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T R A N S I E N T  C O N D U C T I V I T Y  O F  S I L I C O N  

I. INTRODUCTION 

In an indirect-bandgap semiconductor like silicon momentum con- 
servation requires that hole-electron recombination must have the partici- 

pation of the crystal  lattice. In practice, recombination occurs when elec- 
trons and holes are alternately captured by lattice defects, so called "re- 
combination centers". Whenever a minority carr ier  is captured by a defect 

center there are two possible subsequent events. 

ture a majority carrier,  thus completing the recombination process for one 

hole-electron pair; o r  (2) The trapped carr ier  may be excited thermally 
back into the minority carr ier  band before a majority carrier can be cap- 

tured. The latter "trapping" process has the effect of prolonging the net 
lifetime of the hole-electron pair. 

(1) The defect may cap- 

The usual distinction between a recombination center and a trapping 

center is simply which process is more probable: majority carr ier  cap- 

ture (recombination) or thermal re-emission of the minority carr ier  (trap- 

ping). Obviously, a single center may act as both a recombination center 
and a trapping center if the probabilities of majority carr ier  capture and 

thermal reemission of the minority carr ier  a r e  comparable. 

The Hall-Shockley-Read results have been applied with considerable 

success to  Ge and Si by numerous workers. Blakemore (3) discusses the 

state of affairs in 1962, and gives a comprehensive bibliography of the work 
up to that time. Corbett (4) summarizes the work up to 1966 dealing with 

radiation-damage effects. The latter reference, on pp. 84-5 gives an 

excellent summary of the multiplicity of radiation-induced defect levels 

which are found in silicon. 
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It is apparent from a large body of evidence that many species of 

defects a r e  produced when silicon is irradiated by electrons, protons, 

neutrons, etc. These defects are, variously, recombination centers or 
trapping centers, and a realistic analysis of the radiation damage behavior 
should be based on the simultaneous existence of more than one type of 

defect. 

Evans and Landsberg (5) have considered transient recombination 

and trapping in the case where Ap is small  and have contributed an in- 
teresting matrix formulation of the problem. Unfortunately their work 

stops short of providing a basis for interpreting experiment in terms of 
theory. 

Curtis (6) has studied steady state recombination in the presence 
of trapping. His results a r e  in complete agreement with the quasi-equilibrium 
transient recombination results which a re  presented here. 

Among the published results is a 1963 article by the present writer 
(7) describing recombination and trapping in normal and electron-irradiated 
silicon. That article will be referred to here as (I). 
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We found that irradiation of silicon with high-energy electrons pro- 

duces a multiplicity of defect species. This finding is consistent with a 
large body of evidence on the nature of radiation damage in silicon. Many 
different types of defects are produced, and any analysis is predicated on 
the existence of only a single species of defect is not realistic. 

In the work described in  (I)  we were able to analyze samples con- 

taining numerous types of defects by making certain simplifying assump- 

tions. These assumptions a re  reviewed in the present paper. 

Our purpose in the present paper is: (1) to enlarge the single-level 

theory presented in  ( I )  to allow both recombination and trapping by the 

same defect, (2) to allow the simultaneous existence of several species of 

trapping center, (3) to  allow the existence of divalent traps, and (4) to 
compare the theory with experiment and resolve some inconsistencies 

which were previously noted, and which resulted from the simplifying 

assumptions of the single-level theory of (I). 

11. THEORY O F  TRAPPING: Single Trap Case 

Throughout the following discussion we shall assume n-type material. 

The treatment may be applied to p-type material by the usual process of 
interchanging the n-and p-notation. The crystal contains certain recombin- 

ation processes which have nothing to do with the trapping with which we 
a re  here concerned. It will be sufficient for our purposes to characterize 

the recombination processes as a group by the single parameter 7, the 

lifetime which a minority carrier would have if there were no trapping. 

In (I)  we considered a sample having recombination and one single 

species of trap. The traps were assumed not to contribute to recombination; 

i. e . ,  they were purely trapping centers. Our fundamental approach was 
similar to the earlier approach of Hornbeck and Haynes"). We assumed 

that a condition of quasi thermal equilibrium was established between the 
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traps and the valence band. On this assumption the t rap and valence band 

populations may be characterized by a single quasi-Fermi level. The 

calculations and results of (I) are summarized in Appendix A. Our con- 
clusion was that in the single-trap case the excess conductivity decays in 

two stages, an early stage during which the excess carr ier  concentration 

is large compared with the trap density and a final stage during which it 
is small compared with the trap density, with a broad transition (the 

"initial" decay) region between the two limiting cases. In the large- 
injection limit, the recovery is purely exponential, with a time constant 

. In the small-injection limit (the "final'' decay) the recovery is also 

purely exponential, with a time constant equal to 

Although the theoretical treatment in (I)  was  limited to the case of 
a single species of t rap it is possible to extend the treatment to many traps 

provided they are well separated. In this context two traps a re  I'well separ- 

ated" provided the value of pt/Nt for the shallow trap is large compared 

with the value for the deep trap, and provided the shallow trap concentra- 

tion is somewhat larger than the deep t rap concentration. The value of pt 
depends exponentially on the trap's energy level, and for the separations 

observed in silicon the values of p for adjacent traps a re  usually different 

by orders of magnitude. If adjacent traps have similar concentrations, 
or if a deep trap is present in  a concentration that exceeds that of a shallow 

trap there a r e  two possible consequences: (1) the shallow trap (with small 

concentration) may be totally masked by the deep trap, and hence it may 

be overlooked; (2) the shallow trap, although unresolved, may produce an 
observable effect which must be taken into account in  any analysis of the 

deep trap. 

t 

In our treatment of this problem in (I) we neglected the possibility 

that recombination might occur at the trapping centers; our assumption 

was that the traps were able to communicate only with the minority carr ier  

band. If we allow for recombination via this channel the differential 

equation governing the hole recombination, Equation Al,  becomes 
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where C& is the electron capture cross section of the trap when it is occupied 

by a hole. 

We consider two limits: (1) p large compared with Nt, and (2) p 
small compared with Nt. We furthermore restrict  ourselves to p, n small 
compared with no. In this consideration the second term on the right hand 

side of eq. (1) will be treated as a perturbation of the total recombination 

rate. It turns out that this is not always the case, expecially at low temp- 

peratures. 

(1) In the limit p>>Nt, 

1 
(AP) = ~ ( A P )  + NtnoVe a e  - -Ti--  

d 

This may be integrated directly to give 

(3) n %  
2' 

t 
z - -  Cn nT 

AP = ( & P o  + *) e 

where 
= r~~ ve gel J tr at ion. 

and A b  is the initial excess hole concen- 
I- 

(2) In the limit <<Nt, a +  .AN and 
.pt + t 

- d ( a p )  = - a A P  + (1 -a )Apnove  re aT .z . (4) 
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Equation (4) may be integrated directly. The decay of Ap is again 
a pure exponential with a new time constant 

We now wish to compare the large signal and small signal perturbations 

of the total recombination rate. In the large injection limit the amplitude is per- 

turbed and the order of the perturbation is given by QLT/~pG .A c / 

In the small injection case the characteristic time constant is perturbed and the 

perturbation is proportional to t7, xi . The ratio of these two per- 
turbation factors is simply P,/np,, 
silicon this ratio is very small. Therefore, the effect of recombination at the 
traps is more important in  the latter stages of the decay than in the early 
stages. 

t . For all cases of interest in  

If we examine the temperature dependence of the small signal pertur- 

bation it is easy to show how the e r ror  introduced by neglecting recombination 

at the traps will vary with temperature. In our experiment we measure 

which is smaller than the expression for the terminal time constant in the case 

rp.- 
L,, 

1 .  where recombination is neglected, [I + .I’ft 
Pt 

. Assuming again 

for  the sake of simplicity that pt<<N, the apparent experimental value of t 
Nt/pt will be systematically lower than its true value, and the apparent value 

of p will be larger than its true value. Consequently the trap energy level, 

which is computed from the appwent pt will appear to be closer to the valence 
band than it really is. Since the principal temperature dependence occurs 

in  the factor p the e r ro r  will increase with decreasing temperature. As  we 

will point out in the following sections this is qualitatively what has been 

t 

t 
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observed for the sample reported in (I)  and in other samples studied since. 

An example of this effect is the hole trap at Ev + 0.29 eV which was 
produced by electron irradiation of sample 1160 in (1). The apparent energy 

level of this trap was 0.29 eV when the sample was at -47OC, and 0.25 eV 

when the sample was cooled to -75OC. Following our discussion above, as 
the sample is cooled, and recombination begins to dominate, our analysis 
no longer yields pt/Nt for  the ratio of fast/slow time constants. We begin 
to observe, instead, (1 - p /N ) nOve re. This being the case, we can ob- 

tain a value for the electron-capture cross section of the trap Ce. This 
cross section is a property of the trap which is not observable in any other 
manner. 

t t  

-18 2 For the "0.29 eV" trap, re = 6 x 10 

= 10 

In the same sample, 1160, the trap at 0.39 eV exhibits the same phen- 

cm , This cross section is 
probably too large for a divalent acceptor (which one would predict to have 

-20 2 ern ) so the trap is most likely a monovalent acceptor. e 

omenon: a shift in the apparent energy level with sample temperature. 
trap, the electron capture cross section necessary to account for the shift is 

For this 

-20 2 cTe = 2 x 10 ern . This value is probably indicative of a divalent acceptor. 

III. MULTIPLE TRAPS 

The theoretical treatment of trapping outlined above is restricted to 

samples containing only one species of trap. We estimated that the single 

t rap theory was applicable to samples containing more than one species, 

provided the traps a r e  well separated, as defined above. In order to verify 

this estimation, and to extend the treatment to cases where the traps a re  

not well separated, we now consider samples containing two species of traps. 

As in  the single-trap case, we consider a sample of n-type material. 

At time t = 0 the excess hole concentration is dpo.  

cesses in the crystal (exccusive of the traps being studied) are represented by 
the lifetime %. There are two sets  of traps: N traps per unit volume having 

The recombination pro- 

1 
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energy level E and N traps per unit volume having energy level E Both 

are assumed to act purely as hole traps, capturing holes from the valence 
l} 2 2' 

band, and re-emitting holes back into the valence band. It is assumed that 
the traps are non-interacting; a hole cannot move from one trap to another 

without passing first into the valence band. 

We assume quasi-thermal equilibrium between each of the sets of 

traps and the valence band; the charge populations of the traps and the valence 
band may be described by a single quasi-Fermi level (4. f.  1. ) F 

sumption means that the excess holes are exchanged freely and rapidly between 

the two sets of traps and the valence band. It is essentially a condition of 

multiple trapping, in which the holes are captured and freed many times on 

average before recombination occurs. We wish to  calculate for any given 

set of crystal parameters (including the excess carrier concentration) the 
quasi-thermal equilibrium distribution of the excess carriers among the two 

sets of traps and the valence band. 

This as- t' 

Under these conditions the populations of traps and valence band are 
given by the following equations. The number of traps #1 which a r e  occupied 

by holes is: 

Similarly, the number of traps #2 which are occupied by holes is 
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The number of f ree  holes is given by 

Therefore we have three equations (5 - 7) in three unknowns({3,, pz & Ft ). 

We can completely specify the free - vs trapped hole concentrations in terms of 

Ft. Consequently our attention here will be on the behavior of Ft as a function 

of the sample parameters. We can accomplish this by adding equations (5) 

through (7). 

El- F, 
Where x s  e T  and A 3 e kT 

E2-- 

We have here eliminated PI & p,. 
If Equation (8) is expanded, we obtain 

(1 + x) (1 + Ax) 4 p = N1x (I  + Ax) + N2Ax (1 + x) + plx ( 1  + x) (1 + Ax) (9) 

and D 
N2 

we have: Nl N1 
If we further substitute B 5 - P1 c s -  

ABx3 + [B(l+A) + A(l+C)-AD]x2 + E + A C + l - - D  - A g x  - D  = 0 
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This equation is cubic in  x. It has three roots, all of which a re  real, 
one positive, and the other two negative. According to our definition of x, 

only the positive root is physically meaningful. Once we have determined 
the positive root for any given set of parameters, N1, N2, El, E2, and Ap 

we can calculate F and determine the distribution of the excess holes. 

Knowing the lifetime 7 we can then calculate the instantaneous recombination 

rate as a function of lip, and thus compute the transient excess conductivity 

of the sample. 

t 

IV. DIVALENT TRAPS 

We next consider the case of a sample containing a single species of 
divalent trap. As  in the previous cases, we represent the recombination 
processes by the lifetime 7. We again assume quasi equilibrium, but as 
Sah and Shockley have pointed out 

a multivalent defect by means of a quasi-Fermi level. Our approach is 

formally the same as for the multiple trap calculation, except that instead 

of characterizing the system by a q. f. 1. we write detailed balance equations 

for the various states. 

(9) , one cannot describe the populations of 

The system is illustrated in  the following figure: 
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DE FINIT IONS: 

c C 
. - .  E 

* Ef 
1- . ~ 

_. . . 

R1' 
E2 

V 
E 

(3- 1 

A P  

d 

B1 

P2 

Vh 

R1 

R2 

R3 

R4 
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= the trap concentration 

= the binding energy of a 
single hole to the trap 

= the binding energy of a 
second hole to  the trap 

= the cross  section of the 
trap for Capture of a hole 
when the trap is empty 

= t h e  cross  section of the 
trap for  capture of a 
second hole when it is 
occupied by one hole 

= the mean time for a hole to 
be thermally excited into 
the valance band when it is 
single trapped (emission 
energy = E1-EV) 

= the mean time for thermal 
excitation from the trap to 
the valence band when there 
are two holes on the trap 

= the excess hole concen- 
tration 

= the fraction of 
a r e  free 

= the fraction of the traps 
occupied by one hole 

= the fraction of the traps 
occupied by two holes 

= the thermal veolcity of a 
free hole 

= the rate at which empty 
traps capture holes 

= the rate at which singly- 
occupied traps capture 
holes 

= the rate of thermal emission 
into the valence band from 
singly - occupied traps 

= the rate of thermal emission 
from doubly - occupied holes 

p that 



Under our condition of quasi-thermal equilibrium the t rap popula- 
tions are nearly constant, and detailed balance requires that R1 = R3 and 

R2 = R4. 

The four rates can be determined: 

R1 = 

R2 = OC h P  

hP ( l  - 6 - &) Nt Vh 5 
Nt 'h 3 

R3 = B1 Nt/ Tl 
R4 = 2 p2 Nt/ T2 

The two thermal emission times and < can be shown from 
detailed balance at thermal equilibrium to be equal to 

where p and p are the usual Shoc . 2 
and p =N e (E v - E') /kt 

2 v  ) *  

Equating Rl to R and R2 to R4: 3 

Izy-Read parameters (pl= 

and simplifying: 

These two equations relate the instantaneous population distribu- 

tion parameters W, ply and 3 to  the physical quantities describing the 
crystal. We can write a third equation r.elating these quantities using the 

requirement that the total free plus trapped hole concentration must add up 

r 2  

to\ a P* 



(1 - cx) hp = ( p1 + 2 p2, Nt* ( 15) 

We can eliminate f1 and Fz from these three equations, and we 

obtain: 

As in  the two-trap case, we obtain a cubic equation for the occupancy 

fraction in terms of the crystal parameters. If we again make the substi- 

tutions for A, €3, and D defined on page 9 equation (16) becomes: 

= o  2 B B2 o( 3 2  D +cx' D ( 2 + 2 + -  D) + 2 M T ( l - D + B ) -  2 T  

For comparison, if we write the cubic equation for the two-trap 

case in te rms  of A, B, C and D, we have: 

= 0  D + B + A C - A D )  - -jq- B2 3 2  B B 
o( D + d 2 ~ ( T + ~ + i + ~ - ~ )  +qT( i - -  

It is interesting to note that in  the divalent case the cubic equation 
for X does not contain the two capture cross  sections, Cl and g2. 

- 12- 



V. DISCUSSION O F  RESULTS OF CALCULATIONS 

A. Two Well-Separated Traps 
The theoretical dependence of o( I vs. Cp for a representative 

two-trap example is shown in Fig. 1. The curve clearly has three distinct 

regions. In region I the two traps are saturated, and the electron-hole 
recombination proceeds as though the t raps  were absent. In region I1 
the deep traps a re  still saturated, but the population of the shallow traps 

changes rapidly with Ap. In region 111 the shallow traps a re  almost all 

empty and the population of the deep traps varies rapidly with l ip .  

Fig. 2 shows x I vs. ,& p for the same t rap parameters. Since 

the logarithm of x is proportional to the position o€ the q. f.  1. this Figure 

shows how the position of the q. f. 1. varies with ~ p .  Two ordinates a re  
labelled El and E2; these a re  the points at which the q. f. 1. lies at the 

energy level of the two traps, respectively. The curve is linear at the 

two extremes, region I and region III. These a r e  regions in  which the 
q. f .  1. moves linearly time during the recovery, and the recovery curve 
is approximately a pure exponential. E the separation between El and 
E2 were sufficient we would expect to see a third linear region between 

El and E but this is not visible in the example chosen. 2’ 

In this example, the single-level theory can be applied without 

introducing significant error.  

B. Two Poorly-Separated Traps. 

Several examples of two poorly-separated traps are shown in 

Figs. 3. In Fig. 3a the trap parameters a re  the following: 

A = .003 
B =  .001 
c = 3 . 3  
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This corresponds to pl/N1 = . O O l ,  p2/N2 = . 1, N2/N1 = 3.3. 
For comparison, we have also plotted the single-trap curve, for a trap 

with the same value o€ p/N as the deep trap in the example being considered. 

Clearly, the shape of the curve for the two-trap example is different from 

the single-trap comparison, but it is equally clear that any determination 

of the parameters describing the shallow trap is made very difficult by 

the presence of the deep trap. In practice, if one mistakenly applied 
the single-trap theory to this two-trap example, one w u l d  make virtually 
no e r ror  in determining the energy level (of the deep trap), but one would 

err in determining the t rap concentration by a factor of about 1.5. 

Fig. 3b shows I vs. rip for the following t rap parameters: 
A = .003, B = .001, C = 1.0. This corresponds to the case where the 

shallow trap is present in the same concentration as the deep trap. In 
this figure we have again plotted the single-trap curve for p/N = .001. 
Obviously the single-trap curve and the two-trap curve a re  almost indis- 

tinguis hable. 

Fig. 3c shows cd - vs. Ap for the t rap parameters: A = 003, 

B = . O O l ,  C = 0.3, and for comparison the same single-trap curve as in 

the previous two figures. In this example, the shallow trap has lower con- 

centration than the deep trap, and the single-trap curve is totally indis- 

tinguishable from the two-trap curve. 

C. Divalent Traps 

A number of selected examples of divalent traps are shown in 

Figs. 4 and 5. The behavior can be summarized as follows: if the shallow 

level associated with the divalent t rap is quite shallow the divalent t rap is 
totally indistinguishable from a single monovalent trap. 

As the shallow energy level approaches the deep level, (A -+ 1) 
the sample gives the appearance of a single trap, lying at the deeper energy 

level of the divalent pair, with a slight apparent exaggeration of the t rap 
concentration. 
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We conclude, therefore, that the structure that we have observed 

in the transient conductivity (see, for example, (I) and the following section 
of this paper) cannot be ascribed to one single species of divalent trap in 

our samples. The recovery structure is caused by the existence of several 
distinct species of traps. There is no basis in our observations for dis- 

tinguishing between monovalent and divalent traps. 
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VI COMPARISON WITH EXPERIMENT 

A number of samples have been studied using the same experimental 

technique as described in I. Each wafer of material was prepared with 
ohmic contacts, placed in ser ies  with a battery and a load resistor, and 

exposed to short bursts of electrons from a 1-MeV Van-de-Graaff gener- 

ator. The transient excess conductivity was observed oscillographically. 

The switching time of the high-energy electron beam was very & ort  (less 

than 1 nanosecond) compared with the samples' transient time constants. 

All of the samples studied evidenced multiple traps, though in many 

of the samples at some temperatures only one t rap was effective. In such 
cases the single t rap theory was adequate. In most of the samples exhibit- 

ing multiple traps the single level theory could be applied with no significant 
errors.  We will show examples of this. In such cases, where the traps 

are quite well separated, the single-level theory gives the same trap para- 
meter assignments as the two-trap theory. In a few instances the separate 

species of traps were sufficiently well separated to indicate clearly that 

multiple t raps  were present, but the single-level analysis gave erroneous 

results. In these cases we have applied the 2-trap theory, fitting the theo- 

retical curves to the experimental results to give the t rap parameters. 

For example, Fig. 6 shows sample #1160, T = 75OC, sample 

illuminated with a tungsten lamp. We have plotted t $ vs. V. which 

corresponds to our theoretical o! vs. hp. The points a r e  experimental, 

taken from oscillographs, and the solid curve is a theoretical two-trap 
solution. The 2-trap parameters were estimated from a single-level 

analysis of the oscillographs. The agreement betweeh theory and experiment 

is excellent, and illustrates the validity of the single-level theory when the 

t raps  are well- separated . 
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In Fig. 7 we show the same sample at the same temperature, 

-75OC, with no illumination. Here again, we have plotted the experimental 

points and a theoretical 2-trap curve, using parameters determined from 

a single-level analysis. Although the apparent t rap separation is less good 
than in Fig. 6, the agreement between theory and experiment is quite good. 

The eSfect of illumination is interesting. Analysis aE Figs. 6 and 7 
leads to practically identical determinations of the trap energy levels. 
The principal effect of the light is to change the apparent concentrations 

of the two species of traps. In altering the apparent t rap concentrations 

in this specimen the two traps are better separated under illumination than 
in the dark. This suggests the value of illumination in future work in  
unravelling complicated multiple-trap samples. It also suggests the pos- 

sibility that tungsten light may not be the best to use; the dependence of 
this phenomenon on the spectral content of the light source should be 

investigated . 
Fig. 8 shows the results obtained with another sample of n-type 

material. The points a r e  experimental, and the curve is theoretical. The 

theoretical 2-trap parameters were selected to give the best experimental 

fit.  This sample is interesting, since the single-level analysis gave sig- 

nificantly different t rap parameters from the final 2-trap results. 

Experimental measur e ment s consisting of os c illograp hie record - 
ings at various sample temperatures, before and after electron-irradiation, 
have been carried out using a total of four samples, in addition to the 
sample previously reported in (I). The results of our analysis of these 

samples a re  summarized in the tables below. 

In Tables 1-5, each entry consists of (a) the trap concentration, 
and (b) the t rap energy level, measured from the minority carr ier  band 

edge. 

-17- 



Table 1 shows the results of sample 1160, taken from (I). As 
previously determined, there a r e  two levels existing before irradiation, 

and one level produced by irradiation. There is a deviation from the true 
energy levels at low sample temperatures due to the effect of recombination 

as described in Section I1 above. The deviating energy level values a re  

indicated in parentheses. 

Table 2 shows the results of another n-type sample, Number 37B. 

The first three measurements were made before irradiation, and the last 
three were made after irradiation by a flux of 6 x 1014 electrons/cm 

at an energy of 1 MeV. There are clearly four, and probably five, t raps  

present in the sample. Three of the traps, at E + . 22  e V ,  Ev + .30 eV, 

and Ev + .34 eV were present before and after irradiation. The t rap at 
Ev + .37 eV was only observed after irradiation, as was the probably t rap 

2 

V 

at E .  + .44 eV. The production rate for the .37 eV t rap is about .09 em-' 

for 1 MeV electrons. 
V 

Table 3 shows the results of another n-type sample, number ZL83. 
One trap, at E + .40 eV, has a concentration that is independent of ir- 

radiation. A second t rap at E + .30 eV increases in concentration linearly 
with irradiation flux. Its introduction rate by 1 MeV electrons is 

V 

V 

-1 . O l  cm . 
Table 4 shows the results of a p-type sample, number 852. There 

a re  two traps present before irradiation, at Ec - . 3 4  eV is produced by 

irradiation. Its introduction rate by 1 MeV electrons is . 01 cm". 

Table 5 shows another p-type sample, number SG1. Its resistivity 

was 0.5 ohm-cm. The first specimen of this crystal  showed three distinct 

traps, at Ec- .32 eV, E - .36 eV, and Ec - .46 eV. The total trap density 

was about 4 x 10 cm . The lifetime (i. e., the recovery time constant 

at such injection levels that all traps were saturated) was 2 microseconds. 

14 -3C 
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The sample was then subjected to a 30 minute bake at 120OoC and 
again prepared with ohmic contacts. The same three traps were observed, 

with roughly the same concentrations, though with some added complexity 

of analysis. The lefetime dropped to 0.1 microsecond as a result of the 

bake, and a new set  OP traps at Ec -0.4 eV was observed. The total t rap 

concentration rose to about 1.5 x 10 cm . 15 -3 

A second specimen from this crystal  was given a 900°C bake. 

After this treatment the lifetime was 1.5 microsecond, and the three traps 

listed above (at 32, .36, and .46 eV) were observed in similar concen- 

trations (a total of about 4 x 10 cm ). 14 -3 

Irradiating this sample with 700 keV electrons to  a flux of 
-2 1 x 1015 cm reduced the lifetime to 0.3 microsecond and increased the 

15 -3 total trap concentration to 10 em . Most of the pre-irradiation traps 

were unaffected by the bombardment. The radiation-produced traps were 

approximately at Ec - . 4  eV. (The same energy level as the traps produced 

by the 120OoC treatment). At higher irradiation fluxes the lifetime decreased 
further and the trap concentration increased, but the t rap spectrum became 

so complex that a reliable analysis was impossible. 

Some exgloratory measurements were made using this sample 

looking for very long time constant recovery phases, longer than the time 

between bursts of high-energy electrons from the Van-de-Graaff generator 

(60 bursts per second). A tungsten lamp was used for this purpose, with an 
ordinary mechanical switch. The sample voltage was monitored after the 

illumination was switched off using an X-t recorder. A typical voltage-vs. - 
time curve is shown in Fig. 9 .  Two well-separated traps are easily re -  

solved. Their concentrations and energy levels were determined using the 

single -level theory . 
All of these delayed-recovery measurements were made at low 

sample temperatures (below -100 C). As a consequence, following our 

discussion above of the effect at low temperatures of recombination at the 

0 
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traps, and following our observations of recombination effects at somewhat 

higher temperatures, we must regard the trap energy levels observed in  

these runs as questionable. The t rap concentrations a re  probably reliable, 

however. 

We propose that recombination is dominant at the deep traps seen 

in the very slow transient recovery at low temperatures. If this is correct, 
the ratio of slow to fast time constants is not equal to ( 1 + nt/Nt )-l 

as in the pure trapping case, bJt the ratio is actually equal to povhij;, . 
Knowing the values of po and vh we can determine thus the value of Th. 
For the traps seen in the present sample SC1, our measurements imply 

a hole capture cross section that is between 10 

of values that strongly suggests that the traps a re  multivalent donors. 

-26 -30 2 and 10 em , a range 

A summary of the trapping levels which we have seen in all of the 

samples is shown in Fig. 10. Those levels which are produced by irradiation 

a re  shown in dashed lines; the levels which existed before irradiation a re  

shown in solid lines. 
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SUMMARY 

We have studied theoretically the behavior of samples containing 
(a) a set  of monovalent traps; (b) two sets  of monovalent traps; (c) a 
set  of divalent traps. Case (b) is qualitatively different from the other two 
cases, and by comparison with our experimental results we can conclude that 

our samples all contained multiple sets of traps. We cannot distinguish 

between monovalent and divalent traps. The substance of this conclusion 
is that our observed transient structure is caused by many sets of traps 

rather than by a small number of multivalent traps. The sets we 
observe may be either monovalent or multivalent. 

We have experimentally studied five different samples of silicon, 

three n-type and two p-type. All of the samples exhibited evidence of 
several sets of traps, some existing before irradiation and some produced 

by electron bombardment. The method of analysis provided some internal 

consistency checks: the trap concentrations and energy levels did not 
change with sample temperature, with the exception of the low-temperature 

effect attributed to the onset of recombination at the traps. 

In the p-type sample which we subjected to a high-temperature bake, 

we produced changes which closely resembled the damage due to electron 
bombardment: the lifetime was reduced and a set of traps was produced at 
an energy level which was the same as a set  of traps seen after electron 

irradiation. 
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In Appendix A we duscuss an interesting parallel between our multiple- 
((01 trapping theory and an  annealing study by Damask and Dienes. Our quasi- 

thermal equilibrium assumptions a re  virtually identical to theirs. The 

only difference is that in their case they deal with free  and trapped lattice 

defects (vacancies and interstitials) whereas we deal with free and trapped 

charge carriers.  In their annealing study Damask and Deines confine them- 
selves to the low-concentration case (lattice defect concentration small 

compared with the concentration of trapping sites). The applicability of 
our treatment to  the general case of annealing where the defect concent- 

ration may be comparable to or larger than the concentration of trapping 

sites should not be overlooked. 
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APPENDIX A Summary of the Single-Trap Theory 

We consider a sample of n-type semiconductor having recombination 
processes which would yield a hole lifetime T‘ if there were no trapping. 

The semiconductor also contains a group of traps having an energy level 

Et’ a concentration Nt traps per unit volume, and hole- and electron 
capture cross  sections <.T- and De’ respectively. h 

At time t = 0 the excess hole concentration is ~ . p  and we assume 
0 

following Hornbeck and Haynes (6) that a condition of quasi thermal equil- 
ibrium exists between the traps and the valence band. Under this condition, 

the charge populations of the traps and the valence band can be specified in  

terms of a single quasi-Fermi level Ft. 

Under these assumptions the transient excess hole concentration is 

governed by the following differential equation: 

A1 



and - a is the instantaneous 
fraction of the excess holes Ilp which a re  free. 

Computer solutions of these equations for various t rap densities and 

energy levels were obtained and discussed in[$, We may examine the solu- 

tions in two limiting cases: (1) Ap T-1- N, and, (2) tlp << N, 

In case (1) t p  ;YN, , the decay of hp is a pure exponential with 

a time constant 7’ that is equal to the value of the lifetime in  material 

having the same recombination centers, but no traps. 

In case (2) 3 p .(< N, , the decay of n p  is also a pure exponential, 

with a time constant that is equal to 

The transition region between (1) and (2) is quite broad; it may extend 
over two orders of magnitude of AP. This circumstance rules out any 

analysis of the transient conductivity in terms of a simple superposition 
of pure exponentials. 

It is informative to examine the conditions under which quasi-thermal 
equilibrium may occur. The first requirement is that the hole capture time 

of the traps, which is given by the expression 7; = (Nt ch vh)-’ 

be short compared with *r, i. e., 

A2 



The second requirement is that the thermal emission time ‘5- which is given 

by the expression rE = (p, Vh Ch) 

the terminal time constant; i. e. ,  
must be short compared with - 1  

The latter requirement may be thought of as being equivalent to a 
multiple-trapping condition, in which the holes a re  exchanged freely and 

rapidly between the traps and the valence band before recombination can 
occur. 

Since for all important traps Nt> > Pt the second requirement may be 

which reduces to 4 tq.. 
‘- P, 

rewritten LE C<T- 

i. e . ,  the two requirements (A3) and (As) are equivalent. 

In practice these two requirements may be somewhat relaxed without 

invalidating the model. As long as NtchVh is not mlch smaller than “il the 
results appear to be valid. 

I 

There is an interesting parallel between the present treatment of the 

transient behavior of excess car r ie rs  in  a semiconductor and a theoretical 
study of the annealing of excess lattice vacancies by Damask and Dienes 

The model which they used to describe the annealing kinetics was quite 

analogous to the carrier-trapping model employed in our caluclations. In 

their model, f ree  vacancies were trapped and untrapped at lattice impurity 
sites; a competing process caused the annihilation of the vacancies. They 

calculated the annealing behavior when the concentration of vacancies was  
small compared with the impurity concentratiop in the crystal, and obtained 

solutions which a r e  equivalent to our small signal case in which the decay is 

(10) 
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Nt 

pt 
a pure exponential with time constant given by Tc (1 + - ). 
might have derived Eq. (A2) following Dienes and Damask by treating the 

quasi -equilibrium reaction: 

In fact, we 

Free hole + Empty trap -$ Occupied trap 

The law of mass action (which is equivalent to our quasi-equilibrium 

assumption) requires that 

If we solve this equation for a, and take pt for the value of the - 
constant, we  obtain equation (A2) immediately, 
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APPENDIX B 

COMPUTER SOLUTIONS OF THE TWO-TMP PROBLEM 

We have carried out computer solutions of equation (10) for the 
following values of the parameters A, B, C, and D: 

A - 
0 . 3  
0.1 
0. 03 
0.01 
0.003 
0.001 

B 

0.03. 
0.01 
0.003 
0.001 
0.0003 
0.0001 
0.00003 
0.00001 

- C - 
- 10 

7 
5 
3 .33  
2 
1.5 
1 
0.7 
0.5 
0. 3 
0.2 
0. 15 
0.1 

D - 
200 
100 
50 
20 
10 
7 
4 
2 
1 
0.7 
0.4 
0.2 
0.1 
0.03 
0.01 

The values of A were chosen to give a representative selection of 

separations between the two sets of traps. B was chosen to  allow a range 

of absolute positions of the energy levels of the two traps. Sufficient 

values of C were selected to allow the concentration of either set of traps 
to  vary up to ten times the concentration of the other set. Sufficient values 

of D were chosen to allow us  to construct, from the computer solutions, a 
continuous curve giving X _. vs. D. Once X is known for given values of 

A, B, C, and D, the occupancy fractions of the two sets of t raps  and the 
population of the valence band can be computed from the following equations, 

which follow from equations (5), (6), and (7): 
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x vs. A p  for the 
sainT trap pa ram et e rs 
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