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SUMMARY

The motion of matter inside the Earth's magnetosphere
is investigated in this paper. It is shown that at
flow with free boundary inside the magnetosphere, there
sets in an eddy current, whereupon the matter velocity
changes sign as it passes through the frontal point.
As an example, the structure of the vortex flow is in-
vestigated in the incompressible fluid with forbidden
zone having the shape of a cylinder or a sphere. In-
vestigated also is the quasi-hydrodynamic flow in the
vicinity of the frontal point.

As is shown in [1], in the quasi--hydrodynamic approximation at super-

sonic flow past the dipole, a forbidden zone is formed, which, may be iden-

tified with the Earth's magnetosphere. The flow structure outside the for-

bidden zone in the equatorial plane of the magnetic field is investigated by

the method of consecutive approximations; however, inside the forbidden zone

this method is impracticable [1]. As is to be expected, an eddy current forms

inside the forbidden zone, which in the vicinity of frontal point is topologi-

cally similar to the flow outside the forbidden zone, and roughly speaking,

appears to be the specular reflection relative to a smaller portion of the

boundary near the front point. If the instabilities of such a motion are

suppressed by the nonlinear interaction and the boundary of the forbidden zone

is present, the vortex flow, which may be interpreted as a fountain effect in

the forbidden zone, induces a convective motion in the tail of the Earth's

magnetosphere. The hypothesis on convection in the magnetosphere tail [2] is

connected with an unknown mechanism of "viscous-like interaction" with solar

Y

wind; however, it is quite clear, that the acceptance of the existence of such

a mechanism is superfluous.
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In the present work, some peculiarities are investigated of such a flow

within the Earth's magnetosphere in a series of models; examined in particu-

lar is the structure of the vortex flow of an incompressible fluid, excit d

witbin the forbidden zone in the shape of a cylinder or a sphere, when flown.

at infinity by a uniform stream. Studied here also is the so called frontal

point instability, which leads to generation of acoustic waves.

CONTINUITY OF VELOCITY AT THE BOUNDARY OF FORBIDDEN ZONE. We shall de-

fine as the frontal point an isolated point at which the velocity vector of

the fluid vanishes. We shall define the boundary of forbidden zone, or for

brevity, as the boundary, the geometrical position of current lines, to which

the frontal point pertains.

We shall define the regions of the fluid lying on various sides of the

boundary, as the inner and the outer, and the physical quantities pertaining

to these regions will be respectively denoted by the indices 1 and 2. Let
us note that generally speaking, for the inner and outer regions, the frontal

points could be different though actually lying in the same surface, which is

the boundary. The equation of motions inside the inner and outer regions may

be presented in the form.

	

avi d 1 api	 49V?, 1 ant
Vi ^^	 P, ax	 O' 

v2 
Ok + P2 as —" 0'

where a is the coordinate along the current line (in parametrical representa-

tion the current line is x = x(a), y = y(X), z = z(a)); v, p, E are respectively

the absolute value of the velocity, the density and the pressure of the fluid.

Let us call trivial the case when the velocities v l and v 2 along the current

line do not depend on X.

Let us demonstrate the following theorem: with the exception of the

trivial case, the velocities on both sides of the boundary of the forbidden

zone are identical, only when the densities are the same.

Let the velocities v l and v2 be identical along the boundary. Inasmuch

as in the state of equilibrium the pressures p l and p2 are identical along

(1)
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the boundary, it follows from the expressions (1) that with the exception

of the trivial case, pi = p2.

On the contrary, let the densities pl and p2 be identical. Then, as

follows from expressions (1), in the state of equilibrium along a certain

current line, the following relations are fulfilled

ov,	 OV2
Vi 01^ 

V2, ax '	 (2)

V? --- V2z = C,	 (3)

where C is a constant. Let us note that, according to (3), if the velocities

v l and v 2 are identical at any point of a certain current line, they are iden-

tical everywhere over the same current line. Let us examine the frontal point

of the inner region. According to definition the velocity v l vanishes at this

point. Then, as follows from relation (2), at the frontal point of the inner

region, we have either v 2 - 0, or av 2 /aa = 0. If v2 = 0, the frontal points of

the inner and outer regions coincide, C = 0, and the theorem is demonstrated.

Let us examine the second case. As follows from (3), C < 0. Now let us

examine the frontal point of the outer region. At this point v2 = 0, and ana-

logous discussions lead to the conclusion that C > 0. Hence C = 0, and the

theorem is demonstrated.

SIMPLIFICATION OF TWO-DIMENSIONAL QUASI-HYDRODYNAMIC CS' EQUATIONS. The

quasi-hydrodynamics equations may be represented in the form [1]

i
GV3 — Ma 0V, d v WC — 0,

where ^ is the velocity, related to the velocity vo at infinity; T is the

density, the magnetic field or the square root of the pressure, related to the

corresponding values po, Bo or /P'_0 at infinity; M = vo/it.2po/po + Bo z / Onpo)
is the Mach number (the magnetic lines of force are directed along z, a/az = 0).

Eqs. (1) describe a twG-dimensional flow of compressible gas with adiabatic

exponent 2; and to them we shall apply the usual mathematical pparatus of gas

dynamics, in particular, the abovemention theorem. The quantity ; 2 /2 + ^/M2
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is a function of the current line, but in the absence of vortex this value

constitutes an invariant (Bernul1A equation).

A single unknown quantity can be eliminated from the system of Egs.(1).

Let us introduce the function of current Q determined by the relation

^A=VQXk,

where k is the unitary ort along z. Then the irrotational plane quasi-hydro-

dynamic flow is described by the system of equations.

(1112 + 2)T? =- wrpl + AP (grad Q) 2, cpAQ -- (vgVQ) = 0,

and the vortex flow by the system of equations

gnt^p clivrgraQ	
^'
 nclI 

2
i (^^ 4 ! \ 1112

Egs.(4) describe approximately the supersonic flow of solar wind past

the geomagnetic dipole in the geomagnetic equatorial plane [1]. We have de-

monstrated that in the state of equilibrium there exists within the forbidden

zone (the magnetosphere) a certain current. If in the outer region of the

examined magnetospheric model the flow of solar plasma is irrotational [1],

inside it the corresponding flow is vortical, inasmuch as the integral, taken

from the velocity over a certain current line is not zero (Fig.l, where arrows

indicate the direction of the flow of matter).

Let us designate such motion of matter as a foun -

tain effect in the forbidden zone. Thus, at least within

the framework of quasi-hydrodynamic model, the convective

Imotion in the Earth's magnetosphere

(4 )

Fig. 1.
0	 X

Fig. 2.

is the consequence of gas-dynamic

flow with free boundary and it is

not linked with the presence of "vis-

cous-like friction" mechanism, as

was assumed in [2]; the tangential plasma velocities on both sides of the magneto-

sphere boundary are identical and the front points coincide.



5

The investigati n of vortex flow of matter inside the Earth's magneto-

sphere, even within the framework of two-dimensional quasi.-hydrodynamics con-

stitutes a complex problem of gas dynamics, whereupon it is unknown, whether

there exists a single solution. The vortex flow in an incompressible fluid,

excited by a uniform flow at infinity, within the forbidden zone having the

shape of a cylinder or a sphere r is considered in the Appendix. As a conse-

quence of simplicity of geometry and boundary conditions, obtained from the

solution of the outer problem, it is possible to construct an analytical solu-

tion of the stated problem in both cases. In the case of two-dimension geometry

(cylinder) there exists a countable set of solutions, while for the sphere only

a single one is obtained. Both examined cases are precise solutions of non-

linear equations in partial derivatives of third order with assigned distri-

bution of velocity and pressure at the boundary of the forbidden zone and may

serve as .11ustra + .ions for the recently worked out theory on the nonuniqueness

of solution of problems of plane hydrodynamic vortex flows (3).

Thus, the equations of hydrodynamics for an ideal fluid admit solutions

with a forbidden zone in the shape of a circle or a sphere, whereupon there

exists inside the forbidden zone an eddy with closed current Hines without

singular points. However, as is shown below, such formations are unstable.

In the vicinity of the frontal point, exponentially accruing acoustic waves

are excited.

INSTABILITY OF THE FRONTAL POINT. Let us investigate the instability of

the frontal point in standard hydrodynamics. In the assumption of process'

adiabaticity the bask equations have the form

r
P L ^dt 

+(wV)w	 _"Vp,	
fit' 

+ divpw ==0, pp-V const.
(5)

Here p, p, w, are the density, pressure and velocity of matter; Y is the adia-

batic exponent. For simplicity, let us examine the two-dimensional perturbations

in the vicinity of the frontal point of a two-dimensional flow. In the state of

equilibrium in the neighborhood of the frontal point uO = bx, vo = -by, po =

_ Po _ 1 h"(•x" + y"), where the unperturbed quantities are marked by zero index;
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b is a constant, po and Po are the density and pressure at the frontal point;

u and v are the projections of the velocity w on the axes x and y O/h - 0).

Denoting the corresponding small perturbations without subscripts and linearizing

Eqs. (S) we obtain

P° V p — (Y ^. ' ^) P quo,

	

Lit 
+ (NN' V	 NN`v ) W - `" y Po

	 poof

OP + div(puw + ONVO . 0,
(b)

If we are to assume the time dependence for the perturbations in the

form exp (iwt), where w is a complex quantity and substitute the unperturbed

values of velocity and pressure for a plane flow in the neighborhood of the

frontal point, Egs.(6) will take form

OW	 UW
iwpow + bpo(u --v)+ bpo

Cx ax `_' Y ^y^ =

	

Vp4	 1 b2 ( xz + V) I O P + (v ---1) b2rp,

	

L n	 _fP	 (7)
a

imp + po
M

. ^-
av

! + b
r

^ ap -' y y =01
 '	 ` ax	 ^y

4
where r is the radius-vector in the plane z - const

Let us examine the perturbations of small wavelength. Using the method

of geometrical optics, let us take the dependence of perturbations on coordi-

nates in the form exp(—S 1cdr ), where k is the wave vector, and the integral is

taken over the optical path. Then, taking this dependence into account and

equating to zero the determinant of the homogenous system of Egs.(7) at the

frontal point x = y = 0, we obtain the dispersion equation

( W 2 +b2) w —loco% ^ -- /ccoz (1^;12 — ^^, i,')	 0,	 (8)

where co x = 'YPo/po is the speed of sound at the frontal point whence, in the

assumption of smallness of increment accretion 6 = Im w by comparison with

Re w , we obtain
bk2—lc2

m - cok,, 6	 -	 ,
2	 V	

(9)



whereupon, according to assumption b << W. Thus, for ky y kx there is in--

stability at frontal point, connected with the generation of acoustic waves.

Actually the frontal point may be considered as the source of sound.

The acoustic wave propagating from the frontal point in the direction of

positive and negative x, can only accelerate the fluid, while the acoustic

wave propagating from the frontal point in the direction of positive Y, can

only decelarate it (Fig.2; the region of exponentially accruing waves is

crosshatched, while arrows denote the direction of fluid motion). As the

energy is preserved, in the first case the wave must damp, in the second

case it must accrue, which is found to be in accordance with (9).

It must be noted, that in the examined problem on the excitation of

vortex flow in the cylinder, each consecutive root of Bessel's function adds

more frontal points in the forbidden zone (Appendix). On the other hand, as

is shown above, there is always instability at the frontal point. Therefore

with the appearance of such ambiguous solutions instability always sets in,

which agrees well with the results obtained by the method of linearization

of hydrodynamic equations in the work [3].

Let us examine the instability at the frontal point of a two-dimensional

quasi-hydrodynamic flow (the magnetic lines of force appear as straight lines

and are directed along z, a/az = 0).

N 
a
W+(w©)w 1 — Q P+ 8n/

P	 Op	 .i	 a a	 B
p.1 _	 at

+div pw=O,
se p	 p	 (10)

If we assume the time dependence in the form exp(lwt), and denote, as previously,

the perturbed and unperturbed quantities respectively with letters without sub-

scripts and with a zero index and if we linearize Egs.(10), we shall obtain the

following	
^

P = Po P +-- 
J

, flop -}- div(pwo + pow) = 0,
Go /O

to	 Ito `	 i	 /	 Bo	 Bo	 !

po\ 
13 -- 

Po n) + Po (
Wo v) !3 — o 

P ) +( ,U_
'   	 po ,))(woQ)0,
 p	 (11)

(+ +(	 ) +( )	 p w )	 V 1

p+ D a\.
pa ww wo0 w tvQ wo -f° ( oV wo — -- ` 	 /)

.
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Assuming for perturbations the abovementioned dependence on coordinates,

the system of Egs.(11) may be rewritten for the frontal point in the form

pollww + b(u — v)1 wa ikcoxp, 	 cap as po(kw),

where u and v are the projections of vector w on the axes of ccardinates x
and Y; b - Wax = —Dv/By (the partial derivatives are taken at the frontal

point),

Cox •m 2 
Pe + X10x

ps 4apo

p Q , po and $p are respectively the unperturbed density, the pressure and the

magnetic field at the frontal point. In this case the dispersion equation

has the same form (A), with the only difference that velocity co is given by

formula (12). Consequently, the frequency w and the increment of instability
accretion 6 are given by the expressions (9). Here the instability at the

frontal paint is linked with the perturbation of magneto-acoustic wave, pro-

pagating at right angle in the direction of magnetic lines of force.

In this way, the supersonic flow of solar plasma near the geomagnetic

dipole has certain peculiarities. First of all, a shock-wave and a forbidden

zone or the magnetosphere are formed, which could be simultaneously obtained

within the framework of quasi-hydrodynamics (l). Secondly, inside the for-

bidden zone a vortex flow is excited. The investi gation of the structure of

such a flow constitutes a complex problem of gas dynamics. In the close

neighborhood of the frontal point the solution may be obtained with the aid

of power series. In fact, in magnetosphere the fountain state differs sub-

stantially from the vortex flow of an incompressible fluid in the examined

models of forbidden zone (circular cylinder or sphere). In the vicinity of

the frontal point, instability always exists and the acoustic waves are per-

turbed; as is shown by the experiment on cosmic objects, the instability of

the frontal point of the magnetopause leads to the formation of a transitional

turbulent zone.

I express my gratitude to M.L. Levin for the discussion of the results

of this work.

0

(12)
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A P P E N D I X

VORTEX FLOW OF AN INCOMPRESSIBLE FLUID IN A CYLINDER AND A SPHERE

Assume that a forbidden zone has arisen in a uniform flow of an incom-

pressible fluid, with a shape of a circular cylinder. Let us examine the

flow outside the cylinder with a uniform stream, directed at infinity along

the axis x, and the vortex flow inside the cylinder in the absence of singu-

lar points. At boundary circumference the tangential velocity and pressure

are continuous. Let us introduce a cylindrical system of coordinates with

origin at the center of the circle; from the solution of an extraneous problem:,

it is known that on the circumference r a a (a is the cylinder radius) v^

sin ^.

If we introduce the function of current Q with the aid of the relation

v = rot (Qk) = VQ x k, equation rot (v x rot v) 0 will take the form

	

VQ x VAQ M 0	 (1)

Let us seek the solution of the intrinsic problem in the form

Q = J(r) sin (P.

Substituting relation (II) in (I) we obtain the equation

1 d 

l
( r d/ 

I ..^ f.,	 CJ,	 (III )
r dr	 dr	 rz

of which the solution satisfying the condition of absence of singular points

in the investigated region is given by the Bessel function f(r) = AJ 1 (r r).

Inasmuch as at cylinder boundary the frontal point exists, function

f(a) = 0, whence ar - v i m, where vim is the m-th root of Bessel function Ji(x).

From the solution of the extraneous problem follows the boundary condition on

0
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the upper semicircumference vo - --2voo sin Won is the flow velocity at infinity) ;
this condition yields A = 2avw/V 1 mJ1' (Vlm).

Thus, the solution of the problem has the form

2ay..
Q	 (!-,,Ari=.^--.-----, I,

VIM,o(Vim)	 a

Let us find the pressure distribution inside the cylinder. It is obrious

that	

o. ,QVQ Z V(VQ)2.

Inasmuch as according to (III), VQ - -CQ, this equation may be integrated, and

we finally obtain

P+ 2 .^,i {	

L
sin' 

^ 1021 

V-1 in r) +>>z Vi
m 

r )J +10 1 (vim )

	

a	 a

V1	 PM

+ coal T	 rr=vi ,,, = 	a	 P	 2

where p. is the pressure at infinity.

th
Suppose that forbidden zone is a sphere and that the velocity of the

incompressible fluid at infinity is directed along the axis z.

Let us introduce a spherical system of coordinates with origin at the

center of the sphere and polar axis z, and a function Q determined by the

relation v s rot (Q ;)

Instead of (1) we obtain the following equation:

a	 i	 ai a s 	 i s	 i a
sin 0 '

or { sin 0 80 (
sin OQ) 

7 ar= ( ►Q) + ŝ a8 sin 0 a0 (	 ^) }}

a	 i s1 a=	 1 a	 i	 a
—. rQ	 sin 0(^

do(̀  r 8r (^) r ar=( )+ r= 80 [ sin8 a0 	 (IV)

It is easily seen that the functiot Q is/^akith the function of current ^ by the

relation r sin 9Q - *. With irrotational streamline flow past the sphere,

uniform at infinity, whose velocity v^ is directed along z, we have
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!	
^ ' 1 3 1 ^^ ..... 2 	 I J

where a is the radius of the sphere. Therefore analogously with (II), we

shall seek the solution of the intrinsic problem in the form Q - R(r) sin 8.
I

Then (1V) is reduced to the ordinary differential equation

! d=	 2H
Cr,

r dr-	 r"

whose solution satisfying the condition of absence of singular point at the

origin of coordinates and the condition R(a) - 0, is given by the form

r-
R(r) = Ar !	 ,

a'

The velocity distribution on the surface of the sphere follows from the

solution of the extraneous problem and is characterized by the expression

v0 _ — 3/2v. sin 6.

Equating the tangential velocities inside and outside, we ultimately

obtain A s —3 4v.,,,

Q= 3 c s r^ 1— ry 1 sin 0.
4

The distribution of pressure inside the sphere has the form

PV x	 g	 r=	 r `	 1ro	
V " 1rr !+_- `	

r
i lII- 't- l- aZ )

 COS

P — P.+ 2	
8 P ..-K	

/	 \	 Jt	 a_	 ac

where p.0 is the pressure in the flow at infinity.

*** THE END ***

Institute of Radioengineering 	 Manuscript received

of the USSR Academy of Sciences 	 2 July 1967.
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