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ABSTRACT 

This thesis presents two designs for a pitch orientational flight control 

Both designs employ control techniques based on Liapunov's direct system. 

method which are  used in conjunction with system state estimation. One design 

yields a non-linear control law and the other a linear control law, with a linear 

estimation technique being used in both cases. 

The designs are developed using approximate models of the system com- 

ponents, and very satisfactory experimental results are obtained using these 

approximations. A stability problem arises, however, when the higher order 

dynamics of the system are considered. This problem is overcome in the linear 

design by including proper compensation in the controller. 
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One of the well known and major phenomena encountered in the design of 

aircraft flight control systems is that the transient response of the aircraft 

changes considerably for different flight conditions. With the advent of the high- 

performance, variable-geometry type of aircraft, this variation is becoming 

even more pronounced due to the expanding environment in which the aircraft 

may operate. In m a y  of the earlier flight control designs, the dynamics of the 

control system was a function of air data measurements so that satisfactory 

handling qualities over the entire flight regime could be obtained. This entailed 

extensive wind tunnel analyses and in-flight calibration to determine optimum 

parameter settings for various conditions. To overcome these difficulties and 

to eliminate the need for air-data measurements, adaptive control systems are  

now in use in many high-performance aircraft. Most of the adaptive techniques 

are based on the principle of maintaining a constant damping ratio of the closed 

loop system by varying the system gain. This is done by sensing the system re- 

sponse to either pulse inputs o r  gusts, determining the damping ratio from this 

response, d varying the gain accordingly. 

In the following report a new flight control system design is presented. 

The design concentrates only on a pitch orientational flight control using the ap- 

propriate longitudinal transfer function for the aircraft. The main advantages of 

this design over the adaptive techniques mentioned previously is that the system 
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response does not have to be monitored and a variable gain does not have to 

be implemented. The design is based on a control technique which combines 

Liapunov's direct method with system state estimation. A model reference is 

employed in the system, and the object of the control is to force the aircraft to 

behave as the model through an input initiated by the controller. Two controller 

designs are presented, one yields a non-linear control law and the other a lin- 

ear control law. Both designs employ a linear estimator to obtain estimates of 

quantities required by the controller. 

The designs are developed using approximate representations of the servo 

actuator and the rate gyro. Using these approximations in an analog simulation 

of the system, the pitch rate of the aircraft follows the output of the model with 

less than 5'%, er ror  over the range of parameter variations assumed. It is found, 

however, that the system is unstable if the higher order dynamics of the actuator 

and gyro are  considered. A compensator is then included in the linear design to 

overcome this stability problem. 
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CHAPTER 1 

SYSTEM FORMULATION 

A block diagram of the control system is shown in Figure 1. The objective 

of the system is to force the aircraft to behave like the model reference, which 

in turn is driven by the pitch rate command signal, r. To accomplish this, the 

pitch rate of the aircraft, 8 , corrupted by measurement and vibration noise, 

n, is fed into an estimator along with the elevator position, 8 . The purpose of 

the estimator is to obtain an estimate of 8 and its derivative, the estimated 

A A values of these quantities being denoted by the vector &. The vector x is then 

compared with the output and output derivative of the model reference, which 

are  denoted by x resulting in the e r r o r  vector, 2. The quantities 2, 5,s , A A A  
-d’ 

and r are then fed into the controller. The control law produces the signal u 

which drives the system in a manner such that is driven toward zero, thus A 

causing the aircraft to behave like the model. 

The aircraft is represented by the pitch axis short-period mode transfer 

function with parameters which vary with time in an unknown maaner. This 

transfer function is 

1 K (S i- - ) 8 (S) + KdSD(S) 
a T.. a 

2 Y(S) = 

a s 2 + 2 5  w s + w  a a  



2 



3 

where Ka, Kd9 Ta, 5 
craft 'and D is a disturbance input. Typical parameter values for a fighter-type 

aircraft for different flight conditions are  given in Table I. It is assumed in the 

w a are  unkdown, time-varying parameters of the air- 

design that this table contains the full range of parameter variations encountered 

in the aircraft's performance envelope. 

To reduce the order of the system for analysis purposes, the transfer 

function for the servo actuator will be taken as 

where T is the actuator time constant. The dynamics of the gyro are  presently 

ignored, with the gyro dynamics and higher-order actuator dynamics being con- 

h 

sidered in later chapters. 
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1 0  

Table I 

37.7 2.38 

Aircraft Parameter Variations 

1 
T 
- 

a a CASE K 

1 2 .52  .368 

2 15 .7  1.17 

3 7.08 .523 
I I I I 4 I 76.2 1 1 .18  

1 5 1 35.9 1 .452 

6 13.1 .152  

7 18.7 .235 

8 45.2  ,846  

I 9 I 11.7 I .255 

1 1 

I I 
I I 

:C3: ~ 1.10 2.82 13 .5  

~ 2.05 

1 
.432 I 1 . 5 4  6 .23  

.462 I 7.80 I 50.9  

.155 I 6.41 I 32 .6  

.075 3.90 10.1 

. l o 6  4.78 19 .5  

.532 4 .67  30 .3  
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CHAPTER fI 

CONTROLLER DESIGN 

A - Non-linear Controller 

The non-linear control technique used in the design is outlined in Appendix 

A. To obtain the system equations in the form required by this technique, (1-1) 

and (1-2) are  converted to the time domain differential equations (2-1) and (2-2). 

Th 8 + 6 = v  

where 

v = u + r  
, 

Solving for 8 from (2-2) and substituting into (2-1) yields 

- .. j ,  + w 2 y = - a ( u f r )  + Ka (T 1 
K 

Th a Y + 2 5 a w a  a 

+ Kd D (2-3) 

Equation (2-3) may be written in the vector form of (A-1). This yields the set of 

vector differential equations (2-4). 

0 1  0 " = L a  1 2  x +  [ bl (u + r) + b2 8 + Kd D 
(2-4) 
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where 

2 a = - W  
1 a 

a = - 2 5  w 
2 a a  

b = K / T  
1 a h  

The model reference is taken to be a second order system with a natural 

frequency w and a damping ratio 5 The model reference equation cor- 
0 0' 

responding to (A-2) is therefore given by 

-d 

where 

2 
0 

a = - w  
01 

a = -  2 C 0 w O  02 

The matrix Q is defined in (A-6) as 

-Q = A TB + BAo 
0 

Taking Q as a positive definite diagonal matrix, (A-6) is written as  

4- 

a 

(2-5) 
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Solving (2-6) for the elements of B gives the following equations 

- 
B1l - - a02 %2 - a 01 22 

B = BIZ 
21 

If the output of the plant and its derivative were both available, the control 

signal u would be, in the form (A-10). 

where 

Y = B  e + B  12 1 22 e2 

e -= x - x  1 d l  1 

e = x  - x  2 d2 2 

Since the vector is not available in an uncorrupted form for use in (2-8), its 

estimate, g, is used instead. This estimate, however, is not perfect and the 

difference between 

A 

A and 2 must be included in (2-8). 



8 

A 
The e r ro r  in estimation, 2, and the estimated system er ror ,  2, are de- 

fined as 

N A - e = x - x  

With (2-9) and (2-10) in (2-8), the result is 

where 

(2-9) 

(2-10) 

(2-11) 

A A A 
Y = B  e + B  e 12 1 22 2 
N 

Y = B  + B  7 
12 1 22 2 

Since the e r ro r  in estimation is not a measurable signal, the control signal is 

taken as 
A 

u =  M S I G N ( Y )  (2-12) 

where M corresponds to the bracketed term in (2-11) with the effect of the un- 

known e r ro r  

and the effect of using the switching function y insteady of 

taken into account. The term M will be derived in Section IV-B, 
A 

will be discussed in 

Section 11-C. 

B- Linear Controller 

In the system under consideration, the physical nature of the plant will 

cause the elements of the vector 5 to have some maximum bound. This  fact 
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permits the use of a linear control law to generate u. This control law will be 

derived below. 

The time derivative of the Liapunov function V in Appendix A is given by 

(A-6) as  

where h is expressed in (A-9) a s  

xi + aol r + K(t) (u + r) + K(t) ~p (t)] 
i = l  

This can be rewritten in the form 

where 

n 

i = l  
L&, t) = ai (t) xi + [ aol + K(t)] r + K(t) (t) 

The control signal u is taken as 

u =  L*Y 

where 

The term h then becomes 

h = - 2K(t) [ L2(t)t' Y + L* Y ] 

(2-13) 

(2-14) 

(2-15) 
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The most positive h could become is defined as h , given by max 

= - 2K(t) [ -L*l Y I +L* y ‘1 max h (2-16) 

2 
= - 2K(t) L* [ y - 1 1 3 

Therefore if17 I ,> 1 , V will always be negative and V will decrease. For the 

case where 1 y I < 1, a region in vector space is defined where V may be positive, 

thus a decreasing V is not assured. This region will be investigated for a sec- 

ond order system. 

In the second order case, y is defined as in equation (2-8). The region 

in the e e e r ro r  phase plane where y < 1 is shown in Figure 2. This re- 

gion can be made arbitrarily narrow by chosing a Q matrix which results in a 

large value of B 

1’ 2 I I  

22‘ 
and B 12 

For the system being considered, L* as defined in (2-14) is written as 

(2-17) 

r, 8 , and D gives L* as a time-invariant gain acting 1’ x29 Placing bounds on x 

on y . Therefore the control signal u in (2-14) in a linear combination of the 

elements of e. As explained previously, however, g is not directly available, 

the control signal, therefore, is taken as a function of 2 as A 

A 
u = L * Y  (2-18) 

A A 
where 7 is defined as in (2-11). The effect of using y instead of 7 is explained 

in the next section. 
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1 
e 

Figure 2 Region Where I 1 < 1 

C - Effect of Estimation Errors  

In the two previous sections it was pointed out that the e r ro r s  in estima- 

tion effect the control equations. The main effect of these e r ro r s  is that the 

control signal becomes a function of Y instead of Y . This effect will  be an- 

alyzed below. 

A 

For the non-linear controller, the control would ideally be taken as (2-8). 

The sign of u is equal lo the sign of Y , which i s  a linear function of e.  The 

equation for Y = 0 defines a line in the e e phase plane referred to as the 1' 2 

"switching line". This line divides the e e plane into two regions where Y 
1 '  2 

is less than o r  greater than zero as shown in Figure 3.  The control signal, 
A A 

however, is actually taken as a function of 7' in (2-12). The equation fo r  Y = o 

defines another switching line whose location is a function of the estimation 
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1 
e 

Figure 3 Switching Line 

error. This relationship can be seen through (2-9) and (2-10) which yield 

(2-19). 

h N - e = g + g  (2-19) 

A The e co-ordinates  are the re fo re  t rans la ted  f r o m  the - e co-ordinates  by the - 

e lements  of as shown in  F igu re  4. - 

A 
e e  

2 2  

1 
e 
h 

1 e 

Figure 4 Effect o f s  
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In the region between the switching lines, the sign of the control signal u will 

be opposite the sign needed for convergence. For the case where the estimation 

e r ro r  2 is unknown but bounded, a region which contains the switching line )' = 0 

is defined as shown in Figure 5. In this region, which will be referred to as 

A 

the "region of imperfect control" , the sign of u may be either positive o r  nega- 

tive and convergence of the e r ro r  vector 2 is not assured. A similar region 

also occurs for the linear controller as  explained below. 

For the linear controller, the effect of the estimator e r ror  can be found 

by substituting u as defined in (2-18) into (2-13). Following the previous de- 

velopment, equation (2-16) becomes 
A 

= - 2 K ( t )  L * [ Y  Y -  l y  I ]  
max h (2-20) 

= bB12 + aBZ2 

Figure 5 Region of Imperfect Control 
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A 
to be negative, y has to be greater than From (2-20) it is seen that for h 

A 
one and Y and y must have the  same sign. The region where this may not be 

true for the case where 

max 

is unknown but bounded is shown in Figure 6. 

Therefore, the effect of the estimation e r r o r s  in both controllers is to 

cause a region around the line defined by Y = 0 where the sign of V, the Liapunov 

function derivative, may be positive. 'There is a bounded region around the 

origin of the e r ro r  plane, however, in which the e r r o r  vector will ultimately be 

contained. This region will be investigated in the next section. 

2 
e 

1 e 

Figure 6 Region of Imperfect Control for Linear Controller 



D - System E r r o r  Bound 

A bound on the system e r ro r  e can be found using a technique developed in 

Reference 2 This technique will be used below to obtain maximum values of 

the estimation e r ror  g. 

It is seen from Figure 5 that the region of imperfect control for the non- 

linear controller can be described by the equation 

(2-21) 

where 

If B 

control for the linear controller as shown in Figure 6. Substituting for the def- 

and B 
12 22 

are large, (2-21) will also approximate the region of imperfect 

inition of y ,  (2-21) can be written as 
- - 

- L < B  e + B  < L  12 1 22 e2 

Rewriting (2-22) as  a constraint on e yields 2 

L 
e f -  <e < - -  e - -  B12 

B22 B22 

L 
_I_ 

2 
- B12 

22 B22 
B 

If e is taken as in (2-24) the inequality contraint (2-23) i s  satisfied. 2 

e = - -  B12 e + aC (t) 1 
B22 

where 
- 

(2-22) 

(2-23) 

(2-24) 
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Since e is the derivative of e 2 1' 
however, (2-24) is a differential equation in 

e with d: (t) acting as an unknowh forcing function. The solution of (2-24) 

carl be expressed as a constraint on e as 

1 

1 

L < -  
B I Z  

Using (2-25) in conjunction with (2-24) gives the constraint on e as 2 

(2-25) 

(2-26) 

Equations (2-25) and (2-26) define a bounded region in the e r r o r  phase plane 

shown in Figure 7 in which the system e r ro r  vector will ultimately be contained. 

Figure 7 System Error  Bound 
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CHAPTER 111 

ESTIMATOR DESIGN 

A - Estimator Equations 

Both controller techniques described in Chapter I1 require the aircraft's 

angular rate about the pitch axis and pitch axis angular acceleration. A rate 

gyro is used to measure the angular rate of the aircraft, but the angular acceler- 

ation is not directly measureable. Due to structural vibration and measurement 

noise, the use of a differentiation circuit to obtain the angular acceleratioii from 

the output of the gyro is impractical. An estimate of this signal, however, can be 

obtained by applying the estimation technique described in Appendix B. This tech- 

nique yields a linear filter acting on the gyro output. The gyro output signal con- 

sists of the actual aircraft rate plus noise. The output of the filter is an estimate 

of the angular rate and acceleration of the aircraft about the pitch axis. These 

estimates a re  used as inputs to the controller as described in Chapter II. The 

filter equations resulting from this technique will  be described below. 

The response of the aircraft to elevator inputs and gust disturbances is 

described by the differential equation (2-1). This is written in vector form as 

the set of equations (3-1). 
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X - + 
0 

K 

T 
- 

a 
+ K d D  ,I 

(3-1) 

where E,  a and a are defined as irl (2-4). The-first equation is now separated 

into nominal terms and a term consisting of variations about the nominal as 

shown in (3-2). 

1’ 2 

where 
K 

Aa ni = a. 1 - a ni i = l , 2  

an A K = K  - K  a a 

a 

a a a - -  - (i) 
K K 

T AT - 

The first two terms in (3-2) are taken as a nominal vector function whose param- 

eters are time-invariant. 

for parameter variations about the nominal and also accounts for the unknown 

The third term is a vector function which accounts 
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disturbance input b. The gyro output i k  written as y defined by 
g 

y g =  [I 03 2 + n (3-3) 

where n is an additive noise term. 

Equations (3-2) and (3-3) are  now in the form of the set  of equations (B-1). 

Application of (B-4) yields the desired estimator equation shown below. 

nl n2 

where 

(3-4) 

and PZ1 are elements of the matrix defined by the solution of the 11 and where P 

matrix Ricatti equation 

0 1  1 0  
1 -1 P+- w 
2 + 2QP 

0 0  

The term f has not been included in (3-4) since nothing is known about it which 2 

would improve the estimation. 
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The matrix equation (3-5) yields a set of non-linear differential equations 

for the elements of P. These equations have constant coefficients and the initial 

conditions of the P matrix may be chosen such that P 9 0. Thus, P is constant, 

and the first column of P is used in the definition for G and G , resulting in 

constant estimator gains. The problem of choosing the weighting matrices Q and 

1 2 

W, however, still remains. Since this choice is somewhat arbitrary, the esti- 

mator performance wil l  be evaluated directly as a function of the gains G and 1 

G2. These gains wil l  then be chosen on the basis of this evaluation. 

B - Frequency Domain Error  Analysis 

As shown in Section 11-Cy the errorc  in estimation directly affect the total 

system error.  Therefore it is desirable to choose the estimator parameters so 

that these e r rors  will  be as  small as possible. A measure of the estimator e r ror  

is also needed for the nonlinear controller in equation (2-11). For these reasons 

the equations describing the e r rors  in estimation wil l  be derived below. 

A vector differential equation for the estimation e r ro r  :as defined in (2-9) 

can be obtained by subtracting (3-4) from (3-2). This yields 

.!: 1 1  
n l  n2 

N 

e - 
A 

or, - X1) 

Substituting y as defined in (3-3) into (3-6) and comb-ling terms g,Jes 
g 

(3-6) 

L-G2 + a - a 
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Equation (3-7) represents a linear system driven by the forcing terms f and n. 

The eigenvalues of the system a re  given by 

2 

where 

n2 G = G 1 - a  1 
- 
G = G2 - G1 an2 - a 2 n l  

It is seen that for a stable estimator, both G a n d z  must be positive. The 1 2 

frequency domain transition matrix of the system is given by 

1 

S + G1 

- an2 

aril - G~ 

1 
@(S) = 

s2 + G 1 s + $  
N 

Assuming (0) = 0, E(S) is given by 

Equation (3-10) can be rewritten in the form of (3-11). 

[E:,:"] N 

E(S) = T(S) 

where 

(3-9) 

(3-10) 

(3-11) 

S + G  - G S - G  a 1 2 1 n l  

1 
T(S) = 2 __ - 

S + GIS + G2 
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The er ror  in estimation, therefore, is expressed in frequency domain 

terms by equation (3-11). The transfer function matrix T(S) is a function of the 

estimator gains G1 and G 

will be investigated in the next section. 

The effect of these gains on the estimation error  
2' 

C - Determination of Estimator Gainb 

The estimator gains G and G wil l  be chosen on the basis of their effect 
1 2 

on the estimator error.  As seen in (3-1), these gains affect the transfer functiohs 

relating the forcing terms f and n to T. Since the measurement noise n is usually 

kept at a minimal value, the term f which contains the effect of parameter vari- 

ations, will be treated as the primary source of the estimation error.  T h s  term 

2 

2' 

is an unknown quantity and it will  be assumed that it may contain frequencies up 

to and beyond the bandwidth of the terms of the transfer function matrix T(S). 

The term f will  therefore be treated as a white noise input to the system with 2 

G and G being chosen to minimize the output e r ror  variance. 1 2 

The estimation e r ro r  2 as given in equation (3-11) can be written as 

N h )  

e = e  +G -f -n - (3-12) 

where is the e r ro r  caused by the term f and 7 is that caused by the noise n.. -f 2 -n 

The spectral densities of: and 7 can be written as  If 2f 

(3-13) 

(3-14) 

are  the spectral densities of < and is the 22f If where allf and 
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spectral density of f,, and Tll (j w ) and T21 (j w ) are  the elements of the first 

column of T(S). Since f is taken as white noise, its spectral density is constant. 
2 

The variance of and% can be written as  i f  2f 

0- I f  = Cf I Tll ; j w ) l  d w  

dw 

-co 

2f = Cf /” 1 T21 ( j w )  I -a 

(3-15) 

(3-16) 

2 and cr are  the variance of andz  and C is the amplitude of 2 
If 2f I f  2f f where cr 

the spectral density of f 
2’ 

The gains G and G will now be chosen to minimize the sum of the two 1 2 

21 
integrals in (3-15) and (3-16). Let these integrals be defined by A and A 11 

where 

(3-17) 

00 2 = /   IT^^ ( j w  ),I du (3-18) 

-a 
Equations (3-17) and (3-18) can be evaluated by residues giving A and A 11 21 

as 

7T - 
- -  All - (3-19) 

(3-20) 
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Defining as the sum of A and A then from (3-19) and (3-20) A i s  found as 11 21’ 

2 -  
- r(1 + Gl + Gz) 
A =  - _  

G1 G2 (3-21) 

G2 

+ 

- 
A s  seen from (3-21)’ A will be minimized with respect to G when G approaches 2 2 

infinity, Setting the partial derivitive of with respect to G equal to zero yields 1 
- 2 - -  - -  

(2G1 - a ) = (1 + G1 + G2) (G2 - a n 2  G1) (3-22) 
G1 G2 n2 

Assuming that the terms a and a are  small compared to G and G equation n l  n2 1 2’ 

(3-22) gives an approximate relationship between G and G as  1 2 

(3-23) 

Therefore if G and G were  chosen on the basis of minimizing the e r ror  caused 
1 2 

by f alone, G would be chosen as large as possible and G would be chosen as  

the square-root of G 

2 2 1 

The values of G1 and G however, also affect the noise 2’ 2 ’  

transmitted. Assuming that n is white noise, the variance of the estimation errc,  

caused by this noise is given by 

cr 2 In = C n J a 1  T I 2 ( i w ) (  d w  
-00 

(3-24) 

(3-25) 

are the variance of and and C is the amplitude 2 2 
and cr 2n In  2n n ln where u- 
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of the noise spectral density. As before, the integrals in equations (3-24) and 

(3-25) are  defined as A and AZ2. Evaluation of these integrals yields 1 2  
i 

(3-26) 

(3-27) 

2’ 
and A22 increase with increasing G As seen from the above equations, A 

Thus G cannot be arbitrarily large since the noise transmitted may be un- 

12 

2 

reasonable. The estimator gains, therefure, will be chosen by selecting a large 

value of G2, taking G according to (3-23), and then evaluating (3-24) and (3-25) 1 

to see if the noise transmitted is adceptable. 

D - Choice of Nominal Parameter Values 

The estimator parameters a a K and (K /T ) still remain to be n l ’  n2’ an a a n  

chosen. The values of these parameters affect the estimation e r ror  through the 

forcing term f defined in (3-2). These parameters should be chosen to minimize 

this term, although it is not immediately apparent how to do so. The parameters 

a 

2 

and Kan will simply be chosen to minimize the maximum values of Aa 
n2 n2 

and AKm. The terms a 

of reducing the steady state e r ro r  for a step input to the system as shown below. 

and (Ka/Ta)n, however, can be chosen on the basis n l  
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In the case where the reference signal r is a step input to the system with 

no disturbances present, the steady state value of f is denoted by f 2 ZSS 
where 

K 
f = Aanl x1 + A T  a 6  (3-28) 

a 2ss 

Also the steady state value of 8 is given by 

1 X 

s =  K 
ss 

(3-29) 

where 
(Ka/Ta) 

K =  
1 

ss -a 

Substituting 8 from (3-29) into (3-28) along with the definitions of a and n l  

A(Ka/T a ) .yields 

SS 
f 2ss = [-anl - K 1 (3-30) 

The terms a 

small over the range of values of K 

and (K /T ) can then be chosen on the basis of keeping (3-30) n l  a a n  

. 
ss 



CHAPTER IV 

FINAL SYSTEM EQUATIONS 

A - The Estimator 

The form of the estimator equation is given by (3-4) and the method of 

choosing the estimator parameters is given in Sections 111-6 and 111-D. In this 

section the final numerical values of the estimator parameters will be given. 

The estimator parameters a a K and (Ka/Ta)n are  chosen as 
n l ’  n2’ an 

explained in Section 111-D. The values of al, a2, Ka/Ta, and Kss for the ten 

cases in Table I are  shown in Table 11. 

Table I1 
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The parameters a and K 

Aa and AK . The parameter a given in Table I1 varies approximately from 

0 to 7,  therefore a 

vary from 3 to 76. The nominal estimator parameter K 

40. 

are  chosen to minimize the maximum values of 
n2 an 

n2 an 2 

is taken as 3 . 5 .  Similarly from Table I, K is seen to 
?.I2 a 

is therefore taken as  an 

The parameters a and (K /T ) are  chosen on the basis of keeping the n l  a a n  

bracketed term in (3-29) small over the range of R 

that K ss a a n  

(Ka/Ta)n/Kss varies from .I4 to 3 . 8 .  The parameter a 

to give the least variation of fzSs. 

. From Table I1 it is seen 
si3 

varies from . 1 3  to 3 . 5 .  If (K /T ) is chosen as  . 5 ,  then the term 

is then taken as  - 2 . 0  n l  

A s  explained in Section 111-C, the gains G1 and G2 should be as  large a s  

possible without resulting in an unreasonable amount of noise being transmitted. 

If G is chosen as  1000, then the value of G is taken as 32 from equation (3-23). 
1 2 

These values and the values of a 

damping ratio of the second order denominator of the elements of the transfer 

and a n l  n2 above give the natural frequency and 

function matrix T(S). These are defined as w and 5 and are found as w = 

3 3 . 5  rad. /see. and 4 
n n 

= .53 .  n 

The additive noise term n taken as bandlimited white noise with a stan- 

dard deviation of . 0 3  deg. /see. and a bandwidth of 750 rad. /sec. The band- 

width of the noise is large enough SO that the estimation e r ro r  due to noise can 

be found from (3-24) and (3-25). T$e amplitude of the noise spectral density i 

C = .762(10 ) and the terms A12 and A22 are  found from (3-26) and (3-27) as 

A12 = 188, AZ2 = 89(10 ). This gives the standard deviation of the estimation 

-6 
n 

3 
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2 
e r ro r  as CT = .OI2 deg./sec. and P = . 2 6  deg./sec. . If the 3avalue of In  2n 

the e r ro r  is taken as the maximum, then 

= .036 deg. /sec. 

2 
= .78  deg. /see. 

1‘2, I max 

(4-1) 

Since these are acceptable e r rors  due to noise, the estimator parameter values 

are taken as above,. 

The final estimator equation is then given by (4-2). 

A A x =  - 
-2  - 3 . 5  1000 

B - The Non-Linear Controller 

The non-linear control equation was derived in Section 11-A and is given 

by equation (2-12). To obtain the quantity M, bounds on the terms containing 

N n J  

are  needed. The method for obtaining these bounds is given max el’ e2, andD 

below. 

The estimator e r r o r  caused by f is given by (3-11) as  2 

(4- 3)  

The natural frequency and damping ratio of the second order denominator of the 

elements of T(S) were found to be w 

T 

with a “break” frequency of 32 rad. /sec, Examining the gain vs.  frequency 

= 33 .5  rad. /see. and 5 n n 
= . 5 3 .  The term 

(S) has a first  order numerator (S) does not have any zeros and the term T 
11 21 

curves, a bound on the steady-state sinusoidal gain of T (S) and T21(S) can be 11 
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N 

taken as  1 . 5 ~  (transfer function d .  c. gain). A constraint equation for e can 

therefore be taken as 

-f 

N 1 . 5  < -  f 2  (t) elf@) - - 
G2 

The term M defined in (2-12) is now written a s  

where 

(4-4) 

(4-5) 

Using (3-12) in conjunction with (4-4) and the definition of f given in (3-2), the 

term M can be written as  

2 - 

where 

Aaci = a. - a i = l , 2  
1 oi 
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To evaluate M, the following bounds a re  assumed. 

2 
= 50 deg. /sec. ,  = 100 deg. /sec. 

= 50 deg. ’ 18 lmax = 50 deg. /sec. 

The disturbance term D is a pertubation of the angle of attack of the aircraft due 

to wind gusts. The rate of change of D will be assumed to have a maximum 

value of I DI 

2 given in (4-1) as  .036 deg. /sec. and .78  deg. /sec. . 

= 100 deg. /sec. The maximum values of F and 7 are  max In  2n 

With the above bounds substituted into (4-6), and with the servo time con- 

stant taken as T = .05  and the model reference parameters taken as 5 h 0 

and w = 3, the values of %. can be computed for the ten cases in Table I. Com- 

= . 8  

0 

puting these values, the maximum value of % is found to be 10 .6  degrees. 

Similarly, the values for A A , A , and A as  defined in (2-8) were computed 

for the ten cases as  .2 ,  .l, 1.0 and 1 .0  respectively. The final form of M can 

1’ 2 3 4 

now be found from (4-5). 

1 2  
The only remaining parameters to be chosen in (2-12) a re  the terms B 

and B22 appearing in the definition of Y . The effect of these terms on the 

system e r ro r  can be seen from equations (2-25) and (2-26). For a given esti- 

A 

to BI2 increases, I e 1 increases and 
22 1 rnax mation e r ro r ,  a s  the ratio of B 

1 e I 2 max decreases. Since the purpose of the control technique is to control 

x o r  the rate of the aircraft, e is of primary interest and therefore the ratio 1 1 

of B22 to B12 should be taken as small a s  possible. Substituting the values of 
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a and a into the first two equations in (2-71, the ratio B /B can be found 

as given below. 

01 02 22 12  

Q22 - B22 

B1 2 &11 
= .208 + 1.88 - (4-7) 

If the ratio Q2,/Ql1 is kept very small, then B22/B12 will be close to its mini- 

12 mum value of .208. Chossing Q = 9 . 6  and Q22 = - 2 2  gives the values of B 
11 

and B22 as B = 1 .0 ,  B = .25. 12 22 
A 

Substituting the expression for M and y in (2-12) using the above param- 

eters, the final form of the control signal for the non-linear controller is as 

follows. 

C - The Linear Controller 

The linear control equation was derived in Section 11-C and is given by 
A 

(2-18). Substituting for Y , this equation is written as 

If, as in the previous section, B /B 22 12 = .25, (4-9) becomes 

A A 
u = M* (e + .25 (4-10) e 2) 1 

where 

M* = L* B12 

The term L* is defined in (2-17). The bounds on xl, x2, 6 , and D are  the 

same as in the previous section and the bound on r is taken as 50 deg. / s ec .  
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The term L* is then found by taking its maximum value for the ten cases in 

Table I. The resultant value is found to be 108 degrees. If the gain M* is taken 

as 1000, BI2 is then equal to 9.3 .  Therefore, as shown in Figure 2, the region 

of imperfect control due to the controller is narrow even for this extreme case. 

Hence, the system e r r o r  depends mainly on the estimation e r ro r  as  shown in 

Figure 7. 

The final control equation for the linear controller is then taken a s  

u = 1000 (el + .25  ez) (4- 11) 
A A 
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CHAPTER V 

EXPERIMENTAL RESULTS 

The system was simulated on an analog computer using the estimator 

described by equation (4-2) and using both the non-linear and linear controlleri3 

given in equations (4-8) and (4-11). The ten cases of parameter variations given 

in Table I were run for both step and sinusoidal reference inputs. The disturbance 

response was simulated using an impulsive gust input and also a turbulence 

input consisting of bandlimited random noise. In all cases the results of the 

non-linear and linear controllers was almost identical, and therefore only one 

set of results is shown. 

The uncontrolled plant step responses are shown in Figures 8 and 9 for the 

ten cases to illustrate the wide variation caused by the plant's changing param- 

eters. Figures 10 and 11 show the controlled plant response to a step input 

and Figures 12 and 13 show the response to a sinusoidal input. It is seen that 

in both cases the plant output follows the model reference output very closely. 

The disturbance response is shown in Figures 14 and 15. Figure 14 shows the 

response to an approximate impulse disturbance modeled by the disturbance 

input 

-t 
D = C Z  ( 1 - e  ) (5- 1) 

0 

where is the initial angle of attack of the aircraft which was taken as  5 

degrees. Figure 15 shows the response to an a i r  turbulence type disturbance 

0 
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Figure 8 Uncontrolled Plant Response 
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Figure 9 Uncontrolled Plant Response 
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Figure 10 Controlled Plant Response - Step Input 
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Figure 12 Controlled Plant Response - Sinusoidal Input 
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Figure 13 Controlled Plant Response = Sinusoidal Input 
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which was modeled as band-limited white noise with a standard deviation of 1 

degree and a bandwidth of 1 rad./sec. The results show that in all cases the 

disturbances are quickly damped and there is no excessive response due to 

turbulence. 
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CHAPTER VI 

EFFECT OF HIGHER ORDER DYNAMICS 

In the system as formulated in Chapter I, the servo actuator was repre- 

sented as a first-order system and the dynamics of the rate gyro were ignored. 

These approximations are  valid for low gain systems where any higher order 

dynamics will not affect system stability. However, as seen by the linear con- 

trol law given by (4-11) , the linear system as designed incorporates a high gain 

feedback. This results in stability problems if the higher order effects are 

included in the system model and it requires that additional compensation be 

included in the system. To determine this compensation, the system using the 

linear control law will be analyzed in the frequency domain using higher order 

models of the actuator and gyro. 

The system using the linear control law can be represented in block dia- 

gram form as shown in Figure 16, where G (S) , G (S) , and G (S)  are  the 

servo actuator, gyro, and aircraft transfer function respectfully. To deter - 

mine the estimator transfer function, the time domain estimator equation i s  

transformed into the frequency domain. The matrix equation (4-2) yields 

h g a 

A A 2 = x + 32 (yg - xl) 
1 2 

6 = -2x A - 3.5: + 40 6 +- .5$  + lo00  (y - A xl) 2 1 2 g 
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Figure 16 Linear System 

Conversion of (6-1) and (6-2) from the time domain into the frequency domain 

gives the transfer functions relating 2 to y 
A 

and 6 as 
g 

(32s + 1112) Y (S) + (40s + .5) 6 ( S )  
A g 
x , ( Q  = 2 

S + 3 5 . 5 8  + 1114 
(6-3) 

(1000s - 64) Yg(S) + (40S2 + 1280s + 16) 8 (S) 
A 

(6-4) xz(S)  = 2 
S + 3 5 . 5 8  f 1114 

The relation between Y (S) and 8 (S) is 
g 

(6-5) 

Substituting (6-5) into (6-3) and (6-4), the output of the estimator as shown in 

Figure 16 can be written a s  
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where  

(2828 + 1096) G (S)  G (S) + 10s' + 360s + 4.5 
g a 

H(S) = 
S2 + 35.55 + 1114 

The block diagram in Figure 16 is now rewritten as shown in Figure 17. 

Figure 17 Linear System 

The stability of the system shown in Figure 17 is determined by the loop gain 

function lOOOG 

taken as 

( S )  H ( S ) .  The transfer functions for the actuator and gyro are h 

4900 
Gh(S) = 2 

(.05S + 1) (S + 70s + 4900) 

22500 
G (9 = 

S2 + 1505 + 22500 g 

(6-7) 

The second order term of the actuator transfer function and the gyro transfer 

function were both obtained from a linear design technique presented in Refer- 

ence [6]. Using (6-7), (6-8) and H(S) as defined in (6-6), the loop gain function 

is given by (6-9). 
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L(S) = 1000Gh(S)H(S) 

2 { (1000)(4900) [ (10s + 360s + 4.5)(S2 + 150s + 22500) 

(S2 + 2 5  W S + W 2, + (22500) K a (S + l/T )(282S + 1096)l) I 
a (6-9) 

a a  a 

2 L(s) = [(.05S + 1)(S + 70s + 4900)(S2 + 150s + 22500) 
2 (S2 + 35.5s + 1114)(S f 25 a w  S + 0 ")) 

1 
a a 

where Ka, Ta,W a, 5 a are defined as in (1-1). 

The magnitude and phase plots of L(S) for Cases 1 and 4 are shown in 

Figure 19. 

eight cases fall within the phase plots of the two cases shown. From this figure 

it is obvious that the system as it now stands is unstable. To remedy this situ- 

For frequencies above 10 rad. / sec. , the phase plots for the other 

ation, a compensator is included in the system as shown in Figure 18. 

Figure 18 Compensated System 
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The compensator, G (S), is taken as 
C 

+ 1) 
S 2 s  

(6-10) (lso + l )  (so00 
Gc(s) = 

+ 
30,000 

S 
(- 

1200 (30,000) 

The gain and phase plots of the open loop compensated system are shown in  

Figure 20. It is seen that the system is now stable with adequate phase mar- 

gin. Also, since the gain and phase angle are  hardly affected below 50 rad. , 

this additional compensation should not appreciably affect the response of the 

system. 

As shown above, when higher order dynamics are considered, the 

system using the linear control law can be made stable by addition of proper 

compensation. In the case of the non-linear controller, however, the required 

compensation cannot be found through linear analysis. To determine the sta- 

bility characteristics of the non-linear system, the system would probably 

have to be simulated with the higher order dynamics included in the simulation. 

Proper compensation would then be sought through experimental means. 
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CHAJ?TER VI1 

CONCLUSIONS 

this report two designs for a flight control system were presented; one 

using a linear control law and the other using a non-linear control law. Both 

designs employ a linear estimator to obtain an estimate of pitch rate and its 

derivative for use in the control laws. Using approximate models for the actuator 

and gyro, both designs yielded excellent results. It was found, however, that 

stability problems existed if the higher order dynamics of the actuator a l d  gyrcj 

were considered. In the case of the linear system, a compensator was included 

in the system to obtain stability. No stability analysis was performed on the non- 

linear system, however, and the system would have to be simulated to determine 

its stability characteristics. This stability problem necessitates that topics for 

further investigation include other higher order effects, such as aircraft bending 

modes, which could affect the stability of the system. 
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APPENDM A - 
CONTROL TECHNIQUE EMPLCJYING LIAPUNOV'S DIRECT METHOD 

The control technique given in Reference [ 13 as applied to linear systems 

is outlined below. 

Figure A-1 Block Diagram of Control Technique 

The plant in Figure A-1 is described by the vector differential equation 

- x = A(t@ -I- b f (A-1) 

where - x is an n-vector, f is a scalar function containing the  control signal u and t h e  

reference signal r, b T 
= [0 ,  0, * , 1 ] , and R(t) is an nxn matrix of the  fortn 

0 1 0 0 .  
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The control objective is  to force the plmt to behave like the model, which 

is in turn described by the n-vector differential equation 

x = A  x + b  r 
-d o -d -0 

where A i s  a time-invariant nxn stability matrix of the same form as A( t )  with 

the last row consisting of elements a a 

0 
T and where b = ’ aOn -0 01’ 02’ 

[o, 0, * * *  ’ - a O 1  1. 
An er ror  vector is defined as 

e = x  - x  (A-3) -d - - 

Equation (A-3) along with (A-1) and (A-2) yields the e r ror  vector differential 

equation 

e = A e - AA(t)z + b r - b f  - 0- -0 - 

where 

0 
AA(t) = A(t) - A 

The Liapunov function 

’r 
V = e B e  - -  

is associated with (A-4). The time derivative of V is found to be 

T 
V =  -e &e + h  

where 

T - & = A  B + B A  
0 0 

3 - n A ( t )  x + b r + bf - -0 - 

If A is a stable matrix, and if Q is chosen as a positive matrix, then B is 
0 

(A-4) 

(A-5) 

(A-6) 

also positive definite. This makes V a positive definite function; thus if  h can 
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be maintained nonpositive by the choice of u,  Vwi l l  be negative definite and 2 

will approach zero. The term h can be expressed as 

where 

n 
Y = C  B e in i i = l  

Also, for plants with linear gains, the function f may be written in the form 

(A-8) 

where K(t) is a time varying gain and #I (t) is a generalized function which includes 

the remaining terms in f. Substituting for f in (A-7) 

The term h can be maintained non-positive if u is taken as 

] SIGN Y 3 
u =  [ x l + x  + x  

2 

where 

n 

x1 = G  
i = l  

Max 

Max 
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APPENDIX B 

SEQUENTIAL LEAST SQUARES ESTIMATION TECHNIQUE 

The estimation technique reported in Ref. [ 31 and extended in Ref. [ 41 

and [ 51 is outlined below. 

Given a system described by the vector differential equations 

x = go (t, x) + k t ,  x) + W, x) u(t) 

where x is an n-vector 

g (t, x) is a nominal vector function 

n g ( t ,  x) is a vector function whose variation with time is unknown 

0 

u(t) i s  a p-vector unknown input 

K(t, x) is an nxp vector function whose variation with time is unknown 

y(t) is an m-vector output 

h(t, x) is an m-vector function 

v(t) is an m-vector of measurement errors  

The problem is to obtain an optimum estimate of the n-vector x. The estimator 

is chosen to satisfy the equation 



56 

A where x is an optimum estimate of x and w is the estimator input to be deter- 

mined. The vector x is optimum in the sense that it minimizes the cost functionhl A 

J"r (e,*G e + e T We2) dt 
1 2 

J =  

0 

where 

A A A 
f (t, x) = A g  (t, x) + K (t, x) u(t) 

- 
and where Q and W are weighting matrices. The problem now is to minimize J 

with respect to w, subject to the estimator constraint equation. This variational 

problem is solved using Pontryagin's maximum principle where  a Hamiltonian is 

maximized with respect to w. This results in a two-point boundary value problem 

which is solved using invariant imbedding. This technique yields the solution 

A A A A 
x(t) = go (t, x) + 2P (t) H (t9 x) Q[Y (e) - h (t, $1 + f (t, x) (B-4) 

where 

T 

and where P (t) is an nxn matrix defined by the matrix Riccati equation 

A T 
P = g A (t, x) P + Pgo , $ (t, 2) + 0' x 
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