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ABSTRACT

CaS thin-film solar cells, manufactured in 1967 and 1968 wvere
subjected to & simulated space environment, similar to that en-
countered by a satellite in Earth orbit. The environment included
a pressure less than 10”6 torr, simulated space ultraviolet
radiation, and thermal cycles in which cell temperature varied be-
tween -100°C and +60°C. Most cells exhibited s significant loss
in power within 500 cycles, but one cell withstood over 2000
cycles without appreciable degradation. The degradation was
characterized by: (1) increasing internal series resistance,

(2) occasional internal shorting and (3) an unexplained loss in
1ight generated current.
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1.0 SUMMARY

This final report contains the results of cadmium-sulfide (C4S)
solar-cell tests conducted from March, 1967 to November, 1968 under
Fhase III of Contract NAS3-6008.

The primary objective of this test program was to evaluate the latest
CdS thin-film solar cells for use in & space enviromment, particularly
for supplying pover to a satellite in Earth orbit where the cells are
exposed to illumination and darkness. A secondary objective of this
program was to use the test results to indicate possible causes of cell

degradation.

The tests were conducted in & clean vacuum chamber where the
pressure was below 10-6 torr at all times. The black walls of the
chamber were cooled by liquid nitrogen. During a "thermal cycle",
consisting of a 60-minute exposure to simulated sumlight followed by
30 minutes of darkness, nominal cell temperature varied from +60°C
to —10000. Cell performance was measured using a light source whose

gpectrum closely matched that of space sunlight.

Three saparate tests involving 300, 506, and 2031 thermal cycles
were conducted on selected CdS cells manufactured in April, 1967,
November, 1967, and March, 1968, respectively. The March, 1958 cells

were the most stable in thermal cycling, as indicated below:

100

o—

A 7 Best March, 1958 Cells

&

7 Best November, 1967 Cells

&

9 April, 1967 Cells

Relative Power Output
(percent)
)
i

o] 200 Loo 600 800 1000 1200 10O 1600 1800 2000
Cycles

CdS SOLAR CELL POWER OUTIJT VS. CYCLES




Six cell constructions were tested. Cell constructions differed
in (1) method of attachimg & curremt collectlng grid to the cell (2)
cover material and (3) process used in manufacture. The performance
of these six groups before, during, amd after thermal cyling is
sumparized in Table 1.

Moet of the March, 1968 cells lost less then 15 percemt in power
output after 2031 thermal cycles. One cell degraded by only four
percent, & value almost withim experimental error. This cell had

a currsat-collecting grid that had beem evaporated om the cell surface.
Fover lesses im other March, 1968 cells areattributed to an increase
in series resistance and a decrease in light generated curreat. The
cause of these changes could not be identified. A few cells exhibited
erratic decreases in shumt resistamce. These decreases are attributed
to imnternal short circuits.
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2.0 INTRODUCTION

Development of cadmium sulfide (CdS) thin-film solar cells
started in 1954 (ref. l). By 1960 corversion efficierncies as high
as 3% percent had been achieved (ref. 1)3 and CdS solar cells began
to look promising as sources of power for spacecraft. 1In 1963 the
NASA-Lewis Research Center (NASA-Lewis) brgan to evaluate new CdS
solar cell designs in the vacuum and thermal environment of space
(ref. 2 and 3). These tests soon showed that CdS solar cells
subjected to thermal cycling in vacuum, as would be encountered by
an Barth satellite, degraded very quickly. Thus, thermal cycling
becawe established as an important test for evaluating new cell
designs.

In 196l NASA-Lewis awarded a two-phase contract (NAS3-6008) to
The Boeing Company (Boeing) for conducting thermal cycling tests on
promising new CdS soler cell designs, after the new designs had been
screened in similar tests at NASA-Lewis. 1In these thermal cycling
tests the cells were subjected to alternating periods of sunlight and
darkness with temperatures varying from approximately -lOOOC to
+60°C. |

The therwal cycling tests at NASA-Lewis and Boeing uncovered |
weaknesses in the cell design and gave direction to the design and
construction of more stable cells. Concurrently the cell manufacturer
increased significantly the conversion efficiency of CdS solar celis.
In 1967 NASA-Levis awarded Boeing an extension (Phase III) to the
original contract for evaluating newer cell designs. NASA-Lewis
also continued their own thermal cycling program.

This document reports in detail the results of work done by
Boeing for NASA-lewis oa Phase III of Contract NAS3-6008. Detailed
results of the Phase I and Phase II work have been presented in a
Topical Report (ref. #). Many of the cell designs tested in Phase I

and Phase II were shown to be unstable in,a space environment
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involving thermal cyclimg, arnd are mo lomger manufactured. PFPhase
III testing involved mever cells of the type that are preseatly
being manufactured.

The Phase III cells incorporate many variations in design,
with coaversion efficiemcies ranging from 2} to 5 percent at 25°C
in simulated air mass zero (AMO) sumlight having 140 milliwatts
per sq. cm. (mu/cma) intemsity. Appropriate precaution should be
applied tc any extrapolatiom of the test results preseate
herein to production celle not manufactured in the same mamner
as the ones tested im this program.,

The tests described in this report were conducted with Cds
solar cells, moumted nine at a time in & vacuum chamber maintained
at a pressure of less than 10"6 torr. A quartz window allowed the
cells to be illumimated by a light source that closely simulated
the solar spectrum in space. The black walls of the chamber were
cooled with liquid nitrogen so that the cell temperature dropped to
lower tham -100°C during the dark portion of each cycle and came
to an equilibrium of about #60°C during the illuminated portion of
each cycle. A complete thermal cycle consisted of 30 minuter
of darkness followed by 60 mimutes of illumination. Performance
of the cells was usually measured about once every 100 cycles,
but more frequently whenever cycling of the new cells was started.
A matching set of CdS solar cells was kept im double-desiccated
storage throughout the test and their performance was also measured
every 100 cycles. In this report, the CdS solar cells exposed
to the space eavironmemt are referred to as "test cells". Those
kept in double desiccated storage are referred to as "comtrol
cells".



3.0 TEST SPECIMENS

The CdS thim-film solar cells tested in this program were
approximately 3 by 3 inches (7.62 by 7.62 cm), with an overall
thickaness of about 4 mils (100 /:m). Although the cells differed
in many respects, they all shared the same basic comstruction
illustrated below:

Positive Grid

Lead /o Front Cover

L . z ’ ) Barrier layer
I ey I s I ) O 25 I 2 I O I I | Allr-

— Cadmium Sulfide (CdS)
15: Negative Lead

Substrate

N FIG. 1: BASIC CONSTRUCTION OF CAS THIN-FIIM SOLAR CELLS

The cells were made by evaporating a layer of CdS on a
thin sheet of metal or metalized plastic, called the substrate.
A thin layer of copper sulfide called the barrier layer was then
formed on the exposed CdS. A metal current-collecting grid

with a high transmittance was later put om this barrier layer.
Laminating a thin, transparent sheet of plastic over the grid
completed the cell. The negative electrode of tle cell is

simply an extension of the substrate. The positive electrode

is either an extension of the grid or a piece of metal foil
attached to the grid.




3.1 CdS Cells Tested in Phases I and II

Characteristics of the CdS solar cells tested in FPhases I and II
are sunmarized in the following table:

[ MANUFACTURE | SUBSTRATE - m'&émm TLaminATION]
DAE [MATERIAL | _| ELECTRoogs | ADIESIVE |

I3

196¢ | nouveorwuk | BLECTRO- 1 pmessupe | camAN

' aecme- | ST
1964 | wocveoewm | ELECTR ELOED | CAPRAN

PREFCRMED,

1965 KAPTON | HELDBY ' | PRESSURE | CAPRAN
P Ssie ‘

1966 karon | PREFORMED, | \NTEGRAL | cAPRAN
PHESSURE

CHARACTERISTICS OF CdS SOLAR CELLS
TESTED IN PHASES I AND 1T

TABLE IIX

The earliest cells had molybdenum substrates, but later cells had
plastic substrates. Plastic replaced molybdenum as a substrate material
because it resulted in a lighter, more flexible sclar cell. In some
cells;, the grid was formed by electroplating gold directly on the barrier
layer. In other cells, preformed grids, held in contact with the barrier
layer solely by pressure from the plastic cover, were used. The positive
electrode on one type of cell was an integral extension of the grid,
but in all other cells the positive electrode, distinct from the grid,
vas either spot welded to the grid or held against the grid by pressure
from the plastic cover. Capran, & nylon adhesive, was used to bond

the plastic cover in all the cells.

Testing at Boeing and NASA-Levwis revealed some undesirable aspects
of these cell designs. In the Phase I and II thermal cycling tests
conducted at Boeing (ref. 4), some cells in each of the four different

groups eventually exhibited large decreases in both maximum power output

and shunt resistance. These failures are believed to be the result of
an increase in the anuwber of shorting paths through the barrier layer

(ref. 5).




In cells with either electrodes or grids held in plnée solely by
pressure from the plastic cover, movements of the electrode or grid
could have worn holes in the barrier layer, producing the undesired
shorts. In cells with the electrodes spot welded to the grid, the
velded joint may have eventually broken and allowed the electrode to
move. Analyses conducted by the cell manufacturer on a few of the
cells after thermal cycling revealed that the cause of the short cir-
cuits in the CAS film in those particular cells vere pirholes which
resulted from splattering of CdS particles onto the substrates during
CdS film evaporation (ref. 6). Tests conducted at NASA-Lewis (ref. 7)
also revealed that CdS cells using Capran to bond the plastic cover

degraded when exposed to water vapor.
3.2 CdS cells Tested in Phase III

Characteristice ¢f the CdS solar cells tested in Phase III are
sumarized in Table 1. Most of the new cells had Kapton substrntes;
however two copper-substrate cells were tested also. The undesirable
features of the CdS cells tested in Phasee I and II had been eliminated
in these new zell designs; for example a conductive epoxy held the
grids in contact with the barrier layer, rather than pressure from the
prlastic cover. This reduced the shorting-type failures which plagued
earlier cell designs during thermal cycling. Also in the new cell
designs an integral extension of the grid formed the positive electrode.
Better control of the evaporation process, and better inspection
techniques eliminated pinholes in the CdS layer, reducing cell short-
ing. A clear epoxy replaced Capran as the lamination adhesive, pre-

venting degradation from water vapor.

Three different types of plastic covers were used: (1) Mylar,
(2) Mylar, coated with a 0.2 mil (?/;m) layer of Pyre-ML (a polyimide
varnish) and (3) Kapton. Mylar transmits light better than the other
two types, but is known to degrade under exposure to ultraviolet (UV)
radiation (ref. 8). The Pyre-ML layer decreased the initial transmission




of the Mylar by about five percent, but it may partially protect the
Mylar from UV radiation. Kapton transmits about 20 percent less light
than Mylar, but it is resistant to UV radiation (ref. 8). Since the
conversion efficiency of CdS solar cells is proportional to the light
transmitted by the front cover, the pre~cycling conversion efficiencies
varied considerably, depending primarily upen the type of plastic

cover used:

(1) Cells with plain Mylar covers have the highest efficiencies
(4.9 to 5.0 percent at 140 mW/cma, 25%¢).
(2) Cells with PyresML-coated-Mylar covers have the next
higher efficiencies (3.5 to 4.1 percent at 140 mw/cm?,
AMO, 25°¢C).
(3) Cells with Kapton covers have the lowest efficiencies
(2.5 to 3.9 percent at 140 mW/cm?, 25°¢).

Several minor variations in the processing of the new cells are
worth mentioning. The April, 1967 cells were manufactured with
minimal quality control. As a fesult, many of these cells exhibited
unstable performance even before thermal cycling was started. In
three of the March, 1968 cells; the plastic cover was purposely
laminated on with a below-normal pressure. It had been suggested
that the normal lamination pressure could have cracked the Cds
layer and produced & potentially unstable cell. Two of the March,
1968 cells have an additional evaporated gold grid beneath the
standard preformed grid. The objective of this technique was to
improve the current collection.

The cell designs tested in Phase III are currently avallable
(December, 1968). However, it should be noted that many of the cells
which Boeing tested were the most promising cells selected from |

screening tests conducted by the cell manufacturer and NASA-lLewis,
and therefore they may not represent typical production cells.




4.0 TEST APPARATUS

In this section is discussed the spparatus used to provide the
test environment and the data acquisition equipment.

k.1 Test Environment Apparatus

The test environment apparatus includes a vacuum chamber, a
light source, a test-cell supporting frame, and a control-cell mount-
ing block. The test-cell supporting frame, used to hold the test-
cells durimg thermal cycling, was located inside the vacuum chamber.
The coatrol-cell mounting block, used to hold control-cells when
their performance was being measured, was located outside the vacuum
chamber. The light source could be rotated to illuminate either the
test-cells or the control cells. The test setup ie shown schemati-
cally in Figure 2. A photograph appears in Figure 3. The apparatus
used is discribed in detail in the following paragraphs.

4,1.3i Vacuum Chamber

The vacuum chamber (Fiéure 2) is composed of a shell, & cold
shroud, an end plate, an access door, a quartz window, & shutter, a
mounting bracket for the test cell supporting frame, sad & vacuum
pump. The shell of the chamber is built from two stainless steel
cylinders, one 15 inches in diameter and 41 inches lomg, and the
other 34 inches in diameter and 30 inches long. The smaller-diameter
end has a sealed quartz window through which the CdS cells are
11luminated. The other emnd has an access door. Vacuum is main-

tained by arn ion pump under the shell.

The shell always remains near room temperature. The.heat sink
simulating & true space environment within the chamber is provided
by a cold shroud, composed of two &luminum cylinders of different
diameters Joined end-to-end. The cold shroud fits inside the shell
vith a two-inch concentric gap between the shroud amd the shell.

10
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The shroud is essentially iiolated thermally from the shell, being
supported at only 5 poimts with low-thermal-conductivity stainiess
steel. The shroud is cooled to -196°C during testing by pumping
ligquid nitrogen through tubes which are integrel with the shroud.
All imner surfaces of the shroud are painted black to reduce re-
flection of thermal radiation. Liquid-nitrogen cooled baffles
inside the shroud further reducing reflections.

A blackened aluminum plate bolted to the end of the cold shroud,
cooled to -160°C by conduction to the cold shroud, covers the cell-
access opening during testing. The chamber is sealed, at the cell-
access end, with a staimnless steel door which is bolted against a

copper gasket that is replaced whenever the door is opened.

The quartz window which admits simulated sunlight imto the
chamber transmits 94 percent of the ultraviolet energy in the wave-
length band 0.25 to 0.3§/vuu Transmission in other wavelengths
rangees from 88.3 percent to 96.7 percent, s shown in Table 3.

A shutter between the solar simulator and the quartz window
interrupts the light beam when the test cells in the chamber are to
receive no light from the solar simulator. The shutter is painted
black to reduce reflection of room light from the shutter into the
chamber. The shutter is water-cooled to reduce the infrared energy
radiated by the shutter into the chamber. During cycling the
shutter is automatically closed for 30 minutes and opened for 60

minutes.

A mounting bracket supports the test-cell frame in the chamber.
The mounting bracket is fastened only to the shell, making no con-
tact with the cold shroud. It is made of low-thermal-conductivity

stainless steel, to restrict heat conduction to the shell.

A mechanical roughing pump and an ion pump are used to provide
vacuum. The roughing pump brings the chamber pressure down to

13




Wavelength Fractien ef Incident

Band Light Emergy Transmitted
sqxn) Through Quartz Windew
(perceat)

0.25 - 0.35 93.9

0:35 - 0.40 95.2

0.40 - 0.45 92.5

0.45 - 0.50 96.4

0.50 - 0.80 94.8

0.60 - 0.70 92.8

0.70 - 0.80 95.2

0.80 - 0.90 92.3

0.90 - 1.00 96.7

1.00 - 1.20 95.7

1.20 = 1.50 93.0

1.50 - 1.80 9l1.1

1.80 - 2.20 | 88.3

2.20 - 2.50 90.5

TABLE 3: TRANSMISSION OF QUARTZ WINDOW

1k




lﬁ-u torr, after which the iom pump is started amd the roughimg pump
is removed. The iom pump maimtains a pressure of 10"8 torr duriag
cycling when there is 1liquid nitrogem im the shroud, and 10-6 torr
during test interruptions whem the shroud is at room temperature.

The pressure increases to 10-6 torr during test interruptions because
of gas released from the shroud surface when the shroud is allowed

to warm up.

4.1.2 Light Source

The 1ight source is a Spectrolab X25L xenom solar simulator,
equipped with lenticular optics for high uniformity of intemsity,
and special filters to provide a spectrum close to that of space sum-
light. It is located outside the vacuum chamber (Figure 2) providing
a 13%-1nch diameter 1ight beam to illuminate siiultaneously nine
test-cells in the vacuum chamber. The spectrum of the beam matched
Johnson's space spectrum (ref. 9) very closely, as shown by the
typical spectrum in Table 4. The intemsity at any place in the beam
did not deviate from that in the center by more tham three percent as
showa in the typical uniformity plot in Figure L. Anm intensity
equivalent to 140 milliwatts per sq. cm (mw/cme) of space sunlight
vas maintained throughout the test by periodically checking with an
airplane-flown CdS standard cell provided by NASA-Lewis. A rapid
inteasity flicker of about 1% percent, presumably caused by the xenon
lamp, made precise intensity and vaiformity measurements difficult
as well as producing undesirable wiggles in the current-voltage
curves of the CdS solar cells.

4.1.3 Test-Cell Supporting Frame

Two different types of suppdrting frames were used in this pro-
gram to hold the test-cells. The April, 1957 and November, 1967 cells
were held ir a aluminum supporting frame composed of two thin
alurinum discs bolted together with cutouts to expose the fronts and
back of the cells. Both electrodes of the April, 1967 cells wvere
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Relative short circuit current (percent of value at center of

Readings:
beam) of a 2 X 2 cm silicon solar cell centered on the points
shown below. The circles are on one-inch radii.
99
. 99 100
100
100 101
° * 100
> 100 -
w e e
100
191 01 101 1
) 101
73 101 101 101 .
100 . 101 < 101 . 101
: ) * 101 100 °
102 102 . 101 ¢
102 102 .
‘103 1ol + 102 101
100 101 102 102 100 101 100 102 10} 100 10 oo 101
03 91 3 a0,
101 ° 10z 100
102 ° 101 11 190
¢ 101 101 100
100 . ¢ .
102 01 45 19 100
101 101 100 101
. 101 y 100
101 ¢ o
: 100 100
. 100 )
100 %?O
) 100
12 Inches
High Reading: 103%
Lovw Reading: 99%
Reading at Center: 100%

Statement of Uniformity:

FIGURE 4;

Intensity at

any place in the beam does not deviate

from that in the center by more than 3%

INTENSITY UNIFORMITY OF SPECTROLAB X25-L

SOLAR SIMULATOR

17

Pk e D




firmly sandwiched between the two plates. Only one electrode on
the November, 1967 celle were constrained. A glass-epoxy board

was used to hold the March, 1968 cells. This frame was essentially
a disc with a rectangular cutout in its middle (Figure 5). The sub-
strate electrode of each cell was attached with double-back tape

to cross bars which spanned the cutout. Each cell was alloved to
hang freely, with its positive electrode constrained within a 1/16-
inch slot in a cross bar beneath it. Both types of frames vere
painted black and had silicon solar cells (reference cells) mounted

on their front surfaces.

During testing, the test-cell supporting frame wae held by the
stainless-steel mounting bracket in the vacuum chamber.

4.1.4 Control Cell Mounting Block

Whenever the electrical performance of & control-cell was to be
measured, the cell was mounted on the control-cell mounting block
(Figure 3) and illuminated with the light source. The temperature of
the metal mounting block is controlled by a recirculating water subply.
Good thermal contact between the block and the control cell is assured
by applying vacuum to grooves in the front of the block. Electrical
contact to the cell is made with gold-plated copper strips held by
pressure against the cell electrodes: (1) two large-area strips,
one on each electrode, make contact for the current-carrying leads,
and (2) two small area strips, one on each electrode, make contact
for the voltage measuring leads. The mounting block and the airplane-
flown C4S standard cell were both mounted on the same sliding plate
s0 that either one could be centered in the light beam.

4.2 Data Acquisition Equipment

The data are acquired with (1) instruments for measuring the

18
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electrical performance of the CdS solar cells, (2) instruments
for measuring the temperature of the CdS solar cells, and (3)
instruments for measuring the intensity, uniformity, and spectrum
of the light source.

L.,2.1 €dS Solar Cell Performance Measurement

The important equipment used to record curreamt-voltage (I-V)
curves of the test-cells and control cells are: (1) a digital
voltmeter (2) an XY recorder (3) a precision resistor amd (4) an
electronic load. Electrical contact to the cell electrodes is
made with a pair of current-carrying leads and a pair of voltage-
measuring leads. Four copper wires were soldered to the test-cell

electrodes.

The voltage measuring leads were connected directly imto the

'x-axis of the XY plotter. The current carrying leads contained two

elements in series; a precision one-ohm resistor and an electronic
load. The voltage drop across the one-ohm resistor, representing
the current flowing in the cell, was fed directly into the Y-axis
of the XY plotter. The digital voltmeter was used to calibraté

the voltage and current signals to the XY plotter. The variable
scales of the X and Y axes of the plotter were adjusted to corres-
poad to the readings of the digital voltmeter. The electronic load,
designed and built at Boeing, was used to vary the current by means
of a manually-operated dial.

The accuracy of the digital voltmeter is + 0.1 percent. The
digital voltmeter was periodically calibrated against a secondary
standard whose accuracy is traceable to the Natiomal Bureau of
Standards (NBS). The accuracy with which the XY plotter recorded
the current and voltage was limited by its repeatability and the
precision with which each axis could be calibrated sgainst the
digital voltmeter. The XY plotter accuracy is estimated on this
basis at 0.5 percent. The one-ohm resistor is accurate to + 0.1
percent.




The smoothness of the recorded I-V curve is directly related to
the stability of the light source used to illuminate the cell whose
I-V curve is being recorded. Am I-V curve traced whem a stable tung-
sten light source was used is very smooth (Figure 6) whereas a wiggly
curve is obtained when a xenon solar simulator is used(Figure 7). Flicker im
the light produced by the solar simulator is responsible Ifor these
wiggles. The effect of light flicker was further demomstrated when
the intensity of the tungsten light source was purposely varied a few

percent while an I-V curve was being traced (Figure 3).

The effect of the intensity variatiom on the I-V curve is a
drastic change in voltage at currents near short-circuit current.
This is because the electronic load maintains a comstant current at
any setting of the load dial regardless of fluctuatings in intenszity;
consequently the voltage of the cell must change drastically as the

intensity changes to maintain constant current.

During the periods between performance measurements, a load
resistor was placed across. the current leads of the test cells. The
load resistors were selected so that the cells would operate neaf
their maximum power point. However, in testing of the April, 1967
cells, the effect of lead resistance was overlooked and the combined
load resistance values were too high. As a result these cells operated

near their open circuit voltages during cycling.

4.2.2 CdS Solar Cell Temperature Measurement

The sensor used for all temperature measurements was a thermo-
couple formed by soldering a copper wire and a constantan wire to-
gether. The thermocouple was coated with heat-sink combound t0 insure
good thermal contact prior to bonding to the back of the CdS cell
(Figure 5) with aluminum tape. A narrow bead of low-temperature
polyurethane adhesive was applied along the four edges ol the tape as a

precaution against peeling. The tape was then painted with a black
paint whose emittance approximated that of the cell back.
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A thermocouple was soldered to the back of each silicoa reference
cell and thermocouples vere bonded to the front and back of the test
cell supporting frame as well as to the end plate of the cold shroud
in the vacuum chamber. Copper-constantan feed-through comnectors
vere used to route the thermocouple leads out of the vacuum chamber.
The temperature of the control-cell mounting block was measured with
a thermocouple imbedded in the side of the block. A1l thermocouples
were connected to a temperature recorder which printed the output
of each thermocouple once every 2% minutes. The recorder could also
display continuously the output of any ome thermocouple. A reference
Junction compensator in the recorder facilitated display of the thermo-
couple outputs directly in °c.

Temperatures hetween -150°C and +100°C could be recorded with an
accuracy of + 2°C and a reproducibility of + 1°¢. The temperature
recorder was periodically calibrated against a secondary standard
whose accuracy is traceable to the NBS.

4.2.3 Solar Simulator Light-Intensity Measurement

The true intensity of the light beam in the test plane was measured
with & radiometer whose response to radiation is essentially independent
of wavelength. Its renge of response vas 'E?A’m to 2. 7yum. Its
estimated accuracy in sunlight is + 3.5 percent. The radicmeter was
periodically checked against a secondary standﬁrd radiometer which
had been calibrated at Table Mountain, California.

The equivalent space sunlight intensity, as seen by a CdS solar
cell, vas determined with an encapsulated CdS standard cell which had
been calibrated in an airpleane at high altitudes and whose output

wvas extrapclated to air-mess zero conditioms.

4,2.4 Solar Simuletor Light-Spectrum Measurement

Because the spectrum of the solar simulator is not identicel to

that of space sunlight, the true intensity measured with the radiometer




was slightly different from the equivalen: space sunlight (AMO)
intensity measured vith the Cd8 standard cell. However the two
measurements always agreed within 2 percent. The equivalent space
sunlight (AMO) intensity was used throughout this report for
calculating the conversion efficiency of CdS solar cells. The true
intensity was used only in processing the spectrum data.

The relative'ébectrum of the light beam was determined with
a prism-type spectroradiometer which recorded the relative
energy contained within a .05 /vm bandwidth, scanning the wavelength
region from .25 pm to 2.5 m. The accuracy of the relative energy
recorded by the spectrophotometer was + 10 percent. The spectro-
radiometer was calibrated periodically with a NBS 1000-watt
standard of irradiance and a magnesium diffusing block. |

v

L.2.5 Solar Simulator Light-Umiformity Measurement

The uniformity of the light beam was determined by recording tne
short circuit current of a 2 x 2 em silicon solar cell mounted on
a rotary scanner. The output of this cell was recorded at the
center of the beam and then continuously while roated at radii of
1, 2, 3, 4, 5, and 6 inches about the center. The cutput of this
silicon cell vs. angle at each circle for a typical uniformity
scan is shown in Figure 9.
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5.0 TEST PROCEDURES

During Phase III of this program, three consecutive thermal
cycling tests were conducted on CdS solar cells manufactured in April,
1967, November, 1967, and March, 1968. Each test had nine CdS solar
cells (test cells) mounted in the vacuum chamber at a pressure less
than ].O"6 torr. Thermal cycling was produced by exposing the cells
to 30 minutes of darkness followed by 60 minutes of illumination; the
cell temperatures dropped to less than -lOOOC during the dark portion
of each cycle and came to an equilibrium of about +60°¢ during the
illuminated portion ¢of each cycle. Control cells were kept in double-

desicated storage.

The first test, involving the April, 1967 cells, ran for 368
thermal cycles. The second test, involving November, 1967 cells,
ran for 533 thermal cycles. The third test, involving March, 1967
cells, ran for 2031 thermal cycles. In all of these tests, the
electrical performance of both the test-cells and control cells was
measured at least once every 100 cycles. During the first 300 cycles
of each test, the performance of the test-celles was measured more
often: once every ten cycles for the first 100 cycles and once every
30 cycles for the next 200 cycles. In addition to the performance
measurements made during cycling, performance measurements were
also made before and after cycling - some in situ and others not.
The performence measurements consisted primarily of tracing the current-
voltage (I-V) curve of the cells under krown conditions of light in-
tensity and temperature.

Initially, cycling was conducted continuously five days a week,
although occasionally solar simulator lamp failures and laboratory
power failures required additional suspension of cycling. When other
tests were being conducted in the laboratory on weekends, cycling was
continued T-days-a-week. Installation of automatic monitoring and

safety controls was completed in August, 1968, permitting cycling on




& 24-hour-per-day, T7-day-per-week basis.
5.1 Startup of Cycling

After the test-cell supporting frame containing the test cells
was installed in the chamber, & mechanical roughing pump was used
to evacuate the chamber to 10'“ torr, usually within two hours.
Then the ion pump was turned on to reduce the chamber pressure to
10'6 torr, usually within several hours. Then liquid nitrogen was
fed to the cold shroud, reducing the pressure to 10" torr within
a few minutes. Thirty minutes after the admission of liquid nitrogen,
the shutter was opened to allow the solar simulator to illuminate
the test cells. The admission of the liquid nitrogen and the opening
of the shutter are considered the beginnings of the dark and light
portions, respectively, of the first cycle.

5.2 Suspensior of Cycling

Whenever cycling had to be suspended because of weekends, lamp
failures, or other causes, the shutter was first closed and then the

liquid nitrogen was blown out of the shroud with forced air.

As the shroud warmed to room temperature, nolecules once trapped
on &1e cold shroud vwere released, increasing the chamber pressure from
lO"8 to .'LO-6 torr. Startup of cycling after a shutdown followed the

procedure described in the preceding section.

Cycling was also suspended for short periods (e.g. five hours)
wvhen maintenance of the solar simulator was required, for example,
replacement of a lamp. In these cases the shutter was closed, but

liquid nitrogen was not blown from the shroud.

5.3 Measurement of Test-Cell Performance

Measurements of test-cell performance were started at the end
of the illuminated portion of a cycle and took about thirty minutes




to complete, thus requiring a 30-minute extension of the illuminated
portion of that cycle. The performapce test was not started umtil
the emd of the illuminated portiom of the cycle to insure that the
cells vere near thermal equilibrium.

The first step in a performance test was to adjust the light
intensity in the center of the beam to be equivalent to space
sunlight having an intemsity of 140 mw/cma, AMO, as indicated by
the outputs of the silicon reference cells on the test-cell supporting
frame. Calibratiom of the silicon reference cells against the CdS
standard cell had been accomplished during the preceding cycle. The
load resistor on the first cell was then removed and the voltage and
current leads of that cell were switched into the I-V curve measuring
circuit in & open-circuited condition. Calibratiom of both axes of
the XY plotter against the digital voltmeter at two points on the I-V
curve then followed. The I-V curve of the first cell was then traced
from open circuit to short circuit, and back again. Inmediately upon
completing the I-V trac2, the operator recorded the output of the
tvo reference cells and the test-cell temperature, and then replaced
the load resistor.

This procedure was repeated for the rzmaining eight cells, except
calibration of the XY recorder was not repeated. After completing all
nine I-V traces, the operator recorded the load voltage of each cell
to insure that its load resistor was replaced. He then recorded the
temperatures of the silicon reference cells and the test-cell supporting
frame. Upon completion of the performance test, the shutter was closed,
the solar simulator was rotated, and the output of the CdS standard
cell was recorded after being located in the center of the light beam.

5.4 Measurement of Control-Cell Performance

Measurements of control-cell performance, obtained during the
dark portion of a cycle, took about forty minutes to complete, thus
requiring that the dark portion of that cycle be extended by ten

30




minutes. The first step in this performance test was to adjust the
intensity in the center of the beam to equal space sunlight imteamsity
of 140 mw/cmz, as indicated directly by the CdS standerd cell. The
first control cell was then placed on the control-cell mounting
block, whose temperature had previously been adjusted to 25°C. The
block was then moved to the center of the beam and the I-V curve

of the cell was traced from open circuit to short circuit, and back
again. Immediately after the I-V curve was treced, the block
témperature was recorded, the CdS standard cell was again placed

in the center of the beam, and its output was recorded. This pro-

cedure was repeated for the remaining eight control cells.
5.5 Determination of Intensity Loes in Quartz Window

The light intensity in the vacuum chamber could not be measured
directly with the CdS standard cell during thermal cycling. There-
fore, before the chamber was closed at the teginning of each test,
the loss in intensity due to the light passing through the quartz
window was determined. This was done by measuring the output of the
CdS standard cell while located outside the vacuum chamber after the
intensity had already been increased so that the equivalent space
sunlight intensity at the test-plane inside the vacuum chamber was
140 nH/cm2 as measured directly by the C4dS standard cell placed in
the chamber.

5.6 Adjustment of Light Intensity

Equivalent space sunlight intensity of the illumination at the
control-cell block was easily obtained by directly monitoring the
output of the CdS standard cell.

Ad justment of the intensity at the test plane in the vacuum
chamber was more difficult, involving the silicon reference cells
and absorption losses in the quartz window. At the end of the light
cycle preceding the one in which the performance of the test-cells

vere to be measured,” the outputs of both silicon~reference cells
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vere recorded, the solar simulator was rotated, and the output
of the CdS standard cell at the cemter of the beam was measured.
The recorded silicon reference cell readinge were then adjusted
to correspond to the proper CdS standard cell reading. This
periodic calibration of the referemce cells was necessary because

some of the reference cells degraded over long periods of time.

5.7 Measurement of Light Uniformity

The uniformity of the light intensity of the solar simulator
vas measured whemever the lamp or optics were changed, and at the
beginning and end of the test. The procedure used is described
in section 4.2.5.

5.8 Measurement of Light Spectrum

The spectrum of the solar simulator was measured whenever the
lamp or optics were changed and at the beginning and end of the test.
This was done by rotating the solar simulator away from the vacuum
chamber and centering the beain on the entrance slit of the spectro-
radiometer described in section 4.2.4. The wvavelength region between
25 and 2.5 microns was scanned ani plotted automatically by the
spectroradiometer. This plot represented the relative spectrum of
the light beam. Before the plot was made, the equivalent space
sunlight intensity at the entrance slit was adjusted to 14O mW per
£q. cm as indicated by the CAdS standard cell. The true intensity

at the entrance slit was then measured with the radiometer.

The relative spectrum was determined by integrating the area
under curve produced by the spectroradiometer in each of the six wave-
length bands of interest. Theee areas were converted to intensities

by normalizing the total area under the curve to the total intensity

as measured by the radiometer. The resulting intensities represent
the absolute spectrum of the solar simulator outside the test
chamber. '




The absolute spectrum at the test-cell plape inside the vacuum
chamber was determined from the CdS standard cell setting used during
test-cell performance measurements, the spectral transmission of the
quartz window, amnd the absolute spectrum of the solar simulator
outside the vacuum chamber. This absolute spectrum was calculated
by modifying the outside spectrum by (1) multiplying all the values
by the ratio of the C4S standard cell setting used during test-cell
performance measurements to the setting used during comtrol-cell
performance measurements, and (2) reducing all the spectrum values

by the corresponding absorptions in the quartz window.
5.9 Monitoring Test Environment Comditions

During thermal cyling, the chamber pressure, the light intensity,
and the test-cell temperatures were periodically monitored between
performance tests to imsure that the cells were being exposed to the
desired space environment. The chamber pressure and the light
intensity were read and recorded by laboratory personnel two or
three times during each laboratory shift. 1In additioa, an alarm
would sound if the vacuum were lost, if the illumination were lost,
or if the shufter opened or closed improperly. The temperatures of
the test-cells, the supperting frame, and the silicon reference cells
were recorded every 2% minutes during a complete thermal cycle at
least once during each eight hour shift. A plot of CdS cell tempera-
ture for a typical cycle is shown in Figure 10.
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6.0 DISCUSSION AND RESULTS

One objective of this contract was to determine experimentally
how the power output of CdS solar cells is affected by prolonged
exposure to a simulated space enviromment, includimg thermal cycling.
Second objective was to determine what physical or chemical changes
in the cells were respomsible for any losses in pover resulting
from such an exposure. In this work the physical and chemical changes
wvere postulated from an analysis of the illuminated curreat-voltage
(I-V) curves obtained before, during, and after thermal cycling
tests. This amalysis is based on a mathematical model which relates
the I-V curves to physically meaningful parameters im the cells.

This section begins with a description of the mathematical model,
and the changes in cell performance it predicts when postulated
physicel and chemical changes occur in the cell. Then the results
of each of the three thermal cycling tests conducted during Phase

III are presented and discussed.
6.1 Change® in Cell Performance Predicted by a Mathematical Model
The I-V curve of a CdS solar cell can be represented by the

a V-IR_
I=14 exp [m (v-ms)] -1} -xg +— (1)

sh

equation (ref. 7):

where the symbols are defined as follows:

current output of the cell
= light-generated current

®

= reverse saturation current

o

= electronic charge ,
empirical fitting constant equal to 1 for an ideal Jjunctiom
= Boltzmann constant

= absolute temperature, OK

< B K P O H H H
il

= the voltage appearing at the cell terminals
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Rs = gseries recsistance

Rsh = gshunt resistance

The values of Ig, Rs, Rsh
as a result of physical and/or chemical changes in the cell. Assuming
that the intensity and spectrum of the light at the front surface of
the cell is constant, Ig may decrease because -

) Io’ and A in a given cell may change

(1) The transmission of the front cover and/or the
laminating epoxy is reduced at wavelengths to which
the cell responds.

(2) The barrier layer iz changed chemically or physically
in such a menner that fewer of the photons reaching
the barrier layer produce electron-hole pairs (e.g.
its spectral response is changed).

(3) The active area is reduced.

»

Rs’ the series resitance may increase because -

(1) The conductive substrate is delaminated from the Cds
layer

(2) The grid is separated from the barrier layer or the comductive
epoxy

(3) The photoconductive layer increased in resistivity in
the depletion region formed at the barrier layer-CdS
interface. The cause can be less green light being
transmitted by the front cover-laminating epoxy
combination

(4) The conductive epoxy changed chemically, increasing im
resistivity

(5) The CdS or barrier layers cracked, increasing the average
distance traveled by an electron from the depletion
region to the cell electrode.

(6) The substrate metal layer changed, chemically imcreasing
its resistivity.
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More shortimg paths betweem the barrier layer amd the Cd8 layer will
decrttle,R‘h, the shuat resistance. Shorting paths may be caused
by movements of the grid wearimg holes in the barrier layer or by
pimholes in the CAS layer (and hence the barrier layer) filliamg with
conductive epoxy during attachmeat of the grid. Chemical reactions
or diffusion processes in the barrier layer - CdS layer imterface can
change A amd Io.

The effects of changes in Ig, R‘, Rsh’ Io and A on the I-V
curve of a cell are shown in Figures 1l to 15. These curves

were obtained by repeatedly solving equation 1 for I at various values
of V, using different values of the above parameters. The equation
was solved by the Newton-Raphson techmique with a digital computer
(ref. 10), since the equation cannot be solved in closed form. The
undegraded I-V curve in Figures 11 to 15 is identical to the

pre-test I-V curve obtained for one of the C4S test cells at an im-

. 2
tensity of 140 uW/cm  and a temperature of 60°C.

The effects of Ig, Rs, Rsh’ Io and A on the maximum power (PM),
short-circuit current (Isc)’ opea-circuit voltage (Voc) and fill
factor (FF =Py, (V°c X Isc) were calculated usimg the I-V curves im
Figures 11 to 15. The results are plotted in Figures 16 to 20.

It will be observed that R, affects P and FF, (Pigure 16), amd

also the slope of the I-V curve at V_ (Figure 11). We define the
negative value of this slope as Roc’ the equivalent series resistance:

AV
R =z -
oc A41=0

The effect of R, on Rbc’ obtained from the I-V curves im Figure 11,
is plotted in Figure 21.

Losses in P, result from changes in any of the parameters in the

M
CdS solar-cell equation. Significant degradation ia PM occurs
only vhen the light gemerated current, I , or the shumt resistance,

&
Rsh’ changes. lLosses in V°c result from deterigratiom im any
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parameter except the series resistance, Rs’ and are always accompanied
by losses in FF, except when Ig is responsible for the degradation.
A loss in FF due to a chenge in Rs occurs without measurable losses

inV or I .
oc sC

It is helpful to keep these observations im mind wher studying
the experimental results presented later in this report.

6.2 Reproducibility and Accuracy of Experimental Results

The results in this report consist primarily of values of Ph, voc’
Isc, and FF obtained at various stages of the tests. In order to
evaluate the reproducibility of these results, 33 sets of data obtained
from a stable CdS cell over a period of two months were analyzed.
The average values, standard deviations and maximum deviations of

Ph, voc’ Isc, and FF were calculated and are presented in Table 5.

Fluctuations in the data were the result of these random experi-
mental errors: (1) variations in light intensity, (2) errors in the.
measured temperature, and (3) errors in the measured values of current
and voltage. Since all cells were subject to the same experimental
errors, the standard deviations shown in Table 5 represent the re-
producibility of all performence data in this report. The maximum
deviations shown are the largest deviations expected from experimental
error and are useful in separating changes in perfermance caused by

experimental error frow those caused by changes in the cell.

The performance data obtained in the test involving April, 1967
cells were all too low because of a systematic error caused by a
circuit fault. However, the precision and reprocducibility of the
results was not affected, and the measured relative changes in overall
performance are still to be trusted. Performance data for the November,
1967 and March, 1963 cells contain no known systematic errors and are

therefore believed to be accurate.
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AVERAGE STANDARD DEVIATION MAXIMUM
| DEVIATION
X g | G/X O | G/
{percent) (percent)
Maximum Power, P 157.4 2.6 1.7 4.4 2.8
(W)
Open Circuit Voltage, 0.423y 0068 1.6 .0071 1.7
Voo (V)
Short Circuit Current, 543.1 7.6 1.4 16.1 2.9
I, (mA)
Fiil Factor, FF, (%) 67.73 .96 1.5 2.33 3.b

0
Pﬁ, Voc and FF corrected to 60 C

Values in table are based on 33 sets of data frowm one C4S solar cell,
(March, 1968 Test Cell No. N1S0BK6)

TABLE 5: FPRECISION OF PERFORMANCE DATA




6.3 Experimental Results

The results of the three thermal cycling tests are discussed
separately. For each test, the relative values Pk'- Ph/PM(l),
V. = voc/voc(l), 18; = Isc/Isc(l), and FF' = FF/FF(1) are
presented where the 1 in parenthesis refers to initial values.
Value: obtained with the cells in the vecuum chamber, either umder
vacuum or 4t ambient pressure, are percentages of the values ob-
tained 2t the end of cycle-l. Post-test values obtained with the
cells outside of the vacuum chamber mounted on a temperature con-
trolled block, are percentages of the values obtained under the
same conditions before the test started. Values predicted by the
mathematical model are in percentages of the values obtained from

the initial undegraded I-V curve.

All measurements have been corrected for temperature variations.
The measurements are also corrected for light intemsity, when necessary.
The effective intensity for all measurements is 1LO mW/cmz, AMO.
The equations used to make the corrections are shown in the Appendix
(section 9.0).

The April, 1967 cells were cycled at a load voltage considerably
higher than their maximum-power voltage (see Table l). The November,
1967 cells and March, 1968 cells were operated at a load voltage
slightly lower than the maximum power voltage. According to ref. 11
the higher load voltages result in unstable performance of CA4S
solar cells under illumination, even without thermal cycling. There-
fore, the high load voltages used in testing the April, 1967 cells

may have contributed to the poor observed performance.

6.3.1 April 1967 Cells

The test-cells manufactured in April, 1967 were subjected to
300 thermal cycles during which PM degraded on the average, to 62 percent
of initial, with individual values ranging tetween 53 and 82 percent.

A graph of the PM', voc" Isc' and FF' of each of the nine test

cells as a function of cycles is presented in Figures 22 to 30. Each
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graph also shows the PM' of a watching control cell. All the test-
cell data presented in these graphs is tabulated in Table 6. All
data have been corrected for temperature variations to correspond

to the temperature recorded for each cell during the first cycle.

Cell Number D537D

There is evidence which suggests that part of the loss in Ph

was caused by a loss in the light-generated current (Ig). The
strongest evidence comes from the behavior of cell D537D, which after

300 cycles, had 2 P,', V_ ', I ', and FF' of 82, 102, 82 and
M oc sC

98 percent, respectively. Based on the calculated effects of RS, Rsh’
Ig' I, and A on the performance of a CdS solar cell, (Figures 16 to 20),
the observed power loss in this cell was most likely caused by a 16
percent loss in Ig- Applying a 16 percent decrease in I8 to the

mathematical model resulted in PM', Voc', Isc', and FF' values of 82,

98, 82, and 93, which are close to the experimental values. Changing
Ry Rsn’
resulted in an Isc' of greater than 99 percent, a value far greater

Io’ and A to create the 82 percent experimental value of PM'

than the 82-percent experimental value.

Iow light intensity could explain a low value of Isc" hence this
possibility was examined carefully. The Isc of the control cells at
cycle 300 indicated that the intensity could not have been less than
96 percent of nominal at this time. Since the same solar simulator
setting was used for both control cells and test cells, only a
darkening of the quartz window could have reduced the illumination
at the test cells. This was not so because measurements made before
and after the test with a CdS standard cell indicated that the
transmission of the quart window did not change by more than one
percent. Also, the Isc of one of the silicon reference cells in the

chamber did not drop more than one percent below its cycle-1 value

at any time during the test.




1

CELL | CELL | CYCLES
NUMBER | TEMPERATURE | | 10| 20/ 3 41/50 {60 | 70 | 79 | 30 [100 [130 [16) {190 223|257 | 287
0 VY RELATIVE MAXIMUM FOWER, Py/Py(1), (PERCENT)
( C) (a¥) M
|_DSSTA _56 145 1 80| 80158 |56 |60 | 63| 63/59 |58 | 56 | 52| 53| 61]69 | 59 |60 |60
DSU5A 60 18 1 91} Bhi713 {65 1591 65] 63161 |60 {61 |58 57| 63165165 |59 161
D537E 63 98 | 671 66|64 |53 | 73| 55] 52|48 |8 |53 | 46| W8] 51|51 | k7 JU9 |53
DS36¢ 57 209 | 98| Qb 175 |69 | 61 | 65| 62158 |65 | 62 | k7 | 61 ] 6k|61 | 59 |51 163
D53Ip 62 122 [ 961 ok 195 92 |90 | 861 66187 162 179 | 18| 75 82183 | 78 181 |82 |
|_DS36A 61 04 t ohl 91172 167 1591 601 63163 /56 { 611 kgl 561 61160 I 51152 |s8
D3350 €1 189 1951 96185 178 173 1 73| 70166 [ 6k | 63 { 56| 86! 62|67 | 64 {61 |61 |
p53kp 56 6 10l ableh 173 1661 74! 7016k 199 [ 651 60} 6] 61161 | 63 |62 160
D533R 51 152 | 86 75168 [ 64 | 56 | 69| 67|71 |65 | 67 | 65] 61| 61|61 | 57 |56 |61
EZ RELATIVE OPEN CIRCULT VOLTAGE, Vocfvoc“)' (PERCENT)
D557A 56 b.koo 98 [ 98 [ 93 [ok |92 | 94|95 |95 [9b |93 [91 |96 [96 ] 96| 97]98 | 98
| _psusa 60 P.399 98 | 971 92 {93 |89 | 951 9k 193 |94 |93 192 192 ] 95| 96| 95| ok | 96
D537E 63 33997 | 94 | 78 181 |79 | 93] 97 {97 192 |75 |96 |78 | 88| 85| &3]88 | 94
-.DF#6C 51 432 100,99 | 95 {9k |9k | 96] 93 |92 |9k |9k |86 | 9k | 95| 9b]| 94| 90 | 95
D537D 62 p. 409 1011100 {100 01 hoo | 102[102 102 | 100 100 100 | 99 | 99 | 100 | 200]103 102
D5364 61 p.40g 99 (100 | 98 197 |94 | 95| 96 |96 |94 19k |9k | ok | 95| 95| 94| 9k | 96
D535D 67 P.41Y 100] 97 | 97196 |95 9T 96193 193 |93 |92 |93 |96 93| 93|93 | 93
D534B 56 D.h0q 96 | 96 | 88 19k |95 | 96| 95 191 (92 |92 |91 |91 | 94| 94| 95| 9k | ok
D533K 51 -3 97 | 91 | 95 96 |9k | 98] 98 {99 [97 |98 [98 196 | 96| 98] 97197 | 97
?j RELATIVE SHORT CIRCUIT CURRENT, Igp/Igp(1i, (PERCENT)
D557A 56 B30} 95| 94 r93 88 685] 688188 |87 85] 85183 {79 183] 83} 81{81 861
D545A __6& 15 93 91 1 90) 86) 86 858k | 82 93] 81181 | 77| 75| 78] 75! 7% | 75
{_DS3IE 63 780_| 89180 ) 79| T1! 78] 178|751 151 73| 7%} 72 |70 | 69| 72| 70168 | 70
|_DS536C 51 Béo | 96} 9k ) 91| 88 B6) 8787 | 85 85; 83/80 |80 |81 80| 79|79 ] 718
D537D 62 120 | 96| 9% | 95| 91| 90| 89|88 | 48| 84| 83[82 |80 | 84| 82| B82]81 | 82
D536A 67 B70 | 94! 93 185 86| 84| 84| 8k | 84| 81| B81/79 | 7918} 18] 17l 77 | 76
D535D 61 7165 | 98| 98 | 961 931 921 91! 91! wo| 88) 86185 {83 | 74| 87| 84| 8k | 84
D534B 56 Boo | o4] 93 | 92| 89! 88| 90l 90| 67| 86| 85|84 |83 | 85| 82| 71|82 | B2
D533% 57 B15 92] 90 | 88| B86)] B85] 86/ 86| 85] B3| B83{81 |80 |8| 19 T7TITT | TS
v RELATIVE FILL FAGTOR, FF/FF(1), (PERCENT)
D557A 56 ha.7| sel8r | 61| eal 73] 76l 75 | 9] 73] mafe9 {70 [ 77 [ ex] 15[ 76 [ 76
D5LGA_ €0 2.8/ 1001 95 188 811 77| 80l 8 I 80| 691 8278 | 80 {83! 87! 91(85 | 85
DS3TE 63 8.1 78{88 Jaok| 93 18| 76/ 71 | 66| 71| 95{ 67 {88 | 84| 83| 76 82 | B
D536¢ 51 9.01 1021101 | 871 831 75| 78| T7.{ T4%] 81| 79168 |81 | 88] 81] 79{72 | 82
D537D 62 1.8] 99]100 J100 1100 {100| 95} 96 | 97| 98| 95{ 95 | 95 | 99 /101 95|99 | 98
| _D536A 61 8.3/1201198 | 83| 80 75} T5]. 78 ) 78| 74| 80| 66 | 76 180 B1] 70|73 | 719
D535D 61 8.2] 971101 | 91} 87 84)| 83|18 | 791 78] 791 72 |112 | 87| 83| 82]78 | 78
D534B 56 5.5/ 101| 94 | 79| 87| 79| 86)82 | 81| 75| 83 79.179 | 841 791 93[8r | 79
L533E 57 7.8 96,86 | 833 78] 70| 82| 79| 8:4f 81| 82|82 )79 76] 719! 76| 75 | 84

W ANl Cycle-1 data are actual (not relative) values given in the units indicated.

he actual values are helieved to be slightly low because of a fault in the measurin
v ligcggt? Since the same circuit was useg thgoughout the test, the relative values :
presented in this table are believed to be accurate.

TABLE 6: ELECTRICAL PERFORMANCE VS CYCLES FOR CdS SOLAR CELLS
MANUFACTURED DURING APRIL, 1967
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5 loss im the Ig of cell D537D may have been caused by a loss in
the transmission of its Pyre-ML-coated Mylar cover, especially since
it has not been demonstrated conclusively that the Pyre-ML coating
protects effectively the Mylar cover from UV radiation. The UV constant
of the illumination during the 300 hours of exposure im this test
corresponded to about 75 percent of the integrated solar intensity below
0.35 /4 m. However, other possible causes of the loss in I8 should not
be overlooked, since in thermal cycling tests discussed later in this
report, where UV-resistant Kapton covers were used, the losses in Ig

cennot be readily explained.

Other Cells

After: 300 cycles, the average values of Pk', Voc', Isc', and FF' for
the remaining eight cells were 59, 95, 78, and 81 percent, respectively.
The low average value of Isc' suggests that a decrease in Ig occurred in
these cells also. The fact that the FF' was lower than could be explained
by a decrease in IS (see Figure 13) suggests that an additional degrading
mechanism was present. Loss in FF' can result from charnges in Rs and
Rsh’ but only Rsh can explain the low values of voc' observed in some
of the cells. We therefore attribute the power losses in these cells

h
in Rsh probably were caused by internal short circuits in the cell.

to decreases in both Rs and Ig. Power losses resulting from decreases

In many of the cells, fhe I-V curve traced in one direction differed
from that traced in the other direction (Figures 3la and 31b). This
behavior is called hysteresis. Occasionally a cell would exhibit an
erratic I-V curve (Figure 31lc) which could not be repeated in successive
traces. The fact that the hystereegis affected Voc' but not Isc' suggests
that the effective shunt resistance varied. Short circuits within
a cell are one possible cause of change in effective shunt resistance.
The type of hysteresis shown in Figure 3la is roughly what would
be expected if a partial short circuit existed in the cell during the
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trace. from I to V. .
5C oc

The type of hysteresis shown in Figure 31b i& more difficult to
interpret. One possibility is that the partial short circuit existing
in the cell during the trace from voc to Isc became even worse vhena
the return trace was started, producing a straight line characteristic.
To explain why the return trace ended at a Vbc higher than the Voc
at the beginning of the first trace, it must be assumed that the
short circuit gradually weakened during the latter part of the retura
trace, completely disappearing by the time the trace was finished.

The type of behavior exhibited in Figure 31lc can be explained in a
similar menner except that perhaps several partial short circuits
were involved, one of which did not appear until the latter part of
the return trace. The fact that precisely the same curve could not
be obtained in successive traces suggests that the shorts appeared

intermittently.

Summary of Testing of April, 1967 Cells

The April, 1967 cells degraded quite drastically within 300
cycles. The probable cause of power degradation was a decrease in
shunt resistance resulting from internal shorts. A loss in light-
generated current, possibtly from a degradation of the Pyre-ML-coated
Mylar covers, also contributed significantly to the power loss.

6.3.2 November, 1967 Cells

The test-cells manufactured in November, 1967 were subjected to
506 light-dark cycles. The Ph of the two copper-substrate cells had
degraded to 77 and 25 percent of initial, respectively, after 506
cycles. During the same time, the PM' of the seven Kapton-substrate
cells had dropped, on the average, to 82 percent, the imdividual
values ranging between 75 and 88 percent.

The Ph', Voc" Isci’ and FF' of each of the nine test cells are
plotted as a function of cycles in Figures 32 to 40. Each graph also shows

the EM’ of a matching control cell. All the test-cell data are also
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presemted in Table 7. These data have been cerrected for temperature
variations to correspond to 60°C. All test-cell data were obtainmed
wvith the test-cells mounted in the vacuum chamber, under vacuum, after

the cells had been illuminated for about ome hour.

Performance data were also obtained for these ceils in alr,
before and after cycling, with the cells mounted om a temperature con-
trolled block maintained at 60°C. These data are presented in
Table 3.

6.3.2.1 Kapton Substrate Cells

Cell Number NH200AK3

The most stable cell in the group was number NH200AK3. After
506 cycles, its B Voé, Isé, and FF', were 88, 100, 100, and 88
percent, respectively. Based on the calculated effects of Rs, Rsh’
Ig, I, and A on the performance of a typical cell (Figures 16 to 20),
the observed pover loss was most likely the result of a 0.05k-ohm imcrease

in Rs. These are thie reasons:

(1) a 0.054-ohm increase im R, resulted im calculated EM'
ocg Isé’ and FF'values of 88, 100, 100, amd
886 percent which were the same as the experimental velues.
(2) vValues, Ry Ig, I,» or A from which the experimental 88
percent ?d could be calculated, resulted in a voc'
or an Isg significantly less than the experimental values.
(3) PFurthermore, the R obtaimed from the I-V curves st cycle-1
and cycle 50€ was 0.05-ohms and 0.012 ohms respectively.
According to Figure 21 this correspomds to a 0.045-ohm
increase in RS, in good agreement with the preceding

ohservations.

Measurements made on this cell in air, before and after cycling,

(Table 8), resulted in Pb'i, Voo I, and FF'values of 94, 101, 100

amd 92 perceamt, indicating that both Pﬁ and FF' recovered during

the period between cycle 506 and removal of the cells from the
chamber. Recovery was probably accompanied by & decrease in series

resistance.

66




Table 7: ELECTRICAL PEPFORMANCE VS CYCLING FOR CdS SOLAR CELLS
MANUFACTURED IN NOVEMBER 1967
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One éf the cells in this group exhibited a delamination between
the CdS layer and the metal coating on the substrate. Such a delami-
nation may have increased the series resistance during thermal cycling,
causing subsequent loss of power. When the cell was mounted on the
temperature-controlled block after removal from the vacuum chamber, it
was constrained to lie flat while its I-V curve wag being obtained.
This constraint may have temporarily closed delaminations, resulting

in decreased series resistance and apparent recovery in maximum power.

Cell Number NH188AK2

Cell number NH188AK2 is typical of the remaining six cells in this
group. After 506 cycles its Pﬁ', voc" Isc" and FF' values were 75,
101, 90 and 84 percent, respectively. A degraded I-V curve of this
cell is shown in Figure 4l.

Decrease in Light Generated Current

Based on the calculated effects of RS, Rsh’ IS' Io’ and A on the
performance of a typical CdS solar cell (Figures 16 to 20), the observed
loss in Isc' vas most likely the result of about a 10 percent decrerase

in Ig. These are the reasons:

(1) A 10 percent decrease in Ig resulted in an Isc' of 90
percent, which is the same as the experimental value,

without causing a degraded Voc"

2) Chenges in R, R ., I , and A which resulted in a P
s sh” "o M

less than the T75-percent experimental value resulted in an

ISC' greater than 98 percent, and therefore could not explain

the observed 30-percent Isc"

Much evidence shows that this loss was not the result »f low
light intensity:

(1) The I,  of one cell (No. NH200AK3) did not degrade at

all during the entire test.

(2) The I . of one of the silicon reference cells in the vacuum

chamber varied by less than one percént between cycle 1
and cycle 506.
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(3) The tramsmissiem of the quartz wimdow degraded less than
ome percent, based om measuremeats made with the CdS
standard cell before amd after the test.

() The I_, of all the Kapton-substrate comtrol cells at
cycle 506 were withim one percent of their cycle-l

values.

Simce all these cells had the same type of covers (Kaptoam), and
the Isé of ome of these cells did mot degrade at all, it appears that
the loss im light-gemerated current camnot be attributed to a decrease
imn cover transmission. Furthermore, other imvestigatioms (ref. 8)
have showm that Kaptom does mot degrade umder UV im vacuum. Thus
ve are umable to expiain why the light gemerated curremnt of this one
cell decreased. Deata obtained im air om a temperature centrolled
block before and after the test (Table 8, NHL88AKZ) imdicate omly

a two percemt degradation in Isé.

This perplexing questiom of why Ig degraded during thermael cycling,
and them recovered after the test has not yet beem resolved. With only
ene exceptiom, the other cells also exhibited a decrease in light-
generated current durimg thermal cycling, amd them recevered, at least
partially, after the test was completed. Post-cycling tests (Table 9)
conducted before the cells were removed from the chamber indicated
that the addition of gaseeus mitrogem or air seemed to have mro
significant effect on Isé (and hence Ig). The Isé of the cells did
increagse slightly in the first post cycling test, but this imcrease
probably resulted from the below-normal temperature (50°C instead of
70°C) of the cells im this test, rather than from & recovery im light

generated current.

Increase in Series Resistance

Based om the calculated effects of R, Rsh’ Ig, I and A oa the
perfermance of & typical CdS selar cell (Figures 16 to 20), the
observed decrease im FF' of cell NH188AK2 wes mest likely caused by
a change in Rs rather than a chamge in the otper rarameters. The

reasons are:
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(1) A %.0T6-ohm increase in R resulted in a FF'equal to
the Sh-percemt experimental value, without degrading Vbaﬂ

(¢) Changes in Ig do mot appreciably affect FF'.

(3) Changes in R, I and A which result ia the experimentsl
PF also result in a Voé wkich 1s significantly lower

than the xuerimental value.

Furtsermore, the I-V curves at cyecle-l and cycle-506 showed that R.::’C
increased from 0.10 to 0.16 ohms., Figure 21 shows that this corresponcs
to & D.0bo-ohm increase im Ry, in fair agreenent with the preceding

abservations.

t.3.2.2 Copper-Substrate Celis

Cell Number AYT0B

. - [
After 53t eyerss, the B, Voé’ ISJ, and FF valuves of this ceil
were 77, W, 81, and 93 percemt respoctively. The before and after

measurcuents made in air resulted in PF’ \' , and FF values of
A

, L
ce’ TBC
3y, 103, 27, and Sk percent ruspectivsly, indlcating a cignificant
recovery in Py'anu IS;, but not in Voé and FF during the post-test

(3
reriod. The fact that the Iﬂc'did not recover completely, as did tne
ol
Is; of all the cells with Kapton covers, sugiests that a pernanent
degradation in the transmission of the Mylar cover was responsillie

for part of the in situ degradation of Isé’

Brsed orn the calculated effect oi’Rs, Rsh’ Ig, Io’ and A on the
perfarmance of a trpical CdS solar cell (Figures 16 to £0), the
obsecrved loss in FF' was due to either an increase in series resitance

or a decrease i1 shunt resistance. These are the reasons:

(1) A 0.024-ohm increase in R, resulted in a FF' equal to the
experimental value without being accowmpanied by a significant

decrease in V .
oc

82




(2) A 15-ohm decrease in R, resulted in a FF'equal to the

experimental value without being accoupanied by a
significant decrease in VOJ.

(3) Changes in I or A which result in a FF'equal to the
g
experimental value are accompanied by large losses in

Voé’ vhich were not observed experimentally.

The values of Roc obtained from the I-V curves at cycle-l and cyle-506
did not differ significantly, indicating no change in resistance. This
suggests that an increase in shuat resistance was respomsible for the

degradation in FF, and hence part ol the power loss.

Cell Number AS69D

After 506 cycles, the Pg, VOJ, ISCS and FF values of this cell
were 25, 60, 81 and 51 percent, respectively. The drastic degradations
in this cell appear to be caused by a decrease in Rsh resulting from
a short in the cell. However a decrease in Ig nay have beem responsible

for the decrease in Isé' Just as in cell A9708, discussed in the

U
c

completed. The permenent decrease in Isc'was probably due to a

preceding peragraph, the Is recovered partially after the test was

decrease in the transmissiomn of the Mylar cover.

Summary or Testing of November, 1967 Cells

In general, the cells manufactured in November, 1967 did not lose
as much power as did the April, 1967 cells. Lower losses in the Kapton-
subetrate cells resulted from losses in light generated current and from
increases in series resistance. Something other than a decrease in
transmission of the Kapton covers is respensible for the observed

decrease in Ig.

The loss in light-generated current seemed to recover completely
after the cells were removed from the vacuum chamber. No explanation
is available for this phenomenon. A few Kapton-substrate cells also
exhibited occasional drops in shunt resistance resulting from shorts
in the cell.
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The copper-substrate cells degraded in power output because of
losses in Ig and decreases im Rsh’ but not Rs. Part of the loss in
Ig was due to a degradation of the Mylar covers. This part of
the loss did not vanish after the test. The fact that the R/ increased
in the Kapton-substrate cells but not the copper-substrate cells
suggests that the cause of increasing Rs in the Kapton-substrate
cells is from either:

(1) A delamination between the Cuf layer amd the substrate
metal layer which doesn't occur in the copper-substrate
cells

(2) An increase in resistivity in the substrate metal layer.

6.3.3 March, 1968 Cells

The test cells manufactured in March, 1968 were subjected to
2031 cycles. The average Pk'of eight ot the nine test cells had
degraded, by cyecle 2031, to 88 percent. The actual values ranged
from 33 to 9¢ percent. The ninth degraded in PM’to 49 percent inu
2031 cycles. The B, Vocg Isé’ and FF'of each of the nine test

cells is plotted asMa function of cycles in Figures %2 to 50. The
P%'of a matching control cell is also plotted cn these graphs. These
t;st data are also presented in Tables 10 to 14. The data have been
corrected for temperature variations to correspond to 60°C. All of
these data were obtaimned with the test-cells mounted in the vacuum

chamber, under vacuum.

After completion of cycling, cell performance was measured at
ambient pressure, first with gaseous nitrogen, and then with air in tne

chamber. The results of these tests are given in Table 15.

The performence of the cells was also measur=" in air before anda
after cyclirg, with the cells mounted, on a temperature-controlled

block maintained at 60°C. These data are presented in Table 8.
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Figure42 ELECTRICAL PERFORMANCE VS CYCLES FOR CdS
SOLAR CELLS MANUFACTURED IN MARCH, 1968
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Cell Number N150BK6

This cell was the most stable cell thus far tested. After 2031
cycles, its Eh', Voc', Isc' and FF' values were 96, 102, 100 and
9l percent.

This cell was different from the others in that it had an
evaporated grid beneath the standard preformed grid. It is significant
that the ISC' of this cell did not degrade.

Cell Number N156CK2

The behavior of this cell is fairly representative of the eight

cells vwhose PM' ranged between 83 and 96 percent after 2031 cycles.

After 2031 cycles, the B ', V_ ', I_ ', and FF' of this cell were 90,
102, 95, and 92 percent, respectively. A degraded I-V curve of this

cell 1s shown in Figure 51.

Increase in Series Resistance

Based on the calculated effects of Rs’ Rsh’ Ig, Io, and A on the
performance of & typical CdS solar cell (Figures 16 to 20), the observed
loss in FF' of cell N156CK2 was due to a change in either series re-

sistance or shunt resistance. The reasons are:

(1) A 0.03-ohm increase in Rs would produce the experimental
g2-percent FF' without chenging Voc"

(2) A 15.2-ohm decrease in R, would also produce the
experimental 92-percent FF' without changing voc"

(3) Changes in I do not significantly affect FF'.
g

(4) Changes in I, and A which result in experimental FF'

drastically reduce Voc" an effect which did not occur.

The Rbc measured from the I-V curve increased from 0.09-ohms to
- 0.13-ohms between cycle-1l and cycle 2031. This corresponds to a
0.027-ohm increase in series resistance (Figure 21). This suggests

that series resistance was responsible for the degradation in FF'

and hence part of the power loss.
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Decrease in Light Gemerated Curreat

Based on the calculated effects of Rs’ Rsh’ Ig, Io’ and A on the
performance of a typical CdS solar cell (Figures 16 te 20), the observed
loss in Isc’of cell N156CK2 was due to a loss in light gemerated
current. Here are the reasons:

(1) A five-percent decrease in Ig produced the experimental

95-percent I_!without an accompanying loes in VO;.

™~

(2) Changes in Ry» Rsh’ Ig’ or A which could produce the observed
I are accompanied by a drastic loss in Voé vhich did net
occur.

Low light intensity could explain the five-percent decrease in Ig.
Hovwever, this evidence indicates that the light iatensity was not too
low:

(1) The Isc' of one CdS test-cell (No. NH150BK6) was still 100

percent after 2031 cycles.

(2) The ISc of one of the silicon reference cells varied less
than 2.5 percent between cycle-l and cycle-2031.

(3) The transmission of the quartz window degreded less than
one percent, according to measurements made with the CdS
standard cell before and after the test.

(4) The Isc of all the control cells at cycle 2031 were within

twe percent of their initial values.

Gaseous nitrogen, and then air, were admitted to the vacuum chamber
after completion of cycling. No significant recovery in the I 'of
cell N156CK2 was observed (Table 15). Measurements made in aiicon the
temperature controlled block produced ax Isé of 93 percent, a value not
significantly different from the 95 percent value obtained in situ
at cycle 2031. 1In general, this group of cells did not exhibit a
significant recovery in Is;. The average in situ Isé of these eight
cells was 95 percent, at cycle 2031, and 93 percent in air after

removal from the chamber. Apparently the losses in Isé were permanent.




It seems significant that the losses in I'c' cannot be explained
by changes in Rs, Rsh’ IS’ or A; only a decrease in I8 can explain
the observed permanent loss in Isc" Since Kapton covers have been
demonstrated to be unaffected by UV in vacuum, the cause of the

decrease in Ig caanot be explained at this time.

Cell Number N151CKk

After 2031 cycles, the Ph', Voc', Isc" and FF' values of this
cell were 49, 97, 91 and 56 percent respectively. The fact that both
FF' &and Voc' degraded suggests that much of this degradation was caused
by a decrease in shunt resistance. The degraded I-V curves exhibited
an erratic form of hysteresis and approximated a straight line between

I and V .
sc oc

Summary of Testing of March, 1968 Cells

The March, 1963 cells were the most stable yet tested, the maximum
powers degrading, on the aversge, to 38 percent of initial. Two of
these cells had evaporated grids. One evapurated-grid cell lasted
over 2000 cycles with only a 4 percent power loss. The second
evaporated-grid cell degraded slowly to 92 percent at 997 cycles after
which it degreded suddenly to 53 percent. Power losses in other
cells resulted from increased series resistance and decreased light-
generated current. The loss in light-generated current could not
have been caused by a loss of illumination or by degradation of the
Kapton covers, nor did it disappear after the cells were removed from

the chamber. No satisfactory explanation is available.

Several of these newest cells exhibited the effects of internal

short circuits, a common problem with every cell design tested in

this prograu.




7.0 CONCLUSIONS

As a result of the testing conducted in this prograwm, the

following conclusions have been reacheu:

1.

no

Most CdS solar cells exhibit a loss in power when exposed to
2 simulated space environment involving thermal cycling. It
is not clear what aspects of the environment contribute to

the observed losses.

Some CAdS solar cells can withstand over 2000 thermal cycles in
a simulated space environment without significant loss in
power. One cell degraded by only four percent in maximum

power in <031 cycles.

The most recently manufactured cells degraded less than earlier
cells. A more favorable electrical loading during exposure

to the simulated space environment could have contributed to
the better pertformamce. Improved quality of the cells

could be another contributor.

Use of an evaporated gold grid results in & solar cell that is

potentially more stable than one having a grid bonded with
epoxy. |

Internal short circuits in CdS solar cells result in large and
unpredictable decreases in power output. Eliminating these
short-circuits would enhance the usefulness of CdS solar cells
for space power applications. Shorts occurred in some cells

in each of the three menufacturing batches tested.

A more subtle but significant cause of degradation in the
recent cells (November, 1967 and March, 1968) is an increase

in the series resistance of the cells.

Another significant cause of degradation in all the cells is a
decrease in their light-generated currents. Sometimes the

degraded light-generated current recovers after the test.
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No satisfactory explanation for this loss in light-generated
current is available at this time.

8. A CdS-cell methematical model is a useful tool for analyzing

I-V curves tc establish the causes of cell degradation.
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10.

11.
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9.0 APPENDIX

SUMMARY OF EQUATIONS AND SYMBOL LIST
Equat lons

P,
M .
TETT;(T x 100 = (.JlS) Ph

Pyo * Kyp (Tg = T)

Vocu T Kocv (TR - 1)

F

M
x 100
(Voc)(ISC)

P,/B, (1)
Voc/voc<l)

Isc/Isc(l)

FF/FF(1)

Al}ro

4 - 214 -
IO{ exp [AKT (v IRS)] 1} Ig + =

Symbols
active cell area = 54.75 cm2

empirical fitting constant (equal to 1 for an ideal

Junction)
£i11 factor (percent)
initial fill factor (percent)

relative fill factor (percent)

current output of cell (amperes)
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9.0 APPENDIX (Cont.)

light gencrated current (amperes)
revprse saturation current (amperes)

short circuit current (milliamperes)

initial short circuit curreat (milliampere)
relative short circuit current (percent)
Boltzmann constant

temperature coefficient of maximun power (mw/°C)
tenperature coefficient of open circuit voltage (volts/oc)
conversion efficiency (percent)

corrected maximum power (milliwatts)

initial corrected maximum pover (millivetts)
relative maximum power (percent)

uncorrected maximum power (milliwatts)
electronic charge

equivalent series resistance (chws)

series resistance (ohms)

shunt resistance (ohms)

light intensity = 1kO m‘W/cm2

standard deviation

maximum deviation

actual cell tewperature (°C)

reference cell temperature (°C)

voltage appearing at cell terminals (volte)
corrected open circuit voltage (volts)

initial corrected open circuit voltage (volts)

108




9.0 APPENDIX (Cont.)

oc' = relative open circuit voltage (percent)
Vieo = uncorrected open circuit voltage (volts)
X = average

oM gttt v e L e e

S

D il
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10.0 NEW TECHNOLOGY

A new technique for idemtifying the cause of performance de-
gradation in CAdS thin-film solar cells was developed im this cen-
tract. This technique uses a digital computer to calculate the
changes in internal cell parameters that cam satisfactorily explain
the I-V curve being amalyzed. A complete descriptioa of the
technique appears in Sectiom 6.1, and a summ“ry is provided belew.

The computer program generates the I-V curve of a CdS solar
cell from a set of 5 physically meaningful parsmeters. Each of
these five parameters is varied individually, and its effect on the
I-V curve of a typical CdS solar cell is determined. The wmaximun
power (Eh) open circuit voltage, (Voc) short circuit current, (Isc)
end fill factor (FF) are then plotted as functions of each para-
meter. The resulting curves are then compared with the experimental
values of PM’ voc’ Isc’ FF obtained from CdS test-cells which
degraded during thermal cycling. The parameter which changed to

cause the degradation then becomes apparent.
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