
https://ntrs.nasa.gov/search.jsp?R=19690011929 2020-03-12T03:59:55+00:00Z



Technical Report 68-83 December 1968 

APPLICATIONS OF ALTERNATING DIRECTION METHODS 

TO MILDLY NONLINEAR PROBLEMS 

by 
Joseph Richard Caspar 

T h i s  research was supported i n  part  by the National Aeronautics 
and Space Administration under Grant NsG 398 and by the U.S. Army 
Research Office Durham under Grants 00R-DA-31-124-6676 and DA-HCO4- 
67-C-0062. 



The solution of m ldly nonlinear equations i n  En--especially 

those arising from the discretization of mildly nonlinear, self -  

adjoint, e l l i p t i c  boundary value problems in two dimensions--is 

studied. Existence and uniqueness results are presented, and 

several i t e ra t ive  techniques for  approximating the solution are 

considered. These techniques are generally two-level i terations 

in which an alternating direction Drocedure i s  coupled with a 

linearizing procedure--either of Picard or of the Newton t p e .  

Proofs o f  the convergence of these procedures are given. 
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INTRODUCTION 

The a l te rna t ing  d i rec t ion  implici t  --or ADI--method f o r  approximating 

t h e  solut ion of ce r t a in  types of e l l i p t i c  and parabolic p a r t i a l  dif feren- 

t i a l  equations i n  two space dimensions w a s  introduced by Peaceman and 

Rachford [231 i n  1955. 

and, f o r  many problems, especial ly  those approximating so-called model 

problem conditions,  convergence i s  very rapid.  Variations of the 

For e l l i p t i c  problems, the method i s  i t e r a t i v e ,  

Peaceman-Rachford scheme have been introduced i n  [61, [71, [a], (91, 
[Ill,  and [141. 

space dimensions, but,  i n  two dimensions, they lack  some a t t r a c t i v e  

convergence propert ies  of the  Peac eman -Rae hf ord method . 

These var ia t ions  have extensions t o  three o r  more 

I n  t h i s  paper, w e  consider t he  appl icat ion of t h e  Peaceman-Rachford 

i t e r a t i o n  t o  ce r t a in  types of nonlinear e l l i p t i c  difference equations i n  

two dimensions. Earlier papers i n  t h i s  area are [51, [121, and 11.31. 

Chapter I cons is t s  of background material. The e l l i p t i c  p a r t i a l  

d i f f e r e n t i a l  operators being considered y ie ld  so-called operators of 

pos i t ive  type when d iscre t ized  i n  the usual way. Thus, operators of 

posi t ive type are defined and some propert ies ,  based on the maximum 

n pr inciple ,  are developed. i s  defined, 

conditions are given which guarantee the existence of a unique solut ion,  

The mildly nonlinear problem i n  R 

and a p r i o r i  bounds on the solut ion are obtained. Final ly ,  an arialogy 

is drawn between t h e  propert ies  of t he  d iscre te  and continuous operators,  

and a proof i s  given of the existence' of a unique solut ion t o  a mildly 

nonlinear e l l i p t i c  boundary value problem. 

Chapter I1 contains background mater ia l  on AD1 methods. The 

Peaceman-Rachford method i s  presented f o r  t h e  l i n e a r  problem along with 
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the  basic convergence results. Three i t e r a t ions  are defined f o r  a 

mildly nonlinear problem (ADI, Newton-ADZ, AD1 -Newton) and conditions 

a r e  given which guarantee t h a t  

a solution. 

methods are loca l ly  convergent t o  

Chapter I11 contains a c loser  study of %be nonlinear AD1 i t e r a t i o n  

Convergence introduced i n  Chapter I1 and considered by Kellogg i n  h 5 1 .  

r e su l t s  analagous t o  those i n  t h e  l i n e a r  case are obtained i n  a Hilber t  

space se t t i ng .  

Chapter IV contains a study of two leve l  i t e r a t ions  i n  which a 

Picard i t e r a t i o n  i s  coupled w i t h  an AD1 i t e r a t i o n .  

Douglas [SI  and Gunn h21,  [l31 are  formalized and extended. 

s tep  and s ingle  -step i t e r a t ions  are considered. 

Earlier r e s u l t s  of  

M u l t i -  

Chapter V i s  devoted t o  a c loser  study of t he  two l e v e l  i t e r a t i o n s  

introduced i n  Chapter I1 i n  which a Newton i t e r a t i o n  i s  coupled with an 

AD1 i t e r a t ion .  Results are given based on contraction and monotonicity 

pr inciples .  Final ly ,  some miscellaneous numerical results a r e  presented. 

W e  summarize our results as follows. W e  present formal conditions 

which guarantee the  existence of a unique solut ion t o  a mildly nonlinear 

e l l i p t i c  boundary value problem or i t s  d iscre te  version. W e  introduce 

Newton-AD1 i t e r a t ions  f o r  approximating the solut ion t o  the  d iscre te  

problem and present algorithms which are guaranteed t o  converge t o  the  

solution. W e  a l so  formalize and generalize some previous results on 

Picard-AD1 i t e r a t i o n s  and obtain convergence results f o r  a one -bevel 

nonlinear AD1 i t e r a t i o n  i n  a Hilbert space. 



CHAPTER I 

MILDLY NONLINEAR PROBLEMS 

1.1 Introduction. In this chapter, we discuss existence and uniqve- 

ness of solut ions t o  mildly nonlinear problems i n  Rn and obtain bounds on 

the solutions. In par t icu lar ,  we discuss mildly nonlinear problems h a v i n g  

a l inear part coming from an operator of positive type. In Section 1.2, 

we define operators of positive type and present or extend certain known 

results based on the maximum principle. 

nonlinear problems and present conditions under which a unique solution 

can be guaranteed t o  ex is t ,  and i n  Section 1.4, we obtain a priori bounds 

on the solutions. 

el 1 i p t i c  partial differential  equation and present results analogous to  

those ear l ie r  i n  the chapter. 

tions. 

In Section 1.3,  we define mildly 

Finally, in Section 1.5,  we consider a mildly nonlinear 

We f i r s t  present some notation and defini- 

Let G: X + Y,  where X and Y are  Banach spaces. If G i s  nonlinear, 

G(x) will denote the value of G a t  x E X; 

Gx instead. 

i f  G i s  l inear ,  we will write 

1.1.1 Definition: Let X, Y be Banach spaces. If F: X + Y sa t i s f i e s  

< 
l lF(x,)  - F(x2,11 = "1x1 - x2II for  x l ,  x2 E D C X ,  

for  some $ < 0 0 ,  F is  said t o  be L i p s e h i t z  on D with constant B ,  and we 

write F E Lip(D,$)  or F E L i p ( D ) .  

write F E ~ i p ~  ( b  fo r  "bounded.") 

If F i s  Lipschitz on bounded se ts ,  we 

1.1.2 Definition: Let ff be a real Hilbert space. If  F: ff -f ff sa t i s f i e s  

( ~ ( x )  - ~ ( y ) ,  x - y)  2 I I X  - YII * for x, y E DCH,  
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> for some a = 0 ,  F i s  s a i d  t o  be monotpne on D with constant a, and we 

write F E Mon(D,a) or F E Mon(D). If 01 > 0, F i s  said t o  be unifomZy 
I ,  

monotone on D .  If  F i s  uniformly monotone on bounded se ts ,  we write F E 

t 

(F(x)  - F(y),x - y)  >'O for x,  y E D ,  

F i s  said t o  be strictZy monotone on D. 

Let X ,  Y be Banac paces. Then L ( X , Y )  denote the se t  o f  l inear 
n n  operators from X t o  Y .  h u s  L ( R  , R  ) i s  the s e t  of nxn matrices. 

n n  For x E R n  and A E L ( R  , R  ),  we have 

x = ( x l ,  ... >xn) T and A = ( a i j ) ,  

In R n ,  we use the following vector norms, 

and the corresponding matrix norms, 

n n  ... If  A E L ( R  , R  ) has eigenvalues X,; ' ;Xn,  then o(A) = € A l ,  ,an} and 

P ( A )  = py lq . To say A i s  positive def ini te  (posit ive semi-definite) 

means A i s  symmetric and xi  > 0 ( h i  = 0)  for 1 6 i 2 n .  

then i t  i s  well known that  p(A)  = 1IAlI ,. 'If r i s ' a  scalar ,  

l= i=n  
> If A i s  symmetric, 

.~ 
r 

b 

shorthand for r I  + A,  where I is the nxn identity matrix. 

I f  x ,  y E R n ,  then 
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> > < <  If  x E R ~ ,  x = o (x > 01 means xi = o (xi > 0) for  1 = i = n.  I f  
n n  > < A E L ( R  , R  ) ,  then A 2 0 ( A  > 0) means a i j  = 0 ( a i j  > 0)  for  1 5 i , j  = n ,  

Furthermore, 1x1 = ( ~ x l ~ , * * * , ~ x n ~ ) T ,  and [ A I  = ( l a i j l ) .  

For x E X, a Banach space, and p > 0,  define the s e t  

1.2 Operators of Positive Type. The discretized versions o f  certain 

types of e l l i p t i c  partial  differential  operators are often of so called 

positive type (see [lo,  P .  1811.) 

mum principles, similar to  the differential  maximum principles, are read- 

i l y  available. 

positive type is  often easy t o  obtain. 

type i n  the next two definitions. 

For operators o f  positive type, maxi- 

Furthermore, a bound on the inverse of an operator of 

We define operators of positive 

1.2.1 Definition: 

n < m ,  l e t  R = {P1 , . . .  ' n  P I ,  and l e t  a' = n - R .  

n, l e t  there be a set N ( P ) C i ,  of "neighbors" of P satisfying P 4 N ( P ) .  

The neighborhood system { N ( P ) I  is said t o  be irreducibZe i f ,  given P E R 

and Q E 5 ,  there are points Q, ," ' ,Q,  E R such tha t  Qi+l  E N ( Q i )  fo r  0 2 

i * k ,  where Qo = P and Qk+l = Q.(~ ,R ' ,  E,{N(P)I) is  called a mesh domain 

with  neighborhood system or ,  simply, mesh domain, and is  called-propeu, i f  

{ N ( P ) I  i s  irreducible. For X = n, n ' ,  or 5, l e t  q ( x )  be the 

set of real valued functions on X, and for  u E G ( X ) ,  l e t  

Let a be a s e t  w i t h  m elements, denoted P1,"',P,. For 

Associated w i t h  each point, P E 

< 

1.2.2 Definition: 

the l inear operator A: 

Let (Q,n', c , C N ( P ) I )  be a proper mesh domain. Let 

( c )  -+ $(a) be defined by 
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(1 2 . 1 )  

where 

a )  a(P,Q) > 0 for P E n and Q E N ( P ) ,  

b )  a(P,P) 2 c a(P,Q) for  P E R 
Q N P )  

(1  2 . 2 )  
.) 

Then R i s  of positive type. 

minimat positive type. 

be denoted n t ~ l ,  and the s e t  of operators of minimal positive type will 

If equality holds in (1 .2 .2b ) ,  then R i s  of 

The s e t  of operators of positive type on v(9) will 

be denoted no(n). 

The next two results are we1 1 known maximum principles. 

1.2.3 Theorem: 

n (a) be given by (2 .2 .  I ) .  

Let (Q,G",G, CN(P) 1) be a proper mesh domain. Let R E 

Let u E e(@. 
0 

< 
i) Suppose t u  = 0 on R, then u i s  constant on 5 or 

( 1 . 2 . 3 ~ )  u ( P )  < max u(Q) for  P E Q. 
QEQ ' 

suppose RU = o on Q, then u i s  constant on fi  or > 
ii) 

iii) suppose RU = o on Q, then u i s  constant on 3 or 

( 1 . 2 . 3 ~ )  min u(Q) < u ( P )  < m a  u(Q) for P E 0. 
QEQ' QER' 

Proof:dSuppose u a t t a ins  i t s  maximum, M, a t  P E n. Then, since R E 

n,(@ Y 

a(P,P)M = c a(P,Q)M 1 c a(P ,Q)u(Q)  2 a ( P , P ) u ( P )  = a(P,P)M. 
QENW Q E N W  

Hence , 



B u t ,  then by (1.2.2a), u 

u M on 5 .  

M on N(P) .  B u t ,  since iN(P)I i s  irreducible, 

i i )  Apply i) t o  -u .  

i i i )  Apply i) and i i )  t o  u .  

1.2.4 Theorem: 

n(Q) - no(Q) be given by (1 .2 .1 ) .  

Let (Q,Q',G, {N(P) I) be a proper mesh domain, Let R E 

Let u E V(fi). 
< < 

i) Suppose Ru = 0 on Q,  then u E K = 0 or 

( 1 . 2 . 4 ~ )  u(P) < m m ( 0 ,  m m  u(Q)) f o r  P E Q. 
QEQ' 

> > ii) Suppose Ru = 0 on 52, then u K = 0 or 

( I .  2.4b) min(0, min u(Q) ) )  < u ( P )  f o r  P E Q. 
QEQ ' 

iii) Suppose Ru = 0 on Q,  then u 0 or 

Proof: We need only prove i ) .  

M, a t  P E Q. 

Suppose u a t ta ins  a non-negative maximum, 

Then 

a(P,P)M = a(P,P)u(P) =' C a(P,Q)u(Q) =< c a(P,Q)M 2 a(P,P)M. 
Q E W )  QEN ( P I  

Hence, as i n  Theorem 1.2.2, u = M 2 0. Now, since R 4 n0(a),  

for  some Po E n. Then 
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L and hence, M ' =  0. T h i s  completes the proof.  

Let R be given by (1.2.1) where (n,n',&{N(P)}) is a proper 
n n  mesh domain. Define A, = ( a i j )  E L(R ,R ) by 

a (P i ,P i )  i f  i = j 

a i j  = { -a(Pi,Pj)  if i f j and P .  J E N(Pi) 

0 i f  i j and pj 4 N(Pi). 

Now, since R ~rJ (n ) ,  A, i s  d i agona l ly  dominant and the diagonal dominance 

is  s t r i c t  i n  t hose  rows corresponding t o  the po in t s  Pi for w h i c h  N ( P i ) n a '  

0. Such a p o i n t  P .  exists since n' 0 and {N(P)} is i r r e d u c i b l e .  T h i s  
1 

a l s o  shows t h a t  A, i s  i r r e d u c i b l e .  

dominant M-matrix ( s e e  [28, P. 851.) 

and A;' > 0. 

T h u s ,  A, is an i r r e d u c i b l y  d i agona l ly  

In p a r t i c u l a r ,  A, i s  non-singular 

For v E B(n ' )  o r  $ ( E ) ,  l e t  bv E Rn be def ined  by 

< <  f o r  1 = i = n. Let v E @ ( Q ' ) ,  and suppose u E $($ satisfies 

(1.2.5) u(P) = V(P)  for  P E n ' .  

Let f E %(n) and de f ine  x, (p E Rn by xi = u(Pi )  and +i = f ( P i ) .  Then 

(1.2.6) Ajx - b, = - 4  

i f  and only  i f  

(1.2.7) Ru(P) = - f (P )  f o r  P E n. 

T h u s ,  t o  f i n d  t h e  s o l u t i o n ,  u ,  t o  (1.2.7) s u b j e c t  t o  the boundary condi- 

t i o n  (1.2.5),  i t  is sufficient t o  f i n d  the s o l u t i o n ,  x ,  t o  (1.2.6).  
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Since A, i s  non-singular, both u and x ex is t  and are unique. 

1.2.5 Example: Consider the boundary value problem 

where 

(1.2.9) y ( s , t )  =' 0. 

Let h = /N+l for  some positive integer, N ,  and define 

< < n = {(ih, jh)  : 1 = i 3 j  = N ) ,  
< < E = {( ih , jh)  : 0 = i , j  = N+1) - ~(0,0)y(0,1),(1,0),(131)}, 

and n' = n - n. The usual 5-point difference approximation t o  (1.2.8) 

takes the form 

k u ( s , t )  - A h u ( s , t )  + y ( s , t ) u ( s , t )  = - f ( s , t )  ; ( s , t )  E n 

u(s , t )  = v(s , t )  ; ( s , t )  E n' y 

(1.2.10) 

where 
2 (1.2.11) -h A h u ( s , t )  = 4U(S,t) - u ( s + h y t )  - u ( s - h , t )  - u(s,t+h) - u ( s , t - h )  

for  ( s , t )  E 0. 

n. 

Here N(s,t) = {(s+h,t),(s-h,t),(s,t+h),(s,t-h)) for  ( s , t )  E 

Then (S?,Q',E,{N(P)}) is  a'proper mesh domain, R E n(n), and - A h  E 

n,(n) 

Let R be defined by (1.2.10) where (1.2.9) holds .  In [l], Bers 

proved ] / A i 1  ) Im  2 max - @ / m i n ( - A h @ )  where @ i s  any function i n  % ( E )  
n n 

> which sa t i s f i e s  @ = 0 on 6 and -A,,@ > 0 on n. A bound independent of h 

is  obtained by n o t i n g  t h a t  Ah@ = A@ when 0 i s  a quadratic polynomial. 

now extend this resul t  t o  general operators of positive type. 

We 
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1.2.6 Theorem: 

II(Q) and u E g(3.J and suppose Ru 0 on 52. Then 

max u - min(0, min u) 

min !?a 

Let (62, 62',3, (N(PI 1) be a proper mesh domain. Let R E 

- 
(1.2.~~) i) I I A R ~ ] ~  o3 = 52 5 

llAQ1lI 00 - 

62 
ii) If R E nO(Ql, then 

max u - min u 

min Xu 

- - 
i _ Q  Q .  ( 1 . 2 . 1 3 )  

62 

iii) If R1 E n(62) satisfies 

(1.2.14) 

Proof: i )  L e t  w E 8 ( E )  s a t i s f y  

RW(P) = au(P) ; P E n 

w(P) = 0 ; P E G '  

L e t  y, z E Rn sa t i s f y  yi = w(Pi) and z i  =au(Pi).  Then ARy = z. Let  
A: = ( b . . )  = 0. Then f o r  1 = i = n, > < <  

1 J  

NOW, l e t  v E $ ( E )  s a t i s f y  
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av(P)  = 0 ; P E n 

v ( P )  = u ( P )  ; P 8 n' 

Then, by Theorem 1.2.4, 

min(0, mjn u) = min(0, min  u )  2 V ( P )  
n n' 

Now, w = u - v,  Hence 

< max w = max u - min v =.max - u - min(0, min  - u )  ¶ 

n 52 52 n n 
which  establishes (1.2.12). 

i i )  The proof i s  the same except, since R E no(n) , we can use Theorem 

1.2.3 instead of Theorem 1.2.4. 

i i i )  Let D be the non-negative diagonal matrix w i t h  diagonal entr ies ,  

Now, since A;' 2 0 and > 
di i  = v ( P i ) .  Then A = A, + D = A,- ,1 
we have 

(1 2 .15 )  

from which ( 1  2.14)  follows. 

Theorem 1.2.6 can be used with the following theorem. 

1.2.7 Theorem: 

~ ( 0 )  and suppose u E 

Let (&8',';2, {N(P)  )) be a proper mesh domain. L e t  R E 

sa t i s f ies  

,u(P) = - f ( P )  ; P E n 

u(P) = v(P1 ; P 8 0' 

Then 
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a u l ( P )  = - f (P)  ; P E 52 au2(P)  = 0 ; P E 52 

U l ( P )  = 0 ; P E G ? '  u 2 ( P )  = v ( P )  ; P E n' 
and { 

s -1 - IIA, 11 cO l l f l l  respectively. Then u = u1 + u2. B u t  ilu,ll 
and, by Theorem 1.2.4, 11u211 

the tr iangle inequality. 

e 
= llvll Q ' , w '  The resu l t  follows from 

SOD 

Consider the uniformly el  1 i p t i  c boundary value probl em 

LU(S, t )  = - f (S , t )  ; ( S , t )  E D = ( O , l ) x ( Q , l )  r 

Let (n,n' , z , { N ( P ) l )  be as in Example 1.2.5. Then, approximating (1.2.17) 

by central differences, we obta in  the discrete boundary value problem, 

au(s , t )  = - f ( s , t )  ; ( s , t )  E n 

u(s,t) = v(s , t )  ; ( s , t )  E n' 
(1.2.18) 

¶ 

where, for ( s , t )  E n, 

(1.2.19) h 2 R U ( S , ~ )  = [ a ( s y , t )  h + a ( s - p t )  h + b(s,t+$ h + b(s , t -z)]u(s , t )  h 

- a ( s y , t ) u ( s + h , t )  h - a(s-2,t)u(s-h,t)  h 

- b ( s , t y ) u ( s , t + h )  h - b(s,t-p)U(S,t-h) h 

Let 

(1.2.20) 
as 

w,(s,t) = -e 

Since ti(s,t) 2 a. > 0,  we can pick ~1 such that  



> Lw = m > O  o n D  a 

h a(s+h) aS 

(1.2.22) 

Now, h 2 Rwa(s,t) = a(s?,t)(e 
G ~ S  a(S-h) 

) 
h - e ) - a ( s - p t ) ( e  - e 

h h 
= e [Za(s?,t)e h y  s inh  h - Za(s--,t)e-”sinh h h CtS 

2 
h s inh  US h h = -7 ahe C d S  ,t,$ - E;(s 9 

a0 
where E;(s,t,e) = a(s+e,t)e . Now 

a0 a s ( ( s , t , e )  = e [aa(s+e,t) + as(s+e,t)]. Hence, from the Mean Value 
h h  Theorem, f o r  some e = e(s ,t) E [ -F,$¶ 

h s inh  UT as ae 
Rwa(s,t) = -7 cre e [aa(s+e,t) + as(s+e,t)] 

h s inh  a2 

UT 

- w (s40,t) -- c1 

1 > Now, gSinh(s) = 1 f o r  a l l  s 0. Hence there i s  a K = K(a,h) 2 1 such t h a t  

R\EJ (s, t )  = KLw (s+e,t) a a (1.2.23) 

Now, if (s,t) E 62, then (s+e,t) E B. Thus, i f  (1.2.22) holds, then 

(1  2 .24)  min R W ~  = min Lw > 0 a n D 

Thus, by Theorem 1.2.6, if (1.2.22) holds, then 

(1.2.25) 
max wa - min w 

min Lw 
L B  b a  11 A:l\ ca = 

D ”  

We note t h a t  (1.2.25) gives a bound independent of the mesh size,  h. 

L e t  a(s,t) = b(s, t )  = 1. Then -L = A ,  the  Laplacian, and R = ‘Ah, 

which was given i n  (1.2.11). Now, -beas = ct2eas > 0 whenever ~1 + 0. Hence 
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a a 1.6 

In  this  case, a sharper bound can be obtained by employing a different  

t e s t  function. Let 

2 (1.2.26) v,(s,t) = as - s 

Then , i f  L i s  given by (1.2.17), 

Lv (s , t )  = Za(s , t )  - (a - 2s )as ( s , t ) .  a (1.2.27) 

Thus, i f  as f 0 on a, we can pick 01 in order t o  insure 

> Lv = m > O  o n D  a (1.2.28) 

Now, h 2 Rva(s,t) = a(s+pt)[v,(s.t) h - va(s+h. t ) ]  - a(s -p t ) fv  h ( s - h , t )  - v,(s,t)] a 

where 

n(s , t , e )  = a(s+e, t ) (Zs - a + 20) 

NOW, g ( s , t , e )  a = as(s+e , t ) (2s  -01 + 2e) + 2a(s+e, t ) .  Hence, for  some 

e = e ( s , t )  E [-2,$, from the Mean Value Theorem, h h  

Rva(s,t) = 2a(s+e,t) - a,(s+e, t ) (a  - ~ ( s  + e)) 
Hence 

(1.229) Rvcr(s,t) = Lv a (s+e,t) 

NOW, i f  ( s , t )  E sa, then (s+e,t) E 6. T h u s ,  i f  (1.2.28) holds, then 

(1.2.30) > m i n  RV => m i n  LV = m > o 
sa ' D a  



Hence, by Theorem 1.2.6, i f  (1.2.28) holds, then 

(1  2.31)  
max va - min v 

L r l  b a  11 = min Lva 
D 

Here again, (1.2.31) gives a bound independent o f  t he  mesh size,  h. Now 

< 
l - a  ; a = o  r 

< I a - 1  ; 2 = a  

and -AhVa = 2 > 0. So min imiz ing (1.2.31) w i t h  respect t o  a, we f i n d  a t  01 = 1, 

(1.2.33) 

This gives a considerably b e t t e r  est imate than when wa i s  used as a 

t e s t  funct ion.  

1 1.2.8 Example: L e t  h = /N+l f o r  some p o s i t i v e  in teger ,  N, and s e t  G = 

{h,2h,"', Nhl, 62' = { O , l } ,  5 = nuQ', and N( ih)  = { ( i - l ) h ,  ( i t 1 ) h l .  

( G y G 1 , 6 , { N ( P ) l )  i s  a proper mesh domain. 

Then 

We may approximate the  problem 

Lu(s)  E - (a (s )u ' ( s ) ) '  = - f ( s )  ; s E D = (0, l)  

4 0 )  = YO' u(1) = v1 

1 a E c (o,I), a(s)  => a. > o 

(1 2 .34 )  

by the  d i sc re te  problem 

(1.2.35) 
au(s) = - f (s )  ; s E n 

{ u(0) = V0' u ( 1 )  = v, 
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s+h) - a(s-$)u(s-h) h . 

MOW, since wa and va, given in (1.2.20) and (1 2.26) respectively 

are independent of t, we see that (1 -2.25) or (1.2.31) gives a bound on 

11 A:li , provided (1.2.22) or (1.2.28) respectively is satisfied. In 
3 

2 and R '-6h' we have d" -z2 particular, if a E 1, so that L = 

(1 -2.37) 

1 
= s' This is the best possible bound independent of  h since 

We see this as follows. For any R E n(n), A;' > 0, and so IIA:li m = 

llAil(l,la 9 1)qI,. 1.e. 

h - 4  -6h 

where 

R4P) = 1 ; P E n 

u(P) = 0 ; P E a' 
(1.2.38b) 

SO, let Uh E @(a)  be the solution of 

2 and u E C (091) the solution o f  

-uqs> = 1, s E (0,l) ; u(0) = u(1) = 0. 

1 2 It is well known that sup luh(P) - u(P)I -f 0 (h -f 0.) But u(s) = z ( s  - s ) 

and sup I u ( s ) I  = g.  Hence 
O<S<l 



> 1.2.9 Example: Let L be given by (1.2.17) ( o r  (1.2.34)) where as = d. 

Then we can insure min t w  > 0 by p ick ing  a 7 max(O,-d/ao). We f i n d  
D "  

from (1.2.25) 
d when ~1 > max(0,-- ) (1 2 . 3 9 1  1fA:ll = < e " - 1  

a. + ad a O  

Bounds on 11 Ai1\\ wi 11 a l s o  be useful. We note  t h a t  w i t h  E given 

by (1.2.19), A, has the form 

(1.2.40) A , = A  + A  
,H 

where 
(1.2.41a) hz&Hu(s , t )  = [a(s?)t) h + a ( s -F , t ) ]u ( s , t )  h 

- a ( s T , t ) u ( s + h , t )  h - a ( s - F , t ) u ( s - h , t )  h 

and 

(1.2.41b) h 2 kVU[sSt )  * [b(S,t.f?) h + b ( s , t - ~ ) ] ~ ( ~ , t )  h 

- b(s,t?)U(s,t+h) h - b ( s , t - q ) u ( s , t - h )  h 

n n  For p o s i t i v e  d e f i n i t e  B E L(R , R  ), l e t  p(B) be the smallest eigen- 

va lue  of B. 

and p(A ) + v(A  ) 2 p(Ak). 

Then 11 B-'I\ = Ilo- . Now, A and A are p o s i t i v e  d e f i n i t e ,  
,H ,V 

Thus 
RH % 

Then,  by t28, P. 219, Pbm. 61, 

(1.2.42) 

T h i s  can be extended t o  more general  reg ions  and d i s c r e t i z a t i o n s  i n  an 

obvious way. Other and gene ra l ly  sha rpe r  estimates f o r  determining 



p(A ) and p(A ) are obtained by other methods. See, e.g., [27]. 
,H &Y 

nonlinear problem. Consider (1.2.17). 

nonlinear problem 

If f depends on u, we obtain the 

(1.3.1) 
LU(S,t) = -f(S,t,u) ; (s,t) E D 

u(s,t) = v(s,t) ; (s,t) E aD 

If L is discretized as in (1.2.19), we obtain the discrete nonlinear 

problem 

(1.3.2) 
au(P) = -f(P,u(P)) ; P E n 

u(P) = v(P> ; P E Q '  

which is equivalent to the problem 

which motivates the following definition. 

1.3.1 Definition: Let 9: Rn -+ Rn be of the form 

Then 0 is said to be diagonutty nontinear, and we write 9 E D ( R ~ ) .  

Let F: Rn -+ Rn be of the form 

(1.3.5) F(x) = Ax + cp(x) Y 

where A E L(R ,R ) and 9 E D(Rn). 

and we write F E M(Rn), 

n n  Then F is said to be m i u t y  nontinear, 

1.3.2 Definition: Let F: X -+ Y where X and Y are real Banach spaces. If 



for some x E X and some L 8 L(x,Y), 

\IF(x+h) - F(x) - LhII = o  II h I1 1 im 
II hiid 

then F is said to be (Frechetl-differentiable at x, and the derivative 

is denoted F'lx) = L. 

A complete discussion of Frechet-differentiation can be found in 

Vainberg [29]. 

differentiable. 

In this paper, the term differentiable will mean Frechet- 

If F: Rn -t Rny it is not sufficient for F to be differentiable that 

However, if @ E D(Rn), each of the partial derivatives, afi/ax 

and @i is differentiable on R for 1 = i = n, then it is easy to verify 

that + is differentiable on Rn and that +'(x) is the diagonal matrix with 

diagonal entries (@'(x))~~ = @;(xi). 
then F is differentiable on Rn and 

exist. 
j' 

< <  

If F: Rn -+ Rn is given by (1.3.5), 

F'(x) = A + @'(x) 

Let x,y E Rn. Then, by the Mean Value Theorem,applied component-wise, 
* - @(Y) = @'(d(x - Y) for Some 5 E CX,YI 

Hence 

(1 ? 3 4  
* 

F(x) - F(y) = F'(s)(x - y) for some 5 E [x,y] 

n n  For continuous G: Rn -+ L(R ,R ) and continuous z: R -+ Rn, define 

Then it is immediately verified that 

kihen F E M(Rn) is not necessarily differentiable, there is a natural 

way to define a "divided difference" of F. 
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1.3.3 De f in i t i on :  L e t  9 E D(Rn). Le t  x,y E Rn. Then $Dfz,yl i s  the 

diagonal ma t r i x  w i t h  diagonal e n t r i e s  

n n  If F(X) = Ax + $(XI where A E L(R ,R ), then de f ine  ~ ( z , Y )  by 

(1.3.9) FD(x,y) = A + + D ( ~ , ~ )  

Le t  F E: M(Rn) , the we see immediately t h a t  

n f o r  x,y E: R . 
We now consider condi t ions under which the equat ion 

F(x) = 0 

has a unique so lu t i on .  

1.3.4 Def in i ton:  

norm coercive i f  11 F(x)\\ + 

Le t  X ,  Y be Banach spaces. F: x + Y i s  s a i d  t o  be 

when !I x\\ + -. 

We now s t a t e  the D i n  Invar iance Theorem (see [26, P. 981 o r  

[Z, P. 871) and a specia l  case o f  a r e s u l t  o f  Rheinboldt  [25, Thm. 4.71. 

1.3.5 Theorem 

continuous. 

(Domain Invar iance) : Let F: lin + Rn be one-to-one and 

Then F i s  an open mapping. 

1.3.6 Theorem: Let F:  Rn + Rn be a norm coercive ZoeaZ homeomorphism. 



Then F i s  a homeomorphism 

The fol 1 owing result 
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of R" onto R ~ .  

is a corollary of Theorems 1.3.5 and 1.3.6. 

n 1.3.7 Cor01 lary: 

coercive. 

Proof: F is a local homeomorphism by Theorem 1 -3.5, and so the result 

f ol  1 ows from Theorem 1 .3.6. 

Let F:  Rn -t R be one-to-one, continuous and norm 

Then F i s  a homeomorphism of Rn onto Rn. 

Much of the work involved in establishing Theorem 1.3.6 is in showing 

F is globally one-to one. 

do not need all the power of Theorem 1.3.6. 

a direct proof of Corollary 1.3.7. 

Since we assume this in Corollary 1.3.7, we 

For completeness, we give 

Direct proof of Corollary 1.3.7: 

Thus, we need only show F is onto. 

open, it is sufficient to show F(R") is closed. 

By Theorem 1.3.5, F-' is continuous. 

Since, by Theorem 1.3.5, F(Rn) is 

Let yk -t y E R~ where 

{Yk}CF(Rn)). Then there is {xk}tRn such that F(xk) = yk. Since {yk} 

is bounded and F is norm coercive, {xk} is bounded. 

quence,{x 1 converges to, say, x E R . 
But then a subse- 

n By the continuity of F, y = 
mk 

F(x) E F(Rn). Thus F(Rn) is closed. 

A uniformly monotone function is one-to-one and norm coercive. Thus 

Corollary 1.3.7 contains the Rn version fo the following result of Minty [18]. 

1.3.8 Theorem: 

tinuous and uniformly monotone. 

Let H be a real Hilbert space. Suppose F :  H -t H i s  con- 

Then F i s  a homeomorphism of H onto H. 

We now apply Corollary 1.3.7 to mildly nonlinear functions. 

I .3.9 Cor01 1 ary: Let F E M(R? be continuous and norm coercive and sup- 
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pose @(x,yl]" exis ts  fox each x, y E Eln. 

R" onto R ~ .  

Proof: 

follows from Corollary 1.3.7. 

!Then F i s  a homeomorphism of 

From (1.3.10), we see that F is one-to-one. The result then 

1.3.10 Corol lary: 

exis ts  for each x, y E Rn and sa t i s f ies  I\ [ ~ ( X , ~ ) ] - ~ I I  = K 

dently of x and y. Then F i s  a homeomorphism of Rn onto Rn. 

Proof: 

this follows from 

Let F E M(Rn) be continuous and suppose [ p ( x , y l  ]-I 

< indepen- 

By Corollary 1.3.9, we need only show F is norm coercive. But 

IIxll = \\ [FD(x,0)]-'[F(x) - F(O)]b =< K B  F(x) - F(0) 11 

n n  

Then cp (x,y) 2 0, 

1.3.11 Example: Let F(x) = Ax + $(x) where A E L(R ,R ) and cp E D(Rn). 
D i) Suppose A is an M-matrix and cp E Mon(Rn). 

and so II[F D (~,y)]-'19~ 2 A-'Ilrn . Thus by Corollary 1.3.10, F is a 

homeomorph i sm . 
i i )  Suppose A is symmetric with least eigenvalue p and cp - dI E Mon(Rn) 

for some d > -p. Then 

pI + gD(x,y) - dI + (d + p ) I  
D F (x,Y) = A - Y 

D and so the least eigenvalue of F (x,y) is at least as great as d + p > 0. 

Hence I\ [FD(x,y)]-'l\ 
homeomorphism. 

5 - ,and so, by Corollary 1.3.10, F is a 2 d + p  

i i i )  Suppose A is symmetric with least eigenvalue p. 

cpi(t) z g(t) - pt for 1 = i = n 

Let 
< <  

where 

Now, A - pI is positive semi-definite. Thus for x E Rn, 
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n 

i = l  

> n IIF(x)ll llxll = (F(x) ,x) = ( ( A  - P)X,X) + C g(xi)xi 

n 

i =1 

= > 2 Ix i I log( lx i l  + 1) 

Hence, 11 F(x)f l  2 l og (  I Ix\ l  cQ + l), which shows t h a t  F i s  norm coercive. ' n 

D Since $;(t) >-p, [F (x,y)]-' ex i s t s  f o r  each x, y E Rn. Hence, by 

Coro l la ry  1.3.9, F i s  a homeomorphism. 

1.3.12 Remark: The funct ions o f  Example 1.3.11 ii), i i i )  can be 

shown t o  have unique roo ts  w i thout  the use o f  Theorems 1.3.5 and 1.3.6. 

For instance, consider the func t ion  i n  ii). Let g: Rn -F R be def ined by 

n x  
g(x) = 1   AX,^) + 1 j e j ( t ) d t  

j =1  0 

Then [ g ' ( t ) l T  = F(x) .  Thus F has a r o o t  i f  g a t t a i n s  i t s  minimum, and, 
D since F (x,y) i s  non-singular f o r  each x and y, the  r o o t  must be unique. 

Now 

1 

= d o )  + (F(O),x) + 1 (FD(tx,O)tx,x)dt 

Clear ly,  then, g(x) -t +m(11x11; m), which shows t h a t  g a t t a i n s  i t s  minimum; 
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1.4 Bounds on the solution, 

sider the nonlinear problem (1.3.2). 

ducibly diagonally dominant M-matrix, A, is  positive def ini te .  

l eas t  eigenvalue of A be 

n and some d > -p. 

solution, u . We now derive a priori bounds on u . These will be useful 

Let R be defined by (1.2.19) and con- 

We note that  besides being an i r re -  

Let the 

and suppose f ( P , ’ )  - d E: Mon(R) for each P E 

Then by Example 1.3.11 i i ) ,  (1.3.2) has a unique 
* * 

i n  picking a good i n i t i a l  approximation fo r  an i t e r a t ive  process and 

l a t e r  i n  ob ta in ing  globally convergent AD1 algorithms. We also obtain 

a priori error  bounds which t o  t o  zero as the error goes t o  zero. 

In the sequel, for  u E f f ( n ) ,  le t  - u E Kn be the vector w i t h  components 
* * * 

u .  = u ( P i ) .  Let x = - u . Then x is  the unique root of the function, 

F ,  given i n  (1.3.3). 
-1 

Furthermore, assume, for convenience, f (P , ’ )  E Mon(R). 
< Suppose we know a priori t h a t  K1 2 u*(s,t) = K2. Define 

< 
f u = K1 

< <  f K 1 = u = K p  

f K 2 S u  

Then u* and x* are the un ique  solutions of 

(1.4.3) 
a u ( P )  = - i ( P , u ( P ) )  ; P E s2 

u ( P )  = v ( P )  ; P E G ’  

and 
A A 

(1.4.4) F ( x )  -Z A,x - bv + $(x) = 0 

respectively. 

of ( 1 . 3 . 3 )  and enjoy the added assumption that  j and jD are  bounded as 

funct ions of x and (x,y) respectively. T h i s  approach will be used i n  

Chapters IV and V. 

T h u s ,  we may seek the solution of (1.4.4) instead of tha t  



r -  c; 

D From F(x) = F(x) - F(x*) = F (x,x*>(x - x*), we have 

which y i e l d s  an error bound t h a t  goes t o  zero  a s  the e r r o r  goes t o  zero.  

For instance , 

\ I  x - x*ll, = L - \ (F(x) \ l  
(1.4.6) U + d  

We a l s o  have 

0 2 [FD(x,y)l-’ 2 A i ’  

so t h a t  
< <  (1 .4.7)  11 x - x*II 2 11 A:b !!F(x)l( f o r  1 = p = m P P P 

A crude two-sided bound on u* can be obtained i n  t he  following way. 
n Suppose xo E R s a t i s f i e s  ARxo = bv. Then 

\I xoy 2 il V I \  n‘ ,a Y 

\ \ x 0  - x*ll* = < IIA;ll(  +(xo)\ \  Y 

and 

which g ives  the f o l  1 owi ng nonl i near analog o f  ( 1 -2.16) . 

We can g e t  a sharper  e s t ima te  from (1.4.5) .  Suppose 

F(x) = G(x) - H(x) where G ( x ) ,  H(x) 2 0 

Then 

(1.4.9) - A ; ~ H ( ~ )  = < x - x* =< A ; ~ G ( ~ )  

The  use o f  (1.4.9) is i l l u s t r a t e d  i n  the following examples. 

1.4.1 Example: Let R = -Ah and f ( P , u )  = e’, where n i s  as i n  Example 1.2.5. 
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Suppose v ( s , t )  = CXS + e t  is  defined on 8 i n s t e a d  of just on n' where 

a, B = 0. 

N O W ,  F(0) = -bv + $(O) where $(O) = ( l , l , ' * * , l ) T  => 0 and bv = 0. Thus  

> > 
Since  f u  = 0 ,  a unique s o l u t i o n ,  u*, t o  (1.3.2) exists. 

> 

< 1 <  -- 8 = u*(s , t )  = as + B t  (1.4.10) 

(1.4.10) can be s t rengthened  independently of a, B. Let w l ( s , t )  = 

< w1 < < $s2 - s )  = 0. Then f(P,w,) = e = 1 ,  andn,wl = -1. Thus, F(wl) = 0. - 
> Hence, from (1 .4 .9) ,  x* = w l .  Likewise, x* 2 w2, where w2(s , t )  = $t2 - t ) .  
- - 

Hence, (1.4.10) can be s t rengthened  t o  

2 2 < (1.4.11) -: =< $ max(s - s , t  - t )  =, u*(s , t )  =< as + B t  

1.4.2 Example: 

U 2m+1 for  some i n t e g e r  m = 0. Then a unique solution, u*, t o  (1.3.2) 

e x i s t s  as above. NOW, $(O) = 0. Thus ,  as above, 

Let R and v be as inlExample 1.4.1, and suppose f ( P , u )  = 

> 

< (1.4.12) 0 = u*(s , t )  =< as + B t  

The lower bounds i n  both (1.4.11) and (1.4.12) are n o t  sharp near 

the boundary. Let 

(1.4.13) ?(x) = ARx - b, + $(x*) 

Then x* i s  t h e  unique r o o t  of ?, and, from (1 .4 .5) ,  

(1.4.14) 

1.4.3 Example: 

x* = x - A ~ ' ? ' ( X )  

Let F be a s  i n  Example 1.4.1. Now, by (1.4.11),  u* 2 + 6. 



Thus ,  $(x*) =' ea++B(l,l,"',l)T. Let wl(s,t) = 

w,(s,t) = 7 ecY+'(t2 - t )  2 0. Then k w l ( s , t )  = 

< = 0 ,  and so ?(w,) = A,wl - b, + q~(x*) = A%w.,- - - - 
< ,w1 + $ ( X  *) + bWl - bv - - bwl - bv = -bv ,  since 

- 

L i  kewi se,  (1.4.14), x* = > w1 + A, -1 b, = w1 + v. 
- - -  

< z ' eatB(s2 - s )  = 0 ,  and 

-ecr+'. T h u s ,  - gwl t q,(x*) 

- + $(x*) + bw - bv - 
1 b W l  - 

L w1 = 0. Hence, from 

> x* = w2 + v, and so 
- -  

2 2 <  < (1-4.15) as + e t  + T e"+%ax(s -s,t -t) = u*(s,t) = as t B t  

1.4.4 Example: Let F be as ' i n  Example 1.4.2. Let 
2m+l 2 (t  - t )  2 0. 1 1 wl(s,t) = (a + B)2m+1(s2 - s )  =< 0,  w,(s,t) = (a + a )  

Then, as in Example 1.4.3, 

2 2 (1-4.16) as + B t  + z ( a  + +B)2mt1max(s - s , t  - t) 2 u*(s,t) 2 as + e t .  

We note that  (1.4.15) and (1.4.16) are sharper than (1.4.11) and 

(1.4.12) respectively near the boundary, b u t  probably no t  i n  the interior. 

1.5 Analogs i n  the continuous case. In this section, we present 

resul ts  for a uniformly e l l i p t i c  partial  different ia l  operator, L ,  analo- 

gous t o  the resul ts  of the previous sections of t h i s  chapter. The main 

resu l t  of this section will give conditions on L ,  f ,$ ,  and DCRn which 

w i  11 guarantee tha t  the m i  ldly nonl i near boundary Val ue problem, 

L u ( x )  = f ( x , u ( x ) )  ; x E D 

u(x) = 4(x) ; X E ~ D  ¶ 

has a unique solut ion.  

We present first some notation and definitlons. 

Let f :  G c R m  -+ R. If  f is continuous on G,  we say f E CCGI. Further- 

more, if f is bounded on G ,  we set IIfl\ = suplf(x) l .  
XEG 



+ i,, where the i .  are non- Let B = ( i l , * * * , i m )  and 161 = i ,  + * * '  
J 

negative integers, and define the operator 

= a l s l  
'1 ... i m  1 

aX1 a 'm 

If  G CRm is open and f i s  k times continuously differentiable on 
k G ,  then we say f E C (GI e 

tinuous function on 6 for 0 2 1'1 =< k ,  then we say f E c (C). 
Furthermore, i f  D'f can be extended t o  a con- 

k 

Let GCRm be open and bounded. If there i s  a K < such t h a t  

I f ( x )  - f ( Y )  16 q x  - Y I "  
for  some a E (031) and for  a l l  x ,  y E 6 ,  then we say f E C0,"(G) and se t  

Let GCRm be open and bounded and l e t  cx E ( 0 , l ) .  I f  f E Ck(6 )  and 

DBf E Co,,(G) for  1'1 = k ,  then we say f E C (G) and s e t  k, " 

G CRm i s  s a i d  t o  be smooth i f ,  for each P E  aG, there is  an i = i p  8 

... [ l , * " , m j ,  an open se t  H = H p  in Rmml containing the point = ( p i ,  , 
... 

p i - l , p i + l y  

such tha t  when x E a G  and 2 = (xl, 

expressed i n  the form xi = g ( x ) .  

,p& and a function g = gp E C2,"(H) for  some ~1 E (OJ), 

,x,) E H ,  a D  can be ... ... 
, X ~ - ~ , X ~ + ~ ,  

Let G C Rm be an open bounded se t .  Suppose f E Ck (G1) for  some 
901  



f i x e d  01 E ( 0 , l )  and each open GICCG. Set 

* 
where dx = min IX  - yI, and d = min(d ,d ). Then, i f  hfll 

yEaG X,Y X Y  k,a,G 

i s  f i n i t e ,  we say f E c (GI. 
k,  

I n  the sequel, D w i l l  be an open bounded s e t  i n .  Rm, and L: C 2 (D) -+ 

C(D) w i l l  be the un i fo rm ly  e l l i p t i c  d i f f e r e n t i a l  operator given by 

m m 

C la i jux .x  + biUxi 
i,j= i j i = l  

1 a. > 0 and independent o f  x and 5 

We note t h a t  we are depart ing from the no ta t i on  o f  the previous sect ions 

o f  t h i s  chapter where -L denoted the e l l i p t i c  operator. 

The f o l l o w i n g  maximum p r i n c i p l e s  are the analogs o f  Theorems 1 .2 .3  

and 1.2.4. 

2 

u ( x )  = sup u for x E D 

1.5.1 Theorem: Suppose u E C (D)O C(Dl satisfies Lu 1- 0 on D, then 

< 

a0 
Proof: See [4, P. 3261. 

2 1.5.2 Corol lary:  Suppose u E C ( D ) n C ( B )  satisfies 
> 

L u - y u = O  i n D  

< 
u = 0 on aD 



where y: D + R is non-negative, but not necessarily continuous. 

u = 0 in D. 

Proof: 

and u = 0 on aD1. 

u = 0 i n  D1. 

Then 
< 

Let D1 = {x E D: u ( x )  > 0). Suppose D1 .$ 9. Then D1 i s  open 

Hence, by Theorem 1.5.1, < > > Now, i n  D,, Lu = yu = 0. 
< The contradiction shows D1 = Cp and proves the result. 

co 

G c Rm is said t o  be proper i f  G i s  open and bounded, G = V Gi 
i =O 

> where Gi i s  an open, bounded, smooth s e t  and GiC Gi+ l  for each i = 0 ,  and 

i f  f o r  each y E aG, there exis ts  a strong barrier function, i . e . ,  a 

non-negative function, w E C ' (D)nC(B) ,  which sa t i s f i e s  w ( x )  = 0 

x = y ,  and Lw = -1 i n  D. 

@ 
Y Y 

< 
Y 

1.5.3 Lemma: Let y E 80. If there is a closed sphere S such that 

S nD = {y}, then there is a strong barrier function for y. 

Proof: See [4, P. 3411. 

Y 

Y 

We note tha t  by Lemma 1.5.3, a rectangular region is proper. In 

the sequel, we always assume D is proper. 

n 

1.5.4 Theorem: Suppose f E C (D) and 0 E CtaD) .  !Then there exists a 

unique solution, u E C (D), t o  

0, a 
n 

2, a 

( 1 . 5 . 2 )  
Lu = f in D 

u = 4 on aD 

Proof: See [4, P. 3401. 

be the solution t o  (1.5.2). f , O , D  For f E io ( D )  and 4, E t(aD), l e t  w 
3a 

We note that  by Theorem 1.5.4, w ,+,D exis ts .  



I n  the  sequel , MD w i l l  be defined by 

A 

We see t h a t  f o r  f E COYa(D)  , 

< Ir 'f ,O,DI1 D = MD 11fll 

A A A 

(D) be de f ined by i u  = Lu. Then O) -+ co,a Le t  L: {u E C2 ( D ) :  u l a D  = 

Theorem 1.5.4 says i i s  one-to-one and onto. Then MD = 1 1  i-' I /  when the 

,a 

domain and range o f  i are considered as subspaces o f  the  Banach space, 

C(D)  w i t h  norm 1 1 .  \I,,. The fo l l ow ing  analog o f  (1.2.38) assures t h a t  

1.5.5 Lemma: MD = sup w 

Proof: The proof  fo l lows from the  maximum p r inc ip le .  

and u = w 

t o  show t h a t  -w =< u =< w. 

L ( u  t w) = f - 1 2 O?ju = -w. Th is  completes the  proof. 

-I, 0, D* 6 

-1 ,O,D Le t  w = w 
A 

where f E Co (D) s a t i s f i e s  I\ f\\ = 1. I t i s  s u f f i c i e n t  f ,O ,D' ,a 
> < But L(u - w )  = f c 1 = O*u = w, and 

> 

The fo l l ow ing  analog o f  Theorem 1.2.6 may be used t o  ob ta in  an 

e x p l i c i t  bound on MD. 

2 1.5.6 Coro l lary :  Suppose u E C ID)n CCD) sat is f ies  min Lu = b > 0. Then 
D 

m a  u - min u 

D 

1 , and u, = 6 u. Then L(ul t w) => 0. Hence, -1 ,O,D Proof: Le t  w = w 
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6 u  1 t w = u1 + w max (ul + w )  = i m a x  u 
aD b 

The r e s u l t  fo l lows from t h i s .  

As i n  the d i sc re te  case, we can g ive  e x p l i c i t  t e s t  funct ions t o  

where a i s  chosen so t h a t  x1 - a = 0 cL(x1-a) > bound MD. 

f o r  x E D. Then 

Le t  w ( x )  = e 
01 

2 a ( X 1  -a) 01b1-a) 
Lw (x) = 01 all(x) e + abl(x) e 

01 

> But all(x) 2 a. > 0. Hence, f o r  some aOy Lw = 1 i n  D. Thus, 
010 

= max w - min w MD b a0 0 a. 

I f  bl(x) 

the funct ion,  v , given i n  (1.2.26). 

0 on D, another su i tab le  t e s t  func t ion  would be s i m i l a r  t o  

01 

< 1.5.7 Lemma: I f  D I C D  is proper, then MD = MD. 
1 

> Proof: Le t  u = w - ~  ,O,D and v = w . Then u = 0 i n  n. Hence, 

u - v 2 0 on aD1. 

p r i nc ip le ,  0 v u. Thus 

-1 909D1 

But L (u  - v )  = 0 i n  D1. So,  i n  D1, by the maximum 

< = max v = max u = MD 
b 

We now present the analog o f  Theorem 1.2.7. 



and 
5: 

I\'O,+,D\\D = li4i' aD 

by the maximum p r i n c i p l e .  The r e s u l t  follows from the  t r i a n g l e  i nequa l i t y .  

The fo l l ow ing  r e s u l t  i s  the  analog o f  (1.2.14). 

1.5.9 Cor01 l a r y :  

not necessarily continuous. 

Let Llu = Lu - yu, where y:D j. R i s  non-negative, but 
2 Suppose v E C ( D l  f i  C ( B )  sat is f ies  

v = = 0 on in aD 
n 

where f E Co (01, then 
> a  

11 v\i M~ il 
Proof: 

i s  s u f f i c i e n t  t o  show I1 vn 

Le t  D1 = {x E D : v(x) > 0 1 ,  and D2 = {x E D : v(x) < 01. It 
< 

j v l l  D2 = MDk flt D. Suppose D1 9. Then 
Dl 

> 
0, i s  open and v = 0 on aD1. Le t  GkCDl be proper f o r  k = 1 and s a t i s f y  

> v - uk = 0 on aGky and, i n  Gk L (v  - uk) = L1v - Luk t yv = 0. 

i n  Gk, 0 = v = 

Hence, 
< <  So, by Lemmasl'.5.8 and 1.5.7, 'k' 

L e t t i n g  k -+ W ,  we ge t  

M D b f )  D 

A s i m i l a r  r e s u l t  holds f o r  DE, and the  proof  i s  

We may now prove the  analog o f  (1.4.8). 

1.5.10 hntna: Suppose f: h R  -f R i s  continuous 

complete. 

and sa t i s f ies  f(x,') i s  
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2 monotone for  each x E D. Suppose u E C ( D ) f i C ( B )  sa t i s f ies  

( I. 5 . 3 )  

Then u - w = 0 on aD, and O , @ , D '  Proof: Let w = w 

L ( u  - w)  = f ( * , u )  - f ( - ,w) + f ( . , w )  

=. y(u  - w )  + f(*,w) 

where 

N O W 9  since f i s  monotone in the second argument, ~ ( x )  ZO. Hence, by 

Corollary 1.5.9, 
L i l u  .- D = MD I\f(*,w)( D 

< The resu l t  then follows from the maximum principle: I\ w l l  = 11 411 aD. 

1.5.11 Lemma: 

there exis ts  a t  most one solution, u E C (Dl fl C.(E), t o  (1.5.3). 

Suppose f is as i n  Lema 3 . 5 . 1 0 ,  and that 4 E C ( a D ) .  

2 

Then 

Proof: Suppose u1 and u2  each sa t i s fy  (1.5.3). Then,  as i n  Lemma 1.5.10, 

L ( u l  - u2) - y ( u l  - u2)  = 0 i n  D 

u1 - u2  = 0 on a D  Y 

fo r  some y = y(x) 2 0. Hence, by Lemma 1.5.7, u1 = u2. 

1.5.12 Remark: Consider Lema 1.5.10. Define by 
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Then f^ is bounded and monotone i n  the second argument. Hence, by Lemma 
2 1.5.11, u E C (D)nC(D) sa t i s f i e s  (1.5.3) i f  and only i f  i t  s a t i s f i e s  

Lu = f ( - , u )  in D 
n 

on aD. 

In the sequel, we now assume (1.5.1) i s  sa t i s f ied  where, i n  addition, 

m 
Lu = c (a i jux.)x 

i , j=1  1 j  

- 
a i j  - a * *  J l  E C l , ~ ( D )  

(1.5.4) 

The existence of solutions t o  (1.5.3) was considered by Courant 

[4, P. 3691, Parter [22], and Levinson [17] when L = A ,  the Laplacian. 

Courant proves existence under the assumption t ha t  f = f ,  + f 2  where 

f l , f 2  a re  C i n  their arguments, f l  is bounded and a f / a u  = 0. 

f l  = 0,  the solution i s ,  o f  course, unique. 

existence of a solution under assumptions (1.5.7aYb), below, and the 

1 > If 

Parter and Levinson prove 

assumption that  

(1.5.5) 1 i m  
It 

By use of (1.5.5), 

placed by a bounded 

inf => o uniformly for  x E b 
-+oo t 

t is  shown, as i n  Remark 1.5.12, tha t  f can be re- 

function, f .  By assuming 
n 

(1.5.6) f (x , . )  is monotone fo r  each x E b ¶ 

we obtain this result more easi ly ,  and we also assure uniqueness of the 

solution. 



We will now consider the existence of solutions t o  (1.5.3) under 

assumptions (1.5.5) and (1.5.7a,b), below. 

(1.5.7a) There i s  a fixed a E ( 0 , l )  such tha t  given c > 0 ,  there 
is a K(c) < 00 such tha t  

I f (x , t )  - f ( Y , t )  I =< K(c) Ix - Y I* 
< when x ,  y E 6 and It1 = c. 

Given c > 0,  there i s  a Ko(c) < w such tha t  (1.5.76) 

I f ( x , t )  - f (x , s )  I 2 K O ( 4  It - s I 
< when x E 6 and It/, Is1 = c. 

1.5.13 Theorem: 

(I. 5.7a,b), and suppose 9 E CtaD) .  

(1 .5.1)  given by (1 .5 .4 ) .  

Let D Cdn be pyioper. Let f: DxR -f R sa t i s fy  ( I .  5.6) and 

L e t  L sa t i s fy  the special case of 
2 Then (2.5.31 has a unique solution, u E C ( D ) n  

C(D). 

Proof: 

we may assume I f ( x , t ) l  = N < 00 for  x E 6 and t E R. 

follows along the l ines of tha t  in [4], is presented here i n  detail  for  

By Lemma 1.5.11, we need only show existence. By Remark 1.5.12, 
< The proof, w h i c h  

completeness . 
Let UO = W - N y O y D  E E 2 , a ( D )  and v0 = w N y O y D  E $,,(D). Then 

= 0 on a D ,  and, i n  D, vo - uo 
L1(vO - u0) = 2N 2 0 

L Hence, by Corollary 1.5.2, vo = uo. Let 

and s e t  

K = K(c) , k = $-,(C) 

For u E C 2 ( D ) f i C ( 6 ) ,  l e t  L1u = Lu - k u ,  and define { u . }  by 
J 
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i n  D 
j 

LIUj+l - kuj+l = f ( * ,u j )  - ku 

= P  on aD j+l 

h 

By Theorem 1.5.4 and an induc t ive  argument , u . e x i s t s  and i s  i n  C2 

f o r  each j 20. Now u1 - uo = 0 on aD, and, i n  D, 

(D)  J ,a 

L1(ul - u0) = f ( * ,uo)  - kuo + N + kuo 2 0  

< Thus, u1 = uo. Likewise, u1 - vo = 0 on aD, and, i n  D, 

L 1 ( ~ 1  - vO) = f(.,uO) - kuo - N + kvo 

< 
'= k(vo - u0) 

5 0  
> Thus , u1 = vo. 

(1.5.8) 

f o r  some j = 1. 

Suppose 
< < < = u  = u  = uo '0 j j - 1  

> 
Then uj+l - u = 0 on aD, and, i n  D, 

j 

L1(Uj+l - uj) = f( . ,uj) - ku j - f(-,ujml) + kuj-l 

< Thus, uj+l = u Furthermore, uj+l - vo = 0 on aD, and, i n  D, 3'  
- N + kvo 

j '  
L1(uj+1 - v0) = f ( . ,u j )  - ku 

< = k(vo - uj)  

5 0  
> 

Thus, uj+l = vo, and (1.5.8) i s  estab l ished by induct ion.  Hence, 

for some u*: 6 -+ R 

Let  DICCD be 

D1 CcD2CCD. Now, 

u .  -4 u* J Y 

< s a t i s f y i n g  vo - u* = uo. 

open. Then there ex i s t s  an open se t  D2 such t h a t  
L 

t \ U j I \  D2 = c, and 
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< = N + 2kc 

:M1 < m  ¶ 

NOW, by manipulating formula (3.3) of [3], we see that  there i s  an M2 < 0 0 ,  

depending only on L ,  D2,  D1 and c,  such that  

< It 'Ouj \ I  D1 = M2 for  j => 0 

Now, u . E i2 ( D )  

estimates, (see [4, P. 3321 or  [16, P. llO],) there is  an M3 < 

i n g  only on L1 , D, D1, and a, such tha t ,  fo r  j = 0 ,  

u j  E C2 J ,a ,a ( D1 ) . So, by the inter ior  Schauder 

depend- 
> 

L 11 'j\\ z , ~ , D ~  = '3 ' I L u j  II O Y a , D 1  + \I u j  II D,] 

Now, for  x ,  y D1, 

> where d i s  the diameter o f  D. Hence, fo r  j = 0 ,  

NOW, for  x ,  y E Dl, 

> T h u s ,  for  j = 0 ,  
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" u j" o ,a , D ~  c + M2dima 

z' M5 < m 

so, f ina l ly ,  for  j 0, 

< a J  

T h u s ,  {u . I  and the sequence of 1s t  and 2nd derivatives are uniformly 
J 

bounded on D1 , and the sequence of 2nd derivatives i s  equi-continuous on 

D1. 

{u . I  which converges , necessarily t o  u*, i n  the norm of C2( D l )  . Hence, 

Hence, by the Arzela-Ascoli Theorem, there is a subsequence {urn I o f  
j 

J 
2 u* E C ( D 1 ) .  Now, u .  -t u* pointwise, and f is continuous. T h u s ,  for J 

x E D1, 

LU*(X)  = I i m  LU, (x)  
3- j 

= f (x ,u*(x))  
2 Since D1 is arbitrary,  u* E C ( D ) ,  and, in D ,  

Lu* = f (  * ,u*) 

We need only show u* E C(b).  

lim [u*(x) - $(y)] = 0 
x ED 
X+Y 

when y E aD. So l e t  x E: D and y E aD. Then, since uo E C(a), 

I t  i s  sufficient t o  show 

u*(x) - d Y )  =< uo(x) - d Y )  -t 0 (x  -t y)  
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Likewise, since vo E C(S) ,  

> 
u*(x) - +(Y) = v,(x) - +(Y) + 0 (x -+ Y) 

This completes the proof. 

A more general form of this problem i s  considered i n  [16]. See 

especially Chapter 4, Section 8 and Chapter 5,  Section 6. 

Theorem 3.1 on page 266 gives an interior bound for  VU fo r  a much more 

general L than that  given i n  (1.5.1)/(1.5.4). 

use o f  this r e su l t ,  Theorem 1.5.13 can be proved for  the non-self-adjoint 

Furthermore, 

In particular,  by the 

L of (1.5.1), provided a i j  E c1 ,p). 



CHAPTER I1 

LINEAR AD1 METHODS 

2.1 Introduction. Consider A A  where R i s  given by (1.2.19). AA 

has a natural  sp l i t t i ng ,  A, - into "horizontal" and ' 'vertical" 

par t s ,  where J$ and % a re  given i n  (1.2.41). 

are  both posi t ive def in i te .  

W e  note t h a t  A 

Generalizing, suppose 

C = H  + V  

H1, V1 E L(R ,R ) are posi t ive semi-definite 

1 1  
n n  (2.1.1) 

I One of H or v1 i s  posi t ive def in i te  1 

n -1 Let 5 E R and suppose w e  wish t o  f i n d  x* = C 5.  By (2.1.1), the follow- 

ing i t e r a t ion  i s  well-defined'for r > 0. k 

r x e Rn 
0 

(2.1.2) { Crk + H ] X  1 k% l = C r k - v l 1 x k  + 5  

This procedure w a s  first considered by Peaceman and Rachford [ 2 3 ]  t o  

approximate the solution of a discret ized version of the Dir ichlet  prob- 

l e m  f o r  Laplace's equation on a square. 

implicit",  or AD1 w a s  given t o  (2.1.2) because it e n t a i l s  a l te rna te ly  

solving along horizontal  and v e r t i c a l  mesh l i nes .  I n  t h i s  par t icu lar  

The name "al ternat ing direction 

case, H V = VIH1, and, a f t e r  a su i tab le  permutation, H and V1 a re  both 11 1 

t r idiagonal  matrices, which are r e l a t ive ly  easy t o  invert  (see [28, P. 

1-95] or r231.) Thus (2.1.2) i s  feas ib le .  

L e t  \, --, h be the d i s t i n c t  eigenvalues of H1, and l e t  rk = A,+l 

41 
%l 
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fo r  0 k 5 . Then, if  H V = V H (2.1.2) i s  a d i rec t  method and 11 11' "H1 
converges t o  x* a f t e r  %, i t e r a t ions .  

J. 

d i s  t inc t d i s  t inc t "v1 successively the 

I n  prac t ica l  cases, we may not be 

of H or V1, but w e  may know t h a t  they 1 

This i s  a l so  t rue  i f  the r a re  

eigenvalues of Vl (see c28, P. 
k 

able t o  determine the eigenvalues 

l i e  i n  an in te rva l  Ea,b] where 

a > 0. If we then apply v 2 1 parameters cycl ical ly ,  we would t r y  t o  

determine the  v parameters which a re  i n  some sense optimal. 

Let ek = x - x*. Then vk v -1 
e = ( TT T~ ) ek-l 

j = O  j k 

where 

Now, when HIVl = VIHl, 

T = [r - H1l [ r  + H1l -1 [r - V l l  [r + Vl1-' 
r 

Hence, 
V -1 

/ I r r  T, I/ 
j = O  j 

where here, and i n  the r e s t  of the chapter, 1 1  11 = 1 1  112.  Thus 

So, f o r  any posi t ive values of r 0' - * *  , r v - p  convergence i s  assured. 

enhance convergence, w e  a re  l e d  t o  the problem of minimizing the  quantity 

To 
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f o r  ro,"' ,rUm1 > 0. 

were given by Wachspress i n  the  case U = 2 

P. 1961) 

The optimal r which l i e  i n  the  in t e rva l  [a,b], 
j ' 

k (see [28, P. 2241 or [30, 

and by Jordan fo r  any v (see [ 3 O ,  P. 1851.) 

I f  U = 1, the  optimal parameter i s  m, and the  asymptotic rate of 

convergence with the  optimalAD1 parameter is approximately the  same as 

t h a t  for SOR with optimal SOR parameter, although the work required f o r  

each AD1 sweep i s  approximately twice t h a t  required f o r  each SOR sweep. 

If u > 1, an asymptotic rate of Convergence s ign i f i can t ly  be t t e r  than 

t h a t  fo r  SOR can be obtained (see C28, P. 2291.) 

When HIVl 4 VIE1, the  above analysis  fa i ls .  If rk 3 r > 0 i s  

constant,  convergence can s t i l l  be assured. However, convergence cannot 

be guaranteed f o r  a r b i t r a r y  pos i t ive  values of r o, * * *  ,ru-l. 

i f  "good" parameters f o r  the commutative case are used, r ap id  convergence 

is  of ten s t i l l  obtained. 

Nevertheless, 

Numerical results indicate  t h a t  the  best  para- 

meters are i n  t h e  in t e rva l  [a ,bl  and, indeed, i n  the  lower p a r t  of t he  

in te rva l .  

I n  Section 2.2, we present t he  main convergence results i n  the non- 

These are per t inent  since,  i n  problems with a nonlinear commutative case. 

term, the  commutative analysis  fa i ls .  I n  Section 2.3, a spec i f ic  AD1 

i t e r a t i o n  f o r  the d iscre t ized  version of an e l l i p t i c  boundary value prob- 

l e m  is  introduced, and i n  Section 2.4, l o c a l  convergence results are 

given f o r  nonlinear versions of t h i s  i t e r a t ion .  

W e  now c o l l e c t  some formulas and inequal i t ies  which w i l l  be useful 

later.  Suppose L L(Rn,Rn) is  posi t ive semi-definite and o[L]<[c,dl 

where c 2 0. Then 
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W e  demonstrate (2.1.3d). By assumption, 2r - d 5 e .  Hence, since 
> (2r - d)  + d 

Y 2 
s =  

< < 
IIS - Lll = :ug Is - Z I  = sup 1s - z 1  = s - 2r 1- d 

c=z=d 2r 4% Sd 

L e t  C, H1, V s a t i s fy  (2.1.1). For r > 0, define 1 

Then, if  cx 3 s a t i s f i e s  (2.1.2), the Uth i t e r a t e  i s  k/2 

which, when r r i s  constant, becomes k 

(2.1.6) 
u -1 

j =O 

x = (T,) U xo + C (Tr)’ %< 
U 

A l i t t l e  algebra and an inductive argument. shows 

u -1 u - 1  u - 1  
( 2  *1*7) n Tr + C (  T r )QrC = I 

Writing 5 = cx 

i = O  i j = O  i=j+l i j 

- Ccx0 - 51, we see, from (2.1.5) and (2.1.7), - 0  
u - 1  u - 1  

(2.1.8) = x  - C ( Tr ) &r CCx0 - 51 
xu 0 j=o i=j+l i j 

Finally, if Cx* = 5,  then 
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U -1 
x - X* = ( Tr ) (X - x*) 

i = O  i V 0 

2.2 Results i n  the Non-Commutative Case. The following theorem i s  

the basic convergence theorem for AD1 i n  the l inear  non-commutative case. 

2.2.1 Theorem: Let C ,  H1, and V1 s a t i s fy  (2.1.1) and {x 3 sa t i s fy  
k/2 
-1 

(2.1.2) where r - r > 0 i s  constant. 

Proof: Let T be defined by (2.1.4). Then, by (2.1.3b,c), 

Then xk -, x* = C 5 .  k =  

r - 

Hence, p(Tr) < 1. The r e su l t  follows, then, from (2.1.9). 

I n  the next two theorems, convergence of (2.1.2) is  guaranteed for  

variable r providedthe r a re  large enough. k k 

2.2.2 Theorem: Let H ~ ,  v1 c L ( R ~ , R ~ )  s a t i s fy  

H1, V a r e  posit ive semi-definite c 1 

d H l l  C [al,bll, d V l l  C[al,B1l 

al, al 2 0 ,  a + a > o 
1 1  

[ H ~  + v1I x* = s fo r  some x*, 5 E R~ 

(2.2.1) 

Suppose r > 0 satisfies 

2 

i f a  = O  2 1 

(2.2.2) 

Let Lyk/23 s a t i s fy  (2.1.2). Then xk -, x*. 

- Proof: Let Tr be defined by (2.1.4). Suppose (2.2.2a) holds. Then by 
k 
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(2.l.3b,c) and (2.2.3), there is  a 6 < 1 and independent of k such t h a t  

So, by (2.l.3a,d), 

Suppose (2.2.2b) holds. Then by (2.l.3b,c), 

So, by (2.1.3a,d), as above, 

So, i n  e i ther  case, /ITr 11 is  bounded uniformly below 1. By (2.1.9), 
k 

then, \ + x*. 

n n  Let Hl, V1 8 L(R ,R ) be M-matrices. 2.2.3 Theorem: 

sa t i s fy  

L e t  5,  xo, x* E Rn 

< 
Y [H, + V1] X* = 5 ,  [H1 + V,] x0 2 5 ,  X* = x 0 

where [H1 + V,] i s  non-singular. Set 

where H1 = (hij)  and V1 = (v. .). Let bk/23 be defined by (2.1.2) where 
1 J  

K S ~  5 S < m  
k .  

Then %/2 J. x*. 

Proof: See Theorem 5.2.4 of which t h i s  i s  a special  case. - 

W e  note tha t  if [H + V,] is  itself an M - m a t r i x ,  then 1 

W e  note a l so  t h a t  Theorem 2.2.3 does not assume any symmetry conditions. 

Thus, it would apply, f o r  example, t o  some discrete  version of the 
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boundary value problem on D = {(s , t )  : 0 < s , t  13 : 

LUE au + bu +cu  + du + eu = f ; ( s , t )  E D 
ss tt s t 

u = v ; ( s , t )  E aD 

a, b, e ,  d, e, f E C ( a ) ;  a 2 a > 0, b 2 bo > 0 ,  e < = 0 0 

(2.2.4) 

Usual ly  w e  would l i k e  t o  take the  r smaller than allowed by 
k 

Theorems 2.2.2 and 2.2.3. The following theorem and remarks allow us 

t o  pick the  rk as small as w e  wish, but  they impose other conditions. 

2.2.4 Theorem (Pearcy): L e t  H1, Vl E L(Rn,Rn) s a t i s f y  (2.2.1). Suppose 

where 

( 2 . 2 . 5 ~  ) 
I I 

@, + 4) log (b + al) ( 1 

L e t  6k/2] s a t i s f y  (2.1.2). Then x -, x*. 

Proof: See E241 or [30, W. 6.81. 
k 

- 

2.2.5 Remark: I n  Theorem 2.2.4, (2.'2.5a,c) can be replaced with 

0 S r  g 0 . .  g r  O < r v - 1  v -2 (2.2.6a) 

and 

max(ro-al, pl-ro) V-1 rj-al 8,-r r -a b -r 
'IT [max (->~&) max ( z > b  j a)] +r < 1. 

j =O j l l j  j l l j  r +a (2 .2 .64  
v - 1  1 

2.2.6 Remark: I n  Theorem 2.2.4, (2.2.5) can be replaced by 
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O < r s r  = < r  g r  f o r k 2 0  k+l k 0 

2 2.3 An Application. L e t  D be a bounded region i n  R and consider 

the problem 

(2.3.1) 

-(pus)s - (qu ) + ou = -f ; (s , t )  E: D t t  
su + 7 -  au = y ; ( s , t )  G aD 

an 

p, g, 0 E c(D); p ' 0, q > 0, 0 =. 0 

5 ,  1 E: c(aD); 5 2 0 ,  12 0 ,  s + 1 > 0 

If a rectangular, but not 

w e  can derive a difference approximation t o  (2.3.1) which resu l t s  i n  the 

matrix problem 

necessarily uniform, mesh i s  imposed on D, 

( 2 . 3 4  [ H + V + C I x = ! ,  9 

n n  where H, V, OZ E L(R ,R ) for  some n, C i s  non-negative diagonal, and 

H and V are,  a f t e r  a sui table  permutation, d i rec t  sums of tr idiagonal 

S t i e l t j e s  matrices (see [28, Section 6.31.) 

I f ,  fo r  some c E R, we se t  

H1 = H + ex, V = V + ( l - c ) C  1 7 

we obtain from (2.1.2) the following i t e r a t ion  considered i n  the case 

c = 3 by Varga k81. 

x e R n .  
0 

n n  More generally, suppose H, V, C 8 L(R ,R ) are  symmetric with eigen- 

For M a symmetric values i n  the ranges [a,b], [CY,@], [s , t ]  respectively. 

matrix, l e t  P(M) be the least eigenvalue of M. 

f o r  symmetric M and N, P(M) + P(N) 

Then using the f a c t  t ha t  

P(M + N ) ,  it can be shown tha t  
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H 

of Table 2.3 .l i s  sa t i s f ied .  

= H + CC and V 
1 1 

= V + (l-c)c sa t i s fy  (2.1.1) when one of the conditions 

2.3.1 Table: 

a CY S t C additional conditions 

+ 

0 

0 

+ 
+ 

0 

+,o 
+ 
I1  

11 

11 

11  

11 

+ 
It  

0 

I t  

+ 
+ 

+ 
0 

0 

0 

+ ,o 
+ 
I1  

11 

I1  

I 1  

I 1  

0 

11 

+ 
11 

[ -a/t  ,l+a/t 1 

[O,l+CY/t 1 
CO,l+Q!/t ) 

[-a/%, 11  
(-a/t ,  11 

c0,11 
C ~ , l l ~ h + ~ / s , - a / s l  

Cl+Q!/S ,o) 

( l + W / S  , 0 1 -a / t  = I+Q/S 

[i+a/s,o)n[-a/t,o) -a/t I+U/S 

(1, -a/s 1 

(1, 4 s  1 -a/s = l+a/t 

(i,-a/sIn(i,i+cr/tl -a/s =/ l+a/t 

t i ,  -a/s) 

C 1 ,  -a/s 1 

(l+U/S, 01 

El++, 01 

The choice of c = 3 i n  (2.3.3) i s  a reasonable one, but it may not be 

optimal. 

suppose tha t  one condition from Table 2.3.1 i s  sa t i s f ied .  

defined by (2.1.4). 

Suppose tha t  c = AI for  some h > 0, so tha t  s = t = h ,  and 

Let Tr be 

men we t r y  t o  minimize P(T ) for r > 0 ,  w e  are  r 



l e d  t o  the min max problem, 

The optimal parameters, ro and c are  given by 0' 

a + (1-c ) h )  ( p  + (1-c )AT 
0 0 

a + c A )  (b + coh) = J( r = . J (  
0 0 

(a + h )  ( @  + A )  -ab 
c =  0 h ( a + b + a + B + 2 h )  

W e  note tha t  c may not s a t i s f y  0 I: c 
0 0 

1, but it must s a t i s fy  

We note a lso tha t  the choice, c = 4, is  optimal when (a,b) = (a,@). 

2.4 Local Convergence of Some AD1 I te ra t ions  i n  the Nonlinear Case. 

Let F, H1, V1: Rn + Rn s a t i s fy  F = H1 + V1. We are  interested i n  finding 

a solution t o  the equation 

(2.4.1) F(x) = 0 

1 n  n If H1, Vl c C (R ) and [F'(x)l-' ex is t s  f o r  each x 8 R , then fxk3 i s  

w e l l  defined by the Newton i te ra t ion ,  

(2.4.2) 

and if  l i m  x = x exis t s ,  then F ( x )  = 0. 
k 

We may t r y  t o  solve (2.4.2) for  x by performing one o r  more AD1 k+l 

sweeps of the form (2.1.2). 

Newton stage, we have, formally, the N-V step AD1 i terat ion:  

If we apply the same U parameters a t  each 



0 
X 

Cr + H;(x~)I % j+$ 
3 

[rj + vi(xk)1 xk j+l 

x; = "k 

(2.4.3) 

Alternately, we may t r y  

version of (2.1.2) direct ly .  

E Rn 

t o  solve (2.4.1) by applying a nonlinear 

If we apply U parameters cycl ical ly ,  we 

have, formally, the v step AD1 i t e ra t ion :  

c 
Each of the equations i n  (2.4.4) is nonlinear, and hence, w e  may 

t r y  t o  approximate the i t e r a t e s  by taking one Newton step during each 

half sweep. W e  have, formally, the u step ADI-N i terat ion:  

x E Rn 
0 

1 
I n  order t o  guarantee t h a t  (2.4.3)--(2.4.5) are  w e l l  defined, we 

assume, analogously t o  (2.1.1), t h a t  Hi(x) and V'(x) are  posit ive semi- 

def in i te  fo r  x and t h a t  one of Hi(x) o r  V'(x) is uniformly posit ive 1 

defini te  on Rn. Then, i f  r > 0 f o r  0 j v - 1, (2.4.3)--(2.4.5) a re  

w e l l  defined. 'Ilhis is immediate fo r  (2.4.3) and (2.4.5) and follows f o r  

(2.4.4) from the f ac t  t h a t  a different iable  function G: Rn + R n ,  which 

1 
n R 



2 satisfies ( G ' ( X ) S , E )  2 cllsll 

morphism. 

and so (2.4.1) has a unique solution, x*. 

t ion,  x* w i l l  be the root of F. 

k+l 

fo r  a l l  x , l  E Rn and some c > 0, i s  a homeo- 

Indeed, under these assumptions, F i t s e l f  i s  a homeomorphism, 

I n  the remainder of t h i s  sec- 

1 n  

Then, there is  a 

E > 0, and a 6 < 1, such t h a t  I\h'(y)ll* 5: 6 when IIy - f l 1 I - X  

Let iyk3 C Rn s a t i s fy  y = h(yk) for  k 2 0, where h E: C (R ). 

Suppose h has a fixed point, 9, and that p ( h ' ( p ) )  < 1. 

norm //*II*, an 

5 E. Hence, i f  Ilyk - PI]* c ,  then - fl{I* = Ilh(yk) - h ( p ) / l  5 

loca l ly  convergent t o  p, and the quantity P(h'(+)) gives some measure 

of the rate of convergence. 

and z 

p. 

Suppose {yk}, czk3 c Rn sa t i s fy  yk+l = h(yk) 

> 1 n  
k+l k 

For the purposes of t h i s  paper, we w i l l  say t h a t  these two i te ra t ions  

= g(z ) for  k = 0 where h, g E: C (R ) have a common fixed point, 

have the same aysmptotic r a t e  of convergence t o  p i f  p ( h ' ( p ) )  = p ( g f ( p ) ) .  

For a more precise discussion of t h i s  idea, see c211. 

We now consider the re la t ive  asymptotic rates of convergence of 

(2.4.3)--(2.4.5). 

Define Tr(x)  and %(x) by (2.1.4) where H and V are  replaced by 1 1 

H;(x) and V'(x) respectively. By (2.1.8), we see tha t  (2.4.3) i s  given by 1 
> 

X k+l = hl(%> 9 = , 
where 

u - 1  u -1  
h l b )  = x - ( TT T r ( X I >  % (XI F(x) 

j = O  i=j+l i 3 
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But F(x*) = 0. So, using (2.l.7), 

u - 1  v-1 

j=O i=j+l i j 
hi(x3) = 1 - C ( Ti T (x*)) &1- (x*) F'(x*) r 

v -1 

i=O i 
= IT Tr (x*) 

< <  Now consider (2.4.4). Let gi/2: Rn -Rn, 0 = i = 2 u  - 1, be defined by 

Then (2.4.4) is given by 

= h(xk) , k 2 0 k+l X 

where 

, 

h ( x ) = g II -20 g * ogpgo ( x 
2 

n 
Now, if Gl: Rn * R is a diffeomorphism and G Rn -t Rn is differen- 2: 

tiable, then 
G;(x) = d [G,(Gi1(G2(x)) 1 

-1 d 
= G'(G 1 1  (G2(x)))*z [G;'(G,(x))l 

Thus, 
d - dx Gi1(G2(x)) = [G;(Gi1(G2(x))) 1-1 G;(x) , 

and so, 

g;(x) 

g'. ~(x) = [r + V'(g. I(x))]-~ [rj - H;(x)l 

= [r j + Hi(gj(x))l-l [rj - V;(x)l 

J+Z, 1 JfT 
< <  Now, gi/,(x*) = x* for 0 = i = 2v - 1. Hence, 

g! i(x*)*gj(x*) = Tr (x)") 
j J f T  

Furthermore, 
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Hence, 

V -1 
= 'n T (x*) 

i = O  i r 

Now consider (2.4.5). Let f1l2: Rn + R n ,  0 i 5 2U - 1, be defined by 

f j ( x )  = x - [r + Hi(x)]-' F(x) , 0 < <  = j = u - 1 
< 

f .  l(x) = x - [r + v ; ( ~ ) I - ~  ~ ( x )  , o = j 5 u - 1 
J+F 3 

Then (2.4.5) is given by 

X k-t-1 = h2(\) 9 k' 

where 

2 n  1 n  Now, if H1, V1. 8 C (R ), the fi/2 E: C (R ) for  0 5 i 2u - 1. Let 

5 t: R". Then, f o r  o j u - 1, 

f'.(x*) J = I - [r j + Hi(x*)l-l [Hi(x*) + V i ( x * ) l  

= [r j + H;(x*)l-' [r 

< Likewise, for  0 = j 5 U - 1, 

f !  1(x*) = [r + Vi(x*)]-l [r - H;(x*)l 
J+2 3 3 

and so, 

Proceeding as  above, we f ind 

u -1 
h'(X*) = Tr (x*) 

2 i = O  i 
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2 n  Thus, we see tha t  when H V1 e C (R ), (2.4.3), (2.4.4), and (2.4.5) 1' 

have ident ical  asymptotic rates of convergence, and indeed, near the 

solution, the three i te ra t ions  behave very nearly a l ike .  (2.4.4) 

involves the inversion of nonlinear functions and is  usually not pract ical .  

(2.4.3) requires one funi t ion evaluation and one derivative evaluation 

per cycle, while (2.4.5) requires 2u function evaluations and 2u derivative 

evaluations per cycle. 

t o  be f a r  superior t o  (2.4.5)--at l ea s t  local ly .  

Thus, i n  terms of work requirement, (2.4.3) seems 

Consider (2.3.1). If f depends on u as well as the space variables, 

s and t, (2.3.2) becomes 

(2.4.6) F(x) f Hx + VX + Y(X) = 0 9 

where cp 8 D(Rn).  

special  cases of (2.4.3) --( 2.4.5). 

N-u step ADI: 

Motivated by (2.3.3), we may consider the following 

x E Rn 
0 

[r + H + c c p 1 ( ~ 1  xj+ 

j+l = [r - H - Ccp1(%>1 x;i 2 + ~'(x~)x~ - F(%) Crj + v + (l-c)cpl(%)l % 

= [r - V -(l-c)cp'(xk)l xl + F1(%)xk - F(xk) 
j k j 

3 
.,1 

V 

k 
= x  0 

Xk = "k ' "k+l 

(2.4.7) 

v step ADI: 

x E: Rn 
0 

1 0 = x  v 
Xk = Xk ' "k+l k 



u step ADI-N: 

c x E Rn 
0 

I 
From the r e su l t s  of Section 2.2, we have the following theorem. 

2.4.1 Theorem: 

posit ive semi-definite, 'p E: C (R ), cp'(x*) i s  symmetric, and F(x*) = 0. 

Suppose o(H) C [a,bl, o ( V )  C [a,p1, .(cp'(x*)) C [s,tl and tha t  one 

condition from Table 2.3.1 i s  sa t i s f ied .  Define 

L e t  F: Rn + Rn be defined by (2.4.6) where H and V are  
2 n  

a + c s  , C ~ O  b + c t  , c k O  

bl = {  b + c s  , c S O  "1 = {  a + c t  , c = O  
, e 

(Y + (1-c)s , c 5 1 , 
CY + (1-c)t  , c 2 1 p + (1-c)s , e 2 1 

B, = { B + (1-c) t  9 c 1 
(Y = {  

Then methods (2.4.7)--(2.4.9) are loca l ly  convergent t o  x* if one of the 

following conditions i s  sa t i s f ied .  

i) r r > 0 is  constant ( U  = 1.) (Theorem 2.2.1.) 
3 

iii) (2.2.5) holds. (Theorem 2.2.4.) 

iv) (2.2.5b) and (2 .2 .6a ,~)  hold. (Remark 2.2.5.) 
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NONLINEAR AD1 ITEBATIONS 

I n  t h i s  chapter, w e  consider the nonlinear i t e ra t ion  (2.4.4) and 

obtain convergence resu l t s .  

and suppose F = H + V, where F, H, V: X + X a re  monotone. 

Theorem 1.3.8, the following nonlinear AD1 i t e r a t ion  is  well defined fo r  

Specifically, l e t  X be a r e a l  Hilbert space, 

Then, by 

rk, sk > 0. 

x s x  0 

(3 .1 .0  

We assume F has a unique root ,  x*. If F i s  uniformly monotone, t h i s  

i s  guaranteed. W e  now consider conditions under which x 

%,21 s a t i s f i e s  (3.1.1). Many of the convergence results i n  the l inear  

+ x*, where 
k/2 

non-commutative case carry over t o  the nonlinear case--the nonlinearity 

tends t o  destroy the special  properties of the comutative case. 

posit ive def ini te  conditions i n  the l inear  case w i l l  be replaced by 

monotonicity conditions (as they could be i n  the l inear  case,)  and the 

The 

boundedness conditions--from the l i nea r i ty  of the operators i n  f i n i t e  

dimensions--will be replaced by Lipschitz conditions. 

We w i l l  use the following lemma which is  a s l igh t  extension of a 

result by Kellogg 1151. 

1.1.2. 

W e  use the notation of Definitions 1.1.1 and 

3.1.1 Lemma: 

and continuous. Define T: X + X by 

L e t  X be a real Hilbert space, Let B: X + X be monotone 

~ ( x )  = (r - B ) o ( ~  + B ) - I ( X )  

where 0 ro 5 r,s 5 s Then 0' 
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Furthermore, if  B E Lipb and e i ther  

i ) r < s  

or 

ii) r 5 s, and B G M"% 9 

then, given a bounded set D, there is  a bD 

Moreover, if  ii) holds, GD can be chosen t o  depend only on r 

Proof: Since r, s > 0, T i s  defined. Given x, y 6 X, l e t  

1 such tha t  T E Lip(D,GD). 

s and D. 0' 0 

- 
= (s + B)-'(x) , f = (s + B)-'(y) 

- 
- (r(2 - y)  - ( ~ ( 2 )  - ~ ( f ) ) ,  r(2 - f )  - (B(2) - B ( f ) ) )  

(s(2 - f )  + (B(2) - B ( f ) ) ,  s (g  - f )  + (B(2)  - B ( f ) ) ) '  
- 

Thus, 

So, by the monotonicity of B, 

L Hence, 

Now, suppose B G Lipb. L e t  D be a bounded set, and set 

D~ = E (s + B ) - ~ ( W >  : w e D, r s 5 s I 
0 0 
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< Suppose Ilwll = M f o r  w E D. L e t  z E D1. Then there is  a w E D and 

an s E [r ,s 1 such t h a t  (s + B ) ( z )  = w. Now, by the  monotonicity of B, 
0 0  

= ~ l l Z 1 1 ~  + ( B ( z )  - B(O), z - 0) + (B(O), z )  

and M, i s  independent of r and s. Thus, there  i s  a B independent of r 
L 

and s such t h a t  B 

(3.1.31, 

Now, suppose 

r and s such t h a t  

IIX - YII 

E Lip(D1, a ) .  Now, suppose i) holds. Then, from 

1 
2 
- 

JT(x) - T(y)U f: r 2 + B y  = d g < l  
- 

llx - Y11 s2 + fi2 

ii) holds. 

B E Mon(D1, a ) .  

Then there  i s  an > 0 and independent of 

So, from (3. l .2) ,  

and 6 i s  independent of r and s. This completes t h e  proof. D 

Consider (3.1.1). Each of the  equations is  nonlinear. Thus ra ther  

than solve each of them exactly,  one might solve them incompletely by 

applying a f i n i t e  number of sweeps of an appropriate inner i t e r a t i v e  

procedure, e.g. a Newton or Picard procedure. Since the  inner i t e r a t ions  

do not y i e ld  the  exact solut ions of (3.l . l) ,  t h e  ac tua l  i t e r a t i o n  i s  

of the form, 
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x E X  
0 

where E and ck+ are ,  i n  effect ,  defined by (3.1.4). 

be used t o  obtain convergence results f o r  (3.1.4). 

some additional lemmas. 

Lermna 3.1.1 w i l l  

We first establ ish 

3.1.2 Lemma: Let X be a Banach space and suppose h, hk: X ‘X s a t i s fy  

i) given a bounded set D, there is  a 6 < 1 such tha t  D 
% E Lip(D, 8) for  k 2 0 > 

ii) h(x*) = fi 8 X 7 

iii) G k -  = Il%(x*) - h(x*)ll + 0 (k + 9 

iv )  ETk(z)3 i s  bounded for  some z E X, where 

T = h  0 %-1 0 * * -0 ho k k  

Suppose Cxk3 c x  s a t i s f i e s  

X k+l = %(xk) + for k 2 0 

where 
a3 

v) c 1 1 \ 1 1  < 
k=O 

Then x 4 x*. 
k 

Proof: The proof i s  an application of Theorem 2 of C19I. We give a - 
di rec t  proof. BY i), % E Lip(X, 1). SO 

Hence, 

Thus, by i v )  and v) ,  $3 is  bounded. Let D = E%]Ufx*]. Then 



 
 
 
 
 
 

"Page missing from available version"
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Thus, 

3.1.5 Definition: 

mps  from x t o  X. Then CT,] i s  equicontinuous a t  x 

there i s  a 6 > 0 such that 

Let X be a Banach space. Let {T 3 be a sequence of k 

E x i f ,  given E > 0 ,  

llxo - yII 5 6 $ IITk(xo) - Tk(y))I 5 E for k 2 0 

3.1.6 Lemma: Let X be a Banach space. Let x E X, kk] CX, and 

Tk, T: X 

0 

X, k 2 0, s a t i s fy  

i> % -xo 

0 ii) C T ~ ]  i s  equieontinous a t  x 

iii) Tk(xo) + T(xo) 

Then Tk(\> T(xO). 

Proof: We have - 
llTk(%> - T(xO>ll llTk($) - Tk(XO)/I + I/Tk(xO) - T(xO)/ l  

The first term on the l e f t  goes t o  zero by i) and ii), and the second 

term goes t o  zero by iii). 

The following two lemmas, which apply t o  the  proof of Theorem 3.1.9, 

are s ta ted separately t o  keep the proof of Theorem 3.1.9 as clear  as 

possible. 



3.1.7 Lemma: 

uous and monotone, and suppose 

Let X be a r e a l  Hilbert space. Let H, V: X "X be contin- 

Define 

I h = T O T  k k  , h = T O T  
k V H  V H  

k k Then TH -t TH, Tv + Tv, and h 

Proof: 

+ h pointwise on X. 
k 

k Let x E: X. By Lema 3.1.6, t o  show TH(x) + T (x), it i s  suff ic ient  H - 
t o  show 

i) (sk + H)-'(X) + (r +- ~ > - ~ ( x >  9 

ii) {(r - H ) I  is  equicontinuous a t  (r + H ) - ~ ( X )  k 1 

iii) (rk - H)o(r  + H)-' .-) (r - H)o(r  + H)-l(x) 

To show i), l e t  z = (sk + H)-l(x) and z = (r + H)-'(x). Then, as  i n  

the proof of Lemma 3.1.1, there is an M independent of k such t h a t  

I/zkjl = M fo r  k 2 0. 

k 

e Thus, 

0 = ( z  k - z, x - x )  = ( Z k  - z ,  ('k + H)(zk)  - (. + 

Hence, 

< 1  
= - IS, - S I  M " 0 r l/zk - 

This establishes i). 
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Thus, since H is continuous, {(rk - H)]  is  equicontinuous a t  each point 

of X. This establishes ii). Since r + r, iii) follows immediately. 

Thus, TH + T pointwise. That $ - Tv pointwise follows in  the same 
k 

k 
H 

way 

Now t o  show %(x) + h(x), again by Lemma 3.1.6, it i s  suff ic ient  

t o  show 

i) T: - T,(X) 

ii) {$I i s  equicontinuous a t  T (x)  H 

But i) and iii) follow as $Dove, and ii) follows because, from Lemma 

3.1.1, E Lip(X, 1) for k 2 0.  

3.1.8 Lemma: 

and continuous. Suppose (3.1.5) is  sa t i s f ied .  Let yk * y E X. Then 

L e t  X be a r e a l  H i l b e r t  space. L e t  H: X + X be monotone 

('k + ')-'(Yk) * (. + H>-l(y)* 

Proof: By Lemma 3.1.6., we need only show - 
ii) ~ ( s ,  + H ) - ~ I  i s  equicontinuous a t  y 2 

iii) (sk + H)-'(Y> - (r + H)-'(Y) 

1 But, by Lemma 3.1.4, (sk + H ) - l  E Lip(X, --), which establishes ii). 

Condition iii) is established as i n  the proof of Lemma 3.1.7. 

The following Theorem i s  an extension of a resu l t  of Kellogg [l51. 

3.1.9 Theorem: 

continuous and sa t i s fy  F = H + V, F(x*) = 0 for  some x* E X, H E Mor+,ALip 

and V E Mon(X,O). 

( 3.1.4 ) where 

Let X be a r e a l  Hilbert space. Let F, H, V: X + X  be 

b' 

Suppose tha t  (3.1.5) holds and tha t  {x 1 sa t i s f i e s  
k/2 



(3.1.7) 
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Then x +x*. 

Proof: U s e  the  definit ions of (3.1.6). Further define 
kI2 

- 
G = h  O h k 1  o ” ‘ o  hO, Yk = (‘k + H)(xk+$)> Yjc = (r + H)(x*). k k  - 

Now, 

We now show (3.1.8) sa t i s f i e s  the conditions of Lemma 3.1.2. 

i): Let D be a bounded se t .  By Lemma 3.1.1, there i s  a 6 < 1 

and independent of k such tha t  Ti E Lip(D, bD) for  k 2 0. But, also 

by Lemma 3.1.1, !I$ E Lip(X, 1). Hence, \ 8 Lip(D, 8). 

D 

ii): Since F(x*) = 0, we have (r + H)(x*) = (r - V)(x*) and 

(r + V)(+) = (r - H)(+) .  Hence, 

(r + H>(X*> = (r - v) 0 (r + VI-’ 0 (r - H) o (r + ~ 1 - l  0 (r + H>(X*), 

i.e., y3c = h(Yjc). 

iii): By Lemma 3.1.7, % + h pointwise. I n  par t icular ,  %(Yjc) + h(y3c). 

iv): L e t  z = (s - V)(x*). Then Gk(z) = ( s ~ + ~  - v)(x*). so 0 
{G,(z)] i s  bounded by slIx*II f ]fv(X*)jl+ 
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m 03 

Kellogg proved Theorem 3.1.9 under the assumptions tha t  r = s k k  = r 

and ekl2 = 0. 

If the Lipschitz and monotonicity res t r ic t ions  on H hold uniformly 

on X, (3.1.7) can be weakened somewhat. 

3.1.10 Corollary: 

Assume a lso t h a t  

Assume the  conditions of Theorem 3.1.9 except (3.1.7). 

H E: Lip(X, b)AMon(X, a )  where a > 0 and b < 

and tha t  8 0. Then xk x*. 

Proof: 

use Corollary 3.1.3. 

kl2 
The proof is  the same as  tha t  for  Theorem 3.1.9 except that w e  - 

Usually, w e  would l i ke  t o  apply a f i n i t e  number of parameters i n  a 



cyclic manner. 

r e su l t ,  Theorem 2.2.5, allows us t o  do t h i s .  

The following theorem, which is  an extension of Pearcy's 

3.1.11 Theorem: 

continuous and sa t i s fy  F = H + V, 

L e t  X be a r e a l  Hilbert space. 

F(x*) = x*, 

L e t  F, H, V: X + X  be 

H E Lip(X, b)AMon(X, a ) ,  

0 

and V 8 Lip(X, P)AMon(X, cy), where 

(3.1.9) b < 01, a > 0, B 

Let 

- 
6v - 

and 6 = 6 - 6  Suppose H V' 

f z  - 2; + bq' 1 

+ 2ra + b 

c 1 

> k = 0 
S kv+j  = s for  0 5: j 5: v - 1 and 

j 

> where u = 1 and 

( 3.1 . io)  
log % 

u - 1  > 
log 6 

Suppose, f ina l ly ,  t ha t  kx 3 s a t i s f i e s  (3.1.4). Then x + x*. 

Proof: By (3.1.9), 6 1. Thus, U i s  well defined and f i n i t e .  Define 

T and T as i n  (3.1.6). Set 

k/2 k/2 

- 
k k 
H V 

- + V)(x ) f o r  k 2 0, and yW = (rvdl + V)(yW). Then yk - ( r l l - l  vk 
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where 

and 

dY-9 = P 

NOW, by Lemma 3.1.1, T~ 3 E Lip(x, 6 ) and T~ J e Lip(x, 6 ) for  o 5 j v - 2 ,  H V 
-1 S and (so - V) 0 (rVe1 + V) 

6* = 6 - 6  - . NOW, provided u 2 1 s a t i s f i e s  (3.1.10), 6* < 1, and 

so g i s  a uniform contraction on X. 

as  i n  the proof of Lemma 3.1.2, yk -'p. I.e., 

8 Lip(X, F). Thus, g E Lip(X, 6*), where 

u - 1  s 
H r 

Now, ck12 + 0 implies I& -+ 0. Thus, 

( r u - l  + V)(xVk) ( r u - l  + v)(x*t) 

But, (rUml + V) is  continuous and uniformly monotone. Hence, (ru-l + V ) - l  

i s  continuous. Thus, x -' x* (k a). Then, by the technique a t  the 

end of Theorem 3.1.9, 
uk 

This completes the proof. 



PICARD-AD1 1T.ERATIONS 

Let F: Rn - R n  s a t i s fy  (2.4.6) and have a root,  x*. I n  t h i s  chapter, 

we w i l l  consider two-level Picard-AD1 i te ra t ions  for  approximating x*. 

This type of i t e ra t ion  w a s  considered by Douglas c5l  and Gunn c121, 1131. 
Generally speaking, Picard type i te ra t ions  f o r  finding the root of F 

are not globally convergent unless the growth of Cp is  suff ic ient ly  re- 

s t r i c t ed .  

the root of F with the problem of finding a root of a related function, 

However, i n  some cases, we can replace the problem of finding 

Fo = A + Cp where the growth of cp i s  suf f ic ien t ly  res t r ic ted .  See, e.g., 

the discussion i n  Section 1.4.  Even i f  the growth of cp is  not suff ic ient ly  

r e s t r i c t ed  on a l l  of Rn, i f  some bound on I/x - x*ll i s  known, we may be 

able t o  formulate a Picard type i t e r a t ive  procedure which w i l l  converge 

0’ 0 

0 

0’ t o  x* from x 

I n  Section 4.1, we give some preliminary r e su l t s  concerning general 

two-level i t e ra t ions ,  define Picard type i te ra t ions  and give some examples 

of specific Picard type i terat ions.  

I n  Section 4.2, w e  consider multistep Picard-AD1 i te ra t ions ,  i .e. ,  

i t e ra t ions  i n  which the inner i t e ra t ion  is composed of several AD1 sweeps. 

I n  Section 4.3, we consider single step Picard-AD1 and ADI-Picard i t e r a -  

t ions. 

“ 2  I n  t h i s  chapter, {I * 11, i n  Rn, w i l l  denote 11 

4.1 Preliminarv Results. 

4.1.1 L e m a :  Let X be a Banach space. Let k,]CX and x* B X, and sup- 
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pose 5, x* B D C X  for  k 2 0. L e t  \: Dk + X, s a t i s fy  h (x*) = x* and k k 

h 

f ina l ly ,  t ha t  

8 Lip(Dk, 6 )  f o r  k 2 0, where 6 < 1 independently of k. Suppose, k 

IJxk+l - hk(xk)l/ 1 11% - %(%)JI for  k ' 0 

where 

independently of k. Then x 3 x*. 

Proof: L e t  &+ = T(1 + 6 )  + 6. Then& < 1. NOW, 

k 

- 

Suppose we wish t o  f ind  the common fixed point of the functions, 

%, of Lemma 4.1.1. 

two-level i t e ra t ion  i n  which the theoret ical  outer i t e ra t ion  i s  given by 

If  % i s  d i f f i c u l t  t o  evaluate, w e  may consider a 

= h (x ). If the error  i n  the inner i t e ra t ion  i s  reduced by a k+l k k X 

factor  of 7, Lemma 4.1.1 guarantees convergence of the two leve l  scheme. 

n n  L e t  F(x) = Ax + cp(x), where Cp: Rn + R n ,  and A B L(R ,R ) is  non- 

singular. Suppose F(x*) = 0. Then Ax* = -~p(x*) = - F(+), which 

suggests the following i terat ion,  cornonly cal led the Picard i t e r a t ion  

f o r  approximating x*. 



Axk+l = A"k - F(xk) 

Motivated by t h i s ,  we make the following definit ion.  

4.1.2 Definition: 

If  0 4 o[A](*), the i terat ion,  

Let F(x) = Ax + cp(x), where cp: Rn -, Rn, and A E L(Rn,Rn). 

10 + AI %+1 = C Q  + AI 5 - F(\) 
is  cal led a Picard i terat ion.  The parameter, 5, i s  called the Picard 

Darameter. 

Definition 4.1.2 i s  generalized t o  the following. 

4.1.3 Definition: 

The i terat ion,  

Let F: Rn 'Rn, and l e t  C G L(Rn,Rn) be non-singular. 

(4.1.1) c\+l = c\ - F(Q 

i s  cal led an i te ra t ion  of Picard type. 

Let F 8 M(Rn), and l e t  C e L(Rn,Rn) be non-singular. Let 

h(x) = C-'[Cx - F(x)] 

Then 

D h(x) - h(y) = C - l [ C  - F (x,y)I (x - y )  

Thus h i s  a contraction on DCR" i f  there is  a 6 < 1 such that 

I I C - ~ C C  - F"(x,y>l//  6 for  x, y e D 

Generalizing, we have the following l ema .  

-~ 

(*)This double usage of o--as a parameter and as the spectrum set--  

should cause no confusion. 



n n  4.1.4 Lemma: 

of non-singular matrices. Let x E R ~ ,  and suppose Exkk R satisfies 

L e t  F 8 F(R ,R ) have the root, x*. Let kk3 be a sequence 

n 
0 

Suppose that for  some 6 < 1 and independent of k, 

(4.2.3) 
/ICk -1 [C, - $(xk, x*)lll 5 6 for  k 2 0 

Then x -, x*. k 
Proof: W e  need only note tha t  - 

- x* = c-% - FD(Xk, x*)l (Xk - x*) k+l k k  
X 

4.1.5 Remark: We note that if F E M(Rn) i s  differentiable,  then 

1 D (4.1.4) F (x, Y )  = J F'(Y + t ( x  - Y ) ) d t  
0 

Thus, (4.1.3) i s  sa t i s f i ed  i f  

-? > 
/lCil[Ck - &(X)]~~I: , 5 6 f o r  x .s [x*, x 1 and k = 0 k 

We now give some further examples of Picard type i terat ions.  

4.1.6 Example: L e t  F e M(Rn) be differentiable.  Consider (4.1.1). I f  

C = F' (x  ), w e  have the simplified Newton i terat ion,  
0 

E Rn. If C = 8 ( x o ,  yo), we have the following discrete ' yo Let xo 

simplified Newton i terat ion,  

(4.1.2) includes a variety of methods. If  Ck = F'(%), w e  have the 

Newton i terat ion,  
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4.2 Multi-step Two Level I te ra t ions ;  

L e t  cCkj  CL(Rn,Rn) be non-singular. 

Let F c M(Rn) have the root ,  

Then we may consider the x*. 

i t e r a t i o n  (4.1.2) f o r  approximating x*. 

w e  may apply an inner i t e r a t ion  and use Lemma 4.1.2. 

suppose the Ck s a t i s fy ,  fo r  k 2 0, 

If C is  not ea s i ly  inverted, k 

For instance, 

( a*, b* M, p* are  independent of k 

Then an AD1 inner i terat5on could be applied. Following (2. l .7) ,  define 

Then, from (2.1.8) and (2.1.11), w e  have the two-level Picard-multi-step 

AD1 i t e ra t ion .  

t h  where k ... 
“k,O’ ’rk, v k - l  

stage. 

is  the  number of AD1 sweeps employed during the  k stage and 

t h  3 i s  the AD1 parameter sequence applied during the k 

Using Lemma 4.1.2, w e  have the following r e su l t  fo r  (4.2.2). 
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n n  4.2.1 Theorem: L e t  F c M(R ,R ) have the root, x*. Let ICk] s a t i s fy  

(4.2.1). L e t  x 8 Rn, and suppose Cx 3 i s  defined by (4.2.2) fo r  some 

sequence Cu 3 of posit ive integers and some col lect ion Cr 

parameters. 

0 k 

. I  of posit ive 
k k, J 

Suppose (4.1.3) is sa t i s f i ed  fo r  some 6 < 1 and independent 

of k. Finally,  suppose 

(4 02 .3) I1 ) I  5 T for k = 0 
i = O  

uk-l 
> 

fo r  some 7 independent of k and satisfying 

1 - 6  ?I < - 
1 + 6  

Then, % +x*. 

Proof: L e t  - 
%(x) = Cil[Ckx - F(x) l  

Then %(x*) = x*. L e t  Dk = Exk, x*I. Then h 8 Lip(Dk, 6) .  Now, by 
k 

Uk-1 (2  9 ) ,  

X k+l = Tr Tk r (xk - hk(xk)) 
i = O  ’ k,i 

Hence, by Lemma 4.1.1, % +x*. 

4.2.2 Remark: 

and 

By (4.2.1), we know t ha t  if  r and s a re  independent of k 

then there i s  an M = M(6), which is  independent of k and the parameter 
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sequence, such tha t  (4.2.3) holds whenever Uk 2 M f o r  k 2 0. I n  the com- 

mutative case, t h i s  is  the basic result, and i n  the  non-commutative ceze ,  

t h i s  i s ,  essent ia l ly ,  Pearcy's result, Theorem 2.2.4. 

a pr ior i ,  the number of inner i t e ra t ions  and s t i l l  guarantee convergence 

of (4.2.2). 

Thus, we can bow?, 

4.2.3 Example: Let F E M(Rn) sa t i s fy  

F(x) = Ax + T(x) ,  

A = H + V; 

d H 1  c [a, b l ,  OCVI C [a, PI; a, a 2 - 0, 

'p D(Rn) 

F ( S )  = 0 

H, v 8 L ( R ~ , R ~ )  are  positive semi-definite 

a + u > o 
(4.2.4) 

Suppose also t h a t  

(4.2.5) 

I n  [51, Douglas considered (4.2.2) under the conditions C k f C  = 

A + 01 (for  some suitable AD1 sp l i t t i ng  of A + aI) where 5 = $(M + m )  and 

Hv = VH. Indeed, i n  t h i s  case, 

Thus, Theorem 4.2.1 can be applied. 

(4.2.2) but did not show t h i s  could be done with an a p r i o r i  bound on uk. 

Douglas obtained convergence of 

I n  the previous example, it w a s  assumed t h a t  p ( x ,  y )  is  globally 

bounded from above. 

res t r ic t ion .  Nevertheless, i n  the next example, w e  do not make t h i s  

assumption but assume, instead, that $(x, y )  

bounded sets. 

By the discussion of Section 1.4, t h i s  is  no r e a l  

is  bounded from above on 

4.2.4 Example: 

s e t ,  D C Rn, there is an M(D) such t h a t  

L e t  F s a t i s f y  (4.2.4) and suppose tha t ,  given a bounded 



m~ s (8(x, 7) M(D)I f o r  x, y c D 

-(a + a) < m independently of D 

L e t  hk3 be generated by (4.2.2). W e  w i l l  pick Ck successively such 

t h a t  (4.1.3) is  sa t i s f ied .  

Now, 

Thus, as  i n  Section 1.4, 

11% - x*ll 4 (4, l l F ( g =  Sk 

Let 

and l e t  

% = inf<!yP) fib, Y) 
l= i=n  
x, YcDk 

Now suppose C 

[V + (l-c)gkl,) where uk 2 m. 

= A + CT 
k k (with an N I  sp l i t t ing ,  Ck = [H + cuk] + 

Then 

Now, fo r  x, y E Dk, 

Now, %, x* 4 Dk. Thus (4.1.3) holds i f  

or 

fo r  

fo r  

0 5  
k 

% + %  
2 

a+% 
2 
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These conditions reduce t o  

% - S ( a  + a )  % + 6(a + a )  

1 - 6  
s o  5 

k (4.2.6) 
1 +  6 

, 

where 6 must s a t i s f y  

W e  now show t h a t  6 can be picked t o  satisfy (4.2.7). Suppose (4.2.6) 

and (4.2.7) are s a t i s f i e d  where 6 is  

i s  s a t i s f i e d  where TI i s  replaced by 

i s  given by (4.2.2), 

replaced by 6 and suppose (4.2.3) k’ 

\ < (1-6k)/(1+6k). Then, if &,I 

llxk+l - x*)tll < = (\(l + hk)  + 6k)I/% - x*/I f o r  k > = 0 

Hence, 

< < - x*lj = llxo - x*lI = s f o r  k 2 0 I I\+l 0 

Thus, lxk3C g(x*, s o )  L g(xo, 2s0) f D. L e t  

Then 

and 

Thus 03 u D c s(xo, s + 2s0) ZIP 
k=O k 

Now, l e t  



78 

M* - m* 

M* + m* + 2(a + a) 
% - %  =< < l  

M~ + % + 2(a + a) 

Thus, if  6 sa t i s f i e s  

(4.2.8) I 6  <1, M* - m* 
M* + m* -t 2(a + a) 

(4.2.7) w i l l  be sa t i s f ied .  Now, if w e  t r y  t o  minimize I!C’’[C - FD(%,x*)]/l, k k  

w e  are l ed  t o  

and the minimum i s  achieved a t  

Thus, if  % and nx change much during the i terat ion,  w e  might wish t o  

consider a variable Q k’ k 

sa t i s f i ed  for  any 6 satisfying (4.2.8) 

If we pick cr = $(% + %), then (4.2.6) is  

If we wish t o  employ a single Picard parameter throughout the itera- 

t ion,  it is suff ic ient  t o  choose cr such tha t  

< o  ? 
M* - (a + Cy) 

2 

fo r  then (4.2.6) w i l l  be sa t i s f ied  ( for  0 

t i cu la r ,  we may pick, as Douglas did, o = +(M* + m*). 

= cr) for  some 6 < 1. I n  par- k 

Under more r e s t r i c t ive  conditions than i n  Theorem 4.2.1, w e  can 

obtain convergence of (4.2.2) without requiring a condition l i ke  (4.2.3). 

The following resu l t  is  essent ia l ly  Theorem 1 of h21 .  
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4.2.5 Theorem: 

D 
L e t  F E: M(Rn) have the root, x*. Suppose 

(4.2.9) F (x, y )  - C* i s  posit ive semi-definite fo r  x, y e Rn 9 

where C* i s  posit ive def ini te .  Suppose 

(4.2.10) C - FD(x, y)  i s  positive semi-definite fo r  x, y E Rn 9 

v1 e where C = H + V and H1, 1 1  
commute. For r > 

and suppose b k 3 C  

0, l e t  Tr and 

R~ s a t i s f i e s  

L(Rn,Rn) are posit ive def ini te  and 

&r be defined by (2.1-4). L e t  x E Rn, 
0 

, 

e <  where r > 0 for 0 = i = u - 1. Then x + x*. i k 

4.2.6 Remark: 

u 2 1 can be chosen a rb i t r a r i l y .  

Condition (4.2.3) is not necessary i n  Theorem 4.2.5 i n  tha t  

I n  terms of Example 4.2.3, assumption (4.2.9) and (4.2.10) imply 

(4.2.5). Furthermore, i f  CT 2 M, (4.2.9) and (4.2.10) are  sa t i s f ied .  

4.2.7 Remark: 

(4.2.9) and (4.2.10) w i l l  be sa t i s f i ed  i f  F (x, y )  i s  replaced by F ' (x) .  

I f  F is differentiable,  then, by (4.1.4), conditions 

D 

The proof of Theorem 4.2.5 depends heavily on the commutivity of 

H and V1. However, even i n  the non-commutative case, i f  r =P is  

constant within each AD1 cycle, convergence independent of u the number 

of AD1 i t e ra t ions  a t  the kth stage, can be obtained. 

1 k , i -  k 

k' 

4.2.8 Theorem: 

sa t i s fy  (4.2.1). 

a sequence of posit ive integers. 

Let F e M(Rn) have the root, x*. L e t  kk3CL(Rn,Rn)  

L e t  Cr 3 be a sequence of posit ive parameters and { u  ] 
k k 

Let x0s R ~ ,  and suppose kk]cp 
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s a t i s f i e s  

Suppose there is a 6 < 1 and independent of k such tha t  

D (4.2.11) 

Suppose 

/ICk - F (x,y)II 5 6(a + a )  for  x, y e [x*, 5 1  and k 2 0 

Then x "x*. k 

Proof: We have - 
- X* = E ( )(x - x*) k+l kXk k X 

where 

D V Vk-1 j 
Ek(x) = (T  ) + (Tk,,) &1z [ck - F (X,X*)l 

k,r j =O ,r 

It is  suff ic ient  t o  show that 

some &+< 1 and independent of k. Let 

//E ( ) / I  6 6-E f o r  x e [x*, x ] and for kXk k 

\ 'k 2rk ("k + " k (B+ + [I- (-) 3 
55 5 c  'k - !k 

Now, $ - \ = 2r (a + c! ). Hence, 
k k  k 
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Let 

Then 

and so, 

J IEk(~) I I  < r r  = (1 - 6 )  + 6 c = 6* 1 

This completes the proof. 

4.2.8 Remark: 

be weakened to  

I n  Theorem 4.2.8, i f  H V = V H for  k 2 0, (4.2.12) can k k  k k  

I n  t e r m s  of Example 4.2.4, H V = V H i f  HV = VH k k  k k  

If rkE r and V '= V are  constant, we see, by the s imi la r i ty  k -  1 

transformation z = (r  +- Vl)xk, tha t  (4.2.12) can be weakened t o  k 

(4.2.13 ) 
k 

I n  t e r m s  of Example 4.2.4, Vk" Vl i f  0 s o  or if c = 1. 

then H k E  H1 and (4.2.13) can be eas i ly  sa t i s f ied .  k 

Example 4.2.4, then Ok 5 M*, and so a 5 a + o 5 a + M*, and, likewise, 

b 5 b + M*. Thus, (4.2.13) can be sa t i s f i ed  a p r io r i .  

If ok=o,  k- 

If 0 i s  chosen as i n  

k k 

Suppose F i s  as i n  Example 4.2.3 and is different iable .  Consider the 

Newton and secant methods of Example 4.1.7. I n  these cases, (4.2.11) 

becomes, effectively,  

< 
l l~ ' (x>  - ( P ' ( Y > I I  = 6 (a + + m) 

m 

fo r  x and y i n  some set containing U Cx*, x k l s  
k=O 

This is a very Severe 
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r e s t r i c t ion  and holds only if  x 

4.2.8 may s t i l l  be usable. 

is  close enough t o  x*. However, Theroem 
0 

4.2.9 Example : Consider the discrete  boundary value problem, 

where \ and i2 are  given i n  Example 1.2.5. 

(4.2.14). We have seen t h a t  

L e t  u* be the solution of 

u*(P) I. y + 5 - 8 -  

Thus, u* is  the unique solution of 

4, u(P) = f (u(P) )  , P 8 0 

u(P) = v(P) , P G R '  

1 1 - 

{ 
where 

( e  ' + e  , u s -  

U 1 < u I y + 5  
9 - 8 -  f ( u )  = e 

< i e y+' + ev ' (u  - ( v  + 5) , y + 5 = u 

L e t  F be given by (1.3.3) where = -4,. Then the root,  x*, of F is  

x* = u*. Furthermore, - - 1  

and 1 
m - e  1 - 8  

Now, i f  Ai i s  s p l i t  as i n  (1.2.40), then a = Cy M 2. Hence, (4.2.11) i s  

sa t i s f i ed  (for  small enough h )  if  

y+' -118 < 2 3  + e -118 e - e  



 ow, l o g ( 2 2  + 2e -1'8) > 3.06. Hence, (4.2.11) i s  sa t i s f i ed  ( f o r  small 

enough h )  if  

Y + fi < 3.06 

4.3 Single Step Two Level I terat ions.  I n  t h i s  section, we consider 

two l eve l  i terat ions i n  which the inner i t e ra t ion  i s  carr ied only one 

step.  The procedure may be e i ther  a Picard type i te ra t ion  coupled with 

an inner AD1 i t e ra t ion  or a nonlinear AD1 i t e ra t ion  coupled with an 

inner Picard i terat ion.  

Suppose F sa t i s f i e s  (4.2.4). For convenience, we w i l l  usually 

assume (4.2.5), though t h i s  can be weakened. I f  we attempt t o  solve 

the equation, F(x) = 0, by coupling a Picard i te ra t ion  with an inner 

AD1 i terat ion,  we obtain the Picard-AD1 i terat ion.  

= Cr, - v - ( l -c)akl  xk + CJ k k  x - cp(%) 
(4.3.1) 

where c is  an appropriate scalar,  r, is  the AD1 parameter, 0 is the 

Picard parameter, and the Picard matrix, Ck = A + CJ 

t ing,  c 

k 

has the AD1 s p l i t -  
k' 

= CH + e o  3 + CV + (l-c)akl. k k 

Alternately, we may couple a nonlinear AD1 i t e ra t ion  with an inner 

Picard i te ra t ion  and obtain the ADI-Picard i te ra t ion .  

= Cr, - v - (l-c)ok1 xk + o k k  x + cp(xk) 
(4.302) 

I n  (4.3.1) and (4.3.2), rk and o could be updated t o  r k+ and "k.3 i n  k 

the second equation, but w e  w i l l  not consider t h i s .  

From Theorem 4.2.8 and the estimates of Example 4.2.4, we can de- 

rive some conditions under which (4.3.1) w i l l  converge. By a s t ra ight-  
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forward proof, it can be shown t h a t  (4.3.2) converges under pract ical ly  

the same conditions. 

Condition (4.2.12) of Theorem 4.2.8 i s  rather stringent since we 

would l i k e  t o  take the AD1 parameters smaller than allowed. I f  o k ~ a  

i s  held constant, we can relax (4.2.12) and obtain a result analogous t o  

Pearcy ' s result. 

4.3.1 Theorem: Let F sa t i s fy  (4.2.4) where (4.2.5) holds. Suppose 

Let o 5 c 5 1, and set 

Then l e t  

(4.3.4) 

Let 

(4.305 1 

Now, set 

and 

1 CY = CY + (1-c)o, p1 = p + (1-c)o 
1 

r = max ( ) 

<1 - - M - m  M - m  

2(a1 + s, 
s =  

M + m + 2(a + CY) 

2ss (a + a1) 1 s - a  s - C Y  
q =  1 .  1 .  

s + a  1 s + Q  1 ( s  + a p r  + CYl> 

Suppose [\/23 satisfies (4.3.1) where 0 =a, and Cr 3 sa t i s f i e s  k -  k 
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where 

(4.3.7) 

Then x + x*. 
k 

Proof: Let H = H + c a  and V = V + (1-c)a. Let 1 1 - 
- - x* and A = CT - (B(%, x*) for k 2 0 ek/2 - Xk/2 k 

Then, by (4.3.31, 

Now, 

[rk + H1l e k+T 1 = [rk - V,] ek 
+ v k  

+ Ae Cr, + V ~ I  ek+l = Cr, - $1 ek+ k k  

Let e* = [r + V,] ek for k = 0, where r-l=ru-l. Then, > 
k k-1 

where, 

E = [r - H1l [r + H1l -1 Cr - v,I [rj-l + v1I-l 
i, 3 3 3 3 

+ 2r [r + H11-l Oiu+j [r j-l + ~ ~ 1 - l  3 3  

Now, f o r  1 5  j u - 1, by (4.3.4) and (4.3.6), 
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and J 
1 

< 3 Thus, f o r  1 = j 5 1) - 1, and i = 0, 

But, by (4.3.?), 

q ( 6 + p  < 1 

Hence, e 0 (i + 
i U  

of  i and j,  such that 

But, c lear ly ,  there is a K < O0 and independent 

Hence, e* -+ 0, and so e + 0. This completes the proof. k k 

4.3.2 Remark: I n  Theorem (4.3.1, (4.3.7) can be replaced w i t h  

u -1 
(4.3.8) go 6 . < l  

J j =1 

where 40 and 6 .  are as defined in  the proof of Theorem 4.3.1. 
J 



4.3.3 Remark: 

w i t h  

I n  Theorem 4.3.1, (4.3.6) and (4.3.7) can be replaced 

s r  5 s  f o r k 2 0  < 
k+l k 

(4.309) r = r  

4.3.4 Corollary: 

redefine 

L e t  the conditions of Theorem 4.3.1be satisfied except 

( s  - a,)b - g) 
( s  + all(. + p, 

6 (a1 + g ) ( s  - cyl, 

(I: + a l k  + g) 
9 =  + 

and 

3 
r + a  

a1 + 5][. - ( 1  - S )  
r + a  1 

,and l e t  k 3 satisfy (4.3.2). Then x x*. 

Proof: 
k/2 k 

The proof follows along the l i nes  of that  of Theorem 4.3.1. We - 
now have 

( [ r k + H l l e  k+2 1 = [ r  k -Vile k + A e  k k  

where 

Now, as i n  the proof of Theorem 4.3.1, 
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> and, fo r  1 S j 4 II - 1 and i = 0, 

r a1 + a  + 'I = [i - (1 - 6) 
$ 1  

= 6  i 6* 
- 3  

4.3.5 Remark: 

where go and 6 .  are defined as i n  the 

I n  Corollary 4.3.4, (4.3.7) can be replaced w i t h  (4.3.8), 

proof of Theorem 4.3.4 
J 

4.3.6 Remark: Remark 4.3.3 holds f o r  Corollary 4.3.4 also. 

L e t  ok s o  be constant, and set c = 3. The (4.3.2) becomes 

where s = r + $0. W e  now establish a result f o r  (4.3.10) which is 
k k 



sharp i n  the l inear  case. 

4.3.7 Theorem: L e t  F sa t i s fy  (4.2.4), where (4.2.5) holds, and, i n  

addit  ion 

- 2 min (a, a) < m  

L e t  

M - m  
4 

K = 
7 

and suppose 

Y 

M + m  -+ K < s s s  5 s  f o r k 2 0  
4 k+l k (4.3.11) 

Suppose bc 1 sa t i s f i e s  (4.3.10). Then x -, x*. 

Proof: Let e = x - Then 
k k  

k/2 k 

- 
k 

j = O  
e = CSk + VI-I- ‘%,j Ev,j’ e* 0 7 k+l 

where 

e* = [so - H - @(XI, x*)l [so + H 1 - l  [so - V - ‘p D (xO, x*)l eo , 0 2 
and 

- H - $(xj+, x*)l I s j  + HIm1 3 { ;.” r J  1 :: - v - $(Xj, *)I [ s  j -1 

Now, ll[sk + Vl” / l  is uniformly bounded. Thus, it is suff ic ient  to  show 

tha t  there are bH, bV < 1 and independent of k, such tha t  

2 s  
k’ Now, since V is  positive def ini te  and s ~ - ~  

Hence 



1 1  [Sk - v - $(Xk, x*)l X/ l2  

/ICsk + VI xll2 

< 
= sup 

where 

R = s - fl 1 D  (xk, x*) 
k k  

I D  
vk = + 9 (xk, 

Thus, 

2 (a + &) ( s  - K) 

mus,  for  llxll = 1, 

(4.3.14) 0 < (a + & ) ( s  - K) 5 (%x, Vkx) 5 ( a  + $ ) ( s o  - $m) 

Now, by (4.3.12)--(4.3.14), there is  a 

such that 11% k / l  5 6 fo r  k 2 0. 

6v < 1 and independent of k 

%,k and A similar r e s u l t  holds for  
9 V 

the proof i s  complete. 



n 4.3.8 Remark: 

the l inear  theory says (4.3.10) converges t o  x* if 

If cp(x) = ax + Y for  some Y'e R and some CJ > 0, then 

~ c r < s = s  1 < 2 s  f o r k 2 0  
k+l k 

But, t h i s  is exactly what (4.3.11) reduces to .  



CHAPTER v 

NliWTON-ADI ITERATIONS 

I n  this chapter, we consider i t e r a t ions  (2.4.3) and (2.4.5) i n  the 

case u = 1. The Newton-AD1 i t e r a t i o n  takes the form, 

(5.0.1) \+l = xk - 2rk [rk + V'(x 1 k  )I-' [rk f Hi(%)]-' F(%) 

and the  ADI-Newton i t e r a t i o n  takes the  form, 

The methods of Chapter I V  can be used t o  obtain convergence results 

f o r  (5.0.1) and (5.0.2) under the assumption t h a t  F ' (x)  does not vary 

too much over a ce r t a in  set .  I n  this  chapter, we w i l l  not need such an 

as sump t ion. 

I n  Section 5.1, w e  consider convergence results based on contrac- 

t i o n  pr inciples ,  and i n  Section 5.2, we consider convergence results 

based on monotonic pr inciples .  

example t o  a c e r t a i n  asser t ion  about the  Newton-AD1 i t e r a t ion .  Final ly ,  

I n  Section 5.3, w e  present a counter- 

i n  Section 5.4, w e  present some numerical 

5.1 Contractive Results. Suppose F: 

t he  following conditions uniformly on D. 

results. 

D C R ~  -, R ~ ,  D convex, satisfies 

where, i n  t h i s  chapter, 1 1  = 11 = 11 * 11,. 
t o  insure t h a t  the Newton i t e r a t i o n  function, 

These conditions are not enough 

N (x) = x - [ F ' ( x ) ] - ~  F(x) 0 

92 
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is a contraction on D. However, we can apply a parameter i n  a way 

similar t o  the way i n  which the AD1 parameter i s  applied and get a 

Newton type i te ra t ion  function which i s  contractive on D. 

n n  Let A: Rn + L(R ,R ) be differentiable.  Then, it can be shown t h a t ,  

a 
dx 

if  A(x) is  nonsingular, then - [A-l(x)] ex is t s  and, fo r  5 E Rn, 

- d [A'l(x)] 5 = - A-l(x) A'(x) 5 A-l(x) 
dx 

Now, for r > 0, l e t  

~ , ( x )  = x - [r + F I ( ~ ) I - ~  ~ ( x )  

Then, for 5 c Rn, 

Ni(x) 5 = [I - [r + F ' (x ) I - l  F ' ( x ) l  5 

+ [r + F'(x)]-' F"(x) 5 [r + F'(x)l'' F(x) 

The first t e r m  equals r Cr + F ' ( ~ ) I - '  5 .  mus, on D, 

Hence, if E > 0, and 

then, on D, 

> E + M N  r =  - P  
P 

Thus, since D i s  convex, by (1.3.7), Nr i s  a uniform contraction on D. 

By a s i m i l a r  analysis, we can determine conditions on the AD1 

parameter which w i l l  guarantee that the Newton-AD1 i te ra t ion  function 

is  a contraction on a given convex set. 

, 

suppose F, xl, vl: D c R" 3 R" sa t i s fy  
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a ) F = H  + V  1 1  

b) H1, v1 C2(D> 

c )  H;(x) and V'(x) are  posit ive semi-definite on D 1 

(5.1.1) 

Then, f o r  r > 0, we can define the following Newton-AD1 i te ra t ion  

function. 

(5.1.2) h r (x) = x - 2r [r + Vi(x)l-' [r + Hi(x)]-' F(x) 

For simplicity, we sha l l  say 

if  the following hold uniformly on D. 

5.1.1 Lema: Let F, Hl, : D C  Rn + R n  s a t i s fy  (5.1.1), and l e t  

: D -, Rn be defined by (5.1.2). Suppose (5.1.3) holds. L e t  0 < K < 1 hr 

and E = 0, and suppose > 

and, i n  addition, 

Proof: Let - 
T,(x) = [r + Vi(x)]-' [r - Hicx)] [r + Hi(x)l-l [r - Vi(x)l 

Then, 
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I - 2r [r + Vi(x)]-' [r + Hi(x)]-' F ' (x)  = Tr(x) 

so, for  ii; E R ~ ,  

+ 2r [r + Vi(x)I-l  Vi(x) 5 [r + Vi(x)I-l  [r + Hi(x)I-' F(x) 

+ 2r [r + Vi(x)]-' [r + Hi(x)]-l H;(x) 5 [r + Hi(x)]-' F(x) . 
So, by (2.1.3), (5.1.3), and (5.1.5), on D, 

I l h p l l  5 (. - - "D) + 2r [ G N D  + 

(r + aD)( r  + aD) r + CY r + a  (. + + CYD> D 

But, 

(r - aD)(r - aD) = (r + aD)(r + aD) - 2r (aD + aD) 

The result now follows from (5.1.4). 

5.1.2 Remark: 

possible, we would pick K such that 

' a D  - 

I n  order t o  make the res t r ic t ion ,  (5.1.4), as weak as 

e + g N D  
- C Y  - 

D 
(l-K)(aD + 

C + G N D  

("5, + CYD) 

provided that t h i s  holds for some 0 < K 1. 

5.1.3 I te ra t ive  Procedure: L e t  F, HL, Vl: D C Rn + Rn s a t i s fy  (5.1.1), 



and suppose (5.1.3) holds 

suppose s(+, llxo - x*II) C D. 

f o r  k = 1, successively as follows. 

Cx*, x ICD, determine a k, bk, e tc . ,  such tha t  

Let x x* c Rn, where F(x*) = 0, and 

L e t  0 < K < 1 and c > 0. Define x 
0' 

k' 
> If x has been defined and k 

k 

and define 

%+l = hrk(xk) 

where h i s  defined by (5.1.2). 
k r 

5.1.4 Theorem: 

for  k 2 0 and, hence, 

Consider I te ra t ive  Procedure 5.1.3. Then [x*, xk] C D 

i s  well defined. Furthermore, 5 -, x*. 

Proof: Let - 
r = max (aD, %) > o c 

+- I 1  <1 

< o  
NOW, x is defined, and Ilx - x*II = 6 ]lxo - x*lj. Suppose 

(5.1.8) k k 

men, Cx*, %I c D and 

0 0 

k x i s  defined, and (Ix - x*ll 5 6 IJxo - x*ll 

so x i s  defined, and 
k+l 
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Now, since [x*, %I C D, (5.1.9) i s  possible, and r 5 r 5: s .  Thus, k 

by LWTB 5.1.1, 

1 1 1 
4- 

k k k k  

2r e e k max llh; (.)I] = 1 - 
x 6 [x*,xk 1 k (rk + ak)(rk + ak) 1: + a r + a 

Thus, 

and so 

a l l  k = 0. Hence, x -, x*. This completes the proof. 

[x*, xk+l lc  D. Thus (5.1.8) i s  established by induction f o r  
> 

k 

2 n  05.1.5 Example: Suppose F s a t i s f i e s  (4.2.4) where ep e C (R ) and cp'(x) 2 0 

n on R . Set 

H (x) = Ex + ccp(x) and Vl(x) = Vx + (1-c)cp(x) 1 9 

where 0 5 c 5 1, and consider I te ra t ive  Procedure 5.1.4. Now, 

So, from (1.4.5), 
1 

I]F(x)]l for  x e Rn e ]I. - x*ll = - 
a + a  

Hence, 

and 

Set 



x eD x eD 

CY = CY + (1-c) min e.< cpI(xi) 1 , pD = p + (1-c) I D  l= i=n  
x eD x ED 

x ED 1 x ED 

k 
Then, (5.1.3) holds. 

instead of D. Then set 

Define a*, b*, e t c . ,  as  above with respect to D k k  

= m a ( $ ,  a@, CY = max(aD, %) k 

= min(b b*) and s imilar i ly  for  P,, e, %, v and Nk D’ D 

Then, since [x*, x,] C D, (5.1.6) holds. 

Now, since x -‘x*, Nk -+ 0. Hence, (5.1.7) becomes, eventually, k 

(5.199) 

W e  would l i k e  to be able t o  choose r smaller than allowed by (5.1.9). k 
If c = 1 in  Example 5.1.5, o r ,  more generally, i f  Vi(x) 

w e  may eventually do this .  

V* is constant, 

5.1.6 Lemma: 

i s  constant. Suppose (%, bD, CY, p, 4, 0, ND) E Bound (13). For r > 0, 

define g : [r + V*l- l (D)  -+ Rn by 

(5.1 . io )  

L e t  F, H1, V1: D C  Rn -, Rn s a t i s fy  (5. l . l ) ,  where V i ( x ) s V *  

r 

gr(y) = [r + W1-I hr([r + V ” 1 - l ~ )  

where h is  defined by (5.1.2). Suppose E 2 0 and l e t  
I: 



D - a  2 r -  
a + c y  D 

and, i n  addition, 
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7 

Then, for y c w = [r + v*](D), 

2r c 

g;(y) 5 = Sr(x) 5 + 2r [r + Hi(x)]-’ H;(x) [r + Vn1-l 5 [r + Hi(x)]-’ F(x) , 
where 

and 

x = [r + v*I-’ y 

The proof now follows from the estimates of Lemma 5 . l . l w i t h  ( 5 . 1 e l l )  

D 

being suff ic ient  instead of (5.1.5). 

5.1.7 I t e r a t ive  Procedure: 

where Vi(x) E V *  is constant. Suppose (aD, bD, a, B, M$ 0, ND) c Bound (D). 

L e t  r = max (aD, 

Rn, where F(*) = 0, and suppose 

and define +for k = 1, successively a s  follows. 

defined and 

Let F, H1, V1: D C  Rn + R n  s a t i s fy  (5.1.1) 

), and s e t  T = (r + p ) / ( r  + cy) 2 1. Let xo, x* E 

s(x*, Ilxo - x*ll CD. 

k 

Let c: > 0, 

> If  x has been 

[fi, xkl CD, we can determine ak, bk, etc. ,  such tha t  
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Assume we can pick r such t h a t  k 

Then define 

X k+l = hr,(%) 7 

where h i s  defined by (5.1.2). 
k r 

5.1.8 Theorem: Consider I te ra t ive  Procedure 5.1.7. If (5.1.13) is  

sa t i s f i ed  a t  each stage, then kk3 i s  w e l l  defined ( i . e . ,  [x*, %IC D 

fo r  k = 0,) and x > 
+ x*. k 

Proof: - L e t  

= max bD7 B ,  - aD a + a  D 

2r E 

(s + bD)'(r + a) 
< 1  

i 
6 = 1 -  

are  defined 7Xk 
Now, xo is  defined and [fi, x 1 c D. 
and sa t i s fy  [x*, x .I c D f o r  0 5 j 5 k. 

0 5  j S k k t ,  l e t  

Suppose x = 
0 0 7  

Then, x i s  defined. For J k+l 

+ V*l x and y? = [r. + V*l x* 
j 3 J J 

y j  = Cr 

Then, f o r  0 5 j 5 k, 

3' 
where g is defined by (5.1.10). Now, since rj+l 5 r 

3 r 

-1 < ll[rj+l + v*I Cr. + v*I 11 = 1 J 

Furthermore , 
[ ~ + j 7  y j l  = Cr 3 + v*I Cx*, x.1 J C C ~  3 + V*](D) 

Thus, by Lemma 5.1.6 and (5.1.1-2), 
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Hence, 

But, 

and 

2r .C 

( r j  + a . )  ( r .  + cy) 
2 1 - - 2 llYj - qll 

J J 

- x* = [r + v*I-’ [yk+l - C + ~ I  
k+l 

X 
k+l 

.Thus, since 6 < 1, [x*, x 

Furthermore, since IIx - 

that  

I C D .  So, by induction, cx 1 is  well defined. k+l k 

7 6’ I/xo - x*II, it i s  shown by induction 0 

< k+l 
1Ixk - x*ll = v 6 llxo - x*II for  k 2 0 

and, hence, x + x*. This completes the proof. 
k 

Consider I te ra t ive  Procedure 5.1.7. It appears that  D depends on 

7 ,  which depends on r, which depends on D, and th i s  might make D impos- 

s ib l e  t o  determine. However, if cy > 0, it is suff ic ient  t o  pick ‘l) = . 
and V are as i n  Example 5.1.6, where c = 1. Alternately, suppose F, 

P 

H1’ 1 

Then d H i ( x ) l  C [a, a) 

fo r  any D C  R ~ ,  we may 

are independent of D. 

Suppose y e s(x*, 

and aCv*I = D C V ]  CCCY, PI for  a l l  x B R ~ .  n u s ,  

D r+CY 
pick a = a. Then r = =(a, CY) and 1 = - r + P  
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But, by (1.4.5), 
1 

Hence, we may take 

A more serious r e s t r i c t ion  i s  condition (5.1.13), since it may 

happen tha t  

However, if  F i s  as  above, we can guarantee tha t  (5.1.13) can be 

sa t i s f ied .  Suppose x * * *  

define 

< <  have been determined. For 0 = j = k, ’Xk 0 7  

T + 1  j 
D% = S(x - llF(xj)!l) and D = ‘i) 9 

J j ’ a + a  3 i=o 
Then, for 1 ,< j 5 k, D j  c Dje1. Hence, we can determine b 

such tha t  

M! and N 3’ j’ j 

< <  (a, bj ,  a, l3, 4, 0, N . )  8 Bound (D.)  , 0 = j = k 
J J 

< <  ’ N. 6 b j - 1 7  # 3 - 1 7  N j-1 respectively , 1 = j = k 3’ 3’ J 

(5.1.14) 

Thus, i f  

7 

< <  Hence, if [S, x.1 C D .  fo r  0 = j = k, I te ra t ive  

Clearly [XJC, x 1 C D o .  

(5.1.13) is sa t i s f ied .  

Procedure 5.1.7 can be carr ied out. 

< <  [x*, xi] C D i  fo r  0 = i = j < k. 

J J 
Suppose 

0 

Then, as i n  the proof of Theorem 5.1.9, 

< <  Hence, fo r  0 = i = j, 
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But, cx*, xj+ll c Dscj+l. Hence, [x*, xj+ll c Dj+l- Thus, by induction, 

[x*, x .I  (I D j  fo r  0 = j = k. Therefore, Iterative Procedure 5.1.7 < <  
J 

can be carried out, and, by Theorem 5.1.8 , r, ‘X*. 

Now, since x + x*, it i s  clear  t h a t  D + Cx.3. Thus, Nk 0, and k k 
so (5.1.1-5) becomes, eventually, 

( 5.1.16) 

Suppose a > 0 and l e t  

v’m*p = t. L e t  Tl = (t + B ) / ( t  + QYC) and D~ = S(x0, rl + 

Determine b 

t 8 ( 0 ,  ./;r751. Determine a”A. 6 (0 ,  a1 such tha t  

IIF(XO)II)* 

a s  above, and then determine a* 4 EO, a ]  such tha t  
0 

< = t. Then apply I te ra t ive  Procedure 5.1.8 a s  above. Condition 

rk = t. (5.1.15) then becomes, eventually, 

We note t ha t  it is not necessary t o  use a* and 03 i n  the estimate 

-11 5: 1 i s  valid here. Indeed, the estimate, llcF’(x)l 1 1  - a + , itself may 

be improved. See, e.g., the  discussion a t  the end of Section 1.2. 

In  practice, w e  may begin I te ra t ive  Procedure 5.1.7 using a and a. 

When Nk becomes so small tha t  (5.1.15) becomes (5.1.16), w e  may redefine 

the current i t e r a t e  t o  be x 

using a* and m. 

desired fixed posit ive number. 

and begin I te ra t ive  Procedure 5.1.7 again 0 

I n  t h i s  way, w e  can eventually bring r down t o  any k 

5.1.9 Example: 

corresponding t o  the horizontal and ver t ica l  differences respectively. 

and set ~ ~ ( x )  = HX + cp(x) 

L e t  F be as i n  Example 1.4.1. Let H and V be the matrices 

and v (x) = VX. kt cp(x) = $(x) - bv, 1 

Suppose w e  have determined a, b, a, @ > 0 such tha t  

oCV1 c [a,fl]. 

d H l  c [a,b] and 

2 (These bounds w i l l  depend on the region, D C R of 

(1.3.1). I n  order t o  avoid confusion between this set and the set 



D c Rn, which i s  assumed t o  contain s ( S ,  I(xo - x*II), we sha l l  c a l l  

the l a t t e r  s e t  G i n  t h i s  example.) L e t  x E Rn, and set G = g(xo, p )  

fo r  some p > 0. 

w i l l  now determine a 

0, NG) E Bound (G). 

0 

Suppose, f ina l ly ,  that F(x*) = 0 fo r  some x* E G. We 

G, bG, cy, p, 4, and N such t h a t  (a G> bG, *> P, 8 GJ G 
Let 

d 0 1  (d ) = min (max)  e S 
lSi5l-l 

x - p G x . + p  i 3. 

O ,  b = b + d', and $ = d l .  Now, for  y E G, = a + d 
G 

I[y - x*ll 5 2 P  

Then we may take a 
G 

1 and llF'(y)II 5 b + B + d 

Furthermore, 

1 Thus, we may take N = 2 p  (b + (3 + d ). G 

An i t e ra t ive  procedure similar t o  5.1.3 can be defined fo r  the 

ADI-N i t e ra t ion  of (5.0.2). The following lemma corresponds t o  Lemma 5.1.1. 

5.1.10 Lemma: 

(5.1.3) holds. 

L e t  F, H1, V1: D C Rn + R n  s a t i s fy  (5.1.1), and suppose 

For r > 0, l e t  

h (x) = x - [r - Hi(x)I-' F(x) 

%,,(XI = x - Cr - v;(~)I-' ~ ( x )  

H , r  

- .1 BD E + $ N D  
9 

a + c y  D D  

> r = max 

then, on D, 



> 
ii) L e t  E = 0.  If 

a + b  

2 

r = m [  > D D  , 
a + Q  D D  

then, on D, 
E 

11% (dll 5 1 - 2 
,r (. + "Dl 

Proof: The proof is  similar t o  t h a t  of Lemma 5.1.1. - 

2.1 Monotonic R e s u l t s .  W e  f i r s t  s t a t e  the following two definit ions 

and a lemma which i s  a special  case of Theorem 4.1 of [201. 

5.2.1 Definition: 

s e t  D. F i s  order-convex on D if  

L e t  F: D C Rn + R n  be different iable  on the convex 

whenever x, y E: D sa t i s fy  x I. y or y x. 

Order-convexity can be defined, of course, for  non-differentiable 

functions, but, fo r  our purposes, t h i s  def ini t ion w i l l  be suff ic ient .  

n n  5.2.2 Definition: 

of A if  AB 5 I and RA 5 I. 

Let A E L(R ,R ). Then B c L(Rn,Rn) is  a subinverse 

5.2.3 Lemma: 

[x*, xop C D where x* i s  the unique root of F i n  [x*, xo] , F(x ) 2 0, 

and x* 5 x 

Let F: D C Rn + R n  be different iable  of D. Suppose 
* 

0 * 
Suppose F is order-convex on [fly x 1 . L e t  [xk] sa t i s fy  0' 0 

> = x - Bk F(x,) for  k = 0 X Y k + l  k 

n n  where B B L(R ,R ) i s  a non-negative subinverse of F'(xk). Then k 



106 

* 
X k ' l  P E [x*, xo1 . 
B c L(R ,R ) is non-singular. men, x J, x*. 

I f ,  i n  addition, Bk 2 B 2 0 for  k 2 0, where 
n n  

k 

We now apply Lemma 5.4.3 t o  (5.0.1) and (5.0.2). 

* 5.2.4 Theorem: Let F, El, VI: [x*, xol Rn, where 

Suppose 
1 * 

a )  F = H + vl; H ~ ,  vl E c (EX*, xo1 ) 1 

b )  F is  order-convex on Ex*, xo I* 
c )  [r + H;(x)l and [r + V;(x)l are  M-matrices f o r  r > 0 

* 
and x E [x*, xol 

(5.2.2) 

L e t  Hi(x) = (h. . (x))  and Vi(x) = (vij(x)), and set 
1 J  

i) 

(502.3) 

Suppose bc 3 is defined by (5.0.1), where k 

a(\) I: rk 5 s < O0 for  k 2 0 

men, 5J. x*. 

ii) Suppose ErZ/,3 i s  defined by (5.0.2), where 

S S < m  fo r  k 2 0 max vi&\) k r 
lS& 

13% 11 * 2 
for k 2 0 max h..(% 1) = rk+ 5 s < 03 < 

* 
men, x L x - ~ .  

kI2 

- Proof: i) Suppose x E [x*, xol and d(x) r -< s. L e t  

Br(x) = 2r [r + Vi(x)]-' [r + Hi(x)ldl 



By Lemma 5.2.3, we need only ver i fy  

a )  Br(x) is  a non-negative subinverse of F'(x),  

and 

n n  b )  there i s  a non-negative, non-singular B e L(R ,R ), which i s  
independent of x, such that Br(x) 2 B(x). 

By (5.2.2c), Br(x) 2 0. Now, a l i t t l e  algebra shows 

I - Br(x) F'(x) = [r + Vi(x)]-' [r + H;(x)]-' [r - H;(x)l [r - Vi(x)l  . 
Thus, by ( 5 . 2 . 2 ~ )  and the f ac t  t ha t  r 2 d(x), B-(x) F'(x) 5 I. Like- 

wise, ~'(x) B,(x) 5 I. ~ h u s ,  a )  is  verified.  

Let dl = max * d(x) < w. Then, 
x dX*,XO 1 

r + vl (x)  5 ( s  + a,-) I 1 
and so, 

Likewise, 
1 

[r + Hi(x)I-l  5 - 
"'5 

Now, by (5.2.lc), 

d = min * d(x) 
O xc[x*,xol 

.L 

I 

I 

> O  

Y 

and B i s  non-negative and non-singular. 

the proof of i). 

This ver i f ies  b) and completes 

The proof of ii) is similar. 

W e  note that Theorem 5.2.4 does not assume any symmetry conditions 

of F'(x). 

of the boundary value problem, 

Thus, it would apply, for example t o  some discrete versions 
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u = v  ; (s, t)  B 3D 

108 

9 

where L is  given by (2.2.4). The condition, (5.2.2c), may impose 

and f U  and also on the 
t u’ f U  ’ some res t r ic t ions  on the values of f 

S 

discret izat ians  of u and u being employed. 
S t 

n 5.2.5 Example: Let F: Rn -, R sa t i s fy  F(x) = Hx + Vx + cp(x), where 

H, V c L(Rn,Rn) are  M-matrices and cp E D(Rn) s a t i s f i e s  (pi 8 C2(R),  

> cp;(t) = 0, and cp’!(t) 2 0 for  0 5 i 5 n and t E R . If 
1 

H1(x) = Hx + ccp(x) and V,(x) = Vx + (1-c)cp(x) 9 

where 

H = (h. .) and V = (v. .). 

0 5 c 5 1, then (5.2.2) i s  sa t i s f ied  for  any x3c, x E Rn. Let 0 

Then (5.2.3) becomes 
1J  1 J  

5.2.6 Remark: 

C = H1 + V 

Suppose C c L(Rn,Rn) i s  non-singular and has the sp l i t t ing ,  

I n  r-301, Wachspress considers an AD1 i t e ra t ion  of the + B. 1 

form, 

El] xk+ + g ( [r, + V1 + S I  xk+l - r  - “rk - 
2 

-1 f o r  approximating C 5 where 5 e Rn. Using t h i s  i t e ra t ion  i n  tandem 

with an outer Newton i te ra t ion  for  the F of Example 5.2.5, where, for 

some c c R, 

H ~ ( x )  = Hx + (l-c)cp(x), Vl(x) = Vx + (l-c)y(x),  and B(x) = (2c-l)y(x), 

we obtain the following i terat ion,  



which can be put i n  the form, 

= x - Crk + v + ccpl(%) 1-l [2rk t- (2c-l)cp' (x,) I [rk + H + cy' (x,) 1-l F(%). k+l k X 

If (5.2.1) holds, then L e m  5.2.3 w i l l  guarantee convergence of cx 3 
t o  x* if 4 5 c 5 1 and 

k 

W e  note that  by picking c = 1, t h i s  i s  independent of k. Thus, we can 

determine a p r i o r i  a sequence, {r 3 k 
guarantee convergence. The choice of c = 1 is  not unattractive,  since 

it corresponds t o  putting a l l  of cp'(x ) into the matrices to  be inverted. 

of acceleration parameters and s t i l l  

k 

5.2.7 Example: L e t  F, H, V and 'p be a s  i n  &ample 5.1.9. Then H and V 

are  M-matrices, and cpi(t) 2 0 and c p y ( t )  2 0 fo r  1 5 i 5 n and t c R.  
I L 

Now, F has a unique root,  x*, and F ' (x)  i s  an M-matrix for  each x E 

Thus, by (1.4.5), 

be applied if  we can f ind  x 

Then, [H + v] x0 - b 

F(xo) 2 0 

0 

= & = v -  

implies x 2x*. Hence, Theorem 5.2.4 

8 Rn such tha t  F(xo) 2 0. L e t  xo = - v. 

0. Hence 

0 

Rn. 

can 

Thus, x i s  a sui table  s ta r t ing  vector. 
0 

5.3 A Counterexample: Let F: Rn + Rn be convex and sa t i s fy  

1 n  F e C (R ), F ' (x )  i s  an M-matrix fo r  each x, and F has a unique root,  x*. 

Then the Newton i t e r a t ion  converges t o  x* for any s t a r t i ng  vector, xo. 

Furthermore, suppose F = H + Vl, where H;(x) and Vi(x) are uniformly 1 
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posit ive def ini te .  Then, i n  the l i nea r  case (H1(x) = Hx + sl, V,(x) = 

vx + c2, Sl +- 5, = 5 , )  

fixed rk = r > 0 and for  a l l  x 

cides with the Newton-AD1 i t e r a t ion  (5.0.1). 

the AD1 i t e ra t ion  (2.1.2) converges fo r  a l l  

I n  t h i s  case, the AD1 i t e ra t ion  coin- 
0' 

The question naturally ar ises:  given the above assumptions on F, 

H1, and V1 (except the l inear i ty , )  does the Newton-AD1 i te ra t ion  converge 

globally fo r  a l l  f ixed r > O? The following counterexample shows tha t  

these assumptions a re  not suf f ic ien t .  I n  par t icular ,  it indicates t ha t  

some assumption on the nature of the sp l i t t ing ,  F = H + V i s  necessary. 1 1' 

3.1.1 Counterexample: Let co B (O,-$) be the solution of c(1-c) = 8 1 . 

Then suppose 

5 5  0 - c - c  

y = 8 ~ ( 1 - ~ )  
0 

a > l/(l-y) + (I/(~-Y) + (1-y) 2 3  ) 

Let 
- (a + 1l2 

2a 
b =  
0 

(a  + 1 + 4ca)(a + 1 + 4(1-e)a) 
b =  - 2  1 2a 

Then, it i s  straightforward t o  ver i fy  tha t  

0 < bl - bo < ha 

2 n  Thus, there i s  a convex, non-decreasing function Cp e C (R ) which 

satisfies 

Let F, Hl, V1: R -, R be defined by 
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F(x) = 2x + Y(x)  

H (x) = x + C ~ ( X )  1 

1 v (x) = x + (1-c)cp(x) 

Then, F, H1, V 

i t e r a t i o n  takes  the form 

Sa t i s fy  the conditions given above. The Newton-AD1 1 

(5.3 .I> 

It can be ve r i f i ed  immediately t h a t  if r = a and x = 1, then x = 0 or 1 

depending on whether k is  even or odd. Thus, the  i t e r a t i o n  does not 

0 k 

converge t o  the  root  of F. 

2 It i s  in te res t ing  t o  note t h a t  i f  F 8 C ( R )  i s  convex and s t r i c l y  

, increasing with a root, x*, then (5.3.1) converges global ly  t o  x* for 

1 a l l  r > 0 if HI = V 

can be demonstrated by comparing (5.3.1) with the  Newton i t e r a t ion .  

This indicates ,  as noted above, t h a t  any global  Newton-AD1 convergence 

theorem f o r  a l l  r > 0 would have t o  include assumptions on the  nature of 

= 2F (i.e.,  c = -$ i n  the counterexample.) This 1 

the  s p l i t t i n g  of F. 

5.4 Numerical Results. L e t  be as i n  Example 1.2.5. 

problem w a s  considered. 

The following 

(5.4.1) u(P) = v(P) ; p s n t  

v(s,t) = s + 2 t  , h = .1 

L e t  H and V be the  matrices corresponding t o  the horizontal  and v e r t i c a l  
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differences respectively. Then H and V commute and have the same 

1 2 h =  / , n = N  N + 1  

(see [28, P. 2143.) 

Let F(x) = H1(x) + V,(x) where 

V,(X) = vx + &(x) 

X 

V cp(x) = (e i, - b 

I? has a unique root,  x* (see Example 1.4.1.) 

[H + VI xo - b = 0. Hence, 

Ilet xo = - v. Then 

v 
1 n 2(X0li 7 

IIF(xo)I! = = e 
i=l 

p = -  1 IIF(xo)II < = ge3 a + a  

But, a + ck' M 272. Thus, for  small enough h, p < 12. By Example 5.1.9, 

we may take 

-12 , b D = B D = b + e  1.5 

, N D = 2 6 + e  1 5  
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W e  note that these bounds can be considerably improved if F is  replaced 

by the function (a l so  cal led F) defined in  Example 4.2.10. 

The Newton-AD1 i te ra t ion  of (5.0.1) w a s  employed t o  solve (5.4.1). 

The i n i t i a l  vector w a s  x = v. 0 -  

The convergence c r i te r ion  was l lr, - %-1/12 5 10 . -6 

(This  does not give an absolute error  bound. 

IIx - x*/I2 5 ll[H + Vl-'/l l{F(x)ll, a be t te r  convergence c r i te r ion  would 

be IIF(r,)I) 5 Y f o r  some suitable y. We note that ll[H + V]-ll l  x 2 2 . )  

The results, when r *cr  i s  constant, are given in  Table 5.4.1. 

and the diagonal en t r ies  of h% and h% are  a l l  

Since, by (1.4.7), 

k- 
By (1.4.10), x* 5 x 0' 

equal t o  2. Hence, Theorem 5.2.4 guarantees monotonic convergence if 

h r = 2 + h  2 >  2 m a x e t = 2 + h e  2 3  

t53 

However, monotonic convergence w a s  obtained f o r  even smaller values 

of r. This is  indicated i n  Table 5.4.1. 
2 The number of i t e ra t ions  i s  plotted against h r i n  Graph 5.4.3. 

W e  note tha t  the graph is approximately l inear  above'the optimal 

parameter but more sharply decreasing below the optimal parameter. 

This phenomenon w a s  also noted i n  the l inear  case and i n  other similar 

nonlinear cases. 

The results when several parameters were used cycl ical ly  are  given 
u 

i n  Table 5.4.2. 

parameters for  H and V (see [28, P. 2241.) 

The parameters used were the 2 Wachspress optimal 
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5.4.1 Table: 

Number of 
i t e ra t ions  2 h r  

Convergence 
monotonic ? 

.I 

.2 

03 

.4 

-5  

.6 

07 

.8 

*9 

1.0 

2.0 

3.0 

43 

25 

18 

14 

16 

19  

22 

24 

27 

30 

56 

81 

No 

11 

t l  

11 

Ye s 

I f  

tl 

11 

11 

3.4.2 Table: 

Number of Values of h r 
used cycl ical ly  ( to  3 places3 i te ra t ions  

2 Number of parameters 

16 

,619 

.188, 2.04 

.118, .335, 1.14, 3.23 

.103, ~ 4 6 ,  .249, -454 

.841, 1.54, 2.62, 3.71 

1-9 

11 

9 

11 

12 



80 

70 

60 

50 

40 

30 

20 

10 

5.4.3 Graph: 

Number of 
i terations 

i.0 3.0 2 h r  
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