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: 1. Introduction.

Let E and F be nonempty sets. A multifunction Sts E -*F

is a subset of E x F with domain equal to E; equivalently n is a

mapping (or function) from E into the collection of nonempty subsets

of F. Multifunctions have many diverse and interesting applications

in control problems and the theory of contingent equations (for example,

see [B-4-6, c-1-3, F-1, H-1-4, K-1-3, L-1-2, and 0-2]), in mathematical

economics [A-4 D-11, and in various branches of analysis (for example

in the study of subdifferentials of convex functions [M-31). By now

the thaory of integration of multifunctions has been rather well dev-

eloped and the applications of this theory to control problems and

mathematical economics have been discussed [A-1, C-1, D-1, H-1-2, H -4,

J-1-2, 0-1-2]. It is our purpose in this paper to develop a differential

calculus for a reasonably generous class of multifunctions, and to

point out some of the applications. The calculus is developed by taking

advantage of some ideas used in ^;^-1], especially Radstrom's embedding

theorem [R-1], to give our definition of the derivative of a-multi-

function. By means of Radstrbmt s embedding principle we are able to

convert the discussion into oue concerning differentials of ordinary

functions fs E -► F where E and F are normed linear spaces [D-2].

At least two steps have been taken toward developing a differential cal-

culus for multifunctions, one by Bridgland [ B-4] and another by Hukuhara

[H-4]. our theory subsumes that of Hukuhara and Bridgland. A discussion

of their results and a comparison with those of this piper are given in

Section 4, and some examples are included to illustrate differences. In

Section 2 we give the notation and terminology to be employed throughout
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the paper. Also in this section is a description of those aspects of

$ldstAd s embedding operation which we shall need later on. A number

of examples of differentiable multifunctions are presented in Section

% and finally in Section 5 we give some applications.



2. preliminaries.

Let F be a real normed linear space. The symbol a F)

will be used to denote the collection of all nonempty, closed, bounded,

and convex subsets of F. Whenever the normed linear space F is

understood we shall just suppress F and write 8 for a F). If

A and B are subsets of F, there is defined A+B = (a+b'a € As b € B}

and )LA a (Xala € A) where l € R and R denotes the field of real

numbers. The symbol co(A) denotes the convex hull of A, for A C F.

If R is reflexive s then ;B(F) with the addition defined above is a

commutative semigroup which satisfies the cancellation law [R-1]. More-

over, if a,O are real scalars, A,B € O(F), then

a(A+B) = aA+aB, a(DA) = (a P)A, lA = As

and if a,13 ? 0, then (a+$)A - aA+$A. Note that the assumption that

F is reflexive is used to show that A, B € O(F) . implies A+B € 3F),

and the convexity of the elements of 	 is used both in the proof

of the cancellation law and in the proof of (a+13)A = aAVA, %p ? 0.

Moreover, the proof of the cancellation law also uses the fact that

elements of jy(F) are closed and bounded subsets of F.

1 I the results that follow the requirement that F be-reflexive can

be replaced by the assumption that F is a B-space if we agree to

deal only with the subcollection JK F) consisting of those elements

of ,S(F) which are compact. Also the completeness of F intervenes

only when we want je(F) to be complete.



I	 1

If X and Y are sets, if H C X X Y. and if A C X, then

H[ A] denotes the set (y a Yl '--*4j x e A; (x, y) a H) . Let (X, P) be a

metric space, and define J. s ((X,, x2) 1 p(xl, x2) S e) . Thus if

A C X. then Je[A] is an "e-neighborhood of e. If F is a normed

linear space with metric p determined by the norm, and if A,B

are bounded subsets of F. then the Hausdorff distance [B-1] between

A and B is denoted by dH(A,B) which is defined by the relation

(2.1)	 dH( A, B) m inf( e > 01 Je[ A] D B and J j B] :D A) .

We°observe that if F is complete, then ( -(F),d H) is complete. Theibi

proof of this assertion is essentially the same as the proof of (5.6)

in [D-1, pg. 3621. One quickly establishes that a Cauchy sequence

of nonempty closed and bounded sets in F must converge to a closed

and bounded set in F ( see [K-4.. pg. 3141 or [M-1., Prop. 4.1, pg. 161]) .

Price's inequality [P-1, (2.9), pg. 4],

( 2.2)	 dH(co(A), co(B) ) S dH(A, B),

where A and B are closed, bounded, nonempty subsets of F, then im-

plies that a Cauchy sequence in ,8(F) must converge to an element of

AF) -

Radstxcm-s embedding theorem [R-1, Theorem 2] tells us that in

case F is reflexive, there is a real normed linear space 18(F) (or

simply when	 F	 is understood) and an isometric mapping r: fa,

where ] is metrized by	 dH, such that r(,6)	 is a convex cone in ,
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Furthermore addition in !6 induces addition in ,' and multiplication

by non-negative scalars in f8 induces the corresponding operation in

$ can be chosen minimal in the sense that if 18 	 any other

real normed linear space into which ,6 has been embedded in the above

fashion., then !8
1
 contains a subspace containing ,6 which is isomor-

phic to 18. It is appropriate to describe in some detail the space

18, since we must take advantage of some of its peculiar properties in

the sequel. An equivalence relation - is defined on ,p2 = ;8 X ,v

by stating that (A,B) — (CO D) if A+D - B+C. The equivalence class

containing (A,B) is denoted by < A,B >. The space S is taken to

be the quotient space _12/_,, 	 addition in $8 is ' defined by

<A,B>+< COD >=<A+C, B+D>0 and if a90, then a<A,B>-

< aA, cS > while if a < 0, then a < A, B >a<  aJ B, J aJ A >. With

addition and scalar multiplication so defined 15 becomes a real linear

space. The embedding 1r: ,@-+ g8 is given by Tr(A) = < A,0 >, A e ,0 ,

i.e., < A10 > is the equivalence class ( (A+D, D)j D e -9) . We shall

adopt the convention of denoting r(A) by A when A is an element

of -0, and hence the convex cone -n (R)	 A metric b  on

is defined by

bH( < A, B >, < CO D >) a dH( A+D, B+C) .

The zero element of 15 is the equivalence class ((D,D)ID F ,9) which

will be denoted by <') .,O >. Since d  is translation invariant and

positively homogeneous, the relation j,< A,B > 11 - bH(< AB >, < 0,0 >)

I
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actually defines a norm on $3 such that S$(< As B >s < Cs D > }

11 < AB > - <G^ D ^1.

A function fs E -+F where E and F are arbitrary normed

linear spaces is said to be equal to o(l` h^j) if jj f(x) jj »j hf j -+0 as

11 NI -+o.

Let F be a reflexive Banach spaces and let E be a normed

linear space. A multifunction ., Sts G - AF) ., where G is an open sub-

set of E. is defined to be 7r-differentiable E.:__40 _ e G if the func+ions

As G -+ 18 ( F) ,, x -4 n(x) + x e G is differentiable at x  E G. As usual

n is 7r-differentiable on G if it is 7r-differentiable at every point

of G. Thus n is 7r-differentiable at x  C G means that there is a

continuous linear mapping A t (xo)s E -4 $ such that

(2.3)	 ONx) - A (xo) - At ( xo) (x-xo) = o{ 1) x-xof1) .

If v e write ht ( xo) (&c) = < Ads BX >s tx a E+ and Ads B,6x a .Qs

then in terms of the Hausdorff metric (2.3) means

dH(n(x) + Bx-x 0 s D ( xo) + x-x ) = o(jjx-xajj)•
0

If E is finite dimensional with basis 9ls g2s ... sgns then &x =

bcig is be a E. If SN ( xo) {Vi i) _ < A, s 0 >+ i is 2s ... s ns then we
i

say that n is conically differentiable at x e G and we have



of (xo) &O • E &C' < AJ i , 0 >,

We should mention that 11(F) need not be complete when F

is complete D-1, pg, 3631, but nonetheless if F is complete, then

so is O( F) and hence _4(F). Even though $(F) is not complete

most of the basic rules of the differential calculus [D-2, Chapt.

VII11 can still be applied to the mapping x -# il(x), x e G, and we

shall feel free to do so in the subsequent sections of this paper.

Remark. It would be interesting and useful to have these embedding

results for certain collections of closed, convex, and nonempty sub-

sets of F where F is finite dimensional with 	 as basis.

For example the set VV of all nonempty, closed, and convex sets

A C F such that a e A, a - E s ili imply ai it 00 i - 1, 2, , , ,, n,

is , interesting, If addition and scalar multiplication (with non-

negative scalars) in if+ are defined as before, then all the data

needed to extend Rtdstrdm' s embedding result to ^+ (with the uni-

form topology determined by the norm on P [M-1, pg. 1'331) are ful-

filled except the crucial cancellation law. For example, take F - R2,

11 - (1,0), t2 - (0,1). Define sets A z ((x,y)l y - 2x, x a; 0)r

B a ((x,y) Iy = x, x Z 0), and C a A+B. Then we have A+C - B+C and

yet A j B.
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3. Examples of Differentiable Multifunctions.r	 t

We shall next exhibit some example of fir-differentiable

multifunetions. Although very simple, these examples illustrate

the notion of 9r-differentiability and are useful in the applies-

tions discussed in Section S.

Ex` ample 3.1. Let E be a normed linear space, F a reflexive

Banach space. Let A be a fixed element of AF) and r a dif-

ferentiable mapping, rs G -s F, where G is an open subset of E.

Consider the multifunction As G - ► -W(F) defined by 12(x) _ ( r( x)) +A,

x e G. Thus G is a fixed set moving along a differentiable curve r

in the space F. It is easy to see that A is 7r-differentiable with

tls { xo} (Ax) _ < (rs (xo} (4x)) 0  0 >, x  E G, 4K a E. since

11 &1( x) - "* xo) -<{ rt ( xo) { x-xo} }, Q>ll _ 11 <{ r{ x} } +A, 0> - <{ r( xo) } +A, 0>- < (r ► { xo} { x- xo}}, o > 11

a dH((r(x))+A, (r(xo)+r!(xo)(x-xo))+A)

a dH((r(x) ), ( r(xo) +r' (xg) (x-xo)) )

r(x) -r(xa} -rs (xQ) { x-xo} ^^

n o(11x-xj1)

It remains to note that tic --►.< (rs (xo) (&c) 1; 0 > is a bounded linear

operator, That the operator is additive in 4x is clear, and the homo-

geneity follows from the fact that < C A,O > = OK A,0 > for every

of 9 & whenever A = (a) is a singleton set in r. Finally we ha•.e
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< { r+ (xo) (11x)) 0 0 >11 - Jj rt (xo) (&c) j) S jj rt ( xo) jj jj &^), ac a E.

If in this example E is finite dimensional, then 0 is

conically differentiable. In fact if 1 11 ..., 'n is a basis for N.

and Lac - E dxiji, then

at ( xo) (AX) - E &i<(rt(xo)( j i)).,0 >.

Example 3.2. Let E,F,GfA be as in Example 3.1. Let g be a dif-

ferentiable mapping from G into R such that g does not change sign

on G. i.e., g(x) i 0, x e G or g( x) 0, x e G. Let f t G -4.0(F)

be the multifunctis,n defined by ft(x) g(x)A, x e G. We consider first

the case where g(x) k 0, x e G. In this case we have r(g(x)A) -

• g(x)A,0 > - g(x) <A,O >, which implies that '5 t (xo)(t5x) _ (xo)(60

• A,O >, x  a G. the a E. On the other hand for a g 0, we have

< aA,0 > _ < -a(-A),0 > - a < 0,-A >. Consequently, if g(x) i 0,

x e G, then we have tr(g(x )A) _ < g(x)A,O > - g(x) < 0,-A > from which

we deduce that fit ( xo) ( tic) = gt ( xo) (tic) < O, -A >. If E is finite di-

mensional with basis g1,12,...,9n, then Q is conically differentiable

at X  e G . whenever g & 0 and g l (xo) (t i) s 0, 1 - 1, 2, ..., n (re-

spectively, g 9 0 and a ( xo) ( f i ) S 0, 1 10 2...... n), and in fact in

either ease we have the relation Q 1 (xo)(Px) - E &I < gt (xo) ( Ci)A,O >

for tic = E &i1i a E.

From the foregoing we infer that if g is differentiable

on G. then 0 is tr-differentiable on G+ a g7 1(O, w) and on G m
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g ^-w,O). 0 will also be differentiable at points xo € G where
g( o) : 0 if there is a neighborhood U of x 0 such that g(x) it 0

for each x € U or g(x) f 0 for each x € U. In addition if x0

is a paint of G such that every neighborhood of x0 contains points

where g is positive and also paints where g is negative, then 0

IS not 'r-differentiable at Q unless A is a singleton point set.

The requirement that g not change sign on G if G is to

be ir-differentiable may appear somewhat strange. Hovevert the reason

the condition is necessary for 1r-differentiability can perhaps best

be seen by considering a special case of Example 3. 2. Let E = G = Ri

let F = B2, and define ON = tQ2, Where o2 is the unit disc in

R2. One might very yell expect this multifunction to be differentiable.

ftwever, in view of the preceding paragraph this multifunction is not

differentiable at t = 0. In fact ve have that ^2* ( t0)(,at) = At < Q2,0 >
-	 A

foir t0 > 0 and fit (to) (At) _ t < 0, -o2 >, for to < 0, but A is not

differentiable at to = 0 even though the right and left hand deriva-

tives both exist at to = O. It is interesting to interpret this geo-
metrically. The graph .%f the multifunction Q in R X B2 consists of

a cone whose vertex is at the origin and whose axis is the t-axis

(i.e., R X ((0,0))). The cross sections of the cone through (t,0,0)

parallel to the plane {0} X R 2 are the discs tot. We see that the
behavior of this multifunction is similar to that of the real valued

function t -3ItI which has a corner at to = 0. In fact note that
the graphs of Q, t ta2, t € R and Q. t -; I tj 02, t € R are pre-

clsely the name. An additional ec aent about a multifunction of this type

trill be made in Example 3.3.

-S
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The next example supports the correctness of our formulation .

of the definition of the derivative of a multifunction inasmuch as it

seems reasonable that Theorems 3.1, 3.2, and Corollary 3.1 of Example

3:3 ought to be true for any satisfactory theory of differentiation

for mmultifunctions.

EM!Lie 3.3. This final example is somewhat more complicated notation-

ally than the previous ones. In essence we shall consider multifunctions

which are cross-products of compact intervals of real numbers where the

endpoints of these intervals are differentiable real valued functions.

In order to investigate the 7r-differentiability of such multifunctions

Some auxiliary results and notation are needed.

if [aj,b3 ], J = 1,...,n are compact intervals in R. then
n

the product R [aj,bj ] is in ,4(0). Addition and scalar multiplica-
J=l

Lion on such sets is evidently described by the following relations:

n

n	
' n [ Xa3 , AbJ ] , l^ ? 0

1( H [ g3, bi ]) _ =1

al	 n
II [ AbJ AaJ ] , 1 < 0 ,
Jul

and

E H [ai,biI = II[ E ai, E bi].
i=1 J ul	 J=1 i_1 i=1

It will be useful to have some estimates on the Hausdorff

distance between two sets which are n -fold products of compact inter-

vals. In the computations we use the Euclidean norm on Rn.
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Lemma 3. 1.

n	 n	 ^.i
(a) dR( n [ aj , bj ], nn [ s , V 3 ]) a max	 (I aJ -^ I , I bJ -bv 1) j

Jul	 Jul	 J =1,2, ... ,n

(b) dR( II [ ai 19	 II [a ,b'j ]) g E (I aj-a I + I bJ-VJ I )•
Jul	 Jul	 Jul

Proof of (a} . Denote the sets n [ aj, bi ] and n [ aJ, V ] in -Q(in)^.	
^ J ul	 Jul	 ,r

by A and A respectively. Choose an arbitrary e > dH(A,A); then by

(2.1) we have J j A] :) A and J j A] :) A. If aj 4 V, we get from

JjA) :) A the relation e ^ aJ -aJ = I V-aJ j . On the other hanti, if

aj > V. then JE[A] :) A implies that e ? a3 -a = I a -aj l . Thus for

J = 1, 2, ..., n, we have e a I aj-a I . Similar arguments show that E ?

I bJ-V I , J = 1, 2, ..., n. Consequently, the right hand side of (a) does

not exceed e. Since e > d H(A,A) was arbitrary this proves (a).

Proof of (b). Define for j = 1, 2, ..., n

xJ = a - (I a3-al + Ibj -bp i )

= V + tl a3 -s I + I bJ -V I )

n
and put X = H [x ,x2]. Evidently X D A and since xi s aJ,
J	 J	

Jul
x2 it b , J = 1, 2, ..., n, X also contains A. Define e =

1
(I aj-ai + IbJ -bp i )! then since

[ E (I aj -ajl + I b' -bp i )2]12 s ^(I aj -aj l + I bj -V I ),Jul
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we have A C X C Je[A]. In a similar manner one can show that J £[A] :) A.

Hence € k dH(A, A), which proves (b).

Now let aj,bj be real-valued mappings defined on an open set

G C Rm such that aj (x) s b3 (x), x e G, J = 11, 2, ..., n. Define the

multifunction fl: G -o'R(e) by the relation

n
n( x) = II [aj(x)sb^(x)]•

J-1

Suppose D is tr-differentiable at x  a G. Then since Rm is finite

dimensional there exist Ai(x0), Bi(xo) 6 12(0) such that

m

(3.1)	 S2' ( xo) ( &C) _	 Loci < Ai( xo), Bi ( xo) >
i=1

for all Ax - (Lycl, ^6x2, ..., &m) a Rm. Now let us assume further that

(3.2)	 A (x) = II [a3 (x) b '̂i o(x )] B (x) = n [ai (x) bi
i(x )]i o	 J=1 i o	 i o	 J=1 i o	 o

for i = 11 2, ...,m (This is always true if n - 1, since _O(R) con-

sists only of compact intervals). By direct calculation we obtain the

relation

m
(3.3)	 11n(xo+Gx) - ti(xo) - E AC < Ai( xo), Bi( xo) > ^)

i-1

	

n	 n
= dH( n [u'`1]s II [44)

	

J=1	 Jul

where



14

w'o = a3 (x +,6x) + E &x al(xo) - E ac ai(xo),

&i?zp	 Axid?

wi = b3 (x +&) +	 L^xiV (x ) - E AXib3 (x )
^.	 o	

i	
i o	

i	
f o g

tax ?t3	 tax ^

i = aj (xo) + E AX ai{ xo) - E Llxiei(xo
X ?=O	 AXi<0

w3 = bj ( xo) + E 15zcib1(x0} - E	 ibi (x.),
& -ZO

for	 = 1,2,...,n. From Lemma 3.1(a) we determine that the right hand

side of (3.3) is greater than or equal to max 	 ({w`o-41, {wl-cud{ }
=1, 2)...,n

and consequently this expression is o(Hal{i) since n is r-differenti-

able at x . Now if we observe that0

M	 _
{ wo 	 aj (xo+L1x) -a^ ( xo) - E L1^ci(ai(x0) si(x0) } {

i=1

m
{ wl-5{ = { b^(xo+Ax)-b,(xo) - E i(bi(x0) `bi (x0)){,

i=1

j = 1,2,...,n, then the following theorem will thereby be proved€

Theorem 3.1. Let G be an open subset of Rm. If the multifunction
n

x -* OW	 II [ aj (x), bj (x) ], x € G, is r-differentiable at xo € G and

if O x) ( Ax) satisfies .1 and(3.2) .,then the mappings a b .

G -+R are differentiable at xo, j = 1, 2, ..., n, and their differentials

are given by

m
aJ'(x0)(4K) - E ti(ai( xo) - a#(x0))

i =1
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m
bJ '(x0)( px) - I tki(bi(xo)-bi(xo))

i-1

for	 = It 2t ... t n and Ax - (Ax 1, ,6x2
t ... ^ 40m) .

Happily., there is a converse to Theorem 3.1 ! the proof of

which uses the estimate in Lema. 3.1(b).

Theorem 3.2. Let G be an open subset of Rmt and let mappings

a3pb3 : G -* R be given dith aj s bit j = It 2t ... t n. If the mappings

ajt bjt 3 - 1i 2.,...,n are differentiable at xo a G. then the multi-
n

function x -+ n(x) = H [ aj (x) t bj (x) ] is 7r-differentiable at x  a Gt
j =1

and

{l0} i2*{xo}(lc) _ tyci < II [ti{xo}+ a- i{xo} t pi( xo)+ abi (xo)]t
irl	 Jul	 ax	 ax

n 3

J
,Il ci& X ) t pi( xo) ] >

where the ^(xo) t Pi( xo) can be arbitrary real numbers satisfying

CX, (XO s)	 0i(x0)

( xo) + a xo) s Pi( xo) + ,r(xo),
aX	 ax

i - lt 2t .. ... mt j - lt2t...tn.

Proof. Let ^ (x©) t 13i(xo) be chosen subject to ( 20), and let F(xot Ax)

denote the right hand side of (lo) . Then ^^it{ xO+LVt) - n( Xo) -F(x0t L1x) Il

is exactly the quantity on the left hand side of (3.3) if in (3.2) we take
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q(x.) + 'a'x },o
ax bit xo} _ ^i	 o(x) + a

bj
ilXG)

ax
,,,.^

I * 11,2,...,x, J = 1,21 ... ,n. Hence using (3.3). Lemma 3.1(b), and the

assumption that the functions a3,b3 are differentiable at x  we

obtain

^) tl(xo+dx) -A(xo) -F( xo., &) ^l a E (I a3 (xo+LVc) -a' ( x 0)- E dxi a4 xo)
Jul	 i=1	 ax

+ I bj (xo+Qx) -bj ( xo) - . E tyci — T( xo) l )
i=1	 ax

	

where px s (ax L1x2, ..., Lycm)	 Rm.

Let us note that in Theorem 3.2 one may choose 0^(xo)

i(x	 ao) = o if	 xo) ar(xo), and if	
xo) > a

- bi ( xo) one may
sac	 ax	 ax	 ax

take Cx (xo) _ - a- 4 xo), Pi( xo) = - a xo), i = 1, 2, ..., m, J
ax	 ax

1, 2, ..., n. In particular, then, for n = 1 we have

Sat (xo)(&X) = E(+} axi < [ a-a-- ( xo)e ^ xo)]to >

	

^(-)	 as	 ab+	 laxi < OP [ - a.^(xo) _ ""'^.( xo) ] >
ax

the sum E{+) being taken over those i for which a(b- a)(xo)/axi ? o,

and the sum E(-) being taken over the complementary set of indices i.



Thus, if afar xo) 9 -T( xo) for i - 10 2, ... m.,then we have that
ax	 ax

n(x) - [ a(x),b(x)] is conically differentiable at x 0

As an immediate corollary to Theorems 3.1, 3.2 we haves

Corollary 3.1. Let G be an open subset of Rm and let mappings

a, bs G -+R be given satisfying a(x) £ b(x), x e G. Then the multi-

function x -+ n(x) a [ a(x), b(x) ] is Tr-differentiable at xo e G

if and only if a and b are differentiable at x0 a G.

Let us return to the discussion in Example 3.2, and consider

the multifunction t -+n(t) - to t where a1 - [-1, 1J. We have shown

that n is 1r-differentiable except at t - 0, and n l (to) ( L6t) -

8t < 01, 0 > for t0 > 0, n+ ( to) (Lt) - At < 0, -01 > for to < 0.

Note that n(t) - [ a(t), b(t) ], where a(t) - - 1 t) , b(t) - I tj . Bence

Corollary 3.1 gives a complete analysis of the Tr-differentiability

properties of this multifunction.

17
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4. Other Definitions for Derivatives of Multifunctions.

We now compare r-differentiability of multifunetions with

two other types of differentiability discussed by Hukuhara [H-4]

and by Bridgland [B-41. If F is a reflexive Banach space, and

A,B € O(F), then the Hukuhara difference A 
h 
B (if it exists)

is defined to be the set C € -4 (F) such that C+B = A ( cf. H-4,

pg. 210]. It is to be noted that in general A 
h 
B A+(-l)B - A-B,

and that A h B exists only if some translate of B is contained

in A. Actually our remarks in this section are for F = Rn since

that 14 the context in which Hukuhara's and Bridgland's results were

developed. However, the notion of the difference A h B is useful

in Section 5 so we gave above a more general definition than we need

at the present time. In the remainder of this section we take F = Rn.

Hukuhara [H-4] gave the following definition.

Definition. Let I be an interval of real numbers. Let a multifunction

2s I -► .JO(e) be given. 0 is Hukuhara differentiable at to e I if

there exists DhA(to) € .Q(e) such that the limits

(4.1)	 1im	
ft(to+at) h A(to)

at -+ 4+

and

(4.2)	 1im	
a(to) 

b 
n(to-At)

of -# ©i

both exist and are equal to Dhn(to).
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Of course, implicit in the definition of Dhn ( to) is the

existence of the differences n(to+tit) h n(to) and 0(to) 
h 
0(to-&t )

for all At > 0 sufficiently small. Using the difference quotient

In (4.2) is not equivalent to using the difference quotient in

n(t0+a) h A(to)
(4.21 )	 lim	 ^

At -► 0-	 At

contrary to the situation for ordinary functions from I into a

topological vector space. In general the existence of A h B, A,B e

-Q(e) implies nothing about the existence of B h A. Thus we raise

the question of which of the limits (4.2) or (4.2+) is preferable for

defining the "left hand derivative of 12 at t o"Y	 In [ H•4] Hukuhara

defines the integral of a continuous multifunction F: [a,b) -+ M(Rn)

and shows that Dhft-F(s)ds a F(t). One must use (4.2) rather than

(4.2t ) o if this type of result is to be true as the following simple

example shows Let A e -V(Rn) and define F(t) = A, t e R; then for

any t k 0 we have jaF(s)ds = tA. Tak.:ng A(t) = tA, t i 0 we see

that the difference quotient in (4,2+) does not exist.

Differentiability in the sense of Hukuhura implies conical

(r-) differentiability. Before proving this let us observe that if

A 
h B exists for some AB a ,^{Rn}, then

(4,3)	 < A,0 > - < B4 O > _ < A h B4 O >.

Lema 4.1. If a multifunction Ot I -► R(e) is Hukuhara differenti-
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able at to e I with derivative Dhn(to), then n is r-differentiable

with al ( to) (&t) - At < Dhn(to), 0 >, bt € R.

Proof. Using (4,3) one obtains for At > 0,

(I$(to+at) - S^(t)
- < Dhn(to) 0 0 >

d 
(n(t0+At) h n ( t

o) D n(t )),H	 Lt	 ' h o

and coneequently both sides of the equality converge to 0 as At - ► 0

Similarly for 6t < 0 we have (with k = -At),

n(to+L6t) - -fl(to)
At	 - < Dhn(to), 0 > ^)

5(t, 0 - tl( to-k)

n( to) h n(to-k)
dH(	 , Dhn(to)),

and the last term converges to 0 Rs k -40+, Hence the lemma is

proved

The following result is interesting and can be used to show

that the converse of La= 4.1 is false.

Proposition 4.1. If the multifunction N I -+ q(e) is Hukuhara
differentiable on I, then the real valued function t -+diam(n(t)),

t a I is nondecreasing on I.
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Proof. If n is Hukuhara differentiable at a point t o a I. then there

is a 8( to) > 0 such that O(to+At) 
h 
n(to) and n(to)bn( to at) are

defined for 0 < dt < 8(to). Since A h B., Aj B a -Q(I n) is defined only

if some translate of B is contained in A., then A h B exists only

If diam(A) i diam( B). Let t}.,t2 e I be fixad with t1 < t2. Then

for each T e jtj t2) there is a 8( T) > 0 such that diam(n(s)) i

dis*- O(T)) for s e [ T-8( T).,r] and diam(Sl(s)) i diam(n(T)) for

s f T^ T+8(T) ^. The collection

(ITJ T a [ t1f t2 ]i IT = {T-^T)^T+B(T)))

forms an open covering of [t
1-1

t2j. Choose a finite subcover

ITi,...,ITN with Ti < Ti+i; then there results dism(O(t l)) i

diam(It(T1)) and diam(R(TN)) i diam(A(t2)). There will be no loss in

generality to assume 
ITi 

n IT	^ 0 1 	 Thus for eachi+l
i = 12 ... ,N-1 there exists an s  a I T n IT	with Ti < a  < Ti+1,

i	 i+1
and hence diam(A(Ti)) S diam(n(si)) 9 diam( n( • 4-i+1) ), Therefore we

have diam(n(tl)) 5 diam(n(t2)), which proves the proposition.

Remark. Note that the existence of the limits in (4.1) and (4.2) was

not used in the proof of Proposition 4.1. In fact instead of the hy-

pothesis that A is Hukuhara differentiable on I one could substitute

the assumption. that for each t e I the differences 2(t+&t) b Q(t)
and O(t) 

b 
fl(t-&t) both exist for all sufficiently small At > 0.
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It should also be pointed out that the fact that a multifunc-

tion 0s I -+ _41(RP) is Hukuhara differentiable on I and diam(n(t)) > 0

for t e I need not imply 0 is monotone with respect to set inclu-

sion. For example, if 0(t) _ [ t, 2t ], 0 < t < 1, then D hn(t) _ [ 1, 2J1,

0 < t < 1 and yet n(tl) it 	 and 042) 1-
	 for any tl,t2,

0<tl<t2 <l.

One can show that if 0s I - -0(e) is conically differentiable

an I, and if the Hukuhara differences n(t+t1t) h n(t) and n(t)

n(t-pt) exist for each t e I provided At > 0 is sufficiently small,

then 0 is Hukuhara differentiable. Moreover, if 02(t)(At)

At < nt (t),0 >, t E I, At a R. then Dhn(t) = 0• (t). However, in general

ns I - Ae) r-differentiable on I does not imply n is Hukuhara

differentiable on I as the following example shows; Let a n be the

closed unit ball in Rn, and consider the multifunction t a n(t),

t e (0, 2►r) where,

n(t) _ ( 2 + sin t)on.

This function is r-differentiable on (0.2w) and i2' (t) (dt) =

(At)(cos t) < %,0 >, t e (00 2w), At a R. In view of Proposition 4.1

0 is not Hukuhara differentiable on (0,2w) since diam(n(t))

2(2 + sin t) is not non-decreasing on (0,2w).

If S C BA, where A and B are sets and BA denotes the

set of all functions from A into B, then we use $[a] to designate
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the set (ip(a) ((p a S) . If I * [0 10 T]  is a compact .interval of real

numbers, then C(IA, or simply C(I), denotes the Banach space of

all continuous functions from I into i n with the norm of uniform

convergence on I. In [B-4] Bridgland gave the following definition.

Definition. Let S be a nonempty compact subset of C(I). Then S

Is said to be Huygens differentiable at t o e I if there exists

(DS)(t0) a ,Q(Rn) such that

(4.4)	
l 

o+ ln`t dH(S[ to+ot ], S[ to ] + At(DS) (to)) = o

and

(4.5)limo+ 
tit 

dH(S[teI, S[to rat] + dt(DS)(to)) = o.

(DS)(to), if it exists, is called the Huygens derivative of S at to.

Huygens differentiability of compact sets in C(I) is also

related to the conical differentiability of multifunctions in a manner

shown by the following remarks.

Lemma 4.2. If S is a nonempty compact subset of C(I) which is Huygens

differentiable on I with Huygens derivative (DS)(t) for t e I, and

if 0 is the multifunction defined by n(t) = co(S[t]), t E I. then

n: I -+ -Q(e) is conically differentiable on I and nt (t) (6t)

At < (DS)(t),O >, t c I, At a R.
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Proof. Since S is a compact subset of C(I), it follows that S[t]

is a compact subset of Rn for each t e I. Hence co(S[t]) a

t e I. Now ( DS)(t) eRn), t e I, and so < (DS)(t),0 > e _,(in),.^( 

t € I. Thus for At > 0 we have by (2.2),

IlO(t+A0
	 n( t)

 - < (DS)(t),o > II =
At

MdH(co(S[t+At]), co(S[t]) + pt(DS)(t))

MdH(co(s[ t+©t] ), co(S[ t] + &(DS) (t))) s

dH(S[t+At], S[t] + C^t(DS)(t)) -+0 as At -40+.

Similarly, for At < 0 and k = -tit > 0 we have

A t+A0 - n(t) - < ( DS) ( t), o > IIAt 
-

k dH(S[ t], S[ t-k] + k( DS) (t)) ^ 0 as k -► 0+.

Actually Bridgland's definition of differentiability is es-

sentially equivalent to conical differentiability. Lemma 4.2 gives the

sense in which -.e mean that Huygens differentiability implies conical

differentiability. Conversely if Sts I ->,V(R n) is conically dif-

ferentiable on I. then Theorem 5.1 in Section 5 says that there is a

compact, convex S C C(I) such that S[t] = n(t), t e I. Thus if

S2' (t) (At) =	 < Of (t),o>, t e I, At a R, then (DS)(t) = Of ( t), t E I.
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Bridgland uses the Huygens derivative mainly to prove a

theorem concerning the Huygensderivative of the indefinite integral of

a multifunction, i.e., if Fi I -► _(Rn) is measurable and integrably

bounded, and if one defines SI(F) _ (4ps I -> el p(0) = 0 0 ^ integrable

on I, and $(t) c F(t) a. e. on I], then SI(F) is a compact, convex

subset of C(I) and (DSI(F))(t) - F(t) a.e. on I. Thus in this

situation the multifunction t -+n(t) _ (S I(F))[t] is conically dif-

ferentiable almost everywhere on I. and of (t) (At) = At < F(t)I0 >

for almost every t e I and every 6t e R. Noting that SI(F)[t] =

O^ t,] F(s)ds where the integral on the right hand side of the equality

is Aumannt s integral [A-1], one sees the connections between the re-

sults given in Section 5 (specifically Lemma, 5.6 and Theorem 5.3) and

those given by Bridgland [B-4], Hermes [H-2], and Hukuhara [H-4].
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5. Applications.

In this final section we give some miscellaneous results and

applications of the differential calculus for multifunctions.

Lemma_ 5.1. Let F and G be reflexive Banach spaces. Let U: F -*G

be a continuous linear mapping which maps elements of ,Q(F) into

closed sets in G. Then the induced mapping U: f8(F) -+ fB (G) defined

by Us < CO D > -+< U(C),U(D) > is a continuous linear mapping,

Proof. It is easy to verify that U is linear. Let < Cn^Dn > be a

null sequence in $(F). Then given e > O there is a positive integer

no such that n ? no implies Jl[Cn] D D  and JX[Dn] D Cn where

e^(1+^^^)), The linearity of U now reveals that Je[U(Cn)] Z) U(Dn)

and Je[ U(Dn) ] ') U(Cn) whenever n ? no. This shows that U( < Cnj Dn > )

is a null sequence, thereby proving U is continuous.

Corollary 5.1. Let F and G be reflexive Banach spaces: Let

Uz F -+G be a continuous linear mapping which maps elements of -q(F)

into closed sets in G. Let E be a normed linear space, let W be

an open subset of E and let its W -+ -q(F) be 7r-differentiable.

Then the composite function Os x -+U(a(x)), x e W is also 71-dif-

ferentiable.

n
Proof. It suffices to show that the mapping 0: x -4 O(x) t x e WO is

differentiable. Observe that	 = U O S2 where U is the induced

linear mapping defined in Lemma 5.1. Whence Ot W -+ 13(G) is dif-

ferentiable and Or = U o D•.

x

tz ^,
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Remark. If E if finite dimensional with basis 910120...09n> then

Corollary 5.1 has the following interpretation. Given x e W, nt(x)(ji)

< Cix' Dix >> i = 1,2,...,n and Ax = L lycig i the corollary implies

0' ( x) ( 40 _ 6.1 < U( 
Cix)> U( Dix) >.

Lemma  5.2. Let F be a uniformly convex Banach space [W-1, pg. 1081.

Let T be a first countable topological space. Let n: T -► _Q(F) be

a continuous multifunction. Then there is a unique function f: T -*F

satisfying

(5.1)	 11f(t)11 = inf(11ujIu a n(t)), f(t) e n(t), t e T,

and f is continuous.

Proof. The Milman-Pettis theorem [W-1, pg. 109] says F is reflexive.

Thus fl(t) is weakly compact for each t e T. The existence and unique-

ness of the function f; T -4 F satisfying (5.1) follows from Theorem 2

of [W-1, pg. 1101. Thus we need only verify that f is continuous.

Let to be a sequence in T converging to to Then by the continuity

of a the sequence a(tn) converges to n(t o). Given e > 0 pick

an integer no such that n ? no implies

his lemma is still true if the n(t), t e T are only assumed to be

ndnempty, closed, convex subsets of F, if it is understooA that the col-

lection of nonempty, closed subsets of F has the uniform topology deter-

mined by the norm on F [M-1, Def. 1.6, pg. 1531.
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(5.2)	 1 6 n(to) ] :D n(tn) and Je[ R(tn) ] Z) d2(to) .

Thus for n ?. no there exist g(tn) a i2( to) and g*(tn) a n(t, ) such

that Jj f(tn) -g(tn )11 s e and 11 f(to) -g*(tn )11 S e. Consequently we have

that 11 f(to) II S II g(tn) II ' e+II f(tn) II and it f(tn) II s it g*(tn) II s e+11 f(to) II

for n 9 no. Combining these inequalities there results 111 f( tn)II -

11f(t0)111 s E, for n ? no, and whence lir4i f(tn )11 = 11f(to)11- If

f(tnk) is any subsequence of f(tn) which converges weakly to uo a F,

then a sequence , a  of convex linear combinations of the f(t n )
k

converge strongly to uo [ D-3, Cor. 14, pg. 422]. Observe that for

any e > 0, Je[n(t0)] is closed and convex. Given e > 0 the relation

(5.2) is true for all sufficiently large n. Thus a  a 16[n(t0)]

for all sufficiently large k, and hence uo a JJA(to)]. Since e > 0

was arbitrary, it follows that uo a n(to), and this together with the

weak lower semicontinuity of the norm [W-1, pg. 212] imply that

lim ind f(tnk)11 _ 11 f(to) JI ? I) uoll ? 11 f(to) JI . Moreover, in view of the

fact that the element in n(to) of minimal norm is unique we have

f(to) - uo. Thus we have shown that if any subsequence of f(tn)

converges weakly to u 	 uo = f(to). The sequence f(tn) is

bounded because 11 f(tn) 11 -+ 11 f( t0 )11j' and therefore relatively weakly

compact; this together with the.preceding sentence is enough to show

(' f(tn) -f(to )11 -*0 in view of [D-3. Ex. 2$, pg. 741.

The next lemma is similar to a result obtained by Filippov

in the finite dimensional case [F-1, pg. 614].
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Le^5.3. Let F be a Hilbert space. Let A,B be given elements

of J(P). Let D denote the Hausdorff distance dH(A,B). Let a

and b be the unique elements in A and B respectively satisfying

() all - min() xll I x c A), 11 bll - min (11 xll I x e B),

and let 0 = max(1) 41, ll bl)) . Then there results

(5.3)	 111 811 - 11 bi) 1 9 D,

and

(5.4)	 11 a-bll 6	 D2 + 40D

Proof. From the definition of d H(A,B) = D we have that for every posi-

tive integer n

JD+1/n[ A] " B and JD+1/n[ B] 0 A.

Consequently there is an an e A such that (lb-an11 S D + 1/n and there

is a b  e B such that Il a-bnIl s D + 1/n, one-then obtains ll bll s

11bn11 % D + 1/n + 11 all and l) all 9 ll ani) s D + 1/n + llbll, which together yield

hall-Ijbil S D + 1/n. Since n is an arbitrary positive integer we have

proved (5.3). In order to prove (5.4) we consider two cases; (i)

213 < D and (ii) 2p ? D. In case (i), we have I) a-bl) 9 ll all +llbll 9

20 < D 9 ^Dy+^40D . Thus we turn our attention to case (ii), using the
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a +a	 ll b-a ll
same an and b  as above we have that I) a - -- n̂ -11 ---2 5 D/2 + 1/2n,

and this implies that II all S II â l S D/2 + 1/2n + 11^ II . Hence we have

that it a+bll -k 211 all - D - 1/h for every positive integer n, and we conclude

that lla+bll a 211all -D. In a similar manner one can establish that

it a+bll s 211 bll -D, and hence ll a+bll k 2P-D z 0. Therefore we have ll a+bil e it

4jS2-4PD+D2. From the parallelogram law we find that

11 a-b11 2 - 211 all 2 + 2 11 b11 2 - II a+bll 
2 6 211 all 2 + 211 b11 2 - 402 + 4D - D2

S 211 all 2 + 211 bil 2 - 41I all 11 b11 + 4$D - D2

- 2(liall-IlbII) 2 + 40D - D2

.1 D2+40D

and this completes the proof of the lemma.

Theorem 5.1. Let T be a locally compact Hausdorff space, and let F

be a Hilbert space. Let CW(T,F) denote the family of a1'. weakly con-

tinuous functions from T into F. and let C,(T,F) have the topology

of uniform convergence on the compact subsets of T [B-2 1 Pt. 20

pg. 27$), where F is given the weal: topology (i.e., the a(F,F *)-

topology) . If its T -^Q(F) is a continuous multifunction, where .,J(F)

is (as usual) metrized with the Hausdorff metric determined by the norm

on F, then there is a compact, convex set S C CW(T,F) such that

S[t] a n(t) for every t E T. Moreover, the set $ can be chosen

so that it is strongly equicontinuous.
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Proof. The space CW(T,F) is actually a topological vector space if

addition and scalar multiplication are defined in the usual way. For

each x ¢ F there is a uniquely defined function fx% T -► F deter-

mined by the relation

Ilx-fx(t ) II - min{Il x-VIII u e n(t)), fx(t) a n(t), t e T.

The family (fxlx a F) is strongly equicontinuous at each t o c T.

Let U(to) be a compact neighborhood of t o, Then due to the continuity

of n there is a µ> 0 such that II xll s µ, x e n(t), t o U(to) .

Thus Ilfx(t)II N µ for x e F, t e U(to). From Lemma 5.3 we infer that

(5.5)	 Il fx( t) -fx(to) II 16 \Ftt + 
144a
tt , t e U(to)

0	 0

where dx( n(t)
)
 n(to) ) - dWn(t) -x, n(to) -x) is denoted by Dtt . Con-

a
sequently the relation (5.5) implies that the set S'_ (f^ x(x a F) is

strongly equicontinuous at each t o a T. It is clear that S'[t] .

n(t) for each t e T. We define S to be the closure in CW(T,F)

of the convex hull of S O , Certainly co(S') is strongly equicon-

tinuous at each to a T, since SO has this property. Hence given

e > 0 and to e T there is a compact neighborhood V(%) of to

such that t e V(to) implies I1f(t)- f(t0 ) II s e, for all f e co(S'),

On the other hand if (fcv a a A) is a net in co(S O ) converging to
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g in CW(T,F), then the weak lower semicontinuity of the norm on F.

11-11, [W-1p pg. 2123 and the inequalities, Jj fa(t) - fa(to) jj 5 e, a € A,

t e V(t0), imply that 11 g(t) -g(to) JI 9 E for t € V(to) . Hence S is

strongly equicontinuous at each to € T. and this is more than enough

to ensure that S is equicontinuous at each t 0 a T. when S is con-

sidered as a subset of CW(T,F). Thus Ascoli's theorem [B-2, Pt. 2,

pg. 290] can now be.applied to give that S is a compact, convex sub-

set of CW(T,F). Evidently S[t] = n(t) for each t e T.

Remark. If in the above theorem one takes F = Rn and T : I, I an

interval in R. then CW(T,F) is just C(I,Rn) with the usual topology

of uniform convergence on compact subsets of I. For Ot I -► .0(Rn)

continuous) the theorem then guarantees the existence of a compact

convex S C C(I,Rn) such that S[t] = 0(t) for each t € I.

Given a ir-differentiable multifunction x - n(x), x a E,

it is of interest to know if one can determine a differentiable func-

tion ( selection) x -► f(x), x e E, such that f(x) € 11(x), for each

x e F. We have not achieved a really satisfactory answer for this at

this time. In certain finite dimensional situations one can show that

the centroid of Q(x), x € E is such a selection. It is only natural

to ask under what conditions the minimal norm selection in (5.1) is

differentiable. A simple example shows that even under very nice cir-

cumstances the selection in (5.1) is not differentiable. Define

(is R -+ O(R) by the relation n(t) e t + [0, 11 0 t € Rs Then it is

Hukuhara differentiable (a fortiori conically differentiable and ?r-
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differentiable) at each t a R. However, the selection defined in (5.1)

is f(t) - t for t 1 0, f(t) - 0, -1 i t < 0, and f(t) - t+11

t < -1, which is not differentiable at 0 and -1. The next theorem

provides some partial information on thi$ problem.

Theorem 5.2. Let F be a uniformly convex Banach space, and let

n: R -+(F) be a continuous multifunction. Let f be a continuous

selection, f: R -+F,# f(t) a n(t), for each t e R. Let to c R be a

point at which the following conditions are satisfied lo) n is conically

differentiable at to, 20) There is a 8 > 0 such that for each t sat-

isfying It-to) < 8 either n(t) h n(t0) exists and f(t)-f(to) e

n(t) 
h n(to) or n(t0) 

h 
n(t) exists and f(t 0) -f(t) a n(t 0)

b 
n(t).

Then f is differr r..tiable at t0, and if n' (t0)(At) - Bt < A,0 >f

then V (t0) ( At) a &U.

Remark. In the example immediately preceding this theorem one sees that

the fn satisfy all the hypotheses of this theorem except 2 0) and this

fails to be fulfilled only on [-1,0]. However, in this example f is

a continuous selection which is differentiable on (-1,0) even though

20) of Theorem 5.2 is not satisfied in (-1,0). This shows that in

general condition 20) of Theorem 5.2 is not necessary in order that a

continuous selection be differentiable.

Proof of Theorem 5.2. In view of Lemma 5.2, the relation, 11f(t)-

f(.to)-(t-t0)z(t)ll - min{4jf(t)-f(t 0)-(t-t0)x11I x a A), z(t) a AS t e R,

defines a unique continuous function zs R -+F. We first establish that
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{ 5.6)	 n f(t) -f(to) -(t-t0) 011 S 11 "(t) -^(to) -n! (to) (t-t0) II

for It-t01 I S. In order to do this observe that

( 5.7)	 Il n(t) -A(tQ) -nf ( to) (t-t0) II - dH(n(gq n(t0) +( t-t0) A), t > t0,

and

(5.71 )	 Ils'(t) n( to)-n'( to)(t-t0)II - dR( A( t)+( ta t)A,n(to)), t < t0-

We only verify (5.6) for t > t0; the proof for t < to is similar.
If S > t-t0 > 0, then 20) implies that either f(t) -f(t0) E 0(t) h ft(to)

or f(t0) -f(t) a n(to) h 0(t) . If f(t) -f(to) a 11(t) h 2(to), then one

obtains (5.6) immediately from (5.7) and the identity,

dH( l(t), "( to) +(t-to)A) - dH(ft(t) h 0(to), (t-to)A) .

On the other hand, if f(to)-f!t) a fl(to) h Q(t), then (5.6) results

from (5.7) and the identity,

dH(n(t),n(to)+(t-to}A) ; dH(o,fT(to) h 2(t)+(t-to)A).

We also have the inequality,

11 f( t) -At 0 ) -(t-t0) Z(t0) Il g Il f(t) -f( to) -(t-to) Z(t) ll +l t-tol ll Z( t ) -Z(t0) Il
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and this combined with (5.6), hypothesis lo), and the continuity of z

at t  yield the conclusion that 11 f(t) -f(to) -(t-t0) z(to) it = o((t-tol) .

Hence f is differentiable at to and fl (to)(At) a AtA, At E R.

As was mentioned in Section 2 the completeness of the reflexive

nonmed linear space F does not imply that the corresponding nonmed linear

space f8(F) is complete, and this presents a minor difficulty when

discussing the integration of multifunctions [D-1]. Let I = [a,b]

be a compact interval of real numfcers and let m denote Lebesgue

measure on I. We want to discuss briefly some applications of the

differential calculus for multifunctions to integrals of multifunctions,

Sly I --► 7 F), where F is a reflexive Banach space. The integral as

defined by Debreu in [D-1] is essentially what will be used here.

However, in [D-1] Debreu is assuming that the multifunctions are com-

pact valued while requiring F to be only a Banach space. The main

results of section 6 of Debreu*s paper are needed here, and, indeed

those results are true for the situation which is discussed here. In

fact Debreu*s proofs can be used virtuall;i without change. We indicate

below how the results we need can be obtained in a little more direct

manner. First we shall consider S(F) to be a subspace of its com-

pletion IB(F), which is a Banach space. Thus we say ns I -^ <(F)

is integrable (Lebesgue measure m on I is understood) if n•

I -; r8( F) is integrable in the sense of [D-3, Chapter III], and

the integral of A is denoted by fp(t)dt or fa (t)dt.

Lemma 5.4. Let F be a reflexive Banach space, and let A: I 	 AF)

be integrable. Then f10(t)dt belongs to the convex cone m{I)3H(F) 	 {F).
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Proof. As we mentioned in Section 2, the completeness of F implies

.O(F) is complete. Thus ,Q(F) is a closed convex cone in r8(F), and

the lemma follows from the conv:xity theorem [B-3, pg. 2031.

Lemma 5.5. Let F be a reflexive Banach space, and let nt I -4-(F)

be integrable. Then there is a sequence of measurable simple functions

Sn: I -+ OF) such that 9n(t)	 a. e. on I and 11 Sn(t) [1 s

ll n(t) l! for every t e I. Moreover f Ill Sn(t) -n(t) JI dt -40 as n -.)w,

Proof. The first part is an immediate consequence of Corollary 1 (and

its proof) appearing in [ B-3, pg. 1781. The last result follows from

the preceding one and the Lebesgue dominated convergence theorem (see

[B-3.. pg. 1371 or [ D-3, pg• 1511) •

In view of the lemmas it makes sense to define fig(t)dt

to be the A e -Q(F) such that f IS2dt = < A, 0 >. The integral

fp(t)dt is connected to Aumann's integral [A-1], 14,?(t)dt

{ f If(t) dtl f: I -4 F, f(t) a O(t), yt a I, f integrable), by the fol-

lowing lemmas

Lemma 5.6. If F is a reflexive Banach space, and if Sts I -i3O(F)

is integrable, then fp(t)dt = j4p(t)dt.

Proof. Debreu's proof of 6.5 in [D-1] can be applied essentially

without change.

Theorem 5.3. If	 F	 is a reflexive Banach space, and if n: I -a Q(F)

is integrable, then the function	 t -* F(t) E fta(s)ds, t c I is conically

6
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differentiable almost everywhere on I. Moreover, if P(t) -j^A(s)ds,

then r (t0) (a) - afi(to) for almost every to a I.

Remark. Finite dimensional versions of this theorem have been given by

Bridgland [ B-41, Hermes [H-2], and Hukuhara [H-4].

Proof of Theorem 5.3 . The result can now be easily obtained from

Theorem 8 in [D-3,pg. 2171.

Theorem 5.4. Let E be a normed linear space, and let F be a reflexive

Banach space. Let a: I x E ->-Q(F) be a multifunction such that: lo)

For each fixed x c E. the multifunction t -+n(t,x), t e I is inte-

grable, 20) There is a set N CI, m(N) = 0 such that for each fixed

t e I\N the mapping x - n(t,x) is r-differentiable, and 3 0) There is

an integrable function (p-.I -4 R such that (lax(--^)11 ;6q)(t) for each

x e E, and t e I\N. Then the function x -+G(x) f Z )(% x) dt is r-

differentiable and G' ( x0) (AC) JI ^( t, x) (&) dt, for each xo, Lax a E.

Proof. We first verify that for fixed x,xo a E, the mapping t
Cya
Fdx`t,xo)(x-x0) is integrable. The assumption that for fixed t e I\N,

x i O(t, x) is 7r-differentiable implies that x -* S2(t, x) is Gateaux

differentiable, i.e.,

O(t,X +T (X-X ))A(t,x )
(5.8)	 lim	 ° n T	 ° _ ^ t, xo) (x-xo), t E I\N,

	

n -4W	 n

for any sequence T  A 0, Tn -i 0 as n -4 w. Thus (5.8) and 10), 20), 30)

imply that for fixed x, xo a E, t -+ M t, xo) (x-xo) is integrable. From
	 . I
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the mean value theorem [D-2, pg. 1561 one obtains that

(5.9) II ^( t, x) - A(t, xo) - ^ t, n) (x-xo) II 5

11x-nIIsuP('1 x t, 1)" X )xo) III € co{xo,x}}	 ^11x-xoll^(t), t € IV.

We also have that if n is any sequence in E such that xn -+ xo with
an

xn ^ xo, then II t2( t, xn) -"n(t, xo) - 
dx` t, 

n) ( x n) I) /II xA xol) i s a null

sequence for t e IAN. From the inequality,

( 5.10)	 II G(x) -a(xo) -f I dx' t, x) (x-xo) dtll s

f Ill si(t, x) —n(^, x„	 3x t, xo) ( x-x0) II dt,

inequality (5.9), and the Lebesgue dominated convergence theorem [ D-3,

dipg. 1511, we infer that f I[ II n(t, xn) -n(t, xo) - dx` t, xo) ( x xo) II 11) xn-x jj } dt

converges to 0 as n -^ -. Therefore the right hand side of inequality

(5.1o) is o(II x-xoll ), and the conclusions of the theorem follow.

We turn now to a few more examples..

Example 5.1. This example comes from linear control theory. Consider

the control system,

(5.11)	 1 a A(t)x + B(t)u,

where the n X n matrix function, t -+ A(t), t € [0, T], and the n X m

matrix function, t -; B(t), t € [0,T] are bounded and measurable on
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[O,T]. If us [0,T] -+ Rm is integrable, then there corresponds a unique

absolutely continuous function (response) x(-,u): [O,Tj -+Rn satisfying

(5.11) a.e. on 10,T 1 and the initial condition

x(O, u) = xo.

Moreover, there is an absolutely continuous fundamental matrix solution

of i = A(t)X, X(0) = I = n X n identity matrix, and the variation of

parameters formula gives

(5.12)	 x(t)u) a X( t) [ xo + foX1(9)B(j)u(9)d9].

Let aj,bi, j = 1,2p ... ^m be functions mapping [O,T] X Rp

into Rm and such that aj s bj ,	 1, 2,, ..., m. Then let fl: [ 0, T ] X

RP'-+,O(R) be the multifunction defined by

M
al(t, d.) = n [ a" ( t, )L), b^ ( t, X) ], ( t, X) e [ 0, T ] X Rp:

J=1

Let C([O,T],O) be the Banach space of all continuous func-

tions from [0,T] into Rn with the norm of uniform convergence on

[0, T]. In optimal control problems.the admissible integrable controls

us [019 T] -► Rm are often constrained by side conditions of the form

U(t) a n(t,X), t o [O,T] or u(t) a it(t,x(t,u)) (with p o n), t o

[O,T], or, indeed, by combinations of these two types of side condi-

tions. It is of some interest then to eonsidPr the multifunction

F: (0)I T] X Rp -OR(Rn) defined formally by the relation,
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(5.13)	 F(i,X) - X(t)[xo + j0x-1(^)B(^)^(^,^)dl,

where the intei al (if It exists) is understood in Debreut s sense des-

cribed above, ane 14 %ewise with p : n we consider the induced multi-

function Fs [0,.., X C([O,T],e) -4_Q(Tin) defined formally by the

relation

(5.14)	 tlx) - X( t)[ xo + foX 1F' (j)B(f)a(f,x( j))df].

We shall show that under suitable conditions dt`t,k) (resp. dt't,x))

exist a.e. on [ O,T] for each fixed X a Rp (resp, for each fixed

eFx e C([O,T],Rn)^ p - n), and	 (t, X) (resp. f4t,x)) exist for all

t € [O,T] and all X e Rp (resp. all x e C([O,T],Rn), p = n). We

giv! the assumptions only for the case of the multifunction ( t,x) -+F(t,x),

(t,x) € (O P T] X C([O,T],Rn) since the hypotheses needed to obtain the

desired differentiability result for the multifunction in (5.1.3) are

entirely similar. Taking p - n we require lo) For each fixed X € in

the functions t -i^ a3 (t,k), t -ibJ (t,X) j t e [0,T] are integrable;

20) There is an N C [O , T], m(N) = 0 such that for each fixed t e [O,T]\N,

X -+ aj (t, X), X -+ bj (t, X), X a Rn, ,j s 1, 2, ..., n are differentiable,

and 30) There is an integrable function T; [O,T] -+ R such that

^ 9X4 t.- X) 1 0 1 —_x	 6 T(t), t € [0,TI \N, X e in. Hence in view of

Example 3 .3, 0: [0, T] X in -> Q(RiII} satisfies conditions 10), 20), and

30) of Theorem 5.4. Now consider the multifunction f,(t,x) = n(t,x(t)),

(t, x) a [O P T] X C([ O, T], e) . One readily verifies that f. also satis-

fies the conditions 10), 20), and 30) of Theorem 5.4. Let us define
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Os [O,T] x R  -► -Q(.Rn) by 0(t,	 X-l(t)B(t)n(t,	 Thus if we in-

voke Corollary 5.1 and Theorem 5.4 we obtain

(5.15) g(t,x)(AX) = X( t) ft	 ( g ,x(g)) (r^x(^}}d^, x,tbc a C([O,T],Rn),

t E [010T].

By Theorem 5.3 we have that for each fixed x e C([O,T],Rn) the multi-

function t f©^(^,x(^))d^, t e [O,T] is r-differentiable a.e. on

[O,T], and the r-derivative can be calculated with the formula in

.Theorem 5.3. If X(t) _ (x (t))is such that each of the functions

t -* xi3 (t), t e [O,T], i,j = 1,2,...,n. changes signs only on a subset

of [0,T] of measure zero, then the multifunction t -+ X(t)f^'D(j,x(9))d1,

t c.[O,T] is also Tr-differentiable a.e. on [O,T]. The partial deriva-

tive dt`t,x) can easily be calculated, but the formula is tedious

because of the complications discussed in Example 3.2, and we therefore

omit the expression for(t,x). The condition that each x ij change

signs only on a subset of [O,T] of measure zero can be met if, for

example, t -► A(t), t e [O,T] is analytic, since in this case, t -+ X(t),

t e [O,T] . is analytic.

ExMle 5.2. Consider the differential inequality,

(5.16)	 A--g(t,x)11 _: f(t,x),

where g: R x Rn -* in and f: R x Rn -► R, f 9 0. Clearly, solving

(5.16) is equivalent to solving the contingent equation
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(5.16+)	 31(t) E F(t,x(t))

where F(t,x) r. (g(t,x)) + f(t,x)cn, where on is the closed unit

ball in 0. Thus according to Examples 3.1 and 3.2 the multifunc-
tion F arising in the contingent equation (5.160 is 7F-differentiable

(actually conically differentiable) on R X i n if both g and f

are differentiable on R X 0.

Example 5.3. Let a,b: R -4 R be continuous nonnegative functions.

Consider the scalar differential inequality

{5.17)	 0 S 3c(t) S a(t) + b(t)x(t), t Z to

x(to} = x  Z 0 .

Thus (5.17) is equivalent to the contingent equation

(5.17'}	 x(t) a F(t,x(t)), t k to

x(t%;	xo Z 0

where F(t,x) F. [O,a(t)+b(t)x], t e R, x k 0. We use t -► x(t,te 0),

t k to to denote a solution of (5.17) or (5.17 1 ). From Gronwall's

inequality we have that

42

( 5.18)	 x  9 x(t, to,. xo) S k( t, to, xo), t k to, xo k 0
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where

(5.18') k(t ) to,xo) = x0+ft s( e)as + ft	 0ds[(x+ft a(^)d^)b(s)}exp(j$b(j)dj),
0	 0	 0

for t k t0, x0 k 0. Let 0(t, t0, x0) s ( y - x(t, to, xo) I t -► x(t, t0, xo)

satisfies (5.171 )), t k to, x0 k 0. From (5.18) and (5.18 1 ) we have

that O( t, to, x0) CC xo, k( t, to, x0) ], t k to , x0 k 0. Conversely one can

establish that x0 and k(t, t0, x0) belong to 0(t, t0, x0) for t k to,

x0 a 0. The convexity of 0(t,t 0,x0) then implies the reverse inclu-.

Sion @( t, to) x0) : [ x0, k(t, t0, x0) J, t k to, x0 Z 0. Thus 0(t, to, x0) e

[x 00  k(t, to, x0) ), t ? t0, x0 k 0. From the representation in (5.181)

(tot OP x0) -r k(t, t0, x0), t i t 	 k 0 is differentiable. Consequently

(to t op R0) —# ,D(t) t0) x0), t k t 	 k 0 is n-differentiable, and since

0(t, to, x0) _ [ x0, k(t) to, x0) J one can calculate ^' (t, to, xo) (4t' At of Ax0)

according to Theorem 3.2 of Example 3.3. We can summarize this example

as follows: if a,bs R -► R are continuous nonnegative functions, and

(t, to, x0) -► ,D(t, to, xo), t k to, x0 1: 	 is the multifunction defined

above; then 0 is 9r-differentiable, and 0+ can be calculated from

Theorem 3.2.
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