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ABSTRACT

Results of a study of the parameters affecting silicon solar

cell performance in space are presented. Comparison of semiconductor

theory, radiation effects theory, and reported experimental data has per-

mitted development of a mathematical model for predicting the performance

of a solar cell under combinations of radiation exposure, ambient temper-

ature, and illumination spectrum. Limitations on the accuracy and applic-

ability of the model are discussed for future study.
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INTRODUCTION AND SUMMY'

A mathematical technique or model for quantitative prediction of the

electrical output of solar cells is an obvious asset in the design, selec-

tion, and performance prediction of a spacecraft power system. Laboratory

measurements can provide this information for solar call assemblies from

the manufacturer. The technique described in this report permits an extra-

polation of these measurements to the :Future output when aboard a space-

craft in space.

The model has been developed after study of the extensive literature

available. Insomuch as practicable, it adheres to basic physical theory,

since no empirical scheme has been presented so fnr which is capable of in-

eluding such diverse effects as nonuniform proton damage or the interaction

of a degraded solar cell with slant sunlight.

This report presents the equations of the model and a discussion of

their origin, meaning, and implications. A complete calculation would fol-

low the flow chart outlined on the next page. in this chart, boxes repre-

sent major derived quantities. The input parameters necessary for each de-

rivation are listed alongside the arrows leading to the boxes; these para-

meters are defined in the Glossary. The numbers in parentheses refer to the

appropriate numbered equations in the text. (We are indebted to Mr. Paul

Berman for suggesting this display.)

i
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T.	 MODEL OF THE SOLAR CELL
s

A. Solar Cell Equation

The physically observable parameters of a. silicon solar cell
are its area S, its thickness b, and the fraction f of its front surface

area which is not covered by the metallic contact grid and bus bar. A

f	 transparent coverslide is generally placed over the cell, and its thick-
:-:

ness will be denoted as a.

The general optical and electrical properties of the solar cell

can be described by several other parameters, The transmission of light

of wavelength a through its surface, or the assembly when a coverslide is

present, will be denoted as tx. The absorption of the same light by an

incremental thickness dx of solar cell will be denoted as V A O both trans-
mission and absorption depend not only on wavelength but also on the angle

of incidence. Electrically, the cell exhibits a Junction depth xi which

separates a surface region, generally of n-t a silicon from a base re gionP	 S	 ^ 8	 Y	 YP	 a	 c^

rry	
of the opposite polarity. Some resistance R s is observed between the
front and back connections.

Observing that a solar cell acts as a diode operating in op-

position to a current sou,:ce, Prince and Wolf proposed the solar cell equa-
tion (ref. 1) . our only change to this equation is to replace the usual
expression AKT/q by the single parameter. V00 propose calling Vo the
"characteristic voltage" of the solar cell, and write the equation as

I I

	

.1 reI(R + its ) /Vo -1	 (l)

A reasonable question is whether the solar cell equation can be
expected to'reproduce the current-voltage curve of a solar cell that has

been heavily degraded by radiation, and perhaps degraded in a nonuniform

manner. To test the possibility of fit to such a cell, a series of exp,^r^ ,

-mental curves by Lodi (ref. 2) and by Statler and Curtin (ref. 3) have been

analyzed. An iterative selection of its , Vo , the photovoltaic current IL,
and the reverse diode current x 0 leads 'to the fits which are presented as
Fi.gurea l and 2. These fits seem adequate for engine3eri,ng use, and indicate

3
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that indeed the solar cell equation can describe even highly damaged cells.

This could be anticipated on theoretical grounds: the concepts of a diode

junction and a current-producing region on each side are still present even

in a highly damaged cell. The absence of a Blunt resistance*is not antic-

ipated in theory, but further analysis, of these curves indicates it is ab-

sent , 'hare. Shunts have been invoked to analyze damage to solar cells wi.tlt

coverslides that partially expose the silicon surface (ref. 4).

The parameters of the solar cell equation used for these fits of

the measured solar cell outputs are presented in Figures 3 through 6, as

functions of exposure of the cell to low energy protons. Similar success

in use of the solar cell equation is obtained for undamaged cells and for

cells that have been damaged more uniformly, as by electron, exposure.

B. Photovoltaic Current: zh

The photovoltaic current is that current across the junction due

to generation by light of minority charge carriers in the solar cell,. The

total current from a solar (All equals Ili less that current that returns

across the junction due to its action as a diode. Thus, IL is proportional

to light intensity but this sloes not folloW for the total. current.

The short:-circuit current xsc approximates the photovoltaic cur-

rent IL for silicon solar cells with typically negligible resistance.

The photovoltaic current is simply the photovoltaic current den-

sity j multiplied by the area of the solar cell. that is exposed to the light

source. This is somewhat less than the actual front- surface area, inasmuch

as the front contact typically cowers 10% of the total surface. The con-

tinuity equation implies that j is also proportional to the light intensity

`-	 U for a given spectrum.

The equations necessary for determination of j are the continuity

equation

1	 .. n(x) + G(x)	 C	 (2)
q	 dx	 T(x)

*That is, an open-circu.it', in lieu of a resistance element across the
equivalent circuit (ref. 1) of a solar cell. Our model is in agreement
with that given in ref.'1$.

6
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the current equation
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dx
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LO
0

the diffusion relation

L	 T D

and the Einstein relation

q D	 k T

Combining the continuity and current equations eliminates,'.
Furthermore, it may be assumed that D and I.?, are constant through the region
being considered. The resulting expression may be written as a difference
equation

D[n k+l -2n k+ nk - I I +	 µ E h Cnl, - nk - 1] - nk h2/ Tk + Gk h2 0	
(7)

where the continous differential equation is approximated by using discrete
values of n for points of the independen.^ variable x spaced a distance h
apart. (Thus^ ^ik is the magnitude of n at a distance k h from the junction.)

Groupin g the expressions gives a formula for progression in the0

solution of nk . After elimination of p, by the Einstein relation and T by
the diffusion relation, the formula, becomes

-n
k + I 

=(2-qEh/kT-I h 	 2 /L's) nk + (q E h k T - I) n
k- 

1 -G
k 
h 2/D	 (8)

k 

I
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Radiation damage affects the solution to this formula principsl.ly

by decreasing hk according to the damage equation

l = l .F< K §>	 (9)D s L	
k

k	 o

where the particle fiuence to which an incremental volume of the cell (at
depth x k ) is exposed becomes an integral over all particle energies. When

there are several types of partie'ies (electrons, protons, alpha particles,
etc.) there will be a sum of several integrals.r

The assumptions are made here that any change in D is negligible,

and that the migration of the damage-induced recombination centers from

their points of formation is also a negligible effect.	 These aosumptions

allow a solution of Eq. 9 to be applied directly to Eq. 8 and the carrier
density nk to be developed.

The field E will be shown below to be proportional to temperature

T.	 As a result, temperature enters into Eq. 8 only by increasing the dif-

fusion coefficient in accordance with the Einstein relation.	 The increase

in D reduces the magnitude of the negative term and leads to an increase in

t	 ' n agreement 	 L•h thecurrent with increase in temperature. 	 The trend is a._with

positive temperature coefficient normally observed for the short circuit

current.	 However, the current of solar cells not operated near short—circuit

generally has a negative temperature coefficient because of diode character-

istics d 4;,scussed in the next section. 	 .

To solve Eq. 8, it is necessary to have values for no and n..	 We

' assume the boundary conditions that: the carrier density vanishes at the

junction and at the cell surface. 	 This assumption was also made by Bullis

and Runyan, 
(16), 

but other boundary conditions have been assumed.	 We guess

n3. 
and calculate all the higher values of n k .	 We iterate this guessing of,-

nl until we arrive at a satisfactory value for the carrier density at the

cell surface.

The accuracy of the initial guess for n l is of importance in

determining how often the calculation most be iterated before obtaining a

r zero carrier density at the contact,.surface of the cell. 	 if the guess for

8



n
1
 is too small, then the values of nk determined via Eq. 8 Will change

sign in the cell. if it is too large, the nk at the back of the cell will

fail to be zero.

Iterating on n. leads two as close an estimate as is desired. One

possible technique for convergence is to compare each nk with nk 
l 
and if

there is a sign chance then stop, increase the estimate for n l by a nominal

10% and repeat. When there., is no sign change, decrease the estimate for
n1 by a nominal 5% and repeat until a sign change occurs. Then, increase by
1% until there is no sign change. Such a convergence routine can obvioiisly
be carried to any level, of accuracy in the estimate of n, for the solar

cell in question, by taking advantage of this sign change.

The current~ equation relates n l to the current from the base into
the junction. Evaluating this as a difference equation at k equal zero, we

have

j=gDnl/h	 (10)

since the boundary condition requires that no vanishes. This j is the

calculated photovoltaic current 
1 1 

in ampere per square centimeter, for the

solar cell. For a cell cAth negligible :internal res.7i.stance, the short-
circuit current Ise is j times that portion of the surface area not covered

by the contact bar and grid.

Equation 8 is simplified in the base region since the electric

field r is negligible in a uniformly-doped crystal. The electric field is

dependent on the impurity concentration, N, through the relationship

-^kT l	 dN
E - q N dx	 (11)

When there is no impurity concentration gradient in the base region, Fn. 8

reduces to

nkyl =(2+h 2/L' )ntC
-n-k-1

-G k h2 / D
	

(12)

9



The curxk:nt density calculation so far has considered only the

solar cell base region contribution. In order to determine Lhe contri-

bution, by the surface re ion, the same procedure may be used. Since the

surface region is heavily doped, and, consequently, has a, relatively short

minority carrier lifetime, this contribution to the total photovoltaic

current density is small and often ne^lected. The electric field doer not

vanish in this region because of the dopant gradient which is the result

of diffusing phosphorus into the crystal, to form the p/n junction. The

magnitude of the photovoltaic current contributed by the surface layer is

not significantly changed unless the electric field is on the order of 103

volts/cm.

The minority carr.Ler concentration for a 10 mil n/p solar, cell

was computed for various values of diffusion length. Figure 7 shoats the

results of the calculations with the base divided into 500 increments.

s	 Figure 8 shows a plot of the short-circuit current density versus diffusion

length for these calculations,

To calculate l:h , the sequence is

L The carrier generation rate G due to light absorp-

tion is obtained as a function of depth. into the

cell.. The usual assumption is that one minority

carrier is raised to the conduction band for each

photon absorbed. 'thus, for monochromatic light

traveling at an angle 0 through the silicon,

U(X/Ile) U e«ax/cos 0 sec0 dx equals the rate of geri-
eration in an increment dx at depth x, where cY is
the absorption coefficient for the Light of wave-

length %, and (X/hc) is the number of photons per

watt- of light incident.

2. From G and the minority carrier diffusion length,

computed as functions of depth x into the cell, the

carrier• distribution is computed, using the con-
tinuity equation and the condition that n vanishes
at* front, back, and junction. of the cell.

t	 •

•
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3. The photovoltaic evrrent douviLy j is ol)Lainad

front ti c: derivatives of the minority carrier

distribuLlone on either side of the junc,'Cl.on.

Most of the contribution to j comati from the base

region.

4. j is t:itiltiplicd by fS to obtain T 	 This conven-

tional stop ne-,lacts edge effects in the, call,

but appears to be a good approximation in our

calculations so far.

When radiation redticas tho minority cp.rrier diffusion lone'th in

the base, IL is decreased. Thus, radiation that does not penetrate far be-

yond the junction will affect 1L very little. This is verified by Figure

3, where I 
L decreases with exposure to protons that do penetrate (270 keV),

but not with exposure to the lower energy protons (1.00 Wl) that do not pene-
trate areatly into the base region.

C. Diode. Charaeteris ties

Shockley's analysis (ref. 5) for diode junctiono provides a the-

oretical. expression for the diode saturation currant I that is

	

p	 n D 
n,I	 qS	 (13)

0	 (_1	 L
P	 n

where thy; ft actions are the product of the minority carrier concentration

on either side of the junction and its diffusion coefficient, divided by its

diffusion length. In an n/p solar call, where the surface re-ion ir) heavily

doped, the fraction pD 
p 

/I, 
p 

can be neglected and 1 
0 becomes inversely pro-

portional. to the base minority carrier diffusion len,,,,th near the junction.

Since L
P
 chan-es with radiation exposure in a predictable manner, a measure

of the acctiracy of this expression can be taken from radiation experiments.

Fi8ure 9 shows a plot of 10 calculated from various published measurements.

With Downing i s (ref. 6) and Luft's data (ref. 7) which did not include com-

plate curves we have used the approximation.

1 
0	

sc e_Voc/Vo
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F i gure 9. , Calculated values of To from various measurements of irradiated
solar showing its dependence on the reciprocal, of the diffusion
length L.

.A Statl.er .27 MeV protons
A Lodi .1 MeV protons
13 Downing .5 MeV protons
b Downi_nt, 1 MeV pro tolls
o Do-uning 1.5 McV protons
+ Downing 1.9 MeV protons

o Luft I MeV protons
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whic-li implies neIble resistaw-c )t	 1-11ith -FIVat-lor's and Todi's I-V^#	 to

curves, fits were jrmdo. which IncIt -th-d stwill vnIttes of	 thaL ,',ne r vaige WLli

increas1w, exposvre to radiaLlon.

A similar analysis was made of data Calton under varia4le I. j lit*

Intensity. That; 70 appears to vary as Lhe lo,,arit-lim of the light inten-
sity U appears In 11i C., utic 10 an a resulL of Lhis analyels, An eqtialoVn to

combsine those effects wiLli WI-he noLed dependence 'on L is

0 
tx (T 'Q.21enU/Uo)c a (T-300) 

(1, 
b Al 00

The expression for, 1;0  is givwi 
in terms of its vahic 1 00 in the initi,al

solar cell at room tompernture, illuminated at one sun intenol.ty.

10	 100
	

1000

Yalumination 11 (imu/cm 2)

Figure X.O.	 Plots of reverse saturation current x0 versus

illumination intensity U. Laboratory data

(x-efs. 3.7 and 1.8) were analyzed usin,, sect. 14.
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The characteristic VolLn^ '(-' V0 of Lhe djadc- vas explored 
in 

ot,r

previous report and appears Lo -be indepOndont, of LeirperAhire, radiation

expositrao and possibly Illitidnat.lon. For this rc-,nson ) the, expression

AkT/q normally found in the solar cell, etp laLion, Is replaced by a coiisena

V 
0 

in the mathematical model. Thin implies LhaL A is inversely proportional,

to temperaWro, and meastirements by Kenneriid tyre!'. 8) , replotLed in 111,ure

11, shoo this. The lacU, of any clear dependence on radl.aLion exposure Is

d ,,,,,wonstrated in Firure S.

200	 300	 Soo	 700	 1000

T (OK)

Roporced values of A,. versus temp-

eratura T, for typical n/p silicon

solar calls. After referenoc, 8.

100

Vi, S' Rr—cl — 1I --.

D. Call Resistance

The series resistance of a call, is SeC11 from 1-1 811re 6 to in-

crease with radiaLion exposure. Since this resistance R is a combination
s

of many component resistances in series and parallal (ref. 9), quantitative

prediction of the -I.ncrP4S(,l is difficult.

A significant portion of 
its 

is due to the sheet resistance of

the surface reAon of the solar cell. Currents travelin ',;" from the junction

along this thin layer to the grid lines are greatly affected by any change

in Its conductivity. Consequently, the major effect of radiation in in-

creasing 11 
a 
appears to be throe-ii a decrease of the conductivity of the

surface region.
t
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where -t'- Kl-.- I a t lie dauvi,-o inte t,,,ral 0 to 
be 

dirw vccl ill ',,'0cLio1I ITT, and It 
so

is the InlLial- resisLance of the. solar call. Th1s fit isw,, [,,c!cVv tbaL the

initial. resiaLalwe of the call I,s eut4rely diia to surface layar rosistiv.-

ity; the 100 keV protons could not have signlficanL offoo.t 
on 

the base

ragion whiCh they do not penetrate, nor on the metallic contacts.

11,	 OPTTCAT4 I1$VFXCTS

A-. Covers]Jda Trans mis s ion

When sunlif,lit strikas a solar, call assembly al., an angle 0 with

tho. normal, I,L In partially transmitted throu-1i coverslide and into solar0

col.1 0 and partially reflected at, each of the Interfaces. The. transmitted

light of umvelengt;h % moves, throu-1i the coverslide at an angle I v., (At theL^	 4)	 YA
normal; Snell's law give-9 this anale as

(17)cos

where m A is the index of refraction of the coverslide. Tho. antle, e. for

trammission throuidi the solar cell in likewise given by7

I

cos 0. = (n2+cos
2
0_l) k /n,	 (18)

where n	 0.k is the index of refraction of silicon for wavelon o-th	 r, ur ther

for the components of "npolarized lig ht Presnel.'s laws of reflection giveki	 P

the intwisity of the reflected portion at each surface of the coverslide as

-sin (0

17
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(20)

^-sin
F—s-I n

tan

tan

The transmitted ltght. Inte,

tion is then

- (A)	 (21)
+ *6,k'T

 x)
	

(22)
OA

asity Lhrough a coverslide with negligi"Dle absorp-

tA 	
I ^ a - P, ( ►1) 1 Cl - PL, (11) 1	 +	 Cl - PI (-L) I [I - Do (-L) 1	

1	
(23)

, _' "i 	 I - PI ( 11) PP, ( 11 )	 1 - 01 (1) P2 (.1.)

Figure 12 presents catattlated values of to as a function of inci-

dent angle, for three representative values of nA , with the index of re.-

fraction mA of the coverslide equal, 1.56. The taro components of the lan.-

polarized lit, 	 4')ligh t. are not* transmitted eqiially at all angles, but the polari-
zation. of the transmitted li c-ht is of no importance to the present discussion.

Furthermore, the mamd.tude of L A can be controlled to a considerable extent

by the addition of so-called antireflective coatings. Eq. 21. shows the
angular dependence of the Ught transmission probability, but underestimates

the magnitude of tA 	'Vwhen a proprieary optical coatii-m is used. Experi••0

mental measurements of tX appear warranted fc-,- such a coverslide.
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V'cj. 23 bc^onies indet-orml,nat.e, in the important case of perpen--
dicular U.-lit incidvace. Vor this case, the limiting, form of t: isX

3.6 
in 2 n

AA	 (24)
tA	

(in + n k	 (it, - n,)'

B. Absorption 
in 

Sil.l.con

In the solution of the differencze equation (Hq. 8), the con-

LribuLion to G(x) from different: parts of the incident light spearviiii must

be considered. The source term is due to lifylit wiLbin r! rangz of wavelen-0 ths.

G(x)	 X)d%
	

(25).

where X 1 and X2 are the miniinum and maximum N,Tavelen,ths of sunlJf',ht to
which the sol,ar cell, responds. These are normally taken as 0.11. and 1.1

microns.

Since no simple, closed form has been reported for the integral,
G(x) may be.,;t be calculated using Simpson's Rule. The integrand is given by

G(x , X) =^ CIO)TWO	
t	 -01 M x	

(26)

Values of the absorption coefficient a(%) and the spectral, ir-

radiance 11(X) for space sunlipa,ht"* are given in Table 1. The spectra l

irradiances are calculated, for a sunlight intensit, of 140 niilliwatts per

2cm	 The reaultant G(x) is illustrated in Figure 13 for x up to .025 cin of

silicon.

C. Coverslidc Darkening

Absorption of light in a semitransparent mate7.ial reduces the
Pt/coso

transmitted intemsity to a fraction e 	 Utherep is art absorption co-

efficient, t is the slab thickness and 0 is the an-1e of the slat, perpondic.-
ular with the light ray in the material. Solar cel.1 coverslides

*Spectral irradiance may be. defined as the differential. of solar energy
flux per unit waveteii-th. This is frequently depicted by Johnson's curve.
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Table 1

Absor-lition Cccf-fieient of Silicon and Sunlight Intensity as a Functi.on. of Wavelength.

04,

4
t

{

in microns, a(%) in cn ^

1IW in watts/=2 -11

a (^) Hm

0.40 7.50 x 1.04 0.1540

0.45 2.58 x 10 0.22n0

0.50 1.18 x 10 .1 0.1980

0.55 7.00 x 103 0.1950

0.60 4.65 x 103 0.1.810

0.65 3.33 x 3.03 0.1620

0.70 2.42 x 10 3 0.1440

0.75 1.69 x 1,03 0.1270

0.80 . 1.12 x 10" 0.1127

0.85 7.95 x 10 2 0.1003

0.90 3.80 x 10 2 0.0895

0.95 1..80 x 10 2 0.0803

1.00 7.30 x 10 1 0.0725

1.05 2.08 x10 1 0.0665

1.10 4.6.0 x 10 0 0.0606



1019
t

a^
to

oU

a^
^rl
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u

c^3
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1018

0	 .005	 .010	 .015	 .020	 .025

x (cm)

Fi,^jEen 13^	 Coi-tiputed valti..es of ttie number of minority carriers/
c2 -sec produced in silicon by space sunlight as a

function of depth x of penetration. Values from

Table 1 were used in equation 26 and reflection was
neglected.
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sufficiently clear an
is essentially zero.

slides that extremely
more, are required to

thin so that: initially the absorption cocifficielit
Furthermore, measurements indicate for silica COVOI:-

4
11 .are,e. electron fluences, on t1w order of 10

16
 or

reduce Lhe transmission by about 22, (ref. 14).

Darkening due to radiation degradation of any anLireflective
coatings on the coverslide, and of adbesiva beLwaeni coverslide and solar
call may be more severe. A quantitative evaluation of this darkenin," do-
ponds on measurements of the specified coverslide assembly before and after
irradiation in vacuum. Protons, electrons, aad ul.Craviolet radiation should.
be considered.

III. RADIATION H'FFECTS

A. Proton Shielding

The thickness of i, solar cell is comparable to the distance a
proton can travel in silicon when its energy is typical of protons found
in space. Shieldinr., by a coverslide and self-shieldin" by the solar cell
are consequently important. This is especially si gnificant whin one considers
the proton ener r, -dependence of damage.3y

The disttince of travel, or range 1Z, is often relatod to the inci-
dent proton onergy B 

0 
by formulas of the form

R = R En 	(27)0 0

The equation is not exact, but good fits can be provided over limited ranges
of E0 Table 2 is such a fit to tabulated data.

Table 2

Values of R and n for proton raii r e-energ.Y relationships and
correspondion- energy intervals.* w

Energy (MeV)	 R 0	 cm 2	 n
0.0 1' E < 0.3	 2.81	 0.995
0.3 < E < 0.8	 3.945	 1.277
0.8 :5 E < 2.0	 1.460
2.0 :r, B < 200	 3.42	 1.726

*coriiputcd from data in ref. 10
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The ran-o for,-tile J%pllos t lwaL tho. c,,ior (,y of a proto ,.j Mop,, itsC#	 -1	 4)

track can lie calculatod frow Lhe residual distance it: is to travel, before

s toppin,,, . The relation is not cntact, for there is soma sLra( .,FI.in ,, of the

individual tracl%x of proto-.js of the s ) ,-.a anorgy, but it is generally quite

SAIIIII.I. Ilie avera-a stra —y 1in,, as a fraction of R, decreases viiLh proton^d	 W, 41

energy R 
0 

and, it is less than 10, for 3,00 1. 0 protons (ref, 10). Thus, we

troat the rant,,a equatioa as bein g avvict and compute a proton aaarr;yU

^I#a-
X	 1./n/n

for protons of initial oa ly Eer,;	 which have traveled a
 T^ )	 0

distatico X 
in 

silicon. When monoonergotic protons of 
an 

omaidirectional.

fluence strike the solar call surface, the effects of slant penetration
cause a spectrum at depths X.A

A coverslide of thickliess a will remove protons of ouar^y Ji", 
0 

and

incident artrje 0 with 
the 

normal if their range R is less than the p: W1

length a/cosO througli the coverslide. It will also reduce the ener,,,'y of a

transmitted proton to E given by 
(13)

E
n"
	 a

C ĵo 	 R cos 0

2where R may be taken as 2.72 m,/cm whea n is 1. 75.
0	 Q

The proton spectrum striking the solar cell due to a i,.ionoenerge•ic,

unit flux incident isotropically on the coverslide can be obtairied,

The result is

naE 
n-I

W) -	 ---	 For E < Eo	 (29)
it
0 0(Elt .- En)

Superposition of this result yields the proton spectrum ^(E) in.-
cident on the solar cell due to an isotropic f1tience ^(H 0 ) in space pene-

trating a shield of thickness t, expressed in iwass per unit area. 'Me pro-

ton fluerice at depth z in the solar cell assei-ably is related to the proton

f Ittenc- e §p (Bo )
 

in- space by

(F, ) E 
n-I

0

(E, z)	 n! (30)
p	 n 11 12

- 11 _

	

I -

R 5".	E
EI 0 >	 o"- 0	 J
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Sulfi.cl ently smal1 c'iier"',y i,ncrow,c nt:s for tho t±aliular a.upuL of the incro -
nental flvont cas in space st?o lld be chosoa so that Elie	 approacl-tes

an intatral.
The shielding effoot by a ooversli.de sand by the silicon is pro-

portional. to the product of density and tMUO,-ness. Thcrctfore, X should he

given in mass per cro s in calculations of sbieldi n .

B.	 Pro ton Damar;e

The proton dama-e coefficient K  is the moasure of decreases in

minority carrier diffus ion  lee t:h due to a f luence 1> of protons (Kp equals

the incremental increase its: the quantity 1 /L2 with tncrewental increase in
The dama- e is due to hither, ford s cattering of protons, which dislodges

silicon atoms from their lattice position. hence, the proton energy depend-

ence of K  is approximately given by 1/R, which is the energy dependence of
the Rutherford scatterin rr cross section. The threshold for dislodging atoms
corresponds to a minininm proton ene.rgy of About 0.0001 Mel'.

Crowther eta al (ref. 11) have found a flattening of the energy
dependences of K  be'oa ,, about 0.5 MeV. This effect, seen in Figure 14, may
correspond to an annealing mechaiii.sm whereby a li,sl.od.3ed Atom has not been
pushed far from its s ite, and has a high probability of return. The fol -

la,Ang equations fit these measurements for 1 ohm.-cm p-s i.l.i,con and provide

a ratio for hi her. resistivity Pwsil.:►_con that agrees -with measurements by

Denney and Downing (ref. 12) .

K
P 

011') = 1. 2 0 --o. ,1s 1.-o.fl x 10.5	
^E >3 McV1	 (31.)

K 
P 

(E) = 1.92 Q-0 ' `16 e--" 04 (E/.962)-o. 85 x 10
.,5	

13 > E > 1_l	 (32)

Kp (E) = 1.920 -" 7 ' e- '- ' O "'x 1.0-s 	[l > E > 10-4 1 (33)

Because proton energy chap- es rapidly with depth of penetration

into the cell, and because the dama3e coefficient K  is so dependent- on

proton energy, dama3e by protons of less than about 5 MeV results, in a

highly nonuniform minority carrier diffusion length across the cell.

Ir
1.

r
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Thro,,i ,,;h 0:0 contii^vtty eq,tation, 011,8	 Ji -#, a I.ar,, -,,e	 In

mirority c-arrIer dj,sLrIb-tJoit. Ar, ail 	 two have isod these va3ioij of

K a)ad proton ran,- , c 11. to calnmlaLo tile riji-tority carric-r distrilmtion ii!, the0

bare cells SLatler and Curtin J,rradinted vith 270 keV proto-os. The mIxority

carrier disLributiou is sha.7n it). I'i-ure 1.5 for variotta expomires to Lho,

proton fluo,41ce

C. Electron shieldin",_1

The spectrum of electrons at variotis depOIS from 
an 

iX*r--!diaLcd

surface has been st.idied by numerous wort-mrs. The Problem is complic"'Ited

by 11,utherfol.-d soatterin r, : alectrons, collide with atomic nuclei aud ,nay make

a sharp chan,,ta of direction and aver, 	 As a restilt, a boam of e-1	 ilsactro41

that was initially monocnorgetic assu irLes a spcetrlivil of	 tits L chi-.nes

with depth of penetrzation, . There is uo unique ronele for aloctro ,.)s such as

there is for protons.

To determine the portion of the. doltia ,,a integral. due to cloctrons,

it is necessary to 1.4toy, q; function Y (13,, E 
0 ) 

X) which givc q the probability

that an electron of aller,,^,y 
R 0 

striking the coverslide will peiantxmte to a

depth givea by X and have an cncrpy E at that depth. This function, who."I

mulltipliod with the spectrum of the incideat eIrctro*, 1,s, will theil provide

the spectrum of the electrons as they penetrate the coversl-ide m ,d the solar

cell,.	 i sp , cc, the functionl. To be applied to calculations of irradiation ii 	 a

,should be appropriate to an om-ril,directioaal electron flux.

Some chat:acteristi.es the function y (H ; loo ,  X) must have aro,

readily seen. 'Since y (1,7,, B 
0 
0 X) timas the incident flux equalS, the flux

at depth X, tixt', it must become a delt-a fuixetion in (E-R 0 ) for limit of X,

equal zero. The second obvious characteristic required of our function is

that it should vanish not only for 33 r.-reater than E but for R, greater that0	 0 0

H 
0 

less the ener, ,%y loss for an electron penctraLing directly to the depth X

without a single P-aitherford collision. Finally, tense function should approach

zero as X approaches the range of the electrons.

A function with those charac ter is ties was derived by a graphical

analysis of Monte Carlo data (ref. 13) for vonoeiia r cWr e tic, isotropic electrorl
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0, i t e As 	 Tlic-ve	 Ivid lvo i 1,roer.'Ited in Lcr,,is or ote 	 ipaa

(whicli is the

	

down	 Thercrore, 1. was related to 11 by
0

an empirical fit.

The fit to P, with error lerm Ovin 3",,'* for cloctron vlleri►J,Os up

to 6 MOV is

0.7 R, 
loan

°,:.
(34)

0. 29 + H,
0

With the dime tsion3ens depth t

	

t m (a + X 
kp ) /V	 (35)

the funcLioual dependeaco of the elvetron fluNice at depth t o^j 010 cloc-

tron flumcc Inc.-Ident on Lliv solrur cell asse;i4bly is

4; (E 
0
) (1.04- 7.0t) (c l /t) c	

u." 
0	

10)

(1.', 0 x ) W	 0	 -M+ 	 --	 (36)
k	 I	

+	 0 
)..c 

4 + a CES (CO
E,	 C2 C
0

Where tlic, paramatars, are given by

c i = 0.65 -- .03B 0 + 3. (it
	

(37)

C2 = 1 - + (?,.4t3 / Jr  
0— )

	

(38)

C3 = (6 . -/
	

(39)

C-4 ', C3 (1.04 - .012 em to ) (I"t)
	

(40)

Gs - 300 +0.7
	

(41)

era,= 0.3 -, (.02 t 2)

D. Rlectron Damneko

The diamnflle cocffic^mat: V. for electron dami-c in p-type sil.icon11 

lias been fitted ci,.ipj.rJ,wiIIy by a fornvula shmem 
in 

Fl.'*,ure 1.6. V  neglect

28



10
re (MOV)

A plot of tho square rnot of the elacL).-011 danlafc coafficient.

versus alt.-ctron encr t;y. (Data poft t: for p-Lype silicon,

having a resist.l.vity of 10.6 okra ctn, from ref. 1.9.)
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to study fit's for 11-typo Silicon s111Cc. el,ec(.ron	 is	 in

the surrac.e ra,-,Ion, compared to that ini.n t ile barc: retjou. T-le plot Led 010

ssiiary root: of monsured values of 1e versus al oot:roll	 For cruc ibl.e-

grown p- lLy o silicon of resistivity 1.C'.6 ohm .-cm, tie; point o, shown. In

Fi•^;ure 16 , can be connected by two stra ,10it+ li.la•e se;itial).;s. 'That a. stral.ght

line results over toile cncr- ran,-,e 1-40 MeVi,lxeiics•''e.^ that a recut ;^'Di,n'iti.on

comter :egii1.ri.n3 two defects may be i.lzvolved(ref. 20) . DQJOw 1 Mc V, suf:fi,c.len.L

data Are not available fe r such a conclusion, but a straight line carve

fit can be pres ented.

This fi t:tin; of the data, and the dependence o„z electrical. resi.s-
ti,vity discussed above, give tile, damage coeffi.c �enL as

K (ro = (10/00.1 (1.2iM2.17E)'^ x 10	 F”,> I ' M eV ~ ^	 (l^^^

Ke (B) _ (lO/,-, f - 6 (0.()7 k4E,) x 11 0 -10	 L1. >E .25	 ([^.1^.)

K^ ( E ) _ 0	 1. 25>i{, I	 .,,i5)

where 0 is the resistivity in olim-centimeters and E is the electron ever. y

in 11,aV. The expression to fit mea.suremants between 1 and 40 MeV will under-

estimate the damage for Lower energies. Below 1 MeV, the second factor 1.11

the equation can be replaced by (0.67 k4g) 2 . This fits the measurement; at

0.6 MeV and theeneral.l observed "apparent" threshold of 250 ireV. The^	 y

damage integral can now be evaluated at each depth Xk*

<
K ^ c = 1, Kp (E) ^ (E ,x) -t~ 

1, Ke(,) 
e (r,x^`)	 (46)

IV. RECOI-MMENDDD FUTUM, WORK

A. Low Energyy Pro ton, Damage

The parameter. TL has repeatedly been shown to be strongly de-

pendent on the minority carrier diffusion length in the base of solar cells.

While this rel.a.ti.ozxsh;i.p has become a textbook exercise (ref. 4.) , surpris-

ingly little work has been clone on the case where the diffusion lea., 0th varies

3,0



wot C-11 flopUl Into Ow C-01	 Thl.r., hog: over, urould be viort-0, whvii colls arcs

cr.posed low onorgy protons ^sttuh as prodmaiiin Le iii 
high 

orlsitis and iii

some solar flnros. Wo lit-tvoi pro 'o,outed a viat.hematjeal teclitil.que to cvaliiaLe,

I
L 

under uniform or aonunJSortji dirwr-qV, based on Clio o-,-.ist-ing theory,

For solar colls that havo boon unifurmly clawaged, Uirs tcelinique

works quito woll, as evidenced 
in r-igure, 17. No norwall.%ation factor wl-Is

necessary for the aixell(ait agreeln,-Ut shown b0twoell L11C, 1110del CA1CUlationS'

and the reported measurements. This wottld indicate. that the itiodel equa-

tions correctly reproduce the effects of cell thickaoss, the nonlinearity

of absorption of space sunliglit, the magnitude of the dograded minority

carrier diffusion length, and the rolation between photovoltaic current

and minority carrier concentration.

35
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r,

IV	 -LU	 LV

§ C 
(Clactrons, /cri')

FLSU^e 17. Photovoltaic current (railliamperes/cm^) versus
flue,,,,Ice of I MeV electrons (Exp. by Denney A and
by Carterv)

At present, difficulty is being encountered in relating for colas
cells which have been damaged by protons which do not penetrate the cell

completely. The accepted relationships found in the literature do not,gen.-
cr.ate correct solutions for this problem. We can avoid the difficulty by

1postulating a very low value for damage effectiveness of low energy protons.

H. bwever, the value to be chosen is in disagreement, with theoretical eval-

uatioiis of the energy depeadence of proton damage. An extended analysis of

proton damiage, appears warranted, to insure that the predictioais of the

model are acceptable when large amounts of low energy proton damage occur.

31



In the pa,!;t,	 to Solar colls by low vrt rk rfy protuat4 bos

been treated is a loose. manner. The doernaso In a call, parau-toter, often

tho Short-01,1 4 auit current, li ruj boeii meastired againsV the fluonce of protons

causine, it. Knowing these, oiio can devolop 	 offoctiva	 coarri-

cienL, to rola.tc tlio two and urso this parameter in equations- of ulliform

daiwage relationships. Since the effective parameter is solacted to force,

the correct valur, of Ole short-circuit currcnt the I 'lathorilatics, generally

work. The situation to be investij-,^,atod must not differ greatly from the

experimont iisod to gencrate the parameters, Othorwisc o there is no guar-

antee of accuracy since the procodure is obviously of 
the 

ad hoc type.

The developmont of a techniqno to relate low enorgy proton damage

to short-circuit current has allowed , a more precise analysis. instead of

an effective damage coefficient, a true damago coefficient can be repro..

duced in the mathowatics. Doing t1iis, we have found that the theoretical

expressions overestimale Oic, acLual damage in the cases we have analyzed.

The results we 
have 

obtainod are shown 
in 

Figure 18. Several possibilities

exist to explain why low ener,7. protons are not as daranging as pradietad.

35

25 experiment

model

13
J.V	 J.V

p 
(protons/cm 2,)

Photovoltal,c current (milliamperes cm) versus

flue nce of 270 keV protons (Exp. by Statler and

Curtin)
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Figure 18;
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The	 fir.. t po.rl in lb i l. i. ty 	 tha t one m3.1;11t> coo	 3,d(,r Itero 1,,	 Lbe i,iiter-
fc^rence bett^ ,!eeu defects at tae end of tho tracl, of the prate►n,	 Each pro-

ton produces about a x 10 6 di,,*Placr o-at-s /cm as
it is slowed doT—ni froi;i an

ovorp,y of, 10 I-IeV to 1 lceV. conceivably, in a large fl.ueacte of protons,

fwrtny of the coll.ivions that occur cotild be t,ta,th sjli.c'can ett:o <sas that bave al-

rr,ady bc^tnn dis-placed. These call not bet cc>unt,ed a,s adcli.ti.onal. defects.

Assuminrt that all silicon atoins, whether displaced o r in lattice positions,
are egw,.illy likely to be st:rucl: by a proton, we estim-I .t;e that this inter-

ferenen. should be significant  when the protoa f luenco. is of the order. of

10 1 7/ Cm2.

The deviation between theory and measurement occur,, much lower,

around flucncos of the order of 10 12'/cra2 . However., the. assumption made may

be in error; the displaccd silicon atoms could be more likely to be struck

than are the lattice atoms. This would be a channcli.ng, eft;ect, who-reby.

lattice atoms, part:i,cularlAy those at the end of the proton tract:, shadow

• s	 probability. This needs a more detailedeach other to reduce a coll ision p^.rxl k,a^.la.t.y, 	 , :r.s n c	 t,

theoretical investigation.

Another possibility is that di,spl acciiaents occur and interfere

with. each other.	 A lattice vacancy, according to theory, diffuses through

the lattice until it finds a stable configuration.	 One such configuration

is a rocol-l)i.nation center., which is el.ectri.cal,l.-- active in reducing; the

configuration, of course, would	 vacancyi.ty.	 Another	 be a

z. 1 d.i.ud LrIL It a silicon that had been interstitial.	 This would be electrically
inactive, and be readily evalual—i in. terms of theory.	 ,

u A third possibility for investigation tapes into account the

proton, or hydrogen atom, that is left at the end of the track.	 The proton
could combine either with a vacancy or with a recombitlation center to reduce

its dama ne effectiveness.	 This woLQ.d be a form of a-.,,neali-ng, perhaps simi-
lar to that netted with lithium.	 (These  atoms arc sii ii.l.ar, having the same

valence, and similar size.)	 That annealing of up tc 90% of the defects does

occur has already been noted (ref. 6) .

y Finally, the recombination center mav persist but be incorrectly

i_

evaluated.	 The currant study does not inclucie evaluation of fill factors,

"'WINIMAN	 111111=IMMMI J il l
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t

^ta111a1 ► a,.c? 1-, ,c n to Ito	 nUo.-toO by i,l.lr , :i.3ot; ton ^iatLct*+;^ tRy.

7,hit. topics 1in;; rec-ontly bok,,'t of ccjn(c, e rn .visd i,t; Llie ;situ"ce L of current. in-

el-sewhere. ' lie, restjj.L:$ shovi l d Ire	 in L it t' mo-itl;t-

matna.c= 7 tr,ocick)r and Ctrlti3LlLC'r 1) L1 ,1`cl^,t t 	 1, L ia£s 1.srr, rtt t,lsat, 1 ^,l,lr facV r ^`c^r

pro Lon-ituhtevd	 e..P-nLc-rtj is a filne.0,oit of li, ;:tt ts^t,c^sres.i.t'y

(ref. 1) .	 T:ven if A-.,u rastri,ct our.sel.vos to a crnc^ s to- i^ttt tr^s ,t,y n;o^lcl.,

sul.Lal)1.c 0117.y for noar-Earth orhi.t:t;, this funvtLon can be ii aport-n).L. ThlS

is because l.i.-lit i> sLron o ly attenuated in s i, l lIC0110 Vie 1A ,]it i.rit'.oisi Ly

at the recombination cont•er. is thcirefore is fuact:i ou of i.tts d i, sL Utcc, frolil

the surface of the cell..

B. - Resis ta.nce, l-,:f':Cects

Radiation dasrizSe reduces both the. charge carrior concentration

and mobilai.ty. These reduction combine to increase the rc.tslL s tivity of it and

p silicon with exposure to radiation. Future work is needed to os tablish

the quantitative nature of this increase. Whether tho nature of the dopant

affects the chasx- a, whatber it I s Linear with exposure, whot:her temperatu^.^e

plays a sib nif:i.cant: role, and wh(:thckr the nature of the d.mal-o depends on

the bombarding, particle, are questions to be answerers by si.tch work.

The scri.es resistance of. a solar cell is a composite of resistance

tersrs due to current flow across the bulk region, aloe- the surface region

to the contacts, and across from cili.con to front and hack contacts. Hach

of these terios logically would behave differently under nadiaation exposure.

As a consequence, careful. analysis of resistance effects would require one

first to partition P.s among its components, and then, scale these components

as they chance with radiation exposure. Some uncertainty is obvious in this

scheme (even if the effect of radiation on si.l.i,coa resistivity were kiown),

since manufacturing tolerances would vary the corapone it> from cell to cell..

Finally, catastrophic events such as the liftin.- of a contact would be

difficult to predict. This would lead to a value of lts much grcat:cr than

normally expected; Figure 6 shows such a. w.lue.

Fortunately, cell resistance pLays a small part in the behavior

of a solar cell. An empi.ri.cal formula such as Eq. 16 for an estimate may be

generally satisfactory. More experimental mea-surements would be useful in
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V.	 GLOS SAY'*,Y

a tliicknoss of coverslide	 (,y^--$,;/c-wPR)

b thickness of thn solar toll (cm)

D diffusina coefficiont for ininoriLy carriorr., (on)

d darkouing coo.ffl,ciolit 	 (to be iioai-mrod
for covorslide with antl.reflective 	 nd
a d I i es j.v ot)

H electric field ii-j. cell, duo to iinpurity 	 -yadionL
(w	 cm)

L.,	 B ei)-orty of a particle in a solar cell (Valvy)
It

Be encr^,,,y of a pro t-anwhich hrz a ran,, ,;o X (MoV)

E enort,y of a	 incideitt on a solar cell, (MeV)partiC.1.0
0

e base of natural. lo -arithins:	 2.72

f fraction of front surface of solar call. not covered b-
contact

G rate of production of minority carriers per cn? at
depth X 

R, 
in silicon (carrio	 flrsciI1 3 -se: c)

H spectral irrad-iance outs-Ide solar cell. assembly, at
wavelencth X (watts-cin 2-micron)

current from a solar cell (amperes)

diode reverse-saturation current of a solar cell.0
(amperes)

loo initial. diode reverse - saturation curront (amperes)

3. 
L

photovoltaic curroiit induced iii a solar cell. (amperes)

1. current from a short-circuited solar cell (amperos)
sc

7

photovoltaic curront de-asity (amps/cin 2)
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Kr, K c	rolat; e	 1	 0Ja , proton of 0. ct:rom
f	 011d d0c) (!.'-;o 1.11 1, (d I 	 is inz1lcs v)

< K	 dnmajw inVojal, evaliiaLcd at. X

k	 SL efan-Boltmimim comstanV.: 1.38 x 10'-""" joul(I/
molecule 01,

r.iJ	base miuvrity earr.ler diffusioa lemi'Lli before-,
irradiffttlon (cm)

L	 mtnority c,,irri(,r dIff-u.-A.on lon,,th (ci-a) at X

	

0	 1	 If

1,5	Surfaco, 1,11,nority Carrier diffusion 	 bafore
 

irradiat.j.on (cm)	
L)

111	 index of refract-,10D Of "' ItISS for U^;11t Of W0,V0-

ligilt X

11	 parmao.Lor from Table I for proton rnn,,oed

n	 minority carrier conacatration at depth X
(carrior.9/cm 3)

11	 index of refraction of silicon for 1 ,11.t,ht: of wavo.,
lells th X

P	 electron slox .;rin,- down intc,,ral: lenth of trackI	 L")	 0
traveled by s'117, elearm, irL oUll.con befoi.e it;
loses its initial ener gyU

q	 unit electrical charge: 1. 6 x 10-19 
coulorabs

R 
L	

resistance of load across solar call (ohms)

R 0	 parameter froin Table I for proton rane.g

RS	series resistance of solar cell (ohms)

R so	 series resistance of cell before radiation ex.-
posure (ohms)

S	 front surface area of the solar coll, (cm

T	 absolute temperature (degrees Kelvin)

t	 depth X ,, 1.1"1 units of clectron sloT^I'.ng down in-
tegral P	 t = (a + X k P)/P

Y.

3 6
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V-ttio of Into'.i.siLy of li-11' lit OnLerin,-. ,, sol-ir
call to li,-,ht: incident on ooverolide, for
wavelcii- th

U	 light intei!slty incidaiit on solar call assallibly

du	 differential ener& spectrtim of light source
dX

	

	 2(watts/cm Imicron)

V 0	 characteristic voltage of solar. cell (volts)
(V	 AkT / q)

V 
oc	

potential across an open-circnited solar cell. (volts)

V 
oc	 0= V k(l + - 

0- )

X j	 depth of ju-action below surface of solar call (cia)

x	 distance from outer surface of coverslide (cm)

Z	 depth of penetration (j,ms/cm 2) 	 Z = a + X 
kP

Greek Letters

absorption coefficient in silicon for li ght of
wavolongth X (cm-1)

ratio of amplitude of reflected li-ht to incidentL)
l-ight at space/coverslide interface for polarized,
li&,Ilt

(4Y.L) same as above, but at covers lide/s ilicon interface

probability of reflection from the solar cell-
coverslide assembly for light of wavelength

A	 mash interval: clistance between X and X
tc 

(cm)

A	 increment of wavelength (microtis)

0	 angle between a perpendicular to the solar call
surface acid the direction of the sun (degrees)

0	 angle of light ray in silicon, bavin c, an ,le
in space with respect to normal and waveleTi-th X(dogrees)

w,:velcngth of Ught (microns)

Planck's constant times the speed of lic'ht
1.99 x 10- "13 watt-cm-sec
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moan 11FOLime of a minurlLy carrier in Lho
conduction hand (see)

minority carrier mobility (cri'/Volt-aec)

P	 density of silicon (2,33 grnms/cu?)

tP (1110)	 pro tons/ CM 2-MoV about an onorty B to which Clio
solar call. assoiiMy bas been exposed

(F"' 
0	

electrons/cm M  about an onerpy E to which the
solar call assumbly has been exposed

angle of light ray in glass, having inciclant
am -la 0 (dugraos)0

resistivity of solar coil base region (ohm-cm)

^i
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N1 11. RLM TECHNOLOGY

Aftcr a dili^,,ent revi.e,1 of the work performed under ti p .-s contract,

no new innovation, discovery, iatprovemexit or M CILtiOTL was made.

APPLNDI.X ; COVERSLIDE TJ,*ANSM1SS ION AT NoIMAL IVICIDENC1

The transmitted light intensity through a coversl.ide with rteglA&jble

absorption is given by equation 23 wher c: 0 1 (11), 02(11), ^1(.-) , and 0,2(1)

are given by equations 1.9 through 22. In the case of nonial incidence where

8, J , and 8X all equal zero, direct substitution yields an indeterminate
solution... However, since the tangent approaches the sine at small angles

we have

2
2	 »sinO cos ^( + cos 8 si.n^,^sin,_)	 ^.

R^, (10 = 01( x_) =	 si.n(©+yA ) J	 W—TICcos^'A ---- cosCJ- it A^

and

02 it = 3 J-)
»sin(y^ - 0	

a^
-Si, cos +cos$►., si.nb,tla (48)

sin(	 + 0A )si.nt^^ cos0^ I cos 'A sir^^'^

Hiviuing numerator and di.nominator of the first equation by sin 4t and of the

second equation by sin 0. , and replacing sin Q'sin "VA by m and sin *,/sin 01

by n,, /m,. from Snell's law the equations reduce to

/ »m + 1 '=

x

and

(mA+%

Substitution of these quantities into equation 23 and simplification yield
equation 24.

I

E	

1

41

r..

(47)
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