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Abstract

By analogy with the results of a higher oxder continuum theory,
explicit dispersion relations governing the lowest and nexf higher
modes of propagation of plane, longitudinal waves in an unbounded,
elastic particulate composite solid are obtained in terms of the
relative properties of the constituent materials. The corresponding
ratio of group velocity to phase velocity is likewise evaluated.

These and further relationships valid for a special case are exhibited

graphically.
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Introduction

On the microscale, all materials exhibit.a structure the influence
of which is revealed in the course of deformation processes of a
comparable scale. This is the case for composite materials also, the
primary structure of which, however, comes into play at a relatively
larger scale of deformation. TFor such inhomogeneous materials, when the
wavelength of the deformation approaches the characteristic dimension of
the heterogeneity, the classical theory of homogeneous continua cannot
predict certain observable phenomena, such as dispersive wave propagation
and higher modes of motion, that are expected to occur. A continuum model
leading to dispersive wave propagation in an unbounded elastic solid is
known to require the consideration of higher order terms in the lagrangian
density of the solid. Accordingly, one would anticipate the higher order
continuum theory of Eringen and Suhubi [1,2] and of Mindlin [3] to supply
a sufficiently general framework for the study of the dynamics of composite
solids, since it effectively extends the scope of continuum physics to
include such wave phenomena. That this is indeed the case is shown in the
present work for a particulate composite material. Similar studies of
laminated and fiber-~reinforced composite materials are due to Herrmann and
Achenbach [4].

The results are of practical interest in connection with current
attempts at controlling the dynamic response of materials, and at detecting
the properties of a heterogeneous material from its response to dynamic

loads.



1. The Strain Energy

Consider an unbounded, two-phase, particulate composite material
in the form of a connected medium surrounding numerous, uniformly
distributed, discrete micro-inclusions each having a finite volume.
Both phases consist of a homogeneous, linearly elastic and physically
isotropic, solid material undergoing small deformations.

Throughout this work, latin indices ranging over 1, 2, 3 denote
components relative to rectangular cartesian axes and should be summed
over this range when repeated; also, quantities with a superposed prime
and bar refer to the inclusion and surrounding materials, respectively.

The centroidal position X, of the micro-inclusion o at time t is
denoted by xi(a).

The strain E'ij at a point in the micro-inclusion o is taken as

e',. = e.ga) + k'e'.ga) , (1)
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eij’ eij’ and Yijk are the strain measures of Suhubi and Eringen [2, eqs. 3.4],

x'i is the position of a point in the micro-inclusion o« relative to its

X.(a)
1

, and k' is a small, constant parameter.
The strain energy density w for the micro-inclusion o is taken as
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where A' and u' + o' are the Lamé constants of the inclusion material,
the classical shear modulus of which is, therefore u' + o'. The total

strain energy P for the micro-inclusion o is then

P(a) = f (@) w(u) dv (4)
v
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f (a)dv denotes an integration with respect to x'i over the volume v'
1
v

of the micro-inclusion o, the second moment J'ij of which, relative to

centroidal axes, is a source of structural anisotropy depending on the
shape and orientation of the micro-inclusion.
If n denotes the number of micro-inclusions in the composite body

B, then the total strain energy W' due to the inclusion material is
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V' and n' are respectively the total volume and the phase volume fraction

of the inclusion material, J dv denotes an integration with respect to
B

x; over the volume V of the composite body, and X, is now the position of a
point in the composite body which, following the operation (8), is
approximately represented by a continuum model.

For the material surrounding the micro-inclusions, the strain energy

density W, at a point X is taken as
(10)

where K.and E-are the Lamé constants of the material. The total strain

energy W due to this material is then

—

W

8 [ wav, (11)
B

where

B 1-n' (12)

is the phase volume fraction of the material.
Summing the contributions of the inclusion and surrounding materials,

the total strain energy of the composite body is written as
W+ W= [Wav, (13)
B

where W is the strain energy density of the composite material determined

from

a'P + BW (14)
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and W given by equation (10).

For small deformations, the strain measures appearing in the expressions
(10), (16), and (17) are related to the displacements uy (xi,t) and the
higher order kinematical variables ¢ij(xi,t) of Suhubi and Eringen
[2, eqs. 3.1, 3.2, 3.4] by

=%(u Cdu, L), e., = ¢, +ou, S (18)
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where an indicial comma denotes a first partial derivative with respect
to the coordinates X, represented by the latin index following it.

For the case of structural isotropy,
J',, = J's, ., 9

where Gij is the Kronecker delta, a condition valid for micro-inclusions
nearly spherical in shape, the strain energy density of the particulate

composite material given by equation (15) reduces to
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where

1
B' = a'v' , 212 = .J_'_ . (21>

<

When each micro-inclusion occupies about the same volume v', B' can
approximately be replaced by n'. In view of the condition (19), it is
further noted that &' is the ''radius of gyration" of the volume occupied
by one such micro-inclusion about any centroidal axis and, therefore,
the only structural parameter which survives; it has the dimension of
length.

Comparing our expression (20) with that given by Suhubi and Eringen
[2, eq. 4.20], the following identities between the material constants
of their limnear, isotropic micro-elastic solid and those of an isotropic

particulate composite material, respectively, are obtained
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It is concluded that, the foregoing procedure allows a particular
classification of the material constants appearing in the expression for
the strain energy density of the theory of Eringen and Suhubi [1,2]
according to their order of magnitude in k', while simultaneously relating
them to the properties of the constituents of the composite material
under consideration. As a result, A and u, for instance can be interpreted
as the effective Lamé constants of an isotropic particulate composite
material, to the lowest order in k'.

In what follows, a similar procedure is adopted in the evaluation

of the kinetic energy density.



2. The Kinetic Energy

For the composite material under consideration, the velocity v,

at a point in the micro-inclusion ¢ is taken as

v, @) ooy @) g () (23)
i i i
where
cy (@ - o (@)
u'y = x j¢ij , (24)

a' is a small, constant parameter, and a superposed dot denotes a first
partial derivative with respect to the time.
The kinetic energy density k for the micro-inclusion a is taken

as

'% p'v, v s (25)

where p' denotes the mass density of the inclusion material. The total

kinetic energy T for the micro-inclusion o is then
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where K and Kij are functions of ﬁi’ $ij’ p', k', and a', and the

reappearance of J'ij is noted.

The total kinetic energy T' due to the inclusion material is

n
L) (28)
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= o'f[ Tdv, (29)
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where

T=v'K+J K,.. (30)
13713

For the material surrounding the micro-inclusions, the kinetic

energy density K is taken as

_1->c
K = 7 P uu (31

where p denotes the mass density of the material. The total kinetic

energy.f due to this material is then

T = B Rdv . (32)
B

Summing the contributions of the inclusion and surrounding materials,

the total kinetic energy of the composite body is written as
' +T=[%av, (33)
B

where 7? is the kinetic energy demsity of the composite material

determined from

C =a'T + 8K (34)
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and K given by equation (31).



For the case when the condition (19) holds, the kinetic energy
density of the particulate composite material given by equation (35)
reduces to

T-= %' (k'2B'p" + _B-E-)uiui + % a'28'2'20'¢. ¢

where the reappearance of %' is noted.

Comparing our expression (37) with that underlying Suhubi and
Eringen's equations of motion [2, eqs. 5.11, 5.12], the-following
identities between the remaining material constants of their linear,
isotropic micro-elastic solid and those of an isotropic particulate
composite material,-respectively, are obtained.

3'28'2'20'
T Kk'28%' + B p

T . (38)
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The remainder of our results are for an isotropic particulate

composite material.

3. The Propagation of Longitudinal Waves

The lagrangian density of the composite material under consideration,
from which equations of motion could be obtained, can be evaluated from
the expressions (20) and (37) for the strain and kinetic energy densities,
respectively, The equations of motion in terms of the kinematical
variables uss ¢ij’ and of the appropriate material constants, have,
however, already been given by Suhubi and Eringen [2, egs. 5.11, 5.12]}. 1In
view of the identities (22) and (38) these equations can now be employed to
study the propagation of waves in a particulate composite material.

Considering the propagation of plane, harmonic waves, the kinematical
variables can be taken to vary as exp [i(gxl—mt)], in which & is the wave

number and w is the natural angular frequency. Then, by setting

a'2

k'2 k' + 0 (39)




in the corresponding equations governing the propagation of longitudinal

waves in a particulate composite material, the following relation

2'12 1t 1
( )t -1+ @+ Bo. , 2 )sL'Zglz]ml2
(:'12 6 p cl
LIRS | (40)
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El and w; are respectively the wave number and the natural angular
frequency of the longitudinal waves, and c'l and c; are the velocities
at which longitudinal waves propagate in the inclusion and surrounding
materials, respectively, the ratio of which is a dimensionless physical
parameter cye It is of interest to note that the constant ¢' introduced
in equation (3) does not appear by itself in the final result, and that,
in the absence of either the inclusion (&', B' - 0) or the surrounding
material (E + 0), equation (40) yields a classical dispersion relation

between w.2 and 512 for the remaining material,

1
Letting
2"2(» 2
Kk, 1 Kk, _ B'p'
w ' %o, g, 2 =%, B2 = =— (42)
c12 B p

where B2 is clearly another dimensionless physical parameter, equation

(40) can be rewritten as

*%

*%
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the solution of which,

-1 2 2 2.2 2
=3 [e;® + (1 +¢)% + e 9)E **7] {1+11

1 1

be 2[1 + (1 + B2, 2)g #*%2]g *%2  1/2
- 12 2 - 2 12 12 2 L (44)
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an explicit dispersion relation between the dimensionless wvariables

wl**2 and gl**z, is shown in figure 1 for two representative pairs of

values of c12 and B2. The latter are the only parameters explicitly
appearing in equation (43) after the structural parameter &' is
absorbed into ml**z and El**z. From the definitions (41) and (42),

it is seen that Bzcl represents the product of the ratio of the phase

volume fractions B'/B, with B' = n'

, and that of the characteristic
mechanical impedances p'cl'/E-E., for longitudinal waves, of the inclusion
and surrounding materials. In terms of this quantity, effective reflection
and transmission coefficients can be defined, when necessary, for the
longitudinal motion of particulate composite materials.

In figure 1, the curves labelled 1 and 3 represent the lowest,
fundamental mode wl:*Z for cl2 = 0.4, B2 = 0.4, and c12 =2, B2 = 0.5,

respectively, The curves labelled 2 and 4 represent the next higher
* afs

mode w12“2 for the same pairs of values of clz, 82, respectively.
For Elxxz = 0, the latter mode yields
f% _
wlz 2 = clz’ (45)

independently from 82; the ratio-c1'/£' is the corresponding angular

cutoff frequency. The lines

W, %%2 = g %%2 wl**z =cq (1 + El**z) R (46)
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the first of which is shown in figure 1, are the asymptotes of the
dispersion curves for B2 + 0. These lines intersect in the first quadrant
of the w *%Z, El**z plane for c.2 < 1. TFor B2 + », the curve representing

1 1
the fundamental mode tends to the line

(47)

The first of the lines given by equations (46) is also generated by

this curve for cl2

From the first of equations (46) and equation (47), it is concluded

= 1, independently from 2.

that the dispersion relation expressed by equation (44) exhibits the type
of limiting behavior that is appropriate, namely, an absence of dispersion,
for the particular values of the parameters cl2 and B? considered. This

observation also holds for the remainder of our results.

Since
27V dv
Ay #%  omg! _ 1
“17 %] &, = N U= -M T (48)

where Vl is the phase velocity, Ul is the group velocity, and Al is the

wavelength of the longitudinal waves propagating through the particulate

composite material, it follows from equation (44) that

1
1 (fy- Piy
(U,/v.) =1-() 1+ 1, (49)
1V171,2 £ E M2 4 ¢
154 T,
where
%% T
£.z 14+ (L+82+—29e 2, £z B[1 + (L + B2c.)E, 2y,
1 c2 1 27 E] 17%1
4 *%, ! (50)
f3:——2'£l R f4:fl—f2f3.
¢q
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The dimensionless ratio of group velocity to phase velocity

expressed by equation (49) as a function of El**z is shown in figure 2

2
1

The curves labelled 1, 3 and 2, 4 correspond to the fundamental mode

(Ul/Vl)1 and to the next higher mode (Ul/V

for the same pairs of values of the parameters c.? and 2 as in figure 1.

1)2, respectively. The line

Ul/vl =1, (51)
shown in figure 2, is generated by the curve corresponding to the

fundamental mode for cl2 =1,

In general, the ratio of group velocity U to phase velocity V is
a characteristic property of a dispersive dynamical system. It indicates
the relative ease with which energy can be transported through the system
by traveling waves. For instance, if dV/d), in which A is the wavelength,
is negative, then U/V > 1 and the system exhibits the type of dispersion
which renders the transport of energy more difficult, with the longer
waves traveling slower than the shorter waves. The reverse holds when
dv/dx is positive, in which case, U/V < 1. For a nondispersive system, V
is independent of A and U/V = 1, Therefore, this ratio can be adopted as
a measure of dispersion.

. 2
In our particular case, (Ul/Vl)1 > 1 for c,” > 1, (Ul/Vl)l < 1 for

c.2 <1, and (Ul/V1)l = i for ¢ 2 = 1, except for the limiting values

1 1

of El**z = 0 and El**z + o for which (Ul/vl) = 1 independently from

1

c12 L]
parameter clz, according to which the fundamental modes of longitudinal

This suggests a simple scheme, based solely on the magnitude of the

motion of particulate composite materials can be classified.

4, A Special Case

Mindlin [3, eq. 9.31] has derived a low frequency, very long
wavelength approximation to his higher oxder continuum theory. The

corresponding version of this approximation for a particulate composite

13




material, obtained by employing the correlation between the theory of
Eringen and Suhubi [1,2].and that of Mindlin [3] established by Eringen
[5, sec. 9.¢)], together with the operation (39), leads to the following

explicit dispersion relation for plane, harmonic, longitudinal waves

2y 22 %2
% (1 + ¢, %98

w 2= , (52)
2
1+ El*
where
22y 2 1201 1
wl*Z z — 1 , gl*z = 2'2;;12 , 22 = _‘Q_’.TB:__L = 2:'262 . (53)
c12 B p

The absence of a higher mode is to be expected. It is noted that cy

is now the only dimensionless physical parameter explicitly appearing

in equation (52) after both parameters %' and B2 are absorbed into the

new dimensionless variables wl*2 and El*z.

For this case,
- c.2 %2
I - ;98

Ul/Vl =1 - o 5 5 s (54)
(L + e 28 %) (L + £,%2)

and by setting

3 =
3&1

it follows that the extremum of Ul/Vl is given by

2c

=_._].-__._ *2=_:L_
U, /v =13 o & o] (56)

The dispersion relation between wl*z and 51*2 expressed by
equation (52) is shown in figure 3 for a range of values of the parameter

2
Cl.

14



The dimensionless ratio of group velocity to phase velocity

expressed by equation (54) as a furction of El*z is shown in figure 4

2
1 1

Finally, the influence of the parameter c, on the extremum of the

ratio of group velocity to phase velocity expressed by equations (56)

for the same values of the parameter c,? as in figure 3, and for c,2 + =,

is shown in figure 5.
These results lend further support to the concluding remarks of

the preceding sectiom.
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Figure 1. The dispersion relation based on equation (44). The
curves labelled 1, 2 and 3, 4 are for values of

2 = 0.4, B2 = 0.4, and ¢, 2 = 2, B2 = 0.5, respectively.
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Figure 2. The ratio of group velocity to phase velocity based on

equation (49). The curves labelled 1, 2 and 3, 4 are
for values of cl2 = 0.4, B%Z = 0.4, and ch = 2,
B2 = 0.5, respectively.
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Figure 3. The dispersion relation based on equation (52). The
curves labelled 1 to 6 are for values of ch =0,
0.4, 0.8, 1, 2, and 6, respectively.

20



Ui/ V

O 2 4 6
é:an

{
Figure 4. The ratio of group velocity to phase velocity based on
equation (54). The curves labelled 1 to 7 are for values

of ¢;2 = 0, 0.4, 0.8, 1, 2, 6, and c,2 > =, respectively.
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Figure 5. The influence of ¢y on the extremum of the ratio of group
velocity to phase velocity based on equations (56).
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