N6 _____

ANALOGIES BETWEEN EM AND ACOUSTIC WAVES*

By

H. S. Hayre and G. Vroulis

TR-68-19

Department of Electrical Engineering Wave Propagation Laboratories

UNIVERSITY OF HOUSTON Cullen College of Engineering 3801 Cullen Boulevard Houston, Texas 77004

November, 1968

*This work is sponsored by NASA Manned Spacecraft Center, Houston, Texas, under Contract NAS 9-7320.

Introduction

The purpose of this report is to summarize the results of a considerable amount of work in the field of acoustic simulation of radar return so that the reader may be readily confident about the validity of this inexpensive laboratory tool.

Acoustic simulation readily permits experimental verification of scatter theories which would otherwise be costly and time consuming.

Wave Equations

- -

Flectromagnetic	Acoustic
$\nabla \mathbf{x} \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial \mathbf{t}}$	$\nabla P = -\beta_1 \frac{\partial u}{\partial t} ,$
$\nabla x H = \epsilon \frac{\partial E}{\partial t}$	$\nabla \cdot \mathbf{u} = -\mathbf{K}_{l} \frac{\partial \mathbf{P}}{\partial t}$

.

for plane sinusoidal waves in the x-direction:

$\frac{dEy}{dx} = -i\omega\mu Hz$	1	$\frac{dP}{dx} = -i\omega Qun$	
$\frac{dHz}{dx} = -i\omega_{\rm F}Ey$	1	$\frac{\mathrm{d}\mathbf{u}_{\mathbf{X}}}{\mathrm{d}\mathbf{x}} = -\mathrm{i}\omega K_{l} P$	

taking the divergence of (1) and the substitution of (2)

$\nabla^2_{\rm E} = \mu \in \frac{\partial^2_{\rm E}}{\partial t^2}$	$\nabla^2 \mathbf{P} = \rho_l \kappa_l \frac{\partial^2 \mathbf{P}}{\partial t^2}$
$\nabla^2_{\rm H} = \hbar \epsilon \frac{\partial^2_{\rm H}}{\partial t^2}$	$\nabla^2_{u} = \rho_t \kappa_t \frac{\partial^2_{u}}{\partial t^2}$

where

E = electric field vector	P = pressure field scalar
H = magnetic field vector	u = particle velocity vector
ϵ = dielectric constant	ρ_t = density of the medium
μ = permeability	K _t = compressibility of medium
Simulation of electromagnetic wa	ves using acoustic waves is always
feasible when their respective b	oundary conditions are nearly the

same.

BOUNDARY C	ONDITIONS
Electromagnetic $\overline{2}$ $\overline{4}$ $\overline{6}$	Acoustic n P_1, P_2, P_3 P_2, P_3, P_4 P_2, P_3, P_4 P_2, P_3, P_4
Most General Form	Most General Form
$ \vec{n} \times (\vec{E}_1 - \vec{E}_2) = 2 $ (1) $ \vec{n} \times (\vec{H}_1 - \vec{H}_2) = 3 $ (2)	$P_{1} = P_{2} $ (1) $\bar{n} \cdot (\bar{U}_{1} - \bar{U}_{2}) = 0 $ (2)
When:	<u>When</u> :
M_1/M_2 = Dielectric/Dielectric Q = 0 $J_s = 0$	$M_1/M_2 = \text{Liquid/Liquid} \qquad P_1 = P_2$ $\vec{n} \cdot (\vec{v}_1 - \vec{v}_2) = 0$
$M_{1}/M_{2} = \text{Dielectric/Perf. Cond. } Q \neq 0$ $6 = co \tilde{E}_{2} = \tilde{H}_{2} = 0 \qquad J_{s} = 0$	$M_{1}/M_{2} = \underset{\text{Rigid}}{\text{Liquid/Solid}} P_{1} = P_{2} = 0$ $\overline{n} \cdot (\overline{U}_{1} - \overline{U}_{2}) = 0$
$M_1/M_2 = Dielectric/Imp. Cond. Q \neq 0$ $\delta = finite$ $J_2 = 0$	M_1/M_2 = Liquid/Semielastic $P_1 = P_2 = 0$ Solid $U_{total} = U_t = 2U_{incident}$
Perfect $M_1/M_2 = Conductor/Imp. Cond. Q \neq 0$ $\overline{E}_1 = \overline{H}_2 = 0$ $J_s \neq 0$	$M_{1}/M_{2} = \begin{array}{c} \text{Solid/Elastic} & P_{1} = P_{2} = 0\\ \text{Rigid Solid} & \\ \overline{n} \cdot (\overline{U}_{1} - \overline{U}_{2}) = 0 \end{array}$
Conductors	Solid Surfaces
Perfect Conductor: o .> co	Rigid Surface: $\mu \Rightarrow \infty$
Imperfect Conductor: $\sigma = finite$	Elastic Surface: μ = finite
Insulator: $\sigma = 0$	Liquid Surface: $\int t = 0$

-

. . .

Ţ. •

.

• •

.

. ו

- - - - - - -

For the EM and, Acoustic field \overline{n} is a unit vector normal to the surface. The equations state that the tangential components of \overline{E} and \overline{H} are continuous across the boundary as are the pressure P and the normal component of the particle velocity $\overline{}$.

Boundary conditions at a perfect conductor require the tangential electric field to be zero and the tangential magnetic field to be two times the incident field. On the other hand at a perfectly elastic wall (pressure release surface) the dynamic pressure is zero and the normal component of the total particle velocity is twice the normal component of the incident particle velocity. In each of these situations there is no wave propagation beyond the interface.

When a plane electromagnetic wave is normally incident on a perfectly conducting plane surface, the field components are both parallel to the surface and the electric field component can be made equivalent to either the pressure of the particle velocity in the acoustic wave using a perfectly elastic boundary in the first case and a perfectly rigid boundary in the second.

For nearly smooth surfaces, the surface characteristic constant 1 B = 0, and (3.15) gives the scattering coefficient. This result compares very closely with published results [Nielson, 1960] for new ice as shown in table 2

For rough (not *namely* smooth) surfaces, (3.14) describes the relationship of the scattering coefficient σ_0 and other variables such as the angle of incidence θ wavelength λ , standard deviation σ and surface covariance constant B, etc. Two curves of the scat-tering coefficient σ_0 versus θ for each of the three values of λ/B , 0.1, 0.5, and 1.0 for σ/λ equal to 0.05, and 0.1 are shown in figure 4. It may be noticed that as the surface becomes rougher, or as λ/B increases for a specified λ , the scattering coefficient curve becomes flatter, showing the relative importance of the contribution of the power return from the surface at angles other than those near zero. As expected, when the surface becomes smoother or 1_1B decreases, the received power seems to come primarily from near-zero angles. These curves are quite similar to those recently published [Campbell, 1959; Dye. 1959; Edison, 1960] The experimental data [Nielson, 1960] on desert and new ice also seems to follow the pattern of these theoretical curves described above.

The scattering coefficient (σ_n) for nearly smooth surfaces is inversely proportional to the wavelength, but varies directly with (σ^2) , $(\theta \cot^{\dagger} \theta)$ and 1/B, where σ , θ , B are standard deviation, angle of incidence, and the terrain characteristic constant respectively. For rough surfaces it has a negative exponential $\sigma^2 \cos^2 \theta$

factor, where the exponent is made up of $\frac{\sigma^2 \cos^2 \theta}{\lambda^2}$

times a constant. The surface characteristic constants B and σ can be calculated from the radar return data. Although approximate, the theoretical results agree well with the experimental data; and therefore, suggest the usefulness of the approach. The application of these results may be extended to the moon-echo data, with proper corrections for Faraday and liberation effects, etc. This investigation has established that for near-vertical incidence, the normalized autocovariance for the terrain elevation is more often of the exponential form exp (-|r|/B) rather than the Gaussian form, exp $(-r^2/B)$. The former may well be more appropriate for finer extrain irregularities than those considered in this

FIGURE 4. Southering coefficient vorum the angle of uncidence.

Comparison of theoretical versus experimental scattering coefficient

(Normalized)							
6 0	on Theoretical	🐢 Experimental					
30 -40 50 60 70	1 000 - 0 291 - 0 381 - 0 29 - 0 98 - 0 9	1 000 0.308 089 .464 . 609					

H S HAYRE & R.K. HOORE. Theoretical Scattering Coeffor <u>hear Vertical Incidence From Contour Maps</u>, Journal of Research Vol. B5D, Sept-1961 pp 431.

The distinction between beam width

and pulse-length limiting of the illuminated area is a function of altitude and is given by

$$1 + \frac{v \cdot r}{2h} = \sec \theta_{0} \tag{6-1}$$

where

Relative Mean Pressure Amplitude

V is the velocity of propagation,

7 is the pulse width,

h is the altitude, and

Og is the effective half-angle of the antenna pattern.

Signal ve Altitide over Smooth Surface (EDISON, 1961)

Mean Scatter-Power Signal

Lighter de Mary e

Angle of incidence

n

Angle of Incidence, 0

(EDISON, 1961)

Terrain	Target Base	Sand Particle size, wavelengths	Distance Between Particles, Wavelengths
Woods	Plywood	1-2	0 - 1/2
Parmland	à	1-2	1 - 5
Desert	•		* * * * * *
Cities	" (buildings) [®]	$\frac{1}{7}$	1 - 5
Water (smooth)	galv. steel		3 - 5
Water (rough)	• •	$\frac{1}{2}$	1 - 2
Mountains	" " (shaped)	$\frac{1}{2}$	1 - 2

TARGET RECOMMENDATIONS (EDISON 1961)

.

· •

~

^aBuildings are pine blocks cut to size.

ζ,

^bSteel can be formed into appropriate contours.

It should be observed that the slope of the radar backscattering cross section curves is important in modeling practice. The absolute level of the curves can be increased or decreased by proper scaling.

<u>ي</u>۳.4

Median scattering curves for a relatively smooth surface on the Salton Sea in California. The air over the target was quite calm at the time of the flights. (EDISON, 59)

(EDISON, 1959)

buildings were built of brick, flat roofed, and several stories tall. (EDISON, 1959)

(LOISON (59)

- - -

A COUSTIC SCATTERING FRON THE SEA

Geophysical Research, Vol. 70, No. 16, (August, 1965), pp. 3831-3839.

REFERENCES

- Abramowitz, W., A. Crews, and R. Erath. Ocean Surface Reverberation: Surface Interface Scattering. Grumman Research Department, May, 1966, Report No. RE-252.
- Bechtel, M. E. Scattering Coefficients for the Backscattering of E. M. Waves from Perfectly Conducting Spheres. Cornell Aeronautical Laboratory, Inc., Buffalo 21, New York, December, 1962, pp. 7-11.
- Doolittle, R. D. and H. Uberall. Journal of Acoustical Society of America, Vol. 39, 1966, pp. 272-275.
- Edison, A. R. <u>An Acoustic Simulation for Modeling Backscatter</u> of Electromagnetic <u>Waves</u>. September, 1961, Technical Report EE-62.
- Edison, A. R., R. K. Moore, and B. D. Warner. <u>Radar Return at</u> <u>Near-Vertical Incidence</u>. September, 1959, Technical <u>Report EE-24</u>.
- Goodrich, R. F., B. A. Harrison, R. E. Kleimnan, and T.B.A. Senior. <u>Diffraction and Scattering from a Sphere</u>. Air Force Cambridge Research Laboratory, Bedford, Massachusetts, December, 1961, Report 3648-1-T.
- Hagn, George. An Investigation of the Direct Backscatter of High Frequency Radio Waves from Land, Sea Water, and Ice Surfaces. (1962) STANFORD RESERVENTIVE, CALIFORNIA
- Harrison, C. W., Jr., and R. O. Heinz. <u>On Radar Cross Section of</u> <u>Rods, Tubes, and Strips of Finite Conductivity</u>. Scandia Corporation...Monograph, July, 1963.
- Hickling, Robert. An <u>Analysis of Echoes from a Solid Elastic</u> Sphere in Water. California Institute of Technology, Technical Report No. 85-20, March, 1962.
- Kleinman, R. E. and T. B. A. Senior. Diffraction and Scattering from a Cone. Air Force Cambridge Research Laboratory, Bedford, Massachussetts, January, 1963, Report 3648-2-T.
- Lindsay, R. B. <u>Mechanical Radiation</u>, McGraw-Hill Book Company, New York, 1960, pp. 101-105.
- Lorden, A. L. Backscattering of E. M. Waves from Spheres and Spherical Shells. Air Force Cambridge Research Center, Cambridge, Massachussetts, 1952, Technical Report No. 15, pg. 36.

- Marsh, H. W. "sound Reflection and Scattering from the Sea Surface". Journal of the Acoustical Society of America, Vol. 35, No. 2. (1963)
- Tauconkin, P. Journal of Acoustic Society of America, Vol. 21, 1949, pp. 612-616.
- Thomas, D. T. Approximation for Backscatter from Dielectric Sphere. Antenna Laboratory, Ohio State University, Report 1116-14, October, 1961.
- Uberal, H., R. D. Doolittle, and J. V. McNicholas. "Use of Sound Pulses for a Study of Circumferential Waves", Journal of Acoustical Society of America, Vol. 39, No. 3, 1966, pg. 576.
- Ugincius, Peter. Creeping Wave Analysis of Acoustic Scattering by Elastic Cylindrical Shells. U. S. Naval Weapons Laboratory, Dahlgteh, Virginia, February 26, 1968, Technical Report.
- Weeks, W. L. Electromagnetic Theory for Engineering Applications. John Wiley and Sons, Inc., New York, 1964, pp. 516-523.
- Clarke, Kenneth K. "Fading Channel Simulators," Proceedings of the IEEE, 1966, pg. 83.
- Chapin, E. W. and W. K. Roberts. "A Radio Propagation and Fading Simulator Using Radio-Frequency Acoustic Waves in a Liquid," Proceedings of the IEEE, 1966, pg. 1072.

	•
Acoustics (Lig/Solid)	EMW (General)
$c^2 \qquad \frac{\lambda + 2\mu}{3}$	$\frac{1}{\varepsilon \omega}$
<pre>C = Velocity of Propagation (longitudinal)</pre>	
$b^2 = (shear) \mu/f$	
$v^{2} + k^{2} = 0$	$\overline{\nabla^2 E} + k^2 E = 0$
$\overrightarrow{V} = \nabla \phi + \nabla X \Psi$	$\vec{E} = -\nabla\phi + \frac{\partial A}{\partial t}$
SNELL'S LAW	
$k_1 \sin \phi_1 = k_1 \sin \phi_{11} =$	$k_1 \sin \phi = k_{11} \sin \phi_{11} = k_2 \sin \phi_2$
K ₂ siny ₂	
$Z_i = fc \sec \phi_i i = 1$	$\sqrt{\frac{\mu}{\varepsilon}} \sec \phi \qquad \text{Vertical} \\ \text{Polarization}$
$z_{sh} = z_t$ fb sec y	$\sqrt{\frac{\mu}{\varepsilon}} \cos \phi \qquad \text{Horizontal} \\ \text{Polarization}$
Reflection Coefficient (longitudinal) $V = \frac{Z_{tot} - Z_{i}}{Z_{tot} + Z_{i}}$ i = 2	$R = \frac{z_2 - z_1}{z_2 + z_1}$
Transmission Coefficient W = $\frac{1}{2} \frac{2(Z_1 \cos 2\gamma_2)}{Z_{tot} + Z_1}$ (longitudinal)	$T = \frac{2Z_2}{Z_1 + Z_2}$
i = 2	
Transmission Coefficient = $\int_{1}^{2} \frac{2(Z_{t}\cos\gamma_{2})}{Z_{tot} + Z_{i}}$ i (shear)	L = 2
$z_{tot} = z_1 \cos^2 2\gamma_2 + z_t s$	$\sin^2 2\gamma_2$
$z_i = f_i C_i / \cos \theta_i$, $z_t = f_i$	2 ^b 2/cosy2

COMPARISON OF REFLECTION TRANSMISSION COEFFICIENTS

·-----

.

٠

 μ , λ are Lame constants

AFPROXIMATE COUNT OF RCS MCS PEAKS (1-1121 N. NO-PAT SCAT PACILITY PRODUCT (1013)

.....

•

-

· ·	1	<u>, 199</u>	;).	ANGLE	<u></u>	S.NO	. ANGL	F _C DR	<u>s.vo</u>	. 7 NGL	E ^O DE	<u></u>	، باي <i>دي</i> رير)
! _2	• • • •	28.3	.4 .5 16	8: 85 88	L6 13.0 12.5	44 45 46	5,76 177 180	31.8 33.0 41.1	40 47 48	່ ລະບຸດ 268 270	. e. u ; e. 9 34.0	29 29	351.5 352.5	11) 13 - 5 14 - 4
>4 5 7 8 9	6 7 3 10 12 17.3 18	16 - 16 - 14 - 6 14 - 6 14 - 8 16 - 6 17 - 2	17 18 1) 1 2 3	89 90 91 ₹55 ° 96	17.0 36.0 17.6 13.5 15.6	0 1 2 3 4 5	180 182 184 186 187 189	41.1 33.5 28.2 31.3 32.2 31.5	0 1 2 3 4 5	270 271 272 274 275 277	34.0 24.6 22.6 18.6 13.0 13.0	30 31 32 33	354 255 357 360 or 0	15.5 18 23.7 28.7
10 11 2 13 14 15 16 17 18 19	18.5 19 20 22 24.5 26.2 28 31 33 33.8	17.8 16.3 16.6 13.0 13.8 12.3 12.0 11.6 10.6	4 5 7 8 9 10 11 12 13	<pre>99 101 102 107 108 110 112 114 116 118</pre>	17.5 20.6 21.4 17.0 18.7 19.5 16.5 16.5 13.6 14.4	6 7 8 9 10 11 12 13 14 15	190 192 193 194 195 197 199 201 203 207	27.9 27.5 31.5 27.0 28.1 30.5 23.5 26.8 21.0	6 7 8 9 10 11 12 13 14 15	280 282 285 286 288 290 293 294 296 298	$15.0 \\ 19.0 \\ 17.0 \\ 18.0 \\ 14.6 \\ 15.6 \\ 15.0 \\ 16.4 \\ 14.5 \\ 12.0 \\ 12.0 \\ 12.0 \\ 100 $			
20 21 22 23 24 25 26 27 28 29	35 36 37 38 41 43 44 45.6 45.6 40 4 8	9.8 9.5 8.7 11.5 11 9.3 13 13 10,4 4.5	14 15 16 17 18 19 20 21 22 23	120 121 124 126 127 128 132 134 135 136	17.6 16.0 21.8 20.3 18.5 20.5 22.0 19.7 18.5 15.6	16 17 18 19 20 21 22 23 24 25	209 210 212 213 216 218 222 223 225 228	26.5 23.0 21.0 23.3 24.0 20.7 23.3 23.2 20.0 22.0	16 17 0 1 2 3 4 5 0	300 304 305 307 308 310 311 313	13.5 31.4 31.4 19.6 9.5 9.5 9.0 9.4 13:5	•	· ·	
30 31 32 33 34 0 1 2 3	49 51 52 54 56 56 58 62 63	12.4 10.5 11.5 14.7 28.3 28.3 17.3 12.4 14.0	24 25 26 27 28 29 30 31 72 33	138 140 142 144 145 146 148 150 152 154	16.3 21.0 19.5 19.4 21.5 22.5 19.6 23.2 23.6 16.5	26 27 28 29 30 31 32 33 34 35	230 232 233 235 237 238 240 242 244 245	24.7 23.5 20.3 17.3 21.9 21.5 17.5 16.7 19.6 22.8	7 8 9 10 11 12 13 14 15 16	314 315 317 319 320 322 324 326 327 329	10.6 11 11 8.8 6.5 13.5 9.5 7.5 6:5 9.5			
4 5 6 7 8 9 10 11 12 1 ³	65 66 70 72 73 74 75.8 80 5	15.3 16.0 15.4 15.3 16.2 18.3 20.3 20.2 15.4	34 35 36 37 38 39 40, 41 42 43	158 160 161 163 166 167 168 170 172 174	25.3 25.3 23.7 27.0 27.0 28.3 27.5 28.3 31.5 25.7	36 37 38 39 40 41 42 43 44 45	248 250 251 252 254 257 258 261 263 265	22.5 24.0 23.0 21.2 19.8 18.5 16.5 13.3 12.5	17 18 19 20 21 22 23 24 25 26	331 332 334 335 337 340 342 344 348 348 349	9:0 5.5 6.5 8.8 13.3 14.4 17.3 17.8 13.4 12.5			

APPROXIMATE COUNT OF RCS PLAKS (AP-MDC-MDST-RAT SCAT FACILITY PROJECT 6503)

1.

a the patients of the state	S.NO.ANGLES DB	S.NO ANGLEO DE	SINO ANGLER DB
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109712.81198.311.9129913.51310014.514100.918.81510118.61610217.517102.31718103.817.719104.118	60132.818.46113419.762136.718.663137.910.564138.314.26513910.366140.919.66714121.468142.521.26914322.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16 69 13 17 70.5 15.1 18 71 16.4 19 72 15.8 20 72.3 17.2 21 73 17.2 22 73.5 17.2 23 73.9 17.2 24 74.1 18.2 25 75 15.7	2010521.62110621.522106.522.92310721.524107.520.32510820.02610920.327109.518.82811114.129112.210.6	7014418.271144.517.57214520.673145.515.874146.518.17514719.276148.521.37714921.978149.52179150.516.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	267618.4277719.52877.521.62978.919.3307918.7318018328115.83381.517.83482.2153583.99.8	3011313.731113.914.932114.215.733115113411615.535116.314.5361179.537117.513.73811811.23911911.6	801511681151.913.682152.521.283153.822.884155.521.185155.920.586156.21887158.223.18815921.389159.922.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36 84.8 13.5 37 85.6 14 38 85.9 15.9 39 87 12.7 40 87.3 14 41 87.6 15 420 68 16.9 43 88.5 18.7 44 90 34	40119.915.741120.516.242120.815.44312214.54412313.545123.914.5461241847124.517.5481251749125.518.7	90161169116221.19216320.19316424.19416530.89516827.49616928.597169.930.598172.530.79917328.4

. • • • • • •	f. ,	<u>:</u> 1'	<u>5.80.</u>	NUGERO	DE	<u>S.</u> N	D. ANGI	LE DR	
10, 10, 10, 10, 10, 10, 10, 10,	175 178 18) 180.5 181 182 153 130	50.3 32.7 33 32.3 34.6 39.5 40 41 37 1	42 43 44 45 46 47 48 47 50 51	225.5 126 228 229 231 232 233 236 238 240	22.5 25 24.7 20.5 23 25 25.5 21.5 20.5 22	5 6 7 8 9 10 11 12 13	314 316 318 322 324 325 326 329 330	9 13.5 10.5 8 10.8 10.5 9.5 9.7 13.5	
2 3 4 5 6 7 8 9 10 11	182 183.9 184.5 184.5 187 184 190 191 193 194	32.3 33.1 31.1 27.8 28.1 35.2 33.6 29.5 28.6 28	52 53 54 55 56 57 58 59 60 61	242 243 246 248 250 252 254 256 259 262	23.5 22.5 21.8 22.8 25.5 22.8 22 22.6 18.9 18.5	15 16 17 18 19 20 21 22 23 24	333 335 337 338 340 341 342 345 347 349	11.5 11 11.5 12.5 16.8 16.7 15.5 14.9 14 14.5	
12 13 14 15 16 17 18 19 20 21	195 196 199 200 200.5 201.5 202 203 204 205	32.5 28.8 22.4 29.6 25 25.2 21.5 25.2 25.2 25.2 25.2 25.6	62 63 64 65 0 1 2 3 4	265 267 268 270 270 272 274 276 277	38 15.6 17.5 34.5 34.5 20.5 17.5 14.5 15.5	25 26 27 28	352 354 357 357	11.5 13 25 28.3	
22 23 24 25 26 27 28 29 30 31	206 207 208 210 212 213.9 214 215 216.1 217	22.3 20.5 21.2 26.3 24 19.5 17.1 18 20.7 21	5 6 7 8 9 10 11 12 13 14	279 281 284 285 290 202 293 293 294 295 296	16.5 19.5 15.5 17.5 15.0 15.5 16.5 17 13.5 12.5				
32 33 34 35 36 37 38 39 40 41	219 220 220.2 221 221.9 222 223 223.5 224 225	20.1 21.9 21.7 21.6 22 22 16.1 17 18.7 20.6	15 16 17 18 0 1 2 3 4	297 300 302 304 304 306 307 309 312	13 10.8 16 31 9.5 5.5 10.5 13.5				