General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Contract No. W-7405-eng-26

Neutron Physics Division

EVAP-2 and EVAP-3: Modifications of a Code to Calculate Particle Evaporation from Excited Compound Nuclei

M. P. Guthrie

This Work Partially Supported by NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Under Order No. H-38280A

MARCH 1969

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION

TABLE OF CONTENTS

Page No.
ABS'TRACT 1
I. INTRODUCTIION 2
II. EVAP-2 3
Description of Calculation 3
Modifications Incorporated in EVAP-2 4
Updated EVAP Table Tape 4
${ }^{8}$ Be Breakup 5
Negative Excitation Energies 5
Additional Minor Modifications 6
Input Requirements 6
Subroutine Structure 7
Sample Case 8
III. EVAP-3 14
Differences Between EVAP-2 and EVAP-3 14
Calculation of Kinetic Energies of Recoiling
Nuclei in EVAP-3 15
Input Requirements and Subroutine Structure 17
Sample Case 17
ACKNOWLEDGMENTS 24
REFERENCES 25

EVAP-2 and EVAP-3: Modifications of a Code to Calculate Particle Evaporation from Excited Compound Nuclei
M. P. Guthrie

Abstract

The EVAP computer programs calculate the types, multiplicities, and energy distributions of particles evaporated from excited compound nuclei. The modifications incorporated in EVAP-2 include updating the nuclear masses and shell-plus-pairing energy corrections used as input data, providing for the breakup of ${ }^{8} \mathrm{Be}$, and eliminating the possibility of the evaporation residual nucleus having a negative excitation energy. EVAP-3 retains all of the modifications of EVAP-2 and, in addition, calculates the kinetic energies of the recoiling nuclei. The codes are written in FORTRAN-IV and operate on the IBM-360 computer. Data cards and the printed output for a sample case are shown.

I. INTRODUCTION

Dresner's Monte Carlo c̣omputer program EVAP ${ }^{1}$ determines the types, multiplicities, and energy distributions of particles evaporated from excited compound nuclei. This useful calculation has been modified many times and is often used in association with other calculations including Bertini's intranuclear-cascade codes LECC and MECC ${ }^{2}$ and the nucleon transport code NTC. ${ }^{3}$ EVAP-2 and EVAP-3 operate without other codes. The evaporation process is started by the collision of an incident particle with a target nucleus. An excited compound nucleus is formed, from which particles are emitted until evaporation is no longer energetically possible. The physics in EVAP-2 and in EVAP-3 is identical to that in the evaporation codes used by the cascade calculations and NTC. The only difference in the two sets of codes is in the formation of the compound nucleus. In EVAP-2 and -3 the compound nucleus is formed directly, while in the other codes it is formed at the end of the intranuclear cascade.

EVAP-2 was written to update the input data used by the evaporation calculation and to incorporate the most desirable modifications of earlier versions into one "standard" code. EVAP-3 was originally written to be used with the low-energy cascade calculation to study the effects of the capture of negative pions in light elements. ${ }^{4}$ It is identical to EVAP-2 in all respects except that the effects of the kinetic energies of the recoiling nuclei are included in the calculation. The two codes operate on the IBM-360 computer and are written in FORTRAN-IV. The subroutines that generate random numbers are in machine language.

II. EVAP-2

DESCRIPIION OF CALCULATION

Dresner's original calculation began with a compound nucleus of predetermined type and excitation energy. EVAP-2 begins one step earlier with the collision of a particle of predetermined type and kinetic energy with a stationary nucleus. The compound nucleus formed by this collision is determined simply by adding the mass and charge of the incident particle to the mass and charge of the target nucleus. The excitation energy of the compound nucleus is the sum of the kinetic energy of the incident particle and the binding energy of the incident particle in the compound nucleus.

After the determination of the type and excitation energy of the compound nucleus, EVAP-2 follows Dresner's evaporation calculation very closely except that onily 6 types of evaporated particies are considered instead of Dresner's original 19. The calculation is based on a theory originally proposed by Weisskopf ${ }^{5}$ and on a Monte Carlo code written by Dostrovsky. 6 The calculation is clearly explained in Dresner's description of his code. ${ }^{1}$

Seven types of incident particles can be used in EVAP-2: neutrons, protons, deuterons, tritons, helium-3 nuclei, alpha particles, and photons. The first six types of these particles can be evaporated from the excited compound nucleus. The output data include a table of the distribution of residual nuclei following evaporation and, for each type of evaporated particle, the average evaporation yield per collision, the moments of the energy distributions, a:ld tables of nurmalized energy spectra.

MODIFICATIONS INCORPORATED IN EVAP-2

Updated EVAP Table Tape
The nucle.r masses used by EVAP were obtained from tables comyiled by Wapstra ${ }^{7}$ and Huizenga. ${ }^{8}$ Mattauch et al. ${ }^{9}$ have recently published a new tabulation of mass excesses and binding energies. The mass excesses in the new tabulation are based on an atomic mass unit of $1 / 12$ of ${ }^{12} \mathrm{C}$. Since the data used in EVAP are based on ${ }^{16} 0$, the binding energies tabulated by Mattauch et al. were used rather than the mass excesses. The binding energies were converted to mass excesses on the EVAP Table Tape using the formula:

$$
E M E X=Z *(E M H-E M N)+A *(E M N-U M)-B E
$$

where

$E M E X$	$=$ mass excess in MeV
Z	$=$ charge of nucleus
A	$=$ mass number of nucleus
$E M H$	$=938.7298$, mass of proton in MeV
$E M N$	$=939.5124$, mass of neutron in MeV
$U M$	$=931.145$, unit mass in MeV
$B E$	$=$ binding energy in MeV tabulated by Mattauch et al.
For nuclei not tabulated by Mattauch et al. but having a mass number	
in ± 10 of the valley of stability of the periodic table, mass excesses	
calculated using the semiempirical mass relationship of Cameron. 10	
were stored along with the Mattauch et al. data in the WAPs array on	
new EVAP Table Tape in the same manner as they were stored on the pre-	
usly used tape.	

Cameron's mass relationship uses a set of "shell-plus-pairin: energy corrections, which are stored as Cameron Functions on the EVAP Table Tape. Cameron listed no values for these corrections for nuclides with Z or N less than 11. Cameron Functions for small Z or N were therefore set equal to zero on the original EVAP Table Tape. Peelle and Aebersold ${ }^{l l}$ observed that large mass errors could be made using the zero Cameron Functions for light nuclides. They obtained new values for the shell-plus-pairing energy corrections for nuclides with Z or N less than 11 using a weighted leastsquares fit to Mattauch et al.'s masses. These new values have replaced the zeros in the Cameron Functions on the new EVAP Table Tape.

${ }^{8}$ Be Breakup

When a ${ }^{8}$ Be nucleus is formed in the evaporation proces 3 , it will split into two alpha particles instead of evaporating a lighter particle. This fact was ignored in the original EVAP calculation but has been taken into account in EVAP-2. If an evaporation residual nucleus has an A value of eight and a Z value of four, it is assumed that two alpha particles are created. Each alpha particle has an energy equal to one-ha. " the sum of the excitation energy of the ${ }^{8}$ Be nucleus and the binding energy for the reaction. These alpha particles are then treated as evaporation particles with no further evaporation taking place. A counter records the number of times ${ }^{8}$ Be breakup occurs.

Negative Excitation Energies

Because of the Monte Carlo sampling techniques used in the evaporation calculation, it is possible for the kinetic energy selected for the evaporated particle to be greater than the energy available for the reaction. This results in a negative excitation energy for the evaporation residual
nucleus. If this happens n EVAP-2, the calculatior regaies ar. I : n kinetic energy is selected for the evaporated particie. $:=4 \%: \%$ reasonable energy has not been obtained in ten attempts, the evarys.t. process is terminated at the previously eveporated paris. a .

Additional Minor Modifications

In the tables of evaporation residual nuclei frirtei $\therefore: \because \because \because, \quad \because \quad$, sidual nuclei were sometimes identical to evaporated partinas in: ... target nuclei were studied. These nuclei were not inviucied ir : \#. r.... plicities of the evaporated particles and their energies were r.t. A. .
 When it is identical to one of the six types of eraporated partiznta, : \because treated as an evaporated particle and not as a residual rucieus. in in is kept of the residual nuclei with changed status, so that an resisas nuclei are accounted for.

INPU'T REQUIREMENTS

Only one input data card is required to operate EVAL $\hat{C l}$. The vari format is 3115 , F15.0, I15. The five input variables are as solicwe:

NATA - the mass of the target nucleus;
NZTA - the charge of the target nucleus;
ITYPE - the type of incident particle specified by the following coie: 1, neutron; 2, proton; 3, deuteron; 4, triton; 5, ${ }^{3}$ He nucie:; 6 , alpha particle; 7 , photon;

EKIN - the kinetic energy of the incident particle in MeV;
IMISNO - the number of incident-particle collisions to be ialculated.
The remaining input data are stored on a magnetic tape referred to as the EVAP Table Tape. The tape has the logical number 3 in the calculation.

Any number of cases may be run in succession by simply placing additional data cards behind the first one.

The evaporation calculation always begins with the same random number, so that the same cases run at different times should be identical. However, if more than one case is run in succession, all cases after the first begin with the last random number generated in the preceding case.

SUBROUTINE GTRUCTURE

EVAP-2 consists of a main program and six subroutines. Two of the subroutines, FLTRN and EXPRN, are machine language programs to generate random numbers. The main program reads the input tape, does only a few minor calculations, calls DRES, and writes the output tape.

DRES is the subroutine in which the major part of the calculation is aarried out. There are three calls to DRES from the main program. On the first call, data are read into the menory from the EVAP Table Tape. On the second call, information from the jnpus tape is transferred to DRES, and appropriate variables are zeroed. On the third call, the Monte Carlo evaporation calculation is performed for the first incident particle. The third call is repeated for the number of incident-particle collisions specified on the data card. If more than one case is run in succession, the first call to DRES is not repeated since the data on the EVAP Table Tape are the same for all cases.

THRES is a function subprogram that calculates the binding energy for the formation of a compound nucleus from the collision of the incident particle with the target nucleus. THRES is not called for incident photons. The excitation energy of the compound nucleus is simply the kinetic energy of the photon in this case.

ENERGY is a function subprogram that determines the mass excess of any nucleus. The information is either read from the tabulation of mass excesses stored on the EVAP Table Tape or calculated using the semiempirical mass relationship formulated by Cameron. 10 Data needed for the Cameron calculation are also stored on the EVAP Table Tape.

DOST is function subprogram that determines some of the factors used in calculating the probability of the emission of each of the six types of evaporated particles from a given compound nucleus.

SAMPLE CASE

The data card and printed output for a sample case, $18-\mathrm{MeV}$ protons on ${ }_{20}^{56} \mathrm{Fe}$, are shown.

Data Card: $18-\mathrm{MeV}$ Protons on ${ }_{26}^{56} \mathrm{Fe}, 4000$ Histories

56
36
$?$
19. $+0 n 7$
GASE NUMBER $56 \quad 26 \quad 182$
distribution of residual nuclei following evaporation
RGY (MEV)
TION ENER
9.1483
11.2193
1.8879
1.9425
7.0494
5.5727
average excitation erfergy of residual nuclei

[^0]

[^1]0.372707
0.301032

WOW CYE
WOW ONZ
WOW ISI

が～～さNいへ

Nom mion

○～が品等N゙
NがNON゙
$000 N \sim N \sim N$ No

000
CC 3812
270633

0000＇
$\underset{\sim}{N}$
0．0000000000

Noincun

III. EVAP-3

DIFFERENCES BETWEEN EVAP-2 AND EVAP-3

The evaporation calculation in EVAI -3 is identical to that in EVAP-2 except that the effects of nuclear recoil are included in EVAP-3. EVAP-2 assumes that the initial excited nucleus is fixed and ignores recoil velocity. The same assumption is made for a nucleus after the evaporation of a particle, allowing all of the energy of the nucleus to be available as excitation energy for the next evaporation. This means, in effect, that EVAP-2 neglects the difference between the laboratory and center-of-mass systems.

In EVAP-3 the excitation energy used to calculate the evaporation of the first particle from the original compound nucleus is the energy available in the center-of-mass system. Before evaporation, the velocity of the center-of-mass system is equated to the recoil velocity of the compound nucleus. After each evaporation, the velocity of the new residual nucleus is calculated, and this becomes the velocity of the center of mass for the next evaporation.

In EVAP-2 the particles are assumed to be evaporated isotropically from the excited nuclei. In EVAP-3 the particles are evaporated isotropically in the center-of-mass system. The distribution in the laboratory system is therefore no longer isotropic.

In general, the differences in the results calculated by the two codes are small. The particle miltiplicities are, on the average, slightly lower in EVAP-3 and therefore the residual nuclei are slightly heavier.

CALCULATION OF KINETIC ENERGIES OF RECOILING NUCLEI IN EVAP-3

The first step in determining the recoil kinetic energy of the original compound nucleus is the calculation of the momentum of the incident particle. Since the target nucleus is assumed to be stationary, the momentum of the compound nucleus was equated to that of the incident particie. The kinetic energy of the comporiad nucleus was then determined from the momentum, and this value was subtracted from the excitation energy of the compound nucleus calculated by the method of EVAP-2.

To calculate the recoil kinetic energy and the excitation energy of each evaporation residual nucleus, the following symhols are used (primed quantities refer to the center-of-momentum system and unprimed quantities refer to the laboratory system):
$E^{*}=$ the excitation energy of the evaporation residual nucleus;
$\overline{v_{c}}=$ the velocity of recoil nucleus before evaporation, which is also equal to the velocity of the center-of-momentum system after evaporation;
$\overline{v_{i}{ }^{\prime}}=$ the velocity of the next evaporated particle of type i in the center-of-momentum system;
$\overline{v_{r}^{\prime}}=$ the recoil velocity of the nucleus after emission of particle i in the center-of-momentum system;
$M_{r}=$ the mass of nucleus after emission of particle $i ;$
$M_{i}=$ the mass of evaporated particle i; $0=$ the angle in the center-of-momentum system between $\overline{\mathrm{v}_{\mathrm{i}}{ }^{\top}}$ and $\overline{\mathrm{v}_{\mathrm{c}}}$;
$\cos \theta$ is selected from an isotropic distribution between 0 and 180°.

The velocities of the evaporated particle and the recoil nucleus in the laboratory system may be expressed as follows:

$$
\begin{aligned}
& \bar{v}_{i}=\overline{v_{i}^{\prime}}+\overline{v_{c}} \\
& v_{i}^{2}=v_{i}^{\prime 2}+v_{c}^{2}+2 v_{i}^{\prime} v_{c} \cos \theta \\
& \overline{v_{r}}=\overline{v_{r}^{\prime}}+\overline{v_{c}} \\
& v_{r}^{2}=v_{r}^{\prime 2}+v_{c}^{2}+2 v_{r}^{\prime} v_{c} \cos (180+\theta)
\end{aligned}
$$

and, in the center-of-momentum system,

$$
M_{r} \overline{v_{r}^{\prime}}=M_{i} \overline{v_{i}^{\prime}}
$$

therefore,

$$
v_{r}^{\prime 2}=\left(M_{i} / M_{r}\right)^{2} v_{i}^{\prime 2}
$$

The square of the recoil velocity of the nucleus in the laboratory system is then

$$
v_{r}^{2}=\left(M_{i} / M_{r}\right)^{2} v_{i}^{\prime 2}+v_{c}^{2}+2\left(M_{i} / M_{r}\right) v_{i}^{\prime} v_{c} \cos (180+\theta)
$$

The type of evaporated particle and the energy of the evaporated particle are determined using Monte Carlo sampling techniques, and therefore M_{i} and v_{i}^{\prime} can be calculateal. $\quad v_{c}$ can be calculated from the recoil kinetic energy of the original compound nucleus for the first evaporated particle. For subsequent evaporations, v_{c} is simply the v_{r} calculated for the previous evaporation.

The excitation energy, $E_{n e w}^{*}$, of the residual nucleus after a particle is evaporated is equal to the excitation energy of the nucleus before evaporation minus the sum oi the kinetic energies of the evaporated particle
and the residual nucleus and also minus the binding energy Q of the evaporated particle in the nucleus before evaporation.

$$
\begin{aligned}
E_{\text {new }}^{*} & =E^{*}-\frac{1}{2} M_{r} v_{r}^{\prime 2}-\frac{1}{2} M_{i} v_{i}^{\prime 2}-Q \\
& =E^{*}-\frac{1}{2}\left[M_{r}\left(M_{i}^{\prime} / M_{r}\right)^{2}+M_{i}\right] v_{i}^{\prime 2}-Q .
\end{aligned}
$$

The velocity of the evaporated particles in the laboratory system is used to calculate the energies for the energy distributions and spectra tabulated by EVAP-3.

INPUT REQUIREMENTS AND SUBROUTINE STRUCTURE

The input data card and the subroutine structure in EVAP-3 are identical to that in EVAP-2. The printed output is also the same in the two codes except that in the table, "Distribution of Residual Nuclei Following Evaporation," there is one additional column for the tabulation of the recoil kinetic energies of the nuclei.

SAMPLE CASE

The printed output for the same sample case that was used for EVAP-2 is shown for EVAP-3. The data card is identical to the one shown for EVAP-2.

A comparison of the normalized neutron energy spectra calculated by EVAP-2 and EVAP-3 is shown in Fig. 1. Standard deviations are not calculated by the EVAP codes, but the difference between these two spectra is almost surely due to the statistical nature of the calculation.
CASE NUMBER $56 \quad 26 \quad 182$

average excitation energy of fesigual nuclei 6.4288
~N NONNN Nin

- in in n

-0융N

 $\begin{array}{r}0 \\ 0 \\ 4 \\ 4 \\ \hline 8\end{array}$

0.04448
0.004
0.00
∞
0
0
0
0
0
0
$000 \uparrow N-0000000090000000=0$

N

[^0]: CASE

[^1]: NORMALILED EVAPDKATIGN NEUT SPECTRGA
 IS THE LUNGK EiGEGY LIMIT OF THE INTEEVAL IN MEVI
 NORMALILED GVAPJKATIEN NEUT
 IE SPECIFIES THE LUNEK EIGZGY LIMIT O

