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One Dimensional Study of Tonks-Daltner Resonances 

S. Ramchandran and M. Eisner 

The resonances occurring in a cylindrical plasma column 

being driven by a transverse electric field have been the sub- 

j e c t  O f  much inVes$i o%Acn since they were initially observed 

by Tonks. ("*' 
frequency was expected on the basis of simple theories, in fact 

Although only a single resonance at the plasma 

a series of resonances were observed. Tonks attributed these 

to the inhomogeneity of the plasma density. Crawford ( 3 )  showed 

t h a t  t h e s e  a r e  two t y p e s  of modes which propagate  r a d i a l l y  i n  

a non-uniform cylindrical plasma column, the f i r s r .  inode is 

similar to that which would exist in a cold plasma whiie the 

second depands on the electron temperature. Leavens solved 

the Vlasov equation to obtain the resonance spectrum of a re- 

alistic model o €  a plasma cylinder including a sheath. He re- 

duced the cylinder to a thin one dimensional s l a b  of collision- 

less thermal plasma. He found that there was no relation between 

the first resonance frequency and the average plasma resonance 

and also found resonances above the series limit. 

The present work u s e s  a~,-lplasma similar to ^that ~ 3 s B  by 

Leavens bur ehe analysis is based on a sheet plasma dynamics 

rather than solutions of the conductivity kernel as  used by 

Leavens. The sheet model has been extensively used and the work 

of Dawson ('1 and EPriBge and Feix(') arle useful, guides for the 

detailed procedures. 



Description of the Computer Experiment 

In set t ing up the numerical experiment, a one-dimensional two-component 

plasma is used. Electrons are distributed according t o  the Maxwellian velocity 

distribution. Heavy.ions, are kept stationary and distributed 70 as to satisfy 

the Poisson equation. The distribution f’unction for the electrons, used is 

e 

‘where *bda is  BC constant9 d is the mss of the electron, (bed is the potential  

which is a function of p,osition .x r V  is the velocity and 7 is the 

thermal. 

It 

mass of 

energy, 

is asssnnned that the mass G‘vd of Vne electron i s  equal t o  B md the 

ion is very large,, Electron has a charge .u- = -1 ma .the charge of ion 

The t o t a l  thickness of the system is  2a.19 arbitrary units of length andl is 

divided into 60 equaJ. space fmtervafs, ehch of length 4.7365 units, The f i rs t  

.. 
52 of these intervals are tn the plasma and the remaining 8 &re i n  the sheath. 

The e lec t r ic  f i e l d  Eo i n  $he p l a sm is constant and increases linearly i n  the 

sheath (Refer Figure 3).  The fields a.re measwed in  uni ts  of dk~  qi hophere 
I 

,h j- is  the thermaS. energy, and )lp)is the Del* length evaluated a t  the 

position X=O, The constant ‘field 6 i n  the plasma ha va ly  0.0962;. The 



plasma f’requency a t  the sheath edge, w!lsJ has a v a l e  of 0.1344 af‘ter sea&* 

it to  the plasma frequency at  the position X=O, 

h: 

4 

For the generation of plasma i n  the numerical experiment the following 

procedure was used. F i r s t  the t o t a l  length of the system was divided into 

small segments of $ of the space interval mentioned above, Then the distribution 

f’unction f(x,v) w a s  integrated uver x and v between the proper limits t o  obtain 

the corresponding number of par t ic les  i n  each segmento The electrons and the 

ions are arranged allternately, the electrons a t  equal spa t i a  intervals and 

ions a t  ranaom intervals. The i n i t i a l  electron velocit ies are obtained according 

t o  the Maxwellian velocity distribution by using a random number generator 

subroutine. 

A t o t a l  of 19,014 part ic les  are used i n  the system, including electrons and 

ions out of which 18,862 are i n  the plasma, the r e s t  i n  the sheath. 

The electrons are emitted from the w a l l  at the position X=09 w i t h  a M a x -  

wellian velocity distribution. The inner w a l l .  at the position X=O also absorbs 

all the electrons which strike it, A few of the electrons reach the floatixq 

w a l l  a t  the position X=L, where L i s  the length of the system. 

OscilSating electric fields with various frequencies an8 amp1itudes are 

applied to  this system and the dynamics of the system ewe dbsewetl a% inP,e&hs 
I 



of time 

kinetic 

AT. The quantities of interests  measured are the pokentiaJ, enerw, 

energy, the tot& energy and the current which Bu'e defined 88 follows: 

Total. energy - Kinetic energy + Potential energy 

Here, N is the t o t a l  number of i a r t i c l e s  i n  the system. The results are then 

1 
PoUrkr&alyzeB using the equation 

The plasma model was se t  up and the n m e r i c d  experiments were conducted 

on the UNWAC ~lI.08 electronic eompktes: a t  the National Aeronautics and Space 

Administration at  Houston. 

During the experiment, t R e  current ana energy were measured a t  intervals 
, 

of 0.01 of an electron plasma period. The system was subjected t o  the oscil lating 

e lec t r ic  f i e l d  for abaut'l .5 plasma perioas. The time taken t o  generate -the 

plasma in i t i a l ly ,  was approximately 2 minuies on UNIVAC 13.08 computer. On the 

average, if; took about 25 minutes of computer time for 20 individual. measure- 

ments. The results are then pwrw' halyzed t o  f ind the frequency dependence. 



The numerical experiment was done for several different frequencies of the 

impinging osciUerting raLectric f i e l d ,  Allso two different mplfkudei were ueed 

L fo r  the driving f i e l d  and the driving f i e l d  consists of square waves. 

i 

The resul ts  of the numerica.l experiments are presented graphically 

(Figures 4-17) showing the relationship of frequencies used i n  the study t o  the 

values of current obtained i n  the analysis. In the resu l t s  shown, Figures 4 

I 

i 

through 11, the amplitude of the driving f i e l d  uaed was 1.0 whereas i n  Figures 

12  through 979 the amplitude used was 0.1, The frequencies are expressed i n  

terms of the plasma frequency a t  X = 0 i n  the plasma model and the current i s  

expressed in arbitrary units. Figures 4 through 7 shows the relationship of the 

' frequencies used t o  the Bbsolute value of %he current whereas Figures 8 through ' 

11 are the corresponding real md imaginary p a t s  of the current. 

Specifically, Figure 4 gives the dependence of current on frequency when 

W the driving e lec t r ic  fie3.a i s  81 square wave of period T = 0.30 ( q;> =. 2. ;:,I ). 

Here the f irst  resonance occurs a t  the frequency O,l3 and the sharpest resonance 

is  seen a t  %he frequepcy 0.19, There are a l s o  about 5 weaker resonances occurring 

at frequencies 0.26~ 0.31, 0.39, 0.51 and 0.55. I n  Figure 5 is  shown the 

relationship, of current versus frequency for a dirivinp f i e l d  of period 0;35 
/ .  



. .  
='0.18). Here also, as shown i n  Filgure 4, the first resonance is a t  I I. 1"- 

P ( C-i  rr) 

I the frequency 0.13 and the sharpest resonance is  at the frequency 0.19. There 

are addititma3 weaker resonances, occurring a t  the' frequencies 0.25, 0.3-1., 

0.35, 0.45, 0.51, and 0.56. In the case of driving f i e l d  of period 0.40 

and 
t \ 

are 

= 0.15)9 the si tuation is sl ight ly  different (Figure 6). The first 
"%'" - 
the sharpest resonance is at  the frequency 0.14 and a l l  the other resonances 

weak, the second resonance being a t  the freqyency 0.20. There are a t  l e a s t  

6 more weaker resonancesg the frequencies being a t  0.25, 0.30, 0.3!j9 0.40, 

0.46, 0.52. In Figure T 9  the driving f i e l d  has a period 0.48 ( bj- = 0.13). W p )  

This i s  very similar t o  tha t  of Figure 6, the f irst  andl sharpest resonance 

being at the frequency 0.14 andl the second resonance being a t  the frequency 0.20. 

Here also except tRe f i rs t  oneg the rest of %he resonances are weak and occurs 

a t  frequencies 0.24, 0.303 0.34, 0.41 and 0.46. The next s e t  of resul ts  are 

f o r  the driving fields of empPitude 0.9. I n  Figure 12, is s h m  the relationship 

of frequency versus current fo r  a driving f i e l d  of period 0.30. Here the f i rs t  

resonance occucps a t  the frequemcy 0.13 and the second, %he sharpest resonance 
1 

occurs a t  the frequency 0.19 and there are additional, several weaker resonances 

occurring a& frequencies 0.26, 0.30, 0.35, 0.40, 0,459 0.50 and 0.56. Figures 
I 

13 and 14 are %he frequency dependence on current f o r  the driving f ie lds  w i t h  



periods 0.33 ( 22.- = 0.3.9) and 0.35 ( 0.18). respectively. In  both bp?.) 
these cases the f i rs t  resonance occurs a t  the frequency 0.13 and the second 

is the sharpest resonance and occurs a t  the frequency 0.19. In Figure 23, 

the additional 7 weaker resonances occurs a t  frequencies 0.25, 0.30, 0.35, 0.40, 

0.45, 0.50 and 0.56. In  Figure 14, the additional weaker resonances are seen 

at frequencies 0.25, 0.30, 0.34, 0.eC0, 0,45, 0.30 and 0.56. 

I 

A l l  these results clearly emphasizes the f ac t  that  there is  no relationship 

between %Re first resonance frequency and the average plasma 

17 ) 
predicted by Dattner*s experimental investigation and tne 

frequency, as 

present result 

, 
agrees with the resul ts  of Leavens. ( '8 b A n  absolute comparison with any of 

the ear l ie r  investigations is not possible i n  th i s  case, since we nave used 

a weaker sheath i n  the numerical experiment, It has been shown (8p that it 

is  the sheath which 

sheath, there is no 

influences the position of 

resonance below the plasm 

( Lyfcs ) ) .  mis cut-off at eU S) is not seen v: 

the resonances. For a stronger 

frequency at the sReath edge 

i n  t h i s  experiment. Hence, it 

can be said that 8~ weaker sheath reqlly would behave differently and i s  possible 
-\ 

to  bring resonances bela4 (S) . In the present investigation the number of P 
resonances observed is also more 86 compared t o  the cas8 of a s%ronger sheath 

((49 
useif by ~ e m n s .  IP; is &so interesting t o  note that the ?irs*t resonance ., 



frequency increases with a smaller driving f i e ld  frequency. For a stronger 

d.riving f ie ld ,  (amplitude = 1.0) the higher resonances are not aa well defined 
4 

as in the case of B, weaker driving f ie ld  ( likade - O.l)o Thia i e  probably 

due to the effect  of non-linear processes in the case of stronger driving fields.  

This effect  on higher resonances i s  significsntly noticeable in the case of 

hf@er driving f i e l d  frequencies; 



Conclusions 

I 

The purpose of this work was to  investigateathe resonances i n  a one-dimensional, 
4 

%we eempsnent, n s n - z ~ & € ~ m  shesth-biamded p&&sma. A ~sne-Bhens&entd, p&thsmth wk% 

appropriate boundary conditions was simulated. The system was driven by 

osci l la t ing e lec t r ic  f ie lds  of various frequencies and the corresponding time 

varying currents were obtained. The t h e  varying current was then Faurier 

I 

analyzed to  obtain the frequency dependence. The numerical experiment wasl 

performed for  two different amplitudes, This one-dimensional charge' sheet model 

i s  a simple and sensible model system, exhibiting some of the properties of a 

plasma. Several of the theoretical  predictions have been verified using 

one-dimensional homogeneous plasma. The present experiment proves i ts  applicabili ty 

to  non-homogeneous one-dimensional system, 

It was found that the model did show resonances. Although it was  not 

\ 

possible t o  make an a0solute comparison. w i t h  the resu l t s  obtained by ea r l i e r  

investigators, because of the difference in the sheath strength, the following 

conclusions could be made, 

There is  no r e l i t i on  beween the fj.rst resonance frequency and %Re 

average .plasma frequency, in agreeplent wi%h the resule oPitained by 

Leavens. 



(2) The sheath strength influences the'resonances, and a weaker sheath 

'would show resonances below Lbi($), whereas a stronger sheath would 
f 

cu t  off the resonances a t  W,(J) This weaker sheath also 5ncXeases 
t 

t h e  number of ' resonances.  

(3 )  There i s  a s h i f t  i n  the f irst  resonance frequency as the frequency of 

the driving f i e l d  changes, tn  the case of a weaker sheath. 

In  the case of stronger driving f ie lds ,  the e f fec t  of non-linear (4) 

grsoesme So seen f o r  higher raaanancea. 

It would be interesting t o  do the experiment with various sheath strengths, 

as the plasma behave differently f o r  a weaker sheath. 
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Solutions of the Lenard-Balescu Equation for Drifted Plasmas 

by Kurt H. P. H. Sinz and M. Eisner 

The effects produced on the plasma distribution by 

external fields have been investigated in connection with many 

plasma applications. A starting point which has been usual 

is the assumption that the principal effects of the external 

field would be to produce drifted distributions. Thus, if one 

had initially Maxwellian distributors the effect of the field 

would be to produce Maxwellian distributionswhich were drifted 

in the field direction. Using these distributions one could 

calculate transport properties. The time development of the 

distributions is calculated in turn from a kinetic equation 

with an appropriate collision term. The Lenard-Balescu 

equation includes a collision term which can be thought of as 

a collision between dressed par,ticles and therefore includes 

the effects of wave particle interactions. Since plasma waves 

may be generated in streaming plasmas the Lenard-Balescu equation 

would seem to be quite appropriate. In this investigation 

numerical integration of the=kinetic equation is undertaken for 

a one dimensional drifted plasma with the aim of examining 

the validity of the drifted distribution assumption and the 

effects of the wave particle interactions on the time develop- 

ment of the distribution function. 



METHOD OF SOLUTION 

The benard-Balescu equation given in 11-36 is a system I of simultaneous,nonlinear, transcendental, integro partial 

differential equations. For convenience we restate the 
I 

equations in more explicit form: 

and 103c-1 

with 

where m and M are the electron cnd ion masses respectively 

and h, n o  is the number of particles of either 

species per electron Debye length. These equations give 

the ensemble average single particle distribution functions 

f, and f m when an external electric field is included. 

shall be interested in possible effects that the right hand 

interaction term in 111-1 may ‘have on the distributions 

We 



and,any I consequences that this may have on the drag and the 
i 

spectrum of waves given by the dispersion relation. A l -  

though this problem appears much t o o  complicated to make an 

ana iytical solution possible, it, nevertheless, is simple 

enough t o  permit an llexacttl numerical analysis. Before 

embarking upon such a course, we shall attempt to make 

exact simplifications of 111-1. 

i 
i 

Let us suppose that for a first approximation we as- 

sume the right hand "interaction" term t o  be negligible 

so that we trivially solve the resulting partial differ- 

ential equations t o  find 

- 

These equations, of course, represent drifting solutions 

that accelerate constantly in the external field but ex- 

perience no diffusion or any change in "shape?'. Utilizing 

111-2 various attempts were made t o  evaluate at least the 

coefficient of the arctangent function in 111-1 when us- 

ing drifted Maxwellians and drifted Maxwellians that ex- 

perienced only a very small drag. Unfortunately all such 

efforts were pretty much futile. 

To check the possibility of such solutions that ex- 

perience no effect except that they are drifted in the 

external field, we eliminate G(v) between the two equa- 

tions in 111-1 which leads t o  



This equation can be integrated over time when assuming 

solutions of the form 111-2, and performing the derivative 

on the right hand side of 111-3 while using the homogeneity 

of 111-2 in v and t and then integrating. With integration 

limits on t from 0 t o  t, the result is 

Multiplying this result by v and v2 respectively, then in- 

tegrating over v and differentiating with respect to t, 

establishes the conservation o f  momentum and produces the 

claim of conservation of energy. The latter conclusion is 

obviously inappropriate in view of the electrical field 

that is acting upon the system. *We thus know that solu- 

tions are not merely drifted and we expect the collision 

term in 111-1 to play a significant part when solving for 

f, and f-. 

Some insight into the behavior of the interaction 

term in 111-1 may be gained by trying simple distributions 

for which the principal value integral can be evaluated 



exactly. To this end, square, triangular and parabolic 

distributions do not appear t o  be t o o  use.ful because of 

their inherent discontinuities in slope; however, at least 

f o r  the latter two, much can be done towards evaluating 

the collision term. Of considerable usefulness were d i s -  

tributions of the type 

as they match onto the line f=O smoothly at- V = k f  

because at these points the zeroth through (2n - l)th de- 
rivatives vanish. Functions constructed in this way bear 

much reseKblance t o  a Gaussian and can be simultaneously 

normalized and assigned arbitrary temperatures. In the 

preliminary stages of this work, much use was made of 111-4 

with n=1, although this results in a discontinuous second 

derivative and therefore a discontinuous interaction term ' 

in 111-1 at the slends'v of the distributions. This problem 

can be overcome by using n=2 in 111-4. The fact that the 

principal value integral in 111-1 can be evaluated exactly 

for this type of function was helpful in making rough p l o t s  

in order t o  get an intuitive understanding of the function- 

al behavior of the interaction term. This same feature was 

invaluable in making exact checks of numerical methods when 

developing the computer program that produced the nunerical 

solutions of 111-1. 



36 

The numerical techniques employed t o  solve 111-1 are 

rather straight forward. The basic scheme consists of 

nbrnerically evaluating the derivatives with respect t o  

velocity of the distribution functions whose values at 

time t, are known for all grid points of v. 

tives must be stored in an array as they are all needed 

I 

’ 

I 

These deriva- 

when evaluating the principa1,value integral. Once G as 

defined in 111-1 has been determined, the necessary differ- 

entfat2on can be performed and we are thus able to solve 

f o r  the time derivative of the distribution functions for 

all grid points of v at time tn. 

used t o  update all values of the distributions t o  time 

tn+l allowing us to repezt the above cycle for the next 

time step. The reevaluation of the principal value inte- 

gral at each time step is very costly since the appropriate 

integration has to be carried out for each v. 

puter time goes about as the square of the number of grid 

This derivative is then 

(The com- 

points.) Some economy is possible, however, by noticing 

that in reglons where one of the distributions and its 

first derivative vanish (or are negligibly small) the 

collision term in 111-1 can be ignored and the other dis- 

tribution simply drifts in t h a t  region according to 111-2. 

In such a region, no recalculations are necessary except to 

adjust the grid spacing and t o  delete and interpolate data 

points as appropriate, Unfortunately this also complicates 



the required bookkeeping because of the odd grid points 

that are thus introduced. 
I 
i 
I 

A special device must be used to perform the principal 

value integration because of the singularity in the inte- 

grand. 

point at the singularity and the two points immediately 

The contribution to the integral due to the grid 
i 

next to it, is determined by fitting a parabola to the 

numerator of the integrand and substituting the calculated 

information into an analytic formula as follows. 

In general we have for Xa # x3 



the divided differences. calculated from the ordinates 

and.abscfssas of the,grid points that have been f i t t e d  and 

where 
I I 

and 

The remaining contribution to tki'e Integral can now be eval- 

uated in a straight forward manner with the help of Simp- 

son's rule. 

For the first iteration, the distribution functions 

were advanced according t o  'the first two terms in the 

Taylor expansion 
e 



Thereafter, we employed the slightly more sophisticated 

Adam's method 

t o  advance our solutions in time. This method'is equivalent 

to fitting a parabola t o  two points when one coord.inate and 

both slopes are known and then extrapolating along this 

parabola. 

Throughout thfs work derivatives were taken according 

2 bV 

which can be shown to be accurate to third order. In con- 

nection with the damping, third derivatives had to be taken 

but no extraneous noise was noticed in spite of the fact 

that numerical differentiation is prone to giving erratic 



results. 

! 
i 

1 

i 

Needless to say, the distributions have t o  be termi- 

nated somewhere. Since the I1widthstt of f, and f- are dif- 

ferent there will be regions where both functions are non- 

zero (ftoverlapll) or where only one function is nonzero. 

In the overlap, both distributions can be updated according' 

to the prescription of the previous paragraph; but, as can 

be seen from 111-1, outside this region =o 
>it. 

for the vanishing function so that a special treatment has 

to be devised to account for this, 

For the sake of definiteness, let us say that both t o  

the left and t o  the right of f, there is a section of f-. 

Now a positive field advances this right section of f- ac- 

cording to 111-2. Rather than numerically solving 111-1 

with G=O and thus preserving the grid spacing, it is deerced 

more accurate t o  simply narrow the spacing between the cut- 

off and the first elektron grid point outside the overlap. 

Inevitably this gap will attempt t o  become negative (the f, . 

grid point tries to enter the overlap) in which case the 

corresponding data is discarded because in the overlap f- 

is already represented. In order to preserve continulty, 

the intera.ction term has t o  become negligible near the  

cut-off which is indeed the case. Thermalization and 

drift will meanwhile drive f, to the right outside the 

overlap where, however, 



sb that it becomes necessary to extrapolate f+. 

dbne by fitting a parabola t o  the last three points of the 

ion distribution after it has been updated in the overlap. 

Simultaneously the right section of the electron distribu- 

tion has advanced t o  withln an odd grid spacing of the old 

cut-off. In order t o  keep this odd velocity increment out- 

side the overlap (and thus preventing proliferation) it is 

necessary t o  interpolate to mesh the grid points of the 

This is 
I 

I 
I i 

two distributions in t h e  new area of overlap. It should 

be noted that outside the overlap, the right section of 

the electron distribution experiences no change in shape, 

The left section cjf the electron distribution is 

driven away from the overlap thus generating an ever grovr- 

ing gap which is fj.lled by interpolation. Although the 
\ 

field drifts the ions t o  the right, allowance is made for 

thermelization by extrapolating the ion distribution t o  

the left in the same manner as described in the previous 

paragraph for the right hand side.. 

For the actual data runs, the initial conditions for 

the computer program were always Maxwellian distributions 

for pzrticles wi th  an ion-electron mass ratio of two t o  one 

and with the same ratio applying to the electron-ion tem- 

perature. The velocity grid spacing was usually .06; the 



I so that it becomes necessary to extrapolate f+. 

done by fitting a parabola to the last three points of the 

ion distribution aft& it has been updated in the overlap. 

Simultaneously the right section of the electson distribu- 

tion has advanced t o  within an odd grid spacing of the old 

This is 
! 
I 
I 

cut-off. In order t o  keep this odd velocity increment out- 

side the overlap (and thus preventing proliferation) it is 

necessary t o  interpolate to mesh the grid points of the 

two distributions in the new area of overlap. It should 

be noted that outside the over l ap ,  the right section of 

the electron distribution experiences no change in shape. 

The left section of the electron distribution is 

driven away from the overlap thus generating an ever grovr- 

ing gap which is fj.lled by interpolation. Although the 

field drifts the ions t o  the right, allowance is made for 
\ 

thermzlization by extrapolating the ion distribution t o  

the left in the same manner as described in the previous 

paragraph for the right hand side., 

For the actual data runs, the initial conditions for 

the computer program were always Maxwellian distributions 

for particles with an ion-electron mass ratio of two t o  one 

and with the same ratio applying t o  the electron-ion tem- 

perature. The velocity grid spacing was usually .06; the 
L 



l a t t e r  enabled  t h e  program t o  perform about  s i x t y  i tera-  

t i o n s  i n  f i f t e e n  minutes  dn a Uriivac 1108, The number of 

p a r t i c l e s  per Debye l e n g t h  A,& 
chosen t o  be t e n  wi th  e x t e r n a l  f i e l d s  of e i ther  one o r  

t e n .  

i n  111-1 was always 

With t i m e  s teps of .016 i n v e r s e  plasma p e r i o d s  and 

a n  e x t e r n a l  f i e l d  of l., t he  c a l c u l a t i o n a l  s t a b i l i t y  o f  

t h e  problem was found t o  be e x c e l l e n t  provided t h e  i n i t i a l  

conciit ions were not  t c o  asymmetric. Noise as i n d i c a t e d  

from the  area under t h e  d i s t r i b u t i o n s  wzs r e s t r i c t e d  t o  

t h e  seven th  and e i g h t h  s igrAf icar i t  f i g u r e s .  Smoothing 

techniques  were found unnecessary and none were u s e d . .  trfe 

should no te ,  however, t h a t  t i m e  steps on ly  tw ice  as large 

caused the  c a l c u l a t i o n s  t o  go u n s t a b l e  w i t h i n  a few i t e r a -  

t i o n s .  

The computer program w&s developed on an  IBM 7094, 

t h e  data was ob ta ined  from r u n s  on a Univac 1108 and! a l l  

cu rves  were p l o t t e d  by t h e  SC 4020. 



CONCLUSIONS . 

Generally there is some doubt as to the usefulness of 

investigations in one dimension because of the absence of 

lateral effects. However, it is certainly calculationally 

advantageous t o  reduce the dimensionality of a problem be- 

cause much simpler equations result. In ourucase we were 

able t o  carry out numerically exact solutions of the one- 

dimensional Lenard-Balescu equation which enabled us to make 

a very detailed investigation of our results. Due t o  the 

accuracy of the calculations (the normalization of the par- 

ticle distributions varied only in the seventh significant 

figure), we were able t o  tax the precision of our solutions 

enough to find very marked effects on a time scale as short 

as one plasma period. Following is a brief summary of some 

of the detailed effects observed. 

It was found that drifted Maxwellian distributions that 

were separated t o o  much in velocity space did not satisfy 

the Lenard-Balescu equation due to a discontinuity in the 

collision current that arises. This discontinuity was 

caused by the fact that when the representative point as- 

sociated with the arctangent function in equation 111-1 was 

located in the third quadrant, the passing of the slope 

function, in the same equation, across the velocity axis 

resulted in an infinite discontinuity in the collision cur- 
/ 



rent with no compensating change in sign of the arctangent 

function which simply passed from a value greater than 

- to a value less than - . 
If, however, the distributions are driven towards a 

large separation when starting from isotropy, a situation 

is encountered where, at least for our low mass ratio, there 

is'an extremely strong local interaction in velocity space 

between the ions and electrons. How high the mass and 

temperature ratios can be without destroying this effect is 

difficult to assess without further investigation. 

.However, such interactions do distort not only the e- 

lectron distribution but the ion distribution as well. 

Since most plasma parameters s.ych as damping depend on the 

s l o p e s  of the distribution functions of particles in a sys- 

tem, and since derivatives emphasize any irregularity of a 

function, it is clear that the asymptotic ion behavior in a 

plasma cannot be adequately described by a Maxwellian that 

is merely displaced. The interaction between two drifted 

Maxwellians was seen to be locaily strong and very asymmet- 

ric so that both distributions undergo a change in shape. 

Because of  the formal similarity between the one-dimen- 

sional and the three-dimensional.Lenard-Ba1escu equations, 

we have to expect a similar region of strong interaction 

of the distributions when an external field drives them to 

anisotropy. This particular interactisn casts serious doubt 



on Pearson's assumption that the ion distribution in his 

problem is simply a drifted Maxwellian that experiences 

no change in shape. Furthermore, a strong interaction as 

reported here would be prone t o  generate numerical insta- 

bilities of which Pearson reports many. 

If in the three-dimensional case. there also is a region 

beyond which displaced Maxwellians cannot satisfy the 

Lenard-Balescu equation, then it is in doubt whether a 

rigid ion distribution would permit the electron distribu- 

tion to become distorted enough to prevent the solutions 

from entering such a forbidden region. 

If the first .of these phenomena does indeed have an 

analog in three dimensions, one would then expect a dif- 

ferent contribution t o  the dispersion relation from the 

ions. Pearson did not find any appreciable change in the 
-. 

damping and the foregoing could conceivably be a contribu-- 

ting reason. 

In the present work it was shown that the Lenard-Balescu 

term in the Fokker-Planck equation does indeed cause drag 

and diffusion. The drag was found t o  increase with the 

separation of the distributions in velocity space. The 

average deceleration per particle due t o  drag reached values 

of up to 13% of  the acceleration due t o  the field when the 

distribution separation was about 2.5 thermal velocities. 



Although the average ion acceleration was found t o  

decre se, it was observed that the high energy tail of the 

ion istribution is subject t o  a constant acceleration with 

no drag. In spite of the fact that this sets the stage for 
d 

runaway, the ions on the average, experience a drag. 

For thermalization a threshold was found beyond which 

both the electron and the ion distributions were heated. 

This threshold was found t o  be associated with the develop- 

ment of a region of positive slope i n  the arctangent func'-- 

tion of equation.111-1. 

When initial displacements were large enough t o  cause 

changes in the arctangent as described in the previous 

paragraph, very severe distortions in the distribution 

functions were found. These distortions in turn gave rise 

t o  new wavebands in the dispersion relation. One of these 

bands correspoGds t o  unstable waves, but  it appears possible 

that the longer time scale effects that would occur when 

'the distributions are allowed to proceed from isotrqpy t o  

-the domajn under discussion, would d i s t o r t  the distribu- 

t i o n s  sufficiently to eit.hes eliminate this unstable band 

o r  to cause it to become stable. 

In conclusion we see that even a one-dimensional plasma 
-- 

model displays many physically meaningful properties. Al- 

though the detailed computer programming is long and tedi- 

ous, the many results obtained and their precision are very 



gratifying and justify further investigations along these 

lines. Such investigations might, for example, include a 

study of the effects due to different external fields as . 

well as different mass ratios and initial conditions. 

Furthermore, it would also appear that one-dimensional 

applications shall provide an excellent proving ground for 

higher order kinetic equations. 



Oscillations in Spatially Inhomogeneous Plasmas 

J. C. Baker and M. Eisner 

The effects of gross spatial inhomogeneity on the 

growth rate of instabilities has been investigated. The Vlasov 

equation is solved assuming a gaussian distribution for the 

initial density. The distribution function is expanded in a 

series of Hermite polynomials for both the spatial and velocity 

dependence. The series are truncated and the set of coupled 

equations for the time dependent series coefficients are solved 

numerically. The electric field generated in the plasma is analyzed 

to obtain the frequency spectrum for several initial conditions on 

the velocity. The plasma is started from a drifted state with 

ions and electrons counterstreaming. The directed plasma motion 

is rapidly dissipated in a turbulent fashion and the energy 

contained in long wavelength modes is rapidly transferred to shorter 

modes. The rate of transfer appears to be sufficiently rapid to 

prevent the growth of instabilities. These results suggest that 

the stability conditions can be profoundly affected by inhomogeneities. 


