressures, the inducer must operate almost con-
tinuously in a state of partial cavitation while still providing the nec-
essary head rise. When operating with inlet pressures high enough to pre-
vent cavitation, blade steady stresses become severe. As inlet pressure
is lowered and a vapor cavity forms, the steady stresses are reduced. How-
ever, the collapse of the vapor cavity is often violent and unstable, re-
sulting in fluctuating blade loads that can cause blade fatigue failure.

Inducer hydrodynamic design has been refined through the correlation
of empirical data with design theory to the point where excellent perform-
ance, i.e., head rise, efficiency and suction capabilities, can be accurately
predicted and achieved. However, in the area of mechanical or structural
design, the state-of-the-art has not kept pace, and it is this lack of
advance that may limit further improvements in hydrodynamic performance.
The reason for this is (1) the inability of existing design tools to
accurately predict the blade loadings that occur in the inducer from pres-
sure and centrifugal forces and (2) the absence of a satisfactory method
of predicting the stresses that result even were these forces known. As
a consequence, the inducer blades must be designed conservatively, i.e.,
overly thick, to ensure that failure will not occur during engine operation.
The blade thickness directly affects the blockage in the inducer inlet and
is detrimental to inducer suction performance.

It was this deficiency in rocket engine inducer design that led to
the initiation of Contract NAS3-11216, ""Study of Inducer Loads and Stresses.’
The objective of this contract work is to develop computer programs that
can accurately predict inducer blade pressure distributions and resonant
frequencies, along with their resultant stresses. The combined analytical
and experimental ecffort is divided into the following six tasks:

I. Literature Survey

II. Formulations of Analytical Models and Computer Programs
ITI. Hydrodynamic and Mechanical Design of Test Inducer

IV, Detailed Design of Test Inducer

V. Fabrication of Test Hardware

VI. Experimental Testing and Computer Program Verification.

This interim report covers the work performed in the first three tasks
of the program, the results of which are discussed in detail.
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SECTION II
WORK ACCOMPLISHED

A, TASK I - LITERATURE SURVEY

PRECEDIN

1. General

A literature survey was conducted to determine the current state-of-
the-art in the following aspects of inducer structural design:

1. Methods used in the prediction of design and off-design
hydrodynamic loading under cavitating and noncavitating

conditions

2. Methods used in the prediction of stresses due to hydro-
dynamic and centrifugal loading

3. Methods used in the prediction of inducer blade resonant
frequencies and associated stress distributions

These methods were selected based on the following criteria:

1. Comprehensiveness - ability to account for important
physical characteristics (geometric and hydrodynamic)

2. Simplicity - practical design tool

3. Success of similar methods in other applications

4. Availability of empirical substantiation.

As will be noted in the subsequent discussion, ic became necessary
or desirable to modify some methods and combine attractive features of
others to more adecuately satisfy these criteria.

The literature survey was conducted through the library facilities
of United Aircraft Corporation and the Defense Documentation Center.
From these sources, approximately 1800 abstracts were collected, of
which over 100 were found to be pertinent to the work requirements of
the program. These selected abstracts were categorized and are presented

in Appendix A under the following main headings.

Section 1 - Blade Hydrodynamic Loading Under Cavitating and
Noncavitating Conditions

Section 2 - Blade Stresses (Stresses in Curved Plates)

Section 3 - Blade Vibrations (Vibrations of Curved Plates)

;
1
1
z
;
i
!

Resumes of those articles from which material was drawn are pre-
sented in Appendix B.

2. Hydrodynamic Loadin3 of Inducer Blades
Exact, approximate, and experimental methods can be used in defining

flow through inducer passages. Examples of each of these methods are
presented below.
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a. Exact Methods

Exact methods may employ conformal mapping techniques for solution
of the exact pote.itial flow equations. This type solution is for ideal
or no-loss flow and normally is solved only for a two-dimensional flow
field. Examples of solutions to specific cases have been presented by
several authors. Exact solutions for single .ase flow between flat
plate cascades was presented by von Karman and Burgers (Reference 1).
Stripling ant Acusta (Reference 2) extended the potential flow flat plat:
theory to include the effects of cavitation. Fanti (Reference 3) presents
the modified flat plate theory to exactly account for potential flow about
airfoils of arbirrary shape in an arbitrary cascade. Jakobsen (Ref-
erence 4) nrasencs the most general of the exact cascade flow theory by
accountiag for varying airfoil shape and comnlete cavitation. However,
he only preseut: solutions for flat plates and circular arc airfoils.

b. Approximate Methods

The term "approximate method'" used here refers to metheds that give
an approximete analytical description of a three-dimensional flow fiel’,
These methods could be divided into two subgroups referred to as three-
dimensional 2ad quasi-three-dimensional methods. A three-dimensional
approximatr method may employ a numerical! relaxation or finite difference
solution of the potential flow equatious. A quasi-three-dimensional
solution may involve either a two-dim2nsional finite difference solution
to the basic flow equations with an assumed solution in the third dimen-
sion or a one-dimensional solution with assumed solutions in the other
two dimensions.

The finite difference solution of the basic flow equations is a

standard method. This type solution Las been usei by Stanitz (Reference 5),

Stockman (Reference 6), and Cooper (Reference 7) among others. Stanitz
and Stockman present quasi-three-dimensional solutions whereas Cooper pre-
sents both three-dimensional and quasi-three-dimensional solutions. Loss
calculations can easily be incorporated into methods involving a finite
difference solution of a potential flow field. This type solution applies
equally well to either cavitating or noncavitating flow.

The most general type solution between the exact and approximate solu-
tions is the three-dimensional approximate solution because of its ability
to describe completely a flow field in three dimensions, including the
effects of three-dimensional flow, cavitation and flow losses. It was
found, however, in Reference 7 that use of a three-dimensional approxi-
mate model (referred to as "exact" in that rcZerence) required such large
quantities of computer time that it would not be practical to consider
it for use in the present inducer stress design system. A quasi-three-
dimensional solution was fouad to execute much more rapidly on the com-
puter, as stated in Reference 7. It is noted, however, that in models
such as this one, flow incidence effects on blade loading in the region
of the blade leading edge have not always been properly considered.

Therefore, in the hydrodynamic portion of the Task II effort the quasi-
three-dimensional analysis was used for defining the flow field within
the inducer passage while using the results of exact potential flow solu-
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tions for defining the flow field on and near the blade leading edge. The

complete hydrodynamic model will solve both cavitating and noncavitating
flow problems accounting for leading edge/flow incidence effects and in-
ternal flow losses.

c. Experimental Methods

Experimental methods in general rely heavily on particular test
results for use in analysis. Although these techniques are generally
less complex in nature, their uses are restricted to specific machines
and flow conditions. Because of these restrictions these methods were
not considered for use as prediction methods in this program. However,
they may be useful later i: Task II for making comparisons between the
loadings predicted by the computer program and experimental data.

3. Stresses and Vibrations in Inducer Blades

Stresses and vibrations in inducers with idealized geometry such as
constant helix angle, hub diameter, and blade thickness can probably be
determined by classical methods similar to those discussed by Wan (Refer-
ence 8), Reissner (Reference 9), and Knowles (Reference 10). Varying
geometry that is used in conventional inducers would prevent the use of
classical methods because of the increase in the number of variables, and
approximate numerical methods are the only practical alternative. A sur-
vey of the literature indicates that matrix analysis of finite elements
should be applicable to che inducer problem, using existing digital com-
puter techniques.

In the finite element analysis, the object is divided into polygonal

elements, usually rectangles or triangles, and internal distributed forces

are replaced by statically equivalent forces at element nodes. By selec-
tion of appropriate displacement polynomials, the stiffness matrix, which
associates the nodal forces with nodal displacements, can be obtained.

This matrix depends upon the geometry of the element, and for the inducer,

selection of a base element in the shape of a flat triangle would be
practical. The change in the directions of the normals of these base
elements will then account for blade curvature. Techniques for handling
triangular elements that are variable in direction are discussed by
Argyris for elements under memb_ane loading (Reference 1l1) and McGrattan
and North (Reference 12). Although the latter paper involves vibratioms,
its application to elements in three dimensions is pertinent to the in-
ducer stress program.

a. Stresses in Inducer Blades

Stiffness matrices for triangles can be obtained by direct methods,
as discussed by Turner, Clough, and Topp (Reference 13), or by conven-
tional strain energy methods as discussed by Utku (Reference 14) and
others. An analytical expression for the stiffness matrix of an arbi-
trarily shaped triangle is very cumbersome and it is more practical to
obtain its numerical elements on a computer by consideration of the
strain energy. This matrix will yield the relation between nodal forces
and displacements associated with the triangle. Because of blade curva-
ture, normals of the base triangular elements will not lie in the same
direction and the stiffness matrices must be transformed to correspond

i
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to a common direction. This technique is discussed in detail in Ref-

erence 11. After they are transformed, the summation of nodal forces to
zero and the equating of nodal displacements at common nodes yields a set
of simultaneous displacement equations. The values for displacements are

then used to determine stresses. External load conditions in this instance

are pressure loading and centrifugal loading.
b. Vibrations of Inducer Blades

After the stiffness matrix is obtained, the frequency equation and
nodes can be obtained by consideration of the matrix equation of motion
as discussed by McGrattan and North (Reference 12). This will involve a
determination of the flexibility matrix, which can be obtained by inver-
sion of the stiffness matrix on the computer.

Similar means have been used by divisions of United Aircraft Corpora-
tion to calculate frequencies and node shapes for radial impellers.
Results agree well with experimental test data.
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B. TASK IT - FORMULATION OF COMPUTER PROGRAMS

1. Computer Program for Predicting Hydrodynamic Loading Under Cavitating
and Noncavitating Conditions

a, Introduction

To predict inducer blade stresses under cavitating and noncavitating
conditions, it is first necessary to obtain the pressure distribution
on the surfaces of the blades. The pressure differential across the
blade causes a normal force called the hydrodynamic loading. If this
information is available from tests, then the hydrodynamic loading can
be combined with the centrifugal loading on the blades to predict the
blade stresses.

This test information is usually not available. It is known, however,
that a large proportion of the blade stress in inducers is caused by the
hydrodynamic loading. Therefore, it is essential that accurate methods
for predicting the blade hydrodynamic loadings be used. At present, there
are no known accurate methods available for calculating pressure distri-
butions on the blade surface. As a part of Task II, a computer program
for the prediction of hydrodynamic loading, under cavitating and noncavi-
tating conditions, has been formulated and programed.
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b, Description of Analytical Model
(1) Basic Flow Model

The basic flow model selected as a result of the Task II literature
survey is a mean streamline, two-dimensional meridional flow model.
It is assumed that the average flow conditions in the blade-to-blade
space can be represented on a meridional surface so that only a two-
dimensional, streamline balancing relaxation analysis is required to
establish mean velocities, pressures, and flow angles.

The relationship for the angle of the flow relative to the blade
angle and the flow path hub and tip contour are established by appropriate
assumptions concerning the deviation caused by inlet loading (incidence)
and trailing edge unloading (normally called the deviation). Another
deviation of the flow angle from the blading angle is caused by the forma-
tion of a cavity.

Superimposed upon the meridional flow is an assumed form of solution
for the blade-to-blade flow conditions. In the selected model, it is
assumed (1) that the pressure differential across the flow passage (i.e.,
from blade to blade) can be determined by the conservation of angular

momentum of the fluid flow and (2) that the average flow conditions are found
from the meridional analysis.

(2) Viscous Effects

The effects of viscosity include (1) boundary layer growth, which
tends to block the flow passage to change the work input capability
of the inducer and increase the exit dumping loss, and (2) friction
on the walls of the flow passage, which reduces the bulk or freestream
total pressure. Thus, the viscosity of the fluid affects both the head
input and head output.

(3) Cavitation Effects

A second nonideal fluid characteristic is the vaporization of the
fluid when the local pressure reaches saturation pressure. In the se-
lected model, it is assumed that the fluid will vaporize whenever the
fluid reaches some critical value of pressure, Furthermore, this value
is assumed to be constant and equal to the equilibrium saturation pres-
sure of the bulk fluid at the inlet to the inducer. There are no effects
of transient heat transfer processes or of local subcooling of the liquid
to suppress the cavitation.

The assumption is made that the liquid and vapor are separated by
centrifugal effects both in the meridional surface and in the blade-to-
blade surface (due to flow curvature). Thus, the cavitation model in-
corporates the concept of a distinct vapor cavity displacing an otherwise
incompressible liquid.(See figure 1.) Because the vapor merely displaces
the liquid in the flow model it is assumed that the actual blade can be
rer'aced by a pseudo-blade consisting of the real blade plus the cavity.
The blade angle i: replaced by the mean angle of the pseudo-blade; i.e.,
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the average of the real blade angle and the angle of the surface of
discontinuity between the vapor and the liquid. This then produces a local
"deviation" caused by cavitation, which will add to the mean deviation due
to leading edge loading and trailing edge urloading. It will be shown

later that this effect tends to unload the blade whenever the flow curvature

becomes too severe for the available local pressure above saturation
pressure.

~—— Blade

/ ////////_//////)//I//////I///////////////

[::> Flow

Liquid

Rotation

Vapor Cavity

s -"':;‘ oy
o
QT -5-;9}‘?:!5!'
SILIIIIIIIIIIIII 7. SIIIIIIIII IS

Figure 1. Distinct Vapor Cavity Forms Durirs Cavitation FD 25645A

c¢. Discussion of Basic Relations

(1) Geometric Relations

The information about the geometry of the inducer required to begin the
analysis includes the flowpath inner and outer radii versus axial distance
and some description of the blade angle ( 3*) and thickness (t) dis-
tributions. In the model selected, it is assumed that one surface of
the inducer blade is generated by a straight line (generatrix) passing
through the hub and tip radii given previously. The other surface is
assumed to be generated by a straight line inclined at some angle (Y - the
taper angle) and displaced some distance (the blade thickness) with re-
spect to the other generatrix (figure 2). To allow for nonradial element
blading, it is assumed that the product of radius (R) times the tangent of
the blade angle varies linearly from the values for the hub and tip. Thus,

- R
R tan g* = RTtan 6; - ;E%:—Eﬁ [RTtan B; - RHtan ﬁ;] (1)

from which the local value of 8% can be found for any value of R.

11
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The local blade thickness may be obtained from the given blade tip
thickness (tp) and the taper angle (7):

YRy - R)
S R S @

where A; is the angle of lean of the generatrix measured from a vertical
line (See figure 2.)

AL
—
|
Y
Ry
Section Along r &_ .
; Generatrix (Tangent
Generatrix Ry to Blade)
' _ g
Meridional Surface
Figure 2. Thickness Distribution of Typical Blade FD 25872A

The distance between surfaces of adjacent blades (measured in the
circr aferential direction) is given by

_2mR t

T= Nb " sinf* (3)

where 7 is the spacing and Ny is the number of blades.

Although the flow in an inducer is primarily axial, the hub or tip
contour often has a varying radius. The streamlines then may be forced
to change radius and, because of the inducer rotation at.ut its axis,
Coriolis force: will cause blade pressure loading. It is assumed that
the change in slopes of the hub and tip contours will be gradual so
that the angle of the streamline across the flow path will vary linearly
with radius from the value at the hub (¥4) to the value at the tip (¥r).

Thus,
R -
W= +———5*—(WT-WH) (4)

H Rp-Ry
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The hub and tip values are found from the input values for the radius
and axial distance (Z):

AR
tan V¥ Az

(2) Flow Relations

The velocity diagram at any point in the flow is shown in figure 3.
From trigonometry

B

' W =Wsing

m m

W, = W cos B

Vu = U - Wu

@ = Arc tan (Vm/Vu)

' Vm/sin a

The relative flow angle (8) is found from the blade angle and the
deviation angle at any point

B = B* - deviation

The relative flow velocity (W) is found from the volumetric flow (Q)
and the flow area normal to the flow direction (A)

W = Q/A
where:
A= 1’2 (8y) cos ¥ ( sir.8) (5)

and ‘r[ is that portion of the circumierential distance between two blades
that“is cccupied by liquid, and Ay is the vertical distance between
streamlines. (See figure 4). The value of 7Ty is obtained by adjusting
the geometric blade spaciug (7) by the boundary layer displacement thick-
ness (§*) and the vapor cavity height (b), measured circumferentially:

28*
T[ =T sinf*” b ©

The factor of two on §* accounts for layers on the surfaces of both
blades ».unding tne flow channel, i.e., the stream tube.

Blockage due to hub and shroud surface boundary layers is accounted
for by reducing the hub and tip stream tube heights (Ay) by their respective
displacement thickness, § *:

Ay = Ay - §*

13
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Figure 4. Schematic of Flow Passage FD 25644A

(3) Deviation

It is assumed that the flow will tend to follow the mean direction
of the passage formed by the btlades (or by the pseudo-blades). However,
pecause of fluid inertia, changes of angle at the leading and trailing
edges, required to satisfy boundary conditions, cannot take place discon-
tinuously. Therefore, relations for the distribction of deviation angle
in terms of inlet and exit boundary values must be established. The
method selected is based on the exact analysis of a two-dimensional,
nonstaggered flat plate cascade.

14
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(a) Leading Edge Loading

Refer to the flow conditions shown in figure 5. The relation for

the component of velocity normal to the blades (V,) is found from complex
transformation to be:

WV = u sin ag N
; VExp (2mz/1) -1

where i = (imaginary) and z is the complex coordinate, z = x + iy

X
/—Blades

P s S LT

2,
3
!

Figure 5. Semi-Infinite Cascade FD 25810A

The ratio of this velocity (V) to the through-flow velocity is the
tangent of the local flow direction. Evaluating this at the mid-stream

position (z = x + iy/2), the distribution of deviation angle (8) is

found to be
tan § = tan 9o (8)
V1 + Exp (2mx/T)
For the staggered cascade, the normal spacing is Tsin 8* and the
distance x is measured along the mid-stream locus as m, Thus
tan & = s %o (9
V1 + Exp (2Mm/T sin B8%)
It is interesting to note that as m increases an approximation of
this expression is
tan § = tan a5 Exp (-Mm/ T sin g%) (10)
15
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This is the csame form of exponential decay found in actuator disk

theory for the variation of streamline slope upstream and downstream

of a blade row. A plot of the ratio, tan é/tan a,, versus m/T,

(where T, = T sir B%) is shown in figure 6. Note that at a distance of
one normal gap (m/T, = 1) the ratio is only 0.04; that is, approximately
96% of the upstreamn incidence has been taken out. This indicates that
blade hydrodynamic loading due to flow incidence will decay in approxi-
mately one normal gap measured from the leading edge along the mid-
passage. This leading-edge deviation is designated by subscript as §¢;.

1.0 |
|
|
\\I
0.8 |
8
3 |
=~ 06 I
o !
«© |
Z |
< 04 t
B |
|
|
|
0.2 T
|
i
0 ! N
2.0 -1.0 0 1.0 2.0
m/T,
Figure 6. Exponential Decay of Deviation Angle FD 25569

(b) Trailing Edge Unloading

Because of boundary layer, blade thickness, and cavitation effects,
the flow aft of the blade trailing edge will have a relative flow angle
(B) different from the blade angle (8*) at the trailing edge. Figure 7
illustrates the effect of "dumping" the flow downsitream of the blades.

Because angular momentum is conserved, the tangential component of absolute

velocity (V,) remains constant while the axial component (V) decreases
so that B is reduced, creating a deviation. Because of fluid inertia,
this deviation cannot occur discontinuously. Therefore, an exponential
decay of deviation (8§9) as a function of distance from the trailing edge
is used. The value of exit deviation is treated as analagous to the
inlet incidence, ag.
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Inside Blade Row
— — — — After Blade Row

Figure 7. Inducer Exit Velocity Diagrams FD 25642A

(¢) Deviation Due to Cavitatiom

In the concept of the selected model, cavitation causes a change in
the "effective' blade angle. In this sense, the cavity forms part of a
pseudo-blade rather than causing deviation, i.e.,

Breff = B* - 8B*

where §8* is one-half the slope of the vapor cavity surface relative to
the real blade. However, for reference purposes this deviation is con-
sidered as a part of the total deviation:

Deviation = g* - g = & + o, + §B%
(4) Radial Equilibrium

The flow in the inducer must satisfy equilibrium of radial momentum.
The static pressure (P) within each stream tube is found from the
Bernoulli equation

= P2

P = Forer 2g W (11)
where P, 1 is the local total relative pressure and P is the fluid
density.

The radial gradient of static pressure for each stream tube can be
found from conservation of momentum in the radial direction. There are
two effects causing a radial pressure gracd a2nt - first, the rotation of
the inducer causes a centrifugal pressure gradient

(8), - 24 az)
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Substituting V, = U - Wy, =WR - W cos B, where w is rotational velocity,

(d_P) _ P (WR - W cos B )2 (13)
dr 1 B R

Secondly, the change in radial velocity (i.e., streamline curvature)
causes a radial pressure gradient:

(_d_l_’_) =-£V2 e\ 4 cos‘ll+ sin¥ ‘_izm
g

dr 9 m dm sinB m sinf dm (14)

where dm is the element of path length. Substituting V; =W sin 8,

P\ _ P .2 . v R " S I de
(dr )2 ol W'sinB cosV¥ I W sin¥sinfB Im W sinW¥ cosB dm (15)

The total pressure gradient is, therefore:

+ (d—") (16)

dr

a _(de) 2

dr dr 1

=£l@R - wcosf? _
g

2 . a¥ . . o df
= W'sinB cos ¥ = W sin¥ sinf i

- wzsin\l' cos 8 %Q ]
m

(5) Streamline Relaxation

The radial position of each streamline at each axial station is
determined by satisfying the condition of radial equilibrium with the
least error or by an error less than some tolerance level. The error
in local static pressure gradient is found by comparing the calculated

dP/dr with the finite difference value determined from adjacent stream tubes:

Error = ZA\% - %
where

ap = P1) - P(z-1)
and

Ar = R(1) - R(1-1)
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The root-mean-square error of all stream tubes is computed and minimized
by iterating on the position of the streamlines. The positions (in
percent of passage height) are corrected by a small incremental step in
the direction determined by the error in pressure gradients of the stream
tubes above and below each streamline. The size of the incrementa! cor-
rection is reduced after a fixed number of iterations to improve the
accuracy. A limit is placed on the total number of iterations to limit
computing time.

(6) Blade Loading

After the radial positions of the streamlines are located through the
relaxation procedure, the meridional solution at the axial station is

completely determined. Then it is possible to superimpose a solution
for the blade-to-blade pressure difference. This pressure difference,
measured in the circumferential direction, is also the blade hydrodynamic
pressure loading, APp. The value of AP, is found from conservation of

angular momentum of the fluid between any two axial stations. The total
blade pressure force in the tangential direction is:

F = (APp) (4y cos ¥) (Am sin B%) Ny (17
The moment arm is the radius R. Therefore, the torque is:
T =F - R= (AP) (Ay cos ¥) (Am sin §%) (Np) (R) (18)

From Euler's turbomachinery equation, the change in fluid angular momentum
is equal to this torque

m - BRVY) =T (19)

vy TRy L e

The continuity of mass is given by
f = PQAY cos W) (T sin B) (W) (Np) (20) ,

Substituting for m and T, the momentum equation reduces to

_PWT sin B ARV (21) ‘
R sin B* Am 3

APb

If the increment Am is taken small enough,

ARVy)  d(RVy) ~ dR  _dVy (22) i
2n - —dm - Vugn T R |

Substituting V; =WR - W cos B

and
dv .
—u _ @WdR : 48 _ daw :
am I + W sin 8 am €O B8 dm
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d(RV ) i

—u . - dR 48 _ daw i

' o (ZR - W cos B8) I + WR sin B8 im R cos B im (23) %

S; #,

1 ,

¥ and ;

Lj _PUT sin B dR dR , dg dw 3

: APy = R sin G% 2R o W cos B8 Im + WR sin 8 I R cosﬁdm (24) %

¢ ;

' Factoring out sin B and noting that ;

N 1 drR _ ., i
sin B dm sin ¥

and dividing through by the relative dynamic pressure (q) )

- & weg

where
_ pu?
q 2g
then, b _ 27 sin?B [2wsin¥ _cos B sin¥ L dB8 _cot B du (25)
3 = (3 - + ) dm
q sin B8% W R dm W dm

The first term inside the brackets represents the blade loading caused

by Coriolis forces. The second term derives from curvature of the flow ,
in absolute space about the axis at constant relative angle (8). The i
third term represents the contribution of flow curvature due to the rate
of change of the relative flow direction. The last term is the contribu- §
tion of mean diffusion to the tangential loading APb. For inducers with i
low blade camber (df/dm =0) and axial flow (sin ¥ =0), the last term will
dominate and primarily determine the blade hydrodynamic loading.

(7) Inlet and Exit Calculations

Special inlet calculations are required to establish streamline loca- i
tions, incidence angles, and other relative inlet conditions. An exit 3
station downstream of the blade trailing edge is included to evaluate :
effects of dumping of the flow and to provide exit pressures and velocities
for performance evaluation.

The overall performance calculations include mass average and radial
distribution of performance parameters such as work input, head rise,
and efficiency. Other pertinent parameters, such as NPSH, Reynolds
number, suction specific speed, flow coefficient, and head coefficient
are included in these calculations. ¥

(8) Performance Calculations %
;

(9) Boundary Layer Calculations

A simple turbulent-flow, zero-pressure-gradient, boundary layer model
is used to determine the values of boundary layer displacement thickness
(8*%) and skin friction coefficient (f). It is assumed that there is

20




little secondary flow in the inducer so that migration of the boundary
layer flow from the pressure surface to the suction surface is not sig-
nificant. The values of §* and f are based on the local mean velocity
(W) and the distance from the leading edge ().

0.04625 (m) (Rey)  1/° (26)

6*

0.0576 (Rep) 1/5 (27)

Lo
I

where Re; is the length Reynolds Number.

O

(10) Loss System

The loss system considers two causes of losses in total relative
pressurc between any two adjacent axial stations:

(a) The loss due to skin friction

f) @ .P.
ar, | =D Gm @E) (28)

where W.P. is the perimeter of the wetted surface. For the hub or tip
; stream tubes, these perimeters include the hub or shroud surfaces be-
tween blades in addition to the blade walls. All other stream tubes
have only the blade walls as wetted surfaces. For the typical inducer,
the velocity gradient between stream tubes should be low enough that
viscous or Reynolds stresses between stream tubes are low compared with
the wall stresses. This is true because the boundary layer thickness
normally is small compared with the height of the hub or tip stream
tubes.

(b) The loss due to diffusion

Whenever the velocity gradient (dW/dm) is negative, the losses will
increase due to increased boundary layer momentum thickness. This con-
ceivably could be handled by a more complex boundary layer model, in-
cluding effects of pressure gradient. A simpler approach, selected for

: the present model, is to use diffuser empirical loss data, and to express the
f gradient in terms of a local equivalent diffusion angle, ¢eq (in degrees)

A 1l 1
: -1} 1{a W
; eq = 114.6 tan "} A ) \L - i (29)

The pressure loss for a diffuser is usually expressed as

AP in
fd’ 1 -
: q ¢ )[ A out ] (30)

' =
Substituting W/W Aiﬁ/Aout’

where W' is the value of relative velocity at the previous axial statiom,

ar . f(¢ed{-*—-7- } (31)

21



e

B A abaina oy SRR A

P St s R B, U

e i S PR

The function f(¢eq) is determined from empirical data (SAE Aerospace Applied
Thermodynamics Manual, Section 1):

¢eq > 46.0 _ £(%eq) 1.0
deq <0 f(¢eq) = 0.0
14 < ¢eq £ 46.0 f(¢eq) 0.02577 ¢eq - 0.1855

(0.74506) x 1o'3¢;2 + (0.79874) x 10'3¢é ;

q ;

e SR oA B IR 5 o o B £ T

0 < ¢eq < 14 f(¢eq)

-4
(0.4006) x 15

ety R e [

(11) Relations for Cavitation

In the present flow model, cavitation is handled through the concept
of a distinct vapor cavity forming on the suction surface of the blade.
As discussed above, this cavity tends to act as a pseudo-blade, dis-
placing the flow and allowing it to turn more gradually. It is this
more gradual turning that allows the pressure at the vapor-liquid inter-
face (i.e., the "suction surface'" of the pseudo-blade) to be equal to
the saturation pressure. If the blade loading increases due to increased
incidence, or if the static pressure decreases due to decrease in inlet
pressure, then the cavity should grow and assume a shape so that the
"suction surface' pressure will a'ways equal saturation pressure.

Stripling and Acosta (ASME Paper No. 61-WA-98) have solved the prob-
lim of two-dimensional, plane, flat cascade potential flow with a free
streamline, along which the pressure is equal to saturation pressure.
The solution for the detailed shape of the cavity involves complex
variables. However, the solution for the maximum cavity height (hy) and
the distance from the leading edge to the point of maximum height (c) are
easily obtained. These relations have been taken directly from Stripling

and Acosta and are included in the engineering formulation of the program é
(Appendix C).

i
A simple shape which can be used to approximate the solution of %
Stripling and Acosta is the circular arc shown in figure 8. The circular
arc passes through the leading edge and the point of maximum height
(c, hy). The local height (h) is expressed functionally as

m 3

g = (2. ) w
where the radius of the circular arc, R,, is expressed functionally as

R, = f(ho?c) (33)

The slope of the cavity relative to the blade is dh/dm. This is related

to the correction of blade angle for the pseudo blade, as discussed in ;
paragraph Blc(3c) above: :

1 dh
8* = 3 am (34) i
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Figure 8. Circular Arc Cavity Shape FD 25870A

The flow model of Stripling and Acosta does not involve the cavity
past the point of maximum height. For the present inducer flow model,
it is assumed that the collapse of the cavity beyond this point is
symmetrical with the growth of the cavity ahead of the maximum point.
An exponential smoothing function is used in the vicinity of the point
of collapse of the cavity to avoid a discontinuity of effective blade

angle.
d. Typical Results of Analyses

(1) Test Cases

In this section, typical results from the hydrodynamic analysis program
will be presented for four separate test cases. Two of the test cases
were used for verification of the flow model operating under noncavitating
conditions, and the other two cases were used in evaluating the model
during cavitating operation. The test cases were as follows:

1. Noncavitating

a. Paddle wheel
b. NASA 12-deg (0.21-rad) helical inducer (NASA TND-1170)

2. Cavitating

a. Cavitating flat plate cascade
b. NASA 12-deg (0.21-rad) helical inducer (NASA TND-1170) !

(2) Noncavitating Test Cases

(a) Paddle Wheel

The purpose of this test case was to select a simplified geometry that
would allow solution of the radial momentum differential equation by
direct integration, resulting in an exact expression for the radial
pressure and axial velocity distributions. Details of the paddle wheel
geometry and operating conditions are shown in figure 9.
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1. To Scale
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OPERATING CONDITIONS

1. Noncavitating

2. No Inlet Deviation
3. No Exit Deviation
4. Nonviscous Flow

Figure 9. Paddle Wheel Geometry and Operating Conditions FD 25899

A comparison of the exact analytical and program calculated radial
pressure profile is shown in figure 10. As this figure shows, the program
results are in complete agreement with the exact analytical solution. The
conclusion drawn from this comparison is *hat the streamline balance
procedure as used by the hydrodynamic program operates as desired in
satisfying radial equilibrium.
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Figure 10. Paddle Wheel Test Case - Radial Equilibrium FD 25397
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[t would be desirable as a next step ir the noncavitating analysis
to compare the actual measured blade suction and pressure surface static
pressures for a given geometry with those calculaied using the hydrodynamic
program. Unfortunately, accurate data of this type are not available,
The next best method of demonstrating noncavitating program reliability
would be the program's ability to predict inducer performance, including
radial distribution nf the exit parameters.

(b) NASA 12-deg (0.21-rad) Inducer (NASA TND-1170)

Selection of this inducer for aiding in program checkout was based
upon the availability of an extensive amount of noncavitating t-st data.
This inducer is also believed to be typical of most inducer designs and,
therefore, would provide a reasonably rigorous checkout of program capa-
bility.

Noncavitating inducer performance was investigated for several flow
coefficients, resulting in direct performance comparisons as well as com-
parisons in radial distribution for several important exit flow parameters.
These comparisons are individually discussed below.

é (1) Overall Performance

(a) Head vs Flow

A head-flow curve, plotted as head coefficient as a function of
flow coefficient, is shown in figure 11, Close agreement between
the experimental and the predicted program results is shown. Some
deviation between thc experimental and tne predicted program results,

0.30
'.): J; Predicted ;,
> :
Eé \\~4//F- i
’: i 0 ;
> ] |
; &, : §
= 1
Q
&)
a 0.19 Experimental
" | :
= !
~ H
0
0.08 0.10 0.12 0.14 _ 0.16 0.18
FLOW COEFFICIENT, ¢ i
Figure 11. NASA 12-Degree Inducer Noncavitating Head FD 25808

Coefficient vs Flow Coefficient
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appearing at the lower flow coefricients,is believed to be the result
of flow separation in the actual case occurring both along the hub at the
exit and along the tip at the inlet. This results in increased flow

losses and decreased work in the actual case, whicn appear in the form
of decreased head coefficient.

(b) Efficiency vs Flow

Figure 12 shows a comparison between the experimental and calculated
inducer efficicncies as a function o. the average inlet flow coefficient.
Experimental data scatter prevents drawing any definite conclusions other

than that the program predicts the inducer efficiency with reasonable
accuracy.

100 T -
. Experimental
T N
-\ e/
Fobe | o
! o ~ae
80 O—0<o
- “a @
3
z 70 \\.
=
= 60
<
<3
50
40 J
0.08 0.10 0.12 014 016 0.18
FLOW COEF:ICIENT,
Figure 12, NASA 12-Degree Inducer Noncavitating Efficiency FD 25807

vs Flow Coefficient

(2) Radial Distribution
(a) Exit Deviation

Of primary importance in predicting inducer performance is the ability
to accurately predict exit flow deviation. In general, inducers are low
head rise machines having low angle blading. Consider, for example, the
NASA 12-deg (0.21-rad) inducer presently being discussed, which is typical
of many inducer designs. If we look at a typicel exit velocity triangle as
shown in figure 13, it becomes obvious that minor discrepancics in the
deviation angle can result in large variations in fiuid tangential veloc-
ity, Vy. For zero inlet prewhirl, the ideal head rise is proportion:l to
Vy. From this, it is seen that small errors in deviation can result in
larger errors in ideal (and, therefore, actual) head rise.
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Figure 13. Typical Inducer Exit Velocity Triangle FD 25871

Figure 14 is an illustration of the radial distribution of exit devia-
tion angle. As this figure shows, good agreement between experimental and
analytical radial distributions of exit deviation was achieved. This type
of agreement is reflected in the close comparison between the experinental
and program values of average head coefficient. Again, the calculated
deviation agrees more closely with the flow coefficient of 0.157 than with
the lower flow coefficient, 0.147.

10
0.151 8
E $= 0.147 _
% O - TestI Data ;
{ s
<0107, Py %
% o = 0 A - Test Data i
> 4 © 5 " §
S 005 o - ¢
&) 2 =t A Q il ¢ 3
@ = 0.157 and 0.147 O i
0 lPredictedl i
0% 4314 16 18 20 22 24 26 g
in ;
3.0 3.5 40 45 5.0 5.5 60 ' 65
cm
RADIUS
Figure 14. NASA 12-Degree Inducer Exit Deviation Angle FD 25405
vs Radius '
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(b) Ideal Total Head Rise Coefficient

Ideal head rise coefficient as a function of radins is shown in
figure 15. The largest differences between the experimental and the pro-
gram values of ideal head rise coefficient occur at the hub where the
lowest actual head rise occurs. For this reason, relatively large local
discrepancies in ideal head rise coefficient can occur near the hub
without significantly affecting overall or mass-average inducer perfo- -
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H Figure 15. NASA 12-Degree Inducer Ideal Total Head Rise FD 25400
. Coefficient vs Radius
3
g
- (c) Total Head Loss Coefficient
f Total head loss coefficient, @ is mathematically defined as:
T = Loss in Total Relative Head
g Inlet Relative Dynamic Head
i{,
§ It is a measure of relative total head loss resulting from dumping and
¥ internal flow losses.
% Figure 16 shows this loss coefficient as a function of radius. Again,
% close agreement between the experimental and the predicted program vglues
% occurs near the inducer tip while agreement decreases as the hub is

approached.
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Figure 16. NASA 12-Degree Inducer Total Head Loss FD 25409A

Coefficient vs Radius

In the present loss system, an approximation in wetted perimeter within
the blade passage at the hub and tip is based on a mean-height stream tube
width instead of the actual hub and tip passage widths. This affects both
the hub and the tip wetted perimeter, increasing the wetted perimeter at
the hub and decreasing it slightly at the tip. Correcting the wetted
perimeter for the actual passage width will result in a decrease in the
flow losses along the hub and an increase at the tip. The relative
error in the wetted perimeter and, hence in the skin friction losses,
is more significant at the hub than at the tip. This is because the
relatively large radius ratio (mean/inner) of the hub stream tube re-
sults in an appreciable difference between the mean stream tube width )
and the actual stream tube width at the hub. The mean stream tube
width for the tip is a reasonable approximation for calculating the
wetted perimeter because of the small radius ratio of the tip stream
tube.

EIPPNRp

(d) Actual Total Head Rise Coefficient

The actual total head rise is equal to the .deal head ris: minus the
head losses. F gure 17 shows the variation of total head rise coefficient
with inducer radius. Very close agreement occurs between the experimental
and the predicted values not only at the tip, but also at the hub. Close
agreement at the hub is partially because of the offsetting of high pre-
dicted ideal head rise with high predicted flow losses. If the flow losses
had not offset the high predicted ideal head rise, the mass averaged
actual head would still have agreed very well with the experimental value.
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(e) Efficiency

e Efficiency is merely a ratio of the actual to the ideal head rise.
If the predicted actual and the ideal head rise agree well with data, it
is expected that efficiency will also agree well. This is illustrated
in figure 18.

i (f) Axial Velocity
&

Figure 19 illustrates the agreement between the calculated and the
test values of axial velocity (flow coefficient) at the exit. Good agree-
ment here demonstrates correct radial distribution of boundary layer
: blockage and flow losses. The condition of radial equilibrium results
i in the correct radial distribution of axial velocity only if the total
relative pressure and flow area are distributed correctly.
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(3) Cavitating Test Cases

(a) Cavitating Flat Plate Cascade

In paragraph Blc(ll) above, the method of treating the cavity shape
that is based on the work of Stripling and Acosta was discussed. In the

referenced ASME paper (No. 61-WA-112), the authors presented plots of cavity

shape for specific inlet conditions. Figure 20 compares the circular

arc approximation from the analytical model and the exact solution of the
authors. The agreement substantiates the validity of the circular arc
cavity approximation, at least up to the point of maximum cavity height.

03
l
w——t=Stripling and Acosta Blade Angle = 15 deg (0.263 rad)
02 Exact Solution Incidence = 6 deg (0.105 rad) |
) l l _ Cavitation Parameter = 0.0441
© Program Results With |
Circular Arc Cavity
&
N
N
e
0.1
4 LI 195 -© e /I U NI I - o ——————
0O 01 02 03 04 05 06 07 08 09 10 11
X2
Figure 20. Flat Plate Cascade Cavitation Test Case FD 25395

(1)) NASA 12-deg (0.21-rad) Inducer (Cavitating)

(a) Illustration of Head Breakdown

Figure 21 illustrates the effect of the net positive suction head
(NPSH) on the inducer average head coefficient. This figure demonstrates
the ability of the hydrodynamic program to predict head breakdown or
head fall-off.

The data shown here are for an inlet flow coefficient of 0.147 and
consist of only four test points. The analytical prediction contains
an abrupt increase in head coefficient just prior to complete head break-
down. The increase occurs when the cavity first reacues, and then pro-
gresses beyond, the blade trailing edge and is caused by the sudden
increase in the effective blade exit angle. Although this type of
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abrupt increase in head coefficient has been measured in other inducers,
it is difficult to determine whether any abrupt increase actually occurred
in the measured data. In any event, it is believed that the sudden in-
crease predicted by the program is unrealistic and should be eliminated,
possibly by a better smoothing function on effective blade angle. Pref-
erably, some improvement in the cavity shape model behind the point of
maximum height would provide a smoother transition.

It should be noted that the NPSH at complete head breakdown (i.e.,
choking) predicted by the program agrees very well with the test value.

0.14
N
% 0.12 / 7
it O]
< 0.10 © -
3 L —
m 0.08 '
S /
© 0.06 i
2 / |
% 0.04 / S ¢ =047
0.02 ¢ TestData____ |
/ —— Predicted
0 |
0 20 40 60 80 100 120
(t)
0 10 15 20 % 30 35
(m)
NPSH

Figure 21. NASA 12-Degree Inducer Head Coefficient FD 25398

vs Net Positive Suction Head

(b) Nondimensional Inducer Performance

The overall head rise of an inducer operating under varying flow
conditions (cavitating and noncavitating) can be recorded in nondimen-
sional form. Figure 22 illustrates the overall head rise performance of
the NASA 12-deg (0.21-rad) inducer recorded in the form ¥/¥(noncavitating)
as a function of cavitation parameter, k. As shown in this figure, the
hydrodynamic program very closely agrees with the nondimensional overall
head rise performance measured over a wide range of operating conditions
and closely predicts the point of complete head breakdown. The sudden in-
crease in head coefficient appearing in figure 21 and discussed above is
omitted from figure 22.
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Figure 22. NASA 12-Degree Inducer Cavitating Performance FD 25399

e. Future Developments

It is anticipated that in Task VI information will be btained from
the testing that will either substantiate the present model or lead to
improvements. In particular, the blade pressure distributions will pro-
vide a basis for determining the deviation angles and the extent and
shape of the cavity. These pressure loadings can be used to solve the
indirect flow problem and determine the shape of the liquid flow passage.
From this, the cavity shape can be deduced.

Improvements in the deviation angle and boundary layer blockage would
improve the agreement between the calculated and the test values of
velocities and angles, as shown in the previous section for the NASA
12-deg (0.21-rad) inducer. Development of the loss system should include
a more accurate estimate of the diffusion insses. This might be accom-
plished through the use of a boundary layer mcdel that includes the in-
fluence of pressure gradients.

Finally, the input-output information and format should be arranged
to provide that a minimum of work is required to translate information
from the hydrodynamic analysis to the stress analysis.

2. Computer Programs for Predicting Stresses and Vibration Characteris-
tics of Inducer Blades

a. Introduction

Computer programs for determining stress and vibratory characteris-
tics in three-dimensional inducer blades have been developed.

34

sl THEE o

i R e s g o il AR e o

¥, 4 O et B e ot

P

o

R i) i




LA > )

B

The programs are based on the matrix displacement method using
discrete flat triangular elements to define the blade surface.

The inducer blade middle surface is generated by a skew line that
moves at a fixed distance from the axis of the inducer. The numerical
(x,y,2) coordinates of this surface are thus directly defined by the
wrap angle 6 and elevation of the generating line. This curface is then
replaced by flat triangular elements that are joined at the vertices or
nodes that lie on the surface. The curvature of the surface is thus
approximated by the change in direction of the normals to the triangular
elements. Each element has a local rectangular coordinate system
(x,v,2) associated with it. Displacement functions, which are expressed
in terms of local coordinates, yield stiffness, centrifugal load, pres-
sure load, and inertia matrices expressed in terms of generalized nodal
forces and generalized nodal displacements.

N A e ST e

For the stress program, these matrices are first transformed to a
common rectangular coordinate system., Assembly of these matrices, by
satisfying compatibility and equilibrium at common nodes and boundary
conditions, yields a set of simultaneous equations with nodal displace-
ments as unknowns. Displacements that satisfy this set of equations are
then used to calculate strgsses.

The vibration program is handled differently than the stress program
because only 50 degrees of freedom can be handled by an existing latent
root or eigen-value program. This allows a breakup of only eight free
nodes each of which has six degrees of freedom. For this reason, the
number of degrees of freedom per free node was reduced to one by first
assuming that che dominant displacement is normal to the surface and
then using matrix condensation techniques. In this instance, local
stiffness and inertia matrices were transformed to a rectangular coordi-
nate system in which the normal direction at a node is in the mean direc-
tion of the normals of a set of triangular elements which have common
vertices at a nocde. Assembly of these matrices by satisfying nodal
compatibility and ey :1ilibrium followed by a matrix condensation yields
frequency equations from which frequency and mode shapes are obtained.

2 e R DU B ¥

b. Description of Analytical Model 4
(1) Blade Generation

A typical inducer is shown in figure 23. The inducer blade is nor- #
mally machined by a straight milling cutter whose axis is tilted and i
may pass at a fixed distance from the axis of the inducer while the
inducer blank advances and rotates at the desired lead. The middle sur-
face of the inducer blade is used for purposes of analysis and geometric
parameters that define the right-handed (x,v,z) coordinates of the sur-
face as hub radius Ry, off-set radius, Rg, tilt angle A, lead height 2y,
radius R along projection of generator, and wrap angle g as shown in
figure 24. The (x,y,2) coordilates in terms of these parameters are:

szGcosa-Rsino
y = Rg sing + R cos @
z =235 + (R - RY) tan A




Figure 23. Turbopump Inducer FE 70544

— Generating Line

(x,y,z)

z____zO)/- =ZH1
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i

Figure 24. Geometric Parameters of Middle Surface of FD 25602A
Inducer Blade
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(2) Finite Element Breakup

The use of discrete triangular elements for the stress analysis of
three dimensional surfaces is discussed by Argyris, Cheung, Petyt,
Zienkiewicz and others. 1In this instance, the surface is replaced by
flat triangular elements that are joined at the vertices or nodes which
lie on the original surface. Such analysis requires that the coordinates
of the node be expressed in a common and local rectangular coordinate
system, A right hand local system was chosen so that the base of each
triangle lies on a generating line which defines the x axis while the
third vertex lies on an adjacent generator. The y axis lies in the
plane of the triangle in a right-hand sense as shown in figure 25. 1In
this manner the coordinates of the nodes of each triangle are well de-

fined because they always lie on generating lines whose coordinates are
known,

) X4 ¥3)
2y (X3,¥3,23)
Generator
o P
X9
(X.y,Z.) et Y/
X (Xonlyz l) (x Y
2,92) T~ G
enerator
(x2’y2922)
04 — Y

X

Figure 25. Local I, 7, »| and Common [x, y, z| Rectangular FD 25629

Coordinate System for Triangular Element

Nodal points are equally spaced on a generator between the hub radius
Rg* and tip radius Rp* and establish the triangulation of the inducer

blade as shown in figure 2€é. The common coordinate the vertices are
then used to calculate the direction cosine matrix |Rj] by equation 46.

This matrix establishes the relation between the directions of the local

coordinate axes relative to the common coordinate axes for each element
and is defined as:

[cos (x,%), cos (x,¥), cos (X,if

[RI]- cos (y,%X), cos (y,y), cos (y,z)

cos (¢,%), cos (z,¥), cos (2.5{
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Figure 26. Tri-ngulation of Inducer Blade D 25630A g
' This matrix is used later for transforming stiffness and mass matrices §
and is used to calculate the local nodal coordinates by the following i
relations: §
4 ) p ;:
xl g
{@1 =4{¥ ¢ = |0| ?
N - i
21 :
.
’-( ) X - X ‘
- 2 T 2 1
0 J ‘22 - 21 '
1
(- X3 T x3 - x1
| ¥3 ‘N ol EYS LY [ P
0 ) Z3 = 2,

or in matrix form:

¥y = &) [¥-¥,]
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X) 1%y 5%y
[*IN= ylﬂyZ’Y3
2152912,

(3) Displacement Functions for ‘‘riai zular Elements

The use of triangular elements for finite element analysis is dis-
cussed extensively by Argyris, Cheung, Clough, Hermann, Melosh, Petyt,
Tocher, Utku, Zienkiewicz, and others. Methods which are directly
applicable to the three-dimensional inducer problem are discussed by
Argyris, Cheung, Petyt, and Zienkiewicz.

The accuracy of the displacement method depends upon the selection
of an appropriate displacement function; polynomial functions usually
te‘ng the most anpropriate.

For the triangular element under in-plane membrane loading the ex-
pr;ssxng of local membrane displacements u and v as linear functions of
x and y yields a uniform strain field in the triargular element. Such
a funct.on provides compatibility at the interface between adjacent
elements and involves six coefticients that are determined in terms cof
the six nodal displacements and six nodal coordinates of the vertices of
the triangle. Linear displacement functions are used in the derivation
of the membrane stiffness matrix |KMI and the membrane inertia matrix [MM]

in paragraphs B2d(5) and B2d(1CG), respectively.

An appropri~.: displccement function for triangular elements under
bending is more rAgflcult to set up because in addition to a lateral de-
flection, w, there are rotations, ox and oy Thus, there will be nine
nodal displacements for eacn triangular element. If a cubic polynomial
deflection function with terms like; const.-, X, ¥, X2, ¥y, 32, %3, %27,
Xy2, 73, is selected, one of the 10 terms will have to be deleted because
only nine conditions can be satisfied, and henre the displacement func-
tion can have only nine coefficients. Although cormjatibil. - of edge
Jisplac-ment and slope in the direction of edges at an interface exists
for the cubic displacement function, there is no guarantee that the nor-
mal slope in a direction perpendicular to the edges is continuous. It
is not known how much error will be caused by such nonconformity.
Clough, Zienkiewicz, and others discuss methods of obtaining conforming
displacement functions but they are too complicated for use on the in-
ducer program.

Pratt & Whitney Aircraft has had success in other problem areas with
the Adini polynomial displacement function

- - - — 4 =2 =3 —2- -2 -3
w = a1 + a2x a3y 4x + asy + a6x + a7x y + a8xy + agy

where the uniform twist term, Xy, in the 10 term cubic polynomial is
omitted to maintain symmetry as discussed by Clough. This displacement
function is used for the inducer program, and it is hoped that comparison
of test cases with theoretical solutions can be used to determine the
error caused by using this function.
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c. Methods of Analysis
(1) Stress Program
(a) Forces and Displacements

The matrix displacement method using discrete triangular elements

£ is used for these programs. In this method generalized nodal forces

are expressed as linear functions of generalized nodal displacements

in matrix form. These matrices are derived in paragraph B2d, below, and
! are determined for triangular elements in the local coordinate system. The
- force and displacement systems are right-handed, and the components are

VI

; shown in figures 27 and 28. Moments and rotations are treated as vectors
; in the same manner as forces and cisplacements, as is done by Petyt and :
i Zienkiewicz. This prevents confusion when transforming matrices to a rotated i
f coordinate system. The matrix relation for the local system is then: 1
- = - — - —
F:'cl : B
F- v
Yy : 1
F- u ;
X | 2 i
¥ 2
Yo (6x6) | (6x9)
—_ | -
Fx3 ' u3
F- v
_3 S SR 2
2, : ¥
;| ol | - | o, | -[&[3]
[l -| % | _ 1 =[]]{3)y G
_1 0 Ky -
M- | 0;
F- W
2 | 2
i | 05
Xy I 2
M- | 0;
Yo | y2 ¥
l
I
I
I
y | y
(15 x 1) (15 x 15) (15 x 1)

where [iMl and [iBl are the local membrane and bending stiffness .
matrices whose Composite form isulﬁj, and LFT and j&TN are generalized
nodal force and displacement col matricéks’or vectors. Displacements
and moments in the local z direction are assumed gzerc as is discussed by

Zienkiewicz. These terms, however, will appear in this common system
and are retained for convenience.
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Generalized nodal pressure force matrices if N and generalized nodal

centrifugal force matrices FCL, which have been derived in paragraphs B2d(7)
and B2d(8), are also column 'matrices or vectors of the same order as F

With these forces acting the general nodal force-displacement relation
for a triangular element in local coordinates is:

MN = [RHS|N i} |§PIN ) |Fc|N (36)

To solve the three-dimensional stress problem, all zeneralized
forces and displacements in this local system must be broken into com-

ponents along the axes in the common gysfem., This is accomplished by
applying the direction cosine matrix TR f to triplets of generalized

forces and displacements in the local system. Because there are 6 degrees
of freedom per node the stiffness matrix for a triangular element

will be of order (18 x 18) and the generalized force and displacement
matrices will be of order (18 x 1). To make the local matrices com-
patible, they must be of the same order. This_is accomplished by plac-
ing zeros in appropriate positions; FP[N and (Fcl i are also expressed as
an (18 x 1) column matrix by inserting zeros in kmppropriate locationms.
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The order of the elements in the local generalized force and dis-
placement column matrices are then changed tn be compatible with that of
the direction cosine matrix 1R1[. Under this re-ordering, the relation
between the generalized force ahd displacement column matrices in the

common system and the local system is
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The general force-displacement matrix relation for a triangular element
in the common system is obtained conventionally by transforming (36) using
(38) and (39) from which

[Pl = [%6] el 202 {3 = [%]"fo}s

ﬁ;"f'
ﬁﬁ
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Then (36) transforms from

‘iIN B [RllSlN i |Fp|N i IfcIN

é [RelTlFlN ) lR][RalT Iahi i [R6IT!FP1N ) [R6]T |FC'N

|F|N ) [R6|[R][R6]T‘6IN ) lelN i |Fc|

Thus, the general force-displacement matrix relation for a triangle in
" the common system is expressed by

el - lKlfjlg - lel N Iz, | . (40)

N

Cr it Ao v —— v e s

where the elements on the right side are obtained directly from the
local system properties by the relations

i F ' = |R F‘1
F | 7|
c N 6 c N

; x| [ 7]

The generalized nodal displacement matrix relation for the triangulated
surface was assembled by considering a representative node that is

common to neighboring triangular elements as shown in figure 29. Because
each node has 6 degrees of freedom there will be 6n degrees of freedom
for a system with n free nodes. Thus all column matrices will be of
order (6n x 1) and the stiffness matrix will be of order (6n x 6n). The
operations that yield the displacement matrix relation are:

]
w0

‘ 1. Add the elements °f|Fp|N andIFc,N which are associated with
§ a common node. This yields the system matricele | and

p|T
FclT

2. Sum all of the elements ofiF which are associated with a
: common node to zero in order §o satisfy internal nodal equilibrium

3. Equate generalized displacements of vertices that have a
common node.

4, Add elements of stiffness matrices which are asscciated
with a on node. This will yield the system stiffness
matrix T;T:.

4 5 -

.
. .

" n it

L I e——
TOITA S el T W p—n—




The generalized displacement matrix equation for the system is then

| fol - T' IFcIT - | o] (41)

F

P

The solution to this set of simultaneous equations yields the

generalized nodal displacements|§| . These are then transformed back
to the local system by N

HN N [RelTMN

FURTSOE——— R S e Sk A

it B

Figure 29. Common Node of 6 Neighboring Triangles FD 25667A

(b) Stresses

The membrane stress and bending moment in terms of the local system
are then given by

! [. ]
} Gii ) ) ) ] ) 3

5l =355 = BallllAd] [,
\ ;(;:JM

,

M-
b3

- S =N-¥: Ha - '- I
IM' "% [D][vBlEB][AB] oy
Fie- N N
L B
where the symbcls are defined in paragraph d. The bending moments are

_ linear functions of X and § and are evaluated at the centroid C to yield
¥ the centroidal bending stresses.
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(c) Development of Subsystems

The direct solution of the set of simultaneous equations (41) is
time-consuming and uneconomical when a large number of unknowns is in-
volved. For this reason, the execution time was reduced by subsystem
analysis. This was accomplished by providing an option to divide the
system into subsystems as shown in figure 30, Each subsystem has common
boundary nodes a and internal nodes b. The internal nodes include all
nodes that dc not lie on a common boundary. The general force-displacement
relation for each subsystem is of the form (40) and becomes

o] g = e~ Pl = Pl

Subsystem 1
Interior
Nodes b
Boundry
Nodes a
Interior
Nodes by,
Subsystem 1]
Figure 30. Division of System Into Subsystems FD 25668A

Then, the subsystem matrix was partitioned to separate boundary nodes
from internal nodes in t.e following manner since the summation of nodal
forces at internal points is zero.
-f5]
ﬂ cb

il 21 [R5

N




-
=y
kel
%,

i
i

This partitioning yields two matrix equations

[Kaa!|6aiN * iKabliablN ) IFpaIN ) chalN - IFaIN

[Kba““alN * iKbe&blN i |pr,N - chbI =0

N

(42)

the generalized boundary force {Fgj in terms of the generalized boundary
deflection and the internal properties of the subsystem is obtained.
Thus,

By eliminating the internal nodll teflections |6bl from the expressions,

ol mle
lFa‘ ss hKaa RabSbb Kbal 6,
N N
L -1
B {Fpa ab’bb leb'IN

1. ]
Fca Kabeb Ircbl N

At the boundaries cqmmpn to the subsystems, the displacements {63|N are
equated and forces ]FarN are summed to zero. This yiglds a set of simu-
taneous equations with’ the bounrarr displarem ris 68[N as unknowns.

n found from (42)

o, = Dl [ B+«

Execution times on this program have been reduced by a factor of up to
25 by means of this technique.

These equations are solved for {d,

N» and
by

5b'N is "th

(2) Vibration Program

For the vibration program, the surface of the inducer is triangulated
in the same manner as_ tl- stress program and the same local stiffness
matrices Rﬁraand [RB] are used. In addition to these matrices the
triangular elements have local membrane inertia matrices [BM] and bending
inertia matrices tﬁBT , which are defined in Paragraph d. The associated
local nodal inertia force matrix, assuming harmonic vibrations of fre-
quency W and amplitudes |i|N is similar to 37 and is
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1. was now assumed that the vibration of the inducer blade is normal
to the inducer surface. For this reason a right-handed rectangular
coordinate different from the common system used in the stress program
was adopted and is shown in figure 31. The z axes of this system are
in the mean directions of the four normals to triangular elements that
have common vertices at a node and a common generator, and the x axis
is in the direction of the generatcr.

The directions of the normals are obtained from the direction cosine
matrix R1]. Because the y axes are normal to the x axes, the direction
of y is established, resulting in a new direction cosine matrix [lenas
defined in Paragraph d. The generalized inertia force matrix relation
for a triangular element in the quasi-normal system is obtained in the
same manner as the generalized static force-displacement matrix (37).
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Figure 31. Definition of Quasi-Normal Coordinate System FD 25669

Thus,

lEIN - W lﬁ] “.‘l N (43)

From (38) and (39)

|§|N ) [R6]: lF|N‘"‘d Ialu - [Rtsl: MN

Then (43) transforms to

Rl [eh = o] Il feh

VR S U S0 N s Ao SR oM A e S e

or

e = el T

Thus, the generalized inertia force matiix relation for a triangular
element in the yuasi-normal system is expressed by .

- ol
% |Fly = ["“"lu
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where the mass matrix I ] is defined by

(] - [ i ]fxe]

The stiffness and mass matrices are now assembled in the same manner
that was used in the stress program. Elements of stiffness and mass matrices,
which are associated with a common node, are added and displacements at
common nodes are equated. The matrix equation of motion of free nodes
of the system is then

el = [+ ldy + [e]el bl - [o}
The associated eigen-value equation is then

|- 1] + o],

Because each free node has six degrees of freedom, the eigen-value matrix
will be of order (6n x 6n) for a system with n free nodes. This allows
only eight free nodes to describe the inducer geometry because the capacity
of an existent IBM 360 eigen-value program is limited te 50 eigen-values.
Because eight free nodes are insufficient to describe a typical inducer,
the number of degrees of freedom per node was reduced to one by matrix
condensation techniques following a procedure recommended by Guyan*. This
is accomplished by rearranging and partitioning by which the nodal force-
displacement relation can be expressed in the matrix form

[~ T I _ _ _
(n [A] N (n [CI B 1 I
|F|N = (ZLCl n) (ZlBJ 2n) : (% 30) _.f%.
(6n x 1) o [E] ) : [D : Gn x 1)
(3n x "3n) | (3o x 3n)i I Ong

It is now assumed that if the plate vibrates normally to the surface

u, v, and §, are zero. This can be accomplished by deleting the rows and
columns contalnlng the matrices [D], [E], and [E]T. After deletion and
further partitioning, the nodal force- displacement matrix relation is

Fy (n x 1) l ] [ I [ W | (n x 1)
lFIN =|- - 2| (axm) (anx2n) | | _
(3n xD o) K (2n[§]n) (2r[1 :lc 2n) _g:’. N R

Letting F, = O for condensation as recommended by Guyan yields two
matrix equations

[Falw = [A]lo] + [ (o]
[of = [e]vhy + [2]fels

51
*See Appendix A, section 3.
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or

= {le] = el 1 e e =1 Bl
(n x 1) (n x n) (n x 1)
Thus, the reduced stiffness matrix is

= [l (e (o) ]

This operation reduces the number of degrees of freedom to n while still
retaining the physical properties of the original system. Examination cf

(44) and (45) indicates that it amounts to a coordinate transformation as
discussed by Guyan, i.e.

ol (), = 1) 1
[} = (] - el" [ [e]

Thus, if the internal strain energy is to be preserved under this trans-
formation

_1 _1 T S Lful (R I
v =3 q]N lK] |qIN'2[w]N [T] [K] lT]MN Z[WN IKT "IN
Thus, the reduced system stiffness matrix is of the form

[¢fz = [=)* e}y =}

The kinetic energy must also be preserved under this transformation. Thus,
=2 Ll fel = 3 [l (=1 [l el = 2 Lol [
T'ZHNMlqlN 3 A Y e B B Y Y Y W'N

The reduced system mass matrix is then

[#fe = =] [z 7]

W

where

3
:
3
3
-
5
4
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Using these reduced matrices, the equation of motion becomes

- oy

i -

o

The associated eigen-value equation then involves only n degrees of

freedom and is

2, , x-1 *
"W l“lr IK]T

=0

d. Derivations of Basic Relations

The derivations of the various relations in matrix form are dis-

cussed in the following sections, as outlined below.

These are separated

into relations that are common to both the stress and vibration programs

and those that apnly specifically to only one of the programs.

Both Programs

(1) Direction Cosine Matrix [Rl!
]

(2) Nodal Coordinate Matrix I@IN

(3) Triangular Surface Coordinate Matrix FP]

(4) Thickness Matrix Relation

(5) Membrane Stiffness Matrix [RMl

(6) Bending Stiffness Matrix

Stress Program

(7) Pressure Force Matrix lf

[‘-‘sl

P'N

(8) Centrifugal Force Matrix ‘FC}N

(9) Approximate Centrifugal Force Matrix |F

Vibration Program

d .

(10) Membrane Inertia Matrix lﬁn‘

(11) Bending Inertia Matrix‘ﬁh‘

(12) Normal Direction Cosine Matrix [Rd
n

Integration of expressions containing variable thickness is acromplished
by the Gaussian quadrature formula, using 100 internal nodal values of the
integrand in the triangular element.
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(1) Direction Cosine Matrix [RI] (See Figure 32,)

The direction cosine or rotation matrix lRll establishes the relation
between the directions of the axes of the common coordinate system and
the local coordinate system. It is obtained by three operations:

1. Direction of z axis is obtained by determining direction of

vector product of vectors in directions of two sides of
triangle.

2. Direction of x axis is obtained by projection.

3. Direction of y axis is obtained by _determining direction
of vector product of vector along z axis and x axis.

N

Figure 32. Geometry for Deriving lRll FD 25843A

1. z Direction

Vector area of triangle relative to common system, (one half of vector

product)
- 1 -l - - e
§; =32 ®y - R)) x (Ry - Ry)
- - -
i 3 k
1
=2|*2 "% V2"V %2277
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w
"
N =

wn
L}

2122 = 2 (x5 - xp)

H
<
N

vy - ¥ (zy - 2)) -

sz = xl)(Y3 = yl) -

I e ST L

CY3 - yl)(zz - le

- (z3 - zl) (x2 - xl)

(3 = %) vy =y

= o=

- - S
cos (x,z) =_i.- k

J
¥

2

- - Sl
cos (y,2) =3 - k = =X

cos (2,5) =-l:- k =

2, x Direction

By inspection,

cos (x,i) = ———
Y
cos (y,x) =

cos (z,:-c) = _—[—
12

12 = \/("2 - "1)2 + @y, - 3’1)2

+ (z2 - zl)
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3. y Direction
-9 - -
axis is in direction of vector product, S1 X (R2 - Rl)

¢
¥

1

- ~ -
i i k
Sy x Ry = Ry) =) S, ly 12
Xg =% Y2 =¥y 2y -3
L
= i Sly(zz zl) - Slz(yz - yl)] +
j -
318120 = %) - 8y, (2 21)1 *
v -l:- l
é 51x g = ¥ - Sy, (xp = %)) .
S, =/ [8,.(2p - 2 - 8. (v, - yp|?+
2 ° 1y T %" 1292 © 71
2
\/Slz(x2 - xl) - S1 (z2 - zl) +
S, (ys - 1) - 8. ( y |2
1xY2 " Y 1ly¥2 - ¥

Sox = 51y(22 = 2)) - 8,0y - ¥y
Szy = S1 g - xl) - Slx(z2 - zl)
Sg; = 51x(p = ¥y) - 81, (x5 - %))
iy L e -
S, =18, +} s2y tks,
- S S S
T2 T T
2 2 2
- S
cos (x,y) =1 '.1="'£’S
5,
> 82
cos (y,y) =J - 3= 5-1
2
S
=il
cos (z,y) =-k.- 3 .22
Sy
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The direction cosine matrix is then:

B -

- [x, - x S S, |
< - - 2 1 2x 1x
[cos (x,x),cos (x,y), cos (x,z) TR -s—z- -ST
x ; N [ Bl R MU'
cos (y,x),cos (y,y),cos (y,z) |= 7 = < : (46)
12 2 1
2, - 2 S S
cos (z,%),co8 (z,y),cos (z,z)_ zl 1 SZZ -Slz_
L 12 2 l_J

(2) Nodal Coordinate Matrix I\-l.']N (See Figure 33,)

The matrix ¥| establishes the local coordinates of the nodes of
the triangle in teyms of the common coordinates of the nodes of the

triangle. It is obtained by two operations:
1. Translation of origin of local coordinate system to origin
of common coordinates system.
2. Rotation of axes of local coordinate system to axes of
common system.
The operation [1’ - \l'1]N or
r _ -
0, xp = %), X3 - %
["’ - “’1|N = % vy Y Y3
00 23 " 2 237 7

translates the local coordinate system to the origin of the reference
system.

This operation, together with rotation of the axes, yields:

(= )
X1
v, = (v = 0}
IEREAE
1“1 )
(.Y | - - .
X, (x2 - xl) cos (x,x) + (y2 - yl) cos (x,y) + (z2 - zl) cos (x,z)

(x, - xl) cos (y,x) + (y, - yl) cos (y,y) + (zé - z,) cos (y,2)

{(xz - %) cos (£,x) + (y, - y,) cos (z,y) + (zy - 2,) cos (;,z)‘
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or

f§3 (x3 - xl) cos (x,x) + (y3 - y:)a cos (x,y) + (z3 - zl) ces (:‘c,z)1
‘513 \ -4(x3 - :\1) cos (;v,x) + (y3 - yl) cos ()-v,y) + (23 - zl) cos ()-',z)

0 L(x3 - xl) cos (z,x) + (y3 - yl) cos (i,y) + (23 - zl) cos (E,z)‘

;‘2 rcos (;c,x), cos .(i,y), <.:os (:'E,z)q Xy = %

{ 0% = |cos (}-',x), cos (§,y), cos (§,z) {¥y =¥,

0 J L<:os (E,x), cos (E,y), cos (E,z)‘ Lz2 - zlj
o) r - - - T [ )
X4 cos (x,x), cos (x,y), cos (x,2z) Xy = X,
4;:3 \ = |cos (§,x), cos (§,Y). cos (§,z) 1Y3 " Y1¢
L 0 ‘ L¢:os (z,x), cos (z,y), cos (z,z)- iz3 - zlJ

In matrix notation:
- T
MN - [R] [“""’1]:«
Y (x3Y323)
- X
z
z (12,0,0)
0"1
(x1,¥1,21)
0) y (0,0,0)

X

Figure 33. Geometry for Deriving l\y’N
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(3) Triangular Surface Coordinate Matrix l\l’] (See Figure 34.)

The matrix I\ll‘ astablishes the relacion between the local coordinates

of points in the plane of the triangle and the common coordinates oi these

points. It is obtained by two operations:

1. Translation of origin of local system to origin of common
system, :

2. Rotation of axes of local system to axes of common system.
(From figure 34,)

(xav Y:;, 23 )
(iav -y-3! -2-3)
3

(x, y, 2)
X, V. 2)

b

2 (x2’ y29 22 )

E (X0, V0, 2, )
”(25’2 2

(xyyy, 2))
&,.¥,Z)

ix
Figure 34. Geometry for Derivingl\pl FD 25841A

- -._ -._ -._
r-‘ﬁl+'{x+}y+1§z

But T » - - - -
i=1icos (x,%) + j cos (x,y) + k cos (x,2)
-:1!=T cos (¥,x) +J cos (¥,y) + Kk cos (¥,2)
.I-c. =1 cos (E,x) +T cos (E,y) +% cos (z,2)
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" 1Ix +-j’y +%2 =1x1 +.3y1 +"ﬁz, +
A, L

e

L - - -» - '
li cos (x,x) + j cos (x,y) + k cos (x,z)‘ +
[T 1"

3
li cos (y,x) +-? cos (y,y) + k cos (;,z)] + }
T

Tcos (E,x) + j cos (E,y) +t cos (2,2)]

=

<1

., o x = X, 4+ x cos (x,i) +§ cos (x,).r) + z cos (x,E)

y =¥, + x cos (y,x) +y cos (y,§) + z cos (y,z)

=z, + % cos (z,x) +y cos (2,y) + z cos (z,z)
X Xy X
or y = yl + [Rll 9
2, z

In matrix form

[+l Pl = [ 19}

(4) Thickness Matrix Relation (See Figure 35.)

§ S e AN

This relation expresses the thickness at a point in the plane of th.
triangle in tcrms of the thicknesses at the three vertices, when the
thickness is assumed to vary linearly with x and y over the triangle. i
It is derived by determining the coefficients of the linear form by
matrix algebra.

P,

t3
(X3,¥3)
{l ‘ —a %
(%2.82) "
:l'yl , i
Figure 35. Geometry of Triangular Element With Linearly FD 25840A ?

Varying Thickness
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(5) Membrane Stiffness Matrix IEHI (See Figure 36.)

The matrix L

expresses the linear relation between fictitious

nodal forces and nodal displacements in the plane of the triangle. It
is derived by obtaianing the internal strain energy in the form:

Uy = % [SMIN I l Fu'N

where ISM‘ is the local nodal membrane displacement column matrix and
the middle matrix

is the local membrane stiffness matrix Eﬁ].
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and Forces On Flat Triangular Element

Letting

or, in matrix form
lsul ) [AM] |‘;M|

For nodal values

( 3

ul x1 0
V1 0 x1
u, x2 0

o -

L o

[ -
o ol

ﬁ
)
—

o
N

)

Ll
SN U W

01 0
¥, 0 1
01 0

| |
N

od |
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or, in matrix form

ISM - l;‘MIN |5’M‘

B - [ 15
i - i \
M "‘MN Ml |
e (h] (] AL
M Ay "NN M
using 3
8 __\ u \ " ' ‘
€ x ( Sz 1 000 00O
Strain - BV
= ¢ - < - -
ecain I‘Ml 11 § (fooo oo IaMl
] |du ., v
Leny 5 T/ Lo 11 00 0]

[A)

- - 11~ - 1= 1-1 (-
6l = [l = [%] (B 13
M M M M AM N M N
using
" ) i r %7 )
0z E;n B2 Lov 0 pleg
Stress ~ . —E €--
matrix 19550 = | E12 B2z T2 v 1 0 fye550
- 1-v -
- o 0 — -
kﬂny i .0 0 2_1 €

|6nl ) IEM] &l

63 o




R e AR SR T TR Ll A S

g AR e, 2 TN G YR P R e TR T TR e 2

fses L

I i SIS B i e s AT L SO SR e AR

Internal strain energy

o [ e - [l B le o

U, =
R
where dav
and
&,

atd L
\._\
zon

ll- ]
5|6
21'™ N

il

1

2AREA 3

lfn};

tdxdy

S B 5,
8" (il B ) B,

jT S

Ay

yZ'Y3 0

(6) Bending Stiffness Matrix [RB] (See Figure 37.)

The matrix [RB]

nodal forces and nodal bending displacements in the triangle.

derived by obtaining the internal strain energy in the form:

64
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expresses the linear relation between fictitious
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where [SB] is the local nodal bending displacement column matrix and

the middle matrix ( ]is the local bending stiffness mat ix

y

%)

My,
[JA

?.?l %i] Miz 522
Y 1 192 w2
Figure 37. Generalized Nodal Ben.ing Displacements and FD 25652
Forces On Flat Triangular Element
Using displacement function
- 2 2 3
= a a X a.y a +
w a, + a,x + a,y + 54x + acy + a6x
- =222 , - .22, - .3
a7xy+a8y + g7
r_ ~
1
.
) )Y [, - . .2 .2 .3 .2 .2 .3|]|%
W & 1 x §y x y Xy Xy y -
- 4
- - ow - 2 -2 ) = rell I Bw
- = = = XV > =
Y= 55 St=]0 o 1 o 25 0o & 2%y 35{ [AB”al
9 X a
05 oW 0 -1 0 -2 2 gy -2 6
{ - - -2 0 -38" -2 - 0 -
YJ \ SEJ e xy y J a7
58
[ %9
In matrix form IAB]
al = [ %] )
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For nodal values

e DR

s - = [A I..
' 8Bl = |7B| yloB
e, _ -1-
?’ s - ]
: b Byt By
| - BRI
‘ and GB = AB AB [53]
C )

using B
f Curvature -Y§§ 0 0 o0 -2 0- 0- -2x -6y i
Matrix- IC' = “Weeu =10 -2 -6x '2}’ 0 0 'aBl :
{ Wes 0 0 0 0 2x 2 0
* or

E

;; ol - Tl - [l G

Internal strain energy,
1, [<f-2 =2 - i lazac
UB =2 f D[wib'( + w.}.'}_' + ZVWiiw.}.,i + 2(1-V)W§}-, dxdy

] % e}

o 3
i 1 f . ) ) ] 1l v O -w;;, o 5
, T2 D I 59 T Y=z Yzgllv 1 0 ~Fge dxdy
= 0 0 2(1-v) Weo }
xy -

-1 Solisly lssly o] [in) o] il [y s

i = il (Sof] i) ol | )

- [ﬁB]' IAB]»-IIT ( ﬁ’ [ﬁan[Vn] [ﬁn] didiv)[XB];,l (49)

_3
_ _Et
12(1-v2)

D
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(7) Nodal Pressure Force Matrix lﬁpl (See Figure 38.)
N

The matrix |F L is the column matrix of fictitious local nodal-
forces which resist bending deflections caused by a uniform pressure
load. This is derived by obtaining the potential energy in the form:

vp B [3B]N| IN

where [63 N 1s local nodal bending displacement row matrix and the latter

matrix '} y 1s the desired local pressure force matrix FP'N

v
/ b3,

M;,
Fil
Kl% jzil My, T2,
5"1 w1 UY2 w2
Figure 38. Generalized Nodal Bending Displacements and FD 25652B
Forces on Flat Triangular Element
In local coordinates,
- - e )
W =a) +ax+agy+ax +agy + agx
+3 2.0 L2 -3
tayx y + agxy + a9y
a - -
"9 - [} {a]
For nodal values
|‘B|N - [KBIN‘“B’
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M:‘;&aﬁm .

-1
1% = [As)y ISBIN

i R

-1
S A (AN

_ =17 - ]T
I N AB]N IAB , |

and ’33 v = o

€1

[ ]
~om
<E

O

: -1T T
N AB] N [‘.‘B]
The potential energy due to pressure loading is

p =fp;;did§ = ISB]NfP IABI—NH [KB]T

or Vp = ISB]N |§p|N

]
Ol
o

1
0
0

B T v N R

.

1 - e
0} dxdy
0

Therefore,
- - -1T{: |T L -- |
leIN -fp[AB]N [AB] 0} dxdy - (50) /

0

' (8) Nodal Centrifugal Force Matrix IfC]N (See Figure 39.) P

The matrix ‘fC'N is the column mairix of fictitious local nodal forces

3 which resist displacements caused by rotation. This is derived by ob-
| taining the potential energy in the form:

o= (il |y

L where [GlN is the local nodal displacement row matrix and the latter
matrix l } is the desired local centrifugal force column matrix |Fc l .
N N

The potential energy due to rotation is

P N i

Ve = /bwzér 5 dA

g

-fpwzér [u cos (r,x) + vcos (r,y) + w cos (r,z)] da

-fpwzt-:r [uvwl Fg: g::;;ldA

cos (r,z)




(X3, Yo 23)

X

Figure 39.

But

|ave =[uw][
o I

T |[cos
by = Iaw] [Rll cos
C

Geometry of Rotating Triangular Element

(x,g) cos (y,g) cos (z,%)
s (x,y) cos (y,y) cos (z,y)

(x,2) cos (y,z) cos (z,z)

(r,x)
(r,y)

os (r,z)

Or

x/r

r = |avil IRI]T ly(/)r

Since cos (T,

From which

* |x]

z) = 0, from (34)

{

z -z = x cos (z,x)+y cos (z,y)

Therefore

yt = - . Y1 -
0 -x cos (z,x) -y cos (z,y)

O<Ci1¥1
R —

* &) ‘

FD 25844

69

BEESYTYTR

LN ey s ek i RRLRL R LY SRR LB § T vy el L SR A




1
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4 T X X
1 vV = 2elaval IR 1 s
: pw uvwl IRy - y + |R yitl dA
c . -71 - - 1
| d -x cos (z,x) -y cos (z,y) 0
; s
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Therefore

ol - [ fl,
HENENE)

vt ] sfz[Hf l;;] &)

and

oy o el [e] [r)°

\ o+ IR1]1

0 0
lABl 0
0 0
o
r 1
|
4 y1
-Xcos(z,x) - ycos(z,y)]

.

Then, in local ccordinates

I?CL' [R6]T|FCL

|-xcos (2,Xx) -ycos(z,y)

y1 > +

[r).

«< 1

dxdy (51)
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(9) Approximate Centrifugal Force Matrix 'Fﬁl
' N

- * r -
F
5 .
F
¥y 71
le 0
Mxl A
M
¥q 0
le 0
F X
X, 2
F
y
Yo 2
F - - 0
29 psziti
2
M
Y2 0
M22 0
F
Xy X4
F
Y4 Y3
Fz3 0
Mx3 0
M
Y3 0
M 0
z
L 3J - J
) N N
Ai = Area of ith element
Ei = Average thickness of ith element
P = Density

W = Angular velocity

X, ¥, 2z (N common coordinates)

This matrix (52) is used in lieu of (51) because of its simplicity.
It should provide better accuracy than (51), particularly in cases where
bending stresses are predomi.ant; however, more experience is needed with
this matrix (52) form before it can be used with a high degree of con-
fidence. For this reason, the computer program contains in option that
permits selection of either matrix (51) or (52).
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(10) Membrane Inertia Matrix

lﬁﬁl (See Figure 36)

The matrix LﬁM] is the m~trix of fictitious nodal masses and inertias
ratory membr.re motion in the plane of the triangle.
is derived by obtaining the kinetic energy of motion in the form:

which resist vi

p- LI

where ‘i\N is the local nodal vibratory membrane displacement column

matrix and the middle matrix is the desired local membrane inertia

matrix [ﬁM ]

2 .2 .
Kinetic Energy f -21-pE(1-1 + v )d;:dy =f %ptq dxdy

Membrane Displacement Matrix

. il [z o0y 32
ERHE R
a5
3.
|5M| B [KMl laM‘
For nodal values
- -1 -
FlM‘N: Ay MN ‘qM|N
. TR S
l‘-‘M| . [“M1 {AM]N ‘qulN
and
Kinetic Energy =f—;~pf: qM] ‘qM dxdy
el () ) T
K Np[AMN (ftlAM] [AM 7 IAM]N qMN
-7 o], (] 1

It
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.'. Membrane inertia matrix is

- ol (SRl ) ) 5

(11) Bending Inertia Matrix lﬁBl (See Figure 37)

The matrix

which resist vibra

Y l is the matrix of fictitious nodal masses and inertias
ory transverse bending motion of the triangle. It is

derived by obtaining the kinetic energy of motion in the form:

-1 |
-2

AREEH!

where la‘ is the local nodal vibratory transverse bending displacement
column matrix and the middle matrix [ l is the desired local bending

inertia matrix {

Kinetic Energy =[%‘DE (—g—t-) d;(d;f

g

2

Transverse Displacement

q-3 -

1

or

= [Z‘Bl

- - - =2 -2 -3 =2-
Fax + a,y + a, & + a ¥ + a X" + aX%y +

i__2 + -3
agRy agy

=

Using nodal values

|&B|N=
l‘;’n N
i =
i =
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Kinetic Energy = %p[E[Z] é dxdy
i T 1
APl (sl s (5] ] 1,

sa| (%] el

N
FaT0

[ ]
N —

. .Bending inertia matrix is

ol (e Tl B

(12) Normal Direction Cosine Matrix [Rll
n

b ]

The matrix [Rl establishes the relation between the directions of
the axes of the common coordinate system and the axes of the quasi-normal
system. It is obtained by averaging the di:ections of the § and Z axes
of the four triangular elements that have a common node and a common
generator, with the x axis lying in the direction of the generator as
shown in figure 40. The directions of the local axes of the individual
triangular elements are obtained directly from the direction cosine
matrix |R,].

Generators

Figure 40. Definition of Quasi-Normal Coordinate System FD 25669
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e. Discussioa of Typical Resnlts of Analyses
(1) Stress Program
(a) Sectors

Test cases were first run on 45 degree flat sectors with 9 (figure 41)
and 30 (figure 42) free nodes under unilorm transv ;e load and centrifugal
loading. There rac a decided improvement in radial deflection for the
centrifugal load case ‘n going from 9 to 30 nodes as is shown in figure 43.
Radial membrane stresses on interior triangular elements just about straddled
the estimated stress curve when they were plot.ed for the centroid* of the
appropriate trianyle as is shown in figure 44, Approximate stresses and
deflections were c<timated by direct integration assuming that the radial
pull is independenc ~f polar augle. Averaging the stresses at each node
by averaging the st.asses in the triangles immediately surrounding a node
also agreed feirly w21l with the estimated curve as is shown in figure 45.

The displaceme..ts under bending load also were improved in going from
9 to 30 nodes as is shown in figure 46. Radial bending stresses on in-
terior triangular elements also straddled the estimated curve as is shown
in figure 47. These stresses were also averaged at the center nodes and
are presented in figure 48. Stresses were obtained from the moment dis-
tribution on a centilever beam of linearly varving width and deflections
were approximated by the moment-area method.

~ Node Numbers

45 deg
(0.79 rad)
SL_ ° -
1 in. (254 cm)-
(10.16 cm) 4
X
Figure 41. Breakup of 45-Degree Sector Into 12 Triangular FD 25670

Elements and 9 Free Nodes

* Gerstenkoro presents data at the centroid of triangular elements for the
solution of the thick-walled cylinder using finite elements, and Zienkiewicz

discusses this and other methods of averaging stresses in triangular elements.
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1 in. (2.54 cm)

4 in.
(10.16 cm)

7

X

Figure 42. Breakup of 45-Degree Sector Into 48 Triangular FD 25672
Elements and 30 Free Nodes

0.006— — 21
_ N = 33,000 rpm (3456 rad/s)

= 0.14 Ry=1in (254 cm)

Z 0.005f Rt = 4 in. (10.16 cm)

R 012 E = 3X107 psi (207 X 107 N/cm?) _

2 v = 0333 H—~18 TT

8 0.10} 0.004} p = 0.298 Ib/in.? (0.0824 Kg/cm?)

5 t =01 in. (0.254 cm) :g

%50'08 -SOOO \ 17

A 006} 6~~~ Node Numbers
0.00 N\

0.4 F i : O 9 Free Modes
= 0.001 |, 16 TEetimated A30 Free Modes
é 0.02F ~

5,156
ol o o
0 1 2 3 4
in.
L ] . N i { ]
0 2 4 6 8 10
cm
RADIUS
Figure 43. Radial Displacements In Rotating 45-Degree FD 25335A
Sector
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7 200 T u
&) = 30,000 rpm (3142 Rad/S)
& 120 Ry =1in (2.54 cm)
g =150 Rt =4 in. (10.16 cm)
o 1001 <€ E = 3X107 Ib/in?(207X107 N/cm2)|
Z 5 v = 0333
é% 80— 3 © P = 0298 Ib/in  (0.0824 Kg/cm?)
na 5 £ 100 T ——— t = 0.1 in. (0.254 cm) -
= 260— ) R OCentroid
S4B Nog
. 401 ™ s50f
20- Y
Q \ONKO.Q*
é 0- 0
0 1 2 3 4
1mn.
l 1 | ] ] J
0 2 4 6 8 10
cm
RADIUS
Figure 44. Radial Membrane Stresses In Rotating 45-Degree FD 25657
Sector With 30 Free Nodes
200 .
N = 33,000 rpm (3456 rad/s)
120+ R =1in. (25¢ cm)
R = 4 in. (10.16 cm)
k T
wa 1007 3150 E = 3x107psi (2.07X107 N/cm?)
g-‘é’ a0l e V=033
Eé ) x Estimated -/ A16 P = 0.298 1b/in.(0.0824 kg/cms")
5% 6o 2100 t = 01 in. (0.254 cm)

3 Y Ié A17 O'9 Free Nodes
g 5 404= Node Numbers 6? , A30 Free Nodes
é:ﬁ 20- A19

21

o4 o
0 1 2 3 4

ln.
4 1] ¥ 1] T 1
0
2 4 cm 6 8 10
RADIUS
Figure 45. Radial Membrane Stresses In Rotating 45-Degree FD 25786A

Sector at Midchord
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EE 0.090— -
<3) 20 0.080—p = 10 psi—+—(6.89 N/em?) 219
> E =3 X 107 psi (2.07 X 107 N/cm?) 86
8 0.07 t = 0.1 in.—}—(.254 cm)
1.61 Ry=1in. (2.54 cm) A20
S 0.060— R = 4 in. 7T (1016 cm)
B v =0.
0 g 1.2} 50.050 619
2 "0.04 ‘ P’
vy 08T 0.03 +218 Node Numbers ——
o Estimated— gy
E 0.02 + O 9 Free Nodes -
i 0471 37 A 30 Free Nodes
E 0.01 - 6 I
16
g0 0 1 2 3 4
in.
0 2 em 8 10
RADIUS
Figure 46. Transverse Midchord Displacement of Uniformly FD 25787A
Loaded 45-Degree Cantilevered Sector
80
) o0+ \\ | _ |
h 70 p =10 psi (6.89 N/cm?) ~
] \? E =3X 107 psi (207 X 107 N/cm?)
E 40+ 60} — t=01in (0.254 cm) .
=) \ RH= 1in (2.54 cm)
n 5 50 Rr=4 in. (10.16 cm) -
U -] 30__ 2 \ v = 0333 O Centroid
2 BT 84
3 > |E e
Estima
% 520" -i w - /—
2 ” e
10+
é 10} O =0
g
oe O.L 0 . §
0 1 2 3 4
in,
- } - t } i
0 2 4 6 8 10
cm
RADIUS
Figure 47. Radial Bending Stresses In Uniformly Loaded FD 25788A

45-Degree Cantilever Sector With 30 Free Nodes
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j % % \ ]10 i (6 t'!}9 N/cm?)
v - p= psi . cm
o b0 70 E=3X10 psi (207 X 107 N/cm?)1
% — \ t =01 in. (0.254 cm)
; tn 8 404 ~ 60 Ry=1in (2.54 cm)
E o0 < \ Ry =4 in. (10.16 cm)
1 EZ g § 50 v =0333
% o - {)30.. g © A16
Z "8 5 = \ — 0O 9 Free Nodes
4 ) t A 30 Free Nodes
E m g 20-- . gy 30 ' 4
, 8 &, Estimated A 17 Node Numbers
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| E P I
0"" 0 /\20 o A
] 0 1 2 4
.
0 2 4 6 8 10
cm
RADIUS
Figure 48. Radial Bending Stresses In Uniformly Loaded FD 25789A

45-Degree Cantilevered Sector |Midchord|

(b) Rectangles

Similar test cases were run on 2 by 3 in. (5.08 by 7.62 cm) rectangles
as shown in figures 49 through 53. Good agreement was achieved in all
cases. Displacements always agreed better than the stresses.

| zﬁ 30 31 32 33 34 35

¥ Node 46 48 ‘
Numbers

-\22 ull 28

: 35

36 2 in.
15 21(5.08 cm)
] 24
1 23

3 14
4 11
% 12 #

3 . 6 7

- 1in. 3 in. (7.62 cm) 1‘
(2.54 cm) L oy
.i}; x

Figure 49. Breakup of 2-Inch by 3-Inch Rectangle Into 48 FD 25673

Triangular Elements and 30 Free Nodes
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2 Ry = | in. (254 cm)
= . 0.004 i H = in (254 c |
é 10 *-ln—l‘(-.-| Rt = 4 in. (10.16 cm) D)
et~y
SA 0.87 0.003 / l
RF ' X |
% 3 064 ¢ E = 3X107psi (2.07X10"n/cm?)
=] ey ¥ = 0333 O| 30 Free Nodes
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gzo 04 P = 0.298 1b/in®(0.0824 kg/cm?) = Theoretical
Ag * t = 0. in. (0.254 cm) W
g" 02] 0001 | 5
2
o 0- oL
0 1 2 3 4
in.
¥ I 1 1 T 1
0 2 4 6 8 10
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RADIUS
Figure 50. Radial Displacements In Rotating Rectangle With FD 25790
30 Free Nodes
40r 60r
O Centroid
301
& >
> i ¢©
[_,%20- o /— Theoretical
@5 E 4
l G Q
42 | E
A 10+ .
@0
> ¢
P
oL 0
0 1 fﬁF 3 4 5
R 1n.
] 2 1 T 1
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Figure 51. Radial Stresses In Rotating Rectangle With 30 FD 25791
Free Nodes
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Figure 52. Transverse Midchord Displacement of Uniformly FD 25792A
Loaded Cantilever With 30 Free Nodes
w20 30 p=21b/in (35 Nem)
7] \ © E = 3 X 1071b/in’ (2.07X 10" N/em?)
E v = 0333
164 ~ t = 0.1 in. (0.254 cm)
7)) ] : i
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3 -
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0 2 4 6 8 10
cm
Figure 53. Radial Bending Stress In Uniformly Loaded FD 25793

Cantilever With 30 Frea Nodes
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(¢) Circular Disk

A test case for a solid bore spinning disk with 48 free nodes (figure 54)
was evaluated next. Displacements again agreed with theoretical results
as shown in figure 55. Results were compared with the theoretical plane
stress solution for a disk and with results from an existing program which
is used by Pratt & Whitney Aircraft for compressor and turbine disk design,
with v = 0.300. Stresses that waere averaged at the nodes did not agree
as closely as those for sectors and rectangles as is shown in figure 56.
Pertaining to stress interpretation in general and figure 56 in particular,
stresses at the hub and free edges cannot be evaluated directly because
the correct stress gradient cannot be accounted for in a triangle over which
the membrane stress is assumed constant or the bending stress is assumed
to vary linearly. Such stresses can be obtained by using either extrapolation,
smaller elements, or judicious weighing of element stresses as discussed
by Zienkiewicz. It is expected that a finer breakup would reduce the
error,

36

52
Node Numbers—/
x
Figure 54. Breakup of Circular Disk Into 96 Triangular FD 25655

Elements and 48 Free Nodes
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{ Figure 55. Radial Displacements In 48 Node Spinning Disk FD 25794A
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Figure 56. Radial anrd Tangential Membrane Stresses In 48 FD 25795A

Node Spinning Disk
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(2) Vibration Program

(a) Rectangular Plate

A test case on a 1 by 2 in. (2.5 by 5.1 cm) rectangular plate with
40 free nodes (figure 57) yielded the results shown in table I.

ment, as is shown in figures 58 through 61.

the first torsional mode (1/0 mode), however, was high, and is still being
investigated.

21in.(5.08 cm)

Com-
parison with the first four known mode shepes (Barton) was in good agree-

The predicted frequency of

Figure 57.

-
40 41 42 43 44 45
56 58 60 62 64 y
55 57 59 61 63
31 33 33 32 35 36
39 41 43 45 47
40 42 44 46 |
27 1in.
31 33 73 54 55 (2.54 cm)
22 24 26 28 30
23 25 27 29
3 14 15 16 18
7 9 1 13
8 10 12 14 i '
A 5 6 7 8 9

\-Node Numbers

Breakup of 1l-Inch by 2-Inch Rectangular Plate

Into 64 Triangular Elements and 40 Free Nodes

rd

FD

25656
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i Table I. Comparison of Exact and Computed Modes and Natural
s Frequencies of 1 by 2 by 0.1 in. Thick Cantilevered
. Rectangular Steel Plates ?
% Frequencies, cps
i Mode Exact* Existing Program Present Program
¥ 7
E + 846 844 720
s 7
i 0/0
H
, -
,L G —— - 3,638 3,584 4,942
; 7
¥ 3
4 1/0
' v/ T
| 1.
: | 5,266 5,301 4,513
7 '
; 0,1 ]
‘?" {
! A + T .
§ /__. L 11,870 11,802 14,648
' % - | + N
| 7 1
f 1/1
R '
2 + - I 15,185 12,532 ;
/ ! | :
] 1 3
0/2 :
| 7/ I "N ‘
g - 23,011 21,563
| A —x = —
2/0
? v
4 -7 23,340 25,165
A -+ "
1/2 === 1 T T
+ ] S
¥
poe o ma -, L
29,469 24,459
0/3
y—--—Q\ 3 e —}—4‘._
- I + + -.'} -
—— = 77 = = +-4-
31,190 35,039
L 2/1
A _T.1 7
- + "+
7 L . 38,331 38,175
1T | ’ >
At SE3E
1/3

* Refer to Barton in Appendix A
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Figure 58. First Bending Mode of Cantilever Plate FD 25895
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Figure 59. Second Bending Mode of Cantilever Plate FD 25797
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Figure 61. Third Bending Mode of Cantilever Plate FD 25894A
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(b) Six-Degree Inducer

A test case for a 6-degree inducer with a 438-degree wrap angle was
conducted and results compared with test data as shown in table II. The
results were in fairly good agreement, at least through the fifth mode.

Table II. Mode Shapes and Comparison of Natural Frequencies of 6-Degree
(0.105-rad) Inducer

; Mode Frequency (cps) i
i Test Calculated %
‘ Data (Present Program) %
§
441 483 ;
0/0 ;
575 540
E
1/0
@ N 606
! 2/0
@ B " (
3/0
831 840 ”
4

4/0

994

&
‘ =T
t

5/0

|
] ‘ 957 1170
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C. TASK III - DESIGN OF TEST INDUCER
1. Hydrodynamic Design and Analysis
a. Preliminary Design

(1) Requirements

Task III work requirements called for the preliminary design of an
inducer to be instrumented and tested in Task VI, both in static rigs
and a closed flow loop. Test results will be used in the development
of the computer programs formulated in Task II.

The following performance characteristics were established as
design goals:

Test Fluid - Water

Minimum Flow Coefficient (¢) - 0.065

Minimum Head Coefficient (y) - 0.15

Minimu Suction Specific Speed (Ngg) - 40,000.

s~ -
L -

During the Task III preliminary design phase, it was found that, although
our studies showed that a suction specific speed of 40,000 could be ob-
tained, the low blade angles and thin blades required would limit in-
strumentation and compromise the acquisition of extensive and accurate
test data. Therefore, the blade thickness and stagger angle were selected
to provide good instrumentation coverage, and the other inducer parame =2rs
varied to obtain maximum suction specific speed.

(2) Selection of Basic Parameters

Three blades were selected, and zero taper angle was used to provide
adequate tip thickness for instrumentation and low hub blockage fzr good
suction performance. To obtain various hydrodynamic loading conditions,
the meridional area was reduced by 15% at the exit, and the blade was cam-
bered by 2 deg at the tip. An inlet tip angle of 8 deg was selected to
provide adequate room for instrumentation while maintaining a low angle
for good suction performance.

For simplicity and ease of rig modification, a constant OD flowpath
was used. A high solidity was specified to obtain a high work level as
well as good suction performance. The tip speed was limited to 150 ft/sec
(46 m/sec) to preclude cavitation damage. A maximum OD and minimum ID
were used to provide the largest blade surface for instrumentation. The
basic design parameters are listed in table III.
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Table III. Basic Design Parameters

Inlet Exit
Hub Diameter, in. (cm) 2.8 (7.1) 3.74 (9.5)
Blade Angle-Tip, deg (rad) 8 (0.14) 10 (0.18)
Blade Angle-Hub, deg (rad) 19.35 (0.339) 18.25 (0.318)
Tip Diameter, in. (cm) 7.0 (17.8)
Blade Thickress, in. (cm) 0.130 (0.330)
Number of Blades 3
Flow Coefficient 0.07
Head Coefficient 0.24
Suction Specific Speed 30,000 (min)
(100% Head Falloff)
Flow Rate, gpm (m3/S) 1060 (0.067)
Rotor Speed, rpm (rad/s) 4900 (513)

b. Flow Path and Blading Design

The hub contour and blade angle distribution are shown in figure 62,
The tip blade angle was held constant at 8 deg for a tangential gap/chord
ratio of approximately one. The blade angle profile from this point to
the exit followed the powei distribution shown in figure 62, This blade
design is patterned after the '"J" blade concept. This design technique,
in incorporating a noncambered inlet for a tangential solidity of one,
allows the leading edge incidence to be removed before turning the flow
in the cambered section of the blade to produce the desired head. 1In
doing this, the blade pressure loading due to leading edge incidence
diminishes before the loading due to blade camber begins. This prevents
additian of loadings due to incidence and camber near the blade leading
edge.

After the blade angle distribution was determined, the channel flow
area could then be held constant so that an acceptable mean line relative
velocity profile would be obtained. With flow area and tip diameter
constant and the blade angle distribution specified, an approximate
hub contour was determined. Because of the test rig requirement that
the inducer exit flow be axial, some departure from this desired hub
contour was necessary to turn the flow to axial.

The mean relative velocity profiles, as determined from the hydro-
dynamic program, are shown in figure 63, The velocity profiles shown
are both smooth and devoid of any excessive diffusion other than in
the region of the leading edge, where some rapid diffusion exists.
This diffusion in the region of the leading edge, which is the result
of the rapid turning due to leading edge incidence, will appear in any
inducer design. It can be tolerated (if the diffusion velocity ratio
is not extremely high) because the boundary layers are still very thin

near the leading edge.
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Figure 63. Task III Inducer Mean Passage Velocity Profile FD 25800

c. Performance Evaluation
(1) Noncavitating

The predicted inducer performance operating under noncavitating
conditions is shown in figure 64, Based on the noncavitating results
of the NASA 12-deg (0.21-rad) helical inducer discussed in paragraph Bld,
above, it would appear that some falloff in actual head coefficient would
result at the lower inlet flow coefficients. Although no requirement for
hydrodynamic efficiency was established, it is felt that the predicted
design efficiency is typical of many inducer designs.

(2) Cavitating

As previously discussed, some compromise in inducer suction per-
formance was made to allow proper installation of pressure and strain
gage instrumentation. As shown by figure 65, a predicted net positive
suction head of approximately 8 ft (2.4 m), corresponding to a suction
specific speed of 33,300, can be reached at complete head falloff.
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2. Stress Analysis

a. Hydrodynamic Loading

The blade pressure loadings were obtained from the hydrodynamic
analyses discussed above. These loadings are shown for noncavitating
operation at 100% speed and 100% flow in figure 66, This figure shows
isobars plotted on a frontal view of the inducer. Regions for varying
level of hydrodynamic loading are indicated.

Note that the hydrodynamic loading is highest near the leading edge
and decays rapidly away from the leading edge. This indicates that the
highest loadings are caused by incidence turning of the flow. Further
investigation of the loading relation previously discussed shows that
these high tangential loadings are caused primarily by diffusion of
the flow.

Figure 67 shows the hydrodynamic loading for the cavitating case at
1007 speed, 100% flow, and NPSH = 20 ft (6.1 m) at approximately 10%
head falloff. The reduction of peak hydrodynamic loading level is obvious
on comparing figures 66 and 67. As previously discussed, the vapor cavity
has grown to ''spread'" the flow turning over a longer distance and reduce
the peak pressure gradients. Note, however, that far away from the leading
edge the flow is still turning as the cavity develops so that moderate
loading levels persist at a significant distance from the leading edge.
In fact, the analysis indicates that the peak loading has shifted from
the leading edge a significant distance into the inducer.
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Blade Loading psi N/cm?

B <10 [ <69

1050 B8 69345
50-100 (] 34.5689
100-150 68.9-103.4
150-200 103.4-137.9
200-250 187.9-172.4
250-300 B 172.4-206.9
> 300 1D} >206.9

Figure 66. Task III Inducer Design Blade Loading FD 25571A

Distribution, 100% Speed, 100% Flow
[No Cavity)

Blade Loading
psi N/cm?
< 206 < -138
-20-:0 8 -1380
0-20 (] 0-13.8
20-40 § 138-27.6

40-60 ] 27.6-41.4

JLeeding Edge-/ S

Figure 67. Task III Inducer Design Blade Loading FD 25878A
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Distribution, 100% Speed, 100% Flow,
NPSH = 20 ft [6.1m]
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It should be noted that it was necessary to input a very high inlet
pressure (very low suction specific speed) to obtain a noncavitating con-
dition; i.e., a pressure on the suction surface of the blade higher than
saturation pressure. The absence of any vapor cavity then allowed the
hydrodynamic loadings to become very high, as indicated in figure 66,
For the practical level of suction specific speed, the program predicts
that there actually will exist a small vapor cavity. This prediction
seems to be confirmed by visual observations of vapor cavities in
inducers operating at relatively low sucticn specific speeds. Although
this cavity is small enough so~ that it does not significantly affect
overall performance, it still has a considerable effect on reducing the
hydrodynamic loading.

Figure 68 shows the loading levels obtained from the hydrodyamic
analysis at an inlet NPSH of 65 ft (213 m). The effect of the cavity
in reducing the loadings quite significantly can be seen by comparing
figures 66 and 68, The peak pressure loading has been reduced by almost
a factor of four. Although the effect of this cavity on loading is very
important in reducing stresses, it has, as previously stated, no sig-
nificant effect on inducer performance. This can be seen in figure 65
at an NPSH value of 65 ft (213 m).

Blade Loading  psi N/cm?
o e .:.':~':3.5;, < _20 <-13.8

0-20[J0-13.8
2040 13.8-27.6
40-60EX)27.6-41.4
60-80 [ 41.4-55.2

>80l >55.2

Figure 68. Task III Inducer Design Blade Loading FD 25880A
Distribution, 100% Speed, 100% Flow,
NPSH =65 ft [19.8M]
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Figures 67 and 68, both resulting from analyses where cavities are
present, show negative loadings. These loadings occur near the position
where the cavity collapses on the surface of the blade. Recause of the
shape assumed for the cavity, the flow curvature and velocity gradient ;
reverse after the point of maximum cavity height., (See figure 69,) ;
As previously discussed, the shape of the cavity was arbitrarily assumed
to be symmetric about the point of maximum height. Therefore, the
_ accuracy of the loading in this region may be questionable. Further
} evaluation of these indications will be made in Task VI, both experi-
; mentally and theoretically, in the development of the computer programs.

Specifically, a better model for the cavity shape will be sought.

e

The hydrodynamic loading for 1007 speed and 80% flow was evaluated
and was found to be comparable to the 1007 flow condition. From this
result, it was concluded that the hydrodynamic loading, and therefore

the stresses, would not vary significantly over the range of flow of
80% to 120%.

gt ¢ P St S san

U

Figure 69. Effect of Cavity Shape On Streamline Curvature FD 25570

b. Stress Calculations

The hydrodynamic loads presented above were input to the stress
analyses, using the computer program formulated in Task II. Three oper-
ating conditions were run and the results have been plotted as effective *
stress contours on a frontal view of the inducer, similar to the loading
plots:

Figure 70 - Noncavitating, 100% speed, 100% flow (no cavity)
Figure 71 - Noncavitating, 100% speed, 100% flow, NPSH = 65 ft (21.3 m) |
Figure 72 - Cavitating, 1007 speed, 100% flow, NPSH = 20 ft (6 m)

The 1007 speed, 100% flow, no cavity case (figure 70) had the highest
peak effective stress, a value of approximately 80,000 psi (55,158 N/cm“)
at the hub leading edge. However, since the rig tests will not be run at ¥
the high level of pressure required to completely eliminate the cavity, }
this level of stress should never be reached.

Figure 71 shows the stress levels anticipated in the Task VI test
program for the "moncavitating' case. These stresses are calculated from
the loadings obtained with NPSH = 65 ft (21.3 m). The peak stress is only
about 16,000 psi (11,031 N/cm?) and occurs at the hub blade leading edge.
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Blade Stress
psi N/cm?

<10,000 ] < 6895
10,000-20,000 6895-13,790
20,000-30,000 13,790-20,685
30,000-40,000 g 20,685-27,580
40,000-50,000 ZZ2 27,580-34,475
50,000-60,000 B 34,475-41,370
60,000-70,000 Be3 41,370-48,265
70,000-80,000 [EEER) 48.265-55,160

> 80,000 R > 55,160

Figure 70. Task III Inducer Design Stress Level FD 25879A
Distribution, 1007 Speed, 100% Flow
[No Cavity]

Blade Stress — psi N/em?2

0-2000(_]0-1379
2000-4000 1379-2758
4000-6000 [F532758-4137
6000-8000 == 4137-5516
8000-10,000 272 5516-6895
10,000-12,000 iR 6895-8274
12,000-14,000 £ 8274-9653

14,000-16,000 9653-11,032
2 16,000 11,032

"ovd

Leading Edge/

-

Figure 71, Task III Inducer Design Stress Level FD 25886A
Distribution, 100% Speed, 100% Flow,
NPSH = 65 ft [19.8M]
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Figure 72 shows that the cavitating case has about the same stress
level as the '"'moncavitating' case at the hub on the blade leading edge.
However, further back in the inducer, the collapse of the cavity caused
a higher stress of approximately 24,000 psi (16,547 cm). However, it
is recalled that the loadings at that point are questionable due to the
assumption concerning the cavity :uape

Blade Stress

psi N/cm?

0-2000 CJ 01379
20004000 SN 1379-2758
4000-6000 G 27584137
6000-8000 B3 4137-5516
8000-10,000273 5516-6895
10,000-12,000 EEE8 68958274
12,000-16,000E2=3 8274-11,032
16,000-20,000 BIED 11,032-13,790
20,000-24,000 HI 13,790-16,548
>24,000 M >16548

Figure 72. Task III Inducer Design Stress Level FD 25888A
Distribution, 1007 Speed, 100% Flow,
NPSH = 20 ft [6.1nq

3. Vibration Analysis

Vibratory characteristics of the Task III inducer were obtained using
the vibrations program formulated in Task II. Mode shapes and frequencies
for the first four modes of vibration are shown in figure 73. The lowest
natural frequency was found to be much greater than any system excitation
frequency that will be experienced during normal operating conditions.
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Figure 73. Task III Inducer First Four Vibratory FD 25900A
Mode Shapes

4. Instrumentation Design

Instrumentation provisions were designed into the inducer for measure-
ment of the following data:

. Blade steady-state strain

. Blade vibration strain

. Blade and hub steady-state surface pressures
. Blade vibratory surface pressures.

PO

Space limitations on the inducer blades and slip ring capacity
necessitated that the data be obtained from two test series: the first
for steady-state and vibratory strain and the second for steady-state
and vibratory pressures. Some strain gages will be common to both
test series to ensure data continuity.

Steady-state strains will be measured with eighteen three-direction
strain gage rosettes located as shown in figure 74, These locations
coincide with the maximum stress areas of figure 70, The use of rosettes
instead of single direction gages at each location will permit determination
of stress and stress direction at each point. Six of the rosettes will be
placed on each of the three blades to facilitate routing the leads down
the blades and into the inducer hub. All rosettes will be at different
locations except at the inlet root., This is the area of maximum stress,
and all blades will have a rosette at this location to ensure that gage
failure does not prevent measurement of maximum stress. These common
rosettes will also be used to check the degree of stress similarity
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between blades in laboratory static load tests. Slip ring capacity

will limit the number of rosettes recorded to twelve. Rosettes indicated
as spare in figure 74, together with two of the inlet root rosettes,

will be connected to the slip ring and recorded only if primary rosettes
should fail. All gages will be located on the blade pressure surface

for measurement of total strain (bending plus membrane).

Blade
O All 1.650 in. (4.191cm R) 3
A1 2.150in. (5.461cm R)
o 2 2.650 in. (6.731cm R)
o 3 3.150 in. (8.00cm R)
- Spare
' 3 Directional Strain Gages 3
\ 48.m deg :
\ (0.8378 Rad) ;
| \ 33.66 deg ‘
(0.5875 Rad)
",v' \'Y N /
; j 19.33 deg *
Blgi(::sure qa. : \ (0.3374 Rad) !
Surface D—4 . |
{
Bla‘de Leading Edge —/ 5 deg
' (0.0873 Rad)
Figure 74. Strain Gage Locations - Blades FD 25877A

No. 1, 2, and 3

Vibratory strains will b~ measured with che same gages shown in
figure 74 by running several additional tests and recording vibratory
strain signals. These strains are expected to be minor, however; and
it is expecte? that the most useful vibratory data will be obtained

from shaker table tests with gages located according to inducer nodal
patterns,

Steady-state blade and hub surface pressures will be measured by
installing pressure taps flush with the blade and hub surfaces. The
taps will be installed by machining grooves in the blade surfaces and
holes through the inducer hub to accommodate 0.040-in. (1.016-mm)
diameter tubing. Tubing will then be laid in the grooves and routed
to the inducer inner cavity through the holes in the hub, Epoxy
cement will be used to fill the groove, fair the blade surface, and
hold the tube in place. Each pressure tap tube will then be connected
to a pressure scanning valve* - transducer assembly mounted in the

*Scanivalve Co., San Diego, California, Model No. 48D9.
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inducer hub as shown in figure 75. The scanning valve is r.apable of
connecting 48 pressures sequentially to a single transducer. A schematic
of the valve is shown in figure 76, The transducer will be a differential
type with the reference side connected to a total pressure tap in the
inducer nosepiece. Electrical leads from the valve drive solenoid,
scanning position indicator, and transducer will be routed through the
rig shaft for connection to a slip ring assembly in the rig drive train.

Pressure Scanning Valve

Transducer Reference Pressure

Tie Bolt ‘v
Nose c Shaft ’- O’ Rings
Piece \\ L[
E_ \ —
e :‘? 4 4
Nylon Tubing l
0.040-in. ‘3,2 Tubing
(1.06 m:n)
Inducer I
Figure 75. Pressure Scanning Valve In Inducer Hub FD 25812
Reference Pressure —|
Pressure N ' Transducer ,
/- —1#— GN, Purge é
—_
t
Shown Out
A\ TR of Position
NV |
Rotor
Z |
Collector Slot—/
Shaft
Figure 76. Schematic of Pressure Scanning Valve FD 21392B
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Pressure tap locaftions in the inducer blade and hub are shown in
figure 77. The taps are located along four design point streamlines
at nineteen axial blade positions. The same tubes will be used to
sengse pressures at all four radial locations by running a series of
four tests. Pressures at outer radii will be measured first after
which the inducer will be removed, outer taps plugged, and new )
taps drilled at the next inner radius, Two of the three inducer blades '
will be used to accommodate the pressure taps with each blade having '
alternate pressure and suction taps along its chord to avoid back-to-
N back grooves in the blade. Pressure surface taps at locations 2, 8, |

: and 13 will be installed and read for all pressure tests to ensure data
continuity within the pressure test series, One strain gage, at the ’
inlet root, will also be installed on blade No. 3 for the first pres-
sure test to check continuity with the strain gage test series.

:
%
!

? Angulat tocation. # . R Radial Location ] R
: Blade Pmsure Tam g end in. o In (a, wn in. o
: Pressure and Suction Surfaces L 00 oam on eow 1M Toa rom eos  Les o)
! 3 2.0 0.8 1.30% 8,19 1.000 1.3% <39 8,091 1.76% 4.403
" & 9.% 0.5149 3,305 [ 1) 2.888 T.3% 2., 4.091 1,768 '4.1"01
‘ n 1 C @0 wlen n dow  ram rom zoe eom  Lw e
§ 7 5.10 0.9462 3,308 8,395 2.008 1.3% 2.9 ,091 1,765 L,e8]
L [ 66,35 1.1 3.30% 8,395 1.088 1.33 2.)9 6.091 1.7¢8 4.48)
v .0 1.3718 1,305 8.19% 2,888 7.3% 2.3% 4,051 1,765 4,583
! 10 90.85 1.58% 3,308 .19 2,888 1.3 2.39 6,091 1,745 .08
H 11 103,10 1.79% 3.30% 8.3 1.088 1.3 1.)% 6,091 1.76% 4.483 N
. 12 150.00 2.6100 3,09 8.,40% 1,902 .in 2,428 4147 1,82 4.633 i
o1 13 185.00 3.9 .2 8,415 2.1 7. 3% YY) 205 1.85% 4. 709 i
e *‘ 14 220.00 3.0397 1. 56 8.423 2,93 7.457 2. .27 1.092 2.806 H
A ] 3] 253.00 4.450¢ 3.320 8,433 2,960 7.518 2.500 6,250 1.9% 4.902 M
i 12 1 BEoo  ehok Ut Gdss  2eey  7am Tam s 2z e |
1 380,40 65,4902 .32 8.463 .98 7.586 2.587 8.5 219 3,508 ¢
19 J68. 60 6,638 3.3 | YRS 2.989 1.592 2.39% 8,391 2.178 3.532 2
,; / Trailing Edge ?
i : .
‘ 13 » 10250 in. (0.635 cm) - Hub
I | 0750 in. Pressure }
| (1.905 cm) Taps N
4-
" ' %
2
RI- 4
== (13115 1619
15 1-11° 12 18
17
Figure 77. Pressure Tap Locations - Blades 1 and 2 FD 25876 ﬁ
Pressure tap measurements will be complicated somewhat by the
centrifugal effect on the fluid in the radial tubes. The readings can
be easily corrected, but the fluid in the tap tube must be single phase )
of known density. This will not be the case when blade surface pres-
sure at the tap is lower than vapor pressure plus centrifugal pressure
in the tap tube. To correct this, a modified pressure scanning valve
will be ordered with a pressure connection into the space behind the ?
valve and a hole through the rotor one space ahead of the collector '
slot. This space will be connected with 0,040-in, (1.016-mm) diameter }",

tubing to a sealed annulus on the test rig drive shaft. GN2 pressure
applied at the annulus will then purge each pressure tube just prior tu
its being connected to the transducer, and it can be assumed that the
tube will be completely filled with GN2 at the transducer measured
pressure.
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Pressure fluctuation magnitude and frequency will be measured during
the first pressure test with six miniature strain gage transducers
(Kulite) installed flush with the suction surface of blade No. 3. The
transducers will be located near the blade tip, as shown in figure 78,

for measurements of pressure fluctuations in the most severe cavitation
area,

Angular Location, @

deg rad
1 6,00 0.1025
2 21.30  0.3718
3 37,70 0.6580 Surface Pressure Transducers
4 55.88  0.9753
5 84.37  1.4725
6 111,57  1.9472 6 m\
3.300 in.
(8.382 cm)
Radius 9
!
- 0-
Blade Leading Edge
Figure 78. Miniture Transducer Locations - Blade No. 3 FD 25858

5. Test Rig Design

The inducer and instrumentatior were designed into an existing water
loop test rig as shown in figure 79. Strain gage, scanning valve, and
miniature transducer leads will be routed through the drive shaft to a
slip ring assembly in the drive train at the rear of the rig. The
inducer is overhung from the drive shaft with the pressure scanning
valve in its hub. An acrylic plastic (Dupont Lucite) sleeve is used
to house the inducer and permit observation of cavitating flow. The
sealed annulus at the rear of the rig will be used to purge the pressure
scanning valve and inducer pressure tap tubes.

The rig shaft assembly first critical speed was calculated as 6200 rpm
(649.3 rad/s). This is well above maximum test speed of 4900 rpm
(513.1 rad/s). Stresses at critical areas were also calculated for all

operating conditions, and all parts were found to have adequate safety
margins,
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Figure 79. Inducer Test Rig FD 21423B
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SECTION III
CONCLUDING REMARKS

Computer programs have been written for the prediction of:

° Inducer performance (noncavitating and cavitating) and
blade pressure loading

Inducer blade stress distribution due to pressure and
centrifugal loading

Inducer blade resonant frequencies and associated stress
distributions.

AT R F T TR AR e e ST I A T - A
® L

The computer programs have been correlated against a number of experi-
mental and exact solution test cases with satisfactory results.

Ar inducer and test rig have been designed with provisions for measure-

ment of:
® Blade steady pressure distribution
; ® Blade vibratory pressure magnitude and frequency
f e Blade steady strain distribution
% ® Blade vibratory strain magnitude and frequency.

A series of tests in water are planned, and test data will be cor-
related with computer program predictions.
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1. VANE KYDRODYNAMIC LOADING UNDER CAVITATING AND NONCAVITATING CONDITIONS

o REPRODUCIBILITY OF THE GRIGINAL PAGE IS POOR "

ANK NOT FILMES:

APPENDIX A
LITERATURE SURVEY

a. Velocity and Pressuce Distributios.

1.

5.

Acostn, A. J,., "An Experimental end Theotetical Investie
gotion of TwosDimensional Centrifugal-Fump lwpeliers,” Trans.
ASME 76, 5, 749 763, July 1954, An experimental end theo-
retical tnvestigastion on a series of twoedimensional cen‘cife
ugalepump fmpeilers has been made in an effort to determin~
the usefulnens of potential theory for the description of
the flow. Computed values ~f thc developed head and pressure
distribution on the vane surfaces are compared with masutv~
meats on twoe, foute, and sixevaned logarithmic spiral
impeilers. The agreement between the observed and predicted
quantities is reasonably good for operating puints whete the
influence of the inlet turn on the internal flow {s least.
The Atscrepancies which occur ot vther flow rates are attrie
buted to resl fluld effects which ave observed (n the im=
peller passeges.

Betz, A., 'On the Calculation of Cascade Plow at Pairly
Crest Distances Betwecn the Blades,” (in German), ZAMM 33,
4, 1132116, April 1953, The singularity mthod for cal-
culating the flow srdund aitfolls in cascade was developed
by the author in 1931, The fundamental fdes of this method
consists in feplacing the sirfoils in cescade efther by
single vortexer ~v by continuous distributions of vortexes.
The flow siound each sitfoi) will then be found by the
superposition of three flows: (1) Tne flow which is not
being disturbed vy the sirfoll in cascade ("mean flow");

(2) the flov which te induced by the atrfoil in questicn
(1) the tlow which is induced by the remsining airfofls.
By application of sources .nd sinke one can sleso take into
consideration the shape (thickness) of the airfoils,

The calculations following this mcthod can generelly be
executed only by a graphical integration. In thia case both
principal tasks « (a) calculation of the shape of the air-
foils, und (b) study of the effect of any existing sirtoils
in cascade = can be solved with any sufficient exsctness.
(See, e.g., A 462, 1952.)

In this paper, the author considers fnfinitely thiu aice
toile in cascade. The third of the above-mentioned flows
ta repreaented by a series development. Only the first term
need be uned when there sre sufficiently great diastances
between the sirfolls in cascade, '+ consideration of :
«wartain distribution of vorticity . ' f) slong the airfoil's
leneth £ {8 rrduced to turning ¢+ -.ts and momente of inertia
of tise ei1stribution of vorticity This wmeans s considerable
abridgment of the calculational wotk, and sufficlent exactness
will be obtained for large distances between the esirfoils in
cascede,

Brown, R. L., end R. G, Trout, "Axially-Symmetric Flow
Bitween Prescribed Surfaces end Pump Inlet Design,” ASME-
Paper 63oANGT-32 for Meeting 3 to 7 March 1963, 5 p. BStudy
to determine actusl velocity distributions between surfaces
of vevolution from experimental dats, snd design of {mpeller
on this basis to ses to what extent performence could be
improved; test data were run on vater at 330,000 ke, and
on air st 180,000 Re: results compsred with potentisl
pattern predicted on basis of nonviscous fluid flow.

Carter, A. D. 8., "Blade Profiles for Axial-Flow Fens,
Pumps, Compressnrs, etc.," Proc. lastn. Mech. Bngrs. (Appl.
Mech.) 175, 15, 775-806, 196). 1In this paper the vasic
factors controliing bladessection performsnce are first
exsmined. It is shown thet substantisl ¢! terences in
performsnce may be expected from profil/« having different
fluld surfece velocity distributions., Thus some distributions
taver o wide working rango while senother may be more suiteble
for very high-speed operation, snd so on. A desived velocity
distribution may be achieved by sppropristely selecting
the various physicsl parameters, such as maximum thickwess,
position of maximuws thickness, position of meximum camber,
ete. which define the blade profile. Thus if s perticulsr
performence in terms of inlet sagle, daflection, Nech number,
and imcidence and Mach svaber renge Lr sprcified, theve will
be a particular blade profile to co the job. Thease conditlons
will have been determined by the oversll desiga consider-
stion., end the verious features which the profile designer
csn then choose to meet thew sve fully discussed in the
second part of the paper.

In the finsl section the reguiremsnts of some illustretive
applications ere discussed., It is showm that, om the desis
of the esrlier parts of this paper, certein wpplicstions
denand significantly different blade profiles. Bvidenc: ts
given that substaatis! gains have been achieved by us’ag the
sppropriste blade profile for some duties, from which it is
concluded that proper sttemtion to the se rction of profiles
for all duttes sust lead to sn sli-round improvemest i. the
pesiornsace of these mschines.

Costello, G. R,, R, L, Cusmings, and J. T. Simmette, Jv.,
“Detatled Computstionsl Precedure for Desiga of Cascade
Blades vith Prescribed Velecity Distributiors is Cexpressible
Poteatial Flows,” BACA - Report 1060, 1952, 14 p. dlagrs.
charts, tables. BSupersedes MACA = Tech Nete 2281 indened
in Bagineering Index 19351 p 486,

A dotatled stopeby-step computstional cutiine is presentad
for the design of twodimensions] cascade blades hoving »
prescribed velocity dictriburion on the blade is a potestisl
ticw of the ususl compressible fluid. This outliies is bened
on the sssuaption thet the msgaitude c¢f the velesity in the
flow of the usual cempressible sowvisceus f)uié i propers
tional te the megaitude of the velocity in the Urv of o
conpressible asnviscous fisid with linesr per ..vr velow
relation. The computstionsl precedure inclw 75 several weys

&2

1.

of adjusting the prescribed velocity to satisfy restrictivne
imposed by the method. Tables of coefficienis are given tor
evaluating the necessary integrals, includirg the determina-
tion of the harm.nic conjugste function. Wumerical examples
sre included,

Durand, ¥.f., "Flow Through & Lattice Composed of Air
Toils," p 9196, Aerodynmmic Theory, Volume 11 (Generasl
Mrodynamical Theory - Perfect Fluids by T. voi. Karman
ond J. M. Burgers. Tirst Bdition, 1963,) An exact solution
is presented for the two-dimensionsl tlow field through
e lattice of flat, straight airfoils using conformsl mepping
techniques with use of a génerslisetion of the Joukowski
transformation. Treatment for both staggered and nonstaggered
flat (uncembered) sirfoils 1s given. Extension of the theory
to include sirfoile of various camber and thickness can be
aede, (Bee United Alrcraft Resesrch Depertment Report
R<23010-12, Feb 23, 1933,).

Richenberger, H.P., "Secondsry Flow Within 2 Bend,"
J. Math, Phys, 32, 1, 34-42, Apr 1933. The paper presents
a theoretical solution end . ‘wpsrison with experiment for
the secondary flow within s bend of & tube with rectangular
cross section, The theoty neglects viscosity end compressi-
bility and utilises linearigzed equotions of motion for the
secondary flow. The equations sre sclved for the initisl
conditions of constent stegnetion pressure in the rodisl
divection end linesr decresse from the center to the upper
and lower walls, The rheoreticsl resul:s agree well with
experiments at the 30° station of an B-in. x 8-in. square
tube with o 90° berd of mean rodius 28 in, The agreement
1s, huwever, only slightly bctter then it {s for the
simplified theory of Squire end VWincer which sssumes two-
dimensionsl flow end .eglects chanyes {1 the direction of
tncressing bend sngle, It is concluded that, for canes the
seme 89 or less severe then thet investigsted, the simplified
theory is sdequate for corrections to th: flow in the blede
passages of & compressor,

Rllis, 6.0,, and J,D, Stenitz, "Two-Diiensionsl Com-
pressible Flow in Centrifugal Compressor With Logsrithmic-
Spiral Blades,” NACA TN 2255, 46 pp., Jan. 1931, Authors
apply methode previously developed by the second suthor
to inventigate flow in & compressor where the center line
of the flow pesssges lies in a right rircular cone, the
axis of which is coincident with the axis of *he compressor.

The quantitetive results, obtained by relexstion-method
techniques, indicete thet » reduction in eddy flov mey be
sttained with backwerd or forward cutved blades as com-
parod to redisl dlades. The suggest..n of improved adisdbm .
efficiency followe immediastely. Indicated constancy of
static pressure rotio between straight end curved blades
suggest that the diffuser problem §s less critical with
backwera irved bledes,

Mot intended for estsdblishing design criteris, the
computed results cle~r - indicate the desire*ility of
experimentel investi, - ons upon which design criteris
may be based,

Fonti, R., "Elewmentsry Incompressible Solution for the
Performence of Afirfoils of Arbitrery Shepe in en Arbitrary
Cascade,” United Atrcraft Corporation Resesrch Depsrtment,
Report R-23010-12, Feb 23, 1933, A solution for the
incompressible, two-dimensional pressure distribution on
sn erbitrary sirfoll in cescede {s derived using s combine-
tion of the conformel transformstica snd singulerity wmethods,
The conformsl mapping technique is used to trensform the
flow about & circiv in one plene into a lattice of staggered
flat-plate airfoils in another plane. Source and sink
potentials sre thea distributed along the surfaces of the
flat~plate sirfoils to produce the contribution of velocity
potential resulting ‘from sirfoil thickness and shepe. The
solution is presented in the fomm of en integral equition,
which is eesily solved by iterstiwe procedurs, snd i{»
roepidly convergent.

Gruber, J., "Design of Dlede Profiles for Anisl-Tiow
Turbomachines,” (in Cerman), Mes hinenbeu-Techaik 2, $,
209-217, May 1933. A sieelification of Theodorsen's
“Theory of Wing Sections « f Arbitrery Shape” (NACA TR 411)
has been presented by Thweites (Acro, Res. Counc. Rep.
Mem, nos, 2166, 2167), Present paper simplifies Thwaites'
method, perticularly as to calculetion of effect of blade
curveture, Simplified method con de used for celculetion
of velo. ' ond pressure distribution around relstively
thin, .' .ghtly curved blades of -Thitrary section, and
for cr-verse problea. Paper includes nseful review of
fundsmentsl theory.

Nargest, T.J., “The Theeraticel Prese:rr Distributien
Around Some Coaventionsl Turbine Bledes 1n Cescede,”

Aeve. %es, Counc. Lond. Rep. Mem. 27635, 10 pp., Mer. 1950,
published 1933, This report presents campsrstivwe resvlts
botweon theereticel pressure distridbutions sround o specifiv
sories of turbine blades in cascade srranpement ond the
ohserved serodynamic perfowmance of blades cf the save
shape os tested in the No. 3 high-speed coscade tunmel of
the Netionsl Gas Turbime Bstoblishment.

The theereticel pressure distributions svound the
Slades were detevmined ower the renpe of incidence covered
in the sevodynmic tests by meons of Relf's snalegy between
sevedynamic streamline {low ond electric potentisl flew,

It (s shows that these theoraticsl preseure distributions
ond theiv variation vith incidencs con exploin the cervre-
ponding cescade test rosults ond con form » besis of
seaevel cemporisen of the turbine cascedes.
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Johnsen, 1.A,, sad A, Cinshbury. “Seme NaCA Resesteh
o Contrifugel Compressora,” Trams. ARG 73, &, 003814,
July 1933, Paper represents effort te reploce seme of the
“srt” of centrifugsl cempresser design with s better under-
stonding of the flow precesses taking place. It summarises
some of the results ohtained in the NACA theoreticsl and
experiments]l research program on centrifugal compressors,
Tivst section deals with fupeller ressarch, discussing the
inducer function ond the impeller functioca. These were
investigated and snalyzed sepsrately 88 much as pessidle,
and the effect of configuration en performsnce noted.
Second section desls with vensleoss dfffuser reseorch.
furpase of paper {s to estsblish gemersl trends of geed
design practice rather then to establish specific rules.

Eramer, 1.J,, 8.0, Stockasn, sod R.J. Boemm, “Incom-
pressible Moaviscous Blade-to-Blade Flow Through s Pump
Sotor With Splicter Venes, ™ HASA TH D-1186, M1 pp.,

Apr. 1962, Report describes an spplicetion of sn estebd-
1ished method of anslysis (Kremer, Trans, ASME 80, 1,
236-273, Jen. 1958) to the study of the faviseid flow fn

o mined fiow pump impeller in which splitter vanes ave
ploced betueen the mai . vanes. Differeatisl equation for
the 'blade-to-blade” streem function is solved numericeally.

Colculations indicete:

(i) flow upstrem of lesding edge of splitter vanes
is litele affected by their presence,

(11) slip faccor and hesd rise are incressed by in-

serting splitter venes.

Muthors report that celculaticns sre very aensitive to
assuned pocition for vesr stagaation poiant, sad suggest
that this aight be determined from experiment. Reviewer
sugptats .reiling edges of blades might have been made
wuch thiomer, both for purposes of calculation end in
prectice,

Lekshminsrayana, 3. and J.%, Worlock, “Review: Second-
ary Tlows snd 1osres in Cascedes end Axiel-Flow Turbo-
nachines,™ Intern. . J. Mech. Sci. S, 3, 287-107, July 1963,
Very useful veview of secondsry flow end losses, « .h
extensive bibliography (12f items). Cemparisons are given
of various theoreticsl relationships snd of experimental
dota vhere possible, together with vecowmended expressions
fa light of existing knowledge. Wesrly all approaches sre
velid anly for { presaible, faviecid flow; hors
vecommend attention to campressibility, rotetionsl effects,
radis]l flow snd {ntersction of leskage with cascade
secondery flew.

Lefst, K., “Experimeatesl Ar for Me
of Pressuvre Distribution on Migh-Speed Rotating Blade
Rows,” Am Sec Mech Engrs - Treas v 79 n 3 Apr 1957 p 617-26,
lc- research staff of .nnuuu for Turbomachines of

Technical tai 1ity, G » carried out measure-
ments on rotatiang turbine bleding: pmr- is part of
comprehensive »ffort déi < 1 fgation of 3-

dimtusions] flew through sxisl flow turbomachinet.
Poper 56-CIP-1).

Linharde, W.D. end A.J. Acoste, "Note on Applicetion
of Cescede Theory to Design of Axisl-Flov Pumps,” ASIE-
Paper $2-WA-222 for meecing Mov 25-30 1962 4 ». Theoreticsl
snd experimeats]l resulcs sre presented wb . . ssure use-
fuloess of 2-diasnsionsi cascede theories < '+ ga of
exisl flow pumps; it is necesssry to imcluc: ¢ ect of
blade thickness upon impelier flew, fouand to be responsidle
for reported discrepsacies between predictions of thin
sirfoil theories and performance of axisl flow pumps
chatectetrized by high stegger sagle swd low aspect vetio.

HecCregor, C.A., "Two Dimensionsl Losses in Tnrdine
Rlades,” J Aevoasuticel Sciemces, v 19 a 6 June 452
p A0A-8. Tests on three typicsl dlades tn 2-diuensionsl
costode tunnel were Tun ot verying sngles of sttack,
stegger angle, solidity. and dewnstresm survey stations at
Mach Wumber of sbour U.4 sud Reymolds Mumber of 6.5 x 105;
static pressure distribution shbout blede was measured by
27 stetic pressure taps; vske dehind dlede row wvas surveyed
snd loss &\ _cruined.

Marble, F.R. ond 1. Michelson, "Analyticel Investigetion
of Sone Three-Dimensional Flow Problems {n Turbemschines,”
KACA TH 2614, 109 pp., Mor. 1952. Poper collects further
wseful contridutions to linear theéry of axislly symmetricel
flow of incempressidle, inviscid fluid fn sxisl-flow turbo-
sachines (sec slso, Nerble, AR 1, Rev. 1400). Limesriss-
tion mesns that redisl velecicy and devistion of axiel
velocity from mesn through-flew velocity sre considered
small, snd sre celculeted to first-order spproxiasm.ion.
Mmially sysmetrical solution (infinite nueber of blades)
provides covrections accounting for most of three-dimen-~
sional effects neglected by cascede theory, especially for
1ow pitch-chord rstics.

Theory distinguishes three (sdditive) components of
flow, viz., (1) uniform through-fiow, (2) radisl equilibrium
solutim, correct for wpstrem sud! downstreem of the dlade
row, (3) [ise-structure sccavating for reiial acceleretion,
Tables of on tnfluence function, for hub tetio 0.6, perwit
repid evalustion of fine structure by punch-cord method;
two numerical exemples are given.

A simple, sctustor-disk spprowimstion to yine-structure
solution is epplied, with a numerical example in esch cose,
to the discussion of (1) transients in the first few stages
of a multistage machine, (2) fluctustions of the axial
wvelocity distribution within the deeply embedded stages
(ue sleo Wu and Wolfenstein, AR &, Rev, 1316), (3) pere

s in tta o 4 on the udtun snd on the aspect
ratio, of o ua.lo-tldo row with prescride. distribution
of flow sagle at treiling edge; (L) off-design performance
of o blade rov. In addition to theiv immediste interest,
the exemples provide » useful introduction to how theareticsl
koowledge of the fine-structure solution can be esployed to
cbtain simple, approximate snewers to practicsl questioms,

A modified Linear theory 1o proposed for the cese of »
through-flow velocity verying with the radius, The linesrized
solution is aslso given for s machine such thet hud and cesing
are comxial cones with common vertex.

Morelli, D.A. and R.D. Bowerman, “Pressuve Distributions
on the Blade of Axial-Flow Propeller Pump," Trans. ARME-7S,
&, 1007-1012, Aug. 1933, 1In the design of screw propeliers,
the demsnd for uniform energy imput st o1l radif fs setis-
fied by & blade circulation consteat over the radius.

With the suthors® sdditionsl sssumption of limesr fncrease
of circulation stvength in sxial divection, an spproximstive
formuls is given for the disturbance velocities fa the blade
spece dependent on radius snd distance from the blade's
leading edge; they effect 8 curvsture of the free stream-~
lines vhich requite » curvature of the blade profile com-
puted according to afrfoil theory.

Using this formula o propeller pump has been designed;
its pressure distribution hes been fnvestigsted by means
of a rotating manometer under various working conditions.
The measurements spproximstely agree with potential-
theoretical pressure distributions, In design condition,
the energy supply proves to be reslly uniform over the
radius; heredy, the practical use of this design method
is showm.

Obs, K. ,"Linesrized Theory of Supercavitating Flow
Through an Ardbitrary Form Hydrofoil,” (in English),
ZAt AL, 9, 354-363, Sept. 1961. Faster snd more power-
ful hydraulic mechines result in cavitstion problems such
as drop in efficiency, damage due to erosion snd vibra-
tion and noise. Author suggests that supercavitsting
hydrofoil such as Tulin hydrofofl be used. Problem is
treated in two dimersions. A liancarized theory is preseated
{ncluding () method to estimate hydrofoil form for given
pressure distribution and (b) method to estimste character-
istics of v,dvofo:l form. Numerical examples of hydrofoil
computastion are ilso presented,

Seidel, B.S., “Asymmetric Inlet Flow in Axisl Turbo-
sachines,” Trams. ASME 86 A (J. Engng. Power) 1, 18-28,
Joa. 1964, Paper improves on the prediction of the
attenustion of s distorted flow spproaching blade rows
in sxisl turbomachinery. The previous snalvsis of Remaie
snd Msrble (AR 12 (1959), Rev. 5708) snd Ehrich (J. Aevo.
Sci. 24, 6, 413417, Jume 1957) utilized the sctuator-
disk spprosch together with a blade force-flow engle rela-
tionship which wes assumed to be the smme as the uniform
flow csse, The fsl, new fe of Seidel's paper
is an improved blade force determinstion which accounts
for the divect effect of the flow distortion,

This paper slso includes s rather nice comparison of
theory and dats.

Saich, L.R., Jr., S.C. Traugott, sad C.F. Wislicenus,
“A Practicel Solution of o Three-Dimensional Flow Problem
of Axisl-Flow Turbomschinery,” Trans. ASME 75, 5, 789-799,
July 1933. Paper presents methods of determining the
meridional flow pattern through turbomschines when there
are scrong departures from free vottex flow, srising from
endeavor to degign compressors snd turbides for maximum
head and flow, subject to Mech number !imitstions.

Frictionless flow on infinite r - - of venes, snd
sxnisl sysmetry are as :med, though a. 3 themselves
sdmit "that there f{s no known physical resson why this
sssumption should be considered ss sufficiently accurate
to describe the flow through sctusl vane systems of finite
veoe spaciag.”

Methods of computetion are descrided snd results given
of two worked exsmples, reference being made to N.S, theses
by two of the suthors for full details.

Stenice, J.D., "Some Theoretical Asrodynsmic Investige-
tions of Impellers in Redisl- sud Mixed-Flow Centrifugsl
Compressore,” ASME Ges Turb, Power Fall Meeting,
Minnespolis, Sepc. 1951. Psper 51-F-13, 25 pp. - Trans.
ASMR 74, 4, 473497, Nay 1952, Paper presents mmericsl
vesults of relaxation solutiens of flow of idesl fluid
through & centrifugal impeller. Theory snd results are
given in dimensionless form. Two types of prodblems are
treated: (1) Axi.l symsecry solutions in which blede forces
ore replaced by distridbuted body torces; (2) blede-to-
blade solutions giving circumferentisl varfation of pres-
sure ond welocity between blades.

Equstions for flow with axtal sysmetry are given for
cempressible fluids, dut the two solutions presented arve
for incompressible flow theeugh en srbitrery impeller
profile with redisl vanes, wirh and without inducer vanes.
Sesults show thet the ferm of stresmlines in seridien
section is little affrcted by presence of inducer venes.
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Blade-to-blede solutiens sre given for redisl-flow
impellers with constent flow srea end with redisl or log
spirsl blades, for compressible fluids in seven cases, and
for incompressible fluids in one cese, so that influence of
chonge of impellev-tip Moch number, flow coeffictent,
sngular blade spacing, blade sngle and compressibility may
be studied. Plots of streamlines, relstive Mach numbers,
snd static pressure vatios sllow essy gquslitative com-
pavison of different cases.

Author also yresents simplified approximate methods of
estinmating velocity distridbutions along driving and trailing
faces of blades and compares their accuracy with the relaxs-
tion solutions. MNe discusses gqualitatively the influeace
of viscosity and boundary-layer development as affected by
the frfccionless flow pattern, and concludes thet future
centrifugal compressor development may lesd to mined-flow
impellers with backvard curved blades. Ne does not suggest,
however, uow the mechanical difficulties involved in pro-
ducing a high-speed impeller of this type may be overcome.

The paper must be regarded as a valuable contribution
to the litersture on this difficult subject.

24, Stockmsn, N.O., snd J.L, Kramer, 'Method for Design of
Pmp lapellers Using a High Speed Digitsl Computer,” NASA
TH D-13562, 1963, Centrifugal pumps sre being considered
t1r space spplications in chemical and nuclear-rocket engines
using cryogenic fluids end in paver-coaversion systems using
1iquid metals. For these spplicstiens, the pumps should be
of minimum size and weight, should have high efficiency,
and should operste cavitation-free ovr with comtrolled
cevitation at high rotstive speeds. A knowledge snd control
of the {aternal flow sre necessary to meet these requirements.

The hub-shroud design sethod presented herein (vith optionsl

blede-surface computations) iz & vepid and easy-to-use wethod.
It ensblea the designer to proceed from a kaocwn stresmline sad
fts velocity distridbution to sn adjscent stresmline and fts
welocity distridbution, Thus, given the conditions slong the
hub, the entive hub-shroud profile {s built up by proceeding
fram the hub stresmline to the mext streamline, snd so on,
until the shroud is resched.

5. Woods, L.C., D. Phil, and A. Thom, "A New Relaxationsl
Treatment of the Compressible Two-Dimensicnal Flow About
sn Aerofoil With Circulstion,” Aero, Res, Counc. Lond,
Rep. Mem. 2727, 17 pp., Mor. 1950, pudlisted 1953. The
two-dimensional incompressible asd compressidle flow over
& profile is computed by velasxation in & grid with potentisl
and stream functions as independent varisbles. Thus the
profile sppeors os o straight lime, Circulation is chosen
in advence; sogle of sttack is found st the end of the
camputations. Boundary conditions at the profile are tsken
fato by tve spproximstions. Kanown circuls-
tion is used to formulate sn sppreximste bcundery conditiom
st the ocuter edge of the relsxstion field, Treatment of
stegnetion region fs discussed fa AR 6, Rev. 1210,
Comperison of theoreticel and experimental results is
carried out for profile MACA 16,

6. Wu, C.H., C.A, Brown, and V.D, Prisn, "An Approximate
Method of Determiring the Subsonic Flow fin an Arbitrary
Stream Filament of Rewolution Cut by Arbitrary Turbo-
mechine Blades,” NACA TN 2702, &6 pp., June 19352, A
method is presented to obtain » relatively quick approximate
determination of the detsiled subsonic flow of a noaviscous
fluid past arbitrary turbomechiane blades. The method is
{1llustrated with examples of compressidle flow ia & turbine
cascede snd in @ centrifugal compressor. For these high-
selidity blades, three terms of the Taylor series ste found
to give sufficieat accurscy. Safficient coanvergence is
obtained in the turbine csscade sfter two cycles uf compute-
tion snd in the ceatrifugsl cempressor after four cycles of
computation. The detsiled flow variastion obtained compares
very well with an sveilable numericsl solution snd experi-
mentsl data for the turbine cescede, snd vith detasiled
experiments]l measurements for the centrifugal compressor.

b. Cavitation (Iwo-Phase Flow) - Theoretical

i. Cooper, P., "Application of Pressure sad Velocity
Criceria to Design of Centrifugal-Pump Impalier +nd Inlec,”
ASME - Paper 63-ANGT-58 for meeting Msr 3-7 1963 12 p.
Centrifugal pump tmpeller snd inlet designed by use of
criteris for distributions of pressure and velocity that
lead to satisfactory performsace at low net positive suction
heads; calculstions mede for nouviscous, single-phase (liquid)
flow with viev toward miniwizing bubble formstiom: tests
run under cavitsting snd single-phase flow conditions;
results show that design sethod leads to good suction
performance.

2. Cooper, P. and H. 3. Nosch, "Mree-Dimensional Analysis of
Inducer Pluid Flow,” “ CR-54836, Ped 11, 1966. Analytical

diss were d: 2 to provide masns for improving the
design of inducers for htﬁ-w high-flow rocket engine pumps.
Bmct and approxi are p d for obtaiaing three-

dimensionsl solutions to Ntbc-nhm flows with losses and
vaporisation, and resuits are presented for two sample inducers.
The emsct sethod solves four noulinear differential eguations

of sotfon simultanecusly by fimite-difference snd relazaction
tachniques that employ a "total fdual™ The 1
sate method anploys & finite difference solution of the bdasic
flov equations fa two dimeasions snd then superimposes aa sasumed
solction ia the third dimeasion, resulting i &n approximate
three~dimensions]l solution. Coaclusions on inducer performsace
and design are made on the basis of several approximate solutions
of both incempressible sad two-phase flows, together with anslysis
of fluid thermal snd scanle effects, JFortrea IV listings of the
sonlysis P prog ate p 4.

3

4.

3.

6.

1.

9.

10.

i1,

Coldman, K., R, Mankel, snd R, P. Stein, "Bquation for
Critical Mass Velocity of Nomogeneous Vapor Liquid Mixtures
at Low Prassures,"” ARME - Paper 84-AMM-12 for mseting June
9e11 1964 3 p; sre also AR =~ Trans J Applied Mechanics v 31
n 3 Sept 1904 p I80-2. Bquutions have been developed expressing
critical mass vulocuy and {sentropic expansion coefticient
of single vaporeliquid mixtures at
fow 'l‘.llul.l in nr- of tadbulated thersodynanic properties;
two-phase flov relations are analogous to relations governing
flov of single-phase compressibdle fluids, most readily
formslated in terms of Msch numbers.

Jacobs, R. B., "Prediction of Symptoms of Cavitation,"
US Bur Standards - J Resesrch - fag & lastrumentation v 635C
n 3 July-Sept 1961 p 147-36. Analysis of some bdasic problems
in cavitation snd which may permit prediction of cavitstion
characteristics of hydraulic equipment; applicstioa to
puaps; practical vesults compared with theory; it s concluded
that analysis say be applicable to prediction of symptoms of
cavitation but that more inforastion relsted to mstastability,
nuclestion, sud vapor phase dynmsaics {s required.

Jakobsen, J. K., “Ou Mechanism of Head Breakdowa in
Cavitating Inducers,” ASHE - Paper 63-ANGT-29 for meeting
Mar =7 1963 15 p. Mechsnism, as affected by thermodymanmic
properties of turbopump fluid and scale effects, is discussed;
approach taken by other favestigetors and limitations to
cavitation scaling in relation to experimental data;
hypothesis introduced relates head breakdown process to
acoustic shock phenomenon st point of leading-edge blade
cavity collapse; integrated wodel for cavitating cascade
blade is developed to correlate potential flow cavity
cascade model vwith influsnce of thermodynsmic properties,
thermostatic spprosch, and application of bubble dynamic
studies to understand Zv suction performsnce is limited by
inlet prtessure; pertinence to propellant pumps.

Jakobsen, J. K., “Supercavitating Cascade Flow Analysis,”
Trans ASME, J1 of Basic Engineering, Dec, 1964, p. 805-814.
An exact mactheaatical theory of supercavitating flow in
cascades vwith arbitvary blade shapes is developed. Apply-
ing conformal mapping methods to the potentisl flow problem
wnvolved, a general mepping procedure is established. The
geometric interpretation of the obtained mappings is di d
in genersl and completed in the case of the flat-plate cascade,
All results assume infinitely long cavities. The ,plication
of the established mapping procedure to the case of a cascade
with arbitrary blade shape requires the solution of a non-
linear incegral equation for oue of the mapping functions, or
the approximstion of this mepping fuaction by a Fourier
series whose coefficients must be determined from implicit
conditions imposed by the blade shape.

Levi., W. P., "Design of Centrifugal Pump Impellers for
Optimsm Cavitation Performsnce,” Instan Eagrs. Australia -
Elez & Mech Eng Trans v D6 o 2 Nov 1966 p 67-74. Examtaation
of fnfluence of velocity distributions in flow entering
inpeller to establish design procedure for flows with and
without prerotstion. 29 refs.

Ssck, L. E., and B, B. Nottage, “System Oscillations
Associated With Cavitating Inducers,” ASME-Paper 65-FE-14
for meeting June 7-9 1965 8 p. Msture and i{nception of
pressure and flow-rate oscillations associated with high-
speed cavitating inducer employed to extend suction performance
capabilities of high-speed, high-flow pusps were investigsted
by noalioear snalog computer simulation; favorable accord
between simulation findings and typical actual dynssic
oscillation characteristics validates general techaique
for fon fato ifadv design anslyses; it was found
that nature sad behavior of cavitatiom vapor volume and
dynamic response chsracteristics of complete fluid circuit
play key roles in in .deace and suppression of oscillations.

Spraker, W. A., "Effects of Fluid Properties on Cavi-
tatton in Centrifugal Pumps,” ASHE - Paper 64-WA/FE-14 for
weeting Nov 29« Dec 3 1964 10 p. see also ASHE - Trans -~ J
Eng for Power v 87 u 3 July 1965 p 309-18. Analytical model
of cavitation nrocess in pump is developed sssuming that
flow i3 adiebatic, frictionless, steady, and firrotstional;
relationship is developed relating volume percentage of
fluid veporized during cavitation process to therwsl
cavitation parameter; experimental and aralyticel sethods
for determining cavitation characteristics of pumps handling
petroleum-based hydrocarbon mixtures sre described; cavitation
data for two pipe-line pumps handling gasoline, fuel ofl,
and crude oil sre presented.

Starkman, E. 8., V. E, Shrock, K. F. Neusen, and D. J.
Manesly, "Expesusir 1 of Very Low Quality Two-Phase Fluid
Threugh Convergent-Divergent Nozzle,” ASME - Paper 63-ANGT-
4 for meetiog Mzr 3=7 1963 8 p. Plow {n de Laval nozzles
of h=p stesm vater mixtures was fnvestigated to detersine
mass flow rates and design criterfia; qualities ranged frca
0 to 202 and pressures up to 1000 peis; comparisoans of
data to isentropic expensioa, lrom composition, and siip
flow saowed satisfsctory cor pt for qualities
very close to satursted liquid; “condition similar to shock
resulted vhen noxzles were overexpanded; pertisence to very
high heat flux heat power devices, e.g., ouclesr reactors,
with applicatiocns in nucleate boiiing region.

Stepamoff, A. J., "Cavitation Properties of Liquids,”
ASHR - Paper 63-ANGT-22 for weeting Mar 3-7 1963 5 p. Method
of representing thermsl properties of liquids ts offered
such that cavitation hhulor of cmrﬂml pumps hawdling
say liquid molten 'mtal, Ry tcs can be
atcurately evalusted; there are u!!tetu.e teat dats to
fllustrate use of method.
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Stepanoff, A. J., and K. A. Stahl, "Cavitation Criterion
for Dissinilar Centrifugal Pumps,” ASME - Paper 61-WA-139 for
mseting Nov 26«Dec 1 1961 S p. Method of expressing net
positive suction head for centrifugal pumps in terms of
impeller design elemsnts as they appear tn inlet velocity
triangle; procedure is applicadle to pumps of different
specific speeds, of different suction specific speeds, and
to pumps having tepellers of either overhung type or with
shaft through eye.

Stripling, L. B., and A. J. Acosta, 'Cuvitstion in
Turbopumps ,' ASME - Papers 61-WA-112 1) p, 61-WA-98 11 p for
msating Nov 26+Dec 1 1961, Paper WA=112 (Pt, 1). Severs!
simplified free stresmline models suitable for flow through
taducer discussed. Paper WA-98 (Pt. 2). Results are com-
pared vith tests on actual inducers; relevance to develop-
ment of light weight turbomschine components for liquid
rocket propulsion systems.

Wang, ¥. L., and P, A, Longwell, 'Laminar Floweln Inle .
Section of Parallel Plates,” A I.Ch.E. J v 10 n 3 May 1964
p 323-9. Numerical solutions of exact momentum equations for
steady isothermsl laminar flow of incompressible Newtonian
fluid in inlet section of parallel plates; velocity distribue
tions, pressure gradieats, and overall pressurs drop for
two cases at Re 300; it was verified that usual boundary-
layer assumptions are not valid near leading edge.

Warner, C. F., and D. W, Netzer, ‘“Investigation of Flow
Charscteristics in Converging-Diverging Nozzles," ASME - Paper
63-WA-192 for meeting Nov 17-22 1963 9 p. Anslytical wmethod
ased on l-dimensional model {8 presented for determining
flow characteristics of 2-phase flow of liquid drops in gas
stream expanding through converging-diverging nozzle;
anslysis can be utilized to predict ligquid velocity, ges
velocity, static pressure, and droplet dismeter as fumction
of anrisl distance along nozzle axis for flows contafning
approximately 10 times as much liquid as gas by weight.

W, T. Y. and D, P, Wang, "An Approximete Numerical
Scheme for the Theory of Cavity Flows Par Obstacles of
Arbitrary Profile,” Trans. ASME, J1 of Ba:zic Engineering,
Sept=1964, p 556-560. Previously one of the authors has
developed an exact theory for the cavity flow past an
obstacle of arbitraery profile at an arbitrary cavitation
nusber by sdopting a free-streamline wske model. In the
present paper the authors imtroduce an approximate numerical
wethod for the computation of the dual functional equations
which result from the theory. The new method is shown to
provide a drastic s.wplification to the compuiations while
meintaining a high degree of accuracy of the rumerical re-
sult.

tation (Iwo-Phase Flow) - Experimental

"Facilities ond Techniques EZmployed at Lewis Research
Center n Experimentsl Investigations of Cavitation in
Pumps ,” ASME - Syaposium on Cavitstion Research Facilities
and Techniques, May 18-20 1964, p 60-76. Study of cavits-
tion as it occurs in pumping of high-energy propellants
(cryogenic liquids) used in chemical and nuclear rocket
engines and slkali wmetsls used in space-electric-power
generation systems; paper lists and descridbes facilities
snd techniques utilized to supply experimental input to
program studies; test fluids include water, cryogenic
liquids, snd alkeli metals.

Grindell, A.G., "Correlation of Cavitation Inception
Data for Centrifugsl Pump Opersting in Weter snd in
Sodium-Potsssium Alloy (Wek),” ASME-Trens-J Basic Eng
v 82 Ser D n 4 Dec 1960 p 821-8. Stetic heed st pump
suction st time of cevitetion inception was correlated
for water and for 1500 F Mok on bssis of differences
of vapor pressures of iwo liquids; difference between
vapor pressures, for same conditions of pump speed and
liquid flow, wes sdded to weter test cavitation inception
value; this proved to be good approximstion to experimentel
value found for cevitstion inception with NeK. Peper 59-A-156.

Hertmsna, M.J. and R.F. Soltis, "Observation of
Cavitation in Low Bub-Tip Retio Axisl-Flow Pump," ASME-
Paper 60-HYD-14 for meeting Mer 6-9 1960, 12p. Csvitstion
formations in pump rotor are examined in sttempt to deter-
mine important characteristics of flow model which mey
be used to indicste effects of covitstion; dets were ob-
toined st Lewis Water Tuonel at WASA Lewis Research Cenmter;
besides instrumert surveys, high speed photographs were
taken, for which latter purpose upper half of pump cesing
is of plastic.

Horie, C, snd M, Oshims, "Experimentsl Stuly on Cavite-
tion in Mixed Flow Pump Impellers,” Jspan Soc Mech Engrs -
Bl v 7, n 25 Peb 1964, p. 62-70, Series of experimentsl
studies of cevitation chsracteristics of mixed flow pump
impellers wes performed; report clarifies mainly how cavite-
tion inception and perf: decrense are influenced by
number of venes and shape of vene inlet edge; it wes slso
found thet certsin smount of flow deviation must be teken
into in d inetion of vene inlet angles.

Jekat, W.K., "Reynolds Number snd Incidence-Angle
Etfects on Inducer Cavitation," ASME-Paper WA/¥E-31 for
meeting Nov 7, -Bec 1 1966, 9 p. Tests of vericus hudless
inducers in water show that suction specific speed increases
with Reynolde oumber snd fncidence sngle; snalysis s pre-
seuted which reduces this cbservation to Reynolds mumber-
dependency and ospproximste incidence-independency of newly
defined “vane coefficient;” relatior (s ave gemersl snd
apply to other iaducer types snd norwmsl pump impellers.

22 vefs.
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Langteau, R.R, and E.R, Dodge, 'Cavitstion in Impeller-
Looking from Inside Out," ASME-Pyper 63-ANGT-30 for meeting
Mar 3-7 1963 12 p. Low specific speed, doudle suction
centrifugsl pume wes modified by splitting casing ead
impeller in half and incorporsting transpavent inserts snd
housings to permit visual observations of flow; “half pump®
was opersted in veter test facility at prototype design
heads with both Francis end vadisl-vaned inlet tmpeller
design; photographic records of cavitsting and noncavitating
conditions al various points slong pump characteristic are
correlated vith vericus performance parsmeters.

Niller, M.J., J,B. Crouse, and D.E, Sandercock,
"Summary of Experimentsl Investigstion of Three Axisl-Flow
Pump Rotors Tested in Water," ASME-Paper 66-WA/FE-24 for
sseting Nov 27-Dec 1 1966, 11 p. Three rotors located
immediataly downstresm of pump inducer were tested to
study fiow and performance scroas losded axisl-flow blade
rows; krincipsl design parameters varied were flow co-
efficient, blade loading parsmeter at tip, and Mubetip
radics retio; overall and blade element performences under
noncavitsting flow conditions sre discussed; comparisons
between measuted, three-dimensionsl design perameters and
those computed from two-dimensionsl cascede correlations;
performance obtsined during operation of rotors in unstable
flow and ~avitsting flow conditions.

Se'emann, V., 'Vhat Engineers Should Know About
vavitation and NPSH," Pipe Line Industry v 15 n 1 July 1961
p 55-61. Relstionship between pump suction cheracteristics
and fluid properties has been obtained; sstisfactory per~
formancs of pumps on hydrocarbdons with less net posicive
suction head sveilsble than required by cold water was
studied; dats collected and theory developed sim st sccurate
prediction of pump suction requirements for all liquids, om
basis of cold water requiremen.s; causes of cavitetion;
test stand, instrumentetion, results, and benefits of
investigation.

Soltis, R. F., D. A. Anderson, and D. M. Sandercock,
“Investigation of the Performance of & 78° Flat-Plate Helical
Inducer,” NASA TND-1170, 1962. The coupling of a cavitating
inducer vith & pump, in order to realize the advantages
of higher machanical speeds, has found wide use in missile
applications. An effective and quite easily fabricated blade
shape employed in the inducer has been the flat-plate helix.
This report presents the ed perf ¢ of an ind
of this type. The rotor, 5 inches in diameter, consisted of
three blades with a hub-tip ratioc of 0.5 and a helix angle
of 78 degrees at the tip. All tests were made in water.

Performence results over a range of flows are presented
at both cavitating and noncavitating conditions. This includes
both the overall performance and radial distributions of flow
conditions and selected blade-element performsnce parsmeters.

In addition, photographs that visually describe flow conditions
at various modes of operation are presented. A comparison of
the measured axisl velocity distributions with those computed
assuming simple radial equilibrium provides & check on the
validity of the radial equilibrium assuaption.

Wood, G.M., "Visusl Cavitation Studies of Mixed Flow
Punp Impellers,” Trans. ASME 85 D (J. Bssic Engng.) 1,
17-28, Mar. 1963. Three mixed impellers (d:sign persmeters;
3800, 4920, 8500 rpm, 1760, 1545, 1245 gpm; 287, 235, 245 ft)
have been tested in » closed water loop. Auther compares
cavitation curves st three test points ot rpa 1900, 2460,
4250 with the high-speed photogrephic records. He concludes
that covitation cccurs for sll impellers st higher velues
of KPSE then those sssocisted with & drop in the head rise.
Cavitation in vene chanmels is cyclic, wherees cavitetion
nesr the vene lesding edges wes more stsble,

In suthor's opinion, the mean static pressure gradient
is a prime varishble in the determinstion of cavitation per-
formence charscteristics. 3Some dats on vaoe chsnnel cavite-
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Wood, G.M., J.S. Murphy, and J. Ferquhar, "Experimental
Study of Cevitastion fn Mixed Flow Pump Impeller,” ASME~
Trans-J Besic Eng v 82 Ser D n 4 Dec 1960 P 929-40.
Hydraulic performance of {mpeller design tested with 6, S,
and & vanes in closed water loop; 2 idealized flow mcdels
for incipient cavitation were derived to illustrete limits
nf cavitetion design; both vane blockege and solidity
effects are importent. Paper 60-lHyd-7.

Wright, M.K., "Design Comments sand Experimental Resul:s
for Cavitation-Resistant Inducers up to 40,000 Suction
Specific Speed,” ASME-Paper 61-AHGT-59 for meeting Mar 3-7
1963 8 p. Paper considers genersl geometiic considerstions
of inducer design, cotrelation of dimensionless design
P s, experi sl data ocbteined from 2 wmodels
developed by Bell Acrceystems Co. and suggests seversl
suxilisry meens of sugsenting cavitstion resistance of
{nducer; inducer is axisl flow pump cepable of digesting
large scale fluid vepor formstiens st its inlet without
sericusly sffecting heed generstion.

Yokoysms, S., "Rffect of Profile of Ratrance of
Centrifugsl Pump Impeller on Cavitation,” Jepsn Soc Mech
Engrs-Bul v 5 n 19 Aug 1962 p 485-91, Velocity distribu-
tion just before vene entrsnce edge differs sccording to
ditference of impeller entrance profile; irrespective of
welocity distribution, static pressure diotribution et
point just before venes wes slmoat same for all profiles;
in comparison of cavitation occurrence of profiles desig-
neted A end C, no distiiLztive difference wes observed
except that hesd drop due to cavitetion in large flow rate
renge was swaller for second profile.
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14, Yokoyema, 8., "Rffect of Tip Siape at Entrsnce of [N

Impeller Vane of Centrifugai Pump o Cavitation," Jspen

Soc Mech Engrs=Bul v 3 n 11 Aug 1960 p 326-32. Experi-

ments wete carried out on three different types of tip

shepe; in each case, hesd cepa-ity cune, stetic pres-

sure distribution on surfaces of vanes uesr entrence tips

and modes of cavitation occurrence were wasured; results

indicate that st shockless entry there sz+ more changes of

cavitation for round tip vene then for other type vanes;

for sharp tip vane no cavitation occurs in experiments.

2. VANE STRESSES (STRESSES IN CURVED PLATKS)

a. [Exsct Solutions

1.

Candels, F., "Structural Applications of Myperbolic
Paraboloidal Shells,” J. Amer. Concr. Insgt. 26, 3, 397-415,
Jan, 1933, After a short exposition of the properties
ot the hyperbolic parsboloid, asuthor gives i{n simple form
Pucher‘s general equations of the stress system snalysis.

More especialiy, the varped parsllelogram is atudied,

arising trom consideration of a portion of a hyperbolic

paraboloid limited by four straight generstrix. In gea-

etal, the stress system {s given for the following cases:

(1) snow load; (2) desd load; (3) f11} load. The £,(x),F.(y)

functions relative to the boundary conditions ace to be

deterained in a1l aforevatd cases. The finite-differences

method is recomwended for the more complex solutiom of case 8.
(2).

Some existing examples are showa of constructions in
Mexico City butlt up as sssociations of the warped parallel-
gram,

The possibilities of the use of these shells ia reinforced-
concrete construction makes this work particularly interesting.

Deverall, L. I. and C. J. Thorne, “Bendiag of Thin Ring-
Sector Plates,” J. appl. Mech. 18, &, 359-363, Dec. 1951.
Authors attack the problex by s method they used for rec-
tangular plates in - previou: paper (AMR &, Rev. 3817).
General expressions for the deflection of plates whose
planfora is 8 sector of s circular ring are given for cases
in which the straight edges have srbicrsry but given de-
flection sud bending moment. The solutions are given for
all combinstions of physicslly important edge conditions
on the two circulsr edges. Sectors of civrcular plates asre
included as specisl cases. Soluticns are gt "en for a gemersl
load which is 8 continuous function of r and a sectionally
continwous function of ¢, where r and § ate the ususl polar
coordinates with the pole at the ceater of the rimg. Sev-
eral specific exsaples for angles of the sector 30° and 90°
are givea.

Griffta, D. S., “Stresses and Deflections of Thick,
Curved Plates.” ASME - Paper 6A-WAND-8 for weeting Wov. 29-
Dec. 4 1964 6 p.: See also ASME - Traas - J By . T
Industry v 87 o 3 Aug 1965 p 303-8. Solution is obtained
using linesr theory of elasticity for stresses ir long, 9.
thick, uniformly curved plate due to pressure on curved
sutrfeces and forces or deflections spacified on straight
edges; maxisum stresses ave compared with those obtatlned by
elementary thin besm theory, showing rasoge of spplicabilicy
ot simpler theory: im gemeral, sccurecy of elementary theory
depends on total plate sagle, as well as mean-radius-to-
thickness ratio.

Nass, A. M., "Design of Thir. Concrete Shells: Vol. 1,
Positive Curvature Index,” Mew York, John Wiley & Sons, Inc.,
1962, viit ¢ 128 p. This book represents the first of »
set of several vuolumes conceraing .artous aspects of sheill
analysis, design, and construction that the authur intends
to publish. This first volume deals with thw design and t0.
anslysis of doubly curved shells of positive curvature and
in particular axisymmetric shells.

The book beging with a brief outline cf the aembrace
theory of shells amd a concise summary of the necessary
celationships of differentis]l geometry for the ssalysis
of thin shells. MNext, the sesbrane asnalysis of axisymmetric
deformation of axisysmetric shells is formulated and a
number ol special cases pertsining to membrooes stresses
existing (o syametrically deformed shells of revolution
ate trested. These include the sphericel dome, the el-
liptical dome, and conical shells subjected to various types
of syametric loads. Analytical as well as graphic:l 11.
soiutions are discussed. The n:xt chepter preseals the case
of unsysmetrically loceded shells of revolution snd linear
elastic theory Is completely devcloped fur this sitwation.
Solutions involviag expansions in terms vl harswaic secies
are treated in Jetail for spherical shelis and shells on
discrete suppurts, and, lastly, vazious sspects of deeige
congideration fer swch shells are discussed.

Knowles, J. K., and B, Reissner, "Torsion snd Extension
of Welicoideal Shell,” Quarteriy of Applicd Nethemstics,
Vol 17, p 409-422, 1959. The authors determine the elastic
behavior of & pretwisted strip in the form of a helicoidal
shall when acted upon by axisl forces and & twisting moment.
In this instance the rotstionsily symmetric states of strain
Gupend upos the states of displacesmnt that sre not
tutationslly symetric. Torsiomal rigidity and axial
stifiness are obtained s¢ o function of pretwist wy
pertutbat.on soletions.

Langhsar, H. L., "An Invariant Membrane Stress Function
for Shells,” J. appl. Mech. 20, 2, 178182, June 1951, The
equations of equilibrium of membrane stresses in a shell
ave shown to be satisfied with certain restrictions by a
generalizsed Airy stress fuaction. Fov shells of constant
Gaussian curvature the stress function is shown to be
unrestricted, PFor other shella, {t 18 expressed a3 a funce
tion of the Gesussisn curvature. Comparisons are made with
Pucher's stress function. Shells of revolutinn with coastant
and variable curvature are discussed.

Langhsar, K. L. and D. R. Carver, ‘‘vn The Btrain Energy
of Shells}' J. appl. Mech. 21, 1, 81«82, Mar, 1954, In a
previous paper (AMR 3, hev, 184]1) of the first author, the
strain energy was derived with the assumption that only the
linearized terms in the thickness coordinete % need be re-
tained in the geometrical squations between the strains and
the displaceacats of the middle surface. The preasent paper
shows that, in general, the strain-emergy density is only
8 rational function of a , and the evaluation of the strsin
energy in terms of the displecements i¢ mot difficult, In
the simple example of the cantilever curved besm the authors
pofnt out that the lineariaing of the geometrical equations
{n connection with the use of strain snergy sod calculus of
variations leads to questionsble approximstions. The con-
ditions of equilidrium are not satisfied; the net teastion
disagrees grossly. But {f the shell (s thin, the linearizing
causes only a small error tn the stresses.

Lew, H. G, J. A. Fox, and T. T. Loo, "Large Deflection
Of Curved Plates,'MACA TH 3684, 33 pp.; Oct. 1956, The
specific problems trested are the deflections of doubly
cutved plates with norwal edge loads, doubly curved plstes
under edge shear Joeds, and nearly cylindrical curved plates
under loagitudinal compression. The difference between
the first two plates and the third one lies in the fact
that the (nitial deflection is axislly sysmetric in the
firat tvo cases whereas the thir! plate is very close to
a portion of a straight circular cylinder dbut has, in addition,
a slight bulge along the length of {t.

The srinciple of minisum poteatisl energy, or equivaleatly
the Ritz method, is used to determine the coefficients
in the sssumed expression for the stress function, sad it
is found that, for the fnitial deflections considered,
oaly a few coefficients were y to rep the
complete solution. This is, of coutse, merely another way
of saying that {f the iaitial deflection cen be vepresented
well by & few terms in a double sine series and tf the
loads such that the total deflections under loed are
similar in form to the fnitial deflect.on, then oaly a few
terms in & double sine series will suffice equally wll to
desciibe the deformed state.

In addition to the determinstion of the stresses and
deflections, the effective widths of the curved plates wers
calculated for seversl cases and compared to flat sheets
and circulsr cylindrical curved panels.

Libai, A., "Iuvarisnt Stress and Deformstion Functions
for Doubly Curved Shelis," Transsctions of ASME, Vol 89,
Series K, No. 1, Journal of Applied Mechanics, March 1967,
p 63=34. Exact invariant stress and deformation functions
for doubly curved (nondevelopable) shells are derived. The
tovariant stress function reduces the six shell equilidrium
equations tnto s single squation in the stress function and
<oment resultants. The deformstion function reduces the
thres surface strain-displacement relstions into » single
compatidbility equation in the streins and deforastion functiom,
in terms of which the chaages of curvsture are also expressed.
Applicetion of these fuuctions in the formulation of en
approximate bemding theory ior shells is presented.

Reissner, £., 'On Pinite Twistiang and Bending of
Circular Ring Scctor Plates and Shallow Helicoidal Shells,”
Quarterly of Applied Mathematics, Vol 11, 1963, p 473-483.
The aauthor considers the behavior of a thia circuler riny
sector plate sabjected to two equal and opposite forces
perpendicular te the plane of the plate and later .nalyacs
an initielly deflected helicoidal shell. Stress resultants
ond couples are assumrd independent of the poler angle, o
and transverse displacement iz assumed propoctional to p .
The solutions are oltained in terns of an Airy stress
function.

Reissner, E., "Rowsiionally Symmetric Problems in the
Theory of Thin Elastic Shells;’ Pr~e. Third U.8. Mat. Congr.
Appl. Mech,, June 1958; Aspr. Soc. Mech. Eagrs., 1958,

51-69. Paper presents au exhaustive snd concise survey of
linear and monlinear theory of rotstiomally symmetric problems
of thin elastic shells. Numerous important coatributions

to the subj«ct by suthor aad others are summeriszed with aim
of coastruciing » unified and generalized theory.

Theory of shallow shells “f revolution is trested for
linesr and sma}l aonlinear deflections. Method for closet
nonlinesr solution of shallow sphericsl shell is givean.

In view of exemination o applicadility of sssbrane solu-
tions, boundary-layer theory is summarized. Condition for
existence of boundary-layer solution is developed for
general case, thus generalizing kuowm condition for
spherical shell.

Secondeorder correction theory for (aflvence coefficieats
of shell loaded on viges only is developed. Gensral comdition
for negligibility of this correction is given, thus general-
tzing eariier result of suthor for cyliadrical shell.
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Other subjects treated are: Linedr theory of pure tending
of {ncomplete shells of revolution, shells of revolution
with small variation of radial dimensions, ssymptotic
solutions for toroidal shells, and bending correction to
membrane solution of closed ellipsoidal shell.

Lastly, diffecential squation of finite bending of
thin-walled pressurfzed tubes of initial circular cross
section is set up. Explicit solution is given by series
expansion for case of initially atraight center line.

Reviewer believes that paper is of major {mportance in
thineshell theory.

12. Vol'mir, A, 8., "Survey of Investigationt +n the Theory
of Flexible Plates and Shells (Covering the Period from
4941 to 1957)," NASA Tech. Transl. FP-180, 45 pP., Oct. 1963,
(From Raschet Prostranstvennykh Konstruktsi; «, 451475,
1958.) The literature on the theory of flexible plites
and shells is reviewed, and information {s sbstracted on
pertinent areas such as fundsmental and approximate methods
of solution, large deflections of plates and shells, and
postbuckling deformations of plates and shells.

13. Wan, F. Y. M., "A Class of Unsymaetrical Stress Dis-
teibutions {n Melicoidal Shells," Quarterly of Applied Mathe-~
satics, Vol 24, No. 4, 1967. The author develops a theory
for the elastic behavior of a helicoidal shell in which the
displacements are multivalued in the polar angle, § , while
the strain distribution, although single valved in p ,
is dependent upon § . Ten strain displacement relations
are used to set up the differentisl equations which govern
the elastostatic behavior of the shell. The bending of a
helicotdal shell by end moments is solved as an example.

b. Approximate Methods

1. Archer, J. S., "Consistent Matrix Formulations tor
Structural Analysis Using Finite-Element Techniques,"
AIAA Journal, Vel 3, No. 10, Oct 1965, p 1910-1918. The
discrete~element stiffness matrix technique for formulation
of linesar structural probliems in engineering mechanics is
examined to develop techniques that give exact or closely
appro: lmste solutions for static losd-displacement, elastic
stabilicy, and dynamic response problems. An exact relation-
ship is derived for determining the coordinate load matrix
equivalent to & genmeral distributed load function. Use of
the load mstrix in stetic load~dispilacement problems results
in an exsct solution for the coordinate displacements con-
sistent with the theoreticsl basis used for constructing
the stiffness matrix. Explicit expressions are derived for
a finite-displacement matrix for beam sand plate elements
for use in formulating the general elastic-stability problem.
The approach discussed provides closely approximate buckling
1osds that are upper bounds to the precise solution. The
Jdynsmic problem, including elastic-stability considerations,
is formulated using & consistent mass matrix approsch. This
appcoach provides closely approximste natural frequencies
that are upper bounds to the exact solution. The data re-
quited for stiffness. load, finite-displacement, and mass
matrices for a system ¢ d of Timoshenko beam el ts
with linearly varying properties are provided. An example
cantilever stepped beam problem is solved to illustrate the
techniques involved snd the exact or closely approximate
aature of the solutions obtained.

2. Argyris, J.H., "Recent Advances in Matrix Methods of
Structurel Anslysis,” Progress in Aeronsutical Sciencrs,
Vol &4, The Mecmillan Company, 1964. This book discusses
wethods of using mstrices to solve aircraft structurs!
problems by computer techniques Methods of solving
linesr sad nonlinesr problems by mstrix force-methods and
wstrix displecement methods are presented. These are
many exsmples in which the results sre compared with
experimentsl test dats with good agreement. Of particular
interest is the yenersal discussion on a method of spproaching
the problem of the curved cover by replacing the cover
surface with trisaguler elements, ss discussed in Appendix I,

3. Dawe, D.J., "A Jinite Element Approsch To Plete Vibra-
tion Problems,” Journcl of Mechanical Engineering Science,
Vol 7, No. 1, p 28-32 A method of computing the natural
frequencies of vibratisn of flat plates of arbitrary shepe
$s outlined in which th- plate is considered ss sn sssemblage

of elements.

Both sciffness end inertis motrices sre derived for o
rectengular isotropic plate ~lement of uniform thickness,
ond these matrices are used to find the natural frequencies
of square plates subject to verious boundery conditions.
Comperison of finite element frequencies with known exact,
experimentsl, snd energy solutions shows the method to give
good results even for relatively few elements.

4, Dewe, D.J., "Vibration of Rectsnguler Plstes of Vari-
sble Thickness,” Journsl of Mechanicel Engineering Science,
Vol 1, No. 1, p 42-51, 1966, 1Iu @ previous paper the
spplicstion of the finite element method to plate vibration
problens vas discussed. It wes shown that the method gave
good results when spplied to the vibration of plates of
unifora thickoess.

The p paper is the method to include plates
of varisble thickness. 1In perticuler, stiffness end inertis
matrices are derived for an iseteopic rectamgular plate
cl%:nt of liceerly verisble thickmess ia cme co-ordinste
distccion. These matrices sre used to find the netursl
frequencies end mode shepes of » mumber of rectenguler
planturm contilever jlates of non-unfform nickness,

Experimentsl results provide a basis for comperison with

the finite element results.
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Fligge, W., and 8. C. Chou, Large-Deformation Theory
of Shells of Revolution," Transactions of ASME, Vol 89,
Series K, No. 1, Journal of Applied Mechanics, March 1967,
p 3638, 1In this paper, nonlinear msmbrane equations are
derived for a shell of revolution under the assuaption
that not only are the displacements and rutations large,
but that, also, large strains are sdmitted. The equations,
therefore, are aimed at shells which are not only very
thin, but which are also made of a material which peratte
large elastic strains. The special difficulties resulting
from this extenstion of the theory are discussed. As an
exsmple for the applicetion of the equstions, a circular
toroid subjected to intet 1 pressure is studied. Numer-
ical results are given for a level of loading which lies
clearly cutside the domsin of o latrge-deflection, small-~
strain theory.

Gallagher, R. N., R, A, Gellatly, J. Padlcg, and R. N.
Mallett, "A Discrete Element Procedure fur Thin-Shell Irstabtlity
Anslysis," ABAA Jourmal, Vol 3, No. @, Jan 1967, p 138-145,

The concepts of the matrix displacement approach tc discrete
element structural snalysis sre extended to predict general
instability. Instabilicy ph are ted for by
considering the influence of element msmbrane forces on
element effective flexure stiffnesses. Particular attention
is given to the problem of determining membrane force
distributions that account for iaterelement membrane~flexure
coupling. Repressutations of instability effects are form
ulated for several levels of approximstion for an arbitrary
quadrilateral plate element., Critical applied losd intensities
are predicted for plate, atch, and spherical cap structures
to demonstrate convergence charscteristics and to provide
comparinons with test dats and classical solutions.

Gerstenkoru, G. F. and A, 5. Kobsyashi, "Application of
the Direct Stiffness Method to Plane Problems lnvotving
Large, Time-Dependent Deformstions,” Journal of Basic Eng.,
Dac 1966, p 771-776. The direct stiffness method is
used to formulate s numerical procedure for solving piane
structural problems involving large, time-dependent deform=
ations and homog: » time-depend material properties.:
The stiffness matrix in polar coordinstes is derived for the
state of plane strain. The nonlinesr structural response is
incrementally linearized by considering the deformation
process to be linear within small time increments. The
developrd procedure is compared numerically with a known
solution of creep deformations in s thickewalled cylinder
subjected to internsl pressute loading and elevated tem=
perature.

Hermann, L. R., "A Bending Analysis for Plates,” March 1965,
Aerojet-Geneial Corp., Technical Peper No. 7 SRO. In this paper,
8 general, approximste solution method applicable to the bending
analysis of structural plates is presented and illustrated. The
analysis includes the effects of shearing deformations and as
8 consequence, is spplicable to both thin snd moderately *hick
plates.

The plate bending equations (including shear deformsiions),
written as functions of the transverse deflection, and the
bending moments are expressed by means of a variationsl theorem.
The plate to be analyzed is represented by a series of finite
elements (triangles). Forms of the primary dependent varisbles
(transverse deflection end moments) ave assumed within each
element and are related to their values at the element nodes
(i.e., st the triangle verti-es). The spproximate solution is
obts ned by taking the variational of the function with respect
to the node values of the unknowns, thus generating a set of
linear algebraic equations that define these nodal values. The
rotations and shears are calculated from the values of deflection
and moments.

The consideration of transverse shear deformations permits
the specification of three boundary conditions at each L oundary
point, instead of two, as in the case of the classical tain
plate theory. Thus, for example, slong a free edge of a plate,
the actual boundary conditions may be applied (vanishing of the
normal moment, normal shear, and twisting moment) instead of
the rather artificisl boundary conditions demanded by thin plate
theory (vanisning of the normsl moment and the "effective"
transverse force).

The solution technique is utilized to analyze two significant
prodlems, for which exact solutions are availsble, with excellent
accuracy.

Holston, A., Jr., "Approximate Anslytical Solutions of
the Finite-Deflection Equations for a Shallow Sphericat
Shell,” Transactions of ASME, Vol 89, Series E, Ko, I,
Journal of Applied Mechanics, March 1967, p 65-86. Approx-
imate solutions ace obtained, by Newton's sethod, for shells
subjected to uniform and,or point loads in the prebuckled or
postbuch.led configurations. Comparison of tesults with
numerical solutions shows muximum deviations of S percent
for clamped shells subjected to uniform loads in the pree
buckled configuration. Similar comparisons for other cases
show larger deviations. A characteristic load is developed
which compares favorably with numerical buckling loads.

Hreanikoff, A., "Solution of Problems of Elasticity by
the Pramework Mcthod,”" Journal of Applied Mechsnins, Trans.
ASME 63, Dec 1941, p AL69-AL175. Because of mathematical
difficulties which make the sulution of differentisl equations
of the theory vf elasticity impossible in many cases, the
suthor has been impelled to seek some other method of approach
than one of pure methematical snalysis. The method out~
lined in this paper s of this character and way with some
qualifications b» applied to problems of two~dimensional
stress, bending of plates, bending of cylindrical shells,
the general case of three-dimensional stress, and a grest
variety of others. GEssentially, the acthud consists in
replecing the continuous meterial of the elastic body

s s % Y A ot S e

e s e b

e




=

1.

e

-

12,

13,

14,

15.

being studied by a framework of bara arranged according to
a definite pattern, the slements of which are endowed with
elastic properties suitable to the type of problem. This
framework ia then analysed, according to the procedure out~
lined in the papec fou various types of elastic problems.
Examples of the application of the principles involved are
also given.

Kalnius, A. and J. 7. Lestingi, 'On Nonlinear Analystis
of Elastic Shells of Revolution," Transsctions of ASME,
Vol 89, Series E No. 1, Journal of Applied Mechanics,
March 1967, p 39-64. A multisegwent wethod {s developed
for the solution of twoepoint boundaryevalue problems
governed by a system of first-ovder ordinary nonlinear
differential equations. By means of this aethod, rotation-
ally symmsteic shelis of arbitrary shepe under axisysmetric
loads can be analysed with any svailable nonlineasr bending
theoTy of shells., The banic equstions required by the
method are given for one particular theory of shells, and
numerical examples of s shallow spherical cap and a complete
torus subjected to external pressure are presented in de-
tail. The wain advantage of this method over the finite-

difference spproach is that the solution is obtained every-
where with uniform accuracy, and the {teration process with
respect to the mesh size, which {s required with the finite-
difference method, is eluinated.

Kaufmsn, $. and D. B, Hall, "Bending Elements for Plate
and Shell Networks,” AIAA Journal, Vol 3, No. 3, March 1967,
p 402+405. Trisnguiar bending elements that can be applied
to irregular plate or shell networks are presented. Equile-
tbrtum as well as elastic properties of these elements are
derived. Also presented are parallelogram plate bending
elements whose elastic properties include core shear
deformations for ssndwich or thick plates. The elements
preseated ate peculiar to the matrix force method with
virtual work concepts forming the bacis for computation of
the elastic properties of the elements. A method of pro-
viding transition elements between triangular and paraliel-
ogram netvorks is also given.

Khanna, J. and 2. F. Hooley, "Comparison snd EZvaluation
of Stiffness Matrices," AIAA Journmal, Vol 4, No. 12, Dec
1966, p 2105-2111. Frevious developments in the comparison
and evaluation of stiffness metyices are reviewad. A sim-
plification to the method of making comparisons on the basis
of strain energy is presented, and it is shown thst the
results of slement stiffness matrix comparisons apply to
the structure. The theoretical basis for obtaining approximste
qualitative comparisons from stiffoess satrix eigenvalues
is described, and the existing hypothesis on their use
evalusted. Some plane stress stiffness matrices for square,
{sotropic elements ave compsred, and it is shown that it
i{s reasonable to expect bounding of the strain emergy by
varying-a stiffness matrix parameter. A method of compsring
stiffness matrices of different orders is proposed. It
2lso is shown that square elements generally will provide a
better spproxfimation to the strain energy than constant-stress
triangular elements.

Klein, B., "A Simple Method of Mstric Structural Analysis,”
Journal of Aero/Spsce Science- Jan 1957, p 39«4l. A
simple method of matric struct al anzlysis is presented
which {s believed to have cert.iin distinct advantages over
existing methods as explained in the text. The possible
disadvantages of the method eventually may be minimized as
the size and scope of automatic computing equipment are
wpde larger. Certain twos and three-dimensioasl problema
are worked to illustrate the case and simplicity of the
method.

Klein, B., "A Siwmple llethod of Matric Structursl
Analysis: Part Il - Effects of Taper and Considerstion
of Curvature,” Journal of Aero/Space Sciences, Wov 1957,
p 813-820. The matric method of structural amalysis pre~
sented previously in Part 1 is extended to include the
2ffects of psnel geometry dnd gage taper, stringer tsper, and
a consideration of curved elemeats. The resulting matrices
ate of the same form as the previous matrix and of comparable
simplicity. Several problems are presented to illustrate
the mechanics and simplicity of the extended method.

Klein, B., "A Simple Method of Matrid Structural Asalysis:
Part 111 - Analysis of Flexible Frames and Stiffened Cylindrical
Shells,” Journal of Aero/Space Sciences, June 1958, p 385-
394. The meth. ) presented in Part Il (reference 2) is ex-
tended to cover hw case of stiffened cylinders. Trestabdle
loadings include those producing peak shear, such as in
flexible frame problems, and those involving thermal stresses.
Various structural tr.egularities may be acc- unted for,
suc.. as variable fram mowent of inertia, tapered longerons,
variable skin gage, cutcuts, noncircular cylindrical
shells, etc. A flexible frame problem is solved for
tllustration purposes.

Klein, B., "A Sisple Method of Matric Structural
Analysis: Pert V - Structutes Contuining Plate Elements
of Arbitrary Shape and Thickreus,” Journal of Aero/Space
Sciences, 'w 1960, p 859-863. Simple cquations are used
to tteat plate elements. The cquations are basic equil-
ibrium and force~displacemnt equations. The plate elements
may be of any shape and have any thickness variation. The
stresses fn the elewents may vary in a complex psttern
Thete nced not be any edge members attached to the plates.
All equations are simple tu derive and simple in principle,
Most equations contain definite integrals. Since in general
the shapes and thickoesses of the plate elemsnts are arbi-
trary, a sinple numericel integration scheme fs vsed te
evaluate the integrals. Numerous numericsl exemples are
worked out to Lllustrate the mechunics of the method and the
sccurscy attatined.
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19.

21,

22,

23,

Klein, B., "A Simple Method of Matric Structursl
Analysis, Part VI - Bending of Plates of Arbitrary Shape
and Thickness Under Arbitrery Normal Loading," Journsl of
Aero/Space Sclences, March 1962, p 306+322. Method for
analysis of genersl kinda of complex plates under complex
norsal losding: work {s extansion of previously given matric
athod for solution of insplans plate problems; method 1
of comparable simplicity; all boundary conditions are
satisfied essily and divectly; numerical exsmples illusteate
mechanics of method., Part V indexed in Engineering !ndex
1961 p 1283,

Lo, C. C., *. W, Niedenfuhr, and A, ¥. Leigsa, "Further
Studies in the Application of the Point Matching Technique to
Plate Bending and other Harmonic and Biharmonic Boundarye
Valus Problems," Air Force Flight Dynsmics Lsboratory Technical
Report AFPDL-TR-63-114, 175 pp. (Jan. 1966). Contract No.
A¥ 33(657)-8772. Thia work i{s the d report ising
work in applying the point matching technique to plate
bending and other harmonic snd bihermonic boundsry velue
prodlems. Ideas to {mpraove the numerical convergence ate
investigated. One idea involves using sultiple poles of
expansion; this is demonstrated by a torsion probleam.
Sources of round-off error are identified and means of
minimising it ave described, slong with exsmples. The
concept of multiple poles ia extended further to the use
of a large number of origins located slong the boundery
ieself. Singulerity functions referred to these origins
ore used to represent concentrsted forces and moments.

Used in conjunction with point matching, s method results
which i3 sn spproximation to the solution of singulasr
integral equations, snd yields excellent results for intri-
cate shapes. Suitsble equations ere formulasted for rep-
resenting the boundary conditions by step function or
polygonsl function approximstion for several classes of
problems, including: conductive hest trensfer, torsion,
plete bending, and plane elasticity with mixed boundary
conditions. Mumercus numerical exsmples are presented
which demonstrate the technique and convergence for th.se
classes of problems.

Lu, Z, A., J. Penzien, and £. P, Popov, "Finite Element
Solution for Thin Shells of Revolution," NASA CR-37, 76 pp.,
July 1964. (Prepsred under Grant no. NsG+274-63 by Uaiv.
of Calif., Berkeley, Calif.) Thin shells of revolution are
widely used in flight structures snd their analysis is of
great importance to the design engineer. In such shells for
syametrical loadings snd smell dispiacements, the wmembrgoe
stresses snd the corresponding elastic displacements can be
tresdily computed. However, due to the variations in thicke
ness, ring-like reinforcements at openings and junctures with
the sdjoining shells sad/or structures, very important
bending atresses develop. The analysis of such stresses
may be very complex. In fact, solutions are available only
for the few simplest possible shapes of the meridisn. Also
very few solutions exist for the cases of variable thickness
and, in some of the solutions which are available, :he thick=
ness variation {s prescribed for reasvns of mathematical
expediency. On the other hand, functional and menufacturing
requirements often demand ardbitrary shape and thickness
variation of the shell of revolution. To achieve a practical
solution for such a general problem is the primsry purpose
of this investigation.

"Matrix Methods in Structural Mechanics,” (proceedings of
the conference held at Wright-Patterson Air Force Base, Ohio,
26 to 28 October 1965), AFFDL-TR-66-80. The Confereace on
Matrix Methods in Structural Mechanics held at Wright-Patteraon
Air Force Base on 26 to 28 October 1965 was sponsored jointly by
the Air Force Flight Dynamics Laboratory, Research and Tech-
nology Division, Air Porce Systems Command, and the Atr Force
Institute of Technology, Air University. The purpose of the
conference was to discuss the recent developments in the field
of matrix hods of str 1 anslysis and design of serospace
vehicles.

The 36 papers presented were arranged into 6 sessions under
5 different themes; General Matrix Methods, Finite Element
Properties, Nonl ear Effects, Dynamics, and Applications.
The papers cover practicslly sll msjor aspects of recent research
and development work in the field of matrix methods of structursl
analysis and design.

Melosh, R. J., "Basis for Derivation of Matrices for
the Direct Stiffuness Method,” ALAA Journal, Vel i, No. 7,
July 1963, p 1631-1637. Previous developments in the direct
stiffness method are reviewed. The sd7sutages of extending
the definitions to mske the method s varistionsl spproach are
cited. The finite element formulation of the mssthod of
winisum potentisl energy is giver. Explicit requiremeats
of potential energy displacements are presented, and a criterion
insuring wmomotonic convergence is developed. 1ilustrative
displacements yielding matrices resulting iu sonotonic
convergence are included, Available matrices are reviewed
with respect to the extended developmmnts.

Melosh, R. J. and R, G, Merritt, “REvalustion of Spar
Matrices for Stiffwess Aunslyses,” Josrnsl of the Aero/Space
Sciences, Vol 25, Wo, 9, Sept 958, p 537-343. Couvergonce
ditficulties have desn eocountered in the deflection snalystis
of certain structures with most of the bending materisl in
the skia using the stiffness method, The difficulties are
attributed to the use of the elementary besm spar mstrix.
Two new spar matrices are developed and compared with the
wstris based on elemeatary beam concepts. The error, as
8 function of the nodal breakdown and the structursl par-

s, &8 detetwined for a besr analyzed using the sper
mateix for the web snd strioger matrices for the flanges.
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Convergence to the final stiftness coefficients is shown to
be such more rapid using either of the new me*rices for
structures with most of the bending meterial in the skin.

An unswept box beam {s analysed to demonatrate convergence
of the stiffness solutions and the superiority of the nev
moment-shear spar matrix in an actual problem characteristic
of a wing., The stiffness method results are shcm to cone
verge to analytical results obtained with elemen. ary berding
theory including transverse shear deformation and siwar lag
corrections,

24. Percy, J. H., T. H. H. Plen, §. Rlein, and D. R.
Navaratns, "Application of Matrix Displacement Method to
Linear Klastic Anslysis of Shells of Revolution,” AlAA
Journal, Vol 3, No. 11, Nov 1985, p 21382145, The paper
describes the application of the mat ‘ix displacement method
to the linesr elastic analysi+ of shells of revolution. The
shell is idealised as & series of conical frusta, joined at
nodal circles. In the preseut paper the use of the {deal-
ization to handle asymmetric deformations is demonatrated.
Also shown is how approximations to the mass and stiffness
matrices may be consistently derived; these may then bz used
to solve both static and dynsmic problems. [he effect on
the results of static analyses of improving the approximstion
to the stiffness matrix, using the procedure suggested by
Pian, {s demonstrated and discussed. Results are presented
of static a:.lyses of several shell configurations, and
these are compared vwith solutions by other methods. It
is found that the method provides accurate solutioas tor
shells of reévolution under both sxisymmetric and asymmetric
loudings oy using & reasonable number of elements.

25. Tuma, J. J., K. S. Havner, and 8. K, Preach Jr., “Analysis
of Flat Plates by Algebraic Carry~Over Method," Oklahoms
State Uuiv Eng Experiment Station, Publication 118, Dec
1960, 230 p. Lagrange's 4th order partial differeantial
equation of thin plate (> replaced by 2nd order equations in
terms of loads, moncnts snd deflections: these equations
together with boundary conditions are expressed by 2 seats
of finite difference equations in slgebraic form: numerical
evsluation of these algebraic results is made by means of
electronic computer; tatles; references.

26. Turner, M. J., R. W. Clough, B. C. Martin, and L, J. Topp,
“Stiffness and Deflection Analysis of Complex Structures,”
Journal of the Aeronsutical Sciences, Vol 25, No. 9, Sept
1956, p 805-823. A method is Jeveloped for calculating
stiffoess influence coefficients of complex shell-type
structures. The object is to provide a method that will
vield structural data of sufficient accuracy to be adequate
for subsequent dynssic and seroelastic analyses.

Stiffness of the complete structure is obtained by
sumning stiffoesses of individual units. Stiffnesses of
typical structural components ate derived in the paper.

Basic conditions of continuity and equilibrium are es-
tablished at selected points (nodes) in the structure.
Increasing the nuwber of podes increases the accuracy of
results. Any physically possible support conditions

can be taken into account. Details in setting up the

analysis can be performed by nonengineeving trained personnel;
calculations are conveniently carried out on autometic
digital computing equipment.

Method is {llustrated by appiication to a simple truss,

o flat plate, ard » bev beam. Due to shear lag and sper

wed deflection, the box beam has 2 25 percent greater
deflection then predicted from beam theory. It is showm

that the proposed method correctly accounts for these effects.

Considerable extension of the msterisl presented ia the
psper is possible.

27.  * Turser, M. J., E. W, Dill, M. C. Martin, snd R, J.
Melosh, "Large Deflections of Structures Subjected to Nesting
and Externsl Loads,” Journal of Aero/Space Sciences, Peb 1960,
p 97-106. The method of direct formulstion of the stiffness
matrix is extended to tnclude ti: effects of mowuniform
heating and large deflections. The purpose is to develop sn
analytical tool for the trestment of actual structures.

In the solution of ssroslastic problems the relations
between forces sod deflections must be detcrnined Ihe uss
stiffasss metrix formuletion of this relationship is lisited
to small tewpersture changes sod smell deflectioms. PFor
large temperature changes additionsl terms are re, 'ved.
Also the problem beccwes geomstrically uonlinsar when lafge
deflections sre juvolwved. To overcome the twherent difffi-
calties of the noulinear problem for practicel atruttures
either sn Lterstive oF & step-by-step procedure must be
used, The force-deformetion relstfens wecessary for this
step-by~-step or iterative approsch are derived for an
sxially loaded mewber snd for s plate elemsnt tncluding
the elfects of thermal streins.

2. Utku, $., "Stiffness Matrices foy Thian Trisngulsr
Elesunts of Wonzer> Caussiss C " ALAA J 1, Yol 35,
No. 9, Sept 1987, p 1639-1667. Flet trienguisr elemats,
when used to approximste shells, msy cause geometrical
tdealisation errors inm addition to the errors sssocisted
with assumptions on deflection distributions. Taking into
account average curvatures of the middle sirface, these
ideslization 2rrore may be reduced without sdditiomal grid
refimsarnt, The curved trisugular elemncs sve defined by
jotlning the selected nodes with the geodesic limes of the
widdle surface. 1Ian computer spplications, the sversge
values of aormel of & 4 triangular elemsnt
may be aither input or computed from the cartesisn coordinstes
of elemsatal wodas. A piecewise linaer daflestion fiels is
asswaed, The woda! valoss of this fisld ars the undeterwined
P tets of the probles which yleld s minimizing sequense

116

with grid vefinement. Using the shallow shell theory,
strains msy be sxpressed in the natural coordinste syatea
of the base triangle. Expressing the atrain energy of

the curved triangle in terms of its nodal deflections, the
elemental stiffness matrix is obtained by the usual ainie
sisstion process coupled with the comdition thet no nodal
forces result from rigid body modes. By setting the
average curvatures equs) to aero, the stiffmess matrix of o
fiat criangulsr slrmsnt is obtained.

Utku, 8., and R. J. Melosh, “Behavior of Triangular Shell
Elemant Stiffness Matrices Associated with Polyhedral Deflaction
Distributions,” NASA Techaical Report 32-1217, 13 February 1964.
Invarisnts of the triangular shell element stiffness mstrices
are exemined, The stiffness matrix is considered ss the sus of
wembrane, bending, snd transverse shesr stifiness matrices
tapresenting respective strain energies. Por various geometries
snd curvatures, eigenvalues of these matrices are obtained
numericelly. By studying the eigenvalues, it is shown that
stiffnuss matrices produced with the help of equilibrium require-
mants may display nonpositive behavior depending upon element
geomatry. The grave q of positive behavior ate
demonstrated. Since equilibrium algorithms can be used to
accelerste the convergence, two scheme: are developed to correct
the nonpositive behavior. These schemes ace based on the obser-
vatiou that nonpositive behavior originates from the base matrix
to which equilibrium slgorithm is applied. The effect of
thicknesa/srea ratio on the oversll behavior is studied. The
bebavior associated with true potentisl anergy approach is demon-
strated on several, test cases. The effect of geometry is also
discussed in the sssembled matrix. Guidelines hava been presented
for the use of the trisngular shell eslement in structural analysis.

Zienkiewicz, 0. C. and Y. K. Cheung, "Tha Finite Element
Method in Structural and Continuum Mechanics,” McGraw-Hill,
1967. The powerful method cf "finite elemsnts' permits slwmost
all problems of structural stress analysis, or the anslysis of
such field prodlems as heat transfer snd fluid flow, to be
pr d in s h ical form suitable for solution on a
digitsl computer. This is indispensible if complex structucres
sre to bc economically designed, not only to sarve the sdvanced
needs of asronautics, space flight, turbine design, and nuclear
technnlogy, but also for use in such genersl engineering fields
a8 dem snd bridge building.

"The Finite Elemsnt Method in Structural and Continuum
Mechanics” is the first comprehensive textbook on a subject
that until now has been presented mainly in specialist papers.
Although ic begins with first principles and is & relatively
simple trestment of s wide subject, the book takes the resder
up to the frontiers of present-day research. It also includes
sany exsmples of solutions to practical problems, such as those
ralating to the design of dams, nuclesr reactors, and turbines,
8 well as those concerned with rock hanics and page in
civil engineering projects. A final chapter gives details of
typical computer programs written in FORTRAR langusge with
comments on data preparation and digital solutions.

¢. Experimental Methods

1.

2.

Isler, B., "Experimental Shell Design," Proceedings of
the Symposium on Shell Research, Mew York, John Wiley &
Sons, Inc., 1962, p 356-358. Experimental methods are
described, helping to solve shell problems ot different
levels: to find new shapes; to visuslize design; to elaborste
accurate shape; to determine siresses and deflections; to
analyse stability; to check built shells.

Applicetions in prestressed concrete and reinforced
plastics are shown,

fowe K. E., "Tests on Pour Types of Myperbolic Shell,”
Proceeding. of the Symposium on Shell Research, New York,
John Wiley & Sons, loc., 1962, p 16-35. Tests are Jescribed
and principsl results are reported., One test was performed
on 8 1/10 scale model of one quarter of » square shell
roof, with edge besms, mede of reinforce.) cement mortar.
Another test was on & similsr wodel without edge beaus.
The third model wes s square sushroom roof on a central
column made of reinforced mortsr to 1/6 scale. The fourth
mode]l was s grillage of Perspex plastic beams welded with
chloroform, simulsting to 1/32 scale the construction of
part of a composite hypar roof from precast concrete units.
In these tests bending stresses were shown to have the same
order of magnitude as sembrane stresses.

3, VANZ VIBRATIONS (VIBRATIOMS OF CURVED PLATES)

a. Exact Solutions

1.

Cummings, B. £., “Large ‘aplitude Vibration and Response
of Curved Pamels,” ALAA Jourwm', Vol 2, &, p, 709-716, Apr 1964,
The dynsaic nonlinear shallow-sh~l]l equations are examined ia the
special case of a cylindricsl she.! segment. Differeat devel-
opments are given for two systems: ‘n system A, the stress
boundery conditions ste¢ sstisfied exactly, and competibility
is satisfied on the average; ia eystem B, compatibility is
sotisfied exactly, snd the stress boundary comditions ste
satistied on the sverage. Perturbstion and exact lategrsl
expressions are found for the frequencies of vibration. The
cesponse Lo deltacfunction, step-function, snd hermonice
function loeding is sxsmined. Dynswic buckliing is predicted
by shock tresponse method.

Galletiy, €. D,, "On The In-Vacuo Vibrations of Simply
Supported, Ring-Stiffened Cylindvical Shells,” Proccedings
of the Second U, §. Mati:aal Congress of Applied Mechenics
(1934), p 223-231. An melyticel selution is presented
fur the problen of dutermining the in~vecuo frequencies eof
vidbration of a sisply supporeed this cylisdricsl shell
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which {s reinforced by equally spiced, equal strength 3.
circular ring stiffeners. The displacement configuration

assumed permits inter-ring deformation of the shell, Ny=

merical calculations were made for a cylindrical shefl with

various sizes of stiffening rings, and curves were plotted

which show the effect of the rings upon the frequency of

vibration. The numerical values obtasined were slso compared

with those calculated by approximate methods and vere found

tv agree within 210 percent.

Guyan, R, J., "Raduction of Stiffness and Mass Matrices,”
AlAAJ, Volume 3, No. 2, p 380, February 1965. This paper dis-
cusses a matiix condensation technique by which the order of
stiffness and nass matrices can be reduced. Reduction (s accom-
plished by eliminating coordinates at vhich a zero force is applied.
The reduced matrices retain the structural snd mass properties of
the original matrices in a complex form. This will be useful
in the {nducer vibration program by reducing the number of 4.
degrees of freedom per free node to one. In this manner, an
existing FROC eigenvalue or latent root program that is limited
to 50 degrees of freedom will allow an inducer with a maxiemum
of 50 free nodes to be analyzed.

Kalnins, A,, "Free Vibration of Rotationally Symmetric
Shells,"” Journsl of the Acoustical Society of America,
Vol 36, No. 7, July 1964. This paper is concerned with a
theoretical investigation of the free vibration of arbitrary
shells of revolution by means of the classical bending theory 5.
of shells. A method iz developed that {s applicable to
rotationally symmetric yhells with meridional variations
(including discontinuities) in Young's modulus, Poisson's
ratio, radii of curvature, and thickness., By means of the
method of this paper, the natural frequencies and the
corresponding mode shapes of sxisymmetric or nonsymmetric
free vibration of rotstionally symmetric shellis can be
obtained without a limitation on the length of the meridian
of the shell. To illustrate the appiication of the method
given in this paper to perticular shells, some results
of free vibration of spherical and conical shells obtained
earlier by means of the bending theory are reproduced by
the general method of this paper, and a detsiled comparison
ts made. 1n addition, paraboloidal shells and a spherescone
shell combination are considered, which have been previously
analyzed by mesns of the inextensional theory of shells,
and natural frequencies and mode shapes predicted by the 6
bending theory are given. *

Kalnine, A., "Free Nonsyametric Vibrations of Shallow
3pherical Shells,” Proceedings of the Fourth U.S. Congress
of Applied Mecharics, Vol 1, p 225-233, 1962. This paper
is concerned with the investigation of the natural frequencies
and mode shapes of free vibrations of shallow sphericsl
shells with the use of the classical theory of shallow
shelis. Explicit solutions for the thres displacemsnt com-
ponents of the middle surface sre derived in terms of
Bessel functions, and the frequency equation *-r a shallow
spherical cap with s clamped edge is deduced. All natural
frequencies within a certain frequency band are determined 7.
for various values of the circumferentisl wave number, curvature,
ond thickness of the shell. The mode shapes of the first six
wodes are calculated and their charscter {s exsained. It
{s found thet the modes are such that either the longitudinal
or the transverse displacement {s predominant. The corte-
sponding frequency equstion given by the theory of transverse
vibration is deduced and by ing Lts freq ies to
those of the classical theory the mode. not predicted by
the theory of transverse vibrations are determined.

Paimer, P. J., "Matural Prequency of Vibration of Curved 8.
Rectangular Plates,” Aeronsutical Quarterly v 3 pt 2 July
1954 p 101-10. Vibrstion evelusted for fundsmentsl exten~
sional mode, thought to be spplicable when plates are ex-
cited by uniforaly distributed pressure as ssy occur with
dynsuic pressure wave; nstural frequencies corresponding to
this mode increase fairly rapidly with curvature of plate.

b. Approximate Methods

1.

2,

Dawe, D. J., "A Finite Element Approsch to Plate Vibra-
tion Problems,” J. Mech, Engng. 8ci. 7, 1, 28-32, Mar, 1965.
Energy considerastions are used to derive sti .ness sud inertis
metrices for a rectangular tsotropic plate element of unifora
thickoess. The deflected form of each element is nlu-;‘
tg contain ferm proportional to 1, x, y, x2, xy, y2, x%,
x°y, xvzn ¥, %7y, l!’. snd the twelve associated uynkaowns
are determine . from continuity of v, Ow/dx, dw/dy at the corner
points. (See also Zienkiewics snd Cheung, AR 18 (1963), s
Rev. 131). The mstrices are used to find the netursl "
frequencies of certain square plates, snd comparisons with
other solutfons show thst the method gives good results
even for velatively few elemsnts.

Desk, A.L. ond T.H.N, Plen, "Application of Bmoothe
Surface Interpolation to the Finite Element Anslysis,”
AIAA Journsl, Vol S, ¥o. 1, p 187-189, Jen 1157, Com-
patidility of the slopes along the normsl of the inter-
elemsnt boundsries of finite retsmgulor slements in
bending is achieved by the use of specisl polynomiel
functions, Stiffoess and wsss astrices based vpon these
functions have been used to make stetic snd dynemic
smelyses of retangulsr plates. Tiiis method yields o
considershble improvement in eumericel solutioms of dis-
placenents in numwricel solutions of displecements ond
frequencies o3 obtsined without the use of .he interpole-
tion functions,

R O S gy T R

Lauvsen, H. 1., R, P Shubinski, and R, W, Clough,
“Dynsaic Matrix Analysis of Pramed Structutes," Proceedings
of the Fourth U,8. Congreas of Applied Mechanics, Vol I,
1962, p 99-105, The matrix methods developed {m recent
years for static analysis of structures can be used effectively
to determine the natural frequencies of these structures.
This can be accompiished by developing a dynamic stiffness
matrix for the {ndividusl mewbers sand subsequently obtsining
a dynamic stiffness matrix for the entire structure, Substi-
tution of this matrix into the appropriste equilidrium
expresaion results ie an expression for the natursl fre-
quencies of the atructure. Application of this technique
(s demonstrated here with several diffece.t exampiea, The
results may de considered exact in the sense that the mass
of all members is assumed to be distributed and the stiffness
of all members is assumed to be finite,

Leckie, F. A., "Application of Tranafer Matrices to
Plate Vibrations,' IngenieuteArchiv v 32 n 2 1963 § 100-11.
Successful application of transfer matrices to computation
of natural frequencies and normal modes of elastic systems
described by single space variable suggested extension to
include systems described by 2 space variables such as
plate=- when, instead of plate, model suggested by 4.

Hre ~ . {f was used, problem could be reduced to one with
fir."e degrees of freedom.

‘Matrix Methods in Structural Mechanics,” (proceadings of
the conference held st Wright-Patterson Air Force Base, Ohio,
26 to 28 October 1965), AFPDL-TR-66-80, The Conference on
Matrix Methods in Structural Mechanics held at Wright-Patterson
ALlr Force Base on 26 to 28 October 1965 was sponsored jointly
by the Air Force Flight Dynamics Laboratory, Research and
Technology Division, Air Force Syatems Cosmand, and the Air
Force Institute of Technology, Air University. The purpose
of the confervnce was to discuss the recent developments in
the field of matrix methods of structural analysis aud design
of asrospace vehicles.

The 36 papers presented were arranged into & sessions under
5 different themes; Generel Matrix Methods, Finite Element
Properties, Nonlinesr Effects, Dynamics, and Applications.
The papers cover practically all major aspects of recent research
and development work in the field of matiix msethods of structurel
analysis and design.

McGrattan, R. J., and E. L. Morth, "Vidbration Analysis
of Shells Using Discrete Mass Techniques," Transactions of
ASME, November 1967, p 766-772. A method for analyzing thin
shells by & discrete mass techaique is presented. The shells
and stiffeners are idealized as s system of lumped masses and
an elastic fcamework having the equivalent mass and stiffness
of :he actusl shell. This method ts most useful for shells
without rotar’ asl symmetry, since classicel solutions are
not availsble for these cases. Four examples are presented
and a comparison with experimental results and classical
theory is made for a case of s sysmetrically stiffened
cylinder.

Ravaratns, D, R., "Natural Vibrations of Deep Sphericsl
Shells,"” ALAA Journal, Vol 4, No 11, p 2056-2058, Mov 1966.
The author represents a shell of revolution by a2 series of
discrete frustra of shells which satisfy the displacement snd
slope continuity at the common nodal circles. Stiffness
and mass watrices are determined and the mstrix frequency
equation is solved for the nstural frequencies snd the gen-
erslised digplacements. Calculations for spherical shells
with free, hinged, and clamped edgen agree satifactorily
with those obtained by other methods.

Nowinski, J. L., "Large-Amplitude Oscillations of Oblique
Panels with an Initial Curvature,” AIAA J. 2, §, 1023-1031,
June 1964, Von Kirmén field equations for flexible oblique
plates with an tnitisl curvature are extended to a dynamical
case. Using series representacion of initisl and additionel
deflections and GCalerk.a's procedure, the goveraning equation
for sn sdaissible mooce time function is established. Using
this single assumed modal deflection, and assuming builtein
edge free to move i the inplume directions, the following
particular cases are discusaed: buckling of an oblique plate
under uniexiasl compressive losd, free linear vibrations
of s square plate, larae deflections of s uniformly loaded
squate plate, snap-through phecomena of a curved oblique
plate under uaiform transverse load, and frae nounlinear vi-
brations, A numerical exswpie coucerning & rhombic plate
is discussed (n more detsil. The welloknown fact of » de-
cresse of the period of noni.ness vidrations with sn iwcressing
amplitude s corrodborated, this reletion being less pro~
nounced for larper sweep anjles.

Petyt, Maurice, "Finitr: Zlement Vibretion Anelysis of
Cracked Plates in Tensiom, ” Technical Report APML-TW-67-396,
January 1968. A finite element methed of analysis is developed
to determine vibration characteristics of an aircraft fuss-
lage panel ¢ ining & fatigue crack. Kxperimental odserve.ions
show thst as the length of the crack inc ‘eases, the frequemcy of
vibration resches a ainimum when the fre: edgs of the creck
buckles. The vacriation in this ph wath § ing plets
width &5 studied both experimentally snd tnsoretically.

The analysis (s developed in & systemutic menner snd calcey-
lations are performed st esch stage on problems with knowa
solutions to & ine the y of the method. The problems
considared include the vibrations of flat plates of varying plan-
form, the vibrations of s cylindricsl shell, the buckling of &
restangular plate, and the vibretions of s vectsagular plate
in compressioca.

The sethod {s finslly applied to the prodlem of a cracked
plate in tension and the -ssults compared with expetimental
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weasurements. The post buckling behavior is calculated using

& step-by-step analysis to permit linesritation of the governing
oequations. By considering the calculsted stress distridutions,
the varistion fn buckling strees with crack length and plate
width is explained,

10, Plase, N. J. Jr., J. B, Gaines, and C. D. Neweom,
“Application ¢f Retesner's Variationsl Principle to Centilever
Plate Deflection and Vibretion Problemes,” Journsl of Applied
Mechanice, March 1962, p 127-133. A veriaticmsl priasciple
due to K. Reissner has been rewritten in o fora which s
applicadle to small deflectirn problems for thin plates. The
modified principle {s used to obtsim approximstions to
static deflection and vibretion problems of square and skew
cantilever plates of uniform thickness.

i1, Ross, £. W., Jr. and ¥. T. Netthews, "Frequencies and Mode
Shapes for Axisymmetric Vibretion of Shells," Transactions
of ARME, Vol 89, Series E, No. 1, Journal of Applied Mechanics,
March 1967, p 73-86. This paper treasts the axtsymmetric
vibration of thin elastic shalls. Sstisates of satursl
frequenciss and modes are obtained for a generel clase of
domes by applying the approximations obteined in a previous
paper by one of the suthors. Numerical results sre obteined
for sllipsoidal shells, snd one new theoretical result is
iound,

12, Viteer, K. A., N. A, Baleer, J. W, Loech, and T. N, K.
PMen, "Lerge Dynamic Deformstions of Peams, Rings, Plates,
and Shelle,” AIAA J. 1, 8, 1848-1857, Aug. 1963. Authors
develop a finite difference lumpsd-stringer typs of formulatice
for the dynsaic response of simple two-dimensional sad sxi-
symmtric structures subjected to impules lesdings which
deform the structures iato the plastic region. The method
considers elastic strain-hardening behavior, strain rate
and large deflections.

The resulting oumerical solutions for particular ceses
are compsred vith limited experimental data ~ particulerly
some recent beem tests at Picatinay Arsenal. A comparison
betwean suthors' theory end experiment shows generally good
agreemsnt aithough there sre some unexplained differeunces
be*veen predicted and cbserved time histories.

A major difficulty in applying their msthod 1is, ss the
suthors note, the large aumber of differemce equations which
requires considerable computer time. Simpler, less time-
consuaing methods are desirsble.

13, Zienkiewice, 0. C., and Y, K, Cheung, "The Finite Elemant
Method in Structural snd Continuum Mechanics,” McGraw-Bill, 1967,
The powerful method of "finite elemants” permits almost all
problems of structural stress snalysis, or the anslysis of such
field problems as hest trensfer and fluid flow, to be presentad
in a mathematical form suitable for soluttion on a digitsl com-
puter. This is indispensible L{f complex structures ara to be
economically designed, not only to servs the advanced needs of
asronautics, space flight, turbine design, and nuclear technology,
but also for use in such general engineering fields as dam and
bridge duilding.

“The Finite Elewent Method in Structural and Continuua
Mechanics” is the first comprehensive textbook on 8 subject that .
until now has been presented mainly in specislist papers. RO
Although {t begins with first principles and is a relatively
siaple treatment of a wide subject, the book takes the reader
up to the frontiers of present-dsy ressarch, It also tncludes
meny examples of solutions to practical problems, such as those
relating to the design of dasr, nuclesr resctors, and turbines,
a8 well « those concerned with rock mechanics and seepage in
civil engineering projects. A finsl chapter gaves details of
typical computer programs written in FORTRAN language with
comments on data preparation and digital solutions.

¢. Rxperimental Methods

1, Roppmanan, ¥W. M., II, and C. N. Seromnst, "A Study of the
Vibrations of Shallow Spherical Shells,” Trens. ARE 30 &
(3. Appl. Mech.) 3, 329-334, Sept. 1963. Paper is sequel
to papers Sy senior author slome or with collaborators (see,
for example, MR 15 (1962), Revs. 1370, 2026) on vibratioa
of spharical ceps. Additionsl experimatal results are
» 4 and compated with results of theory previcusly
P d for ay rical vibration. New date sve ®iven
for shells which have 12~inch chord; 0.5 and l.6-inch vise:
thickassses of 1/16, 1/8, ard 1/4 inch; snd both clamped
and hinged edges. Ag! ¢t s mod ly good, BExperimsntel
results are als0 presented for ssymmetricsl vibration. As
authore poiat out, it is intsresting to sote that frequescies
for clempsd and for womentless cases do not differ grestly.
Appendix pressnts formulas for symmetrical vibratioa dut mo
basic theory; the reader is referved to previous peper for the
complets anslyticsl trestment.
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APPENDIX B
RESUMES OF SOURCE MATERIAL

1. HYDRODYNAMIC LOADING OF INDUCER BLADES

The following are resumes of those articles included in the Literature
Survey (Appendix A) from which prediction methods were selected for use
in formulating analytical models,

d. Exact Methods: Noncavitating

1. Durand, W. F., Aerodynamic Theory, Vol II (General
Aerodynamic Theory - Perfect Fluids by Th. von Karman
and J. M. Burgers), First Edition, 1963; "Flow Through
a Lattice Composed of Airfoils," p 91-96.

An exact two-dimensional solution to the basic potential
flow operations is presented for both staggered and
unstaggered flat plate cascades, The solution to these
potential flow equations employs the techniques of
conformal mapping. A general form of the Joukowski
transformation is used to map from the potential flow
about a circle in one plane into the flow around a
cascade of airfoils (staggered or unstaggered) in

the real plane. This method considers idcal or

no-loss flow only, while giving a solutiot. to the

flow field in two dimensions. Cavitation is not con=-
sidered., This method of analysis, however, does allow
determination of incidence effects on lrading around !
the blade leading edge. :

i

2. Fanti, R., "Elementary Incompressible Solution for the
Performance of Airfoils of Arbitrary Shape in an

- Arbitrary Cascade," United Aircraft Corporation Research

Department, Report R-23010-12, 23 February 1953.

An exact two-dimensional potential flow solution is
presented for the case of incompressible flow through
airfoils of arbitrary shape in an arbitrary cascade.
This work is an expansion on the theory presented in
Durand (Reference 1) by von Karman and Burgers. Sources
and sinks are applied along the surfaces of the flat
plate airfoils to simulate the effects of airfoil thick-
ness and shape on the potentfal flow field. This method
of flow analysis is completely theoretical and does not
allow for internal flow losses but does accurately
describe the deviations between the streamlines and the
blade surface in the region of the airfoil leading edge.
Cavitation is nct considered, restricting use of the
solutions presented to single-phase flow.

b. Exact Methods: Cavitating

1. Stripling, L. B. and A, J. Costa, "Cavitation in Turbo-
pumps,"” Parts I and II, ASME Papers No. 61-WA-112 and ’
61-WA=98, 25 July 1961.
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An exact two-dimensional solution to the potential flow
equations for the case of supercavitating flow is pre-
sented in Part I. The method of solution employs con-
formal mapping techniques similar to those used in the
articles presented by Durand and Fanti for noncavitating
flow. Part I1 illustrates the cavitation performance
data of several helical inducers for various flow coef-
ficients correlated with the theory from Part 1. With
the use of semi-empirical correlating factors, the
streamline theory presented in Part I is said to serve
as & useful basis for design.

Basic assumptions made ir the streamline model are
listed below:

® A distinct vapor cavity is formed by a
free streamline which is attached to the
leading edge of all blades

e Flow is two-dimensional, irrotational,
inviscid and nonoscillatory

e Cavity is infinite in length,

These assumptions result in measurable deviations from
the actual flow case. 1In particular, the combination
of radius changes and rotation of the inducer would
result in significant blade loadings due to Coriolis
effects, which are not accounted for in the two-
dimensional analysis. Other important real effects
include flow losses due to friction, leaxage and
diffusion and three-dimensional cavities that collapse
within the inducer. This method is aiso restricted

to flow through cascades composed of parallel flat
plate airfoils. Although this typ: analysis would not
result in satisfactory determination of the flow field
within cambered inducer passages, the exact theory
could be used to indicate flow incidence effects on
and near the airfoil leading edge, including the
effects of cavitation,

Jakobson, J. K., "Supercavitating Cascade Flow Analysis,"
ASME Paper No. 64-FE-11, 27 February 1964.

Exact two-dimensional potential flow theory is presented
for incompressible flow through a cascade of arbitrarily
shaped airfoils, including the effects of cavitation,
The assumptions that are made are essentially the same
as those made by Stripling and Acosta. Flow ie two-
dimensional, irrotational, inviscid, and nonoscillatory.
Cavity representation is made by a distinct (vap-r)
cavity of infinite length. This latter assumption again
allows an exact mathematical solution of the potential
flow equations for special cases using the techniques

of conformal mapping. The general theory for flow
through any cascade composed of blades of arbitrary
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shapes results in an integral equation that cannot be
solved directly and must rely on numerical integration
techniques for its solution, It is indicated that a
numerical integration of resulting integrals for cambered
blades could ve complex, requiriug experimentation to
develop computer programs that would be convergent and
efficient. Although this paper covers the theory for the
most general type of two-dimensional, ideal (steady,
irrotational, lcssless), potential flow, that of cavi-
tating flow in a cascade of arbitrary shaped airfcils,
the complexiiy of the resulting exact solutions may be
unattractive for use in this program.

¢. Numerical or Approximate Methods

1.

Cooper, P, and H. B. Bos<h, "Three Dimensional Analysis
of Inducer Fluid Flow," NASA CR-54836, 11 February 1966.

Solutions for the three~dimensiunal and quasi-three-
dimensional potential flow fields are presented. The
three-dimensiora! anialysis, referced to as the "exact"
analysis, results fvom a finite difference representation
of the basic ,otean*ial flow equations. The quasi-three-
dimensional analysis, referred to as the "approximate"
method, results from a finite difference solution of the
basic flow equations in the hub-to-shroud direction with
a superimposed assumed solution in the blade-to-blade
direction.

Use of these basic flow equations and their finite
dif ference solution in defining three-dimensional
flow fields is similar to methods which have been
employed at FRDC as well as by others. Reference is
made to Stanitz (Reference 5 ) and Stockman (Refer-
ence 6 ) in the literature survey. Both employed
types of quasi-three-dimensional solutions for
describing flow fields. Use of the method presented
in this report is unique, however, in its treatment
of cavitating flow.

Both methods of analysis presented in this report accourt
for internal flow losses ute to friction and diffusion
while also accounting for the effects of cavitation. The
cavity model used in both models allows for cavities of
-inite iength and consisting of a nomogeneous, two-phase
mixture, This cavity model di“fers significantly from
the cavity riodel assumed by St.ipling (Reference 2 )

and Jakobscn (Reference 4 ) who assumed a distinct
cavity filled with satvrated vapor and infinite in
length.

The "exact' method completely describes the entire T
potential flow field including flow losses and

cavitation effects. The "approximate" method, in

describing the flow field two-dimensionally in the
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hub-to-shroud direction only, cannot accurately account
for the effects of leading edge loading (incideunce) and
trailing edge unloading (deviation). Both solations
compare favorably in the interior regions of tne inducer.

The "exact" method, while representing a good design system
capable of solving the most general of problems, including

incidence effects, flow losses, cavitation, and general
blade geometry, requires considerable computing time

that would, in general, prohibit its use as a practical
design tool.

2. STRESSES AND VIBRATIONS IN INDUCER BLADES

1.

Argyris, J. H., "Recent Advances in Matrix Methods of
Structural Analysis," Progress in Aeronautical Sciences,
Vol 4, 1964, The MacMillan Company, Perganon Press,

Sections of this book outline the technique by which a
curved cover can be analyzed by replacing the surface
with triangular elements. The vertices of the elements
are first prescribed as coordinates of a common co-
ordinate system. A local plane coordinate system is
then defined for the element and the direction cosines
of the axes of this system relative to the common system
are determined. These direction cosines are then used
to determine the local coordinates of the nodes. The
stiffness matrix, which is a function of the local
coordinates, can then be computed. This matrix is then
trans formed to the common axes by rotating local axes
to the common axes.

McGrattan, R. J. and E. L. North, "Vibration Analysis of
Shells Using Discrete Mass Techniques," Transactions

of ASME, Journal of Engineering for Industry, 767-777,
November 1967, :

In this paper, thin shells are idealized by a framework
of elastic beams that have the equivalent mass and
stiffness of the shell. The interesting part of this
paper is not the part involving the equivalent shell, but
the method of transforming stiffnesses and determining
flexibility matrices. Because the general surface is
curved, the stiffnesses of the individual beams must be
transformed by rotating their coordinate system to a
common coordinate system and translating from the mid-
point of the element to an appropriate joint. The
resulting stiffnesses are then summed. This general
method can be adapted to the inducer problem by trens-
forming the stiffness matrices of the triangular elements
in the same manner.

The flexibility matrix is determined by the conventional
unit load method, in which the deflection vector due to
a unit load is applied at the N joints.
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Utku, Senol, "Stiffness Matrices for Thin Triangular
Elements on Analyzed Gaussian Curvature,'" AIAA, Vol
No. 9, pp 1659-1667, September 1967.

In this paper, curved surfaces with double curvature

are triangulated and referrea to a base triangle whose
vertices are the nodes of the curved element, Shallow
shell theory is used and the strain energy of the shell
is expressed in terms of nodal displacements. If zero
curvature for the element is assumed the curved elements
degenerate into the flat triangular base plane elements
as will be done for the inducer blade. The method of
partitioning the bending, membrane, and shear stiffness
matrices, and the method of avoiding the difficulty
due to coupling of bending moments and membrane forces
is discussed. These techniques should be applicable

to the inducer blade problem.

Turner, M. J., R. W. Clough, H. C. Martin, and L. J. Topp,
"Stiffness and Deflection Analysis of Complex Structures,"
Journal of the Aeronautical Sciences, Vol 25, pp 805-823,

September 1956.

This is one of the basic papers from which the matrix
analysis of structures was developed. Direct methods
for determining stiffness matrices of frame elements,
shear panels, box beams, spars, rectangular plates,

and triangular plates are presented. These matrices are
developed by considerations of statics and avoid the

use of strain energy methods. Of particular interest is
the membrane stiffness matrix for arbitrarily shaped
triangular plates of uniform thickness.
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FRECEDING PAGE BLAIX&M& FJLMED.
FORMULATION OF HYDRODYNAMIC COMPUTER #ROGRAM

Contained in this Appendix is the engineering formulation ior the hydro-

dynamic computer program.

INTERNAL PROGRAM CONSTANTS

1. INLET ROUTINE

1) (1)

v
m "<%T 2 _ R, 2

)
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il i

- =2
d’U

T
v
m

gin &

V=

V =V cos a
u

p = PT - Cl\l2

1

"’l‘ = tan

[5)

¥ = tan”!

0

"2y |

P T PO

Find R for each streamline (Rgy) by dividing the annulus area into N;
equal areas such that AR2 between streamlines equals a constant, i.e.,

2 - n2 -
RST(i) RST(i-l) constant

Find "'(1) for each streamline by linear interpolation versus radius.

R - RST(i-l) + Rsrgi)
(1) 2.0

T = C2Rw)

A

U-wn(i)
¢
HI . —
°1) 8
R -R ]
* * (1) (i) * *
R ta = tan 8 - R tan - tan
"P Ry g aR [Tm Tay My P,
%
* -1|{R tan 8
Beg) = tan [ Ry, ]

O —— —pp——



sat
Kk =
QD
WC = W(.) v1+k
W W,.. ]
N (i) ,
L = o + wc cos (10( ))
W W, |
- c _ () . ,
B _W(i) wc sin (lo(i)) cot B(i)

W
W, =2—°0[(A + B- '\/(A +8)2 - 4.0 ]

. Ma) St By

. *
hoi) = Ty 310 By <1‘° "W, sin B?i)

2
ok Wiy r ..
Tl = <31n B(i) +<wc ) cos (E+ 10(1) - B(i)) .

1n (w(2: - 2.0W(i) COS(io(i)) + W%i)

2 2
(Wc + 2.0W(i) cos (io(i)) + W(.)

)]

)
)
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W, . W W W -W
- . (i) (i) "2 c 2
T2 = 2,.0(sin B8 + ln
e o) (362 + 77 w35
W 2
- * (i) (T 4 i
T3 = 2.0<:os ﬁ(i) +<wc ) sin (2.0 + L) 3(.1) ))
X -1 [2.0 W(i) WC sin (io(i))
an
,w2 ) w2
c (i)
- . JG)
Co(i) = (T1 - T2 + T3) X

Reqi) = (Ci(n *“S(n)/(Z'O'“o(i))

C
-1 o(i)
.\ = 0.
CIE [(Rc(i) ) ho(i))]

2. MAIN PROGRAM

AZ = 2 ~ 2

AZ =

|
~N
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-1 m
V] tan 0
u
e
R = R + PCR AR
ST H i
() (1)
]
R = Rsr * Rsr
(1) 2.0

_RXan TR
2.0

R

R tan B* -
* T (1) T "

R tan 37

%
R tan § =R tan 8 -{R - R,,
Th T3 < T “’) ar

Ay(i) = RST - RéT (For Hub and Tip Stream Tubes - Ay(]-_) =8y (i) - $%)

t + Y[R - R,
i) <T(j> ‘”)

* -1| & _tan 8
., = tan = | ——"
f [ R o) ]

t

t +2,08% *
7t,.. =CR, = ————— § =0 lst time through
(1) 2 (1) sin ﬁ*.

(1)

- -

R - R
v = tanl| =9 Td-n
T Z,.. -2,

L () (,-1)

- ] -
v = tan) Mgy T Mgen
H L 2y T Ay
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ARt L wo

I e

B sn boh S S et

1
\P(i) = ¢H + (\‘T = ¢H) AR J |
a -t i

m cos ..

(1) :
Am = 3
(1) . QY i
sin B(i) g
1) T "w T4
a. Deviation Calculations %
‘,2
i
If cavity exists: i
)
N i
C -m,, tan 8,., + R - h ]
b, = tan) <( @ "0V IO ey 0w o),
(i) R, cos §;) (1) ‘

(i)

Iterate on 9(1) until within tolerance.

b sin = R (cos 0(1) - 1.0) + h

°@i) °)

b _ b sin

(1) sin B;(Ei)

%*
é8 = 0.5 61

If no cavity exists:
*
68 = 0.0

®1)Np

Power1 =

*
Regy 81n By
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_ (5’21) - 86 - Be)

2 P
\/1.0 + e ower

F’m(i) -2.0¢C

68

° (i)
T i 5
(i) 5" By

Power3 = -

Power3

6B3 = 0.5 GBCe

1f m(i) > 2.0 CO(L) then 633 = - 653

%
Deviation = 531 + 6&2 + 663 + §8

Stream Tube - Flow Calculations

B(i) = ﬁ(:) - Deviation
A8 = By - By
(Qé) Y-
dmi Am(i)
2.04m
- - (1)
AW‘ ¢ - w < 1 >
( (1) (i)) Am(i) +Am(i)
($£), = ant
dm(i) Am(i)
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L Ay
Yy “ ¥ T 7.0

= Ty " P

‘ A= Ay(i) Ly sin B(i) cos ‘(1)

begy ¥ Ty - Bryy
2.9

k
3

W - W
i (), - e
|

7 - T~

(1) (1)
— =2
Q = €, (W)

For hub and tip stream tubes:

4.0 A
Dy = Ty sin g%,y + 2.08y

For other stream tubes:

& R G S

D e 2:04 J
H Ay(i) z‘"
c. Pressure Loss Calculation 3
Call Loss Routine (Calculate KL and §%) i
A ry %
KRG {
r
Pt =Py *Cy (®Rey” - R?) - ar !
i - - :
rel(i) rel(i) 3 (1) (i) L g
K
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P,.
(i) rel(i) - QD

Radial Pressure Gradient Calculation

ar =Py - Ph-n

ar =Ry = Rei-1)

R

@ Y ra-n
2.0
- 2.0

=i

=l

_Bay Y BGiy
2.0

|l

- i (1) 4'(1_)
2.0

day dv
R
dm 2.0

IR
dm 2.0

Al

(i-1)

glen

= d&

sin B cos ¢

—
Ly
o
"
” o
pr—
=i
€
[ ]
P~
b
v

- Wy?

sin ¢ cos

sin ¥ sin
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e. Streamline Test and Adjustment Routine

The error is determined for each streamline and compared with some
tolerance. If each streamline error is within the prearranged tolerance,
the program continues. If all or anyone of the streamlines is not within
this tolerance, the errors of that streamline and its adjacent streamlines
are used in the adjustment for locating the new streamline positions.
After each streamline adjustment has been made, the program returns

to the RST equation in the Main Program (paragraph 2).

f. Blade Loading Calculation

2— P, -—
— — s5in“ B 2.0W0 cos B .- d8 cotf dv
Ap =2.0T, Sin - -UW _cos J. . 498 cotp di
b(i) [4 QD SlnB'(‘i) W R sin (i)  dm W dm
APb
P =Pr.y - 1
s(i) (1) 2.0
2 =P + 4p
Py S (i)
AR,
(1)
W =W,. 1.0 +
s(i) (i) 2.0 QD
ary,
W =W, 1.0 - X

g. Station Performance Calculations:

U= wR(i)

V =W

m = Y S By !

W.u = W(i) cos 6(1) i
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3.

V =U-W
u
\Y
o = tan’! [-JE]
\Y)
u
Vv
__m
sin o

Deviation = Qﬂfi) - B(i)

2
= + C.V
Pr=Pi)y v ™
P
T
H- p -HO
U Vu
HI ., = - HI
(i) g O(i)
H
7’:
HI,.
()

If last "J" station, continue.

If not last "J'" station, return to

beginning of Main Program (paragraph 2).

EXIT ROUTINE

U=WRe)

W = w(i) cos B(i)

Uu-Ww
u u

<
]

_ Wiy sin Biyy (Teyy - biyy)

m C2R(i)
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R P

£ ff AR RGP e SRR I T by

e Rt

W e

Ll o R

\)
_
sina
v
- =] ‘m
Be = tan [W ]
u

Deviation = *,
(1)

W(i) = Vm sin ﬁe

4. OVERALL PERFORMANCE
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J = —8H
P 2
wRT

(1)
(nR%

I €]
Ry = v

END OF PROGRAM

FLOW LOSS SUBROUTINE

W, .
Re = (1) (1)
X Vv

£ = 0.0576 (Rex)’”5

. -1/5
8 = 0.04625 m .. (Re,)

4.0fAm .

K - ———4—1—1

F DH

1/2 w, ..\ 1/2
¢ = 114.6 tan ! |[—2— <1.o -<—(-1-1> )
D 2 W,

If b(i) > 0.0 &¢D >0.0 f(¢) =1.0

1£ 6, < 0.0 £() = 0.0

3

d_ -

<
If 0.0< ¢D < 14.0 £(¢) D

(0.74506) x 1073 ¢§ + (0.79874) x 10°

(0.4056) x 10~%

If 14.0< 9, <46.0 f£(9) 0.02577¢D - 0.1855

If ¢D > 46.0 f(¢) = 1.0

' 2
o) " Y

Wiy T ¥

4.0 f(¢)

b

K K +K

L D F

RETURN TO PROGRAM
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APPENDIX D
NOMENCLATURE

A. HYDRODYNAMIC

SYMBOL

A

Dy
Deviation
F

f

H

Ho

h

ho

HI

HIo

3 =

DESCRIPTION
Flow area normal to direction of relative
velocity
Tangential vapor cavity height

Distance from leading edge to point of
maximum vaper cavity height

Hydraulic diameter

Total deviation angle
Tangential blade pressure forc.
Surface friction coefficient
Head rise

Absulute total head at inlet
Normal vapor cavity height
Maximum normal vapor cavity height
Ideal head rise

Absolute ideal total head at inducer inlet
Incidence angle

Cavitation number

Length along streamline

Mass flow rate

Number of blades

Inducer rotative speed

Net positive suction head

Total pressure

Static pressure

Blade pressure loading

Pressure loss along stream tube
Volumetric flow rate

Relative dynamic head

Relative dynamic pressure

UNITS

ft

ft
ft

ft
deg
1b

ft
ft
ft
ft
ft
ft
deg

ft
1b/sec

rev/sec
ft

1b/ft?
1b/ft?
1b/ft2
15/£ ¢t
ft3/sec
£t

1b/£t2
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DESCRIPTION

Radius

Reynolds number based on streamline
path length

Radius of circular arc approximating
vapor cavity

Torque

Blade thickness

Inducer tangential velocity
Fluid absolute velocity
Fluid relative velocity

Fluid relative velocity along cavity
sur face

Perimeter of wetted surface

Radial distance between streamlines
Axial dimension

Axial distance from station to exit

Angle between fluid absolute velocity
and tangential directicn

Angle between fluid relative velocity
and tangential direction

Angle between blade and tangential
direction

Deviation angle due to vapor cavity
Initial angle of vapor cavity
Deviation angle due to inlet incidence

Deviation angle due to vapor cavity
and exit deviation

Deviation angle due to initial cavity shepe

Blade taper angle

Boundary layer displacement thickness
Efficiency

Lean angle of blade generatrix
Absolute viscosity

Kinematic viscosity

Density

UNITS

ft

ft

1b-ft
ft
ft/sec
ft/sec
ft/sec
ft/sec

ft
ft
ft
ft
deg

deg
deg

deg
deg
deg
deg

deg
deg
ft

deg
lb/sec-ft
ftz/sec
1b/ft3
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SYMBOL DESCRIPTION

T Blade tangential spacing

Teav Cavitation parameter

1£ Tangen?ial space between blades occupied
by fluid

Th Blade spacing measured normal to blades

¢ Flow coefficient

weq Local equivalent diffusion angle

v Angle between relative velocity and axial
direction or head rise coefficient

w Inducer engular velocity

Superscripts

' Previous value

- Average value between axial stations

= Average value between stream tubes

Subscripts
Exit

H Hub

i Streamline number, 1, 2, 3 «=--
Axial station number, 1, 2, 3 ----

m Along streamline

P Pressure surface

rel Relative

s Suction surface

ST Streamline

T Tip

u Tangential

B. STRESS AND VIBRATION
SYMBOL DESCRIPTION

o] b1

Partioned matrices of IK]T

UNITS

ft

ft

ft

deg
deg

rad/sec

UNITS

l1b/in., lb-in./rad

X] Displacement function coordinate Mixed
matrix
[ —
A ] Thickness function coordinate Mixed
T matrix
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DESCRIPTION

Curvature matrix 3
Flexual rigidity Et /12(1 - 72)
Modulus of elasticity

Curvature coordinate matrix
Membrane elastic constants matrix
Force in coordinate direction
Generalized nodal force column

matrix [F F ,F ,M ,M ,M IT
X' Ty'z2’ Ty’ e

Unit diagonal matrix

Stiffness matrix

Reduced stiffness system matrix
T

=" [<}elr]

Moment about coordinate axis

Inertia matrix

Reduced inertia system matrix

digng

Pressure, + ve in + ve direction
of 7

Genevalized vibratory amplitude
Radius measured in x, y plane

Radius measured along generator

Generator offset radius
Rotation matrix

Kinetic energy

Coordinate transformation matrix
[#] - [e["[e]*[e]

Thickness of triangular element

Nodal thickness column matrix
I-El ty t3 l

UNITS

rad/in.
1b-in.

. 2
1b/in,
Mixed
1b/in%
1b

1b, 1lb-in.

1b/in.,
1b-in./rad

1b/in.,
1b-in./rad
1b=-in.

lb-secz/in.,

lb-secz-in.

lb-secz/in..

1b-sec2'in.

lb/in?
in., rad
in.

in.

in.

1b-ino

1b/in.,
1b-in,/rad

in.

in.
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ot

cos (x,y), etc.

DESCRIPTION

Internal strain energy
Displacement in x, y, 2z directions
Potential energy

Bending elastic constant matrix
Membrane strain coordinate matrix
Rectangular coordinates

Lead height of generator measured

at hub radius

Displacement function coefficient
column matrix

Thickness function coefficient
column matrix

Generalized displacement column
matrix |u v w 4 Oy 0,

Strain in x and y directions
Shear strain

Membrane strain column matrix
Wrap angle

Rotation about coordinate axis

Generator lean angle
Poisson's ratio
Density

Coordinate matrix

Natural frequency or angular
velocity

Column matrix
Determinant

Cosine of angle between x axis
in common and y axis in local

system

e

UNITS

l1b-in,
in,

lb-ino

in.

in.
~ixed
Mixed
in.,rad

in./in.
rad

in./in., rad
deg

rad

deg

e WRE e hger oS e me

1b/in> j
in. i

rad/sec j
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SYMBOLS

Superscripts

T

Subscripts

o

0

— p— ] P
— S———)
3 =z

144

DESCRIPTION

Refers to local coordinate system

Transpose of matrix [ ]

Bending

Centrifugal

Inducer hub

Parameter at node "i" (1,2,3)
Membrane

Inducer tip

Matrik of nodal parameters

System matrix

UNITS
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