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ELECTROCONVECTIVE INSTABILITY IN A FLUID LAYER

by

D. C. Jolly and J.R. Melcher
Department of Electrical .Engineering, Massachusetts Institute of Technology

Cambridge, Massachusetts

‘Steady flows of a fluid of slight electrical conductivity under the influ-~
ence of an applied electric field intensity are often unstable. A study is
described to illustrate with experiments and an snalytical model the funda-
mental aspects of a wide range of instabilities that are characterized by
the incipience of steady cellular convection as the electric Hartmenn number
H, = eE/VQEFEs on the order of unity (e is the permittivity, E the imposed
electric field intensity, W the viscosity, and o the electrical conductivity).
A nonuniform electric field is used to induce an unstable configuration of
surface charge and electric field intensity at a planar interface. The result-
ing instability leads to cellular convection in the plane of the interface.
Predictions of the electric Hartmann number and wavelength for incipience of
instability compare favorably to measurements. The dependence of the measured
cellular convection velocity, resulting from the instability, on electric
Hartmaenn number and electric Reynolds number are also in satisfactory agree-

ment with the predictions from the simple model.
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I. INTRODUCTION
Background

The history of fluid mechanics amply illustrates that the physical
significance of a steady flow cannot be fully appreciated without examining
its stability. There is cqnsiderable empirical evidence that electrohydro-
dynamic flows, for example in pumps and generators, or in image-processing
devices involving electric fields and fluids, are even more likely to be
unstable than ordinary steady flows. This is illustrsted by the state of
fine-scale turbulence often found as a fluid volume is stressed by elec-
tric fields, even in the absence of a mean flow. The relationship between
laminar a.nd turbulent electrohydrodynamic flows does riot appear to be a
simple extension of the physics of classic hydrodynamics.

There is an extensive literature of classes of electrohydrodynamic
instability, largely at interfaces, that do not involve the electrical con-
duction process. By contrast, few problems of electrohydrodynamié insta~
bility where conduction is impértant have been brought to a rational state
because they are often fraught with difficulties in reproducibility, and
because the dependence on the particulars of the conduction process can
render a given result of limited general value.

It is not our objective to give a revieﬁ of electrohydrodynamic stability
problems, but rather to use a parpicular physical situation as an illustra-
tion of the physical considerations ﬁhich, through current findings, appear
to be common to a wide class of instabilities. The steady flow configura-
tion involves an electrical pumﬁing of a liquid, in our case through the
agent of electrical interfacial shear stresses.

An example of such pumping is Taylor's (1966) cellular convection inter-

ior and exterior to a liquid drop immersed in a second liquid stressed by an



electric field. Similar cellular convection induced by stresses from a

nonuniform imposed field at & plane interface are investigated by Smith and

Melcher (1967). A review relating largely to this class of flows and phy-

sical mechanisms for their instebility serves as background for the follow-

ing deveIOpments (Melcher & Taylor 1969), including studies of a similar

instability (Malkus & Veronis 1961).

We wish to highlight three fundamental ingredients of electroconvec—

tive instabilities:

i.

The configuration of charge density and electric field intensity
required to give rise to the instability. This is the eléctrohy—
drodynamic analogue of the gravitational instébility involving a
layer of liquid supported by a less dense layer. This configura-
tion is illustrated schematically in Fig; 1 for & one-dimensional
dependence of the charge density g on the coordinate x. The con-
figuration is potentia;ly unstable if at some point

EDq < 0 (1)

where Ex is the x component of the electric field intensity and Dq =

dq/dx. The instability condition of Eq. (1) is discussed by Turnbull

ii.

and Melcher (1969) for the limit in which the effects of electrical
conduction cannot be ignored. This leads to a second essential
consideration.

The role of charge relaxation in sustaining the unstable configura-
tion of charge and field in the face of charge convection. TIn &n
Ohmic conductor, the free charge tends to relax with the time con-
stant €/0, where € is the permittivity and ¢ the electrical condue-

tivity. Thus, effects of material convection in determining the
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Fig. 1 Illustration of an unstable configuration of charge density alx)

and electric field intensity Ex(x).
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distribution of charge as given by Eq. (1) are in proportion to the
ratio of a transport time U/b, (U and b respectively being the
characteristic velocity and length), to the relaxation time. This
ratio is the electric Reynolds number

R, = €U/ob (2)

Electroconvective instabilities are characterized by an appreciable
effect of convection on the charge distribution; i.e., an appreciable
Re' However, the degree of charge convection required for instability
is a matter of the competition between viscous and electrical stresses
What constitutes "appreciable" convection depends on the third con-
sideration;

iii. The ratio of the electrical stress acting on the convected charge to
the viscous stress. In an Ohmic Newtonian fluid, an indication of this

ratio is the electric Hartmann number
Hy = eEf uo (3)

where y is the dynamic viscosity. Even though the effects of material
convection on the charge distribution may be small (Re is small com-
pared to unity) the viscous retarding forces can be equally small.

The electric Hartmann number thus indicates the conditions for incipi-
ent instability by comparing the electric stress acting on the convec-
ted charge to the viscous retarding stress.

It is the objective of the following sections to illustrate these three
aspects of electroconvective instability with a case study that is easily pro-
duced and reproduced in experiments that give a clear visualization of the
fluid motions. These objectives are met by developing s relatively simple model

for the incipience of the instability and for the steady convection arising from
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the instability. The model involves many judicious approximations made
to avoid complexity which would obscure the basic mechanisms involved, but
nevertheless retains the essential features of the interaction.

Phenbménon

First consider the steady flow. Figure 2a shows a cross—sectional
view of a layer of slightly conducting liguid resting on strip electrodes
aslternately having the potentials V/2 and ~V/2. Although only slightly
conducting (typically corn oil), the liquid is nevertheless much more con-
ducting than the air sbove. At least, according to ah Ohmic conduction
model, there is no space charge developed in the’liquid bulk. However,
charges are induced on the interface and, as sketched in Fig. 2a, these have
the same sign as those on the nearest electrode. In consequence, there is
an electrical surface force density acting in shear at the interface, as
illustrated. In the section A-B of the interface, the electrical shear tends
to pump the liquid toward the origin x = 0 just over the edges of the elec—
trodes. The resulting cellular convection, with streamlines as shown, is
the motion studied by Smith and Melcher (1967), and if "wrapped around on
itself", is similar to Taylor's cellular convection within a drop (1966).

Qur point here isg that the configuration of charge and field at the
interface is potentially unstable, and in fact characterizes electrohydro-
dynamic pumping configurations not only at interfacgs, but also in the bulk
of liquids. The configuration of surface charge and electric field intensity
at the interface is essentially that of Fig. 1. The cellular motion in the
x-z plane is often difficult to observe; rather, cells are observed to form
in the x-y plane of the interface, as sketched in Fig. 2b. Note that with the

fluid stationary, there are no surface stresses in the y direction, such as
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Fig. 2a) A layer of slightly conducting liquid bounded from above by air and
from below by strip electrodes at alternate polarities. Electrical shear
stresses at the interface tend to pump the fluid in the cellular flow

pattern shown.

A X B

b) Cellular convection resulting from

instability that tends to dominate

the pumping motions of (a).

| +V/2 ¢/ D -v/2

external flow (£) / '”:2;‘13*;0“\&‘ external flow (r)

Up cos kyy
p'(z)
(c)

¢) Interaction region where coupling
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would give rise to these motions. They are the consequence of an insta-
bility relasted to the manner in which the convection alters the distribu-
tion of the surface charge, and hence the distribution of surface force
density. In terms of the section of fluid shown in Fig. 2¢, an interfacial
motion in the x direction leads to a redistribution of surface charge, hence
a8 surface force density that tends to encourage further the surface motion.
This is true whether the motion is to the right or left.

A layer of liquid in the region C-D of Fig. 2b is subject to a net
surface force T(y) acting in the x direction (per unit length in the y
direction), which tends to make the section "tip" to one side or the other.
The resulﬁing motion in the x direction is inhibited by the viscous stresses
of the surrounding fluid which flows in a direction of least resistance: a
flow pattern with the fluid leaving the interaction region C-D at one y
location, and returning to that region flowing in the opposite x direction
at another location along the y axis. Cells form which ha&grggvelength
21r/ky in the y direction, which assures the least impedance of the motion.
In a typical experiment, cellular motions in the plane of the interface
(Fig. 2b) can easily dominate those in the x-z plane (Fig. 2a), even though
the latter are created by a simple pumping action while the former result

from instability.

IT1, THE MODEL
A. Outline
There are three attributes of the phenomenon that we wish to predict;
the flow pattern (in particular the wavelength in the y direcfion), the
voltage required for incipience, and the wvelocity of the cellular motion.
The coupling of fluid and field makes the mathematica; description

nonlinear. Thus, it is desirable to proceed by separating the effects of
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viscous retardation from the electroconvective driving force. The fluid
layer is divided into "external flow regions" A-C and D-B in Fig. 2b, and
an "interaction region" C-D. In the external flow regions, the fluid is
visualized as being essentially free of surface shears and set in motion by
a pressure rise across the interaction region. Then, the electrical shear
stress is averaged over thevx dimension of the layer and visualized as con-
centrated in the interaction region. Finally, the regions are "married up"
by requiring that the velocities and pressure rise be gelf-consistent in a
steady flow condition. These three steps in the analysis are outlined in
the following sections.

The séparation of the layer into the three regions is in vart a con-
ceptual convenience. Oncé the model has been formulated, it should be
evident that what we are actually doing is separating the stagbilizing and
destabilizing effects, which need be only roughly identified with the regioms
of the fluid layer. In reality, the "interaction" and "externsl" flow regions
overlap. The distinction is made here only as a convenient way of separating
the viscous and electrohydrodynamic effects.

B. External Flow

In many cases of interest, the fluids are rather viscous, with induced
velocities relgtively small. Thus, a high Reynolds number is not likely, and
creep flow approximations are justified. Ignoring inertial effects and tsking
advantage of the fact that there is no steady-state charge in the bulk,the

Navier-Stokes equation becomes
Vp = uViv (1)

where p and v are the fluid pressure and velocity, and the effects of the mass

density, p, are ignored.
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The gravitational force does not contribute to the dynamics and is

ignored. In addition, conservation of mass is written
Vev= 0 (5)

For convenience, the velocity is constrained to be in the x-y plane. Since
the surface in the externél regions is free of shear stress, the derivative
of v with respect to z must vanish at z = 0. Assuming no slip at the bot-
tom, v must vanish at z = -b. It is consistent with these conditions to

expand the fluid velocity and pressure as a Fourier series in the z direc-

tion while assuming a periodic dependence of wavelength 21r/ky in the y

direction.
o
v o= y {U_(x)cos k yi_ + V (x)sin k yi_} cos nnz (6)
n=21 O y’x 'n Yy 2b
(o0dd)
= il
= nnz
p= Z Pn(x) cos kyy cos— (1)
n=1
(0dd)

It follows from the components of Eq. (4) and Eq. (5) that the Fourier

amplitudes must satisfy the ordinary differential equations

- 2 2
P, = u[D2- Bn]Un (8)

— 2 2
-k P = ulp®- B IV, (9)
DU +kV = 0 (10)

n yn
where

2 _ ’ 2 2

B = (nw/2b)? + ky (11)

Equations (8) - (10) combine to give

[p2- B;][Dz— k;]Un = 0 (12)
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g
]

2 2 2
o = wID%- B21Du /2 (13)

v
n

-D Un/ky (1k)

In the following it is assumed that Bn and ky are positive, This is con-
venient because the regions to the right and left in Fig. 2b are taken as
unbounded in the + and -x directions respectively (L>> b). Appropriate

solutions to Egs. (12) and (13) to the right (r) and left (%) are then

(r) () (%)

u b =t (Fx) + B (3 B x) (15)
a = A" exp (+kx ,  exp (¥ B x >
(%) 2 ()

These solutions are to be spliced together at x = 0 where it is required
that the velocity be in the x direction. From Egqs. (14) and (15)

r r

(r) (x)

[ A (17)
B~ = -kyAn /8,

r :
Moreover, from conservation of mass, U (x = 0) U, (x = 0), or from Egs.

(15) and (17),

Al = A (18)
n n
Thus, from Eqs. (16)
AT 2
r L n W [nm
P -P = 2 "E;_ tﬁﬂ (19)

and it follows that the pressure jump at the origin is expressed as

i? 2&53 nt Tz
= : (555 cos kyy cos %g— (20)
n= y :

(oad)

(p" - p%)

x=0
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This jump in pressure in the neighborhood of the origin (x = 0) is due to the
shear stress at the interface. The stress in turn depends on the fluid velo-
city at the interface, which is designated as Uocos kyy with Uo at present
undetermined. Viscous shear stress transmits the effect of the electrical
surface shear stress into the bulk of the fluid, wvhere the velocity profile
varies from a maximum at the interface to zero at z = -b. In the simple model

developed here, the velocity profile at x = 0 will be taken as linear in z;

z
vx(O,y,z) = Uo(l + 60 cos kyy (21)

It follows from Egs. (6), (15) and (17) that

% = /-] @2

Thus, from Egs. (20) and (22), the total force per unit length (in the y dir-

ection) on the interaction region due to the external flow is
0

[ (p°- pz)l dz= By UF cos ky (23)
=b x=0 '
where it
F = ; sin (’—’“2—75)/{ (k B)(mm) (1 - & /8, )]
(0dd)

For a given pressure jump, Eq. (23) shows that the velocity is maximum
for that wavelength in the y direction which minimizes F. The dependence of
F on bky is shown in Fig. 3. Because the interaction region is modeled with
the periodicity in the y direction included only guasi-one-dimensionally, the
function F reflects the total dependence of the flow on the tr\ansverse wave-
length, 2n/ky. Thus the wavenumber of the impending instability can be imme-

diately predicted.
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Fig. 3 Dependence of summation defined by Eq. (23) on bky.
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ky = 1.15/b (2k)

At this critical wavenumber, F = 0.592.

Electrohydrodynamic Coupling
In the interaction region, the velocity is in the x direction. For
now, the interfacial velocity is considered independent of y, but neverthe-
less will later be expressed as a function of y having the same harmonic
dependence on that coordinate as the other variables. The basic simplifi-
cation of the electrohydrodynamics resulting from separating the flow into
the three regions comes from the representation of the velocity as being
uniform over the interaction region. The potential distribution imposed by
the electrodes is to be expanded over the basic period 2L. However, interest
will be confined to cases where b <<L.
The potential throughout the fluid and region above‘is expanded in
series of the form
+ -j-p-%E
0= ) olzle (25)
p=—
where E = - V¢.

The appropriate solutions to Laplace's equation having this form are

a _lalz
o = eip‘ (26)
P

b .

® = F sinh oz + C_ cosh 0 2 (27)
P P P P P

where (a) snd (b) denote the regions above and below the interface respec-
tively, and oz,p = pnw/L. The constants in these last two equations have been
chosen to make the potential continuous at the interface. The first of two
conditions on FP and CP is that the potential at z = -b is V/2 for =L < x < O

and -V/2 for 0 <x < L. In terms of the Fourier series
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o

¢b(z=-b,x) = z - 231“ (cos pw -1)exp(-3jpmx/L) (28)

p=.-oo

The second condition is that charge be conserved st the interface.

Ua(e

o 9x

1Py 3 ¢p 3 ¢p
o 9z ‘,‘:az -ca—z—-" 0 (29)

It'follows that Cp and Fp are given by

- (onap € -c)Fp

C’D
B JUQ'U‘p'Eo

(30)
V(cos 1p - 1)(g -Janps)

2mpjlecosh o b(jU 0. € - )+ sinh o b(jU |o j€
]l AISEACN ) IICEREN RN

The net surface force per unit length in the y direction is the integral of

the surface charge density multiplied by Ex’

L
N N
09z 3z 3x
-1 z=0 z=0
400 .
2

= 2L - JEa ¥ C 1

Z_.w seale ¢ (31)

®
where CP is the complex conjugate of Cp' Using Eq. (30), Eq. (31) becomes

2 [
- 16 e LV eQUoo z
(em)2

3, 2 2 2.2 . 2
o o ho b) + U £ hob+¢€ nh ab 2
o P/p [ (o cos ; ) oap( cosh o o5l 5 )*1 (32)
(0dd)

It is at this point in the derivation that the harmonic dependence on y is

taken into account in a quasi-one-dimensional manner. It is assumed that
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the dependence of Ton y, brought about because the surface velocity is in
fact a function of y, is slow enough that it can be accounted for by Eq. (32)
evaluated with U0-+ chos kyy. Even more, because it is the square of the
velocity that appears in the denominsator of Eq. (32), Uo is retained in the
denominator without substituting a y dependence. With these approximations,

Eq. (32) can be written as

2
16 €€ v b F
T = v b S
T—TTQZW . (b) U, cos k yG(L, e Re) (33)
where
o0 . 2 ) -
L 3 2 (b )* o 2
- — S
a= 1 gz (0% )’ /(cosh @ p) {1+ F— R (1 += tanh(ba )1

p=1

and R, = er/cb. The dependence of G on b/L with R, = 0 is shown in Fig. k,
Note that in the limit R =0, G does not depend on e/eo and in particular,

as b/L +~ 0, G - 1.08.

Self-Consistent Flow

The force per unit length given by LEg. (33) is now used to account for
the pressure jump at the origin, as depicted in Fig. 2c¢, with the coupling
between field and fluid represented in an average way by

(o]

[(pr- oM az = (35)
b x=0

Note that, because the pressure jump is evaluated at x = 0, the viscous losses
within the interaction region are lumped with those from the external flows.
Equation (23) is now used to express the left-hand side of Eq. (35) and T
is given by Eq. (33).The resulting expression requires that the pressure jump
generated by the interfacial motion be balanced by the pressure drop due to

viscous stresses in the external flow.
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Fig..h Dependence of G on b/L with Re = 0., The definition of G is given by

Eq. (33).
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16 €€ N
8u U_p _ oV 6
oF cos kyy = Gn%e \v GUocos kyy (36)

For a self-consistent flow, UO cos kyy can be canceled from this expression

and Eq. (36) then takes the normalized form

HERJ or? F/G (37)
e
where the electric Hartmenn number H_ = (v/p) €€ /uc . Remember that F

is a function of the wavelength 211/1{y (Fig. 3). In an experiment, the voltage
is raised (He increased) until there is a value of ky such that Eq. (37) is
satisfied. Thus, condition (37) is first satisfied vhere F has its least
value of 0.592 and the wavenumber ky is as given by Eg. (24),

Instability is incipient with Re = 0, and hence the condition for inci-

pience follows from Eq. (37) as
i
= (b €
H = 3.k2/c (L e o) (38)

with G given by Fig. 4. For example, in the limit b/L + 0, the critical
condition is H, = 3.28.

The surface velocity is included in the denominator of Eq. (32), i.e.,
the dependence of G on R_, 50 that Eq. (37) can also be used to approximate
the steady cell velocity established once He exceeds the value given by Eq.
(38). The normalized peak surface velocity is Re which, given the normalized
applied voltage He’ can be found from Eq. (37). This dependence of Re on H,
is summarized in Fig. 5. As the electric Hartmann number He is raised, insta-
bility is incipient at the value given by this plot with Re = 0. A further
increase in He results in a steady rate of convection given in normalized
form by Re' Thus, the electric Reynolds number Re determines the rate at which
the convection takes place, while the electric Hartmann number He determines

its incipience.
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Fig. 5 The electric Reynolds number Re is the normalized peak cell velocity,
while the electric Hartmann number He is the normalized.applied voltage.,
Thus, there is & threshold in voltage at which the convection sets in,
and the plot shows how the cell velocity then increases with voltage.

The case b/L = 0.02 is very nearly the same as b/L + O.
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ITI. EXPERIMENT

Arrangement and Observation

The form of electroconvective instebility described in the previous
sections is remarkebly simple to demonstrate. A pair of planar metallic
electrodes is placed side by side in the bottom of an insulsting container
with a spacing, s, of 2 mm. between the abutting edges (Figs. 2b and. 2e).
Then, the electrodes are leveled and covered by a layer of corn o0il to a
depth b that is varied between 2 and 20 mm. In the experiments described
here, the container has X and y dimensions of 19 and 15 em respectively,
although these dimensions are not critical so long as the relative cell
wavelengfhs are small.

The motion is observed by introducing small air bubbles onto the inter-
face. Although such bubbles can have a drastic influence on the motions of
highly insulating fluids, they remain a passive means of flow visualization
in the corn oil.

As a pdtential difference between the electrodes is increased, a thres-
hold is reached at which cellular convection occurs in the plane of the
interface. Typical cells are shown in Figs. 6a and 6b, where time exposure
of the bubble motions result in a record of the streamlines. The two photo-
graphs include the same area of interface, hence illustrate the increase in
cell wavelength that accompanies increasing the depth.

The streamlines predicted by the theoretical model are shown in Fig.
6c, scaled for comparison to Fig. 6b., Viewed from the side, the bulk motion
is observed to be in the x-y plane, justifying Eq. (6).

Wavelength and Voltage for Onset of Instability

The wavelength of the incipient instebility, A = 2"/ky’ is twice the

distance between the cell centers shown in Fig. 6. Thus, it is a straight-

forward matter to take the data of Fig. T from photographs. The solid curve
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Fig. 6 Cellular convection resulging‘}rom electroconvective instsbility, as

seen looking down at the interface (looking in the -z direction in Fig. 2b).

a & b) Time exposure photographs in which streamlines are made visible by

entraining small bubbles on the liquid interface. Depths b are 3mm and

7 mm respectively, and voltages are 3.35 and 4.8 kv. Note lengthening

of wavelength with depth, as predicted by Eq. (2Lk). Photographs are to

the same scale in both cases. Streaks in (b) are modulated by a forced
vibration of the apparatus to give a measure of the fluid velocity;

longer wavelengths indicate higher velocity.
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of Fig. T is predicted by Eq. (2L4), while the dashed curve would be pre-
dicted by Eq. (24) if 1.15 -+ 1.7 (Y* + vy in Fig. 3). This difference be-
tween the theoretical and observed wavelengths is not unreasonable if it is
recognized that the mode selection involves the minimization of a slowly
varying function (Fig. 3). There is only a 10% difference between the values
of F corresponding to the ﬁwo curves of Fig. T.

The measured voltage for onset of cellular convection is presented in
Fig. 8, together with the prediction of Eq. (38)in the limit b/L + 0. Here
the agreement between prediction and experiment is better than would be
expected, in view of approximations inherent to the model.

Cell Velocity

Streak photographs, taken for the fully developed cells, provide the
measurements of peak cell velocity Uo as a function of voltage, V, shown in
Fig. 9. Use of the physical parameters of Fig. 8, together with b = 0.7 cm,
gives the direct correspondence‘between Uo and Re, and between V and He sum-
marized by the alternative ordinates and abscissas of the figure. The solid
curve is predicted by Eq. (37) in the limit b/L > O (see Fig. 5).

Here again, the agreement between the approximate model and the obser-~
vgtions is closer than might be expected. The ordinary Reynolds number
Uobp/u is about 5 as Uo reaches U cm/sec. Thus, the discrepancy between
prediction and observation for velocities greater than 5 cm/sec. is probably

due to inertial effects, which are ignored in the model.
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Fig. 7 Wavelength A = 21r/kv of incipient instability as a function of the
liquid depth, b. The solid curve is predicted by Eq. (24) while the
points represent experimental observations. The dotted line illustrates
the prediction that would be obtained by using a value of Y correspond-

ing to a value of F only 7% greater than the minimum value (see Fig. 3).
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Fig. 8 Voltage for onset of instability as a function of fluid depth. The

solid line is predicted by He = 3.28, 1In the experiment, corn oil is

-11

used with u = 5.46 x 1072 kg(ms)™!, 0 = 2.2 x 107} (chm-m)™" € = 3.1 €, -
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Fig. 9 Peak cell velocity U0 as a function of the applied voltage. The depth
b = T mm and fluid parameters are as given in Fig. 8. The theoretical
curve shown follows from the results of Fig. 5 with b/L + 0, and the
relations U_ = ob R /e, V = Heb\/uo/seo. With U =-Lh cm/sec., the

ordinary Reynolds number based on the depth is about 5.
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IV. CONCLUDING REMARKS

This case study gives quantitative insight to a class of instgbili~
ties characterized by incipience at a critical electric Hartmann number
(Eq. 3 ) and ensuing steady convection at a rate proportional to an electric
Reynolds number (Eq. 2). The case recommends itself as the basis for under-
standing related phenomena, because it can be easily reproduced in the lab-
oratory, and meaningfully represented by a relatively simple model.

There are three types of electrohydrodynamic interactions that appear
related to the case described. The most obvious of these occurs in a
diversity of situations in which ligquid-liquid or liquid-gas interfaces are
stressed by an electric field (Taylor 1966, Smith & Melcher 1967). The
pumping motion resulting from shear stresses at the interface may be domi-
nated by a form of instability analogous to that discussed here. A recent
review has focused attention on this type of interaction (Melcher & Taylor
1969) to provide an overview of physical situations in which surface shear
pumping and electroconvective instability have been investigated. Included
in this review is an alternative model (Jolly 1968) for the instability
described here; a model more appropriate for the experiments in which b is
comparable to L.

Certain bulk instabilities found as a uniform ion current is passed
through a highly insulating initially static layer of liquid also appear
to have this electroconvective nature, with a critical electric Hartmann
number for incipience (Schneider & Watson 1969). The convection resulting
from this class of instabilities may be related to electrooptical liquid
crystal effects currently being investigated for image-processing purposes
(Heilmeier, et al 1968), and is certainly related to high-field conduction
processes through insulating liquids (Watson & Schneider 1967)(Lewis &

Secker 1967).
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A third type of instability occurs in conjunction with an equilibrium
flow; in pumps with ions flowing in the direction of equilibrium convec-
tion (Stuetzer 1959) or in channels with a transverse ion current (Jorgensen
1968). Although the velocity profile and other particulars brought in by the
equilibrium convection and characterized by the ordinary Reynolds number are
certainly involved (Lin 1955), many electrohydrodynamic bulk flow instabilities

appear to have an electroconvective nature also.
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