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Abstract

The solution of mildly nonlinear equations in Rn——especia]ly
those arising from the discretization of mildly nonlinear, self-
adjoint, elliptic boundary value problems in twe dimensions--is
studied. Existence and uniqueness results are presented, and
several iterative techniques for approximating the sclution are
considered. These techniques are generally two-level jterations
in which an alternating direction procedure is coupled with a
Tinearizing procedure--either of Picard or of the Newton tyve.

Proofs of the convergence of these procedures are given.
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INTRODUCTION

The alternating direction implicit--or ADI--method for approximating
the solution of certain types of elliptic and parabolic partial differen-
tial equations in two space dimensions was introduced by Peaceman and
Rachford (23] in 1955. For elliptic problems, the method is iterative,
and, for many problems, especially those approximating so-called model
problem conditions, convergence is very rapid. Variations of the
Peaceman-Rachford scheme have been introduced in [6], [7], [8], [9],
[11], and [14]. These variations have extensions to three or more
space dimensions, but, in two dimensions, they lack some attractive
convergence properties of the Peaceman-Rachford method.

In this paper, we consider the application of the Peaceman-Rachford
iteration to certain types of nonlinear elliptic difference equations in
two dimensions. FEarlier papers in this area are [5], [12], and [13].

Chapter I consists of background material. The elliptic partial
differential operators being considered yield so-called operators of
positive type when discretized in the usual way. Thus, operators of
positive type are defined and some properties, based on the maximum
principle, are developed. The mildly nonlinear pfoblem in R® is defined,
conditions are given which guarantee'the existence of a unigue solution,
and a priori bounds on the solution are obtained. Finally; an analogy
is drawn between the properties of the discrete and continuous operators,
and a proof is given of the existence of a unique solution to a mildly
nonlinear elliptic boundary value problem.

Chapter II contains background material on ADI methods. The
Peaceman-Rachford method is presented for the linear problem along with
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the basic convergence results. Three iterations are defined for a
mildly nonlinear problem (ADi; ﬁewton—ADI, ADI -Newton) and conditions
are given which gparantee_that the:methods,gre lopally convergent to
a solution.

Chapter ITT céﬁ%a;ns a closer study of the nonlinear ADI iteration
intréduced in Chaptéf IT and considered by Kellogg in [15]. Convergence
results analagouslfo those in the l;near case:are obtained in a Hilbert
space set%ing. ”

Chapter IV cpntains a study of two level iterations in which a
Picard iteration is coupled with an ADI iteration. Earlier results of
Douglas [5] and Gunn [lé], [13] are fqrmalized and extended. Multi-
step and single~step iterations are considered.

Chapter V‘is devotéd to a closer study‘of the two level iterations
infroduced in Chapter II»in which a Newton iteration 1s coupled with an
ADi iteration. Results are given based on cqptrac@ionrand,mothonicity
principles. Finally, some‘miscellaneous numerical results are presented.
* lWe summarize‘our results as follows. We present formal conditions
which guéréntee thekégistence of a unique solution to anm;}dly nonlinear
elliptic Eoundafy value problem or its discrete version.»,Wg introduce
Newton-ADI iterations for approximating the so;gtion to_the discrete
problem and present algorithms which are guaranteed to converge to the
solution. We also formalize and generalize‘some previous results on
~Picard-ADI i’_oeratior_ls and obtain convergence results for a one-level

" nonlinear ADT iteration in a Hilbert space.



CHAPTER 1
MILDLY NONLINEAR PROBLEMS

1.1 Introduction. In this chapter, we discuss existence and unique-

ness of solutions to mildly nonlinear problems in R" and obtain bounds on
the solutions. In particular, we discuss mildly nonlinear problems having
a Tinear part coming from an operator of positive type. In Section 1.2,
we define operators of positive type and present or extend certain known
results based on the maximum principle. In Section 1.3, we define mildly
nonlinear problems and present conditions under which a unique solution
can be guaranteed to exist, and in Section 1.4, we obtain a priori bounds
on the solutions. Finally, in Section 1.5, we consider a mildly nonlinear
elliptic partial differential equation and present results analogous to
those earlier in the chapter. We first present some notation and defini-

tions.

Let G: X ~ Y, where X and Y are Banach spaces. If G is nonlinear,

G(x) will denote the value of G at x ¢ X3 1if G is linear, we will write

Gx instead.

1.1.1 Definition: Let X, Y be Banach spaces. If F: X > Y satisfies

< B
IF(x;) - FOOM = gljxq = x,|| for x;, x, e DEX,
for some B < », F is said to be Lipschitz on D with constant g, and we
write F e Lip(D,B) or F ¢ Lip(D). If F is Lipschitz on bounded sets, we

write F e Lip, (b for “"bounded. ")

1.1.2 Definition: Let H be a rea1 Hilbert space. If F: H > H satisfies

(F(x) - F(y), x - y) 2 a|x -y 2 for x, y ¢ DeH,
3



for some o 2 0, F is said to be monotone on D with constant o, and we
write F ¢ Mon(D,a) or F e‘Mbn(D) If o >0, F is said to be uniformily
monotone on D. 1f F is un1form1y monotone on bounded sets, we write F ¢

(F(x) - F(y),x - y) 50 forx,yeD,
F iswsaid,togbeﬂstbictly monotone on -De.

'Let X, Y:bevBanachVSpéces‘ ‘Then L(X Y) denotes the set of 1inear
operators from X to Y Thus L(Rn R" ) is the set of nxn matr1ces E

For x ¢ R and A e L(R ,R ), we have o

X = (x1,i'sxn)T and A =-(aij)w

" In R", we use the following vector nonms,

x|l , = ]gggnlxil and ||| . 5 |%; IPT/P for 1.5 po< =,

i

and the corresponding matrix.norms,

it
8

HN| = sup ||l . for 15 p
p "X“p=1| p
If A e L(R",R") has e1genVa1ues A], ,A then o(A) = Dys™ 7Ty } and

p(A) @a§ lA |. To say A is pos1t1ve definite (pos1t1ve semi- def1n1te)
1=i=n

n. If A is symmetr1c,

A

means A is symmetric and A x>;0klx Z‘0) foé”l—é i
then it is well known that p(A) = IIAH ~Ifékni’s'a éca]ar, r+ A, is
bfshorthand for rl + A where Iis the nxn 1dent1ty mafnfx.
If x,ye R" , then o

| [x,y] = {x + t{y -.x) : 02 £ 21},

A
et
w
——d .
A <
Y i
]
=
it

* ) _ _ . <
[xgy]’ = {é,l £ Ti*i + ti(yi 31)--0'—’t



If x e R, x 20 (x > 0) means X; 20 (xi > 0) for 12

LA

I | ¥4 - |

A e L(R"R"), then A 20 (A > 0) means a;; 0 (a5 > 0) for 1
Furthermore, |x| = (]x1|,"‘,|xnl)T, and |A| = (‘aijl)'

For x ¢ X, a Banach space, and p > 0, define the set
S(xsp) =y e X : [Ix - y|| < p}.

1.2 Operators of Positive Type. The discretized versions of certain

types of elliptic partial differential operators are often of so called
positive type (see [10, P. 181].) For operators of positive type, maxi-
mum principles, similar to the differential maximum principles, are read-
ily available. Furthermore, a bound on the inverse of an operator of
positive type is often easy to obtain. We define operators of positive

type in the next two definitions.

1.2.1 Definition: Let & be a set with m elements, denoted P],"',Pm. For
n<m, let @ = {P],---,Pn}, and let @' = § - Q. Associated with each point, P ¢
Q, let there be a set N(P)cd, of "neighbors" of P satisfying P § N(P).

The neighborhood system {N(P)} is said to be irreducible if, given P ¢ @

HA

and Q ¢ Q, there are points Qq5"""5Q € 2 such that Q. ., ¢ N(Qi) for 0
i £ k, where Q = P and Qe1 = Q.(Q,9, Q,IN(P)}) is called a mesh domain
with neighborhood system or, simply, mesh domain, and is called proper if
{N(P)} is irreducible, For X = @, 9', or Q, let & (x) be the

set of real valued functions on X, and for u ¢ #(X), let
Hu| = maz|u(P)|.
Ly o0 PeX

1.2.2 Definition: Let (2,2', Q,{N(P)}) be a proper mesh domain. Let

the linear operator &: (&) > 4(Q) be defined by



(1.2.1) wu(P) = a(P,P)u(P) - = a(P,Qu(@,
' QeN(P)
where |
Kt é)\ é(P,Q) >0 forP e o and Q e N(P),
a2 {000 ,
b) a(P,P) & = a(P,Q) forPeg®

QeN(P)
Then & is of positive type. If equa]iﬁy.holds in (1.2.2b), then % is of
" minimal positive type. The set of opEfatorsvofijSitiVe type 6n He) will
‘be denoted 1(%), and the set of operators of minimal positive type will

be denoted 1,(%).
The next two results are well known maximum principles.

1.2.3 Theorem: Let (2,2',8,{N(P)}) be a proper mesh domain. Let % e

1,(2) be given by (1.2.1). Let u e Q).

A

2l

i) Suppose fu = 0 on Q, then u is constant on f or

ky?l;zléa) u(P) < max u(qQ) for P e Q.
, e’

v

41) Suppose tu = 0 on @, then u is constant on Q or

' (1.2.3b) min u(Q) < u(P) for P ¢ Q.
QeQ’

iii) Suppose fu = 0 on Q, then u is constant on Q or .

(1.2.3¢) min u(Q) < u(P) < max u(qQ) for P € Q.
peq’ Qen’

Proof:i)Suppose u attains its maximum, M, at P € Q. Then, since ¢ ¢
g (%)
a(P,P)M= 1 a(P,Q)M 32 z( )a(P,Q)u(Q) 2 a(P,P)u(P) = a(P,P)M.

QeN(P Q;N

Hence,



z a(P,Q)[M - u(@)] =0.
QeN(P)

But, then by (1.2.2a), u = M on N(P). But, since {N(P)} is irreducible,
uzMon Q.
ii) Apply i) to -u.
iii) Apply i) and ii) to u.

1.2.4 Theorem: Let (Q,0',Q,{N(P)}) be a proper mesh domain. Let & €

(@) - 1,(2) be given by (1.2.1). Let u ¢ o).

1) Suppose fu Zo0onq, thenu = K= 0 or

(1.2.4a) u(P) < max(0, max u(Q)) for P e Q.
QReR’!

>
=0 or

[

i1) Suppose u 20 on 9, then u

(1.2.4b) min(0, min u(Q)))
Qe’

A

u(P) for P ¢ Q.

0 or

111) Suppose u = 0 on Q, then u
(1.2.4¢) min(0, min u(Q)) < u(P) < max(0, max u(Q)) for P e Q.
Qeq’ Qeq’
Proof: We need only prove i). Suppose u attains a non-negative maximum,

M, at P € ©. Then

a{P,P)M = a(P,P)u(P) = = a(P,Qu(Q) = = a(P,Q)M = a(P,P)M.

QeN(P QeN(P

Hence, as in Theorem 1.2.2, u = M 2 0. Now, since & ¢ Iy(2)

a(P,,P,) - 2. u(P,,Q) >0
0°'0 QEN(PO) 0
for some P0 e 2. Then

02 au(Py) = [a(Py,Py) - = a(Py.Q)IM,
0 0°"0 QeN(p, 0



and hence, M'5 0. This completes the proof.

_ Let 2 eTi(2) be given by (1.2.1) where (a,0',%, {N(P}}) is a proper
mesh domain. Define Az = (aij) e L(R",R") by

a(Py,Py) if i =j

1}

—-a(Pi,Pj) if 14 and Pj £ N(Pi)
0 if 143 andPy ¢ NPy).

Now, since % «[J(Q), A2 is diagonally dominant and the diagona1 dominance
is strict in those rows corresponding to the points P for which N(P.)Ng'
3 0. Such a point P exists since o' # § and {N(P)} is irreducible. This
also shows that A2 is irreducible. Thus, Az is an irreducibly diagonally
dominant M-matrix (see [28, P. 85].) 1In particular, A2 is non-singular
and A;] > 0.

For v e 8(a') or &(2), let b, ¢ R" be defined by

b,); = QsN(P:)f\Q'a(Pi’Q)V(Q)

for 1549 3n. Letve @(2"), and suppose u ¢ @(Q) satisfies
(1.2.5) u(P) = v(P) for P ¢ q'.

Let f ¢ ¥ () and define x, ¢ ¢ R" by X; = u(Pi) and b5 = f(Pi)., Then
(1.2.6) Ax = b, = -4

if and only if

(1.2.7) Lu(P) = -f(P) for P ¢ Q.

Thus, to find the solution, u, to (1.2.7) subject to the boundary condi-
tion (1.2.5), it is sufficient to find the solution, x, to (1.2.6).



Since Az is non-singular, both u and x exist and are unique.

1.2.5 Example: Consider the boundary value problem

—f(S,t) 5 (Sat) eD= (0,])x(0,])

(1.2.8) {;-USS - Uy *ov(s,t)u
u(s,t)

V(Sat) 3 (S,t) e 3D >
where

(1.2.9) v(s,t) = 0.
Let h = ]/N+1 for some positive integer,‘N, and define

9 = {(ih,3h) : 1 24,5 SN},
& = {(ih,dh) : 0 = 1,5 = M1} - ((0,0),(0,1),(1,0),(1,1)3,
and @' = Q@ - Q. The usual 5-point difference approximation to (1.2.8)

takes the form

-f(s,t) 5 (s,t) e

(s,t) = -Ahu(s,t) + v(s,t)u(s,t)
(1.2.10) {:

u(s,t) = v(s,t) ; (s,t) eq',

(1.2.11) -h®a u(s,t) = 4u(s,t) - u(s+h,t) - u(s-h,t) - u(s,t+h) - u(s,t-h)

for (s,t) ¢ . Here N(s,t) = {(s+h,t),(s-h,t),(s,t+h),(s,t-h)} for (s,t) ¢
Q. Then (,2',2,{N(P)}) is a proper mesh domain, & e n(Q), and -Ap €

HO(Q).

Let 2 be defined by (1.2.10) where (1.2.9) holds. In [1], Bers

HA

proved ]IAE]I max e/min(-A,¢) where ¢ is any function in F(2)

i} 9]

] o

which satisfies ¢ = 0 on & and -Ap@ > 0 on 2. A bound independent of h
is obtained by noting that A2 = A0 when ¢ is a quadratic polynomial. We

now extend this result to general operators of positive type.



1.2.6 Theorem: ILet (,9',2,{N(P)}) be a proper mesh domain.

N(Q) and u e Q) and suppose u > 0 on Q. Then
max u - min(0, min u)
(12120 ) |l =2 L
min W
) Q
i) If % e HO(Q), then

max u - min u
(1.2.13) HA-JH < 8 Q.
g 0

min U
Q

ii1) If %, € T(Q) satisfies

zlw(P) = gw(P) + y(P)w(P)

v

for we FR) and P e 9, where v(P) 0, then

BA
[

(1.2.14) “AZZH » S HA;]H for 1
1

S

Proof: i) Let w ¢ @ (8) satisfy

w(P)
{ w(P)

u(P) 3 Peq

0 s P e

Let % ¢

Let 'y, z ¢ R" satisfy y, = w(Pi) and z, =,eu(P1.). Then Ay = z. Let

-1 _ > < 2
Az = (bij)," 0. Thgn for 1 =14 =n,
: > n b > . n b
ax y, = y. = L b,.z. = minz, I b..
&k T T 0 T B2 AT
But HA']“ = may 2 b.. Hence, since z > 0
e 13En g1 V-
ax y max w
TR E A
zleo rgig z, minzu

1=k=n Q

Now, let v ¢ G(Q) satisfy

10



11

{zv(P) 0 3 Peq
v(P)

Then, by Theorem 1.2.4,

u(P) 3 Peg

min(0, min u) = min(0, min u) = v(P)
Q o) 4
Now, w = u - v. Hence
max w = max u - min vy =<:-me_lx u - min(0, min u) s
Q Q Q Q

which estab]ishgs (1.2.12).

ii) The proof is the same except, since 2 ¢ HO(Q), we can use Theorem
1.2.3 instead of Theorem 1.2.4.

jii) Let D be the non-negative diagonal matrix with diagonal entries,

- = 2 . -1 > -1 2
dii" y(Pi). Then Az1 A, +D=A,. Now, since A, =0 and Az1 £ 0,
we have

(1.2.15) 0sA" 3
from which (1.2.14) follows.

Theorem 1.2.6 can be used with the following theorem.

1.2.7 Theorem: Let (Q,Q',2, {N(P)}) be a proper mesh domain. Let 4 e

1(9) and suppose u e "q(Q) satisfies

w(P) = -f(P) ; Peaq
{ u(P) = v(P) ; Pe Q'
Then |
(1.2.16) lll g, = 1zl ‘w”f“Q,m i | PO

Proof: Let up, u, e (%) satisfy
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zu](P) =-f(P) 3 Pen ) zuz(P) = 0 ; Peaq
{ul(P)= 0 i Peg! " {UZ(P)=V(P) ; Peq!

respectively. Then u = u; +u,. But l‘u]H 9. §-|IA;1“ m»HfH 9w
and, by Theorem ].2.4, |1u2" Q. s ||v“ Q' The result follows from

the triangle inequality.

Consider the uniformly elliptic boundary value problem

- Lu(s,t) = -f(s,t) ;3 (s,t) €D = (0,1)x(0,1)
u(s,t) = v(s,t) ;3 (s,t) ¢ 3D |
(1.2’.17){
Lu(s,t) = -(a(s,t)u) - (b(s,thuy),
.a,b ¢ C](D), v

™

c(sD), a(s,t) 2 ag > 0, b(s,t) 2 b0 > 0.

Let (2,2',8,{N(P)}) be as in Example 1.2.5. Then, approximating (1.2.17)

by central differences, we obtain the discrete boundary value problem,

gu(s,t)
(1.2.18) {
u(s,t)

-f(s,t) 3 (s,t) eq

v(is,t) ;3 (s,t) @' ,

where, for (s,t) ¢ @,

(1.2.19)  hZau(s,t) = [a(s#t) + a(s-h,t) + b(s,t4]) + b(s,t-MTu(s,t)
- a(sHhthu(s+h,t) - a(s-3,t)u(s-h,t)
- b(s,t+puls,t+h) - b(s,t-Ru(s,t-h)

Let
oS
(1.2.20) wa(s,t) = -g
Then
S
(1.2.21) Lwa(s,t) =qge [oa(s,t) + as(s,t)]

Since a(s,t) 2 ay > 0, we can pick a such that
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(1.2.22) Lw_ Zm>0 onD
2 _ h a(s+h) as h as a(s-h)
Now, h zwa(s,t) = a(s+§,t)(e -e ) - a(s-z,t)(e -e )
as h °‘2‘ h h .\ h
= e [2a(s+23t)e sinh o - 2a(s—§3t)e sinh aii

sinh uh as h h
ahe [E(S ’t,'z") - g(ssts"‘z’)]s
°7
b
where £(s,t,0) = a(s+o,t)e . Now

08 :
ggﬁ(s,t,e) = e [oa(s+e,t) + a(s+e,t)]. Hence, from the Mean Value
Theorem, for some & = o(s,t) ¢ [-%ng,

sinh a%- asS af

iw (s,t) = ce e [oca(s+e,t) + as(s+e,t)]
o, o
?
sinh o
= —p—lw (s+0,t)
] o
?
Now, %sinh(s) 21 for all s $ 0. Hence there is a K = K(a,h) 2 1 such that
(1.2.23) zwa(s,t) = KLwa(s+e,t)

Now, if (s,t) e @, then (s+6,t) ¢ D. Thus, if (1.2.22) holds, then

™

(1.2.24) min aw min lw >0
e * p °

Thus, by Theorem 1.2.6, if (1.2.22) holds, then

mx w - minw

o Q
(1.2.25) ‘fA}]” B TE
D o

We note that (1.2.25) gives a bound independent of the mesh size, h.

Let‘a(s,t) = b(s,t) = 1. Then -L = A, the Laplacian, and g = -0ps

which was given in (1.2.11). Now, -2e®® = azeas > 0 whenever o« # 0. Hence
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a a 1.6
e -1 . 1-e, e -1 1.545

| = min(min ==, min ) =
—AJ a0 o -~ a<0 azea (].6)2

In this case, a sharper bound can be obtained by employing a different

test function. Let

(1.2.26) va(s,t) = as - 52
Then , if L is given by (1.2.17),
(1.2.27) Lv (s,t) = 2a(s,t) - (a - 2s)a (s,t).

Thus, if ag + 0 on D, we can pick a in order to insure

(1.2.28) Lv_ Zm>0 onD

Now, hzzva(s,t) a(s+%3t)[va(s,t) - va(s+h,t)] - a(s-ggt)[vu(s-h,t) - va(s,t)]

2

it

a(s+%3t)(2$hv+ h2 - oh) - a(s-%at)(ZSh - 12 - oh)

h[n(S ’tsg') - n(S 9t9'_g')]s

where

n(s,t,8) = a(s+e,t)(2s - o + 26)

Now, %Bﬂ(s,t,e) = as(s+e,t)(2$ -a + 20) + 2a(s+o,t). Hence, for some

8 = o(s,t) ¢ [-gwbi, from the Mean Value Theorem,

zva(s,t) = 2a(s+6,t) - as(s+e,t)(a - 2(s + 9))
Hence

(1.2.29) zva(s,t) = Lva(s+e,t)
Now, if (s,t) e @, then (s+o,t) e D. Thus, if (1.2.28) holds, then

(1.2.30) min &v Zminlv 2m>0
. Q0 o D [0
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Hence, by Theorem 1.2.6, if (1.2.28) holds, then

max v_ - min v_
(1.2.31) lIA;J” £ > D
o

Here again, (1.2.31) gives a bound independent of the mesh size, h. Now

e 1-a 3 a 20
gi'l']'usoé(lé]
(1.2.32) maxv_ -minv = { 4 5
D o I-j'a o < <
i 1=09=2
\ a -1 3 2 34

and BV, = 2 >0. So minimizing (1.2.31) with respect to o, we find at o = 1,
" -
(1.2.33) “A_Ah“ L5l

This gives a considerably better estimate than when W is used as a

test function.

1.2.8 Example: Let h = ]/N+1 for some positive integer, N, and set @ =

{h,2h,""", Nh}, @' = {0,1}, & = aua', and N(ih) = {(i-1)h, (i+1)h}. Then

(2,9',2,{N(P)}) is a proper mesh domain. We may approximate the problem

Lu(s) = -(a(s)u'(s))' = -f(s) 3 s € D = (0,1)
(1.2.34) u(0) = Vs u(1) =

<

1

Hv

aecCl(0,1), als) > 0

4

by the discrete prob]em'

2u(s)
(1.2.35) {:
u(0)

—f(S) ;5 S e

Ve u(1) = vy



16

where

(1.2.36) h2 u(s) = [a(s+g) + a(s-%)]u(s) - a(s+g)u(s+h) - a(s-gay(s-h) .

Now, since w_and v _, given in (1.2.20) and (1.2.26) respectively

are independent of t, we see that (1.2.25) or (1.2.31) gives a bound on

I' A;]” ., provided (1.2.22) or (1.2.28) respectively is satisfied. In
2

particular, if a = 1, so that L = -9—2 and 2 s-&ﬁ, we have
ds

g

(1.2.37) ‘|A:lﬁl|w -

This is the best possible bound independent of h since 1im!lA']2!‘® %P
h-0  -§.
h

We see this as follows. For any 2 ¢ n(g), A;] > 0, and so liA;]l]m

TSR R IE [ S

[+

(1.2.38a) Ill\j@”h° = Nl g, g
where

Q,U(P) =1 3 Peaq
(1.2.38b) {

u(P) =0 ; Pea'

So, let u, ¢ () be the solution of

2 . -
{'%”h 1 Pesz(—szh)

up Q'

il
o
.
-
m

and u ¢ 02(0,1) the solution of
-u"(s) =1, s ¢ (0,1) 3 wu(0) =u(1) =0.

It is well known that sup ]uh(P) - u(P)| >0 (h >0.) But u(s) = %(s - §8
Peq
h

and sup |u(s)| = %u Hence
0<s<1 ,

)



L7

ALl = Wl - tneon
-5, >

1.2.9 Example: Let L be given by (1.2.17) (or (1.2.34)) where a Z d.

Then we can insure wmin Lw >0 by picking a > max(O,—d/aO). We find
D

from (1.2.25)

o
(1.2.39) ,[A;]“ - z —§§—~:—l—- when o > max(O,-g-)
oca0+<xd 0

Bounds on |\A;H\ 2 will also be useful. We note that with & given

by (1.2.19), A, has the form
(1.2.40) A =A +A

where

1}

(1.2.41a) hzzHu(s,t) [a(s+h-t) + a(s—%3t)]u(s,t)

2!
- a(s+%3t)u(s+h,t) - a(s—b3t)u(s-h,t)
and

(1.2.41b) hzzvu(s,t)

"

[b(s,t+5) + b(s,t-3)u(s,t)
- b(s,t+Du(s,t+) - b(s,t-Du(s,t-h)

For positive definite B ¢ L(R",R™), Tet u(B) be the smallest eigen-
-1 _ 1 . .
value of B. Then I} B™'lA 2 = TTBT - Now, AZH and sz are positive definite,

<
and u(AgH) + p(sz) = “(Az)‘ Thus

_— < 1
Il Az ” 2 = ﬁ(AﬁH) ¥ u(szy;

Then, by [28, P. 219, Pbm. 6],

1
2(ay + by)(1 - cos“/N+])

HA

(1.2.42) hati,

This can be extended to more general regions and discretizations in an

obvious way. Other and generally sharper estimates for determining
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“(Az ) and u(A2 ) are obtained by other methods. See, e.g., [27].
H v

1.3 Existence and uniqueness of solutions of the discrete mildly

nonlinear problem. Consider (1.2.17). If f depends on u, we obtain the

nonlinear problem

Lu(s,t)
(1.3.1) {:
u(s,t)

-f(s,t,u) ; (s,t) € D.

]

v(s,t) s (s,t) ¢ aD

i

If L is discretized as in (1.2.19), we obtain the discrete nonlinear
problem

2u(P)
(1.3.2) {
u(P)

-f(P,u(P)) ;5 Peg

]

V(P) ; P e Q' )

which is equivalent to the problem

a) F(x)
(1.3.3) {: .
b) p(x)

Azx - bV +p(x) =0
(£(Pyxp)s " F (P x )T ,

tn

which motivates the following definition.

1.3.1 Definition: Let ¢: R" 5> R" be of the form

(1.3.4) o(x) = (870xq)," " e, (%))

Then ¢ is said to be diagonally nonlinear, and we write ¢ e D(R").
Let F: R" » R" be of the form
(1.3.5) F(x) = Ax + ¢(x) R

where A ¢ L(R",R") and ¢ « D(R"). Then F is said to be mildly noniinear,

and we write 7 ¢ M(R").

1.3.2 Definition: Let F: X » Y where X and Y are real Banach spaces. If
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for some x ¢ X and some L ¢ L(X,Y),

I
o

. WF(x+h) - F(x) - Lhll
1im .
lihil>0 W hl

then F is said to be (Frechet)-differentiable at x, and the derivative

is denoted F'(x) = L.

A complete discussion of Frechet-differentiation can be found in
Vainberg [29]. In this paper, the term differentiable will mean Frechet-
differentiable.

If F: R"™>R", it is not sufficient for F to be differentiable that
each of the partial derivatives, afi/axj, exist. However, if ¢ ¢ D(Rn),
and ¢ is differentiable on R for 1 = i = n, then it is easy to verify
that ¢ is differentiable on R" and that ¢'(x) is the diagonal matrix with
diagonal entries (¢'(x))1i = ¢%(Xi)' 1f F: R" > R" is given by (1.3.5),
then F is differentiable on R" and

F'(x) = A+ ¢'(x)
Let x,y ¢ R", Then, by the Mean Value Theorem.applied component-wise,
8(x) - #(y) = ¢'(£)(x - y) for some £ e [xoy]"
Hence |

(1.3.6) F(x) - F(y) = F'(£)(x - y) for some € ¢ [x,y]"
For continuous @: R” » L(R",R") and continuous z: R - R", define
que(z(t))dt = (o6 5(z(8))at)
Then it is immediately verified that
(1.3.7) F(x) - F(y) = [p/'F'(y + t{x-y)dtd(x - y)

When F ¢ M(Rn) is not necessarily differentiable, there is a natural

way to define a "divided difference" of F.



1.3.3 Definition: Let ¢ € D(R"). Let x,y ¢ R". Then ¢°(x,y) is the

diagonal matrix with diagonal entries

4 ¢i(xi) - ¢i(yi)

, if xs ¥y,
i i
) -yl
. (y.+t) - ¢.(y. . ..
D m 171 i if finite
(1.3.8) ¢5:(x,y) = { Tim inf ’ . _

i1 £ -0 t » 1 x5 =y

L 65 (y;+1) - 05 (y5) , otherwise

If F(x) = Ax + ¢(x) where A ¢ L(R",R"), then define FD(x,y) by
‘ D _ D
(1.3.9) Fo(x,y) = A + & (x,y)
Let Fe M(Rn), the we see immediately that
(1.3.10) F(x) - F(y) = FP(x.y)(x - y)

for x,y € rR",
We now consider conditions under which the equation
F(x) =0

has a unique solution.

1.3.4 Definiton: Let X, Y be Banach spaces. F: X > Y is said to be

norm coercive if ||F(x)l + = when Wx\ » =,

We now state the Demain Invariance Theorem (see [26, P. 98] or

[2, P. 87]) and a special case of a result of Rheinboldt [25, Thm. 4.7].

1.3.5 Theorem (Domain Invariance): Let F: B* + R be one-to-one and

contiruous. Then F is an open mapping.

1.3.6 Theorem: ILet F: R* + E* be a norm coercive local homeomorphism.
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Then F is a homeomorphism of,Bn onto B
The following result is a corollary of Theorems 1.3.5 and 1.3.6.

1.3.7 Corollary: Let F: Bt > R be one-to-one, continuous and norm

coercive. Then F is a homeomorphism of R" onto R".
Proof: F is a local homeomorphism by Theorem 1.3.5, and so the result

follows from Theorem 1.3.6.

Much of the work involved in establishing Theorem 1.3.6 is in showing
F is globally one-to one. Since we assume this in Corollary 1.3.7, we
do not need all the power of Theorem 1.3.6. For completeness, we give

a direct proof of Corollary 1.3.7.

1

Direct proof of Corollary 1.3.7: By Theorem 1.3.5, F_' is continuous.

Thus, we need only show F is onto. Since, by Theorem 1.3.5, F(Rn) is
open, it is sufficient to show F(R") is closed. Let Y > Y e R"  where
{yk}CF(Rn). Then there is {xk}cRn such that F(xk) = Y- Since {y,}
is boundéd and F is norm coercive, {x;} is bounded. But then a subse-

quence,{xm } converges to, say, X & R". By the continuity of F, y =
k
F(x) e« F(R"). Thus F(R") is closed.

A uniformly monotone function is one-to-one and norm coercive. Thus

Corollary 1.3.7 contains the R" version fo the following result of Minty [18].

1.3.8 Theorem: Let H be a real Hilbert space. Suppose F: H > H is con-

tinuous and uniformly monotone. Then F is a homeomorphism of H onto H.
We now apply Corollary 1.3.7 to mildly nonlinear functions.

1.3.9 Corollary: Let F ¢ M(R") be continuous and norm coercive and sup-
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pose 7 (x,y)J"l exists for eqch %, y ¢ R'.. Then F is a homeomorphism of
B" onto R".
Proof: Frbﬁ (1.3.10), we see that F is one-to-one. The result then

follows from Corollary 1.3.7.

1.3.10 Corollary: Let F ¢ M(R") be continuous and suppose [E’D(ac,y,) 1!

exists for each %, y € R’ and satisfies I [’ (x,y) e [P < indepen-
dently of x and y. Then F is a homeomorphism of R"* onto R".

Proof: By Corollary 1.3.9, we need only show F is norm coercive. But
this follows from

= WFP(x,0)77V[F(x) - F(0)1M

HA

KB F(x) - F(o) i

1.3.11 Example: Let F(x) = Ax + ¢(x) where A ¢ L(R",R"M) and 6 ¢ D(RM.

i) Suppose A is an M-matrix and ¢ ¢ Mon(R"). Then ¢ (x,y) 2 0,
and so II[FD(x,y)]']ll°° = \\A'1"w . Thus by Corollary 1.3.10, F is a
homeomorphism.

i) Suppose A is symmetric with least eigenvalue u and ¢ - dI ¢ Mon(R")

for some d > -u. Then

| FOxy) = A - ul + P(x,y) - dI + (d + W1 ,
and so the least eigenvalue of FD(x,y) is at least as great as d + u > 0.
Hence l\[FD(x,y)]-]H ) é-aékji,and so, by Corollary 1.3.10, F is a

homeomorphism.

ii1) Suppose A is symmetric with least eigenvalue u. Let

¢;(t) = g(t) - ut for 124 = ,
where
¢ log(t+1) ift 20
g(t) = {: <
t ifFtso

Now, A - ul is positive semi-definite. Thus for x ¢ R",
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n

(F(x),x) = ((A - u)x,x) + _Zlg(xi)xi
1=

v

nHFCON x|

nv

n
5 1l Tog(lxy] +1)
1= ’

Nl _tog(lxll  + 1)

v

Hence, WF(xI - 2 %—1og(lix“ o T 1), which shows that F is norm coercive.

Since ¢%(t) >l [FD(x,y)]'] exists for each x, y ¢ R".  Hence, by

Corollary 1.3.9, F is a homeomorphism.

1.3.12 Remark: The functions of Example 1.3.11 ii), iii) can be

shown to have unique roots without the use of Theorems 1.3.5 and 1.3.6.
For instance, consider the function in ii). Let g: R" > R be defined by

X

N ~™>

g(x) = %-(Ax,X) + J 65(t)dt

/
10

J
AN . o ..
Then [g'(t)] = F(x). Thus F has a root if g attains its minimum, and,

since FD(x,y) is non-singular for each x and y, the root must be unique.

Now

1
g(x) = g(0) + 6 (F(tx),x)dt

1
g(0) + 6 (F(tx) - F(0),x)dt + (F(0),x)

1

9(0) + (F(0).x) + ] (F2(tx,0)tx,x)dt

(p+ d)tHxit gdt

v

g(o) -\ F(O)u2|lx!% +

/
0
1
2

g(0) - WF(M Wy + 5 (u+ d) Wt 5

Clearly, then, g(x) ~ +w(“xH;-m), which shows that g attains its minimum.
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1.4 Bounds on the solution. Let 2 be defined by (1.2.19) and con-

sider the nonlinear problem (1.3.2). We note that besides being an irre-
ducibly diagonally dominant M-matrix, A2 is positive definite. Let the
least eigenvalue of A be u and suppose f(P,") - d ¢ Mon(R) for each P ¢
Q and some d > -p. Then by Example 1.3.11 ii), (1.3.2) has a unique
So]ution, u%. We now derive a priori bounds on u*. These will be useful
in picking a good initial approximatibn for an iterative process and
later in obtaining globally convergent ADI algorithms. We also obtain
a priori error bounds which to to zero as the error goes to zero.

In the sequel, for u ¢ g(a), let u ¢ k" be the vector with components
u; = u(Pi). Let x" = gf . Then x* is the unique root of the function,
F, given in (1.3.3). Furthermore, assume, for convenience, f(P,") ¢ Mon(R).

Suppose we know a priori that K, S ux(s,t) £ K,. Define

2
b
£(P,K,) if u s K
(1.4.1) £f(P,u) = f(P,u) if K Sy s K,
: <
F(PKy) iF K, 2w
and
(1.4.2) bx) = (F(Poxg), L f (P x DT

Then u* and x* are the unigue solutions of

u(P) = -%(P,u(P)) i Peq
(1.4.3) {:

u(P) = v(P) i Peg!
and
(1.4.4) F(x) = AX - b, + o(x) =0

respectively. Thus, we may seek the solution of (1.4.4) instead of that
of (1.3.3) and enjoy the added assumption that & and @D are bounded as
functions of x and (x,y) respectively. This approach will be used in

Chapters IV and V.
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From F(x) = F(x) - F(xf) = FD(x,xf)(x - xf), we have
(1.4.5) x - x* = [F(x,x%)17 F(x) ,

which yields an error bound that goes to zero as the error goes to zero.

For instance,

L
(1.4.6) Nx - x*||2 = ;—;—a-“F(x)U 5
We also have
0 5 [FP(x,y)17" £ A;] ,
so that
(1.4.7)  Ux-xxlt =M A'1u llF(x l for 15 p 5o

P

A crude two-sided bound on u* can be obtained in the following way.
Suppose Xg € R" satisfies Alx0 =b . Then
“ xo" o a V“ Q' ,® )

n <

and
Wxg - ol S AT T :

which gives the following nonlinear analog of (1.2.16).
(1.4.8) it u*HQ U2 i\A;]M _ sup [f(P,t)| + vl q
’ P

<e§2
|t|=lMiQ- .

We can get a sharper estimate from (1.4.5). Suppose
F(x) = G(x) - H(x) where G(x), H(x) 20
Then
(1.4.9) -A;]H(x) Sx - xx= A G(x)

The use of (1.4.9) is illustrated in the following examples.

1.4.1 Example: Let g = -8y and f(P,u) = e¥, where o is as in Example 1.2.5.
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Suppose v(s,t) = as + gt is defined on 2 instead of just on 2' where
a, B2 0. Since fu 20, a unique solution, u*, to (i.3.2) exists.

Now, F(0) = -bv + p(0) where ¢(0) = (1,1,"‘,1)T 20 and bv 20, Thus

-1, < < a1
—A2 bv = -x* = Az v(0)
Now, v = A"lb  and llA—]w(O)H | L =L
’ - [ Y] 2 o 47 8" >
(1.4.10) & S ux(s,t) £ os + gt

(1.4.10) can be strengthened independently of a, 8. Let w](s,t) N
1,.2 < A _ <
2(5 - s) =0. Then f(P,w1) =e =1, and,ew] = -1. Thus, F{w,) = 0.
Hence, from (1.4.9), x* 2 8 Likewise, x* 2 W, where w2(s,t) = %(tz -

t).
Hence, (1.4.10) can be strengthened to

2

HA

(1.4.11) 45 L max(s? - 5,62 - 1) Suk(s,t) S os ¥t
1.4.2 Example: Let 2 and v be as in:Example 1.4.1, and suppose f(P,u) =

u2m+1

for some integer m 2 0. Then a unique solution, u*, to (1.3.2)

exists as above. Now, y(0) = 0. Thus, as above,

A

(1.4.12) 0 = u*(s,t) = os + Bt

The Tower bounds in both (1.4.11) and (1.4.12) are not sharp near
the'boundary. Let
(1.4.13) F(x) = Ax = by + p(x*)

Then x* is the unique root of F, and, from (1.4.5),
(1.4.14) x* = x - A7B(x)

1.4.3 Example: Let F be as in Example 1.4.1. Now, by (1.4.11), u* = 4 + 3.
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%-ea+6(s2 -s) £0, and

wz(s,t) = %-e”+3(t2 -t} £0. Then zw](s,t) = %8, Thus, oy + p(x*)

Thus, ¥(x*) s ea+6(1,1,"',1)T. Let w](s,t)

s 7 = - = - - =
= 0, and so ?(w1) = A W, bv + p(x*) = Adw] b, * p(x*) + b., b,

- k1 1 1

o

1

o

i

fi '\

iy F p(x*) + bw - b 0. Hence, from
1

v Wy v —bv, since w,

1

v

Z -
(1.4.14), x* = Wy + A2

bv = W + v. Likewise, x* W, + v, and so

(1.4.15) os + gt + %—e“+8max(sz-s,t2-t) S u*(s,t)

IIA

as + Bt

1.4.4 Example: Let F be as™in Example 1.4.2. Let
+
)2m ](SZ

Wy(s,t) = 5 (a+ 8 -5) 50, wyls,t) =5 (o + 8™t - 1) 0.
Then, as in Example 1.4.3,
(1.4.16) os + Bt + %—(u + s)zmﬂmax(s2 - s,t2 - t) 2 u*(s,t) = os + gt.

We note that (1.4.15) and (1.4.16) are sharper than (1.4.11) and

(1.4.12) respectively near the boundary, but probably not in the interior.

1.5 Analogs in the continuous case. In this section, we present

results for a uniformly elliptic partial differential operator, L, analo-
gous to the results of the previous sections of this chapter. The main
result of this section will give conditions on L, f,¢, and DcR" which

will guarantee that the mildly nonlinear boundary value problem,

{Lu(x)
u(x)

has a unique solution.

f(x,u(x)) 3 xebD

o(x) ; x e 3D .

We present first some notation and definitions.
Let f: GER™ > R. If f is continuous on G, we say f e C(G). Further-

more, if f is bounded on G, we set Hfll 6= sup|f(x)].
XeG
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Let 8 = (i],"',i ) and [g| = TR IR S W where the ij are non-

m

negative integers, and define the operator

If G CR™ §s open and f is k times continuously differentiable on
G, then we say f ¢ Ck(G). Furthermore, if DBf can be extended to a con-
tinuous function on G for 0 = |g| = k, then we say f ¢ &z,
Let GCR™ be open and bounded. If there is a K < « such that
[f(x) - f(y)|% K|x - y|°

for some o ¢ (0,1) and for all x, y ¢ G, then we say f ¢ ¢, o‘(Gf) and set

H G(f) - sup_lf(x) - fly)]
s x,ye6  |x - y|®
Xty

Let GER™ be open and bounded and let o ¢ (0,1). If f e Ck(G) and
DBf ¢ CO,a(G) for |g| = k, then we say f ¢ Cp, o@ and set

k
— B B
] Koo .G = jEO ’rg?i_(jlln il 6 ¥ gn;Ti(k Ha,G(D f)

6 cR" is said to be eimooth if, for each Pe 3G, there is an i = iP €
{1,°"",m}, an open set H = H, in R containing the point P = (pys™"s
pi_1,pi+],"',pm), and a function g = 9p € Cz’a(H) for some o ¢ (0,1),
such that when x ¢ 3G and X = (x],"‘,xi_],xi+],"’,xm) e H, 3D can be
expressed in the form x; = g(x).

Let G C R™ be an open bounded set. Suppose f ¢ Cy or.(G]) for some
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fixed o ¢ (0,1) and each open G]C(ZG. Set

| K .
WFl, o= Ufllg+ 1 max max (d)7 -|0Pe(x)]
s 3=1 [8]=3 xcG
+ max max (d, )™ . 10%(x) - 0°(y)| ,
8=k X,ye6 XY x - y|*

Xy

0) » *
where d, = glgGlx - y|, and dx,y = m1n(dx,dy). Then, if Hifh K.0.G

is finite, we say f e ¢, (G).

k,o
In the sequel, D will be an open bounded set 1n.Rm, and L: CZ(D) >

C(D) will be the uniformly elliptic differential operator given by

m m
¥ a..u + I b.u
i,5=1 X% =1 Ty

rLu =

a,ij = aj.i’ b.i € CO,OL(D)

(1.5.1) ¢ m m

>
I a .(X)Eigj = a,

2
1,4=1 1 ‘

g. forx eD, € ¢ Rm

i=1

.23y > 0 and independent of x and ¢

We note that we are departing from the notation of the previous sections
of this chaptér where -L denoted the elliptic operator.
The following maximum principles are the analogs of Theorems 1.2.3

and 1.2.4.

1.5.1 Theorem: Suppose u ¢ CZ(D)PO C(D) satisfies Lu = 0 on D, then

u(x) ésupu for x €D
. oD
Proof: See [4, P. 326].

1.5.2 Corollary: Suppose u ¢ c? (A c(d) satisfies

{Lu— Y
u

v

0 “inD

A

) on 3D
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where y: D + R is non-negative, but not necessarily continuous. Then
u =0 in D.

Proof: Let D, = {x e D: u(x) > 0}. Suppose D1,+ 0. Then D, is open
and u = 0 qn QD]. Now, in D], Lu 2 yu z 0. Hence, by Theorem 1.5.1,

us0in DT. The contradiction shows Dy = ® and proves the result.

G cR™ is said to be proper if G is open and bounded, G = U G,
prop i=g |

where Gi is an open, bounded, smooth set and Gic Gi+1 for each i 2 0, and
if for each y ¢ 3G, there exists a strong barrier function, i.e., a
non-negative function, wy £ CZ(D)rmc(D), which satisfies wy(x) =0 <

X =y, and Lw, s -1 in D.

1.5.3 Lemma: Let y e aD. If there is a closed sphere Sy such that
Syr)ﬁ = {y}, then there is a strong barrier function for y.

Proof: See [4, P. 341].

We note that by Lemma 1.5.3, a rectangular region is proper. In

the sequel, we always assume D is proper.

1.5.4 Theorem: Suppose f e ¢ a(D) and ¢ e C(3D). Then there exists a

0
unique solution, u e 02 0L(D)_, to
3
Lu=f 1in D
(1.5.2)
u=4¢ on 3D

Proof: See [4, P. 340].

For f ¢ CO,a(D) and ¢ ¢ C(3D), let wf,¢,D be the solution to (1.5.2).»

We note that by Theorem 1.5.4, We 4,0 exists.
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In the sequel, MD will be defined by

My = sup "wf,O,D“ 0
fsCO , 01,( D)
il f“D=1

We see that for f ¢ 60 0L(D),

[Twe o pllp = M et

Let L: {u ¢ CZ’Q(D): u|aD =0}~ CO,Q(D) be defined by Lu = Lu. Then

Theorem 1.5.4 says L is one-to-one and onto. Then My = 1g£']|[ when the
domain and range of L are considered as subspaces of the Banach space,

C(D) with norm \I’\\D. The following analog of (1.2.38) assures that

MD < wo

D 1,0,D°

1.5.5 Lemma: M, = sup w_
D

Proof: The proof follows from the maximum principle. Let w = W_1,0,D

and u = We 002 where f ¢ EO’G(D) satisfies IV fl) p = 1. It is sufficient

to show that -w S u Sw. ButL{u-w)=Ff+1203usw, and

L(u+w) =f-120>u 2 -w. This completes the proof.

The following analog of Theorem 1.2.6 may be used to obtain an

explicit bound on MD'

1.5.6 Corollary: Suppose u ¢ CZ(D){\ C(D) satisfies min Lu = b > 0. Then

D
mc_wc u - min u
< D D
MD - min Lu
D

Proof: Letw =w_; o, and u; = %—u. Then L(u; + w) 2 0. Hence,
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s =
up; +w 2 max (u] + W) B-m%x u

u+ws
aD

O] o

The result follows from this.

As in the discrete case, we can give explicit test functions to
G(X]'a) 2 0

bound M. Let w (x) =e
o,

for x ¢ D. Then

where a is chosen S0 that Xy - a

a(x4-a)

a(xl-a)h
+ ab](x e

Lwa(x) = q a]1(x) e
1 in D. Thus,

v

; >
But a]](x) £y > 0. Hence, for some g Lwao‘

My =max w - minw
D ‘o D %

If b](x) ¥ 0 on D, another suitable test function would be similar to

the function, v, given in (1.2.26).

A

MD MD.

1.5.7 Lemma: If DICD is proper, then
1

0 in D. Hence,

v

Proof: Let u = W_1,0,D and v = w-1,0,D1 Then u
So, in D], by the maximum

u-v=20on aDy. But L{u - v) =0 in D;-
principle, 0 = v £ u. Thus
M. =max Vv = max u=M
T D D

1
We now present the analog of Theorem 1.2.7.

1.5.8 Lemma: Ze# f ¢ C, (D) and ¢ < C(3D). Then

Supll A+ Wl

I wf,ou,D"D
Proof: Let u = wf,a,D' Then u = wf,O,D + wo’a’D. But
<



(W]
L

and
Nwg , pllp = Ul

by the maximum principle. The result follows from the triangle inequality.
The following result is the analog of (1.2.14).

1.5.9 Corollary: Let L.u = Lu - yu, where v:D - R is non-negative, but

1
not necessarily continuous. Suppose v € 02( D)NC(D) satisfies
{ le =f inD
v=0 on 3 R

where f e 5‘0 0t(D), then
Nol , S m Al
Proof: Let Dy = {x eD: v(x) >0}, and Dy = {x e D : v(ix) <0}. It

. . s < :
js sufficient to show | vjj D, jvil 0, = Myh il ;. Suppose D, 3 0. Then

D] is open and v = 0 on aD]. Let GkC[H be proper for k 21 and satisfy

b

—]k— on 2G,. Letu =w. . Then
bl ] k

vV-u o= 0 on aGk, and, in Gk L(v - uk) = L]v - Luk + v 2 0. Hence,

> _ <
GkCGkH’ k\;)o Gk = D1, and 0 = v

p

.in Gk, O"‘

s

VoS ups So, by Lemma§1:5.8 and 1.5.7,

ol g +

it~

Wi, < e £l + vl g

Letting k > », we get
vl D, =mplehp

A similar result holds for Y and the proof is complete.
We may now prove the analog of (1.4.8).

1.5.10 Lemma: Suppose f: DxR - R is continuous and satisfies f(x,") is
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monotone for each x € D. Suppose u € CZ(D)n C(D) satisfies

Lu=f(", u) inD
(1.5.3) {
U= ¢ on 3D
Then
Wb pSM=my  max Vs, ol + fo) -
7 T g o

Proof: Let w = Wy 5,D" Then u - w = 0 on 3D, and

L(U - W) f(',U) - f(',W) + f(',W)

1

y(u - W) + f( W)
where

flx,u(x)) ~ f(x,w(x))
u(x) - wix)

if u(x) 3 w(x)

v(x) =
0 if u(x) = w(x)

. . . >
Now, since f is monotone in the second argument, y(x) = 0. Hence, by

Corollary 1.5.9,
L
flu - wil 5 =My ¢ wf b

The result then follows from the maximum princip]e:l\wllD S 1)l 2D"

1.5.11 Lemma: Suppose f is as in Lemma 1.5.10, and that ¢ e C(3D). Then

there exists at most one solution, u ¢ CZ(D) NC(D), to (1.5.3).

Proof: Suppose u; and u, each satisfy (1.5.3). Then, as in Lemma 1.5.10,

0 1inD

L(u] - “2) - y(u1 - ”2)

]
o

Uy - Uy on 3D .

for some y = y(x) 2 0. Hence, by Lemma 1.5.7, uy =

1.5.12 Remark: Consider Lemma 1.5.10. Define f by
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f(x,-M) if t S -M
f(x,t) = f(x,t) ifF M3t 3M
F(x,M)  if M3t

Then f is bounded and monotone in the second argument. Hence, by Lemma
1.5.11, u e c2(D)N C(D) satisfies (1.5.3) if and only if it satisfies
{ Lu = f(-,u) in D

) on aD.

u

In the sequel, we now assume (1.5.1) is satisfied where, in addition,

m
Lu = r (a,.u. )
(1.5.4) Bamt
d.. = a e C (D)

The existence of solutions to (1.5.3) was considered by Courant
[4, P. 369], Parter [22], and Levinson [17] when L = A, the Laplacian.
Courant proves existence under the assumption that f = f] + fz where
f],fz are C] in their arguments, f1 is bounded and 3f/3u 2 0. If
f] = 0, the solution is, of course, unique. Parter and Levinson prove

existence of a solution under assumptions (1.5.7a,b), below, and the

assumption that

(1.5.5) lim inf 28D 2 g uniformly for x ¢ D
T IeS——

By use of (1.5.5), it is shown, as in Remark 1.5.12, that f can be re-
placed by a bounded function, %. By assuming
(1.5.6) f(x,+) is monotone for each x ¢ D .

we obtain this result more easily, and we also assure uniqueness of the

solution.
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We will now consider the existence of solutions to (1.5.3) under

assumptions (1.5.6) and (1.5.7a,b), below.

(1.5.7a) There is a fixed o ¢ (0,1) such that given ¢ > 0, there
is a K(c) < « such that

|f(x,t) - fly,t)] = K(c)|x - y|®

A

when x, y ¢ D and [t] = c.
(1.5.7b) Given ¢ > 0, there is a Ko(c) < « such that

[£(x,t) - fx,s)| & Ky(e) |t - 5|

A

when x ¢ D and |t|, |s| = c.

1.5.13 Theorem: Let DCR" be proper. Let f: DxR + R satisfy (1.5.6) and

(1.5.7a,b), and suppose ¢ e C(3D). Let L satisfy the special case of
(1.5.1) given by (1.5.4). Then (1.5.3) has a unique solution, u ¢ CZ(D)I\
c(D).

Proof: By Lemma 1.5.11, we need only show existence. By Remark 1.5.12,
we may assume |f(x,t)] SN<oforxeDandteR. The proof, which
follows along the lines of that in [4], is presented here in detail for
completeness.

Let ug =W_y gpe Cz’a(D) and vg =Wy g e Cz,a(D). Then

Vg ~ u0 =0 on 3D, and, in D,

= 2
L](vO - uO) =2N =0
Hence, by Corollary 1.5.2, Vo é‘uo. Let
C = max ["uoﬂ D* [|vdl 0d s

and set
K =K(c) , k = Kylc)

For u ¢ CZ(D)f\C(B), let L]u = Lu - ku, and define {“j} by



L]uj+] - kuj+1 f(-,uj) - kuj in D

uj+] = ¢ on 3D

By Theorem 1.5.4 and an inductive argument, uj exists and is in 62 a(D)

for each j 20. Now u1 - Up = 0 on 3D, and, in D,

v
o

L](u] - uo) = f(-,uo) - kuO + 5+ kuO
< N . _ - .
Thus, Uy = Ug- Likewise, Uy Vo 0 on 3D, and, in D,

L](u] - Vg) = f(-ug) - kug - @+ kv

< _
= k(v0 uo)
0
Thus, U 2 Vo Sdppose
< g <
(1.5.8) Vo T Uy T U5 T Y
. > _ = _ .
for some j 2 1. Then uj+1 uj 0 on 3D, and, in D,
cq = U.) = f(e,u,) - .- f(-,u. + ku.
L](uJ+] ”3) f( ,uJ) kuJ f( “3-1) kus_y
>
= - .- U, + T
k[uJ uJ_]l k(uJ_] uJ)
=0
s _ = :
Thus, “j+] = uj. Furthermore, uj+] Vo 0 on 3D, and, in D,

L](uj+1 - vo) = f(-,uj) - kuj - N+ kv,

s -

= k(v0 ”j)

20
Thus, Us41 = Voe and (1.5.8) is established by induction. Hence,

*
uj -+ u

for some u*: D R satisfying v, S yx 3 Ug-

Let D1 C€CD be open. Then there exists an open set D2 such that

2
D,ccD,CCD.  Now, \tuj“ 0, = ¢, and

37
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—_—
—
=

1

<
3 ‘f(.,uj_1) - kugp * kuj[]D

HA

N + 2kc
=M

1 °° ’
Now, by manipulating formula (3.3) of [3]., we see that there is an M2 < w,

depending only on L, D2, D] and ¢, such that
< . 2
‘]vujl|01 =M, forj=0

Now, us e Cz’a(D) ﬁ?'uj e Cz,a(D]). So, by the interior Schauder
estimates, (see [4, P. 332] or [16, P. 110],) there is an M, < = depend-

ing only on Ly, D, Dy, and o, such that, for j 2 0,
L .
Wi 2,0, =M [“L“j“o,a,D, * Hugllp, ]

Now, for X, y ¢ D],

HA

lf(x,uj(X)) - f(y,uj(y))l If(x,uj(x)) - f(y,uj(x))!

+[F(ysuy(0) - flysus(y)) |
Kjx - y|*+ klus(x) - us(y) |

A

lIA

KIX - ylu +k|]\7uJ”D]jx - y,]'u'x _ yld

HA

(K + k' ™M) |x - y|®

= M, |x - y|® ,
where d is the diameter of D. Hence, for j £ 0,
<
‘\f(-,uj)‘lo,a’01 SN+N,

Now, for X, y ¢ D],

A

luj(x) - UJ(.YH “Vuj “D] lx - yl.I-OL‘X - y“."

A

1-
4M2d * |x - YIu

Thus, for j 2 0,
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, & 1-a
‘\\uj“ 0,0, Sc + Myd

i
=

< ©

So, finally, for j : 0,

L
“ uj“Z,OL,D-l = M3[“f(':uj) “O,OL,D-I + “ kuj“o’a,D] + C]

<
= M3[N + Myt kM5 + c]
< o
Thus,'{uj} and the sequence of 1st and 2nd derivatives are uniformly
bounded on Dy» and the seqdence of 2nd derivatives is equi-continuous on

D]. Hence, by the Arzela-Ascoli Theorem, there is a subsequence {um } of
J

{uj} which converges, necessarily to u*, in the norm of 02(51). Hence,
u* ¢ CZ(D]). Now, uj + U* pointwise, and f is continuous. Thus, for
#* ;D-l,

Lu*(x)

Tim Lu_ (x)
e T

o

Tim [f(x,umj_1(x))- kumj_](§) + kuhj(x)]

Tim f(x,u_ _;(x))
j mj 1

f(x,u*(x))

Since D is arbitrary, u* e C%(D), and, in D,
Lu* = f(.,u*)
We need only show u* ¢ C(D). It is sufficient to show

Tim [u*(x) - ¢{y)] =0
xeD
Xy
when y ; 0. So let x e D and y ¢ 3D. Then, since Uy € c(b),

u*(x) = o(y) = uglx) - ¢(y) +0 (x > y)



Likewise, since v, e c(b),

w(x) = 3(y) 2 vp(x) ~ 6y) > 0 (x > y)

This completes the proof.

A more general form of this problem is considered in [16]. See
especially Chapter 4, Section 8 and Chapter 5, Section 6. Furthermore,
Theorem 3.1 on page 266 gives an interior bound for vu for a much more
general L than that given in (1.5.1)/(1.5.4). In particular, by the
use of this result, Theorem 1.5.13 can be proved for the non-self-adjoint

L of (1.5.1), provided a5 € C1 (D).



CHAPTER IX
LINEAR ADI METHODS

2.1 Introduction. Consider A, vhere £ is given by (1.2.19). A

4

has a natural splitting, A , into "horizontal" and "vertical"

.

4= AﬂH + Aﬂv

parts, where 4 and /4, are given in (1.2.41). We note that AﬁH and A
are both positive definite.

Generalizing, suppose

C = Hl + Vi

(2.1.1 H., V., ¢ L(R",R") are positive semi-definite
1 s b

l’

One of Hl or Vi is positive definite

Let € € R" and suppose we wish to find x¥ = C_lg. By (2.1.1), the follow-

ing iteration is well-~defined for rk > 0.

n
xo e R

(2.1.2) [rk + Hl] el = [rk - Vl] x, +§

(rk + V1] X + £

F -
gl‘k Hl ] Xk+]2;

This procedure was first considered by Peaceman and Rachford [23] to
approximate the solution of a discretized version of the Dirichlet prob-
lem for Laplace's equation on a square. The name "alternating direction
implicit", or ADI was given to (2.1.2) because it entails alternately
solving along horizontal and vertical mesh lines. In this particular
. case, HiVl = Vlﬁl, and, after a suitable permutation, Hl and Vl are both
tridiagonal matrices, which are relatively easy to invert (see [28, P.

195] or [23].) Thus (2.1.2) is feasible.

Let kl"'.’hﬁﬁ be the distinct eigenvalues of Hl’ and let T = Ak+l

1
41
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£k . ; 1. . .
for O = k Ty Then, if HiVl l l’ (2.1.2) is a direct method and
converges to x¥ after N iterations. This is also true if the r, are

1
successively the nv distinct distinct eigenvalues of Vl (See [28, P.

2227 or [237.)
In practical cases, we may not be able to determine the eigenvalues

of Hl or V,, but we may know that they lie in an interval Ea,b] where

l)
a > 0. If we then apply Vv 21 parameters Cyclically, we would try to

determine the V parameters which are in some sense optimal.

Let e =x - x¥. Then
Kk~ Fuk -
=(m
e = (T T )egy
=0 7J
where
T o=l +v 1t o lle+n ]t -y
r 1 1 1 1 )
Now, when HlVl ViHl,
~ -1 -1
Tr = [r - Hl] [r+ Hl] [r - Vl] [r + Vl]
Hence,
o ' 1 1
T < - - _ -
H.~ Tr.H H[r H, ] [rj + B 17| H[rj v, ] [rj + v 17
J= J J=0
- r. - A r - B
3= o 7\€G}EH] u€O’EV] Tshp ;
where here, and in the rest of the chapter, || * || = | * le. Thus
r x,°
V-1 v-llty o
fmoe I £ sup m <1
3=0 T3 xela,b] 3=0 Tyt x

So, for any positive values of ro,~--5rv_l, convergence is assured. To

enhance. convergence, we are led to the problem of minimizing the quantity

vl rj - X
sup m
xela,b] 3=0 Tyt X
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for ro,"‘,r

were given by Wachspress in the case V = o (see [28, P. 224] or [30, -

vl > 0. The optimal rj, which lie in the interval [a,b],

P. 196]) and by Jordan for any v (see [30, P. 185].)

If v =1, the optimal parameter is VEF, and the asymptotic rate of
convergence with the optimal ADI parameter is approximately the same as
that for SCR with optimal SOR parameter, although the work required for
each ADI sweep is approximately twice that required for each SOR sweep.
If v > 1, an asymptotic rate of convergence gignificantly better than
that for SOR caﬁ be obtained (see [28, P. 229].)
the above analysis fails. If rk;Ei r > 0isg

consbant, convergence can still be assured. However, convergence cannot

When H,V, 4 v,H

be guaranteed for arbitrary positive values of r. ,*+-,r Nevertheless,

0 v-1°

if "good" parameters for the commutative case are used, rapid convergence
is often still obtained. Numerical regults indicate that the best para-
meters are in the interval [a,b] and, indeed, in the lower part of the
interval.

In Section 2.2, we present the main convergence results in the non-
commutative case. These are pertinent since, in problems with & nonlinear
term, the commutative analysis fails. TIn Section 2.3, a specific ADI
iteration for the discretized version of an elliptic boundary value prob-
lem is introduced, and in Section 2.k, 1ocai convergence results are
given for nonlinear versions of this iteration.

We now collect some formulas and inequalities which will be useful
later. Suppose L & L(R",R") is positive semi-definite and o[L]C[c,a]

where ¢ =2 0. Then



(a)r20 3 |[[r+1]Y S

Ll

. b) s Zx 2463 Dlr - 1] [s + 1Y 5 Lo2
2.1.3
<c>r§ﬁa:nu-MEr+m4n§§%§
L Ay r S d ; C  rSsDs -1 $s-2r+a

We demonstrate (2.1.3d). By assumption, 2r - 4 =

>(or -d) +4d
2 - ,

A

It

Hs - LH = sug Is - Z| sup |s - z]
cSz3a or-d3%5d

Let C, H , V; satisfy (2.1.1). For r > 0, define

Il

]

(2.1.4) {: T 3 4
Q. = 2r [r + vl] [r + Hl]

Then, if {xk/e} satisfies (2.1.2), the v°* iterate is
vo1 V-l v-l
(2.1.5) x, = 1T§ T ixo + Eg(l E;lT ) Qr g
which, when Ty = r is constant, becomes
Y a S
(2.1.6) X, = (Tr) X, + jE:O(Tr) Q.5

A 1little algebra and an inductive argument shows

v-1 v-1 wv-1
(2.1.7) moT o+ (T T ) Q. C =
i=0 i §=0 i=j+1 ~i J

¢. Hence, since

s -2r + 4

e+ 1™ e -] I+ 8 17 [ - v

I

Writing € = Cx,. - [Cxo - €], we see, from (2.1.5) and (2.1.7),

0
v-1 i
(2.1.8) X, =X, - Z (= T, ) Cxy -
0 50 4=l T QT

Finally, if Cx* = &, then

E]
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v-1
(2.1.9) X, - X% = (':o Tri) (Xo - x¥)

2.2 Results in the Non-Commutative Case. The following theorem is

the basic convergence theorem for ADI in the linear non-commutative case.

2.2.1 Theorem: Let C, Hl’ and Vl satisfy (2.1.1) and ﬂxk/e} satisfy
(2.1.2) where r, T r >0 is constant. Then x — x¥ = c"lg.

Proof: Let T Dbe defined by (2.1.4). Then, by (2.1.3b,c),

ICr + vl [+ v 37 S lI0e - 1y ] be o+ 8 TN i - v 0 Le + v 0701 <2

Hence, p(Tr) < 1. The result follows, then, from (2.1.9).

In the next two theorems, convergence of (2.1.2) is guaranteed for

variable r, provided the r

k are large enough.

k

2.2.2 Theorem: Let H, V) ¢ L(R™,R") satisfy

Hl’ Vl are positive semi-definite

(2.2.1) GEHl] C [al,bl], OEVl] C[Otl,Bl]

>
= >
a;, 4 o, ay + oo 0

[Hl + Vi] x¥ = § for some x¥, € ¢ R™

Suppose r > 0 satisfies

B. -«
a)r?lzl if &, >0
(2.2.2)
B, - « B, +
1771 171
<p = i -
b) = T 5 if a; 0 5
and {rk} satisfies
(2.2.3) rSr S5<® for k20

k

. — e
Let ka/2} satisfy (2.1.2). Then x, ~x*.

Proof: Let T, be defined by (2.1.4). Suppose (2.2.2a) holds. Then by
k
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(2.1.3b,c) and (2.2.3), there is a & <1 and independent of k such that
1y <
H[rk - Hl] [rk + Hl] | =8
So, by (2.1.3a,d),

e || S e, + v, 175 6o, - v || S
Ty k 1 k 1 T al
Suppose (2.2.2b) holds. Then by (2.1.3b,c),

< 1 .5 -
+ a(rk-(Bl“al)+Bl>—6'

e, -5 ] [, +m I S

So, by (2.1.3a,d), as above,

r -2r + B s - 2r +
e || £ — s — il <1
Ty T T ST 9

So, in either case, an | is bounded uniformly below 1. By (2.1.9),
k
then, X - x¥.

2.2.3 Theorem: Let H , V, ¢ L(R",R") be M-matrices. Let , x,, x* ¢ R"

satisfy

s

* = 2 *
(m, + Vl] X g, [Hl + Vl] X, E, x¥ = x ,

1 0

where [Hl + Vl] is non-gingular. Set

K = max max (h,.,v,.)

15550 ii? 4
where H, = (h,.) and V., = (v..). Let {x_,.} be defined by (2.1.2) where
1 ij 1 iy’" k/2

K= Ty Sg <

Then X /o J ox*.

Proof: See Theorem 5.2.4 of which this is a special case.

We note that if [Hl + Vl] is itself an M-matrix, then

[Hl

We note also that Theorem 2.2.3 does not assume any symmetry conditions.

2 2 x¥
+ Vl] X, 25 %y =x

Thus, it would apply, for example, to some discrete version of the
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boundary value problem on D = {(s,t) : 0 <s,t <1} :

= + + + ;
Ius= auss butt-+cus, dut eu =1L

(2.2.h) u=v ; (s,t) e D

(s,t) €D

]

a, b, c, d, e, T ec(ﬁ);a%ao>o,b%bo>o,e§o

Usually we would like to take the rk smaller than allowed by

Theorems 2.2.2 and 2.2.3. The following theorem and remarks allow us

to pick the r, as small as we wish, but they impose other conditions.

k

2.2.4 Theorem (Pearcy): Let H, V, € L(R",R™) satisfy (2.2.1). Suppose

1
s < £ ... < mi
(2.2.5a) max(al,ai) T, STy o r, mln(bl,Bl)
and
(2.2.5b) riv+j = rj for 0 S i <®and 0 3 S vl ,
where
2.
log F—%—
+ o
(2.2.5¢c) b >

AR Gy
1og (b + a ) (a + o )

i 1.2). - x¥,
Let ka/e} satisfy (2.1.2). Then x X

Proof: See [24] or [30, Tm. 6.8].

2.2.5 Remark: In Theorem 2.2.4, (2.2.5a,c) can be replaced with

(2.2.6a) 0<r Sr £ £

and
max(r ,Bl-ro) V-

I‘

' il 1
(2.2.6¢c) - 7 Jﬂb [max (—eet= J+a ’E_:EJJ max(r3+a ) +rJ)] <1

2.2.6 Remark: In Theorem 2.2.4, (2.2.5) can be replaced by




48

A
A

r Sr for k £ 0

<
(2.2.7) 0<r e, . o

2.3 An Application. Let D be a bounded region in R2 and consider

the problem

(-(ou), - (au), +ou=-f ;5 (s,8) €D

ou
i+ M= Y ; (s,t) € D
(2.3.1) < ] on
ps a4, 9eC®D); p>0,9>0,020
(& Mec(ad); §20, N20, §+ 1>0 .

If a rectangular, but not necessarily uniform, mesh is imposed on D,
we can derive a difference approximation to (2.3.1) which results in the
matrix problem
(2.3.2) H+VvV+2]x=¢ s
where H, V, £ ¢ L(R",R™) for some n, ¥ is non-negative diagonal, and
H and V are, after a suitable permutation, direct sums of tridiagonal
Stieltjes matrices (see [28, Section 6.3].)
If, for some c ¢ R,‘we set

Hl=H+cZ,Vl=V+(l-c)Z ,
we obtain from (2.1.2) the following iteration considered in the case
¢ = L vy Varga [28].

n
X. € R,

(@]

(2.3.3) { [r, + B + cZ)x [r, -7 - (1e)Zlx  + g

k
[I‘k - H - CE]X_K%‘*'g

-
1l

k:
[rk +V + (1-c)Z] X

o

More generally, suppose H, V, Z e'L(Rn,Rn) are symmetric with eigen-
values in the ranges [a,b], [a,B], [s,t] respectively. TFor M a symmetric
matrix, let (M) be the least eigenvalue of M. Then using the fact that

for symmetric M and N, pu(M) + w(N) £ p(M + N), it can be shown that
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H) =H +cZ and v,o=V+ (1-¢)Z satisfy (2.1.1) when one of the conditions

of Table 2.3.1 is satisfied.

2.3.1 Table:

a o s 1Y c addlitional conditions
+ + +,0 [-a/t,1+2/t ]

0 + + [0,1+2/t ]

0 + 0 [0,1+a/t)

+ 0 + [-a/t, 1]

+ 0 0 (-a/t, 1)

0 0 + [0,1]
+,0  +,0 (-(a+2),0) [O,l]f\[l+a/s,—a/s]

+ + [-2,0) o,- [1+/s,0)

" " " + (1+2/s,0) -a/t = 1+0/s
" " " " [1+e/s,0)MN[-a/t,0) a/t # 1+/s
n n [-2,0) 0,- (1,-a/s]

" " " + (1,-a/s) -afs = 1+/t
" " " " (1,-a/s1N(1,1+0/t] -a/s 4 14/t
+ 0 (-a,0) 0 [1,-a/s)

" " " - [1,-a/s]

0 + (-,0) 0 (1+e/s, 0]

" " " - [1+a/s, O]

The choice of ¢ = & in (2.3.3) is a reasonable one, but it may not be

optimal. Suppose that £ = AL for some A >0, so that s = t = A, and
suppose that one condition from Table 2.3.1 is satisfied. Let Tr be

defined by (2.1.4). When we try to minimize p(Tr) for r > 0, we are



50

led to the min max problem,

mn e [EoEogy] me [Loxofh
>0 a=xSb asysp 1T T X ¢
—E'ci o
oSy

The optimal parameters, T, and Cyo are given by

r

Il

o= ~Vla+ech)(b+er) = v {&+ (1cy)r) (B+ (1-cq)h)

(¢ + \) (B+ A) -ab

0T Ma+b+a+B+on

We note that cO may not satisfy 0 = cO £ 1, but it must satisfy

a o
- -—< < o
T "% 1t

We note also that the choice, ¢ = &, is optimal when (a,b) = (o,B).

2.4 Local Convergence of Some ADI Iterations in the Nonlinear Case.

Let F, Hy, V;: R" = R® satisfy F = H, +V,. We are interested in finding
a solution to the equation

(2.4.1) F(x) =0 .

ITH, Ve ch(®*) and [F'(x)] exists for each x ¢ R®, then be, ) 1s

well defined by the Newton iteration,

' 1 - 1 -
(2.4.2) F (Xk) Xy = F (Xk) x F(Xk) s
and if lim X =X exists, then F(x) = O.

We may try to solve (2.4.2) for x by performing one or more ADI

k+1

sweeps of the form (2.1.2). If we apply the same V parameters at each

Newton stage, we have, formally, the N-V step ADI iteration:
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- b e
ez ) 3t W I Vi) ) x - P
ﬂ L)+ 73 ()] x) - [r, - 5] (x)] x§+% + P (x) ¥ - Fx,)
. M = Xy g .

Alternately, we may try to solve (2.4.1) by applying a nonlinear
version of (2.1.2) directly. If we apply V parameters cyclically, we

have, formally, the V gtep ADI iteration:

~ X5 e RY
J+3 i+ J 3
rx 2+ H (xV"2) =r x - v, (%)
(2.4.1) < j 1 ik 1Y%k
hEal heal 3t 3+
Tkt Vl(xk ) T - Hl(xk )
0 _ v
_ e T % Tl T %

Each of the equations in (2.4.4) is nonlinear, and hence, we may
try to approximate the iterates by taking one Newton step during each

half sweep. We have, formally, the V step ADI-N iteration:

- n
XO € R
. ., 1 . . .
+ ' (%Y J+s = 1 (9 dJ _ J
2 4.5)<[rj Hl(Xk)] X [rj + Hl(xk)] X F(xk)
-k i+1 s ey s
+ vi(xdT2 dri 1({d72 Jd72 Jr2
[rj V'l(xk )] x [rj + Vl(xk )] X F(xk )
%0 = X = x”
\ k- k7 Frrl T Tk

In order to guarantee that (2.4.3)--(2.4.5) are well defined, we
assume, analogously to (2.1.1), that Hi(x) and Vi(x) are positive semi-
definite for x € R" and that one olei(x) or Vi(x) is uniformly positive
definite on R~. Then, if r, >0 for 0 £35<v -1, (2.4.3)--(2.4.5) are
well defined. This is immediate for (2.%.3) and (2.4.5) and follows for

(2.4.4) from the fact that a differentiable function G: R™ - R%, which
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satisfies (G'(x)E,E) = cH§“ for all x,§ ¢ R” and some ¢ > 0, is a homeo-
morphism. Indeed, under these assumptions, F itself is a homeomorphism,
and so (2.4.1) has a unique solution, x¥. In the remainder of this sec-
tion, x¥ will be the root of F.

Let {yk} C R satisfy y,,; = h(yk) for k £ 0, where h € Cl(Rn).
Suppose h has a fixed point, y¥ and that p(h'(y*)) <1. Then, there is a

norm [|+|j¥, an € >0, and a § <1, such that |[n'(y)/* £ 6 when |ly - y*|*

S ¢. Hence, if Hyk - y*¥||* = ¢, then Hyk+l - y¥|* = Hh(yk) - h(y*)| =
mex _[n'(y)l Iy, - y*l* = 8lly, - y¥l*. Thus, the iteration is
yely, o] £

locally convergent to y¥, and the quantity p(h'(y¥)) gives some measure

n . _
of the rate of convergence. Suppose &yk}, {Zk} C R satisfy Viesy = h(yk)
and z, ., = g(zk) for k 2 O where h, g ¢ Cl(Rn) have a common fixed point,

y¥. For the purposes of this paper, we will say that these two iterations

have the same aysmptotic rate of convergence to y¥ if p(h'(y¥)) = p(g'(y*)).

For a more precise discussion of this idea, see [e1l.

We now consider the relative asymptotic rates of convergence of
(2.4.3)--(2.4.5).

Define Tr(x) and Qr(x) by (2.1.4) where H, and V, are replaced by

Hi(x) and Vi(x) respectively. By (2.1.8), we see that (2.4.3) is given by

>
l = hl(}LK) 2 k = O 2
where
(x) ( e ( )) Q. (x) F(x)
h(x)=x - Z ﬂ T bd x) F(x
1 j=0 i= J+l Qr
Now, if Hy, V, ¢ c?(R%), the hl e C (Rn), and, for £ ¢ R",
(g) =1L ( l ( )) Q. (x) F(x)] &
n!(g) = LI - ﬁ T X x) F'(x
1 j=0 i= J+l Qr
v-l1 V-1

IO T () % (D18 %0x)

j=0 i=j+1 i
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But F(x¥) = 0. So, using (2.1.7),

V-1l
hi(x*) =T - 2( moT (x%)) Q, (x*) Fr(x¥)
= J=0 i=j+l Ty Qr
v-1
= T T (X*)
i=0 i

Now comsider (2.k.h). ILet gi/pt B "R, 051 £ 2v - 1, be defined by

= - S Sy
gj(x) - (rj + Hl) (rjx - Vl(X)) 2 O - J = U l
- 1 ) <<,
g5a(x) = (0, + V)T (rx - E () , 0F3Ev -1
Then (2.4.4) is given by
= >
41 T h(Xk) > k=0 )
where
B(6) = 5, 106, 10088 (x)

Now, if Gy: R = R is a diffeomorphism and G, R" - R" is differen-

tiable, then

6y(x) = & Lo, (67 (ay(x)))]
= 61(677(6,(x))) 55 Le7 (e, (x))]
Thus,
L oMe,() = Lo (67N (E,N T ay(x) ;
and so,
gé(x) = [rj + Hi(gj(x))]-l [rj - Vi(x)]
83+%§X) = [Tj + Vi(gj+%(x))]_l [rj - Hi(x)]

<
Now, gi/z(x*) =x* for 0 =1 5 2v - 1. Hence,

1 ool * =
g0 () = 7, (%)
Furthermore,

A

<
oo %) = < ~
gi/2 o gi/2 _ % 0 0 go(x ) = x¥ for O i=2v -1
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Hence,
' (x%) = gl 3 (xx) - gl (x%) «o- gl (x¥)
2
v-1
= m 7 (X*)
i= i

Now consider (2.4.5). ILet fl/2: R® »R%, 05120 -1, be defined by
£, () =x—[rj+Hi(x)]'l P(x) , 0535y .1
-1 <. <
= - + ! = g = -

fj+%(x) X [rj Vl(x)] F(x) , 0=3=v -1

Then (2.4.5) is given by
= >
Men = Pl 5 EE0 ’
where
h2(x) = fu_%~o £, 00 f%'O £

Now, if H, V, ¢ c2(RY), the £5/p ¢ L (B®) for 0 S 1 S2v - 1. Iet

£ ¢R'. Then, for 0= j S v -1,
£i(x) &= [T - [r, + B ()] P (0)] 6
- SHle, + 5 )1 € Fx)

Thus, since F(x¥) = 0,

fé(x*) I - [rj + Hi(x*)]-l [Hi(x*) + Vi(x*)]

[rj + Hi(x*)]_l [rj - Vi(x*)]

A

Likewise, for 0 £ 3 S v - 1,

; -1
! *) = Y (x¥ - T (x¥
fj+é(x ) [rj + Vl(x )] '[rj Hl(x )] ,
and so,
f'. X* 'f" X* =T X*
Jal) T ) =, Geo)
Proceeding as above, we find
v-1

h'(X*) = "\'-T T x¥ R
J05) = o, ()

1



55

Thus, we see that when H , V, e Ce(Rn), (2.4.3), (2.4.4), and (2.4.5)
have identical asymptotic rates of convergence, and indeed, near the
solution, the three iterations behave very nearly alike. (2.4.L4)
involves the inversion of nonlinear functions and is usually not practical.
(2.4.3) requires one function evaluation and one derivative evaluation
per cycle, while (2.&.5) requires 2v function evaluations and 2v derivatiye
evaluations per cycle. Thus, in terms of work requirement, (2.4.3) seems
to be far superior to (2.4.5)--at least locally.

Consider (2.3.1). If f depends on u as well as the space variables,

s and t, (2.3.2) becomes
(2.4.6) F(x) = Hx + Vx + @(x) =0

where ¢ ¢ D(Rn). Motivated by (2.3.3), we may consider the following
special cases of (2.4.3)--(2.k.5).

N-v step ADI:

4 XO e Rn
[, +E + oo (x)] %92 = [r. - v -(1c)9'(x )] x + F'(x )z - F(x.)
(2.4.7) < J 7 % J k" *k k" x K
. o, 1 ’
[rj +V + (l-c)¢'(xk)] Xéfl = [rj -H - c@‘(xk)] x§+§' + F’(xk)xk - F(Xk)
.Xo = X X = Xv
L k- Sk Tkl T %k
v_step ADT:
4 XO € RIl
B, g dtE I T IR, J
()" T TN L e
rjxi+i + vxﬂfl + (l-c)m(x§+l) = erifE - w2 ~c¢(g§ 2)
: 0 _JV
~ e T % 2 Fpa1 T %
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v step ADI-N:
( x, € R
(2.4.9) [r + H+co! (xJ)]xk% = [r, + 49! () 1] | ¥
Mr R e R e R R LI IO PG IC
N xﬁ B e X;

From the results of Section 2.2, we have the following theorem.

5.4.1 Theorem: Let F: R® = R be defined by (2.4.6) where H and V are

positive semi-definite, ® ¢ Co(RY), @' (x*) is symmetric, and F(x¥) =
Suppose o(H) C [a,bl, o(v) ¢ [a,8], o(e'(x*)) C [s,t] and that one

condition from Table 2.3.1 is satisfied. Define

a+cs ,c=20 b+ct ,c20
a = » b =
L {;a +ct , ¢ = 0 1 {:b +ecs ,c £0
@+ (l-c)s ,c =1 , B+ (lc)t ,c 51
al = Bl = .
a+ (1<)t ,c =21 B+ (1-e)s ,c21

Then methods (2.4.7)--(2.4.9) are locally convergent to x* if one of the
following conditions is satisfied.
i) r; = r >0 is constant (v = 1.) (Theorem 2.2.1.)

By -

i1) = <r, for 0 £ 35 v -1. (Theorem 2.2.2.)
iii) (2.2.5) holds. (Theorem 2.2.4.)

iv) (2.2.5b) and_(2.2.6a,c) hold. (Remark 2.2.5.)



CHAPTER TIT
NONLINEAR ADI TTERATIONS

In this éhapter, we consider the nonlinear iteration (2.4.4) and
obtain convergence results. Specifically, let X be a real Hilbert space,
and suppose F = H + V, where F; H, V: X 7 X are monotone. Then, by
Theorem 1.3.8, the following nonlinear ADI iteration is well defined for

s. = 0.

Ty Sy

XO e X

(3.1.1) s. x 1+ H(x
2

WKt 8. X - V(Xk)

k_%)= K k

T X + V( ) =r.x 1
K kL el Kk+s - H
2 (Xk+%)
We assume F has a unique root, x¥. If F is uniformly monotone, this

is guaranteed. We now consider conditions under which x - x¥*, where

k/2
ka/z} satisfies (3.1.1). Many of the convergence results in the linear
non-commutative case carry over to the nonlinear case--the nonlinearity
tends to destroy the special properties of the commutative case. The
positive definite conditions in the linear case will be replaced by
monotonicity conditions (as they could be in the linear case,) and the
boundedness conditions--from the linearity of the operators in finite
dimensions--will be replaced by Lipschitz conditions.

We will use the following lemma which is a slight extension of a

result by Kellogg [15]. We use the notation of Definitions 1.1.1 and

1.1.2.

3.1.1 Iemma: Let X be a real Hilbert space. Let B: X — X be monotone
and continuous. ﬁefine T: X 7 X by

T(x) = (r - B)o(s + B) ™ (x)
where 0 <r. £r,s £s,.. Then

o7
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(x) - ()l S max (1, ) [ - v

Furthermore, if B ¢ Lip  and either
i)r <s
or
. <
ii) r = s, and B ¢ Mon R
then, given a bounded set D, there is & &, <1 such that T ¢ Lip(D,éD).

Moreover, if ii) holds, GD can be chosen to depend only on r and D.

0’ ®o

Proof: Since r, s > 0, T is defined. Given x, y € X, let
£=(s+8)7x) , ¥ = (s +B)(y)

Then

Ir(x) - TIE _ & - B)E) - (r - B)@)|°

Ix - y|F (s + B)(E) - (s + B)F)IP

(x(Z -3) - Bx) - BF), x(X - 7) - (BX) - BF)))
(s(x - ¥) + (B(x) - B(y)), s(x -¥) + (B(x) - B(¥)))

Thus,
(3.1.2)
Im{x) - ()]l :[fﬁ—if—zﬂMﬁ-B@Li—i)+m&)-Mﬁf}

I - vl 2|% - 7IF - 2r(B(X) - B(F), % - 7) + |BE) - BE)IF

J=

2

So, by the monotonicity of B, L

(3.1.3) lrG) - 1)) < f%ﬁ-ﬂ2+m&>-MﬂfT

A

- vl Pz - 7IF + IBZ) - B
Hence,

Im(x) - o)l S max (1, 2) Ik - vl

Wow, suppose B € Lipb- Let D be a bounded set, and set

- -1 . <. £
D, = { (s +B)"(w) : weD, r, £s % SO}
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Suppose |w|| M for w ¢ D. Let z e D,. Then there is a w ¢ D and

an s € [ro,soj such that (s + B)(z) = w. Now, by the monotonicity of. B,

v

M]Jz ]

il llz]l 2 (w, z) = ((s + B)(2), 2)

sllzll® + (B(z) - B(0), z - 0) + (B(0), z)

Y

sllzl® - 1B 2]

Hence,

WHEQM+WMME% :

and Ml is independent of r and s. Thus, there is a B independent of r
and 5 such that B ¢ Lip(Dl, B). Now, suppose i) holds. Then, from

(3.1.3),

1

o) -2l s |22 BT = <2
B3 77

Now, suppose ii) holds. Then there is an @ > O and independent of

r and s such that B ¢ Mbn(Dl, ®). So, from (3.1.2),

2

Sl

Ile(x) - 2@l < | =° - 2va + 6°

e - s° - 2sr + g s

2
- +
2roa B
2

+ +
2roa B

S

A

2

== <
___§D 1

O O N

and 6D is independent of r and s. This completes the proof.

Consider (3.1.1). Each of the equations is nonlinear. Thus rather
than solve each of them exactly, one might solve them incompletely by
applying a finite number of sweeps of an appropriate Inner iterative
procedure, e.g. a Newbton or Picard procedure. Since the inner iterations
do not yield the exact solutions of (3.1.1), the actual iteration is

of the form,
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x € X

(3.1.4) Skxk+§ + H(xk_l_%) =sXx - V(Xk) + €

o

k

ey * V() = - Higa) + e

where €_and € are, in effect, defined by (3.1.4). Lemma 3.1.1 will

k k+s
be used to obtain convergence results for (3.1.4). We first establish
some additional lemmas.

3.1.2 Lemma: Let X be a Banach space and suppose h, h : X = X satisfy

=
i) given a bounded set D, there is a 6D < 1 such that
h e Lip(D, GD) for kK 2 0
ii) h(x¥) = x¥ ¢ X
i11) ¢ = [ (x*) - h(x*)|| =0 (k = =)
iv) {Tk(z)} is bounded for some z € X, where

= Ooese
Ty =y © by 4 ° by

Suppose- {Xk} € X satisfies

X = hk(xk) + ﬂk for k £ 0

where

v) X ®
) 2 iml <

X - x¥*,
Then "
Proof: The proof is an application of Theorem 2 of [19]. We give a

direct proof. By i), h e Lip(X, 1). So

oy - T (I S Il Ge)) - my(my o () + [yl
lbe, - Ty (2] + i, |

Hence,

AN

by = 5@ % g - 2l + 2

Thus, by iv) and v), {xk} is bounded. Iet D = {xk}U{x*} Then
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Proof: F T exists since @ > 0. Let X, ¥y € Dy« Then

v

I -yl IF ) - F @) 2 (x -y, Fh(x) - FH())

FE™(x)) - FE(x)), F 1) - F )

fl

v

o IF(x) - PP
Thus, |
Fx) - F ) S Gk - yll for x, y e D

3.1.5 Definition: Let X be a Banach space. Let {Tk} be a sequence of

maps from X to X. Then {Tk} 1s equicontinuous at Xy € X if, given ¢ > O,

there is a § > 0 such that

ey - vl S 8= T (x) - T, ()] S e for k20

3.1.6 Lemma: Let X be a Banach space. Let Xq € X, {xk} CX, and

T, Tt XX, k 2 0, satisfy
1) % % s
ii) {‘I'k} is equicontinous at XO s
iii) Tk(xo) - T(xo) .
Then Tk(xk) - T(xo).
Proof: We have
< _ . - L
The first term on the left goes to zero by i) and ii) s and the second

term goes to zero by iii).

The following two lemmas, which 'apply to the proof of Theorem 3.1.9,
are stated separately to keep the proof of Theorem 3.1.9 as clear as

possible.
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3.1.7 TLemma.: Let X be a real Hilbert space. Let H, V: X # X be contin-

uous and monotone, and suppose

<y S €£p £g £g<o =0
(3.1.5) {. 0<r Sk+l rk sk s for k=0 ,
Tys Sy -r
Define
k -1 _ -1
Ty = (v - H)o (s, + H) » Ty = (r -H)o(r +H)
k -1 -1
(3.1.6) Ty = (Sk+l - \V)o(rk + V) s Ty = (r - V)o(r + V)
= momE -
hk = TVOTH , h = TVOTH
k k . .
Then QH - TH’ TV - TV’ and hk - h pointwise on X.

Proof: Let x € X. By Lemma 3.1.6, to show Tﬁ(x) - 'I‘H(x), it is sufficient

to show
1) (s, + B)7H(x) » (r + 1) (x) ;
ii) {(rk - H)} is equicontinuous at (r + H)_l(x) s

111) (r, - B)P(r + )™ = (r - H)O(r + H) " (x)
To show i), let 2y = (sk + H)-l(x) and z = (r + H)_l(x). Then, as in
the proof of Lemma 3.1.1, there is an M independent of k such that
Iz, SM for k 2 0. Thus,

0 = (zk -Z,X -X) = (zk -z, (sk + H)(Zk) - (r + H)(2))

vy - 2l® + (s - 7) (2 -2, 2) + (2, - 2, H(zy) - K(z))

> 2

=T sz = Z” = (Sk - r) ”Zk - Z” “Zk“
Hence,

S i - —
”Zk -zl = = !sk s| M 0
This establishes i).
Now, for any y, z ¢ X
<

ey - D) - (- D)

r ly -2l + E(y) - 5(2)]]

S s lly -zl + lE(y) - 85(2)]
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‘Thus, since H is continuous, {(rk - H)} is equicontinuous at each point

of X. This establishes ii). Since r, ~T, iii) follows immediately.

e T, pointwise. That Tg - T, pointwise follows in the same

Thus, TH i

way.

Now to show hk(x) =~ h(x), again by Lemms 3.1.6, it is sufficient

to show
. k
1) Ty 7 Tyx) )
ii) {Tg} is equicontinuous at TH(x) R

oy ok .
111) T (T,(x)) T (T, (x))
But i) and iii) follow as above, and ii) follows because, from Lemma

S 3.1.1, T\}; e Lip(X, 1) for k 2 0.

3.1.8 Lemma: Let X be a real Hilbert space. Let H: X = X be monotone

and continuous. Suppose (3.1.5) is satisfied. Let Yy -y ¢ X. Then
(s, + B ) = (& + 1) Ny).
Proof: By Lemma 3.1.6, we need only show
ii) '{(sk + H)_l}‘iS'equicontinuous at y 5
111) (g, + H)7H(y) ~ (2 + B) 7 (y) :
But, by Lemma 3.1.k4, (sk + H)'l e Lip(X, %—), which establishes ii).

Condition iii) is established as in the proof of Lemms 3.1.7.
The following theorem is an extension of a result of Kellogg [15].

3.1.9 Theorem: Let X be a real Hilbert space. Let F, H, V: X = X be

continuous and satisfy F = H + V, F(x*) = O for some x¥ ¢ X, H ¢ Monbf\Lipb,
and V € Mon(X,0). Suppose that (3.1.5) holds and that {Xk/Q} satisfies

(3.1.4) where
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[+2]

3-1-'7 2 H < ®
(3.1.7) E gy

Then x - x¥,

k/2
Proof: Use the definitions of (3.1.6). Further define

= » o9 . = = * .
G =h °h L oroh, .y (sk + H)(Xk+%)’ v* = (r + H)(x%)

Now,

+ H)(Xk+%) =

Very = (Spaq (Sk+1 -

= (sy = Vol + M7l - D) * o) *

k, k
TV(TH(yk) + ek+%) toe

But, by Lemma 3.1.1, o ¢ Lip(X, 1). Hence,

v
kK  k
Ve = Ty © TpOy) + Gl * S :
where
Hgk 1 5 lie, H
et ﬂ €k+1 T Then
(3.1.8) Vierp = Bl + 0

We now show (3.1.8) satisfies the conditions of Lemma 3.1.2.

i): ILet D be a bounded set. By Lemma 3-1.1, there is a 6, <1
and independent of k such that TE ¢ Lip(D, 6D) for k 2 0. But, also
by Lemma 3.1.1, Tg e Lip(X, 1). Hence, h e Lip(D, 6D).

ii): Since F(x*) = 0, we have (r + H)(x*) = (r - V)(x*) and
(r + V)(x*) = (r - H)(x¥). Hence,
(r+H)@*) = (r -y)o (r+V) o (r-Ho (r+H) "o (r+H)(x),
i.e., y¥ = h(y*).
iii): By Lemma 3.1.7, h_~h pointwise. In particular, hk(y*) - h(y*).

iv): Let z = (so - V)(x¥). Then Gk(z) = (sk+l - V)(x¥). So

{Gk(z)} is bounded by s|lx*|| +
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v): kfoilﬂkll §k>jo\l€k+_é_ll * el < =

Thus, by Lemma 3.1.2, y, = ¥y¥. But Xyl = (sk + H)

-1
Lemma 3.1.8, Xyl 7 (r + H) 7 (y*) = x*. Now,

(r, + V)(x,,)

I
—
2]
o
1
e
~
)
3
+
W(")
i

(i)

(rk + V)(xk+%) - F(Xk+%) + ¢

Thus, X, .q = X4l + §k+%’ where, by Lemma 3.1.4,

HEK%H = kaﬂ_ - Xk%“
=l D M) - Bl oaa) - (g + T+ M)l

S %—H-F(xk+%) + €k+%ﬂ

But, ¢ ~ 0, and, since x

-y e 3 l -
R S by the continuity of F, F(Xk+%) 0.

1
k=

Hence, §k+% - 0, and so X4 -+ x¥, This completes the proof.

Kellogg proved Theorem 3.1.9 under the assumptions that Ty =8 = r

and Sk/2

If the Lipschitz and monotonicity restrictions on H hold uniformly

= 0.

on X, (3.1.7) can be weakened somewhat.

3.1.10 Corollary: Assume the conditions of Theorem 3.1.9 except (3.1.7).

Assume also that
H e Lip(X, b)NAMon(X, a) where a >0 and b <©

and that ¢ - 0. Then x, =~ x¥,.

k/2 k
Proof: The proof is the same as that for Theorem 3.1.9 except that we

use Corollary 3.1.3.

Usually, we would like to apply a finite number of parameters in a



cyclic manner.

result, Theorem 2.2.5, allows us to do this.

3.1.11 Theorem:

continuous and satisfy F =H + V, F(x¥)

and V e Lip(X, B)NMon(X, «), where

Ix

Yy = 80n) + T

Let X be a real Hilbert space.

]
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The following theorem, which is an extension of Pearcy's

Let F, H, V: X X be ¢

H e Lip(X, b)NMon(X, a),

(3.1.9) b<®, 8a>0,BS% 020 or bSw,a20, p<®, a>0
Let
1
2 2
r2 - 2ra + b b < o
6H =d|lr  +2ra + Db
1 b=
1
r2 - 2ro + 32
5 B==
év ={ |r + 2roa + g s
1 B =
8 = 6_°8._.
and éH 6V Suppose
= g § § * o0 S 5 =
O<r = Ty~ Sy T Tyop #Ty = 8y =8
- = € :<y . >
rkv+j = rj B Skv+j Sj for 0= j=V ~-1land k=0 )
>
where Vv = 1 and
T
o8 5T
(3.1.10) v -1 >
log 6
. . s . - %,
Suppose, finally, that {xk/E} satisfies (3.1.4). Then X jp T
Proof: By (3.1.9), & <1. Thus, V is well defined and finite. Define
Tg and Tg as in (3.1.6). Set '
v-1 v-2. V-2 0 0 -1
- o Oeeed -
g =Ty ©°Ty Ty T, 0 Tgo (sg -V)o (xr, ; +V) s

= (rv_l + V)(ka) for k 2 0, and y* = (rv-l + V)(y*). Then
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where
< | e
“nkH - ”e(V-l)k“ + H€<V-l)k‘f’%‘“ + + Hevk'f—é“ )
and
g(y*) = y* |
Now, by Lemma 3.1.1, TJ e Lip(X, 8;) end T;jj_ ¢ Lip(X, &) for 05 jSv -2,

-1
and (so -V)o (rv-l + V) e Lip(X, -i—) Thus, g ¢ Lip(X, &%), where

v-l »
&% = 6H-5 -;q% . Now, provided V £ 1 satisfies (3.1.10), &% <1, and

so g is a uniform contraction on X. Now, = 0 implies T\k -+ 0. Thus,

k/2
as in the proof of Lemma 3.1.2, Yy “y*., TI.e.,

(r,q + V)(xy) = (x, ) + V)(xK)

But, (rv-l + V) is continuous and uniformly monotone. Hence, (rv-]_ + V)_l
is conmtinuous. Thus, x = x¥ (k - ®). Then, by the technique at the
end of Theorem 3.1.9,

lim x = 1im x = 1im x , = x¥

— (v-1)+% Yoo (v-1)+1 e VK

This completes the proof.



CHAPTER IV
PICARD-ADT ITERATIONS

Tet F: R® ~ R® satisfy (2.4.6) and have a root, x*. In this chapter,
we will consider two-level Picard-ADI iterations for approximating x¥.

This type of iteration was considered by Douglas [5] and Gunn [12], [131].

Generally speaking, Picard type iterations for finding the root of F
are not globally convergent unless the growth of @ is gufficiently re-
stricted. However, in some cases, we can replace the problem of finding
the root of F with the problem of finding a root of a related function,

FO = A + wo. where the growth of wo 1s sufficiently restricted. See, e.g.,
the discussion in Section 1l.4. Even if the growth of ¢ is not sufficiently
restricted on all of Rn, if some bound on on - x¥|| is known, we may be
able to formulate a Picard type iterative procedure which will converge

to x* from Xy

In Section 4.1, we give some preliminary results concerning general
two-level iterations, define Picard type iterations and give some examples
of specific Picard type iterations.

In Section 4.2, we consider multistep Picard-ADI iterations, i.e.,
iterations in which the inner iteration is composed of several ADI sweeps.
In Section 4.3, we consider single step Picard-ADI and ADI-Picard itera-
tions.

In this chapter, || * |l, in R, will denote || - ||

2

4.1 Preliminary Results.

4.1.1 Lemma: Let X be a Banach space. Let {xk}<:X‘and x¥ ¢ X, and sup-

69
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> .

* = . g * = %
pose X _, x¥ ¢ DkC:X for k = 0. Let h:D ~X, satisfy hk(X ) = x% and
h e Lip(Dk, 8) for k = 0, where & <1 independently of k. Suppose,
finally, that

- < - 2
where
<355
independently of k. Then x - x¥.

k
Proof: Let & = T(L + 6) + 8. Thend* <1. Now,

ey - 2%l = (86)%fc - x|

Suppose

WA

EREE S RO N

Then
ey - 2l S ey - B el + I (x) - b (6]
0 (b - 24l + iy Gee) - B ()l + [y (x,) - by (o)

S (N @)+ 8) I - wx
Hence, by induction, ka - x¥|| S (5*)k Ix

0" x*|| for k 2 0. This completes

~the proof.

Suppose we wish to find the common fixed point of the functions,
hk’ of Lemma 4.1.1. If hk is difficult to evaluate, we may consider a
two-level iteration in which the theoretical outer iteration is given by
Xk+l = hk(xk)' If the error in the inner iteration is reduced by a
factdr of M, Lemma L4.1.1 guarantees convergence of the two level scheme.

Let F(x) = Ax + 9(x), where ¢: R® =R, and A ¢ L(Rn,Rn) is non-
singular. Suppose F(x*) = 0. Then Ax¥ = -p(x¥) = Ax¥ - F(x*), which
suggests the following iteration, commonly called the Picard iteration

for approximating x*.
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Axk+l = Axk - F(xk)

Motivated by this, we make the following definition.

4.1.2 Definition: ILet F(x) = Ax + ¢(x), where @: R* = R", and A ¢ L(R",R").

*
If o ¢ GEA]( ), the iteration,

[o+a)x =lo+a)x -Flx) ,

is called a Picard iteration. The parameter, o, is called the Picard

Earameter.

‘Definition 4.1.2 is generalized to the following.

4.1.3 Definition: ILet F: R° = R, and let C ¢ L(R",R™) be non-singular.

The iteration,

(%.1.1) Cx, ., = C0x - F(x,)

is called an iteration of Picard type.

Let ¥ ¢ M(R"), and let C ¢ L(R",R") be non-singular. Iet
n(x) = ¢ Hex - F(x)]
Then
-1 D
h(x) - h(y) =c™[c - F(x,y)] (x - )
Thus h is a contraction on DCR- if there is a & < 1 such that
HC-l[C - FD(x,y)]” £6forx,yeD

Generalizing, we have the following lemma.

*)

This double usage of o--as a parameter and as the spectrum set--

should cause no confusion.
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h.l.4 Lemma: ILet F e F(R™,R") have the root, x¥. Let {Ck} be a sequence

of non-singular matrices. Let X, € Rn,‘and suppose {xk}CZRn satisfies

= - : 2
(4.1.2) Cem = Oy F(xk) for k £ 0
Suppose that for some 8 <1 and independent of k,
(4.1.3) Hc;}[ck - FD(xk, x*)]]| £ 6 for k 20

- x¥,
Then xk X

Proof: We need only note that

Xy - X = C;}[Ck - FD(xk, x*) ] (Xk - x¥)

4.1.5 Remark: We note that if F e M(R") is differentiable, then

; 1 :

(4.1.4) F(x, y) = | F'y +t(x - y))as
' 0

Thus, (4.1.3) is satisfied if

- 4 -
HCk}[Ck -FEAI 8 for x e [x%, Xk] and k 2 0
We now give some further examples of Picard type iterations.

4.1.6 Example: Let F € M(R") be differentiable. Consider (4.1.1). If

C = F‘(xo), we have the simplified Newton iteration,

1 — 1
o) ®gn = Frxg) 1 - Tl
Let X5 yo ¢ R%. If C = FD(XO, yb), we have the following discrete

simplified Newton iteration,
Pl Vo) Bq = T (s ¥o) % - Flg)

(4.1.2) includes a variety of methods. If Cy = F‘(Xk),,we'have the

Newton iteration,
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Fi(x) Xﬁﬂ. = F‘(xk) x, - F(x)

D, . e
Ir Ck ='F_(Xk’ xk_l),vwe have the following secant iteration,

FP(xk"xk-l) el = FD(ik’ Xy p) X - Flx) ¥

L.2 Multi-step'Two Level Iterations: Let F ¢ M(Rn) have the root,

x¥. Let {Ck}<:L(Rn;Rn) be non-singular. Then we may consider the

iteration (4.1.2) for approximating x*. If C, is not easily inverted,

k

we may apply an inner iteration and use Lemma 4.1.2. For instance,

supposé the Ck satisfy, for k 2 0,

( Ck =H +V Hk’ v, € L(Rn,Rn) are symmetric
(h.2.1) < G[}H{JC[ak, bk] , OEVk] C[&k, B'k]

1 0<ax s 8, S'bk Spx , o<ak Sq S By S px

g a¥, b¥ o%, B¥ gre independent of k

Then an ADI inner iteration could be applied. Following (2.1.T7), define

Tk,r

Rl P P L

or [r + Vk]_l [r + Hk]_l

%,r

Then, from (2.1.8) and (2.1.11), we have the two-level Picard-multi-step

ADT iteration.

V-1 Uk‘l Vk’l
(h.2.2) x4 = 125 Tk?rk,ixk + jzg (i=§;l Tk’rk,i) Qk,rk,j[ckgk - F(xk)]
vk-]_ vk__]_
= %k T jzg (i=g;l Tk’rk,i) Qk,rk’jF(Xk) ’
where Uk is the number of ADI éweeps employgd during the kﬁh stage and
{ } is the ADI parameter sequence applied during the k#h

rk,o""’rk,uk-l
stage. Using Lemma 4.1.2, we have the following result for (4.2.2).
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4.2.1 Theorem: Let F e M(R",R®) have the root, x¥. Let {ck} satisfy
(L.2.1). TLet xb ¢ R", and suppose {xk} is defined by (4.2.2) for some

sequence {vk} of positive integers and some collection {rk j} of positive
s

parameters. Suppose (k.1.3) is satisfied for some & < 1 and independent
of k. Finally, suppose A
V-1

(L.2.3) | m | £ 1M forkZo0
1=0  FTk,1 = .

for some T independent of k and satisfying

1 -8
1+8

N <

Then, X, x%,

Proof: Let

-1
n (x) = Cy le,x - F(x)]
Then by (x*) = x*¥. Let D_= {xk, x*}. Then b, e Lip(D, 8). Now, by

k
2.1.
(2.1.9), -l

X4l " hk(xk) = 7 Tk,r .(xk - hk(xk))
i=0 k,i
Thus, by (4.2.3),

sy = B Gl S T fhe - b ()

Hence, by Lemma 4.1.1, x, ~x¥.

L.2.2 Remark: By (k.2.1), we know that if r and s are independent of k

and
O<r§rk,j+l.:<'rk,j§s forogjgvk-Zandk%O 5
or, if BV, = V\H  for k Z 0, only
O<r§rk’j-—<-s forogjgvk-l’andkgo ,

then there is an M = M(8), which is independent of k and the parameter
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sequence, such that (4.2.3) holds whenever v ZM for k 2 0. In the com-
mutative case, this is thé basic result, and in the non-commutative czce,
this is, essentially, Pearcy's result, Theorem 2.2.4. Thus, we can bdund,

a priori, the number of inner iterations and still guarantee convergence

of (k.2.2).

4.2.3 Example: Let F ¢ M(R") satisfy

(F(x) = Ax + 9(x), F(x*) =0

A=H+7V; H Ve LER,R") are positive semi-definite
(k.2.4)
o[l Cla, vl, olv]Cle, Bl; @, 820, a+a>0

[P € D(R™)
Suppose also that
ml & @D(x,y) SMI for x, y ¢ R
(k.2.5)
-{(a+a@)<mn
In [5], Douglas considered (4.2.2) under the conditions C, =C =
A + oI (for some suitable ADI splitting of A + oI) where © = 3(M + m) and

HV = VH. Indeed, in this case,

le™ e - PP,y Al S e o - Py S M -m -

M+mnm+ 2(a + @)
Thus, Theorem 4.2.1 can be applied. Douglas obtained convergence of

(4.2.2) but did not show this could be done with an a priori bound on v,

In the previous example, it was assumed that qp(x, y) is globally
bounded from above. By the discussion of Section 1.4, this is no real
restriction. Nevertheless, in the next example, we do not make this

assumption but assume, instead, that ¢P(x, y) is bounded from above on

bounded sets.

k.24 Example: Let F satisfy (4.2.4) and suppose that, given a bounded

set, DC R", there is an M(D) such that



{ mI §CPD‘(X, y) €M(D)I for x, y €D

-(a + @) <m independently of D

Let {xk} be generated by (h22) We will pick C succ‘eAssively such

k
that (4.1.3) is satisfied.

Now,

IEF2(x, 5 %) 17| S q= —e
a +a+n

Thus, as in Section 1.k,
- ¥ § =
b -l S q FGI= s,
Let
D = S(xk, sk)
and let

m, () = inf (sup) @Ei(x, y)

1=i=n
X, ye:Dk
Now ‘suppose C, = A + o (with an ADT splitting, Cp = (7 + cck] +
v + (l-c)Ok],) where Gi: Zm. Then
-1 1 D
a+a+a
k
Now, for x, y € Dk’
+
Mk - g for o 5 m—-lf———bﬁ{-
k k
< 2
lo, - #°Cx, ¥)If S "
> Tk +
Ok - mk for ck = "
Now, x,, x* € D . Thus (4.1.3) holds if
-0 +
..__Ml{._._ﬁ. £6§<1, and ok§nj{___Mli
a + o+ Uk 2
or
- +
G § <1, and o2 ik
a+ &+ 0 > an k 2

k

76
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These conditions reduce to

M - 8(a + @) - < m + 8(a + @)

(4.2.6)
14+ 6 k 1.8

il
Q

where & must satisfy
M -y <
Mmoo+ 2(a + @)

(k.2.7)

We now show that 8 can be picked to satisfy (4.2.7). Suppose (4.2.6)
and (4.2.7) are satisfied where 6 is replaced by 8, and suppose (4.2.3)
is satisfied where T is replaced by T < (l-ék)/(l+6k). Then, if {xk}

is given by (4.2.2),

A

lypy - x| = (M (1 +8) + 8 ), - x*[| for k 20

Hence,
- x¥|| - S >
g = ¥l = flxy - x*[| =5y for k= 0
G . _
ThuS’ {XK}C-S(X J SO)LS(XO’ 230)_ D. Let

N = max |[F(x)||

xeD
Then
< —
lbey - x| S @om=s ,
and
DkC S(Xk’ s)
Thus @
U o C8(x., s + 2s,.) =D¥
k 0 0
k=0
Now, let

m (1) = 1af_(sp) @) (%, ¥)

x, yeD¥

Then mgm'*wgmk ng < M¥, and so,
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hom o wew

Mk+mk+2(a+a') M* + m¥ + 2(a + @)

<1l

Thus, if & satisfies

(4.2.8) Mo S s <1,
M* + m* + 2(a + @)

(4.2.7) will be satisfied. Now, if we try to minimize ”C];l[ck - FD(xk,x*)]H,

we are led to
min [ min u 5 min < —f—ls____-iili— ]
m ok%(Mkmk) a + o+ o %(Mk+mk)=ck a+a+a
- m
Mk tm o+ 2(a + @)

and the minimum is achieved at
1
== +
% = 20 +m)
Thus, if Mk and mk change much during the iteration, we might wish to

consider a variable o . If we pick o = %(Mk + mk), then (4.2.6) is

satisfied for any 6§ satisfying (4.2.8)
If we wish to employ a single Picard parameter throughout the itera-
tion, it is sufficient to choose ¢ such that

M*-(a,+0!)
2

for then (L.2.6) will be satisfied ( for o, = o) for some § <1. In par-

ticular, we may pick, as Douglas did, o = S(M¥ + m¥).

< ¢

Under more restrictive conditions than in Theorem L4.2.1, we can
obtain convergence of (4.2.2) without requiring a condition like (4.2.3).

The following result is essentially Theorem 1 of [12].
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4.2.5 Theorem: Let F ¢ M(R") have the root, x¥. Suppose

(4.2.9) FD(X, y) - C* ig positive semi-definite for x, y ¢ R*
where C¥ 1is positive definite. Suppose
(4.2.10)  C - F(x, y) is positive semi-definite for x, y ¢ R™ ,

where C =H +V, and H ¢ L(R",R") are positive definite and

1 1 1
commute. For r > 0, let T, and Q. be defined by (2.1.4). TLet X, ¢ R

s V.

n
>

and suppose ﬂxk}Can satisfies

vl vol  v-l
= mop ox + Z( m T ) [cx, - P(x, )] )
R % PSRN er K K
£1Sv-1. Then x_ = x*.

where r, > 0 for O
i k

4.2.6 Remark: Condition (4.2.3) is not necessary in Theorem 4.2.5 in that

v £ 1 can be chosen arbitrarily.
In terms of Example 4.2.3, assumption (4.2.9) and (4.2.10) imply

(4.2.5). Furthermore, if o Z M, (4.2.9) and (4.2.10) are satisfied.

4.2.7 Remark: If F is differentiable, then, by (4.1.4), conditions

(4.2.9) and (4.2.10) will be satisfied if FD(X, v) is replaced by F'(x).

The proof of Theorem 4.2.5 depends heavily on the commutivity of

H. and V,. However, even in the non-commutative case, if r

1 1 k,i =Tk °

constant within each ADI cycle, convergence independent of v, , the number

k)

of ADI iterations at the kﬁh stage, can be obtained.

4.2.8 Theorem: Let F e M(R") have the root, x¥. Let {CK}C:L(RH,RH)

satisfy (4.2.1). Let {rk} be a sequence of positive parameters and {uk}

a sequence of positive integers. Let XOGIRn, and suppose {xk}C:Rn



satisfies
Uk Uk—l J .
x = (T ) T x + % (T ) lc.x - F(x )]
S N e T e K

Suppose there is a 8 <1 and independent of k such that .

(4.2.11) HCk - FD(x,y)H S 8(a + @) for x, v e [x*, xk] and k £ 0

Suppose
ak + Bk
(4.2.12) max (Ve b, , —— ) Sy Sg<w
5 k

Then xk“’x*.

Proof: We have

- X¥ = -
epp = ¥ = Bl ) (e - x%)
where

v V-1

J
: ‘o jzg (Tk,r) Qk,r [Ck - FD(X’X*)]

By (x) = (Tk,r
It is sufficient to show that |[E, (x )] S & for x ¢ [x¥, %, ] and for
some &< 1 and independent of k. Let
e = (ry - a)r, - o) and § = (r, +a ) + o)
Then, by (4.2.11)}, (4.2.12), and (2.1.3), for x € [x*, xk],

(__guk + 2r vg_l (f&)j f_ffk;:_fkl

K .
=0 &y S

or, (ak + ak) 8

A

Iz, Gl

Jo'x L0 ('
gk‘ gk - nk

- = o ).
Now, Qk ﬂk 2rk (ak + k) Hence,

', Gl < (@6
%

80
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Let
M= (r -a*)(r - %) and § = (r + a*)(r + o*)
Then
(.T_lk_)vk < E‘. < E < 1 ,
% & ¢
and so,
HEk(x)H ES -g(l S8+ 8 = 6% < 1

This completes the proof.

[1\V4

4.2.8 Remark: In Theorem L4.2.8, if H .V, = VH for k =0, (4.2.12) can

be weakened to

max ( Ve, b, v By ) grk Sg <o

In terms of Example 4.2.4, BV, = VH if HV = Vd
It rk_—-—, r and VkE Vl are constant, we see, by the similarity
transformation z, = (r + Vl)xk, that (4.2.12) can be weakened to

(4.2.13) max (max +a
k

In terms of Example 4.2.4, V. = V, if o, =oor if c = 1. If 9 =0,

then H, = H, and (4.2.13) can be easily satisfied. If o, 1s chosen as in
Exemple k.2.k, then o S M%, and so a, Sa+ o Sa +M*, and, likewise,

b b + M¥. Thus, (4.2.13) can be satisfied a priori.

<
K P o VY B) ST

Suppose F is as in Example 4.2.3 and is differentiable. Consider the
Newton and secant methods of Example 4.1.7. In these cases, (4.2.11)

becomes, effectively,

lo' (=) - @' @) S 6 (a+a+m)

o]

for x and y in some set containing \J [x¥, Xk]' This is a very severe
k=0
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restriction and holds only if x. is close enough to x¥. However, Theroem

0
4.2.8 may still be usable.

4.2.9 Example: Consider the discrete boundary value problem,

A u(P) = eu(P) , Pel
(4.2.14) { b
u(P) v(P) Ys+ Gt , P=(s,t) e ,

where Ah and © are given in Example 1.2.5. Let u¥ be the solution of
(4.2.14%). We have seen that

-g Sux(P) Sy« C

Thus, u¥ is the unique solution of

{ A u(p)

f(u(®)) , P el

u(P) = v(P) , P el ,
e—g+e_g(u+é-) s u§_é.
£u) =¢{ e s - %—§ usy+ ¢
o Yoy o (yr) , Y+CSu

Let F be given by (1.3.3) where 4 = —Ah. Then the root, x¥, of F is

x* = u¥., TFurthermore,

-1
- g
mex _ F'(x) - FU(y)[| §  mex e - B =Y - e ,
YR -1/8 Se,t5v+(
and _ 1
m=e g

Now, if A, is split as in (1.2.40), then a = @ ~ T°. Hence, (k.2.11) is

satisfied (for small enough h) if
Y6 e'l/8 <o + e—l/8
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Now, lOg(2ﬂ2 + 2e—1/8

) > 3.06. Hence, (4.2.11) is satisfied (for small
enough h) if

Y+ § <3.06

4.3 Single Step Two Level Iterations. In this section, we consider

two level iterations in which the inner iteration is carried only one
step. The procedure may be either a Picard type iteration coupled with
an inner ADI iteration or a nonlinear ADI iteration coupled with an
inner Picard iteration.

‘Suppose F satisfies (4.2.4). For convenience, we will usually
assume (4.2.5), though this can be weakened. If we attempt to solve
the equation, F(x) = 0, by coupling a Picard iteration with an inner

ADI iteration, we obtain the Picard-ADI iteration.

+
[rk H + cck] Xk&%

(h.3.1) [rk -V - (l-c)okJ X, t O X - m(xk)

[r, +V+ (l-c)ok] X [r. -H - Ok] x

K kO - PO

where ¢ is an appropriate scalar, r, is the ADI parameter, % is the

Picard parameter, and the Picard matrix, C, = A + o , has the ADI split-

k k’

ting, = [H + cck] + [V + (l—c)ck].

Ck
Alternately, we may couple a nonlinear ADI iteration with an inner

Picard iteration and obtain the ADI-Picard iteration.

[r. +H + co 1x
(4.3.2) k k

[rk +V + (1_c)ok3 Xy = [rk -H -co Xk+%J + 0k¥k+% + @(Xk+%) .

[rk -V - (l—c)Gk] S @(xk)

I\)TH

k

and ©

In (4.3.1) and (h.3.2), r. and o_ could be updated to Tyl ol

k k

the second equation, but we will not consider this.

in

From Theorem 4.2.8 and the estimates of Example 4.2.4, we can de-

rive some conditions under which (4.3.1) will converge. By a straight-
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forward proof, it can be shown that (4.3.2) converges under practically
the same conditions.

Condition (4.2.12) of Theorem 4.2.8 is rather stringeﬁt since we
would like to take the ADI parameters smaller than allowed. If QKEEEU

is held constant, we can relax (4.2.12) and obtain a result analogous to

Pearcy's result.

4.3.1 Theorem: Let F satisfy (4.2.4) where (4.2.5) holds. Suppose

(%.3.3) Mtm _ 529

Let 0 £c¢ 51, and set

a; = a + cgo » bl =b + co
o = o+ (1-c)o, B, =B + (l-c)o
Then let
(4.3.4) r = max ( VA "b, 5 WO B )
Let
(4.3.5) s-M-m . M-m <1
2(a; + o) M+m+ 2(a + @)
Now, set
- - &
X - s-a s- . 2s (al + al)
= . s
s+a, s+ O (s + al)(r + ai)
and
2r (aq + )
g = 1 - (1 - 6) L <1

(5 + ) + @)

Suppose {Xk/e} satisfies (4.3.1) where o = o, and {rk} satisfies

[7AN
A

(4.3.6)
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where

log q
(%.3.7) v>1+

log &%

is] - x*,
Then Xk

Proof: Let Hl =H+co and V, =V + (L-c)o. Let

e = X

- x¥ =0 - 2
K/2 = ¥ and Ak o @D(xk, x*%) for k £ 0

k/2

Then, by (4.3.3),

il s EoB =g (o + o)

2
Now,
[r, + Hl] Cpel = [rk - Vl] e, *Ae
= - A
ley vy T ey = I - By d e s + By
* = ; —_ N
Let e [rk-l + Vl] e for k = 0, where rLET, Then,
V-1
er. = T B, .) e,
(i+1)v (j=0 i,37 Tiv ,
where, _
B, .=[r, -8 10, +8 1" [r, -v.1[,  +v 17
i,J J 1 J 1 J 1 J-1 1
-1 -1
+er, [r!j *E T, [rj_l + v
Now, by (4.3.4) and (4.3.6),
-«
-1y < 1
“&o"ﬁ][ﬁhl+vi]|l‘
r+Ol:L
Thus, for i =)
- - & + o
o, | SqEletfiih oty r)
1,0 = >
Totaep v (rpre)l, o)
< 8 -a s5-9 . 288 (al + al)
s+ta r+a (s + al)(r + ai)
=4q

Now, for 1 £ § £ v -1, by (4.3.4) and (4.3.6),
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1, <3 "%
Ifr, - Vl] [r. - VlJ- | £ <
J J- r, + O(l
and J
1 1
Wr, . +v, 174 s
J-1 L T + O T, + o
j-1 T 3T
Thus, for 1 S J Sy - 1, and i 2 0,
r -a T, - 2r .6 (a, + @
iz H <7J 1 J 1 + J (l, l)
1sd + + +
T 8, ry o (rj + al)(rj ai)

+
zrj (al ai)

=1 -(1-8)
(rj + al)(rj + ai)'
s S1.(1-6) or (al + al)
J (s + 2 + )
= &%

Thus, for 1 2 0,
o sq yoll € 2 (59)77F ey

But, by (4.3.7),
q (86)"F <1 .

Hence, e, — 0 (i = ®). But, clearly, there is a K < *® and independent

ERY
of i and J, such that

lle¥

¥oegll =K et

Hence, eX — 0, and g0 e, — Q. This completes the proof.
? "k k

%.3.2 Remark: In Theorem (%.3.1, (4.3.7) can be replaced with

v-l »
.3, <
(4.3.8) 9 jzl 6j 1 s

where g, and 63 are as defined in the proof of Theorem L4.3.1.
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4.3.3 Remark: In Theorem 4.3.1, (%.3.6) and (4.3.7) can be replaced

with

2]
|
w
h
Q
L]
W
)
o

(4.3.9) r

4.3.4 Corollary: Let the conditions of Theorem 4.3.1 be satisfied except

redefine .
. (s - al)(s - o:l) . 8 (al + ozl)(s - ozl)
(s +a) + @)  (xta)(r o)
2
L 8 ) -a) o (a, + )P
(s + al)(r + a'l) (r + al)(r + ozl)
and

6*:[1_(1_5)ﬁ][1_(1_6)ﬁ]< 1

r + + a
1 r 1

k
Proof: The proof follows along the lines of that of Theorem 4.3.1. We

and let {Xk/Q} satisfy (4.3.2). Then x _ — x*.

now have
lr + = - A
rk Hl] ek+_% [rk Vl] ek + kek
+ = -
[rk Vl] ek+l [Tk Hl] ek+% + +%¢k+%
Thus,
v-1l
= (T *
Toayo = (TP o ’
where
B, .= [r, -]l +8 1  [r -v.1[r. . +v, 17
1,d d 1 J 1 3 1 J-1- 1
-1 -1
A + - +
1041 [rj Hl] _[rj Vl] [rj-l Vl]
. -1 -1
+ [rj - Hl] [rj + Hl] Aiv+j [rj_l + Vl]
-1 -1
A r + A +
iU+j+%' rj Hl] iv+j [rj_l Vl]

Now, as in the proof of Theorem 4.3.1,
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E S o= (rO - al)(s - ai) . 8 (al + ai)(s - Qi)
i,0 0 — -
‘ (rp + o)l + o) (rg +a)(r + @)
2 2
- -8
. & (al + al)(ro al) . (al + al)
<
= q_ 2
and, for 1 £ 3 S v -1andi 20,
”E H :-<- (rj - al)(rj - Ql) + 6 (a'l + al)(rj -al)
i,d ’ \
(rj + al)(rj + al) (rj + al)(rj + dl)
2 2
- 8
Sl el ) (a + )
o
a, + o a. + o
= 1-(1-9) L 1 1 - (1 -39) _l;___i:]
rj + a/l‘ rj + 8,
=6, S ex
J

. o ,
So ”efi+1)v” S g (&%) 1 Heiv“’ and the result follows as in the proof

of Theorem 4.3.1.

4.3.5 Remark: In Corollary 4.3.4, (4.3.7) can be replaced with (%.3.8),

where g, and 63 are defined as in the proof of Theorem 4.3.Lh

%.3.6 Remark: Remark 4.3.3 holds for Corollary 4.3.4k also.

Let o =0 be constant, and set ¢ = 3. The (4.3.2) becomes

[sk + H] x

. [Sk' - V] x, - CP(XK)

3

(4.3.10)

where s_ = r, ¥ 15. We now establish a result for (4.3.10) which is

k
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sharp in the linear case.

4.3.7 Theorem: Let F satisfy (4.2.4), where (4.2.5) holds, and, in

addition
- 2min (a, @) <m

Let

K = 2 max bt %M z %M R

+dm Of+%m

and suppose

+
(4.3.11) M m, k<sSs . Ss forkZo

N k+1 k

igfi 3. . = x¥%,
Suppose {xk/2} satisfies (4.3.10). Then x "X
Proof: Let e = x - x¥. Then
peladdtalt & K

k
-1
= + ™ *
ek+l [Sk. V] j:o (EH,j EV,J.) eO ?

where
: : -1 D
* = -H - * I
e¥ [so H @D(x%, x%) ] [so + H] [so V-9 (xo, x%) ] ey s
and '

{ By, = Sj - H - #(x, g5 x*) ] [Sj'+ m]
5,3

Now, H[sk + V]'lH is uniformly bounded. Thus, it is sufficient to show

]

log =V = @y, X)) [y +71™

that there are 6H’ 6V < 1 and independent of k, such that

gl 5 8 5 By | S & for k2o

nv

s

k’

Now, since V dis positive definite and 8.1

H[sk_l + v] ng 2 H[sk + V] xH2 for x € R™

Hence



[s, -V - @ (x,, )] x|
ey P2 ap i Ml
i x40 H[sk_l + V] x|
- Ils, -V - P lx, 0] x|

x40 ICs, + v1 /P

IR, - v, 1 I
sup
x40 H[Rk + Vk] X”2

where
R, =8 -= D(X x¥)
k ~ g 2P Wy
v, = V+ —é—ch(xk, x¥)
Thus,
2 2
. 2 < Rl - 2(Rx, V. x) + [V, x|l
(k.3.12) By o I = sup ——— >
’ x40 [Ryxl® + 2(Ryx, Vi x) + [V, x|
Now, for ||| =1,

(5.3.13) (a0 +3)® 5 Rxlf + I xlP S (s, - 2m)® + (B + 2)°

=r + 30 where 0 = 2(M + m). 'Phen, for || =1,

Suppose Si Xk

il

(Rx, Tx) = 3lo - & lx, 2)) %, Vx) + (mx, Vyx)

1AV

- Hllo - P, # 7, |l + x, (o + Im)

M+m B+ M )

1
L @+ 4m

v

(@ + 3m) (x, -

2 (@ +m) (s - K)

Thus, for ||| = 1,
(4.3.14) 0 < (o +dm)(s - K) 5 (Rx, V,x) S (B + B)(s; - 3m)

Now, by (4.3.12)--(k.3.14), there is a év < 1 and independent of k

such that HEV_,th = &, for k Z 0. A similar result holds for EH,k and

the proof is complete,

90
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4.3.8 Remark: If 9(x) = ox + v for some Y ¢ R™ and some o > 0, then

the linear theory says (4.3.10) converges to x¥ if

ls<g = s 2
20 S8 =80 = 8 for k =0

But, this is exactly what (4.3.11) reduces to.



CHAPTER V
NEWTON-ADI ITERATIONS

In this chapter, we consider iterations (2.4.3) and (2.4.5) in the

cagse V = 1. The Newbon-ADI iteration takes the form,

(5.0.1) Xyq = K - BTy [rk + vi(xk)]'l [rk + Hi(xk)J‘l F(xk) ,

and the ADI-Newton iteration takes the form,

1 -1
(5.0.2) {Xk% =x -y +E )T FGy)

Xeq = Xyl - [rk+% + Vi(xk+%)]—l F(Xk+%) .

The methods of Chapter IV can be used to obtain convergence results
for (5.0.1) and (5.0.2) under the assumption that F'(x) does not vary
too much over a certain set. In this chapter, we will not need such an
assumption.

In Section 5.1, we consider convergence results based on contrac-_
tion principles, and in Section 5.2, we consider convergence results
based on monotonic principles. In Section 5.3, we present a counter-

example to a certaln assertion about the Newton-ADI iteration. Finally,

in Section 5.4, we present some numerical results.

5.1 Contractive Results. Suppose Fﬁ D c:Rn "Rn, D convex, satisfies

the following conditions uniformly on D.
2
{ Fec(D), PGS, [F'@)I Sy,

F'(x) is positive definite, O[F'(x)]C [p,»), n >0

where, in this chapter, || + || = || - These conditions are not enough

-

to insure that the Newton iteration function,
. -1
No(x) =x - [F'(x)] P(x) s

92



23

is a contraction on D. However, we can apply a parameter in a way
similar to the way in which theéADI parameter is applied and get a
Newton type itefation function which is contractive on‘D.

Let A: B - L(R®,R™) bévdifferentiable. Then, it can be shown that,

if A(x) is nonsingular, then %§~[A_l(x)] exists and, for £ e R,
Sl e = a0 A) §ATH(x)

Now, for r > 0, let

N}(x)‘= x - [r + F'(x)]_llF(x)

Then, for € ¢ Rn,

N;(x) g=[1-[r+ F'(X)]—l F'(x)] &
r e+ P )T P (x) € [e + P (x)]F F(x)

The first term equals r [r + F'(X)]‘l €. Thus, on D,

3

r + MN

r+u (r + w)?

A

HN;(X)H‘

1- —-l--—g-(u(r+u)—MN)

(r + )

Hence, if € > 0, and

> €+ MN
= —-—IJI—— - }J.; )

then, on D,

) $1 - —— <1
i (r + 1)

Thus, since D is convex, by (1.3.7), Rf is a uniform contraction on D.

By a similar analysis, we can determine conditions én the ADI
parameter which will guarantee that'the Newton-ADT iteration function
is a contraction on a given convex set.

Suppose F, H , V;: D CR" - R® satisfy
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a) F = H o+ 7
(5.1.1) b) H, V, € c2(D)

c) Hi(x) and Vi(x) are positive semi-definite on D

Then, for r > 0, we can define the following Newton-ADI iteration
function.

(5.1.2) hr(x) =x -2r [r + Vi(x)]-l [r + Hi(x)]—l F(x)

For simplicity, we shall say

(5.1.3) (aD, b, %, By ug, Mg, ND) € Bound (D) ,
if the following hold uniformly on D.

G[Hi(x)] C[aD, bD], O’[V]'_(X)] C[ozD, BD]

O,aD+ozD>O

%pr %
R

A

) . v

W, IEG| S (v (e)l] S

5.1.1 Lemma: Let F, H, V;: DC R" = R satisfy (5.1.1), and let

h,: D~ R” be defined by (5.1.2). Suppose (5.1.3) holds. Let 0 <K <1

and € Z 0, and suppose

v
e + e + N
(5.1.4) r 2 mex —————gggg— "o

- a - o
D’ D ?
K(aD + aD) (l—K)(aD + o:D)
and, in addition,
> aD * BD
(5.1.5) r € max [ Vo "y ,—p— i :
Then, on D,
< 2re 1 1
Iy ()l =1 - *
(r + aD)<r + ab) r + e r + o

Proof: Let

Tr(x) = [r + Vi(x)]_l [r - Hi(x)] [r + Hi(x)]_l lr - Vi(x)]

Then,
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T -2r [r+ Vi(x)]_l [r + H]'_(X)]_l F'(x) T_(x)
So, for § ¢ RY,

B1(x) 8= T (x) €

+

+or [r+ Vi(x)]-l V{(x) g [r + Vi(x)]-l,[r Hi(x)]—l F(x)

+

tor [r+ v [+ B )T EI(x) & [r + B ()17 F(x)

So, by (2.1.3), (5.1.3), and (5.1.5), on D,

vV
! () | < (r - aD)(r - ab) . 2r MD ND . Mg Nb
r (r + aD)(r + ab) (r + aD)(r + aD) T o r+oag
But,
(r - aD)(r - Qb) = (r + aD)(r + aD) - 2r (aD + ab)
Hence ‘
’ . v ‘r
OIEE - (o, + o) - 2D ks
t . (r + aD)(r + ab) D oy Tt
<, or K (aD + ab)(r + ab) - Mg N,
S (r + aD)(r + ab) T + o
(1)(e + o) + o) - M) I
+ o
r + aD

The result now follows from (5.1.L4).

5.1.2 Remark: 1In order to make the restriction, (5.1.&), és weak as

possible, we would pick K such that

€+MI_;ND €+MgND
K (ap+ ) O (QK)ap+op) O ’

provided that this holds for some O <K <1.

5.1.3 Tterative Procedure: Let ¥, Hy, V;: DC R® - R" satisfy (5.1.1),




and suppose (5.1.3) holds Let X x*¥ € R, where F(x*) = 0, and

suppose S(x*, on -x*%||)C D. Let 0 <K <1and € >0. Define X,

for k 2 1, successively @s follows. If x, has been defined and

[x%, xk]CD, determine a,, b, etc., such that

(a,, bk’ @ , Bk’ Mﬁ: M}Z) Nk) € Bou-nd([x*: Xk:l)

o
R
v
o

(5.1.6)

x? % D’ OZD respectively

v :
bk’ Bk’ Mi’ Mk’ Nk

A

by, Bys M%, Mg, N, respectively

Set
v
@ +p &+ M‘{i N e+ M N
(5.1.7) r, = max Ve, by, k k, ko 8y s " M
+ -
2 K (ak ozk) (1 K)(ak + ozk)

-
k

and define

1 T hrk(xk) ?

vhere h ~ is defined by (5.1.2).
k

5.1.4% Theorem: Consider Iterative Procedure 5.1.3. Then [x¥%, Xk] Cpo

for k 2 O and, hence, {Xk} is well defined. Furthermore, x_ = x*.

Proof: Let

(r

[}

max (aD, ozD) > 0

,e+M%ND e+MgND

D Gy )

(¢4
D

n
i

max bD’ BD’

{ K(aD+%)—

2re 1 1
1l - + <1
(s +op)(s + B)) |z +by T+ B

D

(o2}
1

\.

Now, x_ is defined, and HXO - x¥|| s on - x¥||. Suppose

0

(5.1.8) x_ is defined, and ke, - x*|| £ 6" on - x|l .

is defined, and

Then, [x*, xk]‘CD and so Xer]



g - @l = b, () - B, G
k k
< '
s xe[ﬁi};ﬁ] Ilhrk(x)H e - =*ll
Now, since [x*, xkj<:IL (5.1.9) is possible, and r = T £ s. Thus,
by Lemms 5.1.1,
2r. € B 1
mex |0} (x)] 1 - - +
Xe x*,xk] T (rk + ak)(rk + ak) r, * e rk’+ o
<5 |
Thus,
lbeq - 2l =8l - x¥l] S 8 ) - x|
and so [x*, xk+ljc D. Thus-(5.1.8) is established by induction for
all k Z 0. Hence, x,_ — x¥. This completes the proof.

k

©5.1.5 Example: Suppose F satisfies (4.2.4) where ¢ ¢ Cz(Rn) and ¢'(x)

on Rn. Set

Hl(x) = Hx + c®(x) and Vl(x) = Vx + (L-c)o(x)

where 0S¢ = 1, and consider Iterative Procedure 5.1.4. Now,

1
ICF ()17 S
a + «o
So, from (1.4k.5),
< 1 n
I - xx|| = IF(x)]| for x eR
a + o
Hence,
2
s(x*, [e* - x I €8xy, 2 Ix* - xl) € slx,, IF(x,) ) = D
) a + o )
and
(xx, x 1 € s( - [F(x, )I) =D
’ xk xk’ a + o Xk - k

Set

o

.

-

2
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((a_.=a2a+cmin o' (x.) » bp=b+cumax 9(x,)
D 155 + 4 D 1545 4
x€eD xeD
o, =a+ (1) min @i (x,), B =8+ (1<) mx 9(x,)
D | 155 11 D 15i5p 11
< 0 xeD x€eD
_ v _
= ¢ max " = "
M ol (x, ) ;M = (L) max @(x,)
l§'§n i*i MD 155, &%
x€D x€D
N, = max [[F(x)
~ D x€eD
Then, (5.1.3) holds. Define a{;, b¥, etc., as above with respect to D

k
instead of D. Then set

]

a.

* =
« max(aD, ak), oY max(ozD, ozig)

k

b

. min(bD, b%) and similarily for Bk, M:E, M:Y{, and N

k

Then, since [x*, xk] C D’, (5.1.6) holds.

Now, since x, = x¥, N_~— 0. Hence, (5.1.7) becomes, eventually,

o+ B
_ - k "k
(5.1.9) r, = meX [«/ak Ek , - ]

We would like to be able to choose rk smaller than allowed by (5.1.9).
If ¢ =1 in Example 5.1.5, or, more generally, if V]'_(X)E V¥ is constant,

we may eventually do this.

5.1.6 Lemma: Let F, H , V.: DC R™ = R" satisfy (5.1.1), where V!(x)=V*
PALO o 12 "1 1

is constant. Suppose (ap, by, @, B, Mg, 0, ND) ¢ Bound (D). For r > O,

define g : [r +'V*]-1(D) - R" by
(5.1.10) gr(y) = [r + v%]t hr([r + V*]-ly) ,

where h  is defined by (5.1.2). Suppose ¢ 2 0 and let
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and, in addition,

1\v4

(5.1.11) r £ max EVEBTEB; N
Then, for y € D¥ = [r + V*](D),

2re

' £1 -
le, (I =1 TP

?iQ_éf_: We have
g.(y) =[x+ w]ni(lr + v*171 y) [+ w17t

Thus, for € € Rn,

1 — 1 " -1 1 ’ -1
gr(y) € = Sr(x) € +or [r+ Hl(x)] Hl(x) [r + V%] € [r + Hl(x)] F(x) ,
where

Sr(x) = [r - H:‘L(x)] [r + Hi(x)]_l [r - v*] [r + y*]7t ,
and
-1
x=[r+vw™]"y ¢ D

Thé proof now follows from fhe estimates of Lemma 5.1.1 with (5.1.11)
being sufficient instead of (5.1.5).

5.1.7 Iterative Procedure: Iet F, H v DC R™ - R satisfy (5.1.1)

l’
where V]'_(X)EV* is constant. Suppose (aD, by, @, B, M:g, 0 ND) ¢ Bound (D).

Let r = max (aD, NoB ), and set M= (r + B)/(r + @) 2 1. Let Xy, X¥ €
R", where F(x*) = 0, and suppose S(x*, M on - x¥|| CD. ILet € >0,

and define xk,for k 2 1, successively as follows. If X has been .

defined and [x*, xk'] C D, we can determine a bk’ etc., such that

k)
(ak,’ bk’ (-y, B, M‘;) 0, Nk) € Bound([x*) xk])

>
k

(5.1.12) oy = 8y
by s M?}{I’ Nk 3 bD, Mg, I\TD respect‘ively .
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Assume we can pick rk such that

. . _ <.
(5.1.13) max | By B, VOB, a, T ST
. a,_ + o
k
Then define
xk+l = hrk(xk) 2
where h = is defined by (5.1.2).
k

5.1.8 Theorem: Consider Iterative Procedure 5.1.7. If (5.1.13) is

satisfied at each stage, then {xk} is well defined.(i.e., [x*, xk] cD

for k 2 0,) and x, 7 x*.

Proof: Let
+
Ty
D

0]
]

max bD, B,

a. + o
D

2re

§=1 <1

(s + )P + @)

Now, x. is defined and [x*, xo] C D. Suppose x eee ,x are defined

0’ k

is defined. For

0
and satisfy [x*, x,]C D.for 0 = J £ k. Then, x .
dJ K+1

0535k +1, let
. =[r, + 7] x. and ¢ = [r, + V] x*
yJ dJ dJ 'T)S - d i

Then, for 0 5 j 5k,

-1 .
. : ; <
where grj is defined by (5.1.10). Now, since rj+l = rj,
: B
H[rj+l + v*] [rj + V]| =1
Furthermore,

[:y?, yj] = .[rj + v*] [x*, xj] C[rj + v*](D) ,

Thus, by Lemma 5.1.6 and (5.1.12),
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ly.py =v%, 051 - mex gt (W iy, - v%ll
s Bl T B T s
2r €
S 1- 4 by - %l
(r(j + aj) (rj + o)
Hence,
Wier = i) S & Uiy, - w2l
But,
-1
Xopp ~ % = Doy v 7T Ly -9 )
and
yo -v§ = [ro + V*]‘ (XO - x¥)
Thus,
A N N o e I A S :
e :

*Thus, since & <1, [x*, X lC . So, by induction, {xk} is well defined.

k+1

Furthermore, since on -x¢|| £ &0 leo - x¥||, it is shown by induction

that

< 1 6k—i-l

= ¥ Ity - ¥l for k2 0 :

and, hence, X - x¥. This completes the proof.

Consider Iterative Procedure 5.1.7T. It appears that D depends on

T, which depends on r, which dependé on D, and this might make D impos-

sible to determine. However, if o > 0, it is sufficient to pick 1) = -E- .

Alternately, suppose F, Hl’ and Vl are as in Example 5.1.6, where c = 1.

Then c[H]'_(x)] C [a, ») and olv*] = o[v] Cle, B] for all x ¢ R®. Thus,

r + B

for any DC Rn, we may pick ay = a. Then r = max(a, o) and T = -

are independent of D.

Suppose y € S(x¥, T on - x¥||). Then
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by - xgll S lly - el + Jxy - ] S (1) ey - ¥l

But, by (1L.k.5),
1

lieg - x*]| < 7)1

a + o

Hence, we may take

D = 8( gy 1= IF(xg))

A more serious restriction is condition (5.1.13), since it may

happen that

¢ + My N
r < max {~a, b ——— 8y

k-1 kP 2 VEB

a, + o
k

However, if F is as above, we can guarantee that (5.1.13) can be

A

satigfied. Suppose XO’ s ,xk have been determined. For 0 = J k,
define
MT+1 3
D% = §(x. F(x.)l|]) and D, = D%
§ = 8xy —— [IFGx)) 3= U
Then, for 1 = J s k, Dj(:IDj_l. Hence, we can determine bj’ M%, and Nj
such that
(a, b, @, B, MI?: 0, N,) ¢ Bound (D,) , oéjgk
(5.1.14) Mﬁ S J e J J - <
bj’ 37 Nj = bj-l’ 517 Nj—l respectively , 1 =3 =%k
Thus, if
e+ N
(5.1.15) T, =maxX | /B D, , MO B , ee———— - g ,
k k a + ¢

(5.1.13) is satisfied. Hence, if [x*, xj] c:Dj for 0 £ j Sk, Tterative
Procedure 5.1.T7 can be carried out. Clearly [x*, xO] (;DO. Suppose
[x*, x,1CD, for 0 $1%j<k. Then, as in the proof of Theorem 5.1.9,

< <. <.
gy - 2% S 0 flxy -]l gor 0 51 5
Hence, for O Si % Js

Goey g T8ty W by - x¥ll) €8Cey, (M+1) Jbey - x¥l) Co%
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But, [x*, Xj+l] C D*j+l’ Hence, [x¥, Xj+l] C Dj+li Thus, by induction,

[x*, xj] C Dj for 0 = j S k. Therefore, Iterative Procedure 5.1.7

can be carried out, and, by Theorem 5.1.8, X, 7 x*.

Now, since Xy - x¥, it is clear that Dk - {xx}. Thus, Nk = 0, and

so (5.1.15) becomes, eventually,

(5.1.16) = max [ A/é._b; , No g ]

Tk
Suppose @ > 0 and let t ¢ (0, ¥@]. Determine o ¢ (0, @] such that
TR - - & n+1 '
NOFB = t. Iet T = (t + B)/(t + %) and D, = 8(xy, o= IF(x)l)-

Determine bo as above, and then determine a* ¢ [0, a] such that

Va*°bo £ t. Then apply Iterative Procedure 5.1.8 as above. Condition

(5.1.15) then becomes, eventually, r, =t.

We note that it is not necessary to use a¥ and o¥ in the estimate

% - x*|| = 5"’1;—& IF(x)ll, since any bound for max _ [I[F'(x)17| IP(x)]
xelx¥,x

s =

is valid here. Indeed, the estimate, [|[[F'(x)] S —F—= , itself may

be improved. See, e.g., the discussion at the end of Section 1.2.

In practice, we may begin Iterative Procedure 5.1.7 using a and <.
When N,_ becomes so small that (5.1.15) becomes (5.1.16), we may redefine
the current iterate to be x. and begin Iterative Procedure 5.1.7 again

0]

using a¥ and . In this way, we can eventually bring r. down to any

k

desired fixed positive number.

5.1.9 Example: Let F be as in Example 1.4.1. Let H and V be the matrices

corresponding to the horizontal and vertical differences respectively.
Let 9(x) = ¥(x) - b, and set Hl(i) = Hx + @¢(x) and Vl(x) = Vx.
Suppose we have determined a, b, @, B > O such that olH] C [a,b] and
olv] C [e,pl. (These bounds will depend on the region, D C R® of

(1.3.1). 1In order to avoid confusion between this set and the set
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D C R", which is assumed to contain §(x¥, on - x¥||), we shall call
the latter set G in this example.) ILet X, € R", and set G = é(xo, p).
for some p > 0. Suppose, finally, that F(x*) = O for some x* e G. We
will now determine a, by % B Mg, end N, such that (aG, s % B Mg,
0, NG) € Bound (G). TLet
dov(dl) = min (max) e°
=%
xi-p§s§ki+p

Then we may take 8y = & + dp, bG =D + d;, and Mg = d;. Now, for y € G,

A

ly - x*[| S20 and [F'(y)|Sb+8+da

Furthermore,

IEGN = [F(y) - Pl & max _ IF'(E))] [ly - x¥]
Ee x¥,y

Thus, we may take NG =2p (b + B+ dl).
An iterative procedure similar to 5.1.3 can be defined for the

ADI-N iteration of (5.0.2). The following lemma corresponds to Lemma 5.1.1.

5.1.10 Lemma: Let F, H., V.: D € R* = R" satisfy (5.1.1), and suppose

1’1
(5.1.3) holds. For r > 0, let

hH,r(x) x - [r - Hi(X)]_l F(x)

by (%)
i) Let ¢ 2 0. If

4+
> o * By e+ Mg N
= max | s - 8y s
: + o
2 aD 5

x - lr - Vi(x)]-l F(x)

then, on D,
€
1 1

CCOTIES!

(x + ay)?
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ny

'ii) Let € = 0. If
v
a_ +Db € + N
rzmax D, ]yL'D:D—Ol:D 3
(¢4
2 @p ¥ %

then, on D,

Iy GOl = 1 -

(x + ap)?

Proof: The proof is similar to that of Lemma 5.1.1.

2.1 Monotonle Results. We first state the following two definitions

and a lemma which is a special case of Theorem 4.1 of [20].

5.2.1 Definition: ILet F: D Rn -'Rn be differentiable on the convex

gset D. F is order-convex on D if

F(x) - F(y) £ F'(x) (x - y)

whenever x, y € D satisfy x Syory=x.

Order-convexity can be defined, of course, for non-differentiable

functions, but, for our purposes, this definition will be sufficient.

5.2.2 Definition: Let A ¢ L(R",R"). Then B ¢ L(R",R") is a subinverse

of Aif AB ST and BA ST.

n
5.2.3 Lemma: Let F: D C R - R™ be differentiable of D. Suppose

; *
[xx, xoj* C D where x* is the unique root of F in [x¥, XO] ’ F(xo) 20,

*
and x¥ S X,. Suppose F is order-convex on [x*, XO] . Let {xk} satisfy

n

Xea1 = % - By F(xk) for kK £ 0 ,

where B, ¢ L(R™,R™) is a non-negative subinverse of F'(xk). Then
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%
x by e [x¥, xO] - If, in addition, B,

B ¢ L(R",R") is non-singular. Then, XkJr X%,

ZB 20 for k 2 0, where

We now apply Lemma 5.4.3 to (5.0.1) and (5.0.2).

%
5.2.h Theorem: Iet F, H, V;: [xx, x] - R%, where

1’

*
{x* is the unique root of ¥ in [x*, xo]

(5.2.1) o
x* = x,, and F(XO) £0 .
Suppose
1 *
a) F=H +V;H,V C ([x*, x0] )
, . *
(5.2.2) b) F is order-convex on Lx¥, XO]

c) [r + Hi(x)] and [r + V:'L(x)] are M-matrices for r > O
*
and x € [x*, xo]
H — ) —
Let Hl(x) = (hij(x)) and Vl(x) = (vij(x)), and set

d(x) = lr%ic max [h,(x), v ,(x)]

i) Suppose {xk} is defined by (5.0.1), where

(5.2.3) d(xk) S . Sg<® fork 20
Then, Xk‘l’ x¥,

ii) Suppose {}11&/2} is defined by (5.0.2), where
lm;<aix% vii(xk) §rk Sg<® fork 20
max h(xk_‘i) s Tl Ss<® for k20
1815y t 52 2

Then, Xk/2 J, x*.
Proof: 1) Suppose x ¢ [x¥, xo:l* and d(x) Sr £ 5. Let

Br(x) =2r [r + Vi(X)]_l [r + Hi(x)]_l
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By Lemma 5.2.3, we need only verify
a) Br(x) is a non-negative subinverse of F'(x),
and

b) there is a non-negative, non-singular B e L(R",R"), which is
independent of x, such that Br(x) 2 B(x).

By (5.2.2¢c), Br(x) Z 0. Now, a little algebra shows
I-B () F'(x) = [r + V()]0 e+ mG0) ] [ -] [e - W(0)D

Thus, by (5.2.2c) and the fact that r 2 a(x), Br(x) F'(x) $TI. Like-~
wise, F'(x) B (x) £ 1. Thus, a) is verified.

Let d; = ~ max d(x) < ». Then,
xs[x*,xo

r+q&)§@+%)x
and so,

1
[r + Vi(x)]'l s _~ 1

s + dl

1

s + dl

Likewise,

[r + Hi(x)]_l =S I

Now, by (5.2.1c),

dy = min _, d(x) >0
xe[x*,xo
Now, «r Z do. Hence,
2do
B, (x) 2 ————s I =B ,
(s +4,)

and B is non-negative and non-singular. This verifies b) and completes

the proof of i)e The proof of ii) is similar.

We note that Theorem 5.2.4 does not assume any symmetry conditions
of F'(x). Thus, it would apply, for example to some discrete versions

of the boundary value problem,
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{ Lu = f(s,t,u,us,ut) ; (s,t) €D
u=v ; (s,t) ¢ 3 ,
where L is given by (2.2.4). The condition, (5.2.2c), may impose

some restrictions on the values of fu’ fu , and fu and also on the
8 t

discretizations of u, and u.t being employed.

5.2.5 Example: Let F: R™ ~ R" satisfy F(x) = Hx + Vx + o(x), where

H, V ¢ L(R",R") are M-matrices and ¢ ¢ D(R") satisfies P, € c?([®),

cpi(t)io, andtp'j'_(t)zo for 051 Snandt eR . If

Hl(x) = Hx + co(x) and Vl(x) =Vx + (1-c)o(x) s

where 0 Sc 51, then (5.2.2) is satisfied for any x*, X, € R®. ILet

H = (hij) and V = (Vij)', Then (5.2.3) becomes

lgaizzc mex [h, . + el ((x);), Vit (1)1 ((x,),)] < r S <o

5.2.6 Remark: Suppose C ¢ L(R™,R") is non-singular and bas the splitting,

C = Hl + Vl + B. In [30], Wachspress considers an ADI iteration of the

form,

li

[rk +H o+ B Xk+%~ [rk - Vl] x, ot g

I

+ g )

=)

I -
[rk + Vl + B] Xk+l er Hl] xk

ok

for approximating c'lg where £ e r". Using this iteration in tandem
with an outer Newton iteration for the F of Example 5.2.5, where, for

some ¢ ¢ R,
H (x) = Hx + (1-)9(x), V;(x) = Vx + (1-c)e(x), and B(x) = (2c-1)9(x),

we obtain the following iteration,
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[rk + H + co' (J;k)J Xl [rk -V - (l-c)(P'(xK)] x, o+ F'(Xk) x - Fx)

[rk +V + co' (xK)] X [rk -H - (1-c)op' (xk)] X4l +_F'(xk) X - F(xk),

which can be put in the form,

Xyl = Ky " [rk +V + c¢'(xk)]-l [2?k + (2c-l)¢'(xk)] [rk +H + C@'(Xk)]-l F(Xk)-

If (5.2.1) holds, then Lemma 5.2.3 will guarantee convergence of {Xk}

to x*% if 3 5¢ £1 and

lgigh max [hii + (l-c)@i((xk)i), Vi + (l_c)wi((xk)i)] < rk <. <o

We note that by picking ¢ = 1, this is independent of k. Thus, we can
determine a priori a sequence, {rk} of acceleration parameters and still
guarantee convergence. The choice of ¢ = 1 is not unattractive, since
it corresponds to putting all of w'(xk) into the matrices to be inverted.

»

5.2.7 Example: Let F, H, V and ¥ be ag in Example 5.1.9. Then H and V

are M-matrices, and i (t) 20 and cp'i’(t) Z0for15iS5nandt ¢R.
Now, F has & unique root, x*, and F'(x) is an M-matrix for each x ¢ R .

Thus, by (1.4.5), F(xo) 2 0 implies X, 2 x¥, Hence, Theorem 5.2.4 can

be applied if we can find X € R® such that F(x,) Z 0. Let %, = .-

Then, [H + V] Xy - bv = fx = 0. Hence
(%),
F(x,) = (e O'F) > o.

Thus, x, is a sultable starting vector.

0

5.3 A Counterexample: Tet F: R® - R" be convex and satlisfy

Foe Cl(Rn), F'(x) is an M-matrix for each x, and F has a unique root, x¥.

Then the Newton iteration converges to x* for any starting vector, Xqe

Furthermore, suppose F = H, + V,, where Hi(x) and Vi(x) are uniformly
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positive definite. Then, in the linear case (Hl(x) = Hx + §l, Vl(X) =
Vx + 52, §l + §2 = €,) +the ADI iteration (2.1.2) converges for all
fixed T =T > 0 and for all xo. In this case, the ADI iteration coin-
cides with the Newton-ADI iteration (5.0.1).

The question naturally arises: given the above assumptions on F,
H,, and V, (except the linearity,) does the Newton-ADI iteration converge
globally for all fixed r > 0? The following counterexample shows that

these assumptions are not sufficient. In particular, it indicates that

some assumption on the nature of the splitting, F = Hl + Vl, is necessary.

3.1.1 Counterexample: Let c, ¢ (0,3) be the solution of c(l-c) = % .

Then suppose

0S¢ S CO
Y = 8e(l-c)
8> 1/(1-y) + (1/(1-v) + (1-v)2)?
Let
- (a +1)°
bo = -——;;—h——
(a +1 + khea)(a +1+ L4(l-c)a)
b, = Za -2

Then, it is straightforward to verify that

< - <
0 bl bo ha

Thus, there is a convex, non-decreasing function ¢ € CQ(RH) which
‘satisfies

?(0) = by, @(1) =D, 9(0) =0, ¢'(1)=la

l)

Let F, Hi, Vl: R 7R be defined by
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F(x) = 2x + ¢(x)
B (x) = x o+ oox)
V) = x o+ (Le)e(x)

Then, F, Hl, Vl Satisfy the conditions given above. The Newton-ADI

iteration takes the form

2rF(xk)

.3.1 X1 T ¥k
(5.3.1) BT g () e B Gr)]

It can be verified immediately that if r = a and x, = 1, then x = O or 1

0 k

depending on whether k is even or odd. Thus, the iteration does not

converge to the root of F.

It is interesting to note that if F ¢ CE(R) is convex and stricly
, increasing with a root, x¥, then (5.3.1) converges globally to x¥ for
allr >0 if B =V, = ir (i.e., ¢ = % in the counterexample.) This
can be demonstrated by comparing (5.3.1) with the Newfon iteration.
This indicates, as noted above, that any global Newton-ADI convergence

theorem for all r > O would have to include assumptions on the nature of

the splitting of F.

5.4 Numerical Results. Let £ be as in Example 1.2.5. The following

problem was considered.

Ahu(P) = eu(P) ; P el

il

(5.4.1) A u(P) = v(P) 5 P e

v(s,t) =s +2t , h=.1

Let H and V be the matrices corresponding to the horizontal and vertical
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differences respectively. Then H and V commute and have the same

eigenvalues, kl £ ... %'n’ where

k1)
r h2a = h201 = hg)\l =L sin2
2(N + 1)
Nt
¢ n2 - 128 = b = b sin® ——
n o(N + 1)
1
“~ h = /N +1 , = N2
(s‘ee [28, p. 214 1].)
Let F(x) = Hl(x) + Vl(x) where
H (x) = Hx + 39(x)
v, (x) = vx + 39(x)
*i
o(x) =(e7) -1,

¥ has a unique root, x* (see Example 1.4t.l.) Iet X, = ¥. Then

(H+vV]x, -b_ =0. Hence,
0 v ' (x) 1
n 2(x.). =
Pl =0 £ e O]
i=1
But, O = (x4)4 S 3. Thus,

F(x)ll £ WE & = 963

Now, S(x¥, HXO -x¥||) C S(xo, p) = D, where

983

_ 1
=g P = 355 :

A

But, a + o~ 2112. Thus, for small enough h, p <12. By Example 5.1.9,

we may take

]

il
o
+
0]
-
o'
il
w
It
o'
+
®

&y = %

Bl 2385 - 264 S
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We note that these bounds can be considerably improved if F is replaced
by the function (also called F) defined in Example 4.2.10.

The Newton-ADI iteration of (5.0.1) was employed to solve (5.&.1).

The initial wvector was Xy = V.
The convergence criterion was ka - xk—l”Q s 10-6.

(This does not give an absolute error bound. Since, by (1.4.7),

Ix - x*H2 S |\m + V]-lH IF(x)||, & better convergence criterion would

be HF(xk)H £ v for some suitable y. We note that ||[H + V]—lH &;gﬂg.)
The results, when rk:EEE r is constant, are given in Table 5.h4.1.

By (1.k.10), x* = Xy, and the diagonal entries of w’H and hzv are all

equal to 2. Hence, Theorem 5.2.L4 guarantees monotonic convergence if

nr 22+ h2 max ef = 2 + hoed

53

However, monotonic convergence was obtained for even smaller wvalues
gf r. This is indicated in Table 5.k.1.

The number of iterations is plotted against h2r in Graph 5.4.3.
We note that the graph is approximately linear above the optimal
parameter but more sharply decreasing below the optimal parameter.
This phenomenon was also noted in the linear case and in other similar
nonlinear cases.

The results when several parameters were used cyclically are given
in Table 5.4.2. The parameters used were the 2U Wachspress optimal

parameters for H and V (see [28, P. 22k ].)
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5.4.1 Table:
5 Number of Convergence
hr iterations monotonic ?
1 43 No
.2 25 "
.3 18 "
A 1k n
.5 16 Yes
.6 19 "
T 22 "
.8 2k "
9 27 "
1.0 30 "
2.0 56 "
3.0 81 "
5:k.2 Table:
Number of parameters Values of hir Number of
used cyclically (to 3 places% iterations
L .619 19
2 .188, 2.0k4 11
L .118, .335, 1.14, 3.23 9
8 .103, .146, .249, .Lsk 11
B8h1, 1.54, 2.62, 3.71
16 .099, .109, .130, .164 12
.216, .288, .390, .529
-122, 979, 1.33, 1.77
2.32, 2.93, 3.50, 3.85
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