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« 1, Introduction,

Let E and F be nonempty sets., A multifunction Qi E - F

is a subset of E X F with domain equal to E; equivalently O 1is a
mapping (or function) from E into the collection of nonempty subsets
of F. Multifunctions have many diverse and interesting appliecations

in control problems and the theory of contingent equations (for example,
see [B-4-6, C-1-3, F-1, H-1-4, K-1-3, 1-1-2, and 0-2]), in mathematical
economics [A-1, D-1], and in various branches of analysis (for example
in the study of subdifferentials of convex functions [M-3]1). By now
the théory of integration of multifunctions has been rather well dev-
eloped and the applications of this theory to control problems and
mathematical economics have been discussed [A-1, C-1, D-1, H-1-2, H-4,
J-1-2, 0-1-2]. It is our purpose in this paper to develop a differential
calculus for a reasonably generous class of multifunctions, and to

point out some of the applications. ihe calculus is developed by taking
advantage of some ideas used in (u-1], especially RBdstrom's embedding
theorem [R-1], to give our definition of the derivative of a multi-
function, By means of Ridstrdm's embedding principle we are able to
convert the discussion into one concerning differentials of ordinary
functions fi1 E +F vwhere E and F are normed linear spaces [D-2],
At least two steps have been taken toward developing a differential cal-
culus for multifunctions,»one by Bridgland [B-4] and another by Hukuhara
[H-4]. Our theory subsumes that of Hukuhara and Bridgland, A discassion
of their results and a comparison with those of this paper are given in

Section 4, and some examples are included to illustrate differences, 1In

Section 2 we give the notation and terminology to be employed throughout




the paper. Also in this section is a description of those aspects of
REdstrim' s exbedding operation which we shall need later on. A number
of examples of differentiable multifunctions are presented in Section

3, and finally in Section 5 we give some applications,
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2. Preliminaries,

Iet F be a real normed linear space, The symbol {X(F)
will be used to denote the collection of all nonempty, closed, bounded,
and convex subsets of F., Whenever the normed linear space F is
understood we shall just suppress F and write £ for &F). 1If
A and B are subsets of F, there is defined A+B = (a+b|la € A, b € B)
and M = {Aa|a € A} where A €R and R denotes the field of real
pumbers., The symbol co(A) denotes the convex hull of A, for ACTF.
If P is reflexivel, then [(F) with the addition defined above is a
commutative semigroup which satisfies the cancellation law [R-1]. More-

over, if ,f are real scalars, A,B ¢ @(F), then
a{A+B) = aA+0B, aBA) = (a B)A, 1A = A,

and if a,B 2 0, then (a-v-ﬁ)A = QA+BA. Note that the assumption that

F is reflexive is used to show that A,B € S(F) implies A+B ¢ Z(F),
and the convexity of the elements of P(F) 1is used both in the proof
of the cancellation law and in the proof of (c#8)A = QA4BA, a,B 2 0.
Moreover, the proof of the cancellation law also uses the fact that'

elements of (B(F) are closed and bounded subsets of F.

lIn the results that follow the 'requirement that F be reflexive can
be replaced by the assumption that F is a B-space if we agree to

deal only with the subcollection #(F) consisting of those elements
of H(F) which are compact. Also the completeness of F intervenes

only when we want ,@( F) to be complete,




If X and Y are sets, if HC X X Y, and if AC X, then
H[A] denotes the set (y e ¥|3x ¢ A: (x,y) € H}. Let (X,p) be a
metric space, and define J_ = ((x,,%,)|p(x),%5) & €}, Thus if
ACX, then J[A] 1is an "e-neighborhood of A", If F is a normed
linear space with metric p determined by the norm, and if A,B
are bounded subsets of F, then the Hausdorff distance [B-1] between

A and B is denoted by dH(A,B) which is defined by the relation
(2.1) d.(A,B) = inf(e >0|J€[A] DB and J[B] D4).

We observe that if F is complete, then ( 5(5‘),&H) is complete, The
proof of this assertion is essentially the same as the proof of (5.6)

in [D-1, pg. 362]. One quickly establishes that a Cauchy sequence

of nonempty closed and bounded sets in F must converge to a closed

and bounded set in F (see [K-lL, pg. 314] or [M-1, Prop. 4.1, pg. 161}).

Price's inequality [P-1, (2.9), pg. 4],
- (2.2) dH(co(A), co(B)) = dH(A,B),

where A and B are closed, bounded, nonempty subsets of F, then im-
.plies that a Cauchy sequence in 5( F) must converge to an element of
8(r).
R84strém’ s embedding theorem [R-1, Theorem 2] tells us that in
case F 1is reflexive, there 18 a real normed linear space Q;(F) (or

simply ¥ wher F is understood) and an isometric mapping T3 5 - B,

where £ is metrized by dy, such that w(f) is a convex cone in .
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Purthermore addition in B induces addition in & and hultiplication
by non-negative scalers in ﬁ induces the corresponding operaticn in
£, B can be chosen minimal in the sense that if Sl is any other
real normed linear space into which 3 has been embedded in the above
fashion, then 81 contains a subspace containing 4 which is isomor-

phic to B, 1t is appropriate to describe in some detall the space

A 98, since we must take advantage of some of its peculiar properties in

the sequel. An equivalence relstion ~ is defined on ,82 = fx ,g
by stating that (A,B) ~ (C,D) if A+D = B+C. The equivalence class
containing (A,B) is denoted by < A,B >, The space B is taken to
be the quotient space 92/~, where addition in @B is defined by
<AB>+<C(D>=<A+C, B+D >, and if a0 20, then @ < A,B >~

< oA,0B > while if a <0, then a < A,B>=<|0|B, |ofa > Witk
addition and scalar multiplication so defined U becomes a real line?ar
space. The embedding m: @— B is given by T(A) =< A,0>, A€ @,
i.e,, <A,0 > 1is the equivalence class ({(A+D,D)|D € @). We shall

adopt the convention of denoting 7(A) by A when A 1is an element

of %, end hence the convex cone (@) = 4. A metrie bH on B

is defined by

b(< A,B >, < C,D >) = d(A+D, B+C).

The zero element of B is the equivalence class ((D,D)|D € £} which
will be denoted by <0,0 >, Since d, 1is translation invariant and

positively homogeneous, the relation [|<A,B > | = bH(< A,B >, <0,0 >)



actually defines a norm on @ such that B (<AB>, <CD>) =
| <a,B>- <, 3.

A funetion f3s E~»F where E and P are arbitrary normed
linear spaces is said to be equal to o(llh]) if J£(x)ll/jbll =0 as
linll »o.

Let F be a reflexive Banach space, and let E be a normed
linear space, A multifunction, Qs G - GHF), where G 1s an open sub-

set of E, is defined to be 7-differentiable st x € G if the function,

81 6> B(F), x»8(x), x € G 1is qifferentisble at x_ € G, As usual

Q is v-differentiable on G 4if it is w-differentiable at every point

of G. Thus O is 7-differentiable at xo € G mesns that there is a

continuous linear mapping & (x,)s E— P such that
(2.3) f(x) - B(x)) - B (x)(x-x) = ofllx-x]]).

If ve write D'(x )(&x) =< ApoBpy > OX €E, and A B, € @,

then in terms of the Hausdorff metric (2.3) means

(2.3') ap(a(x) + B, , 5 8lxg) + Aex) offlx-xl).

If E is finite dimensional with basis £),E,,...,Ey, then &% =

z &igi’ &x € E, Ir ﬁ'(xo)(gi) = <A 0 >’ i= 1,2,--.‘,11, then we

£’
say that Q is conically differentiable at x € G and we have

ik




fBr(x ) (&) = L & < Agi,o >,

We should mention that @O(F) need not be complete when F
is complete [D-1, pg. 363], but nonetheless if F is complete, then
s0 is @(F) snd hence F(F). Even though QB(F) is not complete
most of the bacic rules of the differentisl calculus [D-2, Chapt.
VIII] can still be applied to the mapping x -rﬁ(x), x € G, and we

shall feel free to do 80 in the subsequent sections of this paper.

,R_e_l_l;a_;}s.. It would be interesting and useful to have these €mbedding
results for certain collections of closed, convex, and nonempty sub-
sets of F where F 1s finite dimensional with §,,...,8 as basis,
For example the set ﬁf,’;.,. of all nonempty, closed, and convex sets
ACT such that a €A, a = z aiti imply el 2 0, 1 =12,...,n

is interesting, If addition and scalar multiplication (with non-
negative scalars) in {;4. are defined as before, then all the data
needed to extend R8dstrdm's embedding result to 5";-*
form topology determined by the norm on F [M-1, pg. 153]) are ful-

(with the uni-

filled except the crucial cancellation law, For example, teke F = R2,
§, = (1,0), &, = (0,1). Define sete A= {((x,¥)] vy =2x, x 0],

Be {(x,y)]y = x, x2 0}, and C = A+B, Then we have A+C = B+C and
yet A £ B.




3, Examples of Differentiable Multifunctions,

We shall next exhibit some examples of Tw-differentiable
multifunctions, Although very simple, these examples illustrate
the notion of w-differentiability and are useful in the applica-

tions discussed in Section 5,

Example 3,1, Let E be a normed linear space, F a reflexive

Banach space, Let A be a fixed element of P(F) and r a dif-
ferentiable mapping, r: ﬁ—»F, where G is an open subset of E,
Consider the multifunction s G — @(F) defined by Q(x) = (r(x))+a,
x € G Thus QO 4is & fixed set moving slong a differentiable curve r
in the space PF. It is easy to see that 0 is 7m-differentiable with

B (x0) (%) = < (r'(x,)(£x)},0 >, x, € G, & €E, since

°

l]ﬁ(x)-ﬁ(xo)-dr'(xo)(x-xo)},0>" = [|<{r(x)}+4,0> - <(r(x°)]+A,0>-< (r'(xo)(x-xo)],o >n

- dH((r(x)]-o-A, {r(x°)+r'(x°)(x-x°)]+A)
= 4 ({r(x)), (r(x)4r" (x )(x-x)))

= fIx( x),-zf( xg)~r( xo) ( x-xo) Il

- ofllx-xg}).

It remains to note that &x - < (r'(x )(4x)},0 > is a bounded linear
operator, That the operator is additive in Ax 1s clesr, and the homo-
geneity follows from the fact that < A,0 > =a< A,0 > for every

@ € R whenever A = (a) 1s a singleton set in F, Pinally we bave




I < (r(x)(83,0 > = iz (x ) (&) & fI=* (x )l dl, & €

If in this example E is finite dimensional, then 0 1is
conically differentiable, In fact if {,,...,{ 1s a basis for E,
end A = L &'E,, then

B (x ) (&%) = I &x*<lrt (x )(8,)),0 >

Example 3,2, lLet E,F,G,A be as in Example 3.1, Let g be a dif-
ferentiable mapping from G into R such that g does not change sign
on G, i.e., g(x) 20, x € G or g(x) £0, x € G, Let 01 G - P(F)
be the multifunctica defined by 0(x) = g(x)A, x € G, 'We consider first
the case where g(x) £ 0, x € G, In this case we have 7(g(x)A) =

< g(x)A,0 > = g(x) < A,0 >, which implies that ﬁ'(xo)(a:) = g (x,)()

<A0> x €0, & € E., On the other hand for a % O, we have

°
< 0A0 >« < -a(-A),0 > = @ <0,-A >, Consequently, if g(x) 50,
x € G, then we have w(g(x)A) = < g{x)A,0 > = g(x) <0,-A > from which
we deduce that ﬁ'(xo)(m) = g'(x)(&x) <0,-A> If E is finite di-
mensicnal with vasis §,,§,,...,8,, then O 1s conically differentiadble
at x_ € G whenever g% 0 and g'(x)(8;) 20, 1=1,2...,0 (re-
spectively, g $0 and g'(x )(§;) 80, 1 = 1,2,...,n), and in fact in
either case we bave the relation ﬁ'(xo)(mc) =zl < g'(xo)(gi)A,o >
for o = Zm‘gi € E

From the foregoing we infer that if g 4s differentiadble

on G, then 0 is w-differentiable on ¢t = g'l(o,w) end on G =




g’l(--,o). @ will also be differentiable at points x ¢ G where
g(xo) = 0 if there is a neighhorhood U of x , such that gx)zo0
for each x €U or g(x) §0 for each x € U. In addition if x,
is a point of G such that every neighborhood of x o contains points
vhere g 1s positive and also points where g is negative, then 0
is not w-differentiable at x, unless A is a singleton point set.
The requirement that g not change signon G if 8 is to
be t-differentiabie may appear somewhat strange, However, the reason
the condition is necessary for w-differentiability can perhaps best
be seen by considering a special case of Example 3.2, Let E =G =R,
let F = 32, and define @(t) = to,, where o

2
32. One might very well expect this multifunction to be differentiable,

is the _unit disc in

ihwever, in view of the preceding paragraph this multifunction is not
differentiable at t = 0. In fact we have that ﬁ'(to)(ﬁb) =A< 62,6 >
for t >0, and 3'(1-.0)(&) = & <0,-0, >, for t <O, but & is not
differentiable at ¢ o * 0 even though the right and left ﬁand deriva-
t!gves both exist at to =0. It is inferesting to interpret this geo-
metrically., The grapbh of the multifunction 8 in R X Ra consists of
a cone whose vertex is at the origin and whose axis is the t-axis

(i.e., R x {(0,0)}). The cross sections of the come through (t,0,0)
parallel to the plane {0} X 32 are the discs to,. We see that the

behavior of this multifunction is similar to that of the real valued

fuaction t —=|t| which hes a cormer at t, = 0. In fact note that

the graphs of 0, t +to,, t €R and &, t »]tloy, t €R are pre-

cisely the same, An edditional comment sbout a multifunction »f this type

will be made in Example 3.3.
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The next example supports the correctness of our formulation .
of the definition of the derivative of & multifunction inasmuch as it

seems reasonable that Theorems 3.1, 3.2, and Corollary 3.1 of Example

3+3 ought to be true for any satisfactory theory of differentiation

for mnltifunctions,

Example 3,3, This final example is somewhat more complicated notation-
ally than the previous ones, In essence we shall consider multifunctions
which are cross-products of compact intervals of real numbers where the
endpoints of these intervals are differentiable real valued functions,
In order to investigate the w-differentiability of such multifunetions
some auxiliary results and notation are needed.

It [ad,b‘j], J=1,...,n are compact intervals in R, then
the product 311;1[ aj,b‘j ] is in @(R"). Addition and scalar multiplica-

tion on such sets is evidently described by the following relations:

!n

. ‘maad,awdl, azo

ME (ajgbal) = J=1 |
j=1

n
I ad,ed], a<o
J=1

2

Z H[ai, I - n[Z‘.ai,Zb'j]
i=l j=l Jel i

It will be useful to have some estimates on the Hausdorff i

distance between two sets which are n-fold products of compact inter-

vals, In the computations we use the Euclidean norm on Rn,




Lemma 3,1,

(a) d( H[a ’bJ] 11[3"’ '53]) 2 max [Ia‘j-"dl, |b‘j-8‘1|};
J=1

4=1,2,...,n

n n n
() ag¢ mrad, oy, 11,890 5 T (1) 4 00,
=1 J=1 J=1

L d J.l ~,
by A and A respPectively., Choose an arbitrary ¢ > dH(A,A); then by

Proof of (a). Denote the sets ?I[a‘j,bdl and J?[l[;",gj] in @(R")
-
(2.1) we have I [A] DA and JE[X] SA It & < ;‘j, we get from
JIA) DA the relation ez al-a = |F-a|. on the other ham, ir
aj > ;J, then J [A] Di implies that € 2 a -aY lﬁﬁ l Thus for
j=12...,n we have €2 |ad-a9|, Similar arguments show that ¢ 2
, |bj-g'jl, J =1,2,...,n, Consequently, the right hand side of (a) does

not exceed €, Since € > dH(A, K) was arbitrary this proves (a).

Proof of (b). Define for j = 1,2,...,n

and put X = I (xd,x)]. Evidently xDX and since ) s,
)
xg 2 b", J = 1,2,...,n, X also contains A. Define ¢ =

2 (| ‘j-a'jl + lb‘j -89 )} then since
J=1

n n
(a3« 8922 s PAEE S LR S I
3=1 =
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we have ACXC JE[K]. In a similar manner one can show that JetA] oA,
Hence ¢ 2 dH(A,K) , which proves (b).

Now let a;,bj be real-valued mappings defined on an open set
G CR" such that a‘j(x) s b‘j(x), x€G, J=12,...,n, Define the

multifunction 0: G »@(R°) by the relation

a(x) = T [ed(x),57(x)1.
J=1

Suppose i is w-differentisble at X, € G. Then since R° is finite

dimensional there exist Ai(xo)’ By(x,) ¢ B(R™) such that

m
(3.1) Br(x)(&x) = Ioxt <a(x), By(x) >

i=l

for all Ax = (&l, &2,... ,Axm) € R". Now let us assume further that

n 3 3 2} ~ ~d
(3.2) Ai( xo) = ,]El[ ai( xo): bi( xo) 1, Bi( xo) = ,']El[ ai( xo) ’ bi( xo) 1,

for i=12,,,.,m (This is always true if n = 1, since P(R) con-

sists only of compact intervals). By direct calculastion we obtain the

relation
A ~ m i N
(3.3) a(x +ax) - a(x) - iglm < A;(x,), By(x ) > |

n J n
. H(Jflta%,wll, ng[«g,agn | -

where




1L

“% = a‘j(xo-r&) + 21 Axizg.(xo) - Zi &iai(xo),
AxT20 OO0

a)‘jl= bj(xo+Ax) + Zi Axig‘z(xo) - Zi B bj(x ),
&XT20 O <0

axg=aj(x)+2 sie (x)- Y oAl (x),
AXiEO Axi<0

osgsb‘j(x)-l-z Axb(x)-z sl ),
atz0 a0
for j = 1,2,...,n, From Lemma 31( a) we determine that the right hand
. . P
side of (3.3) is greater than or equal to max (Jo-ad], |osi-ag]}
=1,2,...,n °%’c%%
and consequently this expression is o(ﬂAxﬁ since @ is w-differenti-

able at X Now if we observe that
3 3 T acdad(x .33
' "mgl = la (x°+Ax)-a (xo) -i=le (ai(xo)'ai(xo))l
lad-a] = |69 (x om0y -03(x ) - z s (od(x ) H(x I,

J = 1,2,...,n, then the following theorem will thereby be proveds

Theorem 3.1, Let G be an open subset of Rm. If the multifunction
n .

x -x) = II[aJ(x),bj(x)], x € G, is w-differentiable st x € G and
=1

ir n’(xo)(Ax) satisfies (3.1) and (3.2), then the mappings a‘j,bJ:

G 2R are differentiable at X5 J=212...,n and their differentials

are given by

m
ad-(xo)(m) = iglmi(ag(xo) - Zi(xc))




3 T adirdn y2d
B (xp)(ax) = T o (b (g)-by (%))
=1
for J = l,e,oo.’n and Ax = (NI,AXE,...,AXm)o
Happily, there is a converse to Theorem 3.1, the proof of

which uses the estimate in Lemma 3,1(b).

Theorenm 3.2, Let G be an open subset of Rm and let mappings

o),09: G 3R be given with ad sv9, 3 =1,2,...,n. If the mappings

ad,b'j, Jj=12...,n are differentiable at x € G, then the multi-
n

function x -0(x) = T [ad(x),b%(x)] 4s T-differentisble at x_ ¢ G,

and
(2°) @ (x ) (&) = Zox <n T e, )+i“—r< 0,800 )+ & i (x)1,
x
- J
I L04(x),p3(x)1 >
where the d?_(xo) , Bi(xo) can be arbitrary real numbers satisfying

od(x) s l(x)
af(xg) + 25x;) = 8l(x) + ),

i = 1’2,'.',m’ j = l,e,ooc,nl

Proof. Iet d'j(x ), B (x ) be chosen subject to (2°), and let F(x )

denote the right hand side of (1°), Then ﬂn(xoar&) - 8( xo)-F(x_, )|

is exactly the quantity on the left hand side of (3.3) if in (3.2) we take
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ai(xo) .- og(xo) + 2 T( o) 1 Bi(x ) + -—(x )

W(x) = alix), Hix) = 8dix),

i=1,2..m J=12,...,n Hence using (3.3), Lemma 3.1(b), and the
assumption that the functions a‘j,'b:j are differentiable at x = we

obtain

- A a J J 2 i aa‘j
fla( X +o¢) - x ) ~F(x _, &%) | = JE:I( | a (x +ox)-a(x ) -ii:le g;f( xo)l

|b‘j(x +4) bj(x ) - Z o a—{(

= offl ),

where x = (&b, %,..., 5 € B%

Let us note that in Theorem 3.2 one may choose aJ(x ) =

J
Bi(xo)-o ir a—i( )S—T(x), and if :ai o)>-——(x) one may
X

take a‘i(xo) = -gii(xo), B (x) —(x ), i=L4L2,...,m J =

L,2,...,n, In particular, then, for n =1 we have

fr(x (o) = K9t < [%iI(xo), :—:T(xo)],o >
3

» ) <0, [- =x(x,), - gb—{(xo)] >,
- ox

the sum E(*) being taken over those i for which B(b-a)(xo)/Bxi 20,

and the sum Z,(') being taken over the complementary set of indices 1,
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Thus, if %a—f(xo) PRl x,) for 1 =1,2,...,m then ve have that
X ox
(x) = [a(x),b(x)] is conically differentiable at X,

As an immediate corollary to Theorems 3.1, 3.2 we haves

Corollary 3.1, Let G be an open subset of R, and let mappings

a,bs G 2R be given satisfying a(x) & b(x), x € G, Then the multi-
function x = 8(x) = [a(x),b(x)] is w-differentieble at x, €6
if and only if a and b are differentiable at Xy € G,

Let us return to the discussion in Example 3.2, and consider

the multifunction t - Q(t) = to, where o, = [-1, 1]. We have shown

1
that 0 is T-differentiable except at t = 0, and 5'(t°)(At) =

& <0,,0> for t >0, Q'(t )(4t) = & <0,-0; > for t <O,

¥y
Note that 0(t) = [a(t),b(t)], where a(t) = -|t], b(t) = |t|. Hence
Corollery 3.1 gives a complete analysis of the w-differentiability

properties of this multifunetion,
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4, {Other Definitions fof ﬁefivatives of Multifunctions,

We now compare m-differentiability of multifunctions with
two other types of differentiability discussed by Hukuhara [H-4]
eud by Bridgland [B-4], If F 1is a reflexive Banach space, aud

A,B € G(F), then the Hukuhara difference A 5 B (if it exists)

is defined to be the set C ¢ @ (F) such that C+B = A [cf, H-4,
pg. 210]. It is to be noted that in general A E B # A+(-1)B = A-B,

and that A D

B exists only if some translate of B 1s contained

in A. Actually our remarks in this section are for F = R" since
that 1g the context in which Hukuhara's and Bfidgland's results were
developed, However, the notion of the difference A B3 1s usetw

in Section 5 so we gave above a more general definition than we need
at the present time. In the remainder of this section we take F = R®,

Hukuhara [H-4] gave the following definition,

Definition, let I be an interval of real numbers, Let a multifunction

s T+ B(R") be given. 0 is Hukuhara differentisble at t_ €I if

there exists D, 0(t,) € P(R") such that the limits

At +at) 2 a(s )

b,

-0 s +0* &

and

- a(t,) 2 at_-at)
8 o -0 o

both exist and are equal to Dhn(to).




19

Of course, implicit in the definition of D Q(t)) 1is the
existence of the differences H(t_s4%) T 8(t,) and A(t,) Page o-0t)
for all A&t >0 sufficiently small, Using the difference gquotient

in (4.2) is not equivalent to using the difference quotient in

n(tomt) b a( to)

2
& -0 &k

(h.27)

contrary to the situation for ordinary functions from I into a
topological vector space, In general the existence of A h B, A,B ¢
B(R®) implies nothing about the existence of B D A, Thus we raise
the question of which of the limits (4.2) or (4,2') is lpreferable for
defining ti:e "left hand derivative of Q at to"? In [H-4] Hukuhara
defines the integral of a continuous multifunction F: [a,b] - Y(R")
and shows that th:F(s)ds = F(t). One must use (4,2) rather than
(k.,2v), 1f this type of result is to be true as the following simple
example showss Let A ¢ #(R") and define F(t) = A, t € R; then for
any t 20 we have sz(s)ds = tA, Taking 0O(t) = tA, t 2 0 we see
that the difference quotient in (4,2') does not exist.
Differentiability in the sense of Hukuhura implies conical
(w-) differentizbility, Before proving this let us observe that if

AR B exists for some A,B € B(R%), then

(4.3) <A,0>-<B,0>-<Al-’B,o >

Lemma k.1, If a multifunction 0: I - B(R") is Hukuhara differenti-




able at t €I with derivative Dhn(to) , then 0 is Tm-differentiable

vith ﬁ'(to)(ac) = & <DA(t ),0 > &t €R,

Proof. Using (4.3) one obtains for & >0,

“ﬁ( t+at) - 8(t)

= - <D,A(t.),0 > | =

a(t +at) B ace)
(e, D,A(t)),

and céneequently both sides of the equality converge to 0 as At 0%,

Similarly for 4t <O we have (with k = -At),

Bt +at) - B(t,)
)

- <D(t.),0 > | =

f(t,) - fi(s oK)

I 7 - <Df(t,),0 > | =

a(t,) 2 a(t_-x)
dH( X P Dhﬁ( to) ))

and the last term converges to 0 as k +0%, Hence the lemms is
proved,
The following result is interesting and can be used to show

that the converse of lemma 4,1 is false,

Proposition 4,1, If the multifunction Qs I = _@(Rn) is Hukuhara

differentiable on I, then the real valued function t - diam(n(t)),

t €I 1is nondecreasing on I,
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Proof. If 2 1s Hukuhara differentiable at a polnt t € I, then there
isa B(t)) >0 such that 8(t +4t) 9n(t°) agdv n(to)En(to-m;) are
defined for O < &% < &t,). Since A2 B, AB ¢ B(K) 1is defined only
if some translate of B 1s contained in A, then A B3 exists only

if diem(A) # diam(B). Let t,,t, € I be fixed with t, <t,. Then

i
for each T € [t,,t;] there is a 8(t) >0 such that diem((s)) s
diam(0(1)) for s € [7-8(7),T] and diam(f(s)) z diam(Q(T1)) for

s € [7,7+%(7)]. Thé collection
(T07 € [t,t5), I = (7-8(7),748(7)))

forms an open covering of (tl, t2]. Choogse a finite subcover
Ifl’...’IfN with 7, <7, .5 then there results diam(n(t,)) s
diam(f(7,)) end dia:n(n(‘ru))  diam(0(t,)). There will be no loss in
geuerality to assume I NI, 4¢ 4=1,,,,,F1 Thus for each

T i+l

i=1,...,8-1 there exists ar s, ¢ ITi n I,l,:“1 with 1, <8, <7,

and hence diam(Q( ‘ri)) § diam(n(s,)) = diam(n(':i+l)). Therefore we

have diam(n(tl)) § diam(Q(t,)), which proves the proposition,

Remark, Note that the existence of the limits in (4.1) and (4.2) was
not used in the proof of Proposition L,1. In fact instead of the hy-
pothesis that 0 4is Hukuhara differentiable on I one could substitute
the assumption that for each t € I the differences {(t+4t) b 8(t)

and 0(t) ® 0(t-4t) both exist for all sufficiently small At > 0.




It should also be pointed out that the fact that a multifunc-
tion Q1 I - @(R®) is Hukuhara differentiable on I and diam(f(t)) >0
for t € I need not imply O is monotone with respect to set inclu-
sion, For ezarple, if 0(t) = [t,2t], 0 <t <1, then DO(t) =[1,2],
0<t<l mawtnﬁﬂ¢nug mdnug¢nhﬁ for any t,,t,,
0<t, <ty <L |

One can show that if 0s I —» @(R") 1is conically differentiable
on I, and if the Hukuhara differences o(t+A) l-’Sl('l:) and Q(t) b
Q(t-At) exist for each t € I provided & >0 1s sufficiently small,
then Q is Hukuhsra differentiable, Moreover, if Q'(t)(At) =
& <a'(t),0>, t €I, & eR, then DQA(t) =Q'(t). However, in general
0: I «+@(R") T-differentisble on I does not imply 0 is Hukuhara
differentiable on I as the following example shows: Let o, be the
closed unit ball in Rn, and consider the multifunction t -Q(t), |

t € (0,2r) where,
9(t) = (2 + sin t)o .

This function is w-differentisble on (0,2r) and @*(t)(at) =
(&t)(cos t) <0,,0 >, t € (0,27), & € R. - In view of Proposition 4,1
9 is not Hukuhara differentiable on (0,2r) since diam(Q(t)) =
2(2 + sin t) is not non-decreasing on (0,2r).

A

If sC BA, where A and B are sets and B~ denotes the

set of all functions from A into B, then we use S[a] to designate
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the set (p(a){o €8}, If I «(0,7] is a compact interval of real
nunbers, then c(I,Rn), or simply C(I), denotes the Banach space of
all continuous functions from I into Rn with the norm of uniform

convergence on I. In [B-4] Bridgland gave the following definition.

Definition. Let S be a nonempty compact subset of C(I). Then §

is said to be Huygens differentiable at to €I if there exists

(Ds)(t,) € @(R") such that

(b3 um ZE Gy(STt 8], St ] + A(DS)(t ) = O
and

1
(4.5) im | 3 GlSIt) SUE-a] + A(DS)(t)) = o.

(D8)(to), if it exists, is called the Huygens derivative of S at t o
Huygens differentiability of compact sets in ¢(I) 1is also
related to the conical differentiability of multifunctions in a manner

shown by the following remarks.

lemma 4,2, If S is a nonempty compact subset of C(I) which is Huygens

differentiable on I with Huygens derivative (DS)(t) for t € I, and

if @ is the multifunction defined by 0(t) = co(S[t]), t € I, then
0: I - P(R") is conically differentiable on I and Q'(t)(at) =

& < (DS)(t),0 >, t €I, & €R. |




24

Proof, Since S is a compact subset of C(I), it follows that s[t]
is a compact subset of R® for each t € I, Hence co(S[t]) € Q(Rn),
t € I. Now (DS)(t) e&R", t eI, and so < (DS)(t),0 >e &A(R"),

t € I, Thus for At >0 we have by (2.2),

"ﬁ(t-l-&)Ab~ ﬁ(t) - < (DS)(t),O s " .
zl:ti d (eo(S[t+at]), co(S{t]) + AL(DS)(t)) =

%EdH(co(s[t-rAt]), co(S[t] + 4t(DS)(t)))

%t. a(S[t+at], S[t] + A6(DS)(t)) »0 as &t »0%,

Similarly, for & <0 and k = -& >0 we have

(Alera) - 88 _ o (ng)(1),0 > | 3
£ a,(s{t1, S[t-k] + K(DS)(t)) »0 as k-0,

Actually Bridgland's definition of differentiability is es-
sentially equivalent to conical dif“erentiability. Lemma 4.2 gives the
sense in which .e mean that Huygens differentiability implies conical
differenﬁiability. Conversely if Q: I = Q(Rn) is conically dif-
ferentiable on I, then Theorem 5.1 in Sectic;n 5 says that there is a
co;npact, convex S C C(I) such that S[t] = Q(t), t € I. Thus if

Qr(t)(at) = & <0'(t),05 teI, At € R, then (DS)(t) = Q'(t), t € I.




Bridgland uses the Huygens derivétive mainly to prove a
theorem concerning the Huygensderivetive of the indefinite integral of
& multifunction, i.e., if P4 I - #R®) is measurable and integrably
bounded, and if one defines S (F) = (92 I -»R'|9(0) =0, § integrable
on I, and ®(t) € F(t) a.e. on I}, then SI(F) is a compact, convex
subset of C(I) and (DSI(F))(t) = F(t) a.,e, on I, Thus in this
sitvation the multifunction t - Q(t) = (SI(F))[t] is conically dif-
ferentiable almost everywhere on I, and Gr(t)(a) = & < F(t),0 >
for almost every t € I and every At € R. Noting that SI(F)[t] =
f#b,t]F(s)ds where the integral on the rignt hand side of the equality
is Aumann's integral [A-1], one sees the connections between the re-

sults given in Section 5 (specifically Lemma 5.6 and Theorem 5.3) and

those given by Bridgland [B-4], Hermes [H-2], and Hukuhara [H-4],




5. Applications.

In this final section we give some miscellaneous results and

applications of the differential caleculus for multifunctions,

Lemma 5.1, Let P and G be reflexive Banach spaces, Let U: F =G
be a continuous linear mapping which maps elements of Z(F) into
closed sets in G. Then the induced mapping Y: ®(F) — B(G) defined

by O < C,D > < U(C),U(D) > is a continuous linear mapping,

Proof. It is easy to verify that U is linear, Let <C,,D > be a
null sequence in B(F). Then given € > 0 there is a positive integer
n, such that nzn implies Jx[cn] DD, and Jx[Dn] DC, where

» = €/(1+|U]]). The linearity of U now reveals that Ju(c,)l D u(n,)
and JG[U(Dn)] D U(Cn) whenever n 2 n . This shows that U <C 9D >)

is a null sequence, thereby proving ﬁ is continuous,

Corollary 5.1, Let F and G be reflexive Banach spaces. lLet

Us F 5 G be a continuous linear mapping which maps elemeﬁts of P(F)
into closed sets in G. Let E be a normed linear space, let W be
an open subset of E and let Qs W - @(F) be m-differentiable,
Then the composite function ®: x -»U(Q(x)), x € W is also w-dif-

ferentiable,

Proof. It suffices to show that the mapping o x —oa(x) , X €W, is
differentiable, Observe that ¥ = U © § where ?J is the induced

linear mapping defined in Lemmsa 5,1. Whence 3: W BG) is aif-

ferentiable and &' = f] o ?2'.




Remark, If E if finite dimensional with basis §,,8,,...,%,, then
Corollary 5.1 has the following interpretation. Given x €W, ﬁ-(x)(;i) =

<C > 1i=22,,,,n and =2 Axiﬁi the corollary implies

ix? Dix

O (x)(x) =2 &i < U(cix),U(Di}'t) >,

Lemmal 5.2, Let F be a uniformly convex Banach space {W-1, pe. 1081.
Let T be a first countable topological space, Let Q: T - @B(F) be
a continuous multifunction, Then there is a unique function f: T -»F

satisfying

(5.1) leCe)l = inellull]u € 0(t)}, £(t) e a(t), t €1,

and f is continuous.

Proof. The Milmen-Pettis theorem {W-1, pg. 109] says F is reflexive,
Thus O(t) is weakly compact for each t € T, The existence and unique-
ness of the function f: T - F satisfying (5.1) follows from Theorem 2
of [W-1, pg, 110]. Thus we need only verify that f is continuous.

Let tn be a sequence in T converging to to. Then by the continuity
of 2 the sequence n(tn) converges to n(to). Given € >0 pick

an integer 2, such that n = n, implies

ITh:l.s lemma is still true if the Q(t), t € T are only assumed to be
nonempty, closed, convex subsets of F, if it is understood that the col-

lection of nonempty, closed subsets of F has the uniform topology deter-

mined by the norm on F [M-1, Def. 1.6, pg. 153].
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(5.2) Jla(t))l Dat)) and Jla(t)] Da(t).

Thus for n 2 n  there exis: g(t,) € n(ta) and g*(t,) € a(t,, such
that [[£(t )-g(t n)Il £ € and Hf(ta)-s*(tn)" S e, Consequently we have
that (s ) s lle(t )l = edl£(t )l ana Je(e )l s Nlex(e )l s ezt )l
for nzn,, Combining these inequalities there results |[#(t )|l -

||f(t°)||| $¢ for nzn, acd vhence m|f(t )] = |£(t)

|. 1If

f(tnk) is any subsequence of f(tn) which converges weakly to u, €F,
then a sequence , o,, of convex linear combinations of the f£( tnk)
converge strongly to ug [D-3, Cor. 14, pg. 422]. Observe that for
any €>0, J e[Q(to)] is closed and convex., Given € >0 the relation
k€9 e[S'z( t o)]

for all sufficiently large k, and hence u, €J e[n(to)], Since € >0

(5.2) is true for all sufficiently large n, Thus o

was arbitrary, it follows that u, € Q(t.), and this together with the
weak lower semicontinuity of the norm [W-1, pg. 212] imply that |
1im inf]] f(tnk)ﬂ e |l f(to)l] 2 |lu S 2 1 to)ll. Moreover, in view of the
fact that the element in Q(to) of minimal norm is unique we have
£(t,) = u,. Thus we have shown that if any subsequence of f(t)
converges weakly to u_, then u, = f(t,). The sequence £(t)) is
bounded because || f(tn)ll - f(to)ll , and therefore relatively weakly
compact; this togéther with the preceding sentence is enough to show

F£(tn)-£(t )| +0 in view of [D-3, Ex, 28, pe. Th].

The next lemma is similar to a result obtained by Filippov

in the finite dimensional case [F-1, pg. 614].



Lemma 5.3. Let F be a Hilbert space, Let A,B be given elements
of @(F). Let D denote the Hausdorff distance dH(A,B). Let a

and b be the unique elements in A and B respectively satisfying
ol = min(lldf|x € A}, bl = min(]x]|x € B),
and let B = max(||all,||tll). Then there results

(5.3) [all - lofi] s p,

and
(5.k) Ja-b] s I02 + tep .

Proof. From the definition of d4(A,B) = D we have that for every posi-

tive integer n
JD+1/n[A] OB and JD+1/n[B] DA,

Consequently there is an a, € A such thet Ilb-an" 5D+ 1/n and there
isa b € B such that la-b | =D + 1/n. oOne-then cbtains [|bf s
Ilbnll £D+1/n+|lal and |lg] = ]Ian: D+ 1/n + |[b]l, which together yield

{llall-Jblll =D + 1/n. Since n 1s an arbitrary positive integer we have

proved (5.5):’ In order to prove (5.4) we consider two cases: (1)

28 <D =and (ii) 28 2 D, 1In case (i), we have [la-b]] s [laf+||b] =

2p<Ds JD2+h5n

. Thus we turn our attention to case (ii). Using the
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- [o-a.|
seme a and b, as above ve have that [l=5~ - "'2"" = —T" s D/2 + 1/2n,
and this implies that |af s “-—2—" s D/2 + 1/2n + "“b |. Hence we have
that [la+b|| 2 2Jla]] - D - 1/ for every positive integer n, and we conclude
that [la+b]] 2 2]|all-D. In a similar manner one can establish that
lla+b]] 2 2||vf|-D, and hence [la+b]| & 28-D 2 0, Therefore we have ||a+‘b||2 z
‘052-4&D+D2. From the parallelogram law we find that

la-bl? « 2l + 2v)? - Jlesn]® s 2al® + 2b)® - 162 + 4eD - D

' 2 2
s 2la)® + 2Jv]° - Wjafjfib] +ueD - P

= 2(lal-Iu)? + gD -

s D2+h5D

and this completes the proof of the lemma.

Theorem 5.1, Let T be a locally compact Hausdorff space, and let F
be a Hilbert space, Let CW(T’ F) denote the family of al’ weakly con-
tinuous functions from T into F, and let C,(T,F) have the topology
of uniform convergence on the compact subsets of T ([B-2, Pt. 2,

pg. 278), v;here F is given the weak topology (i.e., the a(F,F*)-
topology). If Qs T —=%(F) 4is a continuous multifunction, where (F)
is (as usual) metrized with the Hausdorff metric determined by the norm
on F, then there is a compact, convex set S C C{T,F) such that

8{t) = 8(t) for every t € T, Moreover, the set 8 can be chosen

so that it is strongly equicontinuous.
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Proof. The space cw(T,F) is actually a topological vector space if
addition and scalar multiplication are defined in the usual way., For
each x € F there is a uniquely defined function fx: T »F deter-

mined by the relation
llx-fx(t)ﬂ = min(||x-ul| u € a(t)}, r (t) ea(t), t e,

The family [fxlx € F} is strongly equicontinuous at each t_ €T,
Let U(t °) be a compact neighborhood of to' Then due to the continulty
of 0 thereisa k>0 such that [x| 8, x €q(t), t e Ut).

Tous [[£,(t)] $u for xeF, te U(t,). From Lemma 5.3 we infer that

(5.5) e (6)-2 (e & \gi% WDy, b e Ue)

where dH(n(t),n(to)) = dH(Q(t)-x, ﬂ(to)-x) is denoted by Dtto‘ Con-
sequently the relation (5.5) implies that the set §'s {fxlx € F} is
strongly equicontinuous at each t,eT. It is clear that S'[+] =
A(t) for each t € T. We define S to be the closure in cW(T’F)

of the convex hull of 8', Certainly co(8') is strongly equicon-
tinuous at each t o € T, since S' has this property. Hence given
€>0 and t €T there is a compact neighborhood V(t_o) of t,
such that ¢ € V(t)) implies Ilf(t)-f(to)ﬂ s ¢ for all f € co(S').

On the other hand if (fa,a € A} is a net in co(8') converging to




€ in C.(T,F), then the weak lower semicontinuity of the norm on F,
I, [w-1, pg. 212) and the inequalities, "fa(t)-fa(to)" $¢ ac¢Ah
t € V(t ), imply that "g(t)-g(to)" e for tevV(t). Hence 8 is
strongly equicontinuous at each ¢ o € T, and this is more than enough
to ensure that §$ is equicontinuous at each t €T, when 8 is con-
sidered as a subset of C.(T,F). Thus Ascoli's theorem [B-2, Pt. 2,
P8. 290] can now be applied to give that S is a compact, convex sub-

set of cw('r,F). Evidently S[t) = 0(t) for each t € T,

Remark, If in the above theorem one takes F = R® and T = I, I an
interval in R, then CW(T,F) is Just C(I,Rn) with the usual topology
of uniform convergence on compact subsets of I, For s I -*.Q(Rn)
c¢ontinuous, the theorem then guarantees the existence of a compact
convex S C C(I,R") such that S[t] = O(t) for each t ¢ I.

Given a m-differentiable multifunction x -Q(x), x € E,
1t 1s of interest to know if one can determine a differentiable func-
tion (selection) x - f{x), x € E, such that f(x) € O(x), for each
x € E. We have not achieved a really satisfactory answer for this at
this time, In certain finite dimensional situations one can show that
the centroid of 8(x), x € E 1is such a selection, It is only natural
to ask under what conditions the minimal norm eglection in (5.1) is
differentiable, A simple example shows that even under very nice cir-
cumstances the selection in (5.1) is not differentiable, Define '

fis R > @ (R) by the relation 0(t) = ¢t + [0,1], t € R+ Then 0 is

Hukuhara differentiable (2 fortiori conically differentiable and 7-

e ———— T \ N
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differentiable) at each t € R, However, the selection defined in (5.1)
is f(t) =t for t 20, £f{t) =0, -1 5t <0, and £(t) = t+1,
t < -1, which is not differentiable at O and -1, The next theorem

provides some partial information on this problem,

Theorem 5,2, Let F be a uniformly convex Banach space, and let

9t R = Y(F) bve a continuous multifunction, Let f be a continuous
selection, f3 R +F, £(t) ¢ Q(t), for each ¢t €R, Let t €R bea
point at which the following conditions are satisfied 1°) 0§ is conically
differentiable at t, 2%) There is & 5 >0 such that for each t sat-
iefying |t-t | <8 either 8(t)  0(t) exists and £(t)-f(t ) e

a(t) T a(ty) or a(t) T a(t) extstsana £t )-f(t) € a(t) 2 a(t).

Then f is differsrtisble at t, and if 8'(1 () = & <A,0 >,

o
then £1(t )(45) € %A,

Remark, 1In the example immediately preceding this thecrem one sees that
the f,0 satisfy all the hypotheses of this theorem except 2°) and this
fails to be fulfilled only on [-1,0]. However, in this example £ {is
a continuous selection which is differentiable on (-1,0) even though
2%) of Theorem 5.2 is not satisfied in (-1,0), This showe that in
general condition 2°) of Theorem 5.2 is not necessary in order that a

continuous selection be differentisble,

Proof of Theorem 5.2. In view of Lemma 5,2, the relation, |l£(t)-

f(,to)-(t-to)z(t)ﬂ - minﬂlf(t)-f(to)-(t-to):dnx € A), z(t) €A, t €R,

defines a unique continuous function 2z: R -+ F, We firast establish that
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(5.6) HOR A GO I ORI CRECRICRN
for |t-t;| = 8. In order to do this observe thaév.

(5.7 18(e)-Rs )-8 (e )(t-t )l = a (alt),a(t )+(t-t )a), t > ¢,

~ -A -A. - - -
(5.7 lage)-as )0 (£ ) (t-t )]l = a(a(t)+(t -t)A,a(t)), t <t
We only verify (5.6) for t >t ; the proof for t <t  1is similar.
If 6> t-t) >0, then 20) implies that either f(t)-f(t)) € a(t) ° a(t )

or £t )-f(t) € a(t) 2 a(t). If £(t)-£(t)) € a(t) T a(t), then one

obtains (5.6) immediately from (5.7) and the identity,
a(0(8),0(t ) (-t JA) = ay(a(t) 2 a(t,), (t-¢ )A).

On the other hand, if f(to)-f{t) € Q(to) h a(t), then (5.6) results

from (5.7) and the identity,

a(0(8),0(t) #(t-t 1) = 4(0,8(t.) ? A(£)+(t-t )A).

We also have the inequality,

e(e)-£(t)-(t-t ) 2(e ) = [l2(2)-2(t ) -(t-t ) z(t)]+] t-t | 1 z(t)-2(t ),
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and this combined with (5.6), hypothesis 1°), and the continuity of =z

st t yield the conclusion that nf(t)-f(to)-(t-to)z(to)n = o(lt-tol).

Hence f 1is differentiable at t_ and f£'(t )(4t) € A%A, & ¢ R.

As was mentioned in Section 2 the completeness of the reflexive
normed linear space F does not imply that the corresponding normed linear
space B(F) is complete, and this presents a minor difficulty when
discussing the integration of multifunctions [D-1]. Let I = [a,b]
be a compact interval of real numbers and let m denote Lebesgue
measure on I. We want to discuss briefly some applications of the
differential calculus for multifunctions to integrals of multifunctions,
Qs I —» J(F), where F is a reflexive Banach space. The integral as
defined by Debreu in [D-1] is essentially what will be used here,
ﬁowgver, in [D-1] Debreu is assuming that the multifunctions are com-
pact valued while requiring F to be only a Banach space, The main
results of section 6 of Debreu's paper are needed here, and, indeed
those results are true for the situation which is discussed here. 1In
‘fact Debreu's proofs can be used virtually without change, We indicate
below how the results we need can be cbtained in a little more direct
manner, First we shall consider 9B(F) to be a subspace of its com-
pletion i(F), which is a Banach space, Thus we say s I - o";iF)
is integrable (Lebesgue measure m on I is understood) if .

I -+ @(F) is integrable in the sense of [D-3, Chapter III], and

the integral of Q is denoted by IIﬁ(t)dt or [:ﬁ(t)at.

lemma 5.4. Let F be a reflexive Banach space, and let Q: I - é"(F)

be integrable, Then !Iﬁ(t)dt belongs to the convex cone m( I);.-i??( F) =,§'(F).
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Proof. Az we mentioned in Section 2, the completeness of F implies
@(F) is complete, Thus 9‘:(1“) is a closed convex cone in §(F), and

the lemma follows from the conv:xity theorem [B-3, pg. 203].

Lemma 5.5. lLet F be a reflexive Banach space, and let Qs I -P(F)
be integrable., Then there is a sequence of measurable simple functions
8¢ I+ 4(F) such that § (t) -8(t) a.e. cn I and [S ()] =

I8(t)]l for every t e I. Moreover [ Illgn(t)-ﬁ(t)ﬂdt >0 as n - w,

Proof, The first part is an immediate consequence of Corollary 1 (and
its proof) appearing in [B-3, pg. 178]. The last result follows from
the preceding one and the Lebesgue dominated convergenée theorem (see
{B-3, pg. 137] or [D-3, pg. 151]).

In view of the lemmas it makes sense to define IIQ(t)dt

to be the A ¢ @(F) such that fIﬁdt = < A,0 > The integral
[ 1ﬂ(‘l:)d‘l; is connected to Aumann's integral [A-1], fﬁn(t)dt =

{(f.£(t)at]f: 1 - F, £(t) € Q(t), ¥t € I, £ integrable}, by the fol-
I 2 2 » 2

lowing lemma,

Lemma 5,6, If F is a reflexive Banach space, and if Qs I - @(F)

is integrable, then fIn(t)dt = [#Iﬂ(t)dt..

Proof, Debreu's proof of 6.5 in [D-1] can be applied essentially

without change.

Theorem 5.3, If F is a reflexive Banach space, and if Q: I - @(F)

is integrable, then the function t —F(t) = [:0(s)ds, t € I is conically
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differentisble almost everywhere on I, Moreover, if F(t) = f;ﬁ(s)ds,

then P (t)(at) = atfi(t ) for almost every t, € I.

Remark, Finite dimensional versions of this theorem have been given by

Bridgland [B-4], Hermes [K-2], and Hukuhara [H-4].

Proof of Theorem 5.3. The result can now be easily obtained from

Theorem 8 in [D-3,pg. 217].

Theorem 5.4, Let E be a normed linear space, and let F be a reflexive

Banach space. Let Q! I X E - @(F) be a multifunction such that: 19)
For each fixed x € E, the multifunction t -Q(t,x), t € I 1is inte-
grable, 20) There is a set N CI, m(N) = 0 such that for each fixed

t € I\N the mapping x - Q(t,x) is m-differentiable, and 3°) There is
A(t,x
X

x € E, and t € I\N, Then the function x - G(x) = fIn(t, x)dt is m-

A 3]
differentiable and G'(x )(&x) = / I St x)(&x)at, for each x

an integrable function @: I ~»R such thet | )ll £ ¢(t) for each

o,&eE.

Proof., We first verify that for fixed x,x o € E, the mapping t -
g—;(t,xo)(x-xo) is integrable., The assumption that for fixed t € I\N,
x - Q(t,x) is w-differentisble implies that x —»ﬁ(t,x) is Gateaux
differentiable, i.e,,

8, x +7 (x-x ))-0(%, x) 3%

(5.8) m 2 = S, x ) (x-x ), t € I,

for any sequence T £o0, T, »0 as n -, Thus (5.8) and 1°), 20), 30)

o)
imply tha‘.c. for fixed x,x € E, & -9&(1:, xo)(x-xo) is integrable., From
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the mean value theorem [D-2, pg. 156] one obtains that

(5.9)  18(t,%) - B(t,x) - S t,x ) (xx )] €

Hx-x |l supﬂl?;(t,ﬁ)'%%(t,xo)ﬂlﬁ € colx,x}} = 2x-x lo(t), t € I\,

We also have that if X, is any sequence in E such that X, X with

~ A &
x, # x_, then fla(t, x)-0(t,x ) - (%, xo)(xn-xo)u Jlx n-x@" is a null

sequence for t € I\N, From the inequality,

t, x)( x-xo) atf| s

o8

(5.10) G(x)-G(x ) -/
/ "ﬁ(t x)-a(.. ¥ gh:(t x Y(x-x )|ldat
I 4 Y x* 770 o ’
inequality (5.9), and the Lebesgue dominated convergence theorem [D-3,
n n 38
pg. 151], we infer that fI[HQ(t,xn) -(t,x_)- E#t,xo)(xn-xo)" /Hxn-xoﬂ]dt
converges to O as n - o, Therefore the right hand side of inequality

(5.10) is o("x-xoﬂ) , and the conclusions of the theorem follow.

We turn now to a few more examples.

Example 5.1, This example comes from linear control theory. Consider

the control system,
(5.11) % = A(t)x + B(t)u,

where the n X n matrix function, t - A(t), t € [0,T], and the n X m

matrix function, t - B(t), t € [0,T] are bounded and measurable on
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{o,T]. 1If us [O,T] -R® is integrable, then there corresponds a unique
sbsolutely continuous function (response) x(s,u): [0,T] >R° satisfying

(5.11) a.,e, on [0,T! and the initial condition
x(0,u) = Xy

Moreover, there is an absolutely continuous fundamental matrix solution
of X = A(t)X, X(0) = I = n X n identity matrix, and the variation of

parameters formula gives
(5.12) x(t,u) = X(t)[x, + [oX (£)B(E)u(t)at].

Let aé,b'], J=22,...,m be functions mapping [O,T] X rP
into R™ and such that a’ s b, j = 1,2,...,m. Then let 9: [0,T] X

R’ 5> @(F") be the multifunction defined by

a(t,)) = J%l[a'j(t,x),b"(t,x)], (t,2) € [0,T] x RP,

Let C([0,T],R") %e the Banach space of all continuous func-
tions from [0,T] into Rn with the norm of uniform convergence on
{0,T]. In optimal control problems.the admissible integrable controls
us [0,T] > R" are often constrained by side conditions of the form
u(t) € a(t,r), t € [0,T] or u(t) e Q(t,x(t,u)) (with p=n), t e
[0,T], or, indeed, by combinations of these two types of side condi-

tions, It is of some interest then to consider the multifunction

F: [0,7] x B® 2@(R") defined formally by the relation,




(5.13) B(*,%) = X(8)[x, + [ N(E)B(E)ACE, M)ae),

where the inte,cal (if it exists) is understood in Debreu's sense des-
cribed above, and 1l'":ewise with p = n we consider the induced multi-
function Fs: [0,4] X C([0,T],R") - @(R") defined formally by the

relation,
(5.24) R(t,x) = X()[x, + JoX H(E)B(E)A(E, x(£))ae].

We shall show that under suitable conditions %(t, A) (resp. g—z-(t,x))
exist a,e, on [0,T] for each fixed X\ € RP (resp. for each fixed
oF

x € C([0,T,E), p = n), and $K(t,) (resp. &

t,x)) exist for all

t € [0,7] and all A ¢ R’ (resp. all x e C([0,T],K"), p = n). We

giv: the assumptions only for the case of the multifunction (t,x) = F(t,x),
(t,x) € [0,7] x C([0,T],R") since the hypotheses needed to obtain the
desired differentiability result for the multifunction in (5.13) are
entirely similar, Taking p = n we require 1°) For each fixed A € R®

the functions t aa‘j(t,x), t —»bj(t,k),» t € [0,T] are integrable;

2°) There is an N C [0,T], m(N) = 0 such that for each fixed t € [0, TI\N,
A > ad(t,0), A »vI(t,0), A e R §=1,2...,n are differentiable,

and 30) There is an integrable function ¥: [0,T] » R such that

l%t,x)l, @%{aﬁl] s ¥(t), t € [0,T]\N, A € R®, Hence in view of
Example 3,3, Qs [0,T] X R - @R®) satisfies conditions 1°), 2°), and

30) of Theorem 5.4. Now consider the multifunction f,(t,x) = 0(t,x(t)),
(t,x) € [0,T] X C([O,T],Rn). One readily verifies that f, also satis-

fies the conditions 10), 2°), and 3°) of Theorem 5.4, Let us define
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0 [0,7] X " » @(X) by 0(t,)) = X"1(t)B(t)a(t,)). Thus if we in-

voke Corollary 5.1 and Theorem 5.4 we obtain

(5.15) S, 0080 = x0) % Bee, x1))(a(e)et, % € o(ro,1,8),

t € [o,T].

By Theorem 5.3 we have that ‘for each fixed x € C([O,T],Rn) the multi-
function t -»fgcb(g,x(g))dﬁ, t € [0,T] is w-differentiable a.e. on
[0,T], and the T-derivative can be calculated with the formula in
.Theorem 5.3, If X(t) = (xij(t)) is such that each of the functions

t -bxij(t), t e [o,T], 1,3 = 1,2,...,n. changes signs only on a subset

of [0,T] of measure zero, then the multifunction t -» X(t) f;¢(§,x(§))d§,
t €[0,T] 1is also 7-differentiable a,e, on [0,T]. The partial deriva-
tive %g(t,x)b can easily be calculated, but the formula is tedious
because of the complications discussed in Example 3.2, and we therefore

omit the expression for g%(t, x). The condition that each x change

ij

signs only on a subset of [0,T] of measure zero can be met if, for
example, t +A(t), t € [0,T] 4is analytic, since in this case, t - X(t),

t € [0,T] is analytic,

Example 5.2, Consider the differential inequality,
(5.16) I%-g(t,x)]| = £(t,x),

where g RXR —R" and f: RxBR" 2R, £ 2 0. Clearly, solving

(5.16) is equivalent to solving the contingent equation

L R ]




(5.16') X(t) e F(t,x(t))

where F(t,x) = (g(t,x)) + f(t,x)cn, where o 1s the closed unit
ball in Rn. Thue according to Examples 3,1 and 3.2 the multifunc-
tion F arising in the contingent equation (5.16') is m-differentiable
(actually conically differentiable) on R X R® 1f both g and f

are differentiable on R X Rn.

Example 5.3. Let a,b! R 2R be continuous nonnegative functions.

Consider the scalar differential inequality

(5.17) 0 = X(t) s a(t) + b(t)x(t), t= t,

x(t o *® x, 20.
Thus (5.17) is equivalent to the contingent equation .

(5.17') (t) e F(t,x(t)), t2 ty

x(t‘;) =x %0
where F(t,x) = [0,a(t)+b(t)x]), t € R, x 2 0, We use t -»x(t,to,xo),
t 2 ¢t to denote a solution of (5.17) or (5.17'). From Gronwall's

inequality we have that

tet

(5.18) x & x(t,to,xo) s k(t,t

o’xo)’ o % %0
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where
(5.18") k(t,t ,x,) = x°+f: a(s)ds + f: ds[(xo-&-f: a(g)dg)b(s)]exp(f:b(g)dﬁ),
o ° °

for tzt, x %0, let tb(t,to,xo) Ely= x(t,to,xo)lt -bx(t,to,xo)

satisfies (5.17")), t 2 ¢ x, % 0. From (5.18) and (5.18') we have

o
that ¢(t,‘.h°,x°) C.[xo, k(t,to,xo) ], t® ‘to, X, 2 0. Conversely one can
establish that x and k(t,t,x,) belong to o(t,t,x) for t2t,
X, 2 0, The convexity of &(t,t o xo) then implies the reverse inclu-

sion O(t,t ,x) D [x,k(t,t,x)], t&t, x %0. Thus o(t,t ,x,) =

[xo,k(t,to,xo)], tzt, x 20, From the representation in (5.18")

g (t,t5%,) =2 k(t,t,x ), t 2 ty X, 20 is differentisble, Consequently
.(t’.to"‘o) »o(t,t,x ), t2t, x 20 is T-differentiable, and since
o(t,t,x.) = [x,k(t,t,x )] one can calculate 3'(t,t°,xo)(ﬁt,Ato,Axo) '
according to Theorem 3.2 of Example 3,3, We can summerize this example
as follows; if a,bs+ R - R are continuous nonnegative fuﬁctions, and
(t,t0,x) = 0(t,t,x ), t & ¢, X, # 0 1s the multifunction defined

above; then ¢ is m-differentiable, and $  can te calculated from

Theorem 3,2,
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