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ABSTRACT

This thesis presents. two désigns for a pitéh orientational flight control
system. Both designs employ control techniques based on Liapunovfs direct
method which are used in conjunction with system state estimation. One design
yields a non-linear control law and the other a linear control law, with a linear
estimation technique being used in both cases.

The designs are developed using apprbximate models of the system com-
ponents, and very satisfactory experimental results are obtained using these
approximatibns. A stability problem arises, however, when the higher order
dynamics of the system are considered. Tﬁis problem is overcome in the linear

design by including proper compensation in the controller.



iii

TABLE OF CONTENTS

Chapter Page
Abstract ...... .00 e e e e iii
Acknowledgement ........... ... i v
List Of FiQUTES o v v v v v v e ettt e mveeeneeanss vii
List of Major Symbols . . ...t v i vt vneneennns ix
Introduction . ........... e e et e e xiii

I SYSTEM FORMULATION . .. I I 1
II CONTROLLERDESIGN .. ....0uvurrnnannn.. 5
A). Non-linear Controller .................. 5

B) Linear Controller . ..........coeeeuvnon. 8

C) Effect of Estimation Errors ......... S

D) System Error Bound .. ................. 15

Im ESTIMATOR DESIGN . ... .vvvvnrnnnnnnnnn. 17
A). Estimator EqUAtions . . . oo v s e nnnnns 17

B) Frequency Domain Error Analysis.......... 20

C) Determination of Estimator Gains .......... 22

D) Choice of Nominal Parameter Values ., ....... 25

v FINAL SYSTEM EQUATIONS ................ 27

A) The Estimator . .. ... .. 27



v

Vi

Vil

B) The Non-linear Controller. .. ............. 29
cy ’l;he Linear Controller . .. .......0ouee.u. 32
EXPERIMENTAL RESULTS, . . ... ............ 34
EFFECT OF HIGHER ORDER DYNAMICS ..... e 44
CONCLUSIONS . ....oovnenn.. e 51
APPENdiX A . v i i e i et e e e e e e e 52
Appendix B . .. ..... e e s e s e e s e e e s e e 55

Bibliography ......... e e e et e e 58

iv



Figure No.

10
11
12
13.
14
15
16
17

18

LIST OF FIGURES

Page
fi;:ch Orientational Control System. .. ......... KRR 2
Region Where l ')’l S 11
Switching Line . . . .. ... .. i i 12
Effectof € ... o vi i e 12
Region of Imperfect Control « e o vee .. ... 13
Region of Imperfect Cont.rol for Linear Controller .... 14
System Error Bound . ........... ... ... 16
Uncontrolled Plant ReSpPONSe « « « v v v v v v v v v v v v e v - 35
Uncontrolled Plant ]éiesponse ................... 36
Controlled Plant Response - Step Input. . .......... 37
Controlled Plant Response - StepInput. . . .. .. ... .. 38
Controlled Plant Response -~ Sinusoidal Input. . . ... .. 39
Controlled Plant Responsé - Sinusoidal Input. . . . .. .. 49
Impulsive Disturbance ReSponse ................ 41
Turbulence RESPONSE « + « + =+ v v v e v v v v v v veee o 42
Linear SYStEmL « « ¢+« v v vt et e 45
LinearA System - - - - o e e o e 46

Compensated System - - « « « « -+ o - o oo oL 47



19

20

Magnitude and Phase for Uncompensated System . , .. .

Magnitude and Phase for Compensated System

vi



i

>|

a,
a, (t
01
02

ni
b1 (t)

byt

D (t)

e (t)

vii

LIST OF MAJOR SYMBOLS

[
i

= 1, 4 - Coefficients used in control law

i=1,2;j=1, 2 - Integral terms in estimation
error variance equations

Apt Ay

2
-w
a
_zgawa

—w 2
0

-2L,w,

i =1, 2- Nominal eétimator parameters
Ka/Ta

Ka(l/Ta - 1/Th)

A 2x2 positive definite, symmetric matrix
Amplitude of noise spectral density
Disturbance Input

System 2x1 error vector

Estimated system 2x1 error vector

A 2x1 vector of estimation errors
Estimation error caused by fz

Eétimation error caused by n

Forcing term in estimation equation



viii

f 2{"38 The value of f, for steady-state step response
Gi i=1, 2 - Estimator gains

25; Gi-anz

G, Gy G297 %

Gh(S) Se.rvo actuator transfer function

Gg(S) Gyro transfer function

Ga(S) Aircraft trénsfer function

Gc (S) Compensator transfer function

H(S) A transfer function in the linear system loop~gain function
h A scalar variable

Ka (t)‘_ Unknown aircraft parameter

K 4 (t) Unknown aircraft parameter

K (t) Controlled plant gain

K.an Estimator parameter

(Ka/ Ta)n Estimator parameter |

I_{ss (Ka/ Ta) / (_al)

L({S) Linear system open loop transfer function
L(x, 1) A scalar variable
| L* A scalar constant

T A s.calar constant

M Non-linear function

M A scalar constant

M* L*B

12



n{t)

X
2,0
o

vy

o ()

Aa
ci

Aa
ni

ix

An additive noise term

A 2x2 estimator gain matrix

A positive definite, symmetric matrix
Estimator weighting matrix

System input

Laplace transform variable

Unknown aircraft parameter

Servo actuator time constant

A 2x2 transfer function matrix

Signal generated by controller

Input to servo actuator

' Liapunov function

A 2x2 estimator weighting matrix _
A 2x1 system vector

A 2x1 model reference vector
Estimated 2x1 system vector
Aircraft angular rate

Gyro output signal

An unknown scalar

Elevator angle

a, ~a . ,1i=1,2

1 o1

a, ~a, ,i=1,2
1 ni



AK K -K

a a an
AK, /T,) K /T, = K /T
Y SWitching function
)/"\ Estimated switching function
~ A '
4 Yy -7
& iif Spectral density of 'é% , i=1,2
Ot Spectral density of f2
oif Standard deviation of 8., , i =1,2
oin Standard deviation of 'é'in , i=1,2
é Pitch rate of aircraft
w, Model reference parameter
w, Unknown aircraft parameter
Lo Model reference parameter

C a(t) Unknown aircraft parameter



xi

INTRODUCTION

One of the well known and major phenomena encountered in the design of
aircraft flight control systems is that the transient response of the aircraft
changes considerably for different flight conditions. With the advent of the high-
perférma.nce, variable-geometry type of aircraft, this variation is becoming
even more pronounced due to the expanding environment in which the aircraft
may operate. In many of the earlier ﬂight control designs, the dynamics of the
control system was a function of air data measurements so that satisfactory
handling qualities over the entire flight regime could be obtained. This entailed
extensive wind tunnel analyses and in-flight calibration to determine opfimum
parameter settings for various conditions. To overcOme these difficulties and
to eliminate the need for air-data measurements, adaptive control systems are
now;in use in many high-performance aircraft. Most of the adaptive techniques
are based on the principie of maintéining a constant damping ratio of the closed
loop system by varying the system gain. This is done by sensing the system re-
sponse to either pulse inputs or gusts, determining the damping ratio from this
response, and varying the gain accordingly.

In the following report a new flight control system design is presented.

The de’sign'cbncentrates only on a pitch orientational flight control using the ap-~
propriéte' longitudinal transfer function for the aircraft. The main advantages of

this design over the adaptive techniques mentioned previously is that the system
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response does not have to be monitored and a variable gain does not have to

be i‘mplementéd. The design is based on a control technique which combines
Liapunov's direct method with system state estimation. A model reference is
embloyed in the system, a.ﬁd the object of the control is to force the aircraft to
behave as the model thirough an input initiated by the controller. Two controller
designs are presented, one yields a non-linear control law and the other a lin-
ear control law. Both designs endploy a linear estimator to obtain estimates of
quantities required by the controller.

-The rlesigns are developed using approximate 'representations of the servo
actuator and the rate gyro. Using these approximations in an analog simulation
;)f the system, the pitch rate of the aircraft follows the output of the model with
less than 5% error over the range of parameter variations assumed. It is found,
however, that the system is unétable if the higher order dynamics of the actuator
and gyro are considered. A compensator is then included in the linear design to

overcome this stability problem.



CHAPTER 1

SYSTEM FORMULATION

A block diagram of the control system is shown in Figure 1. The objective
of the system is to force the aircraft to behave like the model reference, which
in turn is driven by the pitch rate commaﬁd Signal, r. To accomplish this, the
pitch rate of the aircraft, 9 s coﬁ"upted by measurement and vibration noise,

'n, is fed iﬁto an estimator along with the elevator position, § . The purpose of
-the estimator 1s to obtain an estimate of 9 and its derivative, the estimated
values of thése quantities being denoted by the vector /_:2 The vector _}/g\ is then
compared with the output and output derivative of the model reference, which
are denoted by x & resulting in the error vector, _é}. The quantities é\, 2, S,
and r are fhen fed into the controller. The control law produces the signal u
which drives the system in a manner such that é\ is driven toward zero, thus
causing the aircraft to behave like the model. ,

' Thé aircraft is represented by the pitch axis short-period mode transfer
function with parameters which Vély with time in an unknown manner. This

transfer function is

_ |
K (8 + Ta) 8 (9 + K SD(S)

Y(S) = — . . (1-1)
£ +20 w 5w 2
a a

a
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where Ka’ K & Ta’ £ LW, are unkﬁqwn, time-varying parameters of the air-
c.raft and Disa disturbancé inp\it. ‘Typical parameter values for a fighter-type
aircraft for different flight conditions are given in Table I. It is assumed in the
design that this table contains the full range of parameter variations encountered
in the -aircraft's performance envelope.

To reduce the order of the system for analysis purposes, the transfer
function for the servo actuator will be taken as

- R _
8 =s3577 VO (2-2)
h
where Th is the actuator time constant. The dynamics of the gyro are presently
ignored, with the gyro dynamics and higher-order actuator dynamics being con-

sidered in later chapters.



Table 1

Aircraft Parameter Variations

1
CASE | K T, s . w Ky
1 2,52 .368 .634 1.10 2.05
2 15.7 1.17 .556 2.82 13.5
3 7.08 .523 .432 1.54 6.23

4 76. 2 1.18 . 462 7.80 50.9

5 35.9 452 155 | 6.41 32.6

6 | 13.1 152 .075 3.90 10.1
7 18.7 .235 .106 4.178 19.5

8 45.2 846 .532 4.67 30.3

9 11.7 .255 .282 2.47 12.0
10 37.7 2.38 430 5.10 36.5




CHAPTER II

CONTROLLER DESIGN

A - Non-linear Controller
The non-linear control tech'niq‘ue used in the design is outlined in Appendix
A. To obtain the system equations in the form required by this technique, (1-1)

and (1-2) are converted to the time domain differential equations (2-1) and (2-2).

.o y . a )
+ w +w = —= 3 . -
y 2{;a a¥ a v Ka8+Ta +KdD (-1
T, 8 +3=v (2-2)
where
v=u-+r
Solving for § from (2-2) and substituting into (2-1) yields
K
. -2 a 1 1
w S —— e
yrw y =5 rn + Ko (3 7 )9
h a h
(2-3)

Ve,

+ D
Kd
Equation (2-3) may be written in the vector form of (A-1). This yields the set of

vector differential equations (2~4).
10 1 0
x = x + [ ] (2-4)
+ +
a, a, bl(u r)+b2 S K, D
= [1 0] p:S



where
X Tle.e
2

= ~ W
al a

= - w
3'2 z/; a
b =K /T
1 a/ h

=2
it

1 1
K i o
2 a (Ta Th )

The model reference is taken to be a second order system with a natural

frequency w 0 and a damping ratio § 0 The model reference equation cor-

responding to (A-2) is therefore given by

X . = | x + T
=d , =d
31 %02 201 (2-5)
where

a . = - W 2
01 0

= e w
202 2§ 0.0

- The matrix Q is defined in (A-6) as

T
- = +
Q A0 B BAO

Taking Q as a positive definite diagonal matrix, (A-6) is written as

“Q 01 [0 ag | 1B Bre B, B0 !
= + | (2-6)
10 -Q 1 a B, B B B a a

22 02 21 22 21 221101 02



Solving (2-6) for the elements of B gives the following equations

B - . Q)
12 2a01
2B, +Q
B = - lga ; 22 | (2-7
22 2a,
Bl = 3 Bamag By
By = By,

If the output of the plant and its derivative were both available, the control
signal u would be, in the form (A-10).

K. .

: ' lal d ) ‘

=1A. A + + + -

u [All’.‘ll A2|x2 A3|r A4lSI lbl o DImaX]SIGN Y (2-9)
where

= +
V=B By
e1 - Xdl - X1
€7 2T %2

) _al(t) -aqt X az(’c) " 3
A1 = Max ""-‘——Q"b ® P AZ = Max -—-—m———-
t 1 t 1 )

A =MaX w A —- MaX E_z_(i).

3, b, (1) 4 L b, ()

Since the vector X is not ,aVéilable in an uncorrupted form for use in (2-8), its
A
estimate, X, is used instead. This estimate, however, is not perfect and the

difference between x andg must be included in (2-8) .



. ; A
The error in estimation, '_é', arid the estimated system error, e, are de-

fined as
T-x-% (2-9)
A A
—x - ~10
e=x -X (2-10)
With (2-9) and (2-10) in (2-8), the result is
(] R ] a8, |4y 3] a5, | +ay |, 8
WELA] R T2 B2 ] T Bl T2l G2 T8 T T
£q D ] SIGN (¥ -Y 2-11
b ® 2 | max] SOV (7-7) (2-1)
where
4 A A
VY= B,e * Bye,
= - -+ S
7= Bye * Bye

Since the error in estimation is not a measurable signal, the control signal is
taken as
. A
u= M SIGN (7) (2-12)
where M corresponds to the bracketed term in (2-11) with the effect of the un-
known error e taken into account. The term M will be derived in Section IV-B,
A

and the effect of using the switching function Y insteady of ¥ will be discussed in

Section II-C.

B-Linear Controller

In the system under consideration, the physical nature of the plant will

cause the elements of the vector x to have some maximum bound. This fact



permits the use of a linear confrol law to generate u. This control law will be
derived below.
The time derivative of the Liapunov function V in Appendix A is given by

(A-6) as

vV = - eTQe+h

where h is expressed in (A-9) as

h=-2y {2 Aai(t) x, ta, THKE (ur 1) +K() ¢ (t)]
i=1

This can be rewritten in the form

. [ L (x, t) ]
h = - 2y K@) ?{_(Z)——— +u (2~-13)
where
n
Ly =2 Aa @ X+ [am * K(t)] r+ K@) ¢ (t)
i=1 :
The control signal u is taken as
u=L*Y (2-14)
where
K () max
The terni h then Ibecomes
_ L (x, # 2
h = - 2K(t) ["K‘(t')“ Y +L*xY ] (2-15)
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The most positive h could become is defined as hmax’ given by

Y |+L* Y 2] (2-16)

h == 2K(@) [ -L*

cama e [ 2-[7] ]
Therefore if]}' , 21, V wiil aﬂway'sE be negative and V will decrease. For Vthe
case where l)’ l <1, a region in vector-space is defined where V may be positive,
thus a decreasing V is not assured. This region will be iﬁvestigated for a sec-
ond order system.
In the second order case, Y 1s defined as in equation (2-8). The region
in the e e, error phase plane where !)’ |< 1is shown'in Figure 2. This re-

gion can be made arbitrarily narrow by chosing a Q matrix which results in a

large value of B__ and BZZ'

12

For the system being considered; L* as defined in (2-14) is written as

* = + +
L Allxl max Azllemax A3|r- max
K .
-+ Eaas ) -
+4, ls max *| & @ D Imax (2-17)

, xz, r, S , and D gives L* as a time-invariant gain acting

Placing bounds on X,

on ¥y . Therefore the control signal u in (2-14) in a linear combination of the
elements of e. As explained previousl'y,_ however, e is not directly available,
. . A
the control signal, therefore, is taken as a function of e as
A
u=L*Y (2-18)

A A
where Y is defined as in (2-11). The effect of using ¥ instead of ¥ is explained

in the next section.
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Figure 2 Region Where ‘ y |< 1

C - Effect of Estimation Errors

In the two previous sections it was pointed out that the errors in estima-
tion effect the control equations. The main effect of these errors is that the
control signal becomes a function of 4\’ instead of ¥ . This effect will be an-
alyzed below.

For the non-linear controller, the control would ideally be taken as (2-8).
The sign of u is equal to the sign of ¥ , which is a linear function of e. The

equation for Y = 0 defines a line in the e, e phase plane referred to as the

2

"switching line'. This line divides the e_, e_ plane into two regions where Y

17 2

is less than or greater than zero as shown in Figure 3. The control signal,

A A
however, is actually taken as a function of ¥ in (2-12). The equation for ¥ =0

defines another switching line whose location is a function of the estimation
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Figure 3 Swiiching Line
error. This relationship can be -seen through (2-9) and (2-10) which yield

(2-19).

o>

o

=g+ (2~19)
The g co-ordinates are therefore translated from the e co-ordinates by the

elements of € as shown in Figure 4.

Figure 4 Effect of E
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In the region between the switching lines, the sig“n of the control signal u will -
be oppdsite the sign needed for convérgenc‘e. Fbr the case where the estimation
error € is unknown but bounded, a region which contains the switching line 9’ =
is defined as shown in Figure 5. In this region, which will be referred to as
the "region of imperfect control", the sign of u may be either posi_tive or nega-
tive and convergence of the error VeCtOI" _é; is not assured. A similar region
also occurs for thé linear controller as explained below.

For the linear controller, the effect of the estimator error can be found
by substituting u as defined in (2—18) into (2-13). Following the previous de-
velopment, equation (2-16) bécomes

b=~ 2K() L*[Y y - IY ” (2-20)

max

|71
= Y =0
4 Max

vt v —— e

&= le Max

/\ )
‘ly‘Max = bBy, *+ aBy,

Figure 5 Region of Imperfect Control

‘ zzl Max’
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From (2-20) it is seen that for hmax to be negative, /)} has to be greater than

one and ¥ and )/> must have the same sign. The region where this may noyt be

t’rue for the case where Za_' is unknown but bounded is shown in Figure 6.
Therefore, the effect of the estimation errors in both controllers is to

cause a region around the line defined by 7 = 0 where the sign of W‘/, the Liapunov

function derivative, may be positive. There is a bounded region around the

origin of the error plane, however, in which the error vector will ultimately be

contained. This region will be investigated in the next section.

b b

™~

= | ey Max, © |e1| Max

c = 1/822, d = 1/B12

Figure 6 Region of Imperfect Control for Linear Controller



D - System Error Bound

A bound on the system error e can he found usin‘g a technique developed in
Reference 2  This technique will be used below to ébtain maximum values of
the estimation error €.

It is seen from Figure 5 that the region of imperfect control for the non-

linear controller can be described by the equation

I V4 l < L (2-21)
where

= ~ . ~

L Blzl ell max B22‘ ezl max
K B1 9 and B22 are large, (2-21) will also approximate the region of imperfect

control for the linear controller as shown in Figure 6. Substituting for the def-

inition of Y, (2-21) can be written as

< L (2-22)

1 4T
L < Bjye;* Byye

Rewriting (2-22) as a constraint on e 5 yields

!

-El'z‘e—g <e <—'}‘3‘1_2'e+f“‘ (2-23)
B ' B
22 1 B22 2 B2,2 1 B22
bid e, is taken as in (2-24) the inequality contraint (2-23) is satisfied.
B, _ .
e, =- —51—2- e, ¥ o (1) (2-24)
22
where
. 1
| ® l <B

22

i
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Since e2- is the derivative of e 1 however, (2-24) is a differential equation in

e, wifh o (t) acting as an unknown forcing function. The solution of (2-24)

catt be expressed as a constraint on e, as

Iellmaxs _3;1“2— ICC © Imax

< 3=
12
P l + =2 !"é ! (2-25)
li max B 12 o | MAax
Using (2-25) in conjunction with (2-24) gives the constraint on e2 as
B
12 |~ ~
_ 2 | === 3 -
‘e2|max < [Bzz | 1 ‘max I 9 l max} )

Equations (2-25) and (2-26) define a bounded region in the error phase plane

shown in Figure 7 in which the system error vector will ultimately be contained.

e

2
ol L]
r=90 oy |

]
il

a'—'"g '
2 Max ,

Figure 7 System Error Bound
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CHAPTER III

ESTIMATOR DESIGN

A - Estimator Equations

Both controller techniques described in Chapter II require thé aircraft's
angular rate about the pitch axis and pitch axis angular acceleration., A rate
gyro is used to measure the angular rate of the aircraft, but the angular acceler-
ation is not directly measureable, Due to structural vibration and measurement
noise, the use of a differentiation circuit to obtéin the angular acceleration f;'om
the output of the gyro is impractical. An estimate of this signél, however, can be
obtained by applying the estimation technique described in Appendix B. This tech-
“nique yields a linear filter acting on the gyro output; The gyro output signal con-
sists of the actual aircraft rate plus noise. The qutput of the filter is an estimate
of the angular rate and acceleration of the aircraft about the pitch axis. These
estimates are used as inputs to the controller as described in Chapter II. The
filter equaﬁo‘ns resulting from this teéhnique will be déscribed below.

The response of the éircraft to elevator inputs and gust disturbances is
described by the differential equation (2-1). This is written in vector form as

the set of equations (3-1).
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o 1 0
X = x . K.
+ +
3, 2, Ka S T o K q D
a
(3-1)
y = [‘1 O] X
where X, as and a, are defined as in (2-4). The first equation is now separated
into nominal terms and a term consisting of variations about the nominal as
shown in (3-2). |
01 0 0
= + ) + -
x x +| 5\ . (3-2)
n1 %ne K & "7 f
: a n
where
- Ka -
f2=Aalx1+Aan2 x, + AK & +A—T; 8+KdD
Na , =a - a, i=1,2
ni i ni
AK =K - K
a a an
Ka Ka Ka
Ao =75 ~\7
a a a n

The first two terms in (3-2) are taken as a nominal vector function whose param-

eters are time-invariant. The third term is a vector function which accounts

for parameter variations about the nominal and also accounts for the unknown
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disturbance input D. The gyro output is written as yg defined by

=y+n
yg

y={140]§+n

3-3
. (3-3)

where n is an additive noise term.
Equations (3-2) and (3-3) are now in the form of the set of equations (B-1).

Application of (B-4) yields the desired estimator equation shown below.

. 0 1 0 G1
A _ A 4 . A )
2h1 %na K8 7 / s8] %
(3-4)
where
G1 = 2Q Pll-
G2 = 2Q P21
and where P11 and P21 are elements of the matrix defined by the solution of the

matrix Ricatti equation

0 1 0 a 1 0
. nl , 1 1
P = P + P + 2QP p+-é-
anl an2 1 an2 ‘ 0 0
(3-5)

The term fz has not been included in (3-4) since nothing is known about it which

would improve the estimation.
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The matrix equation (3-5) yields a set of non-linear differential equations
for the‘ elements of P. These equations have constant coefficients and the initial
conditions of the P matrix may be chosen such that P = 0, Thus, P is constant,

and the first cbiumn of P is used in the definition for G, and Gz, resulting in

1
constant estimator gains. The problem of choosing the weighting matrices Q and
W, however, still remains. Since this choice is somewhat arbitrary, the esti-

mator performance will be evaluated directly as a function of the gains Gr1 and

G2. These gains will then be chosen on the basis of this evaluation.

B - Frequency Domain Error Analyéis

As shown in Section H-C, thé errorg in estimation directly affect the total
system errdr. Therefore it is desirable to choose the estimator parameters so
that these errors will be as small as possible. A measure of the estimator error
is also needed for the nonlinear controller in equation (2-11). For these reasons
the equations describing the errors in estimatiqn will be derived below.

A vector differential equation for the estimation error Eas defined in (2-9)

can be obtained by subtracting (3-4) from (3-2). This yields

0 1 0 G

. 1

3 = e+ - v _ - 2 ) (3-6)
2n1 a2 le GZ

Substituting Yy as defined in (3-3) into (3-6) and combining terms gives

-G 1 0 G

Tl ! e+ - o (3-7)
-G. + a a f G,

2 nl ‘n2 2. 2
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Equation (3-7) represents a linear system driven by the forcing terms fz and n.

The eigenvalues of the system are given by

G :
1 1 '
>\ e el i —_— ,\/___ 9 — (3"8)
2 -2 Gl 4G2

where

G, =G, - a

1 i n2
Gy = G, - Gypa, -2,

It is seen that for a stable estimator, both E‘r—l andEz must be positive. The

frequency domain transition matrix of the system is given by

S-a 1
1
@) = —5——— n (3-9)
S +G18+G2 an1~G2 S+G1

Assumingg (0) = 0, E(S)is given by

-G, N(§)

E®) = dE (3-10)
F,(5) - G, N©)

Equation (3-10) can be rewritten in the form of (3-11).-'

F2 S)
E®S) = T(S) (3-11)
N(S)
where
1 -G.8 + G, a -G
() = - i — : 3; 1 n2 2
S + GS + Gy 8+ G GS-6G oa,
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The error in estimation, therefore, is expressed in frequency domain
terms by equation (3-11). The transier function matrix T(S) is a function of the
estimator gains G1 and Gz. The effect of these gaihs on the estimation error

will be investigated in the next section.

C - Determination of Estimator Gains

The estimator gains Gr1 and Gz'will be chosen on the basis of their effect
on ’phe estimator error. As seen in (3-1), these gains affect the transfer functiohs
relating the forcing terms fz and n to E. Since the measurement noise n is usually
kept at a minimal value, the term f2, which contains the effect of parameter vari-
ations, will be treated as the primary source of the estimation error. This term
is an unknown quantity and it will be assumed that it may contain frequenbies up
to and beyond the bandwidth of the terms of the tra’hsfer function matrix T(S).
The tgrm f2 will therefore be treated as a white noise input to the system with

1

G, and G2 being chosen to minimize the output error variance,

- The estimation error'__é_' as given in equation (3-11) can be written as

e = Ef + En (3-12)
where Ef is the error caused by the term f2 and En is that caused by the noise n.
The spectral densities of '51 £ and '32 ¢ can be written as

i T 1 w 2

Pyag = I 11 09) l Dy (3-13)
— T H 2

Poor = I g1 UW@) ! D g (3-14)

~

where cblif and P 99¢ 2T€ the spectral densities of € an@ ezf,@.a o 18 the
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spectral density of f2, and T11 ( w ) and T21 (j w) are the elements of the first

column of T(S). Since f2 is taken as white noise, its spectral density is constant.

The variance of '5'1 and T . can be written as

£ 404 Cof
2_g (© T gwy] ? dw 3-15)
i T ff I 11 0 )i (
—®
®
2 : 2
% T C%o [ i Ty G I du (3-16)

2 2 . ~ ~ . .
where o 1f and o of are the variance of 3T and €os and Cf is the amplitude of

the spectral density of fz.

The gains G1 and G2 will now be chosen to minimize the sum of the two

integrals in (3-15) and (3-16). Let these integrals be defined by A11 and A21
where
A = @ T jw ) 2 d
11 ‘/ T 09 | w (3-17)
-0
W . 2
A, _/‘ |T21 (jw ),I dw (3-18)
-~QD ;
Equations (3-17) and (3-18) can be evaluated by residues giving A11 and A21 as
e T R (3-19)
Gl G2
@° +q)
_— 77- —
A1 12 (3-20)
Gl G2
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Defining A as the sum of A1 and Azi’ then from (3-19) and (3-20) Ais found as

1
- wd+ G +G)
A= S —
G1 Gr2 (3-21)
2
o7l + Gl ) -
A =77 + -
Gl GZ Gl

As seen from (3-21), A will be minimized with respect to G2 when Gr2 approachés

infinity. Setting the partial derivitive of A with respect to G1 equal to zero yields

G‘r2 (2(;}1 - n2) = (1 + G‘r1 + Gz) (G2 an2 G

——

1

) (3-22)

Assuming that the terms a1 and an2 are small compared to Gl and Gz, equation

(3~22) gives an approximate relationship between G, and G2 as

1

G m, /Gy (3-23)

Therefore if G1 and G2 were chosen on the basis of minimizing the error caused
by fz aloné, G2 would be chosen as large as possible and G1 would be chosen as

the square-root of G2. The values of G, and Gr2 , however, also affect the noise

1

transmitted. Assuming that n is white noise, the variance of the estimation errc.

caused by this noise is given by

©
2 . 2
a1, = C w/ l levgw)l dw (3-24)

2 (69
9 2n Cn /
-

It

Tyy Gw )I 2 dw (3-25)

, 2 2 . ~ ~
whe d t i i i
where o 1n and o, are he variaance lof €n and & and Cn is the amplitude

2
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of the noise spectral density. As before, the integrals in equations (3-24) and

(8-25) are defined as A12 and A22' Evaluation of these integrals yields

L 2 - anl2 i
Alz = a_ [Gl + G2 + 2 anl + -_a':—-—'*] (3-2€)
1 2
2 2
: G, a
A = =L g2 2rt 3-27)
22 E 2 a‘
1 2

As seen from the above equations, A1 9 and A2 9 increase with increasing Gz.

Thus G2 cannot be arbitrarily large since the noise transmitted may be un-
reasonable. The estimator gains, therefore, will be chosen by selecting a large

value of G, taking G, according to (3-23), and then evaluating (3-24) and (3-25)

1

to see if the noise transmitted is adceptable.

D - Choice of Nominal Parameter Values

The estimator parameters a

1 Bo Koo and '(Ka/ T, still remain to be

chosen. The values of these parameters affect the estimation error through the
forcing term fz defined in (3-2). These parameters should be chosen to minimize
this term, although it is not immediately apparent how to do so. The parameters

ah 9 and Kan will simply be chosen to minimize the maximum values of Aan 2

and AK . The terms a__ and (K /T ) , however, can be chosen on the basis
an n a’ “a'n .

1

of reducing the steady state error for a step inputto the system as shown below.
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In the case where the reference signal r is a step input to the system with

no disturbances present, the éteady state value of f2 is denoted by f2ss where

= fax + AT S (3-28)

1
8= g (3-29)
ss
where
K /T)
K SR - S - 1
S8 -a

1
Substituting 8 from (3-29) into (3-28) along with the definitions of AA a_ and

A(Ka/Ta) yields
| ®_/T)
|, __—=a ‘amn _
foss [ 17T K * (3-30)
S8

The terms a4 and (Ka/'Ta)n can then be chosen on the basis of keeping (3-30)

small over the range of values of Kss'
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CHAPTER 1V

FINAL SYSTEM EQUATIONS

A - The Estimator

The form of the estimator equation is given by (3-4) and the method of
choosing the estimator parameters is given in Sections III-C and‘III—D. In this
section the final numerical values of the estimator parameters will be given.

The estimator parameters a

0l 2n2’ Kan and (Ka/ Ta)_n are chosen as

explained in Section ITI-D. The values of a , Ka/ Ta’ and Kss for the ten

1’ 29

cases in Table I are shown in Table II.

Table 11

Case | a a, K_/T, _Kés
1 - 1.21 ~1.40 | .927 .766
2 - 7.95 ~3.14 18.4 2.31
3 - 2.37 -1.33 3.70 1.56
4 -60.8 -7.21 89.9 1.48
5 -41.1 -1.99 16. 2 .395
6 -15.2 - 585 1.99 .131
7 -22.8 21.01 4.40 .192
8 -21.8 -4.97 38.2 1.75
9 - 6.10 -1.42 . 2.98 .489
10 2.0 ~4.39 89.7 3.45
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The parameters an and Kan are chosen to minimize the maximum values of

2

Aan 9 and AKan The parameter a 9 given in Téble 1I varies approximately from

0 to 7, therefore a__

» is taken as 3.5. Similarly from Table I, Ka is seen to

vary from 3 to 76. -The nomihal estimator parameter Kan is therefore taken as
40.

The parameters a

and (K /T ) are chosen on the basis of keeping the
nl a an

bracketed term in (3-29) small over the range of Kss' From Table IT it is seen

that Kss varies from .13 t0o 3.5. If (Ka/ Ta)n is chosen as .5, then the term

(K /T ) /K varies from .14 to 3.8. The parameter a__, is then taken as -2.0
a “an 88 nl

to give the least variation of fzss'

As explained in Section III-C, the gains G, and Gr2 should be as large as

1

possible without resulting in an unreasonable amount of noise being transmitted.
If G 1 is chosen as 1600, then the value of Gr2 is taken as 32 from equation (3-23).
These values and the values of anl and an2 above give the natural frequency and
damping ratio of the second order denominator of the elements of the transfer
funection matrix T(S}. These are defined as w n and C n and are found as w n-
33.5 rad. /sec. and { L= 53

The additive noise term n taken as bandlimited white ‘noise with a stan-
dard deviation of .03 deg. /sec. and a bandwidth of 750 rad. /sec. The band-
width of the noise is large enough so that the estimation error due to noise can
be found from (3-24) and (3-25). The amplitude of the noise spectral density is

Cn = .762(10-6) and the terms A.1 9 and A2 are found from (3-26) and (3-27) as

2

A 12 = 188, A.z 5= 89(103). This gives the standard deviation of the estimation

2
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error as o, = .012 deg. /sec. and o, =26 deg. /sec. 2 If the 30 value of
the error is taken as the maximum, then
el max = 036 deg. /sec.
9 4-1)
€on | max = .78 deg. /sec.

Since thesé are acceptable errors due to noise, the estimator pararheter values
are taken as above.
The final estimator equation is then given by (4-2).
0 17 A 0 32
X

x o+ : + g~ %) (4-2)
-2 -3.5 403 +.58 1000

B - The Non- Linear Controller

The non-linear control equation was derived in Section II-A and is given
by equation (2-12). To obtain the (jﬁantity M, bounds on>the terms containing
'51, %‘2, and D max are needed. The{ method for obtaining these bounds is given
below.

The estiﬁator error caused by fz ig given by (3-11) as

Elf(S) = T11(S) F2(S) -3

Ezf(S) = T21(S) Fz(S)

The natural frequehcy and damping ratio of the second order denominator of the
elements of T(S) were found to bew n- 33.5 rad. /sec. and C 0 .53. The term
T 1 1(S) does not have any zeros and the term T21 (S) has a first order numerator

with a "break" frequency of 32 rad. /sec. Examining the gain vs. frequency

curves, a bound on the steady-state sinusoidal gain of Tll(S) and T21(S) can be
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~

taken as 1.5x (transfer function d. c. gain). A constraint equation for e ¢ can
therefore be taken as
TS =2 ot
if G 2
2
- 1.5G (-4
<
2
The term M defined in (2-12) is now written as
M—‘AA +A |2 +f'-\' +A |8+ M 4-5
"[1"1 2| *21 " 3" 4' ] (#-9)
where
— @ -3y o @ -2 o K
M= j— e + | e +
b1 1 | max bl- 2 | max b1 . max

Using (3-12) in conjunction with (4-4) and the definition of f 9 given in (3-2), the
term M can be written as

1\—/I={_1’5, [
G_.b

271

Aac 1

Aa

nl (4-6)

c2

L
GllAa

I

1] e

. . . Ka
+ : . e
AanZ l %9 l max AKa | |8 ,max " l A Ta 8 l mnx:l
) Aa l o X ha , l y l +’ _19_1_(1.5
b1 1n | max b1 2n | max b1 52
+1>H Dl }
_ max
where
Aa . =a, ~ a i=1, 2
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To evaluate M, the following bounds are assumed.

' 2
lxl' max 50 deg. /sec., le max - 100 deg. /sec.

= 50 deg. /sec.

I8‘lmax= 50 deg., | gl o

The disturbance term D is a pertubation of the angle of attack of the aircraft due

to wind gusts. The rate of change of D will be assumed to have a maximum

value of !Dl = 100 deg. /sec. The maximum values of e, and ‘e, are
max In 2n

given in (4-1) as .036 deg. /sec. and .78 deg. /sec. 2
With the above bounds substituted into (4-6), and with the servo time con-

stant taken-as Th = .05 and the model reference parameters taken as C 0 .8

and w o = 3, the values of M can be computed for the ten cases in Table I. Com-~
puting these values, the maximum value of M is found to be 10. 6 degrees.

Similarly, the values for A Az, A,S, and A as defined in (2-8) were computed

1’ 4

for the ten cases as .2, .1, 1.0and 1.0 respectively. The final form of M can
now be found from (4—5).

The only remaining parameters to be chosen in (2-12) are the terms B

A .

and B22 appearing in the definition of ¥ . The effect of these terms on the

12

system error can be seen from equations (2-25) and (2-26). For a given esti-

mation error, as the ratio of B22 to B

increases, | e increases and
12 1] max

I e, decreases. Since the purpose of the control technique is to control

xl or the rate of the aircraft, e

max

1 is of primary interest and therefore the ratio

of B22 to B1 9 should be taken as small as possible. Substituting the values of
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aOl and a02 into the first two equations in (2-7), the ratio B22/B12 can be found

as given below.
B Q
— = .208+1.88 22, (4-7)

B12 Qll A

If the ratio sz/Q11 is kept very small, then 1322/131 will be close to its mini-

2
mum value of . 208. Chossing Qll =9.6 and Q22 =, 22 gives the values of B12

and Bz2 as B _=1.0, B2 = ,25.

12 2
A

Substituting the expression for M and Y 1n (2-12) using the above param-
efers, the final form of the control signal for the non-linear controller is as

follows.
u = [ .2 ’ QI

C - The Linear Controller

+ +

S

I

A A
+ 10.6] SIGN (e, +.25e,)

A
+ .
l.l X2

(4-8)

The linear control equation was derived in Section II-C and is given by

A
(2-18). Substituting for ¥ , this equation is written as

A

u=L* (B, 21 + By, €,) (4-9)
If, as in the previous section, B 22/_ B1 9= .25, (4—9) becomes

u = M* (’e\1 +.25 32) (4-10)
where

M* = 1.* B

12

The term L* is defined in (2-17). The bounds on xi, Xy d , and D are the

same as in the previous section and the bound on t is taken as 50 deg. /sec.
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The term L* is then found by taking its maximum value for the ten cases in
Table I. The resultant value is found to be 108 degrees. If the gain M* is taken

as 1000, B is ’phen equal to 9.3. Therefore, as shown in Figure 2, the region

12
of imperfect control due to the controller is narrow even for this extreme case.
Hence, the system error depehds mainly on the estimation error as shown in
Figure 7.

The final control equation for the linear controller is then taken as

A A
u = 1000 (e'1 + .25 ez) (4-11)
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CHAPTER V

EXPERIMENTAL RESULTS

The system was simulated on an analog computér usihg the estimator
described by equation (4-2) and using both the non-linear and linear controllerés
given in equations (4-8) and (4-11). The ten cases of parameter variations given
in Table I were run for both step and sinusoidal reference inputs. The disturbance
résponse was simulated using an impulsive gust input and alsq a turbulence
input consisting of bandlimited random noise. In all cases the results of the
non-linear and lineér controllers was almost identical, and therefore only one
set of results is shown.

The uncontrolled plant step responses are shown in Figures 8 and 9 for the
ten cases to illustrate the wide variation caused by the plant's changing param-
eters. Figures 10 and 11 show the controlled plant response to a step input
and Figures 12 and 13 show the response to a sihusoidal input. It is seen that
in both cases the plant output follows the model reference output very closely.
The disturbance response is shown in Figures 14 and 15. Figure 14 shows the
response o an 'app'roXimate impuise disturbance modeled by the disturbance :
input

D= (- ) (5-1)
where ([ o is the initial angle of attack of the aircraft which was taken as 5

degrees. Figure 15 shows the response to an air turbulence type disturbance
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which was modeled as band~limited white noise with a standard deviation of 1
degree and a bandwidth of 1 rad./sec. The results show that in all cases the

disturbances are quickly damped and there is no excessive response due to

turbulence.



44

CHAPTER VI

EFFECT OF HIGHER ORDER DYNAMICS

In the system as formulated in Chapter I, the servo actuator was repre-
sented as a first-order system and .the dynamics of the rate gyro were ignored.
These approximations are valid for low gain systems where any higher order
dynam.ics will not affect system stability. However, as seen by the linear con-
trol law given by (4-11), the linear system as designed incorporates a high gain
feedback. This results in stability problems if the higher order effects are
included in the system model and it requires that additional compensation be
included ih the system. To determine this compensation, the system using the
linear control law will be analyzed in the frequency domain using higher order
models of the actuator and gyro.

The system using the linear control law can be represented in block dia-
gram form as shown in Figure 16, where Gh (S, Gg (S), and Ga (S) are the
servo actuator, gyro, and aircraft transfer function respectfully. To Ydeter—-
mine the estimator transfer function, the time domain estimator equation is

transformed into the frequency domain. The matrix equation (4~-2) yields

CA A A
= + - -
Xy X2 32 (yg Xl) (6-1)
& - 98 sk 4 40é + .58 +1000 (y_ - %) (6-2)
2 1 2 g 1
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x_ +.2bx

1d 2d y
M(.)I)EL——————-»Q—-‘. 1000 G, 8 8 G, ®) '
L 2 .
G (S
. g
Ve
— ESTIMATOR
x1+. .25x2 4

Figure 16 Linear System
Conversion of (6-1) and (6-2) from the time domain into the frequency domain

A
gives the transfer functions relating x to yg and 3 as

(328 + 1112) Yg (8 + (408 + .5 8 (S

A ,
X, (9 = 5 (6-3)
S + 35.585 + 1114

2

(10008 -~ 64) Yg(S) + (4087 + 12808 + 16) & (S

A
X, (9 = > ' (6-4)
S° + 35.58 + 1114

The relation between Yg(S) and 3 (9) is

Y (9 = [Ga@ Gg(&] 8 (9 (6-5)
Substituting (6-5) into (6-3) and (6-4), the output of the estimator as shown in

Figure 16 can be written as

R + 255,09 - HEO S (9 (6-6)
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where

(2828 + 1096) G (8 G (5 + 108 + 3608 + 4.5 -

H(S) = 5
S + 35.58 + 1114

The block diagram in Figure 16 is now rewritten as shown in Figure 17.

+ | &+ * 8
T MODEL 1000 Gh(S)

H(S)

Figure 17 Linear System
The stability of the system shown in Figure 17 is determined by the loop gain

function IOOOGh (S) H(S). The transfer functions for the actuator and gyro are

taken as
G, (9 - 4900 , (6
(-058 + 1) (S° + 705 + 4900)
22500
G (5 = 2 ‘ (6-8)
g S + 1508 + 22500

The second order term of the actuator transfer function and the gyro transfer
function were both obtained from a linear design technique presented in Refer-
ence [6]. Using (6-7), (6-8) and H(S) as defined in (6-6), the loop gain function

is given by (6-9).
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L{s = lOOOGh (S)H(S)

{(1000)(4900) [(1082 + 3608 + 4.5)(S2 + 1508 + 22500)

'(sz t2p W oS +w 2) + (22500) K (S + 1/, )(2828 + 109(5)]} :
a a a a Ta (6—9)

L® = 2 2
{(.oss + 1)(S° + 708 + 4900)(S° + 1508 + 22500)

(8" + 35.55 + 1114(S° + 2f _w S +w 2)}
a a a
where K , T ,w , { are defined as in (1-1).
: a a a a

The magnitude and phase plots of L(S) for Cases 1 and 4 are shown in
Figure 19. For frequencies above 10 rad. / sec., the phase plots for the other
eight cases fall within the phase plots of the two cases shown. From this figure
it is obvious that the system as it now stands is unstable. To remedy this situ-

ation, a compensator is included in the system as shown in Figure 18.

+
f-_-.l MODEL }—% 1000 b5 G_(S) —alGh(S) 8

H(S)

Figure 18 Compensated System
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The compensator, GC(S) , is taken as

S 2
— 4 e
( 150 L) 5000

G, = 3 :
(—=— + 1 > g 209 g4
1200 (30,000) 30, 000

+ 1)

(6-10)

The gain and phase plots of the open loop compensated system are shown in
Figure 20. It is seen that the system is now stable with adequate phase mar-
gin. Also, since the gain and phase angle are hardly affected below 50 rad.,
this additi;mal compensation should not appreciably affect the response of the
system.

As shown above, when higher order dynamics are considered, the
system using the linear control law can be made stable by addition of proper
compensation. In the case of the non-linear controller, however, the reduired
compensation cannot be found thrpugh linear analysis. To determine the sta-
bility characteristics of the non-linear system, the system would probably
have to be simulated with the higher order dynamics included in the simulation.

Proper compensation would then be sought through experimental means.
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CHAPTER VI

CONCLUSIONS

In this report two designs for a flight control system were presented; one
using a linear controi law and th;a other using a non-linear control 1éw. Both
designs employ a linear estimator to obtain an estimate of pitch rate and its
derivative for use in the control laws. Using approximate models for the actuator
and gyro, both designs yielded excelletit results. It was found, however, that
stability problems existed if the higher order dynamics of the actuator and gyro
were considered. In the case of the linear system, a compensator was included
in the system to obtain stability. No stability analysis was performed on the non-
linear syétem, however, and the system would have to be simulated to determine
its stability characteristics., This stability problem necessitates that topics for
further investigation inqlude other higher order effects, such as aireraft bending

modes, which could affect the stability of the system.
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APPENDIX A

CONTROL TECHNIQUE EMPLOYING LIAPUNOV'S DIRECT METHOD

The control technique given in Reference [1] as applied to linear systems

is outlined below.

L * » PLANT
+
u
CONTROLLER
» MODEL

Figure A-1 Block Diagram of Control Technique
The plant in Figure A-1 is described by the vector differential equation

x = Ait)x + b f (A-1)

where x is an n-vector, f is a scalar function containing the control signal u and the

reference signal r, p_T = [0, 0, ° °, 1] , and A(t) is an nxn matrix of the form
o 1 0 0
Aty = 0o 0 1 0

. )

| al(t) az(t) 'a3(t) . . an(t)



The control objective is to force the plant to behave like the model, which

is in turn described by the n-vector differential equation

X, = A xXx. +b r (A-2)

where AO is a time~invariant nxn stability matrix of the same form as A(t) with

RN andwheregrg =

the last row consisting of glements aOl’ 302’ > A0

[0’ 0. =0ts =84y ]

An error veétor is defined as

e =x. - X (A-3)
Equation (A-3) along with (A-1) and (A~2) yields the error vector differential
equation

é = Ae - DAt)x + br - bf (A-4)
where |

AAb) = Ap) - A
The‘ Liapunov function

v = STBE (A-5)
is associated with (A-4). The time derivative of V is found to be

;J = —eT Qe + h (A-6)
where

_ T
Q~A0B+BAO

h = 2gTB [ ~AA®L) x + ]gor + bf ]

If AO is 4 stable matrix, and if Q is chosen as a positive matrix, then B is

also positive definite. This makes V a positive definite function; thus if h can
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be maintained nonpositive by the choice of u, Vwill be negative definite and ¢
will approach zero. The term h can be expressed as

n

h=-27 Z Aatyx, + ar + f (A-7)

Also, for plants with linear gains, the function f may be written in the form
f = Kt) [(u + 1) + ¢ (t) ] (A~-8)
where K(t) is a time varying gain and ¢ (t) is a generalized function which includes
the remaining terms in f. Substituting for f in (A-7)
n
h=-2Y Z 1A ai(t)xi + a1t + K{t) @ + r) +Kt)¢ (t):{ (A-9)
i =
The term h can be maintained non-positive if u is taken as

= +
u [Xl X2 + X3] SIGN 7Y

where
n
X 0= K@) %
=1
! Max
_ Ki) + a
% l K(t) g
Max
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APPENDIX B

SEQUENTIAL LEAST SQUARES ESTIMATION TECHNIQUE

The estimation technique reported in Ref. [3] and extended in Ref. [4]
and [ 5] is outlined below.
Given a system described by the vector differential equations

x = gy (& %) + Agt, x + K¢, %) uft) (B-1)

y® = ht, x) + v(t)
where x is an n-vector
gy (t, x) is a nominal vector function
Agit, x) is a vector function whose variation with time is unknown
u(t) is a p-vector unknown input
K, x) is an nxp vector function whose variation with time is unknown
y(t) is an m-vector output
h(t, x) is an m-vector function
v(t) is an m-vector of measurement errors
The problem is to obtain an optimum estimate of the n-vector x. The estimator
is chosen to satisfy the equation
A A A
X €, x) + w(t, x, y) (B-2)
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where Q is an optimum estimate of x and w is the estimator input to be deter-

mined. The vector Q is optimum in the sense that it minimizes the cost functional

J = /f (eiTé e, + 92T We,) dt (B-3}
o
where
e, = y-ht 9
e = 1t - wt, %y

i, />\<) = Ag (t, Q) + K (t, Q) u(t)
and where 6 and W are weighting matrices. The problem now is to minimize J
with respect to w, subject to the estimator constraint equation. This variational
problem is solved using Pontryagin's maximum principle where a Hamiltonian is
maximized with respect to w. This results in a two-point boundary value problem

which is solved using invariant imbedding. This technique yields the solution

M -g e e daelyo-ned] cred @y

where

g {%@x]

and where P (t) is an nxn matrix defined by the matrix Riccati equation

T

1.D=g A(t/;()P+PgTA(t/;\<)+
OQX’ O’X’

{nedalyw-ned]}erTw?



where

g DD =

dg, . D
T80

g X
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