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CALCULATION OF COMPRESSIBLE TURBULENT BOUNDARY LAYERS
WITH PRESSURE GRADIENTS AND HEAT TRANSFER

By Larry L. Lynes, Jack N. Nielsen, and Gary. D. Kuhn
Nielsen Engineering & Research, Inc.

SUMMARY

The method of integral relations has been applied to the calculation
of compressible turbulent boundary-layer characteristics under the action
of pressure gradients. 1In order to solve the problem it was necessary to
specify an eddy-viscosity model. An incompressible model, developed on
the basis of the law of the wall and the law of the wake, was extended to
compressible flow through the use of the Baronti-Libby transformation. A
computer program was developed to do the calculations for a class of two-
dimensional or axisymmetric configurations from low speeds to hypersonic
speeds. The program contains provisions for arbitrary streamwise pressure
distributions. The problem of obtaining initial conditions for the pro-
gram required special attention, and several methods for obtaining initial

conditions are presented.

Comparisons were made between predictions and measurements of dis-
placement thickness, momentum thickness, and velocity profiles for two-
dimensional configurations from low speeds to hypersonic speeds. Gener-
ally, good agreement was obtained between theory and experiment at low
speeds except in the region upstream of the separation point. At a separa-
tion point a mathematical singularity exists in the analysis. Some work
was accomplished toward developing a slightly different formulation de-—

signed to go up to and including the separation point.

At hypersonic speeds, comparisons were made between predicted and
measured boundary-layer guantities for curved plates and flat plates with
and without oblique shock-wave impingement. For the curved plates decisive
results were not obtained because of the limited amount of data and because
of nonisentropic conditions at the edge of the boundary layer not accounted
for in the computer program. For the flat plate without shock impingement
the edge conditions were more isentropic than for the curved plate, and
better comparison between theory and experiment was obtained. With shock
impingement the predicted displacement and momentum thickness differed

from the measured values from a negligible precentage to as much as 25



percent. Only fair agreement was obtained between the predicted and

experimental velocity profiles after shock impingement.

The computer program has been applied to a hypersonic axisymmetric
configuration composed of a hollow cylinder culminating in a compression
flare. The shape of the flare was such that large pressure drops occurred
across the boundary layer. The predictions are in good agreement with the
measured heat-transfer rates and the measured displacement and momentum
thicknesses corrected for normal pressure gradients. Comparison has been
made between the experimental Mach number profiles and the predicted Mach-
number profiles. When the predicted Mach-number profiles were adjusted
for normal pressure gradients, the agreement was only fair. A simple
method is presented for estimating the magnitude of the normal pressure
gradients and of adjusting the displacement and momentum thicknesses pre-

dicted by boundary-layer theory for the gradients.

A study has been made of the detailed flow field predicted by the
computer program for boundary-layer, shock-wave interaction on a flat
plate with a view to developing a model of the interaction based on
boundary-layer theory. The purpose of the model is to predict the pres-
sure distribution accompanying the interaction as well as the boundary-
layer development downstream of the interaction. The model is an ideal-
ized one because boundary-layer theory will not predict the details of
the flow in the interaction region where the incident shock penetrates
deeply into the layer. An interaction model is suggested together with a

free-interaction law for use with the model.
INTRODUCTION

Calculation of turbulent boundary layers under the action of pressure
gradients has been of interest for a number of years. Renewed interest
in the accurate prediction of turbulent boundary-layer properties at high
speeds has arisen in the design of hypersonic inlets, controls, and other
external aerodynamic surfaces. In these applications the pressure gra-
dients involved can be very strong. For instance, in the interaction
between a shock wave and a boundary layer in a hypersonic inlet a pres-
sure rise of two orders of magnitude can occur over a distance of about

10 boundary-layer thicknesses.



The usual approaches to the calculation of turbulent boundary layers
with or without pressure gradients involve the use of an empirical pre-
scription of some gross properties of the boundary laver such as skin fric-
tion or shape factor. Typical examples of such methods are contained in
references 1 through 8. Recently, two new approaches to turbulent bound-
ary layers have met with significant success in predicting the details of
the flow as well as the gross properties. One approach utilizing finite-
difference methods is contained in reference 9. The other approach pre-
sented in this report is based on the method of integral relations. This
method, successfully applied to laminar boundary layers in references 10
through 12, is extended herein to turbulent boundary layers through the

use of an eddy-viscosity model.

The work presented in this report was accomplished under a l-year
effort sponsored by Ames Research Laboratory, NASA, Contract No. NAS2-4391.
The main effort has been directed toward applying the method of integral
relations to two-dimensional and axisymmetric compressible turbulent
boundary layers on nonadiabatic bodies. A computer program for making
these calculations has been developed. In addition, a portion of the
effort has been devoted to the study and development of a method for
simul taneous determination of the pressure distribution and the boundary-
layer characteristics during a shock-wave, turbulent, boundary-layer inter-
action. The following sections contain the analyses which lead to a com-
puter program and contain a substantial number of comparisons between

prediction and experiment.

An operating manual for the computer program is being issued as a

separate document.
SYMBOLS
a speed of sound

c. coefficients used in specifying the velocity profiles, functions
of £ only

. . . . . 2
Ce skin-friction coefficient, 'rw/(l/2)peue
cp specific heat of air at constant pressure
fi(ﬁ) family of smoothing functions, (1 —.ﬁfﬁ(l_l)
i, ; first and second derivatives of fi with respect to U, respec-

tively



A R 4

[SS

=

family of definite integrals defined by equation (87)

family of definite integrals defined by equation (77)

acceleration of gravity, 32.2 ft/sec?®

family of definite integrals given by equation (55)

derivative of g, with respect to c

family of definite integrals defined by equation (57)

total

Tt
enthalpy of gas, jr cp aT
o

mechanical equivalent of heat, 778 ft-lbs/Btu

therma

1 conductivity of air

streamline curvature defined by equation (131)

reference length in two-dimensional plane

reference length in axisymmetric plane

(W—l)u_z
2 a

2

local Mach number

a coordinate normal to a streamline; also an index

local

local

local

local

local

static pressure
static pressure calculated by shock-expansion theory
stagnation pressure

stagnation pressure for tests of reference 28

stagnation pressure behind normal shock

family of definite integrals defined by equation (51)

heat-t

ransfer rate at wall

local body radius in the axisymmetric plane

right-hand side of the nonhomogeneous equations for the no-root

case

right-hand side of the nonhomogeneous equations for the root case

initia

1 Reynolds number, u_ f4/v
®o €o



<|

w(x)

Reynolds number based on any arbitrary length =z and local edge
conditions, uez/ve

distance along surface of axisymmetric flare measured from flare-
cylinder Jjuncture

total temperature parametér, s = (Tt/Tte) -1
Stanton number defined by equation (128)
value of S at the wall, Sw = (Tw/Tte) -1
local absolute temperature

local stagnation temperature

axial velocity in x,y plane

initial velocity profile at X,
friction velocity, W[;;7E;

axial velocity in X,Y plane, uaeo/a
u/ U,

normal velocity in x,y plane

velocity tangent to a streamline

normal velocity in X,¥Y plane

normal velocity in €¢,mn plane,

y—~coordinate of solid surface

V+UT]T
e
coordinates of two-dimensional flow in physical plane
coordinates of physical flow in the axisymmetric plane; x5 lies
along centerline of body; for cylinder-flare combinations xg4
is in inches measured from start of flare
axial distance from leading edge of cylinder-flare combination
value of x where computer program is started
coordinates of the Stewartson transformation;
% Yy
p_a p.a
X=f§_e_ae_dx; Y=f B_e_é_e_ _ép_dy
o € o w(x) € ®o €

polynomial coefficients in equation (B-2)



in

vis

g%

eddy-viscosity parameter
ratio of specific heats
boundary-layer thickness
displacement thickness

displacement thickness for an inviscid flow field defined by
equation (126)

displacement thickness including any effect of normal pressure
gradients, defined by equation (122)

displacement thickness for boundary layer corrected for the effect
of normal pressure gradients, 6% - 6§n

absolute eddy viscosity
Reynolds number based on laminar sublayer thickness, ;ET/;
momentum thickness in physical plane

momentum thickness for an inviscid flow field, defined by edqua-
tion (127)

momentum thickness including any effect of normal pressure gra-
dients, defined by equation (123)

momentum thickness for boundary-layer corrected for the effect of

normal pressure gradients, Gm - Qin

moment-of-momentum thickness, defined by equation (114)
absolute viscosity
kinematic viscosity, p/p

value of £ corresponding to Xg

coordinates in Dorodnitsyn plane,
X
Ue ax Ye Ueyt
€= — = Y

er 7 n erﬂ Veo

local mass density

stream function stretching factor
laminar Prandtl number

turbulent Prandtl number

shear stress

body surface angle



’

v boundary-layer mass-flow parameter

k% dimensionless, boundary-layer, mass-flow parameter
Subscripts

a axisymmetric

b predicted by boundary-layer theory

c adjusted for normal pressure gradients

e condition at the boundary-layer edge

m at match point of inner layer and wake

o initial condition at X,

r reference condition

t stagnation condition

u unsteady turbulent quantity

w condition at the wall

[ free-stream condition
Superscripts

: indicates differentiation with respect to £

~ indicates quantities in the incompressible turbulent plane

~L indicates time-averaged mean quantities

! indicates quantities adjusted for normal pressure gradients
THEORY BASED ON THE METHOD OF INTEGRAL RELATIONS

The method of integral relations used herein is due to Dorodnitsyn
(ref. 13). 1Its application to the turbulent case follows very closely
that for laminar flow as described in references 10 through 12. In the
following derivations the mathematical detail will be abbreviated.

This section is divided into two parts: one presenting the deriva-
tion of the ordinary differential equations and the other presents the
eddy-viscosity model. The treatment is sufficiently general to accept
other eddy-viscosity models. While a particular eddy-viscosity model was
used during the course of this investigation, if a different and better



model is developed in the future, it would fit into the framework of the

present analysis.

Derivation of the Ordinary Differential Equations

Assumptions.- Certain assumptions have been made during the course

of this analysis. These assumptions are:

(1) The governing equations are those for a compressible turbulent
boundary layer.

(2) The laminar and turbulent Prandtl numbers are unity.

(3) The air behaves as an ideal gas.

(4) The wall is at a uniform but arbitrary temperature.

(5) within the range of interest, the molecular viscosity varies
linearly with temperature.

(6) The conditions at the outer edge of the boundary layer are
governed by isentropic flow relations.

(7) The temperature profile in the boundary layer is given by

—-1=s=sw(1-TJ') (1)

where

-1 (2)

(8) It is assumed that the boundary-layer thickness is small com-
pared to the body radius at the time the Mangler transformation is intro-

duced.

Boundary-layer equations for compressible axisymmetric flow and

their transformation to two-dimensional flow.- Reference 9 presents the

boundary-layer equations for compressible turbulent flow in a convenient
form for both axisymmetric and two-dimensional flow. In the following
equations all flow properties are time averaged and bars will not be used
to designate time averages. For axisymmetric flow the boundary-layer

equations are:

Continuity:

% (rpjuy) + %Y_ (rp,vy) =0 (3)
a

a



Momentum:

aua aua dp, 1 9 aua
Palla sxa + (pvy) Sya =T ax_ tT §ya<ru6a 3ya> (4)
Energy:

oH oH € o oH

a a_1 9 B —a _L a

Pa¥a 3x. * (PaVa) 3y T T Iy r[cL<l+u 5p ) V.

du

+u<1--&1—L->ua gi] (5)

It should be noted that (pava) is a single time-averaged guantity
defined by

( —r =L I —_—
PaVa) T PaVa T PaVa t Py Vg (6)
u “u
where
(pava) = an inseparable quantity defined by equation (6)
_I- .
Py = time-averaged mean density
;é = time-averaged mean velocity
Py = fluctuating density component
u
Vy T fluctuating velocity component
u

We now introduce an eddy-viscosity parameter defined by

€a
By =1+ (7)

Assuming

O, = 0, = 1 (8)

reduces the energy equation to

aHa aHa 1 9 aHa
Pala &; + (pava) 'yy;- T 'gy—<rp’aa Sy (9)



Introducing a total temperature parameter produces the desired form

of the energy equation:

aSa aSa 1 9 aSa
P, B__Xa + (pv,) By_a =z gg(ruﬁa B—‘Ya> (10)
where
T
t
S =£__al 1 (11)

a (Tta)e -

The boundary conditions for this system of equations are:

At y_ =0 u. = v_ =20
a a a
(12)
r =r Ss_. =S
w a a,,
du R
At ya=°° ua=ua(x) Fy—=0
e a
v = v (x) > (13)
a a
e
Sy = 0 J
The initial conditions are given as:
At x = %5 u, = uao(Y)
(14)
S, = 8, (v)
o

At this point it is noted that the present Xy and Ya coordinates
are parallel and perpendicular to the main flow, respectively, rather than
tangent and normal to the local body surface. This convention implies
that the streamwise slopes of the body surface are small compared to unity.
It may lead to some loss of accuracy for curved plates at large surface
slopes. The convention has the advantage that no ambiguity exists con-

cerning the normal direction at discontinuities in surface slope.

Application of the Mangler transformation will reduce the system of
axisymmetric equations to two-dimensional form. The Mangler transforma-
tion is:

r = r_ = body radius (15)

10



Xa
= 2
X f r 2dx, (16)
o

ya
Y =! r, dv, (17)
w

Under the transformation

a
P =Py } (18)
u = u
a
va ua drw
v= r + 2 (ya 2rw dx
¥ J
w
and the boundary conditions are:
At y =0 u=v-=20
(19)
S =5
w
At y = u=u(x) au=0
e Sy
- (20)
v = ve(x)
S =20
The initial conditions are:
At x = x u = u_(y)
o o) (21)
S = So(y)

The two-dimensional form of the boundary-layexr edgquations results
from the transformation, and these equations are presented in the follow-
ing section. It is noted that dimensionality has not been preserved under

the Mangler transformation.

11



Boundary-layer equations for compressible two-dimensional flow.- The

boundary-layer equations for compressible turbulent boundary layers flow-

ing over two-dimensional nonadiabatic bodies are:

Continuity:
2 (pu) +%y (pv) = 0 (22)
Momentum:
pu-g%+(pV)%—;=—%§+%§(M5%§') (23)
Energy:
pu%-}%+(pv)%§=-g§+%(uﬁg—§ (24)

As with the axisymmetric case, the following definition applies:

_l__J.J. L]
(pv) = pv = pv + p v

The quantity (pv) cannot be separated.

These equations are the same as in reference 9 except that the en-
thalpy H has been replaced by S. In the axisymmetric case the Mangler
transformation has reduced the axisymmetric equations to the preceding
form with the boundary conditions shown previously. The boundary condi-
tions and initial conditions for the two-dimensional equations are the

same as those given in equations (19) through (21).

Application of the Stewartson and Dorodnitsyn transformations.- In

order to simplify further the equations, two transformations are now

applied. The first of these is the Stewartson transformation given by

x
p_a p.a
Pe 3¢ Pe e Pe
o ~o o ~o
o w(x)
and
P p
a p.a e e
u=- g v = e“e °y _ o dY g
a, Pe 3¢ P o oX
o . o o (26)
S=95

12



The resulting equations are:

Continuity:
LT =o (27)
Momentum:
U%}%+V%=(S+1)Ue-§—§£+veo%(f3%¥ (28)
Energy:
Ug_§+v§=ve0§?(a%§ (29)

The assumption that molecular viscosity is a linear function of tempera-
ture has been used in the development of these equations. During the
derivation B of the physical plane has been carried through a parameter
so that

B(X,Y) = B(x,y) (30)
Also, under the Dorodnitsyn transformation, we have
B(&,n) = B(X,Y) (31)

The boundary conditions in the Stewartson plane are:

At y =0 U=V=0
(32)
S = 8§
A
_ _ dU _ )
At y = o« U—Ue(X) W—O
P, a P a 2
_ e o PeVe e €o oY (33)
Vo= Ve(X) = a + a 3x e
Pele peo Pe e
The initial conditions are:
At X=X U= U_(Y)
o o) (34)
S = 5_(¥)

13



The next step in the analysis is to apply the Dorodnitsyn transforma-

tion which is given by:

X
' 1 Ué U
£ = 7 g X n=7g (35)
e e
o
o
N
T = -2 T =
U—Ue v >
. (36)
W=V + Up T S(g,n) = S(X,Y)
e y
Under this transformation the differential equations become:
Continuity:
%g + %% =0 (37)
Momentum:
ﬁaﬁ+ﬁaﬁ=[(S+1)—'IJ'2:]E§+a Baﬁ (38)
JE 3 U 3 3
Energy:
=038 , =08 _ d 3s
5t TR -5 %) (39)
The boundary conditions are:
At 1 =0 U=V=W=0
(40)
S(£,0) = S,
5 JU N
At = o U=1 =0
n 3
S =20
P(41)
b, @ p. a
T = °0 % 1 0 ®o %o %X a
p_a P e e a X e
e e eo e _)

The initial conditions are:

14



at £ o= £ T =T_(n)

S5 ()

(42)

S

Ordinary differential equations.- The analysis thus far has been

perfectly general with regard to both velocity and temperature. At this
point the Crocco relationship will be assumed thereby removing the neces-
sity for an energy equation. The Crocco relationship provides the follow-
ing coupling between total temperature and velocity profiles:

s =15s,(1 - ) (43)

The first step in reducing the continuity and momentum equations to
ordinary differential equations is to select a set of weighting functions.

The set selected for this analysis is:

£, = (1 - HTEY) i=1,2,3,-- (44)

Since the weighting functions are functions only of 'ﬁ, their derivatives

can be represented by:

£! = i (45)

Multiplying the continuity equation by fi’ the momentum equation by

f:, and adding the two equations gives the following result:
1

3T dET S0 s 53
ag +8n =fi[(s+l)—U2]TT;-+fi'5-ﬁBgﬁ (46)

Integration and rearrangement yields

1
£.T d0 A £1 [(s +1) - T?|dU £ (0)B(g,0)

%E— —_ T — — - f;’_B 'érU dau (47)
dT/d e d3T/d dT/d n
o o o)
This equation is termed the integral form of the momentum equation.
It is seen that as many equations can be obtained from equation (47) as

there are weighting functions. It is necessary to select as many weighting
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functions as there are unknown coefficients in the velocity-gradient repre-

sentation. Two velocity-gradient representations have been utilized. The
velocity-gradient representation which has proved most useful is termed

the no-root representation, and is given by:

T n - ?) (48)
z: cfﬁ(J—l)
J
J=1

The no-root velocity-gradient representation is valid everywhere in an
3dU/dn is zero.

2%
|

attached flow region except at a separation point where

Substituting equations (43), (44), and (48) into the integral form

of the momentum equation (47) gives the following ordinary differential

equations for the flow field:

&, &, &, & )
2tz tg t oy T TR
& IR ¢
3tz ts t oty T R
& &L & & (49)
L +._i +._§ 4 see + n = RH
4 5 6 n + 3
¢, e, . ¢
n+1+n+2+n+3+"'+’2_n'=RHn_J
where
C C C C C C
- B(£,0) _ 2 .3 . ... .11) (.3_ 2, _3
RHl c, (sw+1) C1+2+3+ +r1 + 2+3+4
Cn ) ﬁe
R W (50a)

Cl CZ CS cn L.Ie
2\ttt e/ T (501)
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Cl 02 [ (o4
RH, = 6P, = 2P, + 2(S, + D\ + 3 +7 *+ - +g571

c, c, c, ch )
S EII\FT TP T tay e

cl c, Cq cn > ﬁe
B\Z s et w3/ | T (50¢)
RHn =n(n - 1)Pn_1 - (n - 1)(n - 2)Pn-2
c c c c

c, c, c, o, Uy
“h\m 1 * n + 2 + n + 3 oo A 2n 'ﬁ; (504)

The term R (£,0), which is the eddy viscosity at the wall, can be
set equal to unity except possibly at a separation point where 5ﬁyan is
zero. The P;'s, which occur in the nonhomogeneous terms on the right-
hand sides, are definite integrals of the following set:

kS

P, =[ B%Iﬁ(i‘l) du (51)
(@]

It is interesting to note that the only difference between the
laminar and turbulent flow equations occurs in these integrals, where,
for laminar flow, B is unity. The eddy-viscosity distribution for turbu-
lent flow as used in the present work will be described subsequently.

The other velocity-gradient representation utilized in the present

work is called the root formulation and is given by:

U _ (1 - VT + ¢ (52)

In this case it is noted that particular exponents are used in the de-

nominator as opposed to the previous case where general exponents were

17



used. The root representation is, however, valid everywhere in an attached
flow field including the separation point. The analysis for the root case
is more complex than for the no-root case because of the square-root term,
VT + <.

This analysis proceeds the same as the previous one with equations
(43), (44), and (52) being substituted into equation (47) to give the fol-
lowing ordinary differential equations:

g.c. + gec_ + 9gCy + (clg1 + c g + c g')e = RS

g,c + g c_ + g7c3 + (clg2 +c g +cgl)c= R82

? (53)
hd + hd hd ] ] |_=
5%, 9,6, t FCy t (clgs teg, F nga)c RSS
9,%, + 9., + 9., + (clg4 +c, g + csgs)c = RS, J
where the right-hand sides are given by
_B(£. 00V
RS = c, - .(l + Sw)(clgo +c g, + ngs)
ﬁé
+ (c,g, + g, + 0396{]-52 (54a)

B, g, oS
RS, = 26 - s @+ s) (e g, e g *+cyg)

U
e
-(1 + ZSW)(clgl + c,9, + csgs) - 2(c1g2 + c,9, + cag7i]-ﬁg (54b)
Rss - 6G2 - 2G1 + [%(l + SW)(clgl + €9, + csgs)
iIe
-(1 + 3Sw)(clg2 + c 9, + c3g7) - 3(clg3 +c g, + csgai]-ﬁg (54c)
RS4 = l2G3 - 6G2 + [%(l + Sw)(clg2 + c 9, + c3g7)
ﬁé
-1+ 4Sw)(clg3 te9, *F csgé) - 4(C1g4 t e 95 t chS{]-ﬁ; (544)
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The gi's which occur in these equations are definite integrals

from the following set:

- =
gi(c) = f Lﬁ_:i_—: i=0,1,2,--- (55)
c
o
and
T N :
0@ =3 [ GoEEE t-ona (56)
c c
o

As with the no-root formulation the term B(£,0) is the eddy vis-
cosity at the wall, which can be set equal to unity except possibly at a
separation point. The eddy viscosity again enters the analysis through
the definite integrals contained in the nonhomogeneous terms. The defin-

ite integrals are members of the following set:

i — (57)
c + ¢c U + ¢
1 2 3

_._.(_) — s
o, = B(l—U)Ull.\/U+cdﬁ
-[_15
o

The same eddy-viscosity models used for the no-root formulation can be

used with this formulation.

Auxiliary equations.-— This section is being presented for complete-

ness in order to provide equations for the principal quantities of inter-

est. The derivations will be omitted since they are not difficult.

The relationships between the axisymmetric quantities of interest

and the corresponding two-dimensional quantities follow.

Skin friction:
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Displacement thickness:

r +6
. w -a p U,
6a = 1 - — dya
Pa “a
+ e “e
W

Momentum thickness:

Reference length:

r

r

w

wtda

Velocity gradient:

Velocity profile:

Mass flow:

where

20

|

u
paa

P u
a
e

a

Ya
< - u, dya
e e

w
0
L = w 21,

o

a(ua/uae) r, B(u/ue)

3 (y, /1) 2 o(y/2)

w
o

Yo = Ty = %L and u, = u

pu dy

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)



In the two-dimensional plane the quantities of interest are obtained

for the no-root formulation from the following relationships:

Skin friction:

du
u 1 +m
I " eO)L
£FX > T +m c
5 p.u R e 1
2 Fe e ﬂo
where
ueoﬂ
R =
2 v
o e,
m = Y 5 1 M2
Displacement thickness:
o}
1 dy
- (-5
o
Y+1
= n n
l+m (ry—l) Ej_ !
5% l+m> (l+Sw)(l+me) j+meE —d
j=1 ]
Momentum thickness:
o)
- Pu I
e—fpu (1 u)dy
3 e e e
Y+1
1 +m 2 (v-1) 2 c
6 = ) e _ j
Ue l+me 3 + 1
U Rﬂ © j=1
e o J

(67)

(68)

(69)

(70)

(72)

(73)
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Velocity gradient:

(3g) v

(§) "

o

and

where

Thus,

Mass flow:

22

n o+ [%w(l + me) + m%] }E:

- 1n(l1 -

F. . = o0
j=-1 G -1

— T - T72
e) Sw(l + me)U meU]

(74)

(75)

(76)

(77)

(78)

(79)



n

w:—JL—= c.F. (80)

5341
1L /R =
A Eo j=1

The corresponding equations for the square-root formulation are:

Skin friction:

1 +m
>V° (81)

= ()

1

Displacement thickness:

Y+1
1 + m
5% l+m [(l+S)(1+m)(cg +c2gl+c3g5)
+ me(clgl + c_9, + csge)] (82)
Momentum thickness:
Y+1
1 +m 2 (Y-1)
— 2 e
0 = T, T+ m (c.9, + c,9, + c9,) (83)
TG R£ [e)
e, o
Velocity gradient
Y+
S 2 1 +m (1)
(u) U e
e/_ e R o 1
a(z) e, o e (L+s)1+m) - (1+m)sT-mT

(1 -VT + ¢

(c. + ¢c T + ¢ U°)
1 2 3

(84)
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Velocity profile:

'Y+l
I 1+ m 2 (-1}
y - wix) = Ue T m {} + [% (1 + m ) + m ] (chl
-_— [R
U, 1/ Lo
o
+ c F, + c F) + me(chz +c F_ o+ c8F7{} (85)
and
n=-c (F. +F_ +F +F +F) -cF
1 2 3 4 5 271
+(c1+c2+ca) 1n (VE’+’5+'\/E'+1)(\/E’-VE+1) (86)
T+ 1 ('\/E+E-'\[€+1)(V?+ E+1)
where
— Uﬁ(i'l) —
Fi=j—_—_dU (87)
U + c
o
Thus,

(88)
F, =2TE_1 [ﬁ(i'l)'\/ﬁ +c - (i - 1)‘c‘F(i_l):] i=2,3,4,---

Mass flow:

+ ¢ )F, - (¢ + +c W TF
3 3 4 5 = 2 cs)F2 ( 1 c2 3) Fl

_ 1n Ve+o+Vita)We - V1 F2) (89)
'\/—— ('\/::+ _ﬁ+3)(ﬁ+ '\/l_+f)

Eddy-Viscosity Parameter

clilcl

The distribution of the eddy-viscosity parameter, B, that enters the
P, and G, integrals is the actual distribution for the compressible
nonadiabatic turbulent layer. It has not been transformed under the
Stewartson or Dorodnitsyn transformations but has simply been carried
along as a variable. Since the integrals are evaluated by numerical
means, fairly complicated eddy-viscosity models can be used in the theory.
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Incompressible eddy-viscosity model.- The detailed work is contained

in Appendix A. This section contains only a basic description of the
model and a summary of the pertinent results. The basic model is an in-
compressible one. For compressible flow the eddy-viscosity distribution
is related to an equivalent incompressible one using the method outlined
by Baronti and Libby in reference 14. This method is based on the trans-
formation theory developed by Coles (ref. 15) and the sublayer hypothesis
set forth by Donaldson (ref. 16).

The incompressible eddy-viscosity model is based on an inner laver
where the shear is assumed constant and an outer layer where the eddy
viscosity is assumed constant (ref. 17). The inner layer consists of a
laminar sublayer, a buffer layer, and a region where the law of the wall
is valid. The buffer layer is an arbitrary layer between the laminar sub-
layer and the law of the wall region where a fairing has been introduced
to prevent a discontinuity in the eddy-viscosity distribution. Within
the laminar sublayer the eddy-viscosity parameter B8 1s unity, and in
the region of the law of the wall it is obtained from well-known velocity

correlations assuming the shear is constant at the wall value.

Within the outer layer, or wake region, the eddy-viscosity is con-
stant and equal to the value prescribed by Clauser (ref. 17). The bound-
ary between the inner and outer layers is established by assuming that

the value of the eddy viscosity is continuous at the point of the join.

The eddy-viscosity parameter for the entire boundary layer is given

by the following equations for the various regions.

Laminar sublaver:

~

B =1.0 0 < —=—< 7.95 (90)
U
Buffer laver:
- 0.4811[(E/ET)—7.95J 3
B = e 7.95 ¢« — < 13.25 (91)
He
Law-of-the-wall region:
(1/2.43) (u/u ) ~ ~
~A S T N x
B =155z © 13.25 < =< (E) (92)
T m
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Wake:

™
I

- i 5
0.018 R(S* <~—-> < = (93)
u u
T T

The distribution of the incompressible eddy-viscosity parameter is
shown in figure 1 in a way which displays the effect of Reynolds number.
As the Reynolds number increases, the boundary between the inner layer and

the wake moves to higher values of E/ET and é.

Compressible eddy-viscosity model.- The velocity profile for the

inner layer of a compressible boundary layer is related to that for an
equivalent incompressible boundary layer in accordance with the method
given in reference 14. Under the assumptions of the method, which employs
the Baronti-Libby transformation, the nondimensional velocity ratios and
the eddy-viscosity parameters are equal at corresponding points in the

compressible and incompressible boundary layers.

(94)

o)
o |s:z

2
u
e

(95)

™

B:

To evaluate the eddy-viscosity integrals, P, and Gy it is necessary to
know B8 as a function of u/ue. We need only know the skin-friction
coefficient of the equivalent incompressible layer, C e to obtain the
desired information from equations (94) and (95). The value of Ce is

obtained by solving the following two equations by iteration:

P =_.L
f = on Cf (96)
e
T ~ \1/2
(52 (k)| t&)(_f_) 10.6
E Pe be Te Te Te 2 2
T ~
t C
e _f (10.6) 2
(1) i) s

The value of u/ue is obtained from Ef through
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C

-V (98)
e u
T

and the value of E is obtained from equations (90) through (92).

The first problem in obtaining B in the wake region of a compress-
ible boundary layer is to find the point of the join. It is possible to
find the point of the join from the condition that B of the inner layer
equals P obtained from the Clauser relationship. An assumption is made
for this purpose that the Baronti-Libby transformations can be used across
the entire boundary layer in establishing the relationship between the
compressible displacement and boundary-layer thicknesses and the equiva-
lent incompressible thicknesses. The assumption is a fairly good one
because the wake does not contribute much to the displacement and momentum
thicknesses, and the velocity transformation is valid at the outer edge
of the boundary layer. These considerations lead to the following result

for the eddy-viscosity at the point of the join:
T, HeO
B =B, = 0.018 T _ﬂ (Rgs ~ MgRy) (99)

In the wake itself, B 1is proportional to density and inversely pro-
portional to viscosity. Since viscosity has been assumed proportional to
temperature, and hence inversely proportional to density, it follows that
B is proportional to density squared. Thus, in the wake region the eddy-

viscosity parameter 1is given by:

p 2
B =8, (—p;) (100)

CHOICE OF VELOCITY-GRADIENT REPRESENTATIONS

A study has been made to aid in the selection of the best velocity-
gradient representation for the computer program. This study involves
the fitting of various velocity-gradient representations to empirical flat-
plate velocity-gradient profiles using the method of least squares. The
accuracy of fit for the various representations is a factor in the choice

of the one considered best suited for use in the analysis. As a by-product,
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the least-squares fitting provides approximate initial conditions for

starting subsequent solutions.
The velocity-gradient representations considered are:

No-root formulation:

= (1-1) (101)

¢ +c O+ c T
1 2 3

111

Root formulation:

U _ _(1 -VU + ¢ (102)
gﬁ Cl + CZTJ"m + C:B_I_JT1

The empirical flat-plate profiles to be fit were obtained using
Spalding's (ref. 18) generalized law of the wall combined with an analytic
fit to Coles' (ref. 19) wake function. This combination was used in order
to provide a continuous velocity profile which could be differentiated
analytically for fitting purposes. In order to utilize these flat-plate

velocity profiles, it is necessary that they be in the form

= = £(n) (103)
u

e

The empirical profiles could be put into this form with the skin-friction

coefficient, and the form factor, H, as parameters. In addition the

c
£? - -
condition that u/ue =1 at y =6 was imposed. However, the resulting

profiles did not meet the condition that

=0 at u-=1 (104)

S
J

The skin-friction coefficient and the form factor used for the flat-
plate velocity profiles were obtained in the following ways. The skin-
friction coefficient was predicted on the basis of flat-plate equations

given by Sommer and Short (ref. 20) for incompressible flow:

Ef = 0.0578 (EX) /s (105)

Clauser (ref. 17) presents the following form-factor correlation for in-

compressible zero pressure-gradient boundary layers
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i = 1 (106)

1 - 6.8-,/8f/;

The empirical flat-plate velocity profile thus is a function only of Ex'

The empirical velocity profiles used in this study are for zero Mach
number, adiabatic walls, and Reynolds numbers of 10* through 102. The
velocity—-gradient representations given by equations (101) and (102) were
fit to the empirical profiles for the following matrix of m and n:

It is of interest to look at the second derivative evaluated at the
wall for the various representations. For the no-root formulation,

assuming n > m, there is obtained

o= c
9%U| _ (_ 1 _ =z 2 m= 1 (107)
az C b=} C
7 | 1 c, 1
o=
oTul _ _ _1 m > 2 (108)
an c ® -
w 1

The corresponding results for the root formulation still, assuming n > m,

are:;
3T _'\/?:'_ﬁcz+ 1 Ve m=1 (109)
d3n® w €1 cl2 2clV'E €1
>05| _ [ V=, S R (110)
dn® w €1 2\[;;1 1
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For positive skin friction, c, must be positive. For this case these
equations show that with m = 1 any value, positive or negative, may be
obtained for the second derivative at the wall with either formulation
depending upon the sign and value of c,. However, for m greater than
1,only negative values of the second derivative can be obtained for posi-
tive skin friction using the no-root formulation. These facts indicate
that m = 1 should be included in the no-root formulation to include the
possibility that the second derivative be zero at the wall for zero pres-
sure gradient in accordance with boundary-layer theory. However, other

values of m have been included in the studies for completeness.

The incompressible empirical flat-plate turbulent velocity gradients
generated by the method previously described are shown as curves in fig-
ures 2 and 3. Also shown in the figures as symbols are the various fits
obtained using the no~root and the root formulations. For the no-root
formulation with m =1 and n = 3 the fit seems better at low Reynolds
number. For m = 1 and n =5 the fit seems better at higher Reynolds
numbers. Since high Reynolds numbers are of interest for turbulent bound-
ary layers, it is felt that m =1 and n = 5 offers the best overall
fit for flat plates.

The results obtained for the root formulation, figure 3, are similar
to those obtained for the no-root formulation. Here, however, the formula-
tion with m =1 and n =5 vyields a good fit over the entire Reynolds

number range for flat plates.

Computer programs using the no-root formulation have been written
using both n = 2 and 5. No preference of one over the other was found
between similar computer runs. Under adverse pressure gradients, as the
velocity profiles tend toward separated profiles, they are not nearly so
full as flat-plate profiles at large Reynolds numbers. It appears that
the less full profiles should be fit better with n = 2 than with n = 5.
Accordingly, n = 2 was chosen as the exponent to use in the no-root

velocity-gradient representation.

For the root velocity-gradient representation the exponents m = 1
and n = 5 were adopted. These exponents were adopted in view of the
conclusions reached in the least-squares fitting study. It was also found
that using a computer program based on m =1 and n = 2, a convergent

solution was not obtained. The reason for this behavior is not known.
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DESCRIPTION OF COMPUTER PROGRAMS

During the course of this investigation several computer programs
for turbulent boundary layers were generated. These programs are based
on various velocity-gradient representations and eddy-viscosity models.

Two of these are important. with regard to the work reported herein.

The first program is one for the calculation of turbulent boundary
layers on nonadiabatic two-dimensional or axisymmetric bodies with pre-
scribed pressure distribution. A manual for this computer program, refer-
ence 21, has been written. The computer program is based on the no-root
velocity-gradient representation with m = 1 and n = 2, and the eddy-
viscosity model used is that previously described. The body shapes for
either the two-dimensional or axisymmetric cases are introduced into the
program in the form of segmented polynomials. The pressure distribution
is introduced into the program in the same fashion as the body shapes.

It is this program that has been used to make many predictions for compari-

son between experiment and theory.

The second program is based on the root velocity-gradient representa-
tion and the eddy-viscosity model previously described. The program is
valid only for flat-plate configurations with a zero pressure dgradient.
Since the program is so limited, it has not been described in detail in
any published documents. The program, when generalized to handle pressure
gradients, contains the inherent possibility of being mathematically valid

at separation.

It is noteworthy that the first computer program has upper and lower
bounds of Reynolds number beyond which it will not operate properly.

These limits are given in the manual for the program, reference 21.
INITIAL, CONDITIONS

To start a boundary-layer solution requires initial values of the
ci's for the no-root formulation and of the ci's and ¢ for the root
formulation. Obtaining initial conditions is a difficult problem associ-
ated with using the present computer program. Several methods have been
developed for obtaining initial conditions, and these methods will now be

presented.
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The discussion of initial conditions has been divided into three main
parts. In the first part general methods for obtaining initial condi-
tions to start any problem are presented for both the root and no-root
formulations. In the second part solutions for flat plates with no pres-
sure gradients are discussed. These solutions can be used to start other
types of solutions in many cases. The third and final part contains a
discussion of the recommended procedure for obtaining initial conditions

when an arbitrary pressure gradient occurs.

General Methods for Obtaining Initial Conditions

In this section two general methods are presented for finding initial
conditions. The first method involves fitting a velocity profile with
the velocity-gradient formulation to obtain the initial ci's. The second
method involves the solution of simultaneous equations in terms of such
initial boundary-layer properties as skin-friction coefficient, displace-
ment thickness, and momentum thickness. The first method can only be used
when an initial velocity profile is given. The second method can be used
when either a velocity profile or gross properties are given since gross

properties can be obtained from the profile.

Least-squares method.- The method of least squares used above in the

study of velocity-gradient representation can also be used to generate
initial conditions. For incompressible adiabatic flow the method is
direct. For compressible flows it becomes more complicated since the
compressible profile must be transformed to the Dorodnitsyn plane. In
view of this complication least-squares fitting of compressible velocity

profiles was not carried out herein.

An approximate method of obtaining initial conditions from the least-
squares method for compressible velocity profiles is to use the Baronti-
Libby method, reference 14. The <c¢;'s to be used for initial conditions
are those obtained by fitting an equivalent incompressible velocity pro-
file. The equivalent incompressible velocity profile corresponds to the
incompressible skin-friction coefficient, Ef, and form factor ﬁ, found
using the Baronti-Libby transformation. To find Ces equations (96) and
(97) are solved simultaneously. The form factor, H, is then obtained
using equation (106) and the value obtained for Sf, With these two param-

eters, Ce and ﬁ, an incompressible velocity profile can be constructed
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for fitting purposes. The resulting ci's can be used to start the com-
pressible boundary-layer solution.

Initial conditions have been generated for several velocity-gradient
representations for a wide range of flow conditions. These initial con-
ditions were a by-product of the velocity-gradient representation study
discussed previously. Results for both root and no~root formulations with
m=1 for n =2 and 5 are presented in table I for incompressible flat-

plate, adiabatic boundary layers with no pressure gradients.

The equations used in the least-squares method are described in

detail in reference 21.

Gross properties method.- A second general method for obtaining ini-

tial conditions utilizes gross boundary-layer properties. It is assumed
that the skin-friction coefficient, the displacement thickness, and the
momentum thickness are either given or can be calculated from a given
velocity profile. The simultaneous equations to be solved for the ci's

of the no-root formulation are:

Skin-friction coefficient:

cf=__2 L (111)
c
Rﬁ 1
o
Momentum thickness:
= 2 ey Ce °a
9—_\/——R——<2+m+2+n+2 (112)
ﬂo
Displacement thickness:
I c, cg
P
6 R (1 + me)(l + Sw) cl + m+ 1 + n + 1 + mee (113)
2

(o]

It is a simple matter to solve these equations given Ces 6%, and 6.

This method has been used successfully to obtain initial conditions. One
difficulty has arisen for a case where m =1 and n = 2. Consider the
polynomial ¢ + c, U + csﬁE that occurs in the denominator of the velocity-
gradient representation. The c¢.'s obtained for the case in question

i
resulted in roots of the polynomial in the range 0 < U 1 so that JU/9dn
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was infinite in the boundary layer. A slight perturbation in the wvalue
of momentum thickness, which could be within the experimental error, was
found to cure the difficulty. Usually the roots of the polynomial are

complex so that no infinity in JdU/dn occurs in the boundary layer.

The application of the boundary-layer properties method to the root
velocity-gradient representation involves four variables. Another gross
property of the boundary layer must, therefore, be known. Such a property

might be the moment-of-momentum thickness defined as

¢

ox e (1 - ul>dy (114)
e

il

2
2
peue
o]

For the root formulation with m =1 and n = 5 there is obtained

(Y+1)
1 +m 2 (Y-1)

1 +m

*=U 'Z <
e e
—_|R e}
U \/ )/
eo @)

The thermal energy thickness, which is another gross property frequently

6 (clg2 + ¢ 9, + c3g7) (115)

known, could not have been used in the present case because through the

Crocco relationship it is identical with the momentum thickness.

Equations (81), (82), (83), and (115) can be solved simultaneously

for the four unknowns c, cs C and c,. For this solution m would

3
be taken equal to Mg, - This silution is not easy because of the gi's
which are complicated functions of c¢. An iterative solution on a com-
puter appears to be the best way to obtain a solution. The boundary-
layer properties method has not been used during the present investigation

for the root formulation case.

Initial Conditions in the Absence of
Pressure Gradient
The computer program applied to boundary layers on flat plates or
cylinders with sharp leading edges and no imposed pressure gradients will
develop asymptotic or locked-in solutions. These locked-in solutions,

which are the unique solutions for these configurations, are useful in
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two respects. First they provide predictions for comparison with flat-
plate data, which is the most common type of data available. Secondly,
many solutions with pressure gradients can be started using the flat-plate
initial conditions. If the pressure gradients prior to the desired start
of calculations are zero everywhere, then these flat-plate solutions repre-
sent precise initial conditions. Even when pressure gradients exist at

the starting point, flat-plate initial conditions are frequently very good.

Obtaining the locked-in flat-plate solutions is sometimes difficult
and usually requires several computer runs. The solutions are generally
started from an initial set of conditions obtained from some approximate
scheme such as the general methods already presented. Then a flat-plate
computer run over one or two orders of magnitude in axial distance is
made. After a short transient, the resulting solution develops a long-
term trend, such as a logarithmic variation, which indicates that it is

locked in.

For the no-root formulation the c;'s obtained from a computer run
after a long axial distance are then plotted and extrapolated back to the
starting point. Using these new ci's the same process is repeated
until a locked-in solution is generated. Typical results obtained using
the no-root program are shown in figure 4. The initial c;'s used for
the first run were obtained by least-squares fitting and the Baronti and
Libby method discussed previously. It is seen that the solution locked
into a logarithmic trend very quickly. Two back extrapolations were re-

gquired to establish the final solution.

Flat-plate solutions for the no-root formulation over a large matrix
of Mach number, Reynolds number, and temperature ratio show that the ci's
versus axial distance followed straight lines on log-log paper. In addi-
tion, the skin-friction coefficient, displacement thickness, and momentum
thicknesses are straight lines on log-log paper when plotted versus axial
distance. This linear property allows presentation of a large matrix of
initial conditions in the relatively short table, table II. The values
shown in this table for the c;'s, skin-friction coefficient, displacement
thickness, and momentum thickness for x = 1.0 and 10.0 allow the reader
to establish values within the range by simply drawing straight lines on
log-log paper. Extrapolation of the lines plotted outside of the range
is dangerous but can be done within certain limits of Reynolds number to

establish approximate initial conditions.
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The wide range of flat-plate initial conditions was not generated
for the root formulations for several reasons. In the first place the
root program is not nearly so fast as the no-root program, and long runs
cannot be generated quickly. In addition, the variation of c and the
ci‘s with axial distance is not linear on log-log paper. The only flat-
plate solution generated during the present investigation for a zero Mach
number adiabatic wall over a wide Reynolds number range is shown in fig-
ure 5. The figure shows an upper limit on the Reynolds number for which
the root program will operate. At a Reynolds number of about RX = 108,
the ci's tend to infinity. In this figure the predicted skin-friction
coefficient is compared to those obtained from correlation laws of known
validity. For these comparisons the numerical method of references 22
and 23 have been used. The agreement between prediction and experiment
is considered good. While a convergent solution has been found for m = 1
and n = 5, only divergent solutions have been experienced for m = 1

and n = 2.

Initial Conditions with Pressure Gradients
Present
Problems involving pressure gradients can be divided into two cate-
gories, those for which the initial conditions correspond to zero gra-
dients and those for which they do not. In the second case the initial
pressure gradient can be either positive or negative. This section con-
siders initial conditions for the no-root formulation only since calcula-

tions with pressure gradients have not been made for the root formulation.

Any one of the previously presented methods for obtaining initial
conditions may be useful for starting solutions with pressure gradients.
It is recommended that the flat-plate solution be used as a first approxi-
mation even when pressure gradients are present. The ci's for the
locked-in flat-plate solution are then chosen to correspond to the edge
flow conditions and some known boundary-layer gquantities such as skin-
friction coefficient, displacement thickness, or momentum thickness. It
may not be possible to match all three boundary-layer quantities with
flat-plate ci's. This result follows from the fact that if the skin-
friction coefficient is specified for a flat plate, then either displace-
ment thickness or momentum thickness can be independently specified, but

not both. 1In the case of severe pressure gradients acting on the boundary
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layer in front of a location where initial conditions are to be specified,
it is probable that flat-plate initial conditions will not provide a good

first approximation.

If the initial conditions cannot be approximated by flat-plate ini-
tial conditions, then either one of the other two methods mentioned in the
section on general methods can be used to start a pressure-gradient solu-
tion. Of these two methods the one preferred is the gross properties
method. Here the skin-friction coefficient, displacement thickness, and
momentum thickness are used to establish the initial values of the ci's.
This method guarantees that these initial gross properties are correct.
Also, the method sets the eddy-viscosity model at the correct initial
turbulence level since the model is a function of skin-friction coeffi-

cient and Reynolds number based on displacement thickness.

The least-squares method will work equally as well as the gross pro-
perties method, although it does not necessarily set the initial turbu-
lence level precisely since a precise value of displacement thickness is
not guaranteed by a least-squares fit to a velocity~gradient profile.

The results using this method, however, appear to be equally as good as
those obtained using the gross properties method. 1In both cases initial
transients are small if the input data used to obtain the initial condi-
tions are compatible with each other and with the pressure gradient to be
imposed. For example, for a given initial pressure gradient, a given
skin-friction coefficient, and a given displacement thickness, there is
only one value of momentum thickness and thus one set of ci's which
will allow a solution of the boundary-layer equations to continue without

transients.

COMPARISON BETWEEN EXPERIMENT AND THEORY FOR
THE TWO-DIMENSIONAL CASE

In order to test the present theory a number of comparisons have been
made between experimental results and theoretical predictions from the
computer program based on the no-root formulation. The results obtained
are presented in the following paragraphs for a wide range of speeds for
two-dimensional configurations. The first two cases considered are for

incompressible flow, and the subsequent cases are for supersonic flow.
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Configuration of Schubauer-Klebanoff

In reference 24 Schubauer and Klebanoff present the results of a low-
speed investigation of turbulent boundary layers on a streamlined configu-
ration, the pressure distribution of which is controlled by a protuberance
on the wind-tunnel wall. The resulting pressure distribution acting on
the boundary layer is shown in figure 6 together with an analytical fit
to the distribution. The analytical fit to the pressure distribution,
used as input to the boundary-layer program, utilizes segmented polynom-
ials of varying degree as shown in the figure. The initial conditions
for the boundary-layer calculations were obtained using the gross proper-

ties method.

In figure 7(a) the predicted skin-friction coefficient is compared
with the experimental skin-friction coefficient. The experimental skin-
friction coefficients are not the ones to be found in reference 24, which
were obtained from the momentum equation applied at the wall in conjunc-—
tion with an extrapolation of turbulent shearing stress to the wall.
These results are believed by the present authors to be in error. The
experimental results presented in figure 7(a) were obtained at Stanford
University by matching the experimental velocity profiles, presented in
reference 24, to the law of the wall. The agreement between experiment
and theory is good for the entire range of falling pressure and for about

3 feet of the 8 feet of adverse pressure gradient preceding separation.

The agreement between experiment and theory shown in figures 7 (b)
and (c) for displacement thickness and momentum thickness is also good
for about one-half to two-thirds of the length of adverse pressure gra-
dient preceding separation. Several possible causes exist for the lack
of agreement in the neighborhood of separation. First the no-root
velocity-gradient representation used for this analysis cannot reproduce
the zero wall shear at separation. How far ahead of separation this mathe-
matical ill-conditioning will have an influence is not known. Another
possible cause of lack of agreement is the eddy-viscosity model being
used. While the present model does not appear ill-conditioned at separa-
tion, there exists no experimental proof of its validity there. &aAn addi-
tional question that has arisen concerning experimental low-speed turbu-
lent boundary layers is whether they obey the two-dimensional boundary-

layer equations at separation.
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Figure 8 presents comparisons between experimental and predicted
velocity profiles at selected stations. Figure 8(a) shows the initial
velocity profile where the agreement is good. Figure 8 (b) shows the
agreement still to be good after about 6 feet of strong favorable pressure
gradient. The agreement remains good through the nearly constant pressure
region, as shown in figure 7(c), and continues into the strong adverse
pressure-gradient region, as shown by figure 7(d). However, as separation
is approached the agreement between theory and experiment deteriorates
rapidly, until in figure 8(f) just before separation, it is not good at
all. It cannot be said for certain what the exact cause of lack of agree-
ment is, although the three factors previously mentioned could all be con-

tributing.

Low~-Speed Airfoil Data of Newman

Extensive, low-speed, turbulent, boundary-layer measurements have
been presented in reference 25 by Newman for an airfoil configuration, a
sketch of which is shown in figure 9. Also shown in the sketch are the
stations at which boundary-layer traverses were made. It will be noted
that all measurements were made on the lee side of the airfoil in the

region of adverse pressure gradients.

The initial conditions for this run were established using the gross
boundary-layer properties method discussed previously. The skin-friction
coefficient, displacement thickness, and the momentum thickness were used
to obtain the initial ci's at station B. At station B the initial Mach
number was 0.12 and the reference Reynolds number per foot was
8.23x10°(1/£ft) .

The pressure distribution which resulted on the wing is shown in fig-
ure 10 along with a straight-line fit. A straight-line fit was considered
adequate because the pressure coefficients could not be read accurately

from the very small figure in reference 25.

In figure 1l(a) the predicted displacement and momentum thicknesses
are compared with the experimental values of these quantities. Both pre-
dicted quantities agree well with the experimental quantities except near
the trailing edge where the predicted thicknesses tend to be too large.
At station G the boundary layer is nearly separated, and the no-root for-

mulation cannot go to separation. Thus, the good agreement between the
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predicted and experimental values of 6% and 6 approaching the trailing

edge is encouraging.

The predicted skin-friction coefficient variation is compared with
experimental data in figure 11(b). The overall agreement between experi-

ment and theory is considered fair.

In figure 12 predicted and experimental velocity profiles are com-
pared. Figure 12 (a) shows the initial velocity profile at station B,
where gross boundary-layer properties were matched to start the calcula-
tions. The agreement between experiment and theory is considered fair
here as well as at the two other stations. It should be noted that Newman
considers that his flow approaching the separation point does not obey

two-dimensional equations.

Hypersonic Turbulent Layer on Flat Plate With and
Without Oblique Shock Impingement

Data were obtained on a flat plate 4 feet long on which an oblique
shock wave could be induced by a wedge. The data used in this section for
comparison with theory were taken during the course of the experimental
investigation reported in reference 26. The specific data used herein
were not incorporated in reference 26. Two measuring stations were used.
The 2.17-foot station is near the middle of the interaction zone for a
50

interaction zone. All distances are measured from the plate leading edge.

shock generator while the 2.95~foot station is just downstream of the

To start the flat-plate solution, initial conditions were obtained
from table II by interpolation for the initial Mach number, Reynolds num-

ber, and temperature ratio shown in figure 13. The velocity profiles

b
resulting from the zero pressure-gradient solution are compared with the
experimental ones in figures 13(a) and 13(b). For both positions agree-
ment between prediction and theory is good for this zero pressure-gradient

case.

As a matter of interest the temperature profile at station 2.17 is
compared in figure 13(c) with the predicted profile. It is seen that the
comparison is quite good except near the wall. The two data points at
the wall show how much the wall temperature rose during the run. The
accuracy of the temperature measurements near the wall because of errors

induced by the presence of the wall is unknown.
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Figure 14 shows the experimental pressure distribution resulting
from shock-wave, boundary-layer, interaction as well as the analytic fit
to the experimental pressure distribution used as input to the boundary-
layer program. The boundary-layer thickness prior to interaction is about
0.03 foot, and the entire pressure rise occurs in approximately 10 boundary-

layer thicknesses. Pressure gradients of this type are considered severe.

The flow edge conditions were determined from the isentropic flow
relations and the pressure distribution for the incident-shock case. Fig-
ure 15 shows a comparison between the predicted and experimental displace-
ment and momentum thicknesses for the flat plate with and without shock
impingement. The agreement between experiment and theory for the displace-
ment thickness is very good for both cases. For the momentum thickness,
however, the agreement is not as good with the zero-pressure-gradient pre-
diction lying above the data and the pressure-gradient prediction lying
below the datum point. In the case of a shock-wave, boundary-layer inter-
action, agreement between experiment and theory might be expected upstream
and downstream of the shock impingement. However,; within the interaction
zone no agreement can be expected since the theory does not account for
the fact that the incident shock penetrates deep into the layer. The
measuring station for the incident shock case is quite close to the down-
stream end of the pressure rise, and the boundary layer has not yet become
an equilibrium one. Disagreement between experiment and theory could

arise from this cause.

No experimental skin-friction data were available for this case, but

as a matter of interest the predicted variation of ¢ is shown in fig-

ure 16 with and without pressure gradients. For compirison with the zero-
pressure-gradient prediction the skin-friction coefficient variation
obtained using the method outlined in reference 22 is presented. Agree-
ment between these two predictions is good except near the leading edge.
The figure shows two qualitative effects for the pressure-gradient case;
first, the skin-friction coefficient decreases as it does approaching a
separation point; and secondly, the downstream skin-friction variation is

above the flat-plate value for no pressure dradients.

In figure 17 the velocity profiles are compared at the one available
station where data were taken for the shock impingement case. It appears
that the experimental profile has not yet completely filled out after tra-

versing the interaction region.
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Compression Surface Tested at M _= 7.4

The configuration for this case is the 4-foot-long compression ramp
shown in figure 18. All data presented in this report are published in
reference 26 except the velocity profile data. In the present case the
pressure rise occurs over approximately 100 boundary-layer thicknesses.

The boundary-layer thickness at the first measuring station was 0.0233 foot.

Nonisentropic edge conditions not accounted for in the computer pro-
gram made it difficult to determine accurate initial conditions for the
computer run. While the pressure distribution is known over most of the
length of the compression surface, displacement and momentum thicknesses
are known only at the two measuring stations. As shown in figure 19, the
pressure distribution is smooth and the analytical fit to the distribu-
tion is good. The distribution of edge Mach number and Reynolds number
per foot are shown based on isentropic edge conditions starting from an
initial edge Mach number of 6.07 and an initial Reynolds number per foot
of 1.825%x10°. These two values were selected so that the curves would go
through the experimental points for the first station. However, it is
seen from the lack of agreement at the downstream station that the edge
conditions are not even approximately isentropic probably because of cur-
vature of the bow shock. However, it was decided to proceed with the cal-
culation on the assumption of isentropic edge conditions. The initial
conditions were taken to be locked-in flat-plate conditions obtained from
table II by interpolation using the initial Mach number and Reynolds num-

ber per unit length previously quoted.

The results of the boundary-layer calculation are compared with ex-
periment in figure 20 for displacement thickness and momentum thickness.
The agreement at the first measuring station has been forced as previously
mentioned. The agreement at the downstream measuring station is not very
good. The disagreement between experiment and theory shown for this case
may be the result of inaccurate initial conditions and nonisentropic edge
effects. The importance of the nonisentropic edge conditions can be

assessed by including them as a future option in the computer program.

In figure 21 a comparison between the predicted and measured velocity
profile at the first data-taking station is made. The good agreement of
the experimental and predicted velocity profiles is helped by the enforced

agreement of the values of 6&* and 6 at this station.
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Compression Surface Tested at M = 10.4

The configuration for this case is the same as for the previous case
and is shown in figure 18. As with the previous case all data used here-

in are to be found in reference 26 except for the velocity profile data.

The experimental pressure distribution for M_ of 10.4 is shown in
figure 22(a) together with the analytically fitted curves. While the com-
pression is not severe, the pressure rise occurs over approximately 150
boundary-layer thicknesses. The boundary-layer edge conditions for this
case are nonisentropic because of bow-shock curvature. The nonisentropic
edge effect is illustrated by figure 22(b), which shows edge Mach number,
and figure 22 (c), which shows edge Reynolds number per foet. In these
figures the lines representing isentropic conditions according to the
experimental pressure distribution were made to match the data at the
first measuring station. The deviation of the lines from the data at the
second measuring station illustrates the extent of the nonisentropic edge
condition. The edge conditions for this case with M _ = 10.4 appear more

closely isentropic than at M _= 7.4.

Figure 23 shows the comparison of the predicted values and the ex-
perimental values of &* and 6 at the two measuring stations. The
enforced fit at the first station is seen. The agreement at the second

station is fair.

Figure 24 shows the comparison of the calculated and measured velocity
profiles at x = 2.17 feet. As with the previous case good agreement at

the upstream measuring station was obtained.

One point of difference between the M= 10.4 data and the
M_= 7.4 data for this configuration exists. At the higher Mach number
the boundary layer was tripped near the leading edge while at the lower

Mach number natural transition occurred.

Boundary-Layer, Shock-Wave Interaction Data
of Pinckney
Pinckney in reference 27 presents data for boundary-layer, shock-
wave interaction on a flat plate with a sharp leading edge and with an
incident oblique shock. The set of data used for comparison purposes is
represented by the runs of reference 27 numbered 46, 48, and 50. A 2-

foot-long flat plate lies ahead of the instrumentation area. The initial
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edge Mach number was 1.97 and the initial Reynolds number per foot was
8.48x10°.

The experimental pressure distribution for the present case is shown
in figure 25 together with the edge flow conditions. The pressure distri-
bution was fit with 5 segmented polynomials as shown in figure 25(a) for
use in the boundary-layer program. With this fitted pressure distribution,
the resulting edge Mach numbers and Reynolds number per unit length com-
puted using isentropic flow relations are seen to be in very good agree-

ment with the experimental values at the three measuring stations.

Initial conditions for this case were obtained from a locked-in flat-
plate solution started with values obtained from table II(b). The
momentum- and displacement-thickness comparisons are shown in figure 26.

A scatter band has been estimated for the data in figure 26 as indicated
on each point. It is seen that the experimental and theoretical values

of momentum thickness are in good agreement. The agreement for displace-
ment thickness, however, is not nearly so good as for momentum thickness.
Within the interaction zone the difference is about 20 percent of the dis-
placement thickness and after the shock impingement the difference is
about 15 percent. The agreement within the interaction zone is not ex-
pected to be good, but downstream the effect of shocks in the boundary

layer should damp out, and the agreement should improve.

Figure 27 presents the predicted skin-friction variation for this

case. However, reference 27 presented no skin-friction data.

In figure 28 the predicted velocity profiles are compared with the
experimental profiles. Ahead of the shock the theoretical velocity pro-
file agrees well with the data as shown in figure 28(a). The scatter of
the data occurred with one run. For the next measuring station, fig-
ure 28(b), the profile is in the interaction zone and the agreement is
not good. The experimental profile has taken on the appearance of a pro-
file near separation but the predicted profile has not. At the last
measur.ng station, figure 28(c), the agreement has improved over the pre-

vious measuring station.
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COMPARISON BETWEEN EXPERIMENT AND THEORY FOR
AN AXISYMMETRIC CONFIGURATION

Comparison has been made between predictions of the present theory
and a set of data (ref. 28) for a turbulent boundary layer on a axisym-
metric configuration consisting of a hollow, circular cylinder culminating
in a compression flare. The flare is of such shape that large pressure
gradients are generated normal to the compression surface at the test Mach
number of 5.75. Boundary-layer profiles of total pressure and static pres-
sure at a series of stations were measured as well as surface heat-transfer

rates.

In the following sections, several methods of comparison between
theory and experiment will be used. In reference 28, data have been cor-
rected for pressure gradients normal to the flare surface by the method
of reference 29, and the corrected data will be compared with the predic-
tions of present theory. In the second case, the present boundary-layer
theory will be adjusted for normal pressure gradients, and the adjusted

theory will be compared with the uncorrected data.

Description of Model and Data

A tabulation of the compression surface dimensions is given in
Appendix B of reference 30. The inclination of the compression surface

reaches an angle of 42° at its downstream end.

The pressures at the wall and the edge of the boundary laver as a
fraction of the free-stream total pressure have been read from figures 23
to 34 of reference 28, and these data are listed in table III. Since the
data are for even values of ¢, the x coordinates are not evenly spaced.
There is no pressure drop across the boundary layer at the beginning of
the flare, but the edge pressure is only about 50 percent of the wall

pressure for values of ¢ between 7.5° and 35°,

It is possible from the data of reference 28 to evaluate the stagna-
tion pressure distribution at the edge of the boundary layer and thereby
to assess the degree to which the flow outside the boundary layer is isen-
tropic. Both the edge static pressure, Pa>s and pitot pressure pt,, are
given as fractions of the free-stream stagnation pressure, Pt,- Even
though the edge stagnation pressure Pt is different from Pty» the
ratio of pe/pt2 should yield the local Mach number and the ratio
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Ptl/Ptz' The local stagnation pressure as a fraction of free-stream

1 1 2
= (11s6)
P Pt Py
oo 2 o]
In table IV the edge Mach number and total pressure ratio obtained by the

foregoing method are shown. It is noted that the edge total pressure in-
creases above the value of P¢, at first and falls beneath this value at

total pressure is then

a value of ¢ between 25° and 30°. Since in principle the edge total
pressure cannot exceed py , some unknown inaccuracy appears to be pres-
ent in the data. The theory presented herein does not account for total

pressure variations at the edge of the boundary layer.

Input Quantities for Computer Program

The slope of the compression surface has been fitted with segmented
polynomials in X to provide an input to the computer program. The
pressure distribution has also been fitted with segmented polynomials.

The details are included in Appendix B. In figure 29 the tabulated slopes
from reference 30 are compared with those given by the polynomial fits.
The second derivative dzr/dxa2 is also shown as determined from the
polynomials. A comparison of the pressure distributions given by the

polynomials with the experimental distribution is shown in figure 30.

In addition to the foregoing input quantities, the following gquan-

tities were used as initial conditions

~
M = 5,75
e
O
Tw/Tte = 0.634 P (117)
RE /b = 3.6x107
o v,

The initial values of the ci's were obtained using the gross pro-

perties method. The experimental values of the properties were

5; = 0.01333 ft

6, = 0.001066 ft (118)
cp = 6.32x107%

a
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The value of skin friction was obtained through Reynolds analogy using the
experimental value of the heat-transfer rate at the juncture between the
cylinder and the flare. The quoted value from figure 103 of reference 28
is
q, = 2.6 Btu/ftZ®~-sec (119)
a

In this case the experimental values for displacement thickness,
momentum thickness, and skin friction gave roots of the velocity gradient
polynomial in the range 0 < U< 1.0. In order to cure the problem the
momentum thickness was adjusted to force the roots to be complex. The
adjustment required was well within the experimental error, and the new

value of momentum thickness was 1.030x10™3 ft.

Comparison Between Prediction and Data
of Hoydysh and Zakkay

Comparisons are made between the predictions of the present method
and the displacement thickness and momentum thickness measurements of ref-
erence 28, as corrected therein for normal pressure gradients. Also, com-
parison will be made between predicted and measured Mach number profiles
rather than velocity profiles since the Crocco relationship was assumed in
obtaining experimental velocity profiles. Heat-transfer rates measured
on the compression surface will be compared with those obtained from the

computer program.

Pressure distribution.- It is of interest to know how the pressure

distribution acting on the compression surface compares with that pre-
dicted from shock-expansion theory. The shock-expansion static pressure,
Pges divided by that for ¢ = 0 1is shown in table III. It is seen that
the surface pressure lies slightly below the shock-expansion theory for
all values of ¢. Precise agreement would not be expected because of nor-
mal pressure gradients, nonisentropic flow at the edge of the boundary

layer, and boundary-layer displacement effects.

Reference quantities and corrections to data.- Corrections, which are

not always small compared to the uncorrected values, have been applied in
reference 28 to both displacement thickness and momentum thickness to
account for normal pressure gradients. The determination of these correc-
tions and the choice of reference conditions needs discussion. The defini-
tions of 8* and 8 contain a reference velocity and density, u,. and  p.,

as follows:
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5% = 1 - —+2—\a (120)

5
6 = f pu_ u_)dy (121)
r

Prir

The values of p and u at the outer edge of the boundary layer with the
normal pressure gradients present are not appropriate reference quantities
in this instance because we are "correcting" the data to the case of no
normal pressure gradient. Consider a purely inviscid flow in which the
pressure distribution is identical to that for the real flow but through-
out which the entropy is uniform. This "reference" flow is the basis for
both the reference conditions and the corrections. Let the primed symbols
refer to quantities in the reference flow. Then p& and u& are taken
to be the reference density and velocity for the present purposes in
accordance with the work of references 28 and 29. The quantities p&

and u& are also the values of p and u at the edge of the boundary
layer if the static pressure there were brought up to wall pressure at
constant free-stream entropy. As such they represent edge conditions for

no normal pressure gradients. Accordingly, we have

o}
JIGEOE
Pl
O
o}
m B[wa uw Y (

The correction procedure is a gross one based on the assumption that
the values of 6* and 6 for the reference flow can be subtracted from
the values for the real flow to account for normal pressure gradients. The
theoretical basis for such a procedure does not seem to be given in refer-

ences 28 or 29. However, on the basis of such an assumption, we can write

6 =06_._ + 6. (124)
m vis in

* _ g%k *

5m 5,is t 05n (125)

48



The inviscid values of 6 and 6%, which represent the effect of normal

pressure gradients, are thus written

o}
* pru’
6in = f <l - p,u,>dy (126)
wow
o
o)
- p'u’ u'
Oin = Jr prual 1 -5 )y (127)
3 wow w
In the reference flow the velocity u' increases as distance from the

wall increases since the static pressure is falling and the complete flow

is isentropic. Accordingly, the ratio u'/u& is greater than unity and

ein is negative. Since the Mach number increases supersonically as we
move away from the wall, the ratio p'u'/p&u& decreases below unity, and
8% is positive.

in

Displacement and momentum thicknesses.- The §*%* comparisons are

shown in figure 31{(a), and the 6 comparisons are shown in figure 31 (b).
*
vis
as obtained from equation (125). Comparison of 63is with the prediction
of the present computer program shows good agreement even at large values

In figure 31(a) the circles represent 6;, and the squares represent &

of ¢. The corrections to the data are generally a large percentage of

the uncorrected values. At large values of ¢ the theory is invalid.

In figure 31(b) the comparison between experiment and theory for &
shows good agreement. The data in this figure represent revisions to the
corresponding data of reference 28 in accordance with a private communica-

tion received from an author of that report.

Heat-transfer rate.- Heat-transfer rates were measured at a number

of points on the compression surface. The ratio of the local heat-transfex
rate to that at the beginning of the compression surface has been deter-
mined from the present computer program for comparison with these data.
The ratio has been obtained from the Reynolds analogy.
Ly Cs
St = e — = —== (128)
cppwuw(Tte Tw) 2
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The ratio of heat-transfer rates is then

G _ (Cepyty)

qwo - (cfpéu&)o

(129)

The calculated and experimental values of these ratios are shown in fig-

ure 32. The general agreement between theory and experiment is good.

Mach number profiles.- A comparison between the prediction and experi-

mental Mach number profiles is shown in figure 33 for various values of ¢.
At the beginning of the flare, ¢ = 0, the profiles are in fair agreement.
The Mach numbers at the edge of the layer are identical since no normal
pressure gradients are present. As ¢ increases the experimental Mach
number at the edge of the boundary layer becomes greater than the predicted
Mach number because the edge pressure is less than wall pressure. For

o = 5°  an adjustment has been made to the theoretical Mach number pro-
file to account for normal pressure gradients. It has been assumed that

at any point in the boundary layer the static pressure drops isentropically
from the wall value to the local measured value. Accordingly, the local
Mach number increases. There is little change in profile in the inner
layer, and the profiles come into good agreement in the outer part of the
layer. At large values of ¢, the boundary-layer thickness is underesti-

mated.

Adjustment of Boundary-Layer Calculation for
Normal Pressure Gradient

The method of correcting boundary-layer data for normal pressure gra-
dients as done in references 28 and 29 makes use of experimental values
of the boundary-layer thickness and the static and total pressure profiles.
The corrected data are then compared with boundary-layer theory. It is
of interest to reverse the above process and predict the experimental
boundary-layer characteristics by adjusting boundary-layer theory for nor-
mal pressure gradients. Since the experimental values of the boundary-
layer thickness and the pressure profiles are not available for this pur-

pose, some additional assumptions are required to carry out the adjustment.

An approximate method for adjusting boundary-layer theory for normal
pressure gradients was formulated on relatively simple grounds. The

method furnishes first approximations to the magnitude of the corrections
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to 6* and © due to normal pressure gradients and indicates how impor-
tant normal pressure-gradient effects are on boundary-layer guantities in

any particular case.

Normal pressure gradients.—- One of the first problems is to estimate

the magnitude of the normal pressure gradients. An estimate can be
obtained from a method of characteristics solution for isentropic flow
over the compression surface. If such a solution is unavailable, a simple
method based on shock-expansion theory can be used. According to refer-
ence 31, the equation for the pressure gradient normal to the streamlines

of a compressible isentropic flow is

%E = —pv Tk (130)

where v is the wvelocity along the streamline and kS is the curvature

t
of the streamline given by

dzr/dxaz
kS = (131)
2
V1 + (ar/ax )
If M is the Mach number at the wall obtained from shock-expansion
theory, equation (130) becomes
1 Jdp _ >
> 5% = -YM 2k (132)

Equation (132) yields a simple first approximation to the magnitude of

the normal gradients.

Ejuation (132) has been applied to the flare of reference 28. The
values of dra/ds given in Appendix B of reference 30 were used in evalu-
ating kS in equation (131), and the first differences of dra/ds were
used to evaluate azra/asz. The Mach number M_ = based on shock-expansion
theory applied to the flare slope were also used. The calculated curve
of (1/p) (dp/dn) is shown in figure 34. Also shown in this figure are
the experimental values of (l/pw)(pw - pe)/é. This parameter represents
the average value of the normal pressure gradient across the boundary
layer. For values of ¢ below lOo, the predicted results exceed the
experimental results. It is noted that at the flare-cylinder juncture

the curvature jumps almost discontinuously from O to a finite value
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(fig. 29). The flow at the wall may respond immediately to this discon-~
tinuous change, but the entire boundary layer cannot. In fact in this

case it takes about 8 boundary-layer thicknesses for the entire boundary
layer to achieve the predicted normal pressure gradient. At angles much

above 25° the normal pressure gradients are underpredicted.

Adjustments to 8* and 6.~ The adjustment of the Mach number pro-

file for normal pressure gradients discussed in connection with figure 33 (b)
suggests an approach for estimating incremental values of 6* and & due
to the gradients. The adjusted Mach number profile is obtained by permit-
ting the pressure at all points in the boundary layer to fall from wall
pressure to local static pressure at constant local entropy. As shown in
figure 33(b), the effect near the wall is negligible so that no change in
skin-friction coefficient is involved. However, the velocity profiles

are changed significantly in the outer part of the layer, and in particu-~
lar the edge conditions are brought into agreement. The incremental values
of 6* and 6, namely Ad* and AH, are then simply the differences in

8* and 6O between the adjusted profile and the unadjusted profile. 1In
this scheme the increments are calculated for a small perturbation of the

boundary-layer profile.

Let values of u, p, 6%, and 6 predicted by boundary-layer theory
be indicated by Ups Ppo 6;, and Qb’ respectively. Let the symbols with
a subscript "c" correspond to the "adjusted" Mach number profile. Then

using the former reference conditions, Py, and u., we have

é o, U
* b b
6, = 1 -—/—]d 133
b [( pwuw> Y ( )
o
o)
Pp'p Yp
6, = —_1 (1 - — )d 134
b fpwuw ) (34)
S)

Note that at the edge of the boundary layer

pb_ pw
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From equations (120) and (121), the values of 6; and ec for the
adjusted profile with the same reference conditions are

5
&% = Jf _ Pele dy (135)
c p&u&
O
5

o = Pele 1 ><i (136)
c f Patey Y
o]

The incremental values Ad* and AO due to normal pressure gradients

are then

AS* = 5; - &% (137)

A =96 - 8 (138)

The value of & used in these formulas corresponds to y for U = 0.999.
No adjustments were made for the expansion of the local stream tubes dur-
ing the expansion from the conditions denoted by "b" to those denoted by
"c¢". Such adjustments, if made, would introduce a stretching of the vy

scale.

In order to test these prediction techniques the values of 6; and
Gc with normal pressure gradients have been predicted for the compression
flare case of reference 28. The predicted Mach number profiles in fig-
ure 33 were adjusted using the experimental static-pressure distributions.
The experimental static-pressure distributions were used so that any
errors in static-pressure prediction would not mask the accuracy of the
boundary-layer adjustment calculation. The adjusted values of 5; and
Gc are compared with the data of reference 28 in figures 35(a) and 35(b),
respectively. The predictions of &* and 6 are considered fair. The
data of figure 35(b), like those of figure 31 (b), represented revisions

of the corresponding data in reference 28.

TURBULENT BOUNDARY-LAYER, SHOCK-WAVE
INTERACTION MODEL

The present computer program has been used to make detailed studies

of the interaction between turbulent boundary layers and obligque shock
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waves with a view to developing a boundary-layer model for studying such

interactions. On the basis of the studies a promising model is proposed.

In turbulent boundary-layer, shock-wave interaction, the shock wave
penetrates deeply into the boundary layer, and the usual boundary-layer
assumption of constant pressure across the boundary layer is not met
{(ref. 32). This fact requires the concept of an ideal boundary-layer
model for such interactions. The ideal boundary-layer model results from
the solution of the turbulent boundary-layer equations for the given
experimental pressure distribution assuming the static pressure to be
constant across the boundary layer. The part of the boundary-layer flow
for the ideal model beneath the ¢&* 1line should correspond closely to
the part of the real flow beneath the &* 1line. The outer boundary-layer
flow will not be in good agreement with the real flow because of the pres-
ence of shock waves in the real flow. Based on.the results of Watson,
Murphy, and Rose in reference 32, there is reason to expect that a real-
istic outer flow solution with shock waves may be obtained by the use of
a technique such as the rotational inviscid method of characteristics.

The technique should be able to handle a curved obligque shock of variable
strength in the outer flow and at the same time account for its reflection

from the boundary at which the inner and outer flows are joined.

The applicability of the free-interaction principle to turbulent
boundary-layer, shock-wave interaction is limited. Consider the upstream
pressure fields including possible separation pressure fields induced by
various downstream means, such as an incident shock or a forward-facing
step. If for given initial conditions {(Mach number, Reynolds number, and
temperature ratio) at the beginning of interaction, the induced pressure
distribution is independent of the means of inducing it, free interaction
is said to exist. Chapman, Kuehn, and Larson, reference 33, point out
that free-interaction for turbulent layers is valid up to separation or
slightly downstream in contrast to laminar layers for which free interac-
tion appears valid well downstream of separation. Thus, even though the
incident shock causes separation of a turbulent boundary layer, we might
expect a free-interaction principle to be valid up to the separation point
but not beyond. The actual principle governing free interaction for tur-
bulent boundary layers need not necessarily be the same as that for laminar

boundary layers.
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Insight into the plausibility of the ideal boundary-layer model for
turbulent boundary-layer, shock-wave interaction has been obtained by
applying the present computer program to the case of a shock wave inci-
dent on a flat plate. Consider the case covered by figures 14 to 17 for
which the oblique shock wave is generated by a 59 wedge and is incident
on a turbulent boundary layer on a flat plate at an edge Mach number of
6.55. The experimental wall pressure distribution has been imposed on the
boundary layer as if the pressure were uniform across the layer and the
detailed flow field calculated. Figure 36 shows the shapes of an outer-
edge streamline and of the &% line. The experimental pressure rise

begins very sharply at x = 1.88 ft as shown in figure 14.

The slope of the 6* 1line is shown in figure 37 as a function of x
as obtained from the computer program. The &% line changes its slope
from a maximum to a minimum in about one boundary-layer thickness. In
the ideal boundary-layer model, we assume that the change in dé&*/dx
occurs discontinuously just as in the model for laminar boundary-layer,
shock-wave interaction (ref. 34). The dotted line in the figure corre-
sponds to such a discontinuity with the total area under the dé*/dx

curve unchanged so that the final 6* is unchanged.

A free-interaction pressure law is now postulated based on the calcu-
lated flow model. At the point of shock impingement the static pressure
and Mach number must be continuous at the edge of the layer even though
the &% line changes discontinuously in slope. Let us start at point B,
figure 37, with the same static pressure and Mach number as at point A
and apply shock-expansion theory to calculate a pressure distribution
based on dé*/dx. If this is done, the pressure distribution shown in
figure 38 is obtained. The calculated distribution is seen to be in fair
agreement with the experimental pressure distribution. One difference is
a parallel shift near the beginning of interaction because no account was
taken in the free-interaction model of the small extent of upstream influ-
ence of the oblique shock. Application of shock-expansion theory to the
outer-edge streamline yields a compression ratio of the order of 10 rather
than 4. This result tends to indicate that the use of the §&6* 1line in
the free-interaction pressure law is to be preferred to the use of a

streamline near the edge of the boundary layer.

55



CONCLUDING REMARKS

A new technique has been developed for calculating the characteris-
tics of turbulent boundary layers under the action of prescribed pressure
gradients on two-dimensional or axisymmetric bodies. The technique is a
new application of the method of integral relations previously used suc-
cessfully to predict the characteristics of separated laminar boundary
layers. An eddy-viscosity model has been developed for use in the turbu-
lent boundary-layer equations, and a computer program has been written to
solve the equations with prescribed pressure gradients for flows from low

speeds to hypersonic speeds.

A number of methods of obtaining initial conditions are described.
Difficulty was experienced in obtaining good initial conditions in some
cases, and the best means for any particular case depends on the initial

data available as well as the configuration.

The computer program has been applied to a number of two-dimensional
cases for which data are available. From comparisons with low-speed data
it was found that generally good agreement was obtained in favorable pres-
sure gradients. In unfavorable pressure gradients the calculated quan-
tities departed from the measured quantities ahead of separation. It is
known that the analytical velocity-gradient representation used in the
program is not valid at separation, but the lack of agreement upstream of
separation is not necessarily all due to this factor. For instance, the
validity of the eddy-viscosity model at separation has not been proven.
Also, in at least one of the two low-speed cases, the two dimensionality
of the flow approaching separation is open to question. No separated

layers were studied at high speeds.

A number of comparisons were made for high-speed boundary layers on
flat and curved two-dimensional plates. For the flat plate at hypersonic
speeds good agreement is obtained between the theoretical and experimen-
tal displacement thicknesses, momentum thicknesses, and velocity profiles.
For the curved plates, generally good agreement was obtained for displace-
ment and momentum thickness at M = 10.4, but poor agreement was obtained
at M_= 7.4. The results for the curved plate are clouded by difficulty
in obtaining accurate initial conditions due to the paucity of initial
data and by nonisentropic flow at the edge of the boundary layer. The
desirability of including nonisentropic edge effects in an enhanced com-

puter program is apparent.
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In the case of incident oblique shocks interacting with turbulent
boundary layers on flat plates, the pressure gradients are very large and
the pressure rise occurs typically in 10 boundary-layer thicknesses. Also,
the shock wave penetrates so far into the boundary laver that the usual
assumption of constant pressure across the boundary layer is violated. 1In
the application of the computer program to hypersonic, boundary-layer,
shock-wave interaction, it is expected that quantities sufficiently far
downstream of interaction will be well predicted. However, in the inter-
action region accurate predictions would not be expected. The program
has shown good to poor results in predicting these downstream quantities
for the two cases investigated. The interpretation of the comparisons has
been clouded by questions concerning the accuracy of the experimental

results. More comparisons with data of known accuracy are required.

The computer program has been applied to only one axisymmetric con-
figuration consisting of a hollow circular cylinder culminating in a com-
pression flare. The compression flare had sufficiently large curvature
that significant pressure differences occurred between the wall and the
outer edge of the boundary layer. Applying the computer program to the
configuration yielded good agreement between predicted and measured heat-
transfer rates and displacement thicknesses provided corrections were
applied to the data to account for the normal pressure gradients. Fair
agreement was obtained between experimental Mach number profiles and the
predicted profiles by adjusting the predicted profiles to account for nor-
mal pressure gradients. The adjustment for the Mach number profile also
yvields adjustments for the displacement and momentum thicknesses. After
adjustment fair agreement was obtained between experiment and theory for

displacement thickness and momentum thickness.

A study was made of an idealized boundary-layer model for shock-wave,
boundary-layer interaction by calculating the detailed flow field of such
an interaction using the computer program. It was found that the stream-
lines undergo a nearly discontinuous change in slope where the pressure
rises due to shock impingement. It was also found for the one case
studied that application of the shock-expansion theory to the &% 1line
yielded a good prediction of the prescribed pressure distribution, whereas
the same theory applied to a streamline at the outer edge of the flow did
not. These findings suggest that a free-interaction model successfully
used to predict laminar boundary-layer, shock-wave, interaction may be
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adapted to the turbulent case for pressure ratios up to those for incip-
ient separation. The idealized model will not predict the shock structure

resulting from penetration of the oblique shock into the boundary layer.

A computer program has been written using an analytical velocity-
gradient representation which is mathematically capable of representing a
separated velocity profile. A run made with this program for a low-speed
boundary layer on a flat plate gave valid skin-friction results out to a
Reynolds number of about 108. The program is much slower than the main
program used herein, but it represents the first step toward a program

which will go to separation.

Nielsen Engineering & Research, Inc.
Palo Alto, Calif.
July 1968
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APPENDIX A

EDDY-VISCOSITY MODEL

The eddy-viscosity distribution for compressible nonadiabatic turbu-
lent boundary layers is basically an incompressible distribution trans-
formed to the compressible plane. In the following development the incom-
pressible model will be derived first and will then be transformed.

Incompressible Eddy-Viscosity Model

The incompressible model used is well known. It consists of an
inner layer, where the shear is assumed constant, and an outer layer
where the eddy viscosity is assumed constant. Within the inner layer the
eddy-viscosity parameter B is obtained from an assumed velocity profile

with the help of the following relationship:

~

B =xcm— (A-1)

1 (du/3dy)
(Tildes will be used to indicate quantities for a constant density turbu-
lent boundary layer.) This equation becomes nondimensional in terms of
standard velocity correlation coordinates. Velocity correlations are

usually made on the basis of the friction wvelocity, which is defined as

- Cg
U T “e VT (A-2)
and a Reynolds number E based on distance from the wall
> T
£ === (A-3)
v

In the inner layer the velocity ratio G/GT is basically a function only
of the Reynolds number E. With these standard definitions the equation

for the eddy-viscosity parameter can be rearranged as follows:
5 = /P b _ 2t
~ ~ ~ o~ = ~
- B(u/uT) u_ /v a(u/uT)
3 (yu /v)

(a-4)
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With the assumption of constant wall shear within the inner layer it
is seen that only a velocity profile is required to evaluate 5. For the
present eddy-viscosity model a laminar sublayer is used together with a
law-of-the-wall region. The law of the wall, given by a logarithmic equa-
tion, is based on Prandtl's mixing length theory and the assumption that
shear is constant across the layer at the wall value, reference 35. The

velocity profile obtained from these assumptions is:

Laminar sublaver:

a ~ ~ ~
— =t 0t <, (a=5)
u
T
Law-of-the-wall region:
a ~ ~ ~ ~
=~ = A 1n bg o<ty (a-6)
U
where
Zf = value of Z at outer edge of laminar sublayer = 10.6
A = 2.43
b= 7.5

~

Cm value of E at outer edge of inner layer

The numerical values for Cf, A, and b are those of Clauser, ref-
erence 17. Using equation (A-4) along with equations (A-5) and (A-6)
gives the following eqguations for the eddy-viscosity distribution within

the inner layer

. 0 <t < 10.6
B =1 ~ o~ (a-7)
0 < u/u < 10.6

~ 4 ~ ~
B =z 10.6 < £ < B
or - o~ (a-8)
1 (/B) (W/u) ~ o~ ~ o~
B=x5e 10.6 < u/uT s_(u/uT)m
The distribution for the inner layer is shown in figure 1. It will

be noted that the foregoing equations provide a distinct discontinuity in
the eddy-viscosity distribution at G/GT of 10.6. 1In order to prevent
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this discontinuity from causing numerical difficulties in the evaluation
of the eddy-viscosity integrals, the fairing between the laminar sublayer
and the law-of-the-wall region, shown in figure 1, was utilized. This

fairing was selected arbitrarily, and is given by

- _ K [(E/GT)_v.es]

B 7.95 < u/u_ ¢ 13.95 (a-9)

where

_ 1 13.25
K £3 [ 5 43 ~ 1n(18.225)]

0.48111 (a-10)

The final distribution for the inner layer is composed of three sec-

tions; a laminar sublayer part, a fairing, and a law-of-the-wall part.

For the outer layer or wake region only one section will be required.
Here the eddy viscosity for an incompressible constant density turbulent
boundary layer is a constant as postulated by Clauser, reference 17. The

expression used for calculating the value of 5 for the wake is

~

B = 0.018 R (A-11)

fokad
The boundary between the inner and outer layers is obtained by matching
the value of E obtained from the inner layer to the value of 5 given
by Clauser's relation. When the match point falls on the law of the wall,

the relation for determining the value of E/GT at this point is

—— = 2.43 1n(0.32805 Ry,) (a~12)
u

T

Compressible Eddy-Viscosity Model;
Inner Layer

The compressible eddy-viscosity model is obtained using the Baronti-
Libby transformation for the inner layer and using density scaling in the
outer layer. Baronti and Libby (ref. 14) uséd Coles' transformation
(ref. 15) coupled with Donaldson's hypothesis (ref. 16) to collapse com-
pressible velocity profiles onto the incompressible law of the wall. The
agreement between the incompressible law of the wall and compressible

velocity profiles transformed to incompressible profiles is good everywhere
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except in the wake. This type of agreement leads to a compressible, non-
adiabatic eddy-viscosity model based on two layers. The model from the
wall out to the wake is a transformed incompressible eddy-viscosity model.
In the wake region Clauser's constant eddy viscosity is scaled for local
density. The eddy-viscosity model for the inner layer is constructed as

follows.

Given in the compressible plane the two basic boundary-layer proper-
ties, skin friction and displacement thickness, along with all flow con-
ditions at the boundary-layer edge, it is required to construct an eddy-
viscosity distribution. The first step in determining the parameters
specifying the equivalent incompressible eddy-viscosity distribution is

to establish the transformations to be employed. Consider the Coles’

transformation:
E-im (a-13)
& - £ (a-14)
4 P

and a streamline stretching factor o(x), defined by
V(x,¥) = o(x)y(x,y) (a-15)

The stream functions are defined in the usual way

pu = g—;‘é pv = - %—i (A-16)
AT L4 (a-17)
Ay I

Under these transformations it can be shown that at corresponding points

a _u w = A2 (a-18)
u g
e ue

To establish the parameters for the equivalent incompressible model,

consider the wall shears
~ ~( du ) ( Bu)
T = W <—~ T = UL (A—lg)
w 37 / w w\ Oy -
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and form their ratio

o ~—~
w9 (a-20)
TW pW“’W T]2

From equation (A-20) we obtain the first basic equation used in finding
the equivalent incompressible model

~ P ~
=& _K_ c (A~21)

C
£ Ry O °F

The starting point for obtaining a second equation is Donaldson's
hypothesis, which states that the Reynolds number for the laminar sublayer

edge is preserved during the transformation.

~e~ A

PeleYe  PUg¥s
he ~

(r-22)
W

After rearrangement and use of the y transformation to obtain the

stretched coordinate, equation (A-22) yields

&
HeO _ P He 1 pe) ~
<)) ] (B (-2
28 € £ Cf
e}

Using the Crocco relationship and the constancy of pressure across the

boundary layer yields the following relationship for density

T
Pe_ 1 S ( fo_ Ty w ( So_{y/u¥ (A-24)
p T T T Te ug Te Ug
For the laminar sublayer equations (A-2) and (A-18) give

. 1/= - /2
u u u f ~ £
il “z—) - c(—;) (8-23)
e u

Integration of equation (A~23) with the help of equations (A~24) and (A=25)

yvields the desired second equation.

63




T 1/2

L)) =23
E Pe K Te Te 2 2

T ~ ~
t c .2

-2 1><—2£) L (A-26)
e

Since Ef is just a number equal to 10.6, the parameter uec/a and the

mva' s:—a

incompressible skin-friction coefficient can be obtained from equations
(A-21 and (A-26) by iteration. With these quantities, the incompressible
eddy-viscosity 5 for the inner layer as a function of u/ue can be
determined from equations (A-7) and (A-8) with the help of equation (A-25).

It remains only to determine the relationship between E and the

compressible eddy-viscosity parameter, . In general
T
B = Tu (A—27)
u.§§

For the inner zone it is assumed that the shear is constant at the wall

value so that
Tw
S T (r-28)

Applying the transformation to this equation yields the desired relation-

ship between B and 5

_ pwuw) ~ -
B = (_pT B (A-29)

In accordance with the assumption of the boundary-layer analysis pu is

assumed constant across the boundary layer so that
B=258 (A-30)

This relation completes the information required to determine the com-

pressible eddy-viscosity distribution across the inner layer.
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Compressible

Eddy-Viscosity Model;

Outer Layer

The eddy-viscosity distribution for the outer layer will now be de-

veloped, but first the boundary between the inner and outer layers will

be determined.
the following definitions

To aid in obtaining the point of the join,

consider first

& 5 a
3% = 7‘1— dy 5% = 1 - Y ay
u pee
o
~ (A-31)
3 5
~ u u pu u
6= | 2(1-2)\a o = 1 --2)a
5 5 )y e (1 0)
5 e e 5 J

If the quantity Ré*

boundary-layer parameters,
the value of B = 5

then

at the join.

can be determined in terms of compressible

equation (A-11l) can be used to determine

The value of R can be approximately

S *

determined by applying the Baronti-Libby transformation across the entire

layer.

T

Ré*

where

ok

&%

o*

The value of the eddy-viscosity

(%

The relationship obtained by this means is

Ty

meRQ) (a-32)

) s

(A-33)

I
=

parameter at the join is
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N - T, [ KO
Bm =B = 0.018 Ré* = 0.018 T \ —= (Ré* - meRQ) (A-34)
w K
In developing equation (A-32) application of the transformations

across the entire layer was made only in integral quantities defined by

equation (A-31) to obtain the following relationship

. T_ p.7
5% = 7= —— (6% - m_0) (A-35)
W p e

It is believed that use of the Baronti-Libby transformation to obtain
the velocity profile for the entire boundary layer is probably warranted
in this case for two reasons: (1) the principal contributions to the
integrals will come from the inner layer, and (2) the velocity relation-
ship established by the transforms is valid out to the join and at the
boundary-layer edge, that is,

= == (A-36)
e u,
For the limiting case of zero Mach number and adiabatic walls, the incom-

pressible results are obtained.

~

While the eddy-viscosity parameter B8 1is constant across an incom-
pressible wake according to equation (A-11), it is variable across a com-
pressible wake because the density and molecular viscosity are not con-

stant. Consider the definition of the eddy-viscosity parameter

Pl - Twoy (a=37)

]
where in this expression vy is the time average of the product of the
turbulent components of the u and v velocities. The other symbols
used represent time-averaged quantities. 1In the wake region the turbulent

fluctuations dominate and, therefore,

—_—

v,
~  PYVy

B = Tu/Sy) (A-38)
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In the wake the eddy-viscosity parameter varies directly as density and,
inversely, as viscosity. The earlier assumption that pp is constant
leads to the result that B must vary as density squared. Assuming that
the value of Bm at the join is correct as given by equation (A-34), the
value of B in the wake becomes

2

B = Bm(p%n> (a-39)
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APPENDIX B

ANALYTICAIL EXPRESSIONS FOR
AXTISYMMETRIC COMPRESSION SURFACE SHAPE
AND PRESSURE DISTRIBUTION

To obtain an analytical expression for the shape of the axisymmetric
compression surface of reference 30, the values of ¢ in that reference
were converted to slopes by

dr

o~ tan ¢ (B-1)
a

and the slopes were fitted for various segments of the flare with poly-

nomials of the form

4
dr _ (n-1)
e Z o %, (B=2)

n=i1

The coefficients were determined by requiring continuity of dr/dxa and
d2r/dxa2 at the segment boundaries. For the purpose of describing the

shape, equation (B-2) was integrated and the condition of continuity of

r was imposed. The axial distance was expressed in feet measured from

the beginning of the cylinder with 2.433 feet corresponding to the

cylinder-flare junction. In terms of this axial distance coordinate, x'

a’
the flare shape is given by
2.433" S_x;_g 2.450" 0 < x, 0.2
r = -10944.853 + l7882.088xé - 10955.539x.2
+2982.9787x;3 - 304.56572x;4 (B-3)
2.450' < x| < 2.68333" 0.2" < x_ < 3.0"
r = 4.1741342 - 5.0248867x; + 2.5800906x;2
-0.6796182xa'13 + 0.078720188xé4 (B-4)
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2.68333' < x! < 2.85' 3.0" < x, < 5.0
r = 374.23568 - 552.88734x! + 306.72432x]2

—75.718106xé3 + 7.020943xé4 (B-5)

2.85' < x! < 2.9333 5.0" < x_ < 6.0"
r = 3244.3716 - 4561.6647x! + 2406.3524x!>

-564.46037xa'18 + 49.682652xé4 (B-6)

Another input into the computer program is the pressure distribution.
The pressure distribution existing at the wall was used rather than that
acting at the outer edge of the boundary layer. The polynomials describ-

ing the wall pressure distribution are as follows:
0 L x,0.8"

12
5——-= 3399.0535 - 3992.2842xé + 1559.6654Xé2 - 202.55691Xé3 (B-7)

w
o]

0.8" < x_ £ 2.0"

P
53— = -2876.0597 + 3481.6263x) - 1407.4084x!% + 190.0542x!3 (B-8)
w

2.0" < x_ < 4.0"

P

E§L-= -5730.5403 + 6670.1398x) ~ 2593.3295x!% + 336.91196x'®  (B-9)
w
o

4.0" < x_ £ 5.0"

b,
52— = =-34461.726 + 38775.59xé - l4541.502x52 + 1817.872xéa (B-10)

Yo

5.0" ¢ %, < 6.0

P
W _ = 207461.82 -~ 209345.92x! + 70225.728x'% - 7828.2407x 3 (B-11)
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TABLE I

INITIAL CONDITIONS OBTAINED BY FITTING ZERO-PRESSURE-GRADIENT,
INCOMPRESSIBLE, TURBULENT, VELOCITY PROFILES

(a) m= 1, n= 2
No root Root
R —
X ——
c1 c, c, [6] cl c, Cg
104 2.1834 -3.1217 3.1702 0.4404 1.4489 -0.9421 | 1.6951
10° 1.0944 -1.9771 3.72943 .2116 .5038 - .1600| 1.8398
10° .5485 -1.2686 3.8569 .1046 L1772 .0961 | 1.5134
107 .2749 - .7925 3.5096 .0598 .0672 .1261 ] 1.1661
108 .1378 - .4934 3.0471 .0375 .0267 .1000 .8762
(b) m=1, n=5
No root Root
RX —
Cc o] c c c c
1 2 3 1 2 3

104 2.1834 -1.9547 4.,3483 | 0.3337 1.2613 -0.1125 2.3114
10°% 1.0944 - .9677 12.3504 .3544 .6520 - .0035 9.4340
10°© .5485 - .5044 28.6241 L7777 .4832 - .2201 | 29.8697
107 .2749 - .2577 55.2333 [ 1.2127 .3029 - .1900 | 67.8473
108 .1378 - .1314 98.8472 .5655 .1037 - .0273 | 88.5148




TABLE II

INITIAL CONDITIONS FOR A FLAT PLATE

74

(a M=0, R, = 10°
O
T
- x c c c o* e c
Tt 1 2 3 £
e (ftx109) (£tx10%) (x10%)
1.0 | 0.54 | - 3.18 | 11.8 2.88 2.16 3.73
1.0
10.0 .79 | -12.5 75.6 19.74 15.13 2.53
1.0 .50 | - 3.25 12.2 1.76 2.21 4.04
0.6
10.0 .70 | -12.5 81.0 12.87 16.43 2.85
1.0 A7 ) - 2.95 | 11.7 .58 2.18 4.26
0.2
5.0 .57 | - 8.40 | 48.6 2.51 9.64 3.51
(b) M= 2, R, = 2.5%x108
i
v *
Tt X c, c, c8 o) 2] Cg
‘e (££x10%) (FEx10%) (x103)
1.0 | 0.51 | - 3.40 | 12.4 4.47 1.41 2.48
1.0
10.0 .79 | -12.90 77.0 30.5 9.71 1.60
1.0 .46 | - 3.40 | 13.3 3.41 1.53 2.75
0.6
10.0 .68 | -12.90 | 85.0 24,2 10.94 1.86
1.0 .42 | - 3.40 | 13.5 1.96 1.54 3.01
0.2
10.0 .58 | =12.90 94.5 15.7 12.42 2.20




TABLE II

CONTINUED
() M=24, R, = 2.5x10°
o
T
A X c c c &% e e
Tt 1 2 a3 £
e (£tx103) (£tx103) (x10%)
1.0 0.76 - 3.60 11.0 10.88 1.22 1.66
1.0 -
10.0 1.21 -12.5 57.0 58.70 6.76 1.05
1.0 .69 - 3.48 11.2 8.29 1.26 1.83
0.6
10.0 1.07 ~-12.5 61.0 47.67 7.35 1.18
1.0 .63 - 3.25 11.4 5.70 1.32 2.01
0.2
10.0 .93 -12.5 67.0 35.45 8.25 1.36
(@ M= 6, R, = 2.5x10°
Tw X c c c &% e c
Tt 1 2 3 £
e (£ftx103) (££x103) (x10%)
1.0 1.00 - 3.70 9.9 20.64 1.10 1.26
1.0
10.0 1.70 -12.45 46.0 93.39 5.19 .74
1.0 .91 -~ 3.55 9.8 15.31 1.09 1.39
0.6
10.0 1.50 -12.30 48.0 74.71 5.47 .84
1.0 .87 - 3.56 10.0 10.47 1.11 1.45
0.2
10.0 1.35 -12.10 52.0 57.01 6.10 .94
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TABLE IT

CONCLUDED
() M=28, R, = 3.2x10°
o

X c le] c &% 0 c
1 2 3 £
(ftx102) (ftx103) (x103)
1.0 1.24 - 4.10 9.3 32.7 1.00 1.02
10.0 2.13 -12.40 39.0 132.0 4.23 .59
1.0 1.11 - 3.68 8.4 22.4 .90 1.14
10.0 1.94 -12.00 41.0 108.8 4.57 .65
1.0 1.12 - 3.80 9.8 18.5 1.10 1.13
10.0 1.75 -12.00 44.0 81.9 4.98 .72




TABLE III

TABULATED PRESSURE DISTRIBUTIONS FOR
COMPRESSION FLARE OF REFERENCE 28

s | x | B | P | Bwo | Pe | Pee
Py Pt Pg Pq Pg
o e} o] O O
(degs) (ins.) (x10%) (x10%)

0 0 0.80 0.80 1.00 1.00 1.00
2.5 0.67 1.0 .80 1.25 1.00 1.41
5 1.27 1.40 .83 1.80 1.04 1.96
7.5 1.86 1.85 .95 2.31 1.19 2.68

10 2.43 2.62 1.37 3.28 1.71 3.63
15 3.42 4.50 2.37 5.63 2.96 6.25
20 4.27 7.70 3.90 9.63 4.88 | 10.38
25 4.88 12.6 7.3 15.8 9.13 | 16.42
30 5.31 18.8 9.1 23.5 11.4 25.4
32.5 5.49 22.9 10.4 28.6 13.0 30.8
35 5.62 27.4 12.0 34.3 15.0 37.4
37.5 5.76 32.4 11.6 40.5 14.5 44.9
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TABLE IV

MACH NUMBER AND TOTAL PRESSURE DISTRIBUTIONS
AT EDGE OF BOUNDARY LAYER FOR FLARE
OF REFERENCE 28

, P Pe_ y Pe,
Py P e P,
o o ®
(degs) (x10%) (x103)

0 0.80 34 5.78 0.98
2.5 .80 34 5.78 .98
5 .83 35.5 5.73 .99
7.5 .95 41 5.75 1.16

10 1.37 53 5.45 1.20
15 2.37 76 4.95 1.18
20 3.90 106 4.55 1.21
25 7.30 148 3.92 1.00
30 2.10 156 3.60 .80
32.5 10.4 164 3.45 .74
35 12.0 188 3.43 .83
37.5 11.6 194 3.55 .95
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Figure l1l.- Eddy-viscosity parameter distributions for turbulent
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