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SUMMARY

Empirical and theoretical investigations have resulted in

techniques for improving the reliability and performance of

large scale multilevel microcircuit arrays. The model for the

factors influencing the electrical properties of the silicon

surface has been extended, and several types of complex ion

migration that influence device stability have been described.

A number of new test structures have been designed that have

a higher measurement sensitivity or that require less area on

the chip.

Considerations concerning the most effective use of test

structures are discussed for five types of applications. It

is shown that the results from single test structures can be

combined to provide additional information. Specific sets of

test structures for use with either MOS or bipolar production

microcircuits are described A specific set of test patterns

made by a change in the metal pattern on.a standard production

microcircuit chip is described Techniques are presented for

i

_Y

--

conserving space taken up by test structures.

The use of thick oxides for minimizing the effects of
i^

surface ions has been subjected to both quantitative theoretical

analysis and experimental verification. The use of _qualified

test wafers for quality monitoring'of the materials, procedures

and equipment used for building microcircuits is discussed.	 s

r.
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Experimental data are given on the annealing of fast states

which indicate the need to evaluate areas both covered by metal

and not covered by metal. Vapor plated titanium oxide and

aluminum oxide, and r-f sputtered Si02 from a high purity

target were evaluated as candidates for second-layer oxides.

It has been shown experimentally that the density of mobile

ions in an oxide depends on the proximity of a p-n junction

and of an oxide surface not covered by metal. The use of a

second-layer metal to minimize surface ion effects was experi-

mentally evaluated. Data are presented that show an instability

of the transconductance of an MOS transistor that appears to

be due to an instability in the mobility of carriers in the

inversion layer. Data are presented from a study of the effects
of a deposition of a second layer of phosphosilicate over MOS

transistors made by a production process. The effects of each

of the steps in a complex processing sequence used to produce

bipolar microcircuits on the electrical properties of the
s_r

oxide have been measured

The significance of the results of the work performed

during t;1his period is that multilevel microcircuits, of both

MOS and bipolar types, can be produced with better yield_,

performance and reliability by the improvements in understanding 	 ;f

of the factors that influence the surface properties of the
ya 1
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INTRODUCTION

Background

A necessary part of the successful development of LSI circuitry

is the development of practical means for process development,

process control, failure analysis and reliability prediction. The

increasing complexity of microcircuits greatly increases the

problems of and the need for measuring the fundamental parameters

of the basic structures in the silicon chip.

The fabrication of complex LSI circuits having multilevel

metal, or of glassed single-metal-layer circuits, requires a

number of new materials and fabrication processes. Thermally grown

oxide is generally used for the first insulator layer because its

interface with silicon has a low density of states at the silicon

'	 surface. Since the second layer of insulator material must cover

.:ir 	 the first layer of metal interconnections, its formation requires

a technique other than thermal oxidation. The process by which

the second insulator layer is formed must be compatible with the

processes and materials used in making the microcircuit. For

 example, if the first-layer is aluminum, the structure cannot be

heated above the aluminum-silicon eutectic temperature (577°C) during

the formation of the second insulator layer. Or, if one uses

molybdenum .-gold, the gold-silicon eutectic temperature is 370°C,

1

x.
r	 1.	 sil
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which could create a problem at a pinhole in the molybdenum layer.

A third metal system being used-in significant volume is the

titanium-platinum-gold system. In this case, diffusion through a

pinhole or through the platinum barrier causes titanium-gold

compounds to form, at temperatures above 500 °C, that greatly

increase the resistivity of the metal layer.

The materials and processes chosen for the formation and

delineation of the second insulator layer and the second metal layer

must not contaminate the thermally grown oxide with .mobile ions

(sodium ions or protons) that can drift into the first insulator

layer. It is desirable that the second insulator layer act as a

protective barrier to such contamination. This second layer must

also be free from pinholes that could cause shorts between metal

layers. Vapor plated oxides are known to have a much higher water

content than thermally grown oxides and this water may alter the

properties of the oxide-silicon interface.

The reliability and performance of LSI circuitry must not be

compromised by failure modes arising from the additional steps

required to obtain multilevel metallizations. The probability of

failure may increase because of a decrease in stability or because

of a change in the initial characteristics which reduces the

f



report are applicable to both bipolar and MOS microcircuit

structures. Present trends in the industry point to the increased

use of deposited second-layer insulator materials for electrical

passivation and mechanical protection of microcircuits with a

single layer of metal. Developments that increase the sensitivity

of a circuit to instabilities in the electrical properties of the

insulator, increase the need for evaluating the properties of the

insulator-silicon interface. An example of such a development is

the use of <100> oriented silicon.

The development of basic test structures provides a valuable

means for measuring the fundamental properties of the insulator-

semiconductor interface. Such test structures are now used for

process development, for in-process control and for reliability

studies. Herr, et al. 1 , 2 changed the metallization patterns on

microcircuit structures on selected chips on an integrated circuit

11

	

	
wafer to permit the testing of discrete devices in the chips. The

data taken from these devices were then used for process control

,. 	 and for reliability predictions. Farley 3 described the use of

+	 test patterns for reliability evaluations of MOS circuits

having a single layer of metallization. Barone and Myers4 described

the use of test patterns for multilevel arrays. Birk5 used test

patterns for studying sputtered SiO2 for use with multilayer

interconnects. Test patterns have also been discussed by Stern6
r

W ._	 3
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Objectives
4

The objectives of this program are to:

1. Develop fundamental information to improve the under-

standing of possi}4le failure modes of LSI circuitry.

2. Develop basic models to facilitate the discussion and

understanding of the variations in the performance and

reliability of LSI circuitry.

3. Develop test structures for measuring the fundamental

parameters of the silicon surface.

4. Correlate data taken from test structures with that

taken from actual devices so as to determine which

individual effects degrade yield or reliability.

5. Establish practical techniques for eliminating or

circumventing these effects to improve the yield

and reliability`.

The scope of this program has been limited to yield and

reliability problems related to the electrical properties of the

surface of the microcircuit. Although the limited scope does

not include problems due to pinholes in the dielectric layer,

contact resistance, metal continuity over oxide steps, Philco

Ford has other programs in which these other influences on

microcircuit performance and reliability are being studied. Some
^.J

of the results ofthese other efforts are included in -a paper by

q,	 w.
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Schnable and Keen? that was prepared for the Seventh Annual

Symposium on Reliability Physics, December 2-4, 1968 in

Washington, D.C.

Summary of Accomplishments Reported in
Previous Interim Scientific Reports

During the periods covered by Interim Scientific Reports

No. 1 and No. 2, we accomplished the following:

1. Prepared an extensive bibliography of the pertinent

literature. 
819

2. Developed a useful model that embodied the known

possible factors that influence the performance and

reliability of large scale multilevel integrated circuits.

3. Designed and fabricated monolithic integrated circuit

test structures for the evaluation of LSI production

processes, and evaluated such test structures on

li	 conventional production microcircuit wafers.

4. Made measurements on test structures:

a. To study the repeatability of measurements,

#	 b. To study the repeatability of properties of specific'

types of oxides,

C. To compare properties of oxides made by different

processing techniques,

d. To compare oxides made with different materials,
F

5	 I
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e. To compare the properties of oxides taken from

various points in a complex processing sequence

for building microcircuits,

f. To compare the properties of vapor plated oxides

having different levels of phosphorus content.

5. Developed preliminary concepts for eliminating or circum-

venting the causes of poor microcircuit yield and relia- 	 a

bility.

This report covers the third six-months period. of the program.

It covers the work performed from April 15, 1968 to October 15, 1968,

and contains the details of the following main accomplishments:

1. The development of a more complete model for the factors

influencing the p3rformance and reliability of large

scale multilevel integrated circuits.

2. The continued surveillance of the pertinent literature
...:-a

and the compilation of additional items (see Appendix A)

to update our previous bibliographies8,9.

3 The design of a second generation set of test structures
a

for measuring the fundamental properties of the dielectric-

silicon interface.	 ^-'n

4. The continuing effort to study empirically the effects

of various materials and processes on the fundamental

properties of the dielectric-silicon interface.

I,
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5. The correlation and interpretation of the empirical

data, of predictions from the theoretical models,

and of the results reported by other investigators.

6. The extension of the model of the individual factors

influencing the performance and reliability of micro-

circuits to include complex interactions of the individual

influences.

7. The further development of concepts for eliminating or

ni -rn»mvcrni-i nrr +-1Hrm na17_c:AC' of nnnr mi e-rnoi rriii i- vi eld and



ELECTRICAL FACTORS INFLUENCING CIRCUIT RELIABILITY

Model of Charge Distribution in Multilevel MOS Structure

To facilitate the understanding of the electrical factors

influencing LSI circuit reliability, we have developed the model

given as Figure 1 that depicts the charge distribution in an

MOS structure having two insulator layers and two metal layers.

The following charges and states are embodied in Figure 1.

Immobile Charge.- This charge, usually designated as Q s s, is

generally found to be positive. Its nature is summarized in

a paper by Deal, et a1.10. -x

Mobile Charge in the Oxide.- Extensive investigations have

established that the mobile charges- found in oxides made with

today's technology are sodium ionsl l and protons -- both cations12. ;R

Kuper et al. 13 have shown the existance of mobile anions at

temperatures above 800 0 C.	 Mobile charge is frequently designated

as Qo. a

Charge on the Oxide Surface.- We include three kinds of charge
_a=	

f

on the oxide surface -- mobile cations and anions and immobile g;

charge.	 The specific types of charge that exist at the oxideP

surface have not yet been determined. 	 The kinetics and behavior

of mobile surface ions have been studied by various investi-

gators14,	 15,	 16,	 17.

8
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j	 Ions at the Insulator-I nsulator Interface.- The existence

of mobile ions at the insulator-insulator interface has not

yet been experimentally established but the possibility of

their existence cannot be excluded at this time.

Traps Traps near the oxide -silicon interface can be filled

and emptied by the tunnelling of carriers from the silicon --
r

these traps are also referred to as slow states. Traps that

are farther away from the interface are filled by ionizing 	
y

radiation and can be emptied with ultraviolet light or heat.

Slow trapping has been discussed by Hofstein18.

uy .Wr
Barrier Energy Difference Between Metal. and Semiconductor.-

The metal and semiconductor barrier energy difference has

19 
been di is ussed by Deal, et al.

Contact Potential Between Insulator Layers.- The insulator-

insulator contact potential for Al203 and _ S02 has been discussed

by Nigh,	 et a1. 20 ,	 21.

Fast States.- Fast states have been studied by a number of
s.

investigators by a variety of techniques. 	 Fast states are

believed to be associated with unsatisfied bonds at the oxide-

silicon interface.	 It has been demonstrated that fast states

can be created by a vacuum bake 22, and that they can be anni-

hilated by a hydrogen bake or by the reaction between water and

a reactive metal23, 24

10
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Mobile Ion Trapping at Interfaces with the Oxide, Hofstein12

has postulated that traps exist at the oxide-metal interface

that capture mobile charge in the oxide. This postulate was

made to explain the asymmetry in charge motion through the

oxide. Szedon2 -5 has postulated that deep traps exist at an

interface between silicon dioxide and silicon nitride in order

to explain the observed instability found in double-layer

insulator structures containing these two materials. Frohman-

Bentchkowsky and Lenzlinger 26 have discussed a model for the

charge transport and storage at -the interface between silicon

dioxide and silicon nitride.	 They proposed that steady state

currents flow through these layers and that the charge trapped

at this interface is determined by the balance of the currents.
k

'j Mobile Ion Trapping at the Outer Oxide Surface.- We have included 1.
l

is
the possibility that the outer surface of the oxide can act

as a getter for mobile ions from the interior of the oxide or

for surfaceions that would otherwise be mobile.

Dipoles.- Phosphosilicate glass has been shown27 to have a
t

polarizability of the dipole type.

Influence of Surface Potential ?

ii
Each of the above charges and states influences the surface

i potential of the semiconductor. 	 This surface potential:

k

g



r

1. Determines whether or not a channel exists.

2. Influences the surface carrier generation or recom-

bination rate, thereby influencing the current of

a diode at a reverse bias.

3. Influences the width of a depletion layer at the

edge of a p-n junction, and thereby influences the

following

a. The drain-to-source punchthrough voltage of an

MOS transistor;

b. The diode breakdown voltage of a p-n junction;

c. The lateral punchthrough voltage between adjacent

parts of a complex microcircuit structure;

d. The effective channel length of an MOS transistor,

and therefore the transconductance of an MOS

transistor.

4. Influences the threshold voltage of MOS transistors.

Influence of Fast States

In addition to their influence on the surface potential,

fast states influence#

1.- The surface generation or recombination rates, and

thereby influence:

a Diode leakage current,
r

12

x
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b. Bipolar transistor (double-diffused and lateral)

current gain, especially at low current levels.

2. The dependence of the semiconductor surface potential

on the voltage on the oxide surface due to charge on

the surface or on an overlying metal, and thereby

influences:

a. The threshold voltage of an MOS transistor. This

is increased because surface states mush be filled

before an inversion layer of mobile carriers can

be established.

b.	 Field inversion voltages, 	 for the same reasons

L: as in a.
^r

C.	 The capacitance-voltage relationship of an MOS

?
a

capacitor.

d.	 The transconductance of an MOS transistor.

r e.	 The effect of temperature on the semiconductor

c_ surface potential.

Influence of Carrier Mobility

An additional electrical property of the semiconductor

surface that is not shown in Figure l is the mobility of carriers

;. in the inversion. layers.-	 Information about the inversion layer

carrier mobility is included in References 18, 28, 29, and 30.

13
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The inversion-layer carrier mobility is an important determinant

of the transconductance of MOS transistors.



COMPLEX MIGRATION OF IONS

In addition to the relatively simple factors, influencing

the surface potential, shown in Figure 1, complex migration

of ions must also be taken into account in studies of the

electrical properties of the MOS system.

Interaction of Ions in the Oxide with Ions on the Oxide

The interaction of mobile ions in the oxide with mobile

ions on the oxide surface increases the effect of the surface ions.

According to the model for the effects and behavior of surface

ions, the highest voltage that develops across an oxide due to

surface ions in a region adjacent to a metal is the voltage

applied to the metal. One can calculate the thickness of oxide

that prevents surface-ion-induced inversion by a given operating

voltage. The microcircuit structure can then be designed to

have this thickness of oxide in all of the regions on the chip

F'	 that must not invert, thereby preventing circuit failure 'due to

surface- ion-induced inversion. However, if there are mobile ions

in the oxide, they can greatly increase the effect of the surface
r

ions and cause inversion at the lower applied voltages than could

be caused by the surface ions alone. Figure 2 illustrates this

mechanism. Positive surface charge would cause mobile ions in

the oxide to move in the direction to make the net charge in the

15
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SURFACE ION MIGRATION

INDUCES ION MIGRATION IN THE OXIDE,	 11
WHICH GREATLY INCREASES THE EFFECT
OF THE SURFACE IONS ON THE SURFACE
POTENTIAL OF THE SILICON.

Figure 2. Interaction of ions on the surface and in the interior
of the oxide.
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oxide near the silicon more positive and, conversely, negative

surface ions would cause mobile charge in the oxide to move in

the direction to make the net charge in the oxide near the silicon

more negative.

Drift of Mobile Charge Between Metal and Diffused Regions

All of the mobile charge in the oxide observed to date is

positive. Since this is found 27 to drift spontaneously toward

the metal and away from the silicon, one might infer that, under

the application of a negative voltage to the gates and drains of

p-channel devices in an MOS microcircuit, the mobile charge in

the oxide would hardly affect the surface potential of the silicon.

i	 However, there are points in the structure where the metal may

be at ground or substrate potential while diffused p-type regions

(sources, or drains of MOS transistors, diffused resistors or
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PART OF MOS TRANSISTOR

GATE

OXIDE	
0 V	 -V

+I+it

P -TYPE
	

P -TYPE
SOURCE
	

DPAIN

N -TYPE
SUBSTRAT

DEPLETION LAYER
IN N -TYPE REGION

NEGATIVE VOLTAGE ON DRAIN AND ZERO VOLTAGE ON GAGE
DRIFTS POSITIVE IONS TOWARD SILICON, CAUSING AN
INCREASE IN THRESHOLD VOLTAGE AND A DECREASE IN
TRANS CONDUCTANCE.

Figure 3. Example of positive ion drift toward
silicon under negative applied voltage.
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TEST STRUCTURES

In Interim Scientific Report No. 1, we described a set of

basic test structures that had been prepared to provide a means

for measuring the fundamental electrical properties of the insulator-

silicon interface. In Interim Scientific Report No. 2, we discussed

the effective use of these test structures, possible improvements

that might be made in them, and a number of ways in which they

could be used for process control and for the analysis of yield

and reliability problems. In the portion of the program covered
i

by this report, we have extended our understanding and use of test

structures in the following ways.

1. A standard routine procedure has been set up in which

test, patterns are used to monitor the quality of the

materials, processes and equipment used for fabricating

microcircuits.

2. New test structures have been designed to have improved

sensitivity and decreased area requirements.

3. Specific sets of test structures have been suggested

for several specific applications.

4. An analysis has been made of the types of area that
	 1

-	 should be evaluated in MOS and bipolar microcircuit
r

	

	 --

structures

5. Techniques have been proposed for conserving the chip-area

requirements of test structures.

19



Quality Control Monitoring

We have set up a standard routine procedure for maintaining

a continuing record of our control of the quality of the materials,

processes, equipment and procedures used in the fabrication of

microcircuits. The test structures used in this effort are MOS

capacitors built with 2000 A of oxide grown thermally in dry

oxygen. To monitor the chemicals, the glassware, the handling

procedures and environment, and the oxidation tube and sample

oxidation ambient, sample MOS capacitors are prepared at least

once each week. The immobile and mobile (both at 300°C and then

at room temperature) are measured in these capacitors. We also

monitor the aluminum evaporator system. For this we maintain a

supply of wafers that have been oxidized in large lots that were

determined to be free of mobile charge. One of the wafers from
J

this supply is metallized with each batch of wafers to be metallized

so that any mobile-ion contamination from the metallizer system

will be detected.

The dryness of the gases used for the oxidation and the

subsequent anneal and cooling are evaluated by the use of MOS
t.

capacitors formed by a gold ball probe, shown in Figure 4, and

unmetallized, oxidized wafers The fast state density is measured
,a

by the technique of Brown and Gray2 2 They have shown that fast
	 _y

state densities fall sharply as the water content of the oxidation	 xf

ambient is decreased.	 4

20



Figure 4. Gold ball probe.
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The ability to measure fast state densities before the metal

is deposited simplifies the processing required to make the

evaluation and, more importantly, increases the sensitivity of

the test, (Later in this report we show that the metal evaporation

process decreases the density of fast states.) As we now perform

this test, the gold probe and the oxide are immersed in liquid

nitrogen for the measurement of the capacitance-voltage curve at

t

the low temperature. We find this adds a large amount of mobile

charge to the oxide. This contamination may come from the vessels

used to hold the liquid nitrogen.

Improved Test Structures

We have made two design improvements to increase the
u.

sensitivity of the test structure for the measurement of the --

effects of surface ions. 	 First, we have digitated the gate

electrode.	 Second, we have added the capability to cut an

opening in a second layer of dielectric material that was

y

deposited over the metal layer.	 This cut in the second dielectric

layer was introduced on the assumption that it would increase

the ease with which surface ions can move from the metal to regions 	 - -^

on the top surface of the oxide.
tx

We have added to the set of available test-structures-a

digitated junction diode to make the diode reverse current more

sensitive to the properties of the surface.

22 z
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Types of Application of Test Structures

In addition to the improvements that have been made in the

set of available test structures, we have developed a better

understanding of the considerations that relate to the most

effective use of these test structures. We have considered a

number of types of application for which test structures might

be useful.	 This report discusses test structure sets for five

kinds of applications:

1.	 Preliminary evaluation of experimental materials or

processes,

2.	 Development of promising materials or processes,

3.	 General use°n MOS microcircuit production,

4.	 General use in bipolar microcircuit production,
f.

5.	 Specific use on individual microcircuit types, formed

by a change in the metal pattern.

In the following sections of this report we discuss in

detail sets of test structures for five 'types of application.

Test Structures for the Preliminary Evaluation of Experimental f

Materials and Processes.- For the preliminary evaluation of
L

experimental materials or processes, we use MOS capacitors.

Unmetallized oxides can be evaluated using a simple gold ball
r

F.

probe to create an MOS capacitor to measure the surface potential;
.Y

and the fast state density (by the technique of Brown and Gray22).;
23
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Metallized oxides (metallization can be deposited through

a metal mask to avoid the time, cost and inconvenience of the

photolithographic and metal etching processes) can be studied

by contacting the metal electrode of each MOS capacitor on the

wafer. In particular, one can evaluate the mobile ion content

and both slow and fast state effects of metallized capacitors

on the wafer.
:i

Test Structures for the Development of Promising Materials and

Proces ses. For the development of promising materials and

processes, we have made extensive use of the set of test structures

shown in Figure 5.	 This 70 x 70 mil chip contains: _a

1. A large area MOS capacitor for measuring surface

potential and its stability.

2. A digitated MOS capacitor for studying the migration

of contaminants from areas adjacent to areas beneath

the metal.

3-. An MOS transistor for measuring threshold voltage i

and the mobility of carriers in the inversion layer.

4. An MOS transistor with a gate width that is smaller

than the channel wi=dth formed by the source and the

drain -- for studying surface ion effects. 	 This

transistor is referred to hereinafter as the surface-

ion MOS transistor. f

_24



Figure 5. Basic test structure chip.
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5. Agate controlled diode for studying surface recombi-

nation velocity.

6. A p-n junction with an internal contact for measuring

diode reverse currents and breakdown voltages.

7. An MOS transistor with the configuration for measuring

the Hall mobility of the carriers in the inversion

layer.

Test Structures for General Use in MOS Microcircuit Production.-

From the experience obtained with the initial set of test

structures shown in Figure 5, we have designed a set of test I

structures for general use in MOS microcircuit production. MOS

microcircuits having a single layer of oxide and a single layer
t.

of metal have three types of areas to be evaluated:

1.	 The areas of thin oxide found under the gates of the

MOS transistors,

2.	 The areas of thick oxide (like that in the field of .g

the microcircuit) covered by metal,
.d

by3.	 The areas of thick oxide not covered	 metal. _..

The set of test ` structures that we have selected for single

layer MOS microcircuits includes:

1.	 MOS' capacitors on

a.	 Gate oxide,

b.	 Field oxide;
o
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2. MOS transistors on

a. Gate oxide,

b. Field oxide;

3. Surface-ion MOS transistor on field oxide;

4. Gate controlled diode for measuring surface recombi-

nation velocity under field oxide;

5. Lateral bipolar transistor;

6. Diffused junction diodes:

a. Some with high and some with low periphery-to-

area ratio,

b. With the edge of the junction in the three types

of areas mentioned above.

The above structures have been designed on a single chip

having dimensions that are equal to or smaller than the chips of
s nearly all of the MOS microcircuits now in or planned for

r production.

The MOS capacitors permit one to measure surface potential

and its stability under gate and field oxides.	 MOS transistors

permit one to measure the fundamental parameters of the basic

component in the circuit.	 Comparisons of measurements taken on

capacitors and on transistors canbe used to determine the causes

of undesirable or variable threshold voltage levels in MOS

transistors.	 The transconductance of MOS transistors can be used

to measure the mobility of the carriers in the inversion layer.

27



We believe that it is desirable to include MOS transistors having

different channel lengths.

The surface-ion MOS transistor permits one to measure

instability due to surface ions. Further, it provides some

information on the inversion voltage in the field regions not

covered by metal -- which voltage might not always be the same

as the field inversion voltage in a region covered by metal.

If the surface-ion MOS transistor is designed to have a signi-

ficantly longer channel than the conventional MOS,transistor,

it can be used to study the effects of channel length on tran-

sistor characteristics. The surface-ion MOS transistor could

also be measured in the bipolar mode as a lateral transistor

to obtain a measure of the surface recombination velocity or

fast state density in a region not covered by a. metal. (The

effect of surface potential on the beta of bipolar transistors

has been investigated by Sah31,32,^ The effect of surface ions

on the surface recombination rate could also be studded with

this test structure. To increase the sensitivity of the surface

ion MOS transistor to surface ion effects, we have designed the
ti

gate to be digitated so that the area capable of being affected'
4

by surface ions is relatively large compared with the area

under the gate.	 Also, the mean distance of areas capable of being'

T28
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influenced by surface ions from the metal is short so that the

time required to produce surface-ion-inducing channels is short.

Kooi. 33 has demonstrated that surface state densities can

be determined from a comparison of the capacitance-voltage curve

of an MOS capacitor and the drain current-gate voltage curve

of an MOS transistor. The capacitance of an MOS capacitor

becomes insensitive to voltage, in the region of lower capacitance,

when either an inversion layer forms or when fast states are

being filled or emptied_. The conductance of an MOS transistor

increases only after the fast states are filled. Therefore,

if fast states are present, the voltage at which the capacitance

become insensitive to voltage is not the same as the voltage

at which the transistor becomes conductive. 	 The difference

M1-, between these two voltages is a measure of the fast state density.

The fast state density can be measured in an MOS transistor

by the technique developed by Heiman and Miiller3 4 •	 In this

t technique, the rate of change in the gate voltage necessary to

maintain a constant drain current, as the temperature is being

varied, is used to calculate the fast state density.

Fast state densities can also be measured using MOS capacitors.

Deal, et al. 24 have described how an MOS capacitor on a silicon

substrate that contains a p-n junction adjacent to the capacitor,

(the gate controlled diode in our set of test structures) can be

^tr

t
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used to measure the fast state density. Since the presence of

the p-n junction permits the inversion layer carrier density to

follow changes in the signal voltage, the measured capacitance

in the inversion region approaches that of the oxide. A

comparison of the capacitance-voltage curve of such a capacitor

taken'at room temperature and at 78°K shows that both of the

rapidly changing (with voltage) parts of the curve shift along

the voltage axis due to the change in temperature. The magnitude

J
of these shifts is a measure of the number of fast states whose

occupancy is changed between accumulation and inversion.	 The

reason for the shifts in the characteristic capacitance-voltage°

curve can be understood as follows. Brown and Gray22 have

shown that the shift.occurs at the accumulation end of the curve

because the change in temperature causes a change in the number

of fast states that are filled because the Fermi level moves

closer to the band edge. The shift in the inversion part of the

curve is due to the filling of the fast states before the

inversion layer forms.	 This shift occurs for the same reason as

the shift in the turn-on voltage in the transistor characteristics

described by Kooi33.

Fast state densities can also be measured on MOS capacitors

without the presence of a nearby p-n junction by a technique

developed
35' 36

by Nicollian and Goetzberger	 They have shown
;i
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that the a-c conductance of an M08 capacitor provides a

quantitative measure of the fast state density..

Qualitative information concerning fast state densities can

be obtained from diode reverse currents and from the low-current

beta of lateral bipolar transistors. A comparison of measurements

taken on a gate controlled diode with those taken on a diode

with an internal contact provides a means for studying

differences between regions covered by a metal and those that are

not.'

Test structures for MOS circuits having second layers of

dielectric and/or of metal should include additional test

structures to study the effects of the additional layers of oxide

and metal. The additional structures should include MOS

capacitors, transistors and a gate controlled diode-, all having

the metal on top of the second oxide layer. An additional

lateral bipolar transistor or a diode with an internal contact

are not needed because measurements taken on those that are

included in the set of structures built to characterize thet

first-layer oxide will be influenced by the second-layer oxide.

Test Structures for General Use in Bipolar Microcircuit Production.-

Test structures for general use in the bipolar microcircuits

should include those used for MOS microcircuits.	 MOS capacitors	 ^I
y

._r

.	
^ 1
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and transistors are used because they provide basic information

about the surface potential. In this connection, it can be

noted that MOS capacitors and MOS transistors provide similar 	 }

information and that each of these types of devices has some

advantages. Capacitors yield a more explicit measure of the

flatband voltage and of the surface potential. Capacitors are

also useful, for measuring oxide thickness and the resistivity

of the silicon. On the other hand, transistors use less of 	 r

the chip area. Transistors are sufficiently small that several

can be included on each chip. Further, transistors can be used

to evaluate the surface potential of silicon having a higher

density of dopant atoms than can MOS capacitors. For this

reason MOS transistors can be used to provide a useful quali-

tative measure of the control of the diffusion layer used for

the bases of bipolar transistors.

Bipolar microcircuit structures contain both p- and n type

regions having relatively low dopant density. The process used

to fabricate bipolar microcircuits Aermits one to make test 	 ~

structures in both types of regions This is, in a bipolar

microcircuit having npn transistors, the base diffusion can be

used to form the source and drain regions of a p-channel MOS

transistor, and the emitter diffusion can be used to form the

source and drain regions of an n-channel MOS transistor.

32
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Test structures for bipolar microcircuits should include discrete

bipolar transistors to provide data on the basic component in

the microcircuit.

A set of test structures for bipolar microcircuit wafers

having a single metal layer should include the following:

1.	 MOS capacitors on collector region;

2.	 MOS transistors on

a.	 Collector region,

b.	 Base	 (and resistor) region;

3.	 Surface-ion MOS transistors on

a.	 Collector region,

b.	 Base region;

4.	 Gate controlled diode;	 -

5•	 Bipolar transistors of each type in the circuit:

a.	 Double diffused,

w	 .
b.	 Lateral,

c.	 Substrate collector;

- 6.	 Diffused junction diodes:

a.	 High and low periphery-to-area ratio,

b.	 Both within the collector and within the base.

Bipolar microcircuits with more than one layer of dielectric

and of metal require additional test structures of the same

kind and for the same reasons as those described above for MOS
i

r.Y
I

microcircuits.
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Test Structures for Specific Use on Individual Microcircuit

Types, Formed by a Change in the Metal Pattern. - As an

alternative approach to the building of general purpose

test structures for an entire family of circuits, one can

build custom test structures for a specific microcircuit

type, with little more than a modification of the metal. pattern.

One can form test structures in a standard microcircuit chip

that has been processed as a production wafer up to the point of

metallization. Examples of test structures that can be made in 	 1

standard bipolar microcircuit chips by a simple change in the metal

pattern include:

1. Discrete bipolar transistors of each basic type

existing in the chip. The basic types are:

a. Double-diffused transistors (npn),

b. Lateral bipolar transistors (pnp),

C. Substrate collector bipolar transistors (pnp) . 	 1

2 MOS transistors
Y

a. I'n an npn bipolar chip, isolation, base, or diffused

resistor regions can be used as source and drain

regions of p-channel MOS transistors.

b. Similarly, in the same type of chip,- the collector'

and emitter regions- can be used as source and

drain regions of n-channel MOS transistors

3	 Junction diodes. Ww1
 j,
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Figure 6 is a photograph of test structures we have made

by a charge in the metal pattern of a PA7709 high performance

operational amplifier. The chip shown in Figure 6 contains a

standard production microcircuit structure with the exception

of the metallization pattern. The metallization pattern was

formed on five widely separated chips on a 1-1/2" diameter wafer.

The test structures include:

1. An MOS capacitor on the n-tp	 ype	 (collector) silicon,

r
2. A p-channel MCS transistor formed by contacts to each

of two diffused resistors and a metal gate.

3. An n-channel MOS transistor formed by two diffused

regions (that were formed by the emitter- diffusion)

and a metal gate.	 Note that both thep- and n-channel
M

MOS transistors have a. gate width that is narrow

compared to the width of the source and drain regions,'

This makes these structures sensitive to surface ion

effects and therefore provides a means for studying

T the effects of surface ions on the circuit.

4. Contacts-to diffused resistors to monitor the line width

{ of the resistors and the parameters of their diffusion

"llayer.

5. A'discrete lateral pnp bipolar transistor.'

35
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1

r' ^.gure 6. Test struccur. es created by a change in the metal pattern
on a production microcircuit.
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6.	 Land areas for probing other discrete devices.

k;!	 4 7.	 A region indicated by the arrow in Figure 6 for

measuring the thickness of a second insulator

layer.

Area Conservation

Chip area can be saved by several techniques. 	 The capacitor

having the high periphery-to-area ratio that was described in

the earlier reports can be replaced by the surface-ion test

structure having the digitated gate.. 	 An MOS transistor can be

made significantly smaller in area than an MOS capacitor. 	 Also,

the digitated gate MOS transistor combines into one structure

the ability to measure the migration of contaminants from regions
^T

'^, adjacent.. to regions beneath a metal and the ability . to measure the

effects of surface ions.	 We show later in this report that a p-n

junction can influence the immobile charge density in its vicinity.
it

For this reason, the channel length of the surface-ion test

t structure should be at least one mil in length to minimize such

effects of the p-n junction. 	 Chip area can also be conserved

by using `a single contact for more than one test structure.	 An

obvious example of this is the use of one land for the gates of	 -^

two or more MOS transistors.

,
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EXPERIMENTAL DATA

Fast States

We have used a gold ball probe to measure fast state
r

densities by the technique of Brown and Gray 22 in unrmetallized

oxides using the gold ballp robe shown in Figure 4. Silicon

wafers ((111) oriented, phosphorus doped, 5 ohm-cm resistivity)

were polished and HC1 etched at 1200 0 C. They were then immersed 	 ti`

in a mixture of H2 SO4 and HNO3, and rinsed in H2O. They were

oxidized in dry oxygen to a thickness of 1700 A at 1150°C.

The oxidation was terminated by a bake in dry N 2 for 15 minutes	 _f

at 1150 0 C in situ. They were then removed from the furnace

by a technique that insures thedryness of the ambient during

the process of cooling to room temperature. The measured charge

densities are given in Table I	 `

Evaluation of Candidates for Second Layer Oxide Materials and Processes

We have also used simple MOS capacitors for the preliminary

evaluation of a number of possible candidates for second-layer

oxide materials and processes Data from the first two

Interim Scientific Reports are summarized in Table II.

During the period covered by this report, we have evaluated

additional samples of vapor plated Al203 several samples of

vapor plated titanium oxide, and S02 layers that were r-f,

sputtered from a target having the highest available purity.
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TABLE I

Fast State Densities (Gray and Brown), Measured with Gold Ball Probe

10 11 Fast States/cm2
Y

Oxide Grown Thermally in Dry Ambient 	 24-40
t

H2 Bake, 350°C, 30 min. 	 7

"OH2 Bake, 350°C, 120 min.	 7

H2 p Boil, 5 min.	 30

H2 O Boil, 60 min.	 10

Metallized (Al) 	 13
f5

Metallized and Alloyed (550°C)	 <1

.97	 Metallized, Metal Removed, 550°C Bake 	 6-25

r
Bake at 300 0 C, 45 min., 10

-6 Torr,
Subsequently metallized and alloyed	 3

r: 39	 I
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TABLE II

Typical Measured Charge Densities in Various
Kinds of Oxides on Thermally Grown SiO2

10 11 Charges/cm2

	

Mob i 1 e	 Mob i 1 e
Oxide Type	 Immobile	 300°C	 25 0C

None, Control	 2	 0.5	 0.1

Vapor-plated SiO2	 8	 5	 0.1

Vapor-plated phosphosilicate
(3/ phosphorus by weight)	 2.6	 1	 0.1



Vapor Deposited Aluminum Oxide. - We have vapor plated aluminum

oxide at 400°C over 2000 A thick layers of thermally grown

G

Si02 . The thickness of the Al 2 O3 was 6000 A.

Because of our uncertainity of the exact values of the

insulator-insulator contact potential and of the polarity of

the mobile charge, we report the measured electrical properties

in terms of flatband voltages rather than in terms of charge

densities. We have measured the effective charge density

after each of the following drift steps:

Initial

After +100 V at 27 0 C for 15 minutes;

F

After +100 V at 300°C for 12 minutes;

After ±100 V at 27 0 C for : 15 minutes .

1.
The measurements, summarized in Table III, support the data in

Scientific Interim Report No. 1 in which we reported that aluminum

oxides deposited at 400°C are highly unstable. Also, as previously

reported, we find that the instability ranges from strongly

negative to strongly positive net charge in the oxide

TABLE III

Flatband Voltage

Sample	 27° C	 3000C	 27° C
Number	 Initial	 -100V +100V	 100V +100V	 1OOV +1OOV

920	 _10V	 -8V -°13V	 +74V	 90V	 +65V -86V

921	 -9V	 -7V	 12V	 +57V	 83V	 +47V	 78V
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It is our understanding that all of the stable Al2 03 layers

reported in the literature were deposited at higher temperatures

(>800°C). These high temperatures are incompatible with the

processes used for building multilevel microcircuits.

Vapor Deposited Titanium Dioxide.	 Lepselter37 has indicated

that the use of titanium in beam-load sealed-junction technology

imparts improved properties to dielectric layers. We have

conducted a few preliminary experiments to evaluate titanium

oxide that is vapor plated at 400°C. The reactants were

tetra-is-o-propyl-titanate (TIPT) and oxygen, with nitrogen

as a carrier.

The test samples were made with a first layer of 5500 A

of thermally grown Si0 2 and a second layer of roughly 4500 A of

titanium oxide. These thicknesses were determined by angle

lapping and counting fringes and assumming the index of refraction

of titanium oxide to be 2.7.	 Table IV shows the conditions

by which the layers were deposited.

TABLE IV

Deposition Conditions for Titanium Oxide Layers

Wafer TIPT 02 Temperature Time
Number (cc min) (cc min (°C) (Minutes)

948 500 300 400 15
949 500 600 400 15
950 500 900 400 15
951 500 1200 400 15
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4.0	 <0.1	 1.7	 1.7948

We fabricated MOS capacitors and measured the effective

charge densities in the oxide. For these exploratory experiments,

we chose to use an evaporator system that contaminates the

samples with mobile charge. Hence our control sample had a

mobile charge density of 12 x 10 11 cm-2 . The mobile charge

densities were measured at room temperature, then at 300°C,

and ;again at room temperature. The measured charge densities

are given in Table V.

TABLE V

Measured Charge Densities in Tit

10 11 Char,
Sample
Number	 Immobile	 27°C

947*	 4.4	 0,2

anium Oxide

aes/cm2
Mobile
300°C	 27°C

12.0	 8.0

949	 3.7	 <0.1	 3.2	 1.6

*(Control, no second layer oxide)

k

We were unable to take significant data from Samples No. 950
i

and 951 because the capacitors had a high leakage current

We do not understand why the 5000 A thick layer of thermally

grown Si02 developed such a high leakage current.

These initial results appear to indicate that titanium

oxide getters, or is a ?carrier to, mobile ions. The severity

of the leakage current problem has not yet been determined.
r.,
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If titanium oxide is to be used in microcircuit fabrication,

more work will need to be done to develop a good etchant for

this material. Harbison and Taylor 38 have recently reported

that titanium oxides vapor deposited at temperatures below

850 0 C exhibit poor electrical properties and are not stoichio-^

metric TiO2.

R-F Sputtered Si02. - As a follow-up to the work done early

in the program to evaluate r-f sputtered Si02 layers as a

potential second layer oxide material, we have prepared r-f

sputtered Si02 layers from a purer target. The analysis of

the purer target follows. -These data were provided by the

supplier, Thermal American Fused Quartz Company, Montville,

N.J.,	 and were taken on samples similar to those supplied

to us.

Material PPM

Al <0.02
Sb' <0.0.001

As <0.0002 1

B <0.01
Ca <0.1 ^x

Cu <0.0002

Ga <0.004
Fe <0.1
Mn <0.001

P <0.001-

K <0.004
Lqa 0.04

2
:_

^	 µ

i
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Measurements taken on the sputtered oxides made with the

purer target revealed the following information:

O

1. Sample No. 903 consisted of 7000 A of sputtered oxide

on bare silicon. It had an initial charge density

of 45 x 10 11 cm-2 . Room temperature drift tests

(15 min.) shifted this to 39 x 10 11 under -36 V and

to 40 x 10 11 under +36 V. Next, the samples were

drifted under +36 V at 300°C for 12 minutes. This

shifted the charge densities to 55 x 10 11 for -36 V

and to 83 x 1011 for +36 V. The drift voltage polarities

were then reversed and they were maintained at 27°C

for 15 minutes; then the charge densities were remeasured

to be 60 x 10 11 at -36 V and 87 x 1011 at +36 V.

2. Sample No. 901 was prepared in the same way as Sample

No. 903 except that it had a 2000 A layer of thermally

grown oxide on the silicon
Obefore the 7000 A sputtered

oxide was deposited.	 This sample initially contained

f
t 9 x 1011 charges /cm2 .	 The first drift at room temperature

shifted this to 35 x 10 11 at -36 V and to 38 x 1011 at

+30' V. 	 At 300°C, the charge densities shifted to

31 x 10 	 --36 V and to 54 x 1011 at +36 V.	 Then,

_. under reversed polarities, they shifted at room temperature

` to 32x 10 11 at —36 V and to 56x 10 11 at+36V.
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On the basis of these results, which are consistent with

the earlier results reported in Interim Scientific Report No. 1

in November 1967, we have concluded that r-f sputtered oxides

are not as promising as second-layer oxide materials as are

vapor plated oxides. Further, the simplicity of the vapor

plating equipment and techniques, in comparison with those
.E

of r-f sputtering, also leads us to favor vapor plating for

the preparation of second-layer oxides.

Surface Conductivity

We tried to directly measure the conductivity of oxide

surfaces by means of the test structure shown in Figure 7.

In this structure an interdigitated pair of electrodes forms

on the oxide surface a conduc-L =.ng channel that has a width-

to-length ratio of 5000. 	 Information gained from this structure
e.	 J

would be useful to supplement the information obtained from
,a

the surface-ion MOS transistor used in our previous work

and to provide the means for further testing of our model.

On the basis of the work so far -completed, we conclude the

following;
fA

w.-	 r

1.	 The direct measurement of surface conductivity is very

difficult.	 A serious problem is the lack of knowledge'

of the amount of the current that flows through the

46
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Figure 7. Test structure for the direct
measurement of surface conductivity.
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;be most feasible at the highest levels of relative 4

humidity where the ratio of the current flowing o n
h.

the surface to that flowing through the oxide is

highest.	 In studies of microcircuit reliability

problems, conductivity measurements would be more

useful when made at much lower levels of relative

humidity. E	 !:
LL

3.	 Our surface-ion MOS transistor discussed on page 24
fli

r is much better suited for our work because:

a.	 Extraneous current paths do 'not affect the

" measurements.

b, .	 The structure is more nearly like that of a circuit, {

k' and therefore one can measure directly each of

the pertinent effects of surface ions in a micro-

-circuit-- channel development, instability in {}

` currentdiode leakage.	 or breakdown voltage, and,

instability in the current gain of a lateral

I
bipolar transistor,

ti
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Data from Capacitors Having a High Periphery-To-Area Ratio

The test structure MOS capacitor with the high periphery-

to-area ratio wag designed to study the migration of charge

between the region under the metal and regions beyond the

edge of the metal.	 The data in Tables VI and VII demonstrate

several types of results that we have obtained from test

structures No. 1 and 2 in Figure 5. 	 in Table VI, we show

that if there is a high, density of mobile charge in the region

outside of the metal electrode, it can move to regions under the

metal.	 On the other hand, the data in Table VII show that when

.,^ there is a low level of mobile charge, the ca °capacitors with theg	 Pd

' high periphery-to-area ratio contain a lower mobile charge density

than the large area capacitors.	 This might be explained by the
,i

postulate that the surface oxide acts as a getter for mobile charge

i

;s

Effects of Various Processes i.n a
,a

Complex Bipolar Microcircuit Processing Sequence

To obtain a good understanding of the effect of various 	 A

processes in a complex bipolar microcircuit processing sequence,

we made MOS capacitors on oxides that were taken out of a

f microcircuit fabrication processing sequence at different points. 	 ='j
a

The silicon wafers were (111) oriented, 5 ohm-cm -n-type.

t.

A^	 a
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Ei

10 1 1 Charges/cm2

	

Mobile	 Mobile
Immobile 	 -(3000C)	 (25°C
1*	 2*	 1*	 2*	 1*	 2*

TABLE VI

Comparison of Charge Densities in Capacitors Having Different P/A,

Samples with High Mobile Charge Density

n-type. _.substrate

Not vapor plated 2.4	 2.4 1.0 2240 0.1 0.1

Vapor plated 2.4	 1.5 1.2 3.5 0.2 1.5

P-type substrate

Not vapor plated 2.7	 2.8 1.6 500 0.3 2.2

Vapor plated 1.5	 3.0 2.2 2.5 0.5 0.8

*Test structures 1 and 2 in Figure 5.



E

TABLE VII

Comparison of Charge Densities in Capacitors Having Different P/A,

Samples with Low Mobile Charge Density t`

r

1011 Charges/cm.
,y

Mobile Mobile
Immobile °C)(300 0C25i {
1*	 2* 1*	 2* 1* 2*

^
n-type substrate

r

Not vapor plated. 4.2	 4.1 0.1. 0.2 0.5 0.0
{

Vapor plated 4.5	 4.0 0.3	 0.0 0.0 0.0

r

p-type substrate _
x

S

r
Not vapor plated 4.1	 3.8 0.9	 0.0 0.2 00

a Vapor plated 38	 -3.8 0.9	 0. 1 0.1 0.0
fir

*Test structures 1 and 2 in Figure 5.
s

l.

3
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I

The charge densities that were measured on these samples

are summarized in Table VIII. The metal on these samples was

evaporated from a resistance heated tungsten coil. 	 Samples
t

with an A in their numbers were alloyed; those without an A
1

were not alloyed. , Diffusion, photolithographic and etching

steps were performed on the samples at the appropriate parts t

of the process.	 The ultraviolet exposure was always included

in the photolithographic process without the use of a mask.

All of the measurements were on samples mounted on TO-5 headers.`
rj

The charge densities were measured in the as-mounted state,

after drifting at room temperature, and after drifting at 300 0 G. r

Table VIII shows that in the early stages of the process r

.	 the immobile charge density is widely variable and the mobile

charge density is high.	 This is not unexpected in a bipolar
t	 k

t

process where the precautions against contamination are less P

stringent than those taken in an MOSg	 process.	 The emitter x

diffusion  (phosphorus) greatly increases the uniformity of the

immobile charge density and reduces the level of the mobile

charge density.	 The ability ofphosphorus to immobilize mobile

charge is well known.	 Subsequent processes in which some of

the phosphorus is removed do not degrade the stability of the

oxide.	 However, the addition of 3 layer of vapor plated Sio

caused a large: increase in the mobile charge density because
J
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1

mobile charge is insidious - it was not observed in initial

measurements but only after bias aging experiments. 	 :.a

One might expect that the mobile ions known to be present

(Table. I) in Si02 that was vapor plated at a temperature of

X400 C, would not be immobilized by the phosphorus in the

'	 underlying oxide if the mobile charge had not been drifted
r ;

by an alloying step.	 Therefore, the high level of mobile charge t

in the samples having the vapor plated second-layer of S02

is not surprising. 	 On the other hand it might be expected

that the mobile charge could be immobilized by the application

.	 of heat and voltage to cause the mobile ions to migrate to
f:

the phosphorus.	 For this reason Sample Group No. 5 was subjected

to the following sequence of temperature and voltage treatments,s

+100 V,	 300° C,	 12 min.
b

-100 V,	 3000 C,	 12 min . Y
4

+100 V, 300°C,	 30 min.
-100 V,	 300 0 C,	 12 min.
-100 V,	 300°C, 45 min.

C-V curves were recorded after each of these drift periods.

The data taken show that even after these attempts to migrate

the mobile charge to the phosphorus there was very little,-

diminution of the mobile charge density.	 It was also observed

that for these oxides the drift of the mobile charge .-was'not

54 ^"^



nearly saturated by -the application of 100 V of either polarity

at 5000 C for 12 minutes.

Test of Proposed Solutions to Surface Ton Problems

One can calculate a thickness of dielectric layer that

will prevent a given change, due to the migration of surface

ions under the influence of a given applied voltage on an elec-

ttode', in the surface potential of the silicon. For example,

5 ohm-con n-type silicon will invert when the area charge density

in the silicon is 8.5 x 10 11 cm 2 . Typically, an oxide contains

IA

an immobile charge density of 2.9 x 10 11 positive charges/cm2,

Therefore, -a surface charge density of 2.9 x 10 11 negative

charges/cm2 will invert the s-ilid n. Therefore, the voltage

necessary to invert the silicon can he calculated as a function

of the thickness of the oxide from the equation.:
F

	
1

!'!	 t	 V	 ^i



To test the effectiveness of a thick oxide for preventing

surface ion problems we fabricated two types of test structures

by the established processes used to produce complex bipolar

microcircuits for a standard product line. only the metal

pattern of those test structures was different from that of

the production filicrocircuits. The overall chip is shown in

Figure 8 and Figure 9 is a close-up view of a test structure

used in this experiment. in Figure 9 ► contact D contacts the

p-type diffused base of the bipolar transistor, which becomes

the source of the p-channel MOS transistor. , Contact C contacts

the p-type diffused resistor, which servos as the drain of the

MOS transistor. Contact B contacts the collector of the bipolar

transistor- -and the substrate of the MOS transistor. Contact A

forms a gate that bridges the region between the source and

drain. The narrow width of the gate relative to that of the

source and drain makes this MOS transistor sensitive , to surface

ion effects.

The first layer of oxide over the region that forms the

channel of the MOS transistor is 13,000 thick. We deposited an

additional (> one micron) layer of phosphosilicate over this structure

to make an empirical determination of the effectiveness of

tuck oxides for the prevention of surface-ion-induced instability.

According to Equation 1, 13,000 A thick oxides permit inversion

56
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Figure 9. Close-up view of structure used for studying surface ions.
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S:

j

^ when the applied voltage is 17 volts, while the 2w 	 23,000 A thick

r oxides should not permit inversion until at least 30 volts is F

applied.

On some of these test structures, an additional layer of

metal was deposited over the sensitive areas of the chip, as

shown in Figure 10.	 The dark reg	 regions in the second-layer metal.

p

are regions where there is underlying first-layer metal, and

should not be mistaken to be openings in the second-layer metal.
z r

Having the two types of experimental test devices described
s

rr,^t

above, and a number of control devices that had only a single
r

layer of oxide and a single layer of metal, we sealed a number

of the three types of devices in hermetic TO-5 packages in

which the ambient was dry nitrogen, with a moisture content

[JI'l
^,bf less than 15 ppm.	 The devices were then subjected to the

type of treatment that should induce surface ion effects..

To detect surface- ion effects, we measured.

1.	 The drain current at -1.5 V with the gate shorted

to the source and substrate.
s.

2.	 The collector-base diode breakdown voltage at 10 µA.

r^
-` 3.	 The collector-base diode reverse current at 1.5 V.

The surface ion effects were created by applying a negative

voltage to the gate metal relative to the substrate (contact A }'

relative to contact D).	 All of, the drifting of surface ions was

done at room temperature.
59 4
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Figure 10. Second-layer metal over structure
used for studying surface ions.
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The first finding was that it was more difficult to develop

surface ion effects than our calculations lead us to predict.

The following bias aging schedules did not change any of the

devices significantly:,

-50 V for 4 hours,s
-50 V for 66 hours,
-100 V for 18 hours,
-150 V for 18 hours.

Next, we punctured each of the packages to increase the

mobility and possibly the density of surface ions. 	 We bias-aged

the devices at	 100 volts for 18 hours, and again found no

significant change in the measured parameters.	 Finally, we

subjected the devices to -200 volts for 120 hours, and obtained
r

A

the data given in Figures 11 through 1.3.
r^

Figure ll shows the effect of -200 volts for 120 hours
F.

on the gate relative to the substrate * on the surface-ion-induced

channel current at 1.5 volts between the source and drain.

The control devices channelled strongly, both in terms of the

^.r change in current level and in terms of the percentage of devices
{

channelled.	 Th:e devices with a second level of oxide, but F

t no second level of metal, were very stable,	 The devices
F

,. with both a. second layer of oxide and of metal were somewhat

less stable than were the devices in the second group.	 Furtieir

examination revealed the fact that the devices that channelled
i

'In the third group could not support 200 volts on the second
1

layer of metal relative to the substrate, -whereas those that
s.z

did not channel could. t
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Q

We conclude that the extra steps needed to produce a second

layer of metal do not provide an advantage over the use of a,

thick second layer of dielectric.	 Further, it appears that

if the integrity of the oxide under the second-layer metal is

imperfect, the presence of the second--layer metal introduces

an added failure mechanism.

Figure 12 shows that the diode breakdown voltage was notg	 9

' degraded on any of these groups of devices by the bias-aging.

However, the deposition of the ghosphosilicate very significantly

decreased the breakdown voltage of the collector base diode.;_

This would indicate that the effective positive charge density

in the oxide over the n-type collector region was increased

t. by the deposition of the second layer of oxide. 	 It is not
r.

known whether this ^-^ccurred in the .region under the metal,

or in the region not under the metal, or in both regions.
j

Figure 13 shows the data on the diode reverse current.

i

t.
The control group shows the least stability for this parameter,

-,, and all : of the groups show some instability in this parameter.

Effects of Second-Layer Oxide on MOS Transistors

Made by Processes Used for StandardMOS Microcircuits

In Interim Scientific Report No. 1, we presented experi-

mental data that show the effect of vapor plated second-layer
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POP-

oxides on bipolar transistors made by the standard processes

used to build microcircuits in production quantities.	 In

this part of this report, we present similar data on the effects r-

of second-layer phosphosilicate on MOS transistors on wafers

made by the processes used to build MOS microcircuitry in

production quantities.

Our measurements were taken on two types of discrete

MOS transistors that are on each microcircuit chip on the

wafer.	 One of the transistors has under its gate metal an t;

oxide of the type found under the gates in the actual micro-

circuit.	 The other transistor has under its gate an oxide
r

of the same type as the thick oxide found in the field of

the microcircuit.	 Both of these devices are at least partially

sensitive to the properties of the thick oxide in regions

not covered by meta...

Two microcircuit wafers were simultaneously fabricated

by the standard MOS process.	 Each wafer was scribed into r

halves, and one-half of each wafer was covered with a layer of

of vapor plated phosphosilicate, greater than 1 micron in thickness.

Figures 14 through 16 provide ,a summary of the data taken P

by testing the transistors with-gate oxides on all four half-

wafers.	 The data show that:,
*. i

1.	 The spread in the distributions of BVDSS, shown in
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Figure 14, was increased significantly,by the vapor

plating step, moth in increasing and decreasing directions.

(BVDSS was measured as sketched in Figure 14 at currents
t

of 10 µA.)

2. The level of the diode breakdown voltage, shown in 	 j

Figure 15, (measured as sketched in Figure 15 at

10 µA) was increased by the vapor plating step, The

spread in the distribution was not increased.

3. The threshold voltage level at 10 µA, shown in Figure

16 , appeared to be slightly decreased by the vapor

plating process on one of the wafers. The other

wafer showed no change in this parameter.

i; 3

'	 The same devices were retested after they were scribed,

and assembled in TO-5 packages. 	 The results were as follows: i

1. Figures 17 and 18 show the dependence of the drain i{
5

current on the gate voltage at a constant drain voltage

of 5 volts.	 There was no significant change due to x

the vapor plating in either the transistors with the

gate oxide or those withthe field oxide.

19 and 20	 the	 -to-drain leakage2. Figures	 show	 source

current at 1.5 volts (gate tied to source) on devices

that were, and on others that were not, vapor plated.

decreased this leakageThe vapor plating step	 current

in both types of transistors of rot. —%4,afers.4
}
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` 3. Figures 21 and 22 show the BVDSS taken after the

i devices were packaged.	 They did not show the decrease

in BVDSS level due to the vapor plating step that

was observed when the devices were tested on the

wafers.
J

4. Figures 23 and 24 show that the diode breakdown voltage

is increased as much by the header bonding and wire

k

attaching operations as by the vapor plating process.

} After packaging, there is no 	 difference between vapor

plated and non-vapor plated samples insofar as diode

breakdown voltage is concerned.

We conclude:

1._ There is no evidence after the devices are packaged

that the phosphosilicate glass degrades the MOS tran-

sistors.

2. Diode leakage current is decreased and diode breakdown

;. voltage is increased during the vapor plating step.

(We infer from this that the Qss is decreased in the

- region under the field. oxide.)	 There is some evidence

that Qss also decreases in the gate; region.

t _

f
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Influence of Mobile Ions on the

Transconductance of MOS Transistors

In our list of factors (page 12) influencing circuit reliability,

we included the possibility that mobile charge in the oxide can

influence the channel length, and therefore the ti ,Ansconductance

of MOS transistors.	 This can be understood as follows:	 A

typical dopant density in a silicon substrate is 10 15 cm-3 . - :f

A 1,000 A thick layer of this silicon contains 10 10 charges/cm2.
`u

1'l'p	 ss	 quite significant,Typical Q	 levels (2 x 10 11 cm 2)	 should be	 '

therefore, in determining the drain depletion layer width

out into the channel region. 	 Figure 25 shows instability in

the transconductance of MOS transistors. 	 These transistors

were selected from a lot known to contain mobile ions. 	 The
i

data show that ,when the transistor leads are shorted or when
M

there is a positive voltage applied to the gate metal, the

transconductance is decreased'; and when there is a negative

voltage on the gate metal, the transconductance is increased

at 3000 C in a fraction of an hour.

I These transistors have a channel length of 0.24 mils and

a width of 2.0 mils. 	 The oxide thickness is 1,500 A. 	 Figure F.

26 shows the drain current as a function of the gate voltage

j	 for several constant values of the drain voltage for these

same samples.	 Figure 26A shows the initial characteristicsr rc^

80



04^4
4.)ro .0 .^^4ro4-J_
O

a
'IQ

 x
'1

0

w
O

w
O

N
`
n
>

a
>

r
a

{
r

I

r-1
1

G
f

—
r

U
V

U
L
O

o
o

r o
 o

ro
r--	

0
0

O

M
r-i

M

U
U

N
4
J

4
J

S4
4
-)

i•1
rd

rd
o

b
a

}
U

)
m
	

o
c
n

^
E	

^°'J
S4

®
• r

j
0
	

(

ir-^
>

1"'9
W

 +
3
f
f
f
5

Fr

`
4

M
4
1

4J
•
P/
4̂ 1

pp 4̂-)
r

-4
4+

r- 4'
t

^
1

r
. T

^

4
4

/^
^

W
4

.
/ AW

Y
.

r

1

iIt

>Ou^$4
u

I
0Z`L
W1Q,1

Uc
d
"

0
^̂Avt

^
'
	

1II

l

^I

x

I i



INI T IAL

I O-V 	I
I-z
W
or
Ck
m
U
z

or
0

DRAIN VOLTAGE
5 VOLTS

B

DRAIN VOLTAGF
0 5 VOLTS

9
'Tr	 7*1

•

A

0	 GATE VOLTAGE	 -10V 0	 GATE VOLTAGE	 _ 10V

C	 D

AFTER +12 VOLTS: 	 DRAIN VOLTAGE	 A DAY AFTER C:	 DRAIN VOLTAGE

ON GATE, 90 MIN:	 0.5 VOLTS	 *5 & 0 2 VOLTS
AT 3000C

E;t	 '' ^	 .iii:	

....	 I	 ...	 .......	 ......	 ....	 ....	 , .. ^	 ..	 . ^	

. i ;

zi	 i :• rii	 ?	
i	

i	 rl	
i

ann iii. ,^	 i.	 :	 .•.	 ,;....:	 ;iii:'
U

oc	 !?	 I:i:i:iiiE;:o 

0	 GATE VOLTAGE	 -10V 0

Figure 26. Effects of bake, bias and drain voltage on
the transconductance of MOS transistors.

GATE VOLTAGE	 -10V

82



at a drain voltage of 5 volts. Figure 26B shows the initial

characteristics at a drain voltage of 0.5 volts to show the

effect of drain voltage. This comparison provides a measure

of the importance of a change in the electrical (not the

1	 metallurgical channel length) channel length. Figure 26C

shows the characteristics at a drain voltage of 0.5 volt after

+12 volts had been applied to the gate relative to the substrate

for 90 minutes at 300"C. This drift treatment would be expected

to increase the effective charge density in the oxide. At

this point, it was not clear whether the degradation of the

transconductance was due to an increase in the electrical

channel length because of an increasf, in the charge density

in the oxide, or whether it was due to a decrease in the mobility

iof the carriers in the inversion layer. A day later, these

devices were remeasured at drain voltages of 5.0 and 0.2 volts.

The data; in Figure 26D, from these remeasurements show that

the characteristic] recovered partially but, more importantly,

that the transconductance was fairly insensitive to a large

change in the drain voltage. Further testing showed that

subsequent drifting under negative and positive a*?plied voltages

produced reversible changes in the transconductance.

Our interpretation of these data is the following: It

appears that the change is due more to a change in the carrier

mobility than to changes in the length of the channel.
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This might be due to the introduction of fast states in the

interface by the mechanism postulated by Ooetzberger et a l. 39, 40. 4

that is, the drift of sodium ions toward the silicon interface

may create coulombic centers in the oxide that act as surface

states, and thereby immobilize carriers that would otherwise

contribute to the conductivity of the inversion layer. 	 Further J

work is necessary to more clearly define the exact mechanism
n4

k	
invalved in the observed dependence of the transconductance

I
on the pos ition of the mobile ions in the oxide.

Information Obtained from the Correlation

of Data from Several Test Structures

r	 Having a combination of different test structures on the

same wafer creates opportunities for correlation studies among

data taken on different structures. 	 For example, we have

measured the mobile charge in the two MOS capacitors, in

the MOS transistor having a 1-mil channel length (the surface-

ion test structure), and in the MOS transistor having a 0.40-mil T^

channel length between oxide cuts (0.24 mils between diffused
f=	

i

junctions). These devices were chosen from an.experimental lot 3

that were known to have a fairly high density of mobile charge.

The measured charge densities were those given in Table IBC.

z
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k TABLE IX

Mobile Charge Densities Found in

Different Structures on the Same Chips

Mobile Charge
(300 0 C, 	_12 Vt

Structure 12 min.)
a

e
MOS capacitor, 30 x 30 mi 7. x 10 11 cm-2

MOS capacitor, high perimeter-to-area ratio 2.9 x 1011
I

Î MOS transistor, 1 mil channel length 1.8 x 1011
'I	f

MOS transistor, 0.4 mil channel length 0.4 x 1011

I

I

4
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CONCLUSIONS

i^
1. The model for the factors infuencing the silicon surface

poten-cial has been .revised with the addition of fast states

at the oxide--silicon interface; dipoles in the oxide; and

mobile ion traps at the oxide-metal interface, at the insulator-

insulator interface and at the top surface of the oxide.

2. Models have been developed for possible instabilities 	 1

that might occur due to complex migration of ions. Specifically,

these models include the interaction between ions on the oxide

surface with those in the oxide, and a situation in which

positive ions drift toward the silicon under the application

of a negative voltage on t:1e metal.

3. Several new test structures have been added to the set

of available test structures.

a. An MOS transistor with a digitated gate has been

designed to combine the functions of the surface-ion

test structure and the capacitor with the high periphery- f

to-area ratio into one structure. This dual function

structure is much smaller in area than that needed

for the two structures it replaces. The di itationP	 g

increases the sensitivity of the surface-ion test

structure to surface-ion effects.
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b. A surface-ion test structure has been designed to

have cuts in a second-layer oxide over the first-

layer metal to increase the sensitivity of the test

structure to surface-ion effects, when a second-layer

oxide is present over the metal.

C. A p-n junction diode has been designed to have a

high periphery-to-area ratio to increase the sensi-

tivity of the diode characteristics to surface effects.

d. MOS transistors with different channel lengths have

been designed to provide means for studying the effects

of variations in channel length.

e. A test structure has been prepared for the direct

measurement of surface conductivity.

f. A lateral bipolar transistor has been included to

provide additional means for studying surface generation

and recombination.

4. In addition to the improvements made in the design of the

set of test structures, we have improved the understanding

concerning the most effective use of test structures. MOS

microcircuits have three types of area that should be evaluated --

gate oxide under metal, field oxide under metal, and field

oxide not under metal. Bipolar microcircuits surface properties

should be evaluated in both the base (iscla*_ion) and collector types

of area in regions that are, and those that are not, covered by metal.
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5. The use of test structures has been described in detail

for five types of applications:

a. Preliminary evaluation of Pxperimental materials

and processes.

b. Development of promising materials and processes.

C. General use in MOS microcircuits production.

d. General use in bipolar microcircuit production.

e. Specific use on individual microci-cuit types in

which the test structure is formed by a change in

the metal pattern.

6. The use of test structures in combinations is shown to

provide additional data that cannot be obtained from single

test structures.

a. Comparisons of MOS capacitor and MOS transistor data

provide a measure of the fast state density.

b. Comparisons of properties of transistors having different

s

7

M

channel lengths provide a means for studying variations

along a channel length of MOS transistors, e.g.,

variations due to the effects of the p-n junction.

C. Comparisons of mobile charge densities in MOS capacitors

having narrow metal regions with densities in large

area capacitors may provide a measure of the gettering

of mobile ions by the top surface of the oxide.
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7. Additional information can be obtained by making measurements

at different temperatures. The effect of temperature on MOS

capacitors or on MOS transistors provides a measure of fast

state densities.

8. Specific sets of test structures have been suggested for

general use with MOS microcircuit production wafers and with

glass passivated and multilevel microcircuit structures.

9. It has been demonstrated that test structures can be made

for a given type of microcircuit by a change in the metal

pattern to create test structures from the regular microcircuit

structure,

10.	 Specific techniques have been proposed for conserving

the area needed for test structures.	 One example is the combining

of the surface-ion test structure with the MOS capacitor having

the high periphery-to-area ratio. 	 In this case, area is conserved

I	 both by the replacement of two test structures with one, and

by choosing a transistor structure rather than a capacitor

structure (capacitors require a much larger area than transistors).

Another example is the sharing of a common contact by two or
.A

more test structures. t

11.	 A detailed'' theoretical analysis was given of the use of a r:
r	 ,

thick oxide layer to reduce or prevent the effects of surface ions.
r
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12. The use of qualified test wafers for quality monitoring of

materials, procedures and equipment has been found very useful

for control of the standard process used for microcircuit

production, and as a standard against which experimental results

are compared.

13. Capacitance-voltage measurements taken with a gold ball

probe on unmetallized oxides provide a sensitive measure of

the dryness of the oxidation ambient.

.k

Y 7

14. Experimental data show the effects of hydrogen, water

and aluminum on the annealing of fast states.	 our experiments

show that the removal of aluminum by the standard process:
:E

used in microcircuit production significantly diminishes the

annealing of fast states ino an alloying process.	 'therefore,

we believe it to be important to evaluate both regions under
L

a metal and those not under a metal in a microcircuit.

15.	 Additional evaluations have been made of oxides suitable

for second-layer insulators. 	 Vapor plated aluminum oxide.

deposited by techniques that are compatible with structures
x;

having multilevel metal have been evaluated for possible use

as second- layer insulator materials and have.been found to

be unstable.	 All of the stable vapor deposited.: aluminum oxides'
E

K	 ,.

of which we are aware have been deposited at temperatures

90
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y
that are too high to be compatible with the processes used for

building multilevel-metal microcircuits. Vapor plated titanium

oxides appear to provide some stability but, if they are to be

used in fabricating microcircuits, etching techniques will

have to be developed.	 Si02 layers that were r-f sputtered

from sources of the highest available purity were found to

be quite unstable.

16.	 It has been observed that the density of mobile ions in

transistor structures is lower than in large area MOS capacitors

on the same chip.	 This has been interpreted as :being due to

two mechanisms:

f

a.- The electric field at a p-n junction appears to drift

mobile ions from the oxide over an n-type region to

w that over a p-type region -- this is a stabilizing

influence on p-channel MOS transistors, and of npn

bipolar transistors i , which the region of highest

resistivity is the n-type collector.

b.	 A top surface of an oxide which is not covered by

metal appears to be capable of gettering mobile charge. x
4r

This would tend to increase the stability of devices
y

that are dimensionally small.
r,

R b¢

a
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17., Two proposed solutions to surface ion problems have been

evaluated experimentally. The use of a thick oxide (the exact

thickness being calculable, given the charge density in the

oxide and the operating voltage) has been demonstrated to provide
a stabilizing effect on production microcircuits. On the.other

hand, it was observed that the addition of a second layer of

metal over the second layer of oxide can add instability.

18. Experiments have shown that the transconductance of an	
r

MOS transistor can be significantly altered in structures known

to contain mobile charge in the oxide, even when the threshold

voltage of the transistor is not altered. This change has been

tentatively attributed to a change in the average carrier mobility

in the channel. A comparison of the influence of drain voltage

on the transconductance and the effect of the drift-bia.s treatment
1

indicates that.the change in the -ttransconductance is not due to a

change in the effective channel length that could be expected from

a change in the effective charge density in the oxide.	
Y[

19. Data have been taken that show how the electrical properties xa

of an oxide change as the oxide is subjected to each step in

a'com complex bipolar microcircuitp	 p	 production process. The data  

show that the charge densities in the oxide are improved. by the

Alphosphorus emitter diffusion. Subsequent steps that remove
r
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i
some of the phosphorus glass do not ftgrad	 = 2

r

r

1a	 A subsequent depositli on, of vapor vlatdd 3102 	4 f-4gb It-

charge density that is too high for tht p oomph t = t 9tt@-K-

The mobile charge added by the vAD@r 	 ji iisEi ii idl

it was not observed 	i 	 Kx^	 ^z.

bias aging experiments.

20. An exg)eriment has been c:ondugt@d

of a vap&,^N l plated phosphosii eat@ -4v r-
z'

were fabricated in an MOS

i There was no significant degradation @-f the

There was an increase in the tranaoondu^AAfi$



RECOMMENDATIONS

I

We recommend that studies be continued to:

1. Conduct theoretical and experimental studies of the
r

factors which affect the fundamental electrical properties
3.

of the Si-Si02 interface of structures having two

dielectric layers on silicon.y

2. Further develop the models and the understanding
.	
Ll

of each of the surface-related causes of instability
{

in multilevel microcircuits. M

3. Conduct_ correlation studies Lo establish the value i

of test vehicles for the determination of the reli-

ability of actual microcircuit structures of both

the bipolar and MOS type. G

4. Correlate effects of deposited second-layer insulators
t ^

z	
^.

over structures used in LSI arrays on lif¢ test data

with measurements taken on test structures. }
y

5. Conduct investigations to evaluate specific process changes

for the improvement of microcircuit reliability..
rF

6. Experimentally determine the effects of complex ion

migration of various kinds.

7. Determine the exact nature of the cause of the degradation

in the transconductance of MOS transistors.

r
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APPENDIX B

NEW TECHNOLOGY

To conform to the requirements of the New Technology

clause of the contract, a review meeting was held to determine

the reportable items. Personnel participating in the review

included G.L. Schnable, the Program Manager, and E.S. Schlegel,

the priniple investigator on the program.

A list of reportable items is given below. The items

are innovations or improvements in the technology. No inventions

were made during the performance of the work under the contract,

nor have any invention disclosures been prepared.	 Philco-Ford

does not consider these items to be susceptible to protection }

-under United States patent laws and thus does not consider
fi

' the provisions of parts 	 (1) and	 (2) under paragraph	 (h) of

.y: section III of the New Technology clause to be applicable.r

No subcontracts were let under-this contract.

1.-	 Improved model of charge distribution. 	 (Pages -11. )

., Based on information assembled from the literature and

from experiments performed during the program, the model for 4

the distribution of electric charge in multilevel metallized

.. metal-insulator-semiconductor structures was extended to include
t

additional types of charge and charge states to those that were .^

in the model developed earlier in the program.

L	 , B-1

i.



T

2. Model for complex ion migration. (Pages 15 -•18.)

Models have been developed to improve the understanding

of instabiliti.es due -Co the complex migration of mobile ions.

These models extend the understanding of instability beyond

that of the effects of individual influences contained in the

model of charge distribution covered in item 1 above.

3. Improved test structure for studying the effects of surface

ions and of contaminant migration beneath metal layers.

(Pages 22 and 37.)

An MOS transistor has been designed with •a digitated gate

that combines the following capabilities into a single structure ._

having a smaller area.

a.	 It can be used to study the migration of contaminants
LL

to and from regions beneath a metal layer.	 This -^

device requires significantly less chip area than its r` if
3

predecessor, the MOS capacitor with a high perimeter-
!/
r

to-area ratio.

b.	 It can be used to study the effects of surface ions. ri

The digitated gate makes it more sensitive to surface-

ion effects than its predecessor, which had only a

single gate digit.
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4.	 Structure for studying surface ion behavior on a second-

layer insulator. (Page Z2.)

To increase the sensitivity of the test structure for

studying the effects of surface ions on a second-layer insulator

over a metal layer, a test structure has been designed to have

openings in the second-layer insulator to make it easier for

ions to drift from the metal to the top surface of the insulator.,

5	 Effective use of test structures. (Pages 23-37.)

Studies of various ways in which test structures can be

most effectively used for the development and production of

reliable microcircuits have resulted in a number of specific

recommendations. These recommendations pertain to the types

of microcircuit area to be evaluated, to the types of application

for which test structures are useful, and to possibilities

by which the results taken from several test structures can

be combined to yield data that could not be obtained from

single test structures,

6.	 Test structures created from microcircuit chips 	 (Pages 34-37.)



7.	 Review of the application of test structures for the

study of surface effects in LSI circuitry. (Entire report.)

A detailed summary of considerations in the application of

test structures for the study of surface effects in LSI circuitry

was prepared. This information was prepared for oral presentation

at the Seventh Annual Symposium on Reliability Physics and

for submission as a manuscript to the IEEE Transactions on

Electron Devices for consideration for a special issue, covering

selected papers from that symposium. This paper combines in

one article a thorough review of theause of test structures

for the improvement and control of the performance and reliabilityrt^x	 _..P	 P 	 ^^


