General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Technical Report

THERMIONIC CATHODE EVALUATION STUDY INTERIM REPORT NO. 6

MICROWAVE TUBE OPERATION, WALTHAM, MASS. 02154

RAYTHEON COMPANY Microwave and Power Tube Division Waltham, Massachusetts

INTERIM REPORT NO. 6 THERMIONIC CATHODE EVALUATION STUDY

NASA Prime Contract No. NAS7-100 Subcontract No. 951810

October 1 - December 31, 1968

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NAS7-100

This report was prepared by F. T. Hill. This report has been approved by:

G. Freedmah, Manager Materials and Techniques Group

L. L. Clampitt, Manager of Engineering Microwave Tube Operation

PT-2156 19 March 1969

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the National Aeronautics and Space Administration under Contract NASZ-100.

NOTICE

This report was prepared as an account of Government-sponsored work. Neither the United States, nor the National Aeronautics and Space Administration (NASA), nor any person acting on behalf of NASA:

- Makes warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately-owned rights; or
- Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee or contractor of NASA, or employee of such contractor, to the extent that such employees or contractor of NASA, or employee of such contractor prepared, disseminates, or provides access to, any information pursuant to his employment with such contractor.

Request for copies of this report should be referred to:

National Aeronautics and Space Administration Office of Scientific and Technical Information Washington 25, D.C.

Attn: AFSS-A

ABSTRACT

During the sixth interim period of thermionic-cathode evaluation, diodes using pore-dispenser cathodes have completed at least 10942 hours of life burning and are operating satisfactorily at cathode temperatures of 950°C to 1100°C and at current densities of $0.2A/cm^2$ to $1.6A/cm^2$.

Diodes using standard barium-strontium oxide cathodes have completed life burning times varying from 7600 to 9720 hours. The diodes are showing cathode emission slump at current densities above 0.15A/cm² and cathode temperatures of 825°C to 850°C under T_3 and T_4 operating conditions.

Seven lots of diodes (28 total) were constructed and tested for cathode emission with three different nickel cathode alloys with oxide and coatedparticle coating according to the specifications under Modification No. 1 of the program.

The diodes showed low and slumping thermionic emission levels attributable to cathode coating peeling in the case of the oxide cathode and sintered coating in the case of the coated-particle cathode.

TABLE OF CONTENTS

Section		Page
1.0	Introduction	1-1
2.0	Life Burning and Testing of Pore-Dispenser Cathodes	2 - 1
3.0	Life Burning and Testing of Oxide-Coated Cathodes	3-1
4.0	Behavior of Oxide-Coated and Coated-Particle Cathodes with Three Different Cathode Alloys	4-1
5.0	Plans for the Seventh Interim Report	5-1
6.0	Conclusions and Summary	6-1

LIST OF ILLUSTRATIONS

Figure	Title	Page
1	Pore-dispenser Cathode - T1 = 950° C_{BB}	2-6
2	Pore-dispenser Cathode - T2 = $985^{\circ}C_{BR}$	2-6
3	Pore-dispenser Cathode - T3 = $1035^{\circ}C_{BR}$	2 - 7
4	Pore-dispenser Cathode - T4 = $1100^{\circ}C_{BR}$	2-7
5	Standard Oxide Cathode - T1 = $800^{\circ}C_{BR}$	3-6
6	Standard Oxide Cathode - T2 = $825^{\circ}C_{BR}$	3-6
7	Standard Oxide Cathode - $T3 = 825^{\circ}C_{BR}$	3-7
8	Standard Oxide Cathode - T4 = $850^{\circ}C_{BR}$	3 - 7

LIST OF TABLES

Table	Title	Page
1	Life Test Results - Pore-Dispenser Cathodes	2 - 2
2	Life Test Results - Pore-Dispenser Cathodes	2 - 3
3	Life Test Results - Pore-Dispenser Cathodes	2 - 4
4	Life Test Results - Pore-Dispenser Cathodes	2 - 5
5	Life Test Results - Oxide-Coated Cathodes	3-2
6	Life Test Results - Oxide-Coated Cathodes	3-3
7	Life Test Results - Oxide-Coated Cathodes	3-4
8	Life Test Results - Oxide-Coated Cathodes	3-5
9	Life Test Procedures - Modification No. 1	4-2
10	Cathode Description - Diode Lots	4-3

1.0 INTRODUCTION

- 1 - 2

1

The materials and Techniques Group of Raytheon's Microwave and Power Tube Operation is performing a study of the life capabilities of these different types of thermionic emitters for the Jet Propulsion Laboratory, California Institute of Technology.

The life capabilities of the following electron-tube cathodes are being evaluated for a period of two years of life testing.

- a. Pore-dispenser cathode
- b. Coated-particle cathode.
- c. Standard oxide cathode.

During this period of study, the thirty-one diodes using pore-dispenser cathodes and oxide cathodes were continued on life burning. The results are reported in Section 2.0 and 3.0.

The diodes constructed with three different nickel cathode alloys are reported in Section 4.0.

2.0 LIFE BURNING AND TESTING OF PORE-DISPENSER CATHODES

The test diodes, constructed with pore-dispenser cathodes and operating under T_1 , T_2 , and T_3 life-test conditions have completed 11046 hours as of the end of the sixth interim period of study.

The test diodes under T_4 conditions have completed 10943 hours of life burning. The life test results are shown in Tables $I(T_1)$, $2(T_2)$, $3(T_3)$, and $4(T_4)$.

The last three sets of readings for each diode are the readings taken at the end of the months of October, November, and December, 1968.

As noted in the tables, at each interval of life burning the diodes are tested for cathode current at constant anode voltage and cathode temperature. The cathode current is also recorded for $\pm 20\%$ of the specified anode voltage.

and a little of

jî,

51

hà , The diodes are removed from the life-test rack and are read for dip temperature at the specified operating current and for current at 95% of the dip temperature according to the procedure described in the first interim report, Thermiomic Cathode Evaluation Study, January 1 - June 30, 1967.

Figures 1 through 4 are included in this interim report to give a clearer picture of the overall changes in operating current levels for the poredispenser cathodes at T_1 , T_2 , T_3 , and T_4 conditions for the 11046 hours of life burning under constant temperature and plate voltage conditions.

TABLE I

PT-2156

LII	'E TEST RESU	LTS
PORE -	DISPENSER C	ATHODES

Теят	Diode	Hours	Ip (ma)	Volts	Ip + 2.0% V	Dip T ^O C	Ip @ 95%1
T1-950°C 0.2 A/cm ²	Mri Ef = 9.0V	0 2688 8693 9463 10258 11046	10.0 11.0 11.0 14.9 11.0 11.0	397	8.4 - 12.0 8.9 - 13.2 9.0 - 12.9 8.9 - 12.9 9.0 - 13.1 9.0 - 13.1	880 891 904 881 901 891	8.80 8.00 8.57 8.69 8.50 8.69
	M4 Ef ¤ 9.0V	0 2688 8693 9463 10258 11046	10.0 10.0 9.9 9.8 9.9 9.9 9.9	26V	8.3 - 12.5 8.4 - 12.2 8.4 - 12.0 8.1 - 11.5 8.2 - 11.8 8.2 - 11.9	888 906 896 900 901 904	8,81 25 ,11 8,25 7,88 7,87
T1-950°C 0.4 A/cm ²	M2 Ef = 9.0V	0 2688 8693 9463 10258 11046	20.0 21.2 20.0 20.0 20.1 20.1	49V	15.1 - 27.3 $16.1 - 25.9$ $15.9 - 23.2$ $15.6 - 23.7$ $15.8 - 24.4$ $16.0 - 23.9$	916 896 893 897 890 895	19.3 17.5 17.3 16.6 17.5 17.6
	M3 Ef = 9,0V	0 2688 8693 9463 10258 11046	20.0 20.7 20.0 20.8 20.4 20.2	35V	16.5 - 27.0 $16.2 - 25.2$ $15.8 - 23.4$ $16.8 - 24.3$ $16.0 - 24.3$ $16.023.9$	897 907 919 904 893 880	15.0 16.6 15.8 16.5 16.6 17.6

.

TABLE 2

LIFE TEST RESULTS PORE - DISPENSER CATHODES

Test	Diode	Fours	Ip (ma)	Volts	Ip + 20% V	Dip 1 ⁰ C	Ip (a 95%)
T2 - 985°C 0.4A/cm ²	M7 Ef = 9.0V	0 2688 8693 9463 10258 11046	20.0 20.0 23.9 23.9 23.9 23.9 23.9	34. 5V	16.8 - 27.5 15.8 - 24.4 18.8 - 29.9 18.8 - 29.9 18.8 - 29.9 18.8 - 29.9 18.8 - 29.9	899 957 957 943 951 945	19.3 16.6 16.3 17.5 17.9 17.5
	M9 Ef = 9.0V	0 2688 8693 9463 10258 11046	20.0 22.5 21.5 21.8 21.8 21.8 21.8	40V	14.6 - 28.5 15.9 - 29.1 15.8 - 27.2 15.6 - 27.9 15.6 - 27.9 15.6 - 27.8	910 935 941 943 948 948 94J	18.8 17.7 17.5 18.0 17.3 17.1
T2 - 985°C 0.8A/cm ²	M11 Ef = 9.0V	0 2688 8693 9463 10258 11046	40.0 37.5 34.3 32.7 35.8 35.5	65V	32. 0 - 49. 5 $30. 8 - 45. 8$ $28. 4 - 41. 2$ $27. 4 - 37. 3$ $29. 7 - 41. 8$ $29. 7 - 41. 2$	964 979 970 985 985 985 946	28.0 30.3 31.6 24.8 28.8 35.0
	M12 Ef = 9. 0V	0 2688 8693 9463 10258 11046	40.0 37.0 32.1 32.1 32.0 33.8	54V	31.0 - 50.0 29.2 - 45.0 25.9 - 37.3 25.9 - 37.3 25.8 - 37.3 27.2 - 39.9	913 957 951 946 938 910	38.0 32.0 31.6 32.5 32.5 34.5

TABLE 3

PT-2156

L	ΙĒ	Έ	TES	TR	ES	ΠĽ	TS		
PORE	-	DI	SPE	NSE	R	CA'	тнс	DDES	3

Test	Diode	Fours	Ip (ma)	Volts	Ip + 20% V	Dip T ⁰ C	Ip (# 95%)T
T3 - 1035°C 0. 6A/cm ²	M13 Ef = 11.0V	0 2688 8693 9463 10258 11046	30.0 30.0 32.2 32.0 32.1 32.2	45V	22.5 - 38.5 23.9 - 39.8 24.6 - 41.0 22.5 - 41.0 24.4 - 40.3 24.2 - 40.1	965 961 1001 983 985 972	29.2 26.4 25.8 26.2 27.2 24.2
	M18 Ef = 11.0V	0 2688 8693 9463 10258 11046	30.0 30.0 32.0 33.7 31.7 31.7	48. 5V	21.5 - 38.0 23.0 - 37.8 24.9 - 40.0 24.4 - 40.0 25.1 - 41.1 24.7 - 40.0	949 1003 1001 1005 1008 1020	29.2 25.6 25.0 25.4 26.0 25.4
T3 - 1035°C 1.2A/cm ²	M17 Ef = 11. 0V	0 2688 8693 9463 10258 11046	60.0 61.2 62.2 63.9 63.8 63.2	90V	45.0 - 78.5 47.8 - 77.4 49.1 - 75.8 49.9 - 77.0 51.7 - 79.9 51.2 - 78.8	993 1020 1035 1035 1035 1024	55.5 51.6 51.6 51.8 52.0 51.2
	M14 Ef = 11.0V	0 2688 8693 9463 10258 11046	60.0 54.9 53.8 54.8 55.0 53.7	98V	44.5 - 69.0 41.2 - 70.2 40.2 - 67.9 47.5 - 68.9 41.2 - 70.4 40.1 - 68.4	995 977 980 990 980 980 999	56.0 55.2 55.2 57.4 56.0 54.8

TABLE 4LIFE TEST RESULTSPORE - DISPENSER CATHODES

Test	Diode	l'ours	Ip (ma)	Volts	Ip + 20% V	Dip T ^o C	Ip (a 95%)
T4 - 1100°C 0.8A/cm ²	M21 Ef = 11.0V	0 2521 8580 9350 10145 10943	40.0 46.4 51.8 51.0 50.9 50.2	57V	23.0 - 52.0 $28.8 - 59.5$ $31.4 - 64.0$ $31.2 - 64.0$ $31.4 - 63.8$ $31.0 - 63.0$	957 1055 1042 1035 1044 1048	37.6 34,6 32.5 29.6 33.5 29.0
	M23 Ef = 11.0V	0 2521 8580 9350 10145 10943	40.0 37.2 35.9 32.1 40.7 37.0	73V	24.0 - 51.0 $23.9 - 45.8$ $23.9 - 42.3$ $29.4 - 50.0$ $27.5 - 47.2$ $24.8 - 46.2$	997 1079 1100 1100 1100 1100	38.0 31.0 25.0 20.2 30.0 29.0
T4 - 1100°C 1.6A/cm ²	M22 Ef = 11.0V	0 2521 8580 9350 10145 10943	80.0 86.5 86.9 85.4 86.4 86.3	1067	59. 0 - 100. 0 71. 7 - 110. 0 74. 2 - 110. 0 73. 7 - 110. 0 74. 0 - 110. 0 74. 1 - 110. 0	1039 1051 1100 1100 1100 1100	73.0 66.0 62.0 64.2 65.4 63.0

۱. ۱

ł

Figure 1. Pore-dispenser Cathode - T1 = $950^{\circ}C_{BR}$

10 10 10

1

ţ

11.4

Figure 2. Pore-dispenser Cathode - $T2 = 985^{\circ}C_{BR}$

2-6

PT-2156 M-14 98.0 V 1.2 60 H-17 90.0 V CATHODE CURRENT (A/cm²) CATHODE CURRENT (mA) 5 09 M-18 48.5 V **IO46HR¥ð** 0.6 30 M-13 45.0 V 10 102 104 103 665881 LIFE BURNING (HR) Pore-dispenser Cathode - T3 = $1035^{\circ} C_{BR}$ Figure 3. 90 M-22 106 V + 10943 HR HEATER Burnout 2521 hr N-19 110 V -1.6 80 70 CATHODE CURRENT (A/cm²) CATHODE CURRENT (MA) 60 50 M-23 73.0 V 40 M-21 57.0 V 30 103 104 Ī 10 LIFE BURNING (HR) Hitte Figure 4. Pore-dispenser Cathode - T4 = 1100 °C_{BR}

2-7

The diodes operating under T_1 conditions (950°C, 0.2 and 0.4A/cm²) have not shown any significant changes in life burning conditions or in the test conditions.

The diodes operating under T_2 conditions (985°C, 0.4A/cm²) have not shown any changes in characteristics up to 11046 hours of life burning. The diodes operating under T_2 conditions (985°C, 0.8A/cm²) have shown a slump of 12.4 and 15.5% up to this point in life burning.

One diode $(1035^{\circ}C, 1.2A/cm^2)$ under T₃ conditions has shown a 10.5% slump in cathode current in 11046 hours. The other three diodes under T₃ conditions have not shown any significant changes in operating or test characteristics.

The diodes operating under T_4 conditions (1100°C, 0.8 and 1.6A/cm²) have not shown any significant changes in cathode current for 10943 hours of life burning.

In summary, it can be said that the pore-dispenser cathodes have been operating satisfactorily up to 10943 hours of life-burning from 950° C to 1100° C with the cathode current varying from 0.2A/cm² to 1.6A/cm².

3.0 LIFE BURNING AND TESTING OF OXIDE-COATED CATHODES

The test diodes with oxide-coated cathodes under T_1 and T_2 conditions have completed 7600 hours of life burning.

The test diodes with oxide-coated cathodes under T_3 and T_4 conditions have completed 9720 hours of life burning.

The life-test results are shown in Tables $5(T_1)$, $6(T_2)$, $7(T_3)$, and $8(T_4)$. Figures 5 through 8 are also included for the purpose of showing the changes in operating current levels under the specified conditions as noted in the figures.

The diodes operating under T_1 conditions (1800°C, 0.075 A/cm² and 0.15 A/cm²) have shown a change in cathode operating current from 8.8 to 25.0%.

The diodes operating under T_2 conditions (825°C, 0.15 A/cm² and 0.30 A/cm²) are showing a slump in cathode current of 0 to 29.6%. It should also be noted that the dip temperatures have risen to 825°C (operating temperature).

The diodes operating at T₃ conditions $(825^{\circ}C, 0.225 \text{ A/cm}^2 \text{ and} 0.45 \text{ A/cm}^2)$ are showing cathode current slumps from 17.0% to 69.4%. The dip temperature is also up to $825^{\circ}C$ (operating temperature).

The diodes under T₄ conditions (850 °C, 0.3 A/cm² and 0.6 A/cm²) are showing cathode current slumps from 24% to 52%. The dip temperature is also up to 850 °C.

An analysis of the test results shows the diodes with oxide-coated cathodes to be slumping at current densities above 0.15 A/cm^2 as the current density or temperature is increased.

TABLE 5 LIFE TEST RESULTS OXIDE - COATED CATHODES

•{

Test	Diode	Hours	Ip (ma)	Volts	Ip + 20% V	Dip T ^O C	Ip (a 95% T
Tl - 800°C 0.075A/cm ²	0-32 Ef = 8.0V	0 1371 5238 6018 6813 7600	6.0 6.0 5.1 5.1 5.2 5.2 5.2	19. 5V	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	722 666 693 742 740 732	4.13 5.14 5.19 5.06 5.11 4.95
	0-35 Ef = 8.0V	0 1371 5238 6018 6813 7600	8.0 7.8 7.1 7.0 7.0 7.0	18. 5V	7.1 - 9.7 7.2 - 8.9 7.4 - 8.0 6.8 - 7.0 6.8 - 7.0 6.8 - 8.0	750 740 774 780 802 780	4.13 5.14 4.88 4.76 4.69 4.88
T1 - 800°C 0.15A/cm ²	0-39 Ef = 8.0V	0 1371 5238 6018 6813 7600	12.0 11.8 11.8 12.1 9.0 9.0	36V	9.0 - 15.1 8.9 - 14.3 8.9 - 14.4 9.6 - 14.4 6.4 - 11.2 6.4 - 10.9	655 680 . 692 726 755 714	10.9 10.5 10.3 9.8 10.1 10.2
	0-40 Ef = 8.0V	0 1371 5238 6018 6813 7600	12.0 12.0 10.3 10.1 10.2 10.0	29V	9.6 - 14.7 9.9 - 14.1 8.9 - 12.2 8.2 - 11.9 8.3 - 12.2 8.4 - 12.0	769 703 743 761 775 757	9.3 10.1 9.1 10.2 9.4 9.75

3-2

TABLE 6 LIFE TEST RESULTS OXIDE - COATED CATHODES

Test	Diode	Hours	lp (ma)	Volts	Ip + 20% V	Dip T ^O C	Ip (4 95%)1
T2 - 825°C 0, 15A/cm ²	0-38 Ef = 8.0V	0 1371 5238 6018 6813 7600	12.0 11.0 9.9 9.0 10.0 14.2	29V	9.3 - 15.2 8.0 - 13.0 8.0 - 11.4 7.4 - 10.6 8.2 - 11.7 12.1 - 15.8	741 804 825 825 825 825 825	11.0 10.2 8.7 8.5 8.1 9.7
	0-41 Ef = 8.0V	0 1371 5238 6018 6813 7600	12.0 12.0 11.0 9.8 9.9 10.0	34V	9.1 - 14.7 9.3 - 14.9 8.5 - 13.2 7.5 - 12.0 7.8 - 12.0 7.9 - 12.1	727 758 825 825 825 825 825	10.8 10.8 10.1 9.5 9.5 9.0
T2 - 825°C 0.30A/cm ²	0-33 Ef = 8.0V	0 1371 5238 6018 6813 7600	24.0 20.9 19.2 18.3 17.8 16.9	45V	19.0 - 30.4 16.2 - 25.4 15.0 - 23.0 14.2 - 22.1 14.0 - 21.0 13.7 - 20.2	787 825 825 825 825 825 825	21.0 20.8 18.0 19.5 17.4 17.2
	0-37 Ef = 8.0V	0 1371 5328 6018 6813 7600	24.0 21.0 20.0 20.0 20.0 20.0 20.0	56V	19.1 - 30.7 17.0 - 24.7 16.5 - 23.5 16.7 - 23.4 16.8 - 23.4 16.9 - 23.3	735 825 825 825 825 825 825	22.6 18.0 19.1 18.0 18.9 20.1

*

TABLE 7 LIFE TEST RESULTS OXIDE - COATED CATHODE

Test	Diode	Hours_	Ip (ma)	Volts	Ip + 20% V	Dip T ^O C	Ip (a 95%/1
T3 - 825°C 0.225A/cm ²	0-11 Ef = 8.0V	0 3439 7368 8138 8933 9720	18.0 11.0 10.4 10.4 10.4 10.0	31V	14.0 - 22.2 9.0 - 12.4 8.9 - 12.4 8.4 - 12.4 8.6 - 12.4 8.6 - 12.4 8.4 - 12.0	779 825 825 825 825 825 825	16.4 11.6 12.4 12.4 14.1 12.6
	0-15 Ef = 8,0V	0 3439 7368 8138 8933 9720	18.0 14.2 13.4 15.7 12.8 12.4	28V	13.9 - 23.5 11.3 - 18.0 10.7 - 15.9 11.8 - 19.8 10.3 - 15.0 10.2 - 15.0	769 825 825 825 825 825 825	16.6 13.5 10.8 10.7 7.3 11.9
T3 - 825°C 0.45A/cm ²	0-7 Ef = 8.0V	0 3439 7368 8138 8933 9720	36.0 20.0 18.6 18.4 11.0 11.0	34V	28.0 - 45.5 17.0 - 22.4 16.3 - 21.9 16.3 - 21.8 10.9 - 14.3 10.9 - 14.3	783 825 825 825 825 825 825 825	33.5 32.8 28.4 22.5 28.1 22.5
	0-14 Ef = 8.0V	0 3439 7368 8138 8933 9720	36.0 35.4 33.0 30.5 31.0 29.8	67V	28.0 - 44.5 27.0 - 46.2 26.9 - 44.2 24.7 - 43.9 24.8 - 44.3 24.2 - 42.5	768 825 825 825 825 825 825	31.7 29.3 24.8 24.1 21.4 28.4

) (1

¢.

TABLE 8 LIFE TEST RESULTS OXIDE - COATED CATHODES

Test	Diode	Hours	Ip (ma)	Volts	Ip + 20% V	Dip T ^O C	1p (a 95%)
T4 - 850°C 0.3A/cm ²	0-2] Ef = 8.0V	0 3439 7368 8138 8933	24.0 15.0 13.5 13.9 -Diode F	39V ailed-	18.2 - 29.0 12.2 - 19.8 10.9 - 17.4 10.9 - 16.3 Loose Ano	774 850 850 850 le	21.6 18.3 16.9 16.4
	0-22 Ef = 8.0V	0 3439 7368 8138 8933 9720	24.0 15.8 11.7 11.8 11.5 11.5	46V	19.7 - 28.0 13.1 - 21.2 10.0 - 13.1 10.0 - 13.1 10.0 - 13.0 9.9 - 12.3	775 .850 850 850 850 850	18, 2 19, 3 13, 5 13, 8 13, 1 8, 2
T4 - 850°C 0.6A/cm ²	0-19 Ef = 8.0V	0 3439 7368 8138 8933 9720	48.0 41.9 42.2 39.2 37.4 36.5	57. 5V	35.0 - 59.3 $31.4 - 64.5$ $32.2 - 55.8$ $30.9 - 53.8$ $29.3 - 52.2$ $29.3 - 51.8$	796 850 850 850 850 850	42'. 0 36. 0 35. 1 34. 2 27. 4 28. 5
	0-20 Ef = 8.0V	0 3439 7368 8138 8933 9720	48.0 41.4 35.8 31.9 32.5 28.3	70V	36.8 - 60.0 32.0 - 55.3 26.9 - 44.9 25.8 - 42.7 26.0 - 40.0 23.1 - 36.4	769 850 850 850 850 850 850	42.6 37.5 31.2 31.2 23.7 24.2

A state of the sta

-

PT-2156

FT-2156

Figure 5. Standard Oxide Cathode - T1 = $800^{\circ}C_{BR}$

Figure 6. Standard Oxide Cathode - $T2 = 825^{\circ}C_{BR}$

h

1

4.0 BEHAVIOR OF OXIDE-COATED AND COATED-PARTICLE CATHODES WITH THREE DIFFERENT CATHODE ALLOYS

The diodes, which were constructed with three different cathodes according to the specification described in Table 9, Life Test Procedures, Modification No.1, were exhaust processed, aged for stabilization, and pretented for life burning during this sixth interim period of study.

Interim Report No. 5, Thermionic Cathode Study, July 1 - September 30, 1968, describes in detail the fabrication of the cathodes and the construction of the diodes.

The diodes were exhausted on a double vacuum bakeout system in groups of four diodes. A total of seven exhaust loads were run on the system.

The seven lots of diodes contained the cathodes as described in Table 10.

č ę

TABLE 9 LIFE TEST PROCEDURES MODIFICATION NO. 1

CATHODE	LIFE TEST TEMP.	REQ'D UNITS	CURRENT DENSITY ma/cm ²
	Τ ₂	1	150
Oxide Cathode	T ₂	1	300
Using 220 Alloy	\mathbf{T}_{3}^{-}	1	225
Nickel Base	Т _З	1	450
(4 Units)			
Ordida Cathada	Ψ-	1	150
	±2 m	1	200
A 22 Nichel Barr	¹ 2	1	300
A-33 NICKEI Base	¹ 3	1	225
(4 Units)	· ¹ 3	1	450
Oxide Cathode	T ₂	1	150
Using 0.1% Zr in	T_2	1	300
Ni-pure Nickel Base	T ₃	1	225
(4 Units)	T ₃	1	450
Coated Particle	T_2	1	275
Cathode Using Cath-	т ₂	1	550
alloy A-33 Nickel Base	T ₂	1	415
(4 Units)	T ₃	1	830
Coated Particle	Ta	1	275
Cathode Using 0.1%	\mathbf{T}_{2}	1	550
Zr in Ni-pure Nickel Base	\mathbf{T}_{2}^{2}	1	415
(4 Units)	т _з	1	830
(4 Units)	-3 T ₃	1	830

TABLE 10

CATHODE DESCRIPTION - DIODE LOTS

DIODE LOT NO.	CATHODE	COATING
1	0.1% Zr in Ni-pure Nickel Alloy	Oxide-coating C51-3
2	A-33 Ni Alloy	CPC coating
3	A-33 Ni Alloy	Oxide coating C51-3
4	0.1% Zr in Ni-pure Nickel Alloy	CPC coating
5	220 Ni Alloy	Oxide coating C51-3
6	220 Ni Alloy	Oxide coating C51-3
7	220 Ni Alloy	Oxide coating C51-3

The exhaust system used to process the diodes consisted of a Vac-ion pumping system (125 1/s) for internal pumping of the vehicles and a vacuum bakeout oven backed by an oil-diffusion pump capable of 1×10^{-6} Torr pressure at 400 1/s.

The diodes were exhaust processed as follows:

- a. Bakeout diodes at 450° C for 24 hours under double vacuum conditions (P at end of cycle = 1×10^{-6} Torr).
- b. Heat anode to 900°C for 1 minute. ($P < 1 \ge 10^{-7}$ Torr).

<u>c</u>. Heat cathode to 1000° C, maintaining pressure < 1 x 10^{-7} (20 - 30 minutes).

- d. Hold at 1000° C for 5 minutes (P = 3 x 10^{-8} Torr).
- e. Hold cathode at 900°C for 10 minutes ($P = 1 \times 10^{-8}$ Torr).
- f. Tip off diode ($P = 1 \times 10^{-9}$ Torr).

g. Flash getter.

h. Attach bakelite base to diode.

The diodes were next aged for periods of 24 - 100 hours at 800 - 825°C cathode temperature and voltage at 50 V dc. The diodes under test showed from 6 - 12 mA of cathode current at 50 V dc. Increases in anode voltage showed little or no increases in cathode current.

Dip tests of the diodes at 800° C and 50 V dc anode voltage showed the diodes to be operating in the temperature-saturated region.

A physical examination after five lots of diodes using oxide-coating (C51-3) showed the coating to be very thin and peeling from the nickel-alloy base metal.

An examination of the coated-particle cathodes showed the coating to be very thin with slight peeling of the coating.

The tests were discontinued at this time because of the cathode-coating peeling problem.

5.0 PLANS FOR THE SEVENTH INTERIM REPORT

i

During the next interim period from January 1 to March 31, 1969, the following program will be in effect.

- a. Continue life testing of pore-dispenser cathodes now on life burning.
- b. Continue testing of oxide cathodes now on life burning.
- c. Assemble and exhaust new diodes according to Table 9, with elimination of the cathode peeling problem.
- d. Start life-burning of 20 diodes according to Table 9,

6.0 CONCLUSIONS AND SUMMARY

The Raytheon Materials and Techniques Group, in conducting a study of the life capabilities of the pore-dispenser cathode and the oxide cathode, has drawn the following conclusions from fifteen months of life burning under the conditions noted in Tables 1 through 8.

- <u>a</u>. The pore-dispenser method is suitable for dc operation for at least 10943 hours at current ranges of 0.2 A/cm² to 1.6 A/cm² and temperatures ranging from 950°C to 1100°C.
- <u>b.</u> The standard barium/strontium-oxide cathodes are showing emission slump at current densities above 0.15 A/cm² under T_3 and T_4 operating condition from 7600 to 9720 hours. Though the emission level in these diodes is decaying, they should not be counted as failures at this point of life.
- <u>c</u>. The diodes constructed with the cathode alloy modifications listed in Table 9 have shown cathode coating peeling in the case of the oxide-coated cathode and very thin coating in the case of the coated-particle cathode. Both these conditions have contributed to low cathode emission and slump.
- d. It is postulated that the reason for the cathode peeling in the case of the oxide cathode is the lack of surface roughness which is necessary for physical adhesion of the coating particles to the nickel alloy base. In order to overcome this difficulty, the next lots of diodes with nickel alloy cathodes will have a sintered layer of pure nickel on the cathode base metal to increase adhesion.
- <u>e</u>. At this point, the only candidate for satisfying the objective of 1 A/cm^2 is the pore-dispenser cathode.

6-1