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ABSTRACT 

The re f lec t ion  of a shock wave at  the end w a l l  of a shock tube i s  

examined theore t ica l ly  for the  case i n  which the flow behind the incident 

shock wave exhibi ts  a l inear  density var ia t ion and the gas i n  the shock 

tube i s  ideal .  The re f lec t ion  process i s  shown t o  be unsteady, resul t ing 

i n  the development of a nonuniform flow f i e l d  cal led an entropy layer .  

The character of the entropy layer  displayed i n  t h i s  problem provides 

useful information f o r  understanding the flow f i e l d  formed when nonideal 

e f fec ts  such as relaxation phenomena or radiat ive cooling are  important 

behind an incident shock wave. 
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I. INTRODUCTIOII 

Calculations of the equilibrium gas state behind a ref lected shock 

wave i n  a shock tube usually employ the assumption tha t  the ref lected 

shock wave i s  t rave l l ing  a t  a constant speed in to  a uniform equilibrium 

flow. When relaxation phenomena a re  present, a shock wave actual ly  

r e f l e c t s  with a speed which varies during the  t i m e  required f o r  the 

ref lected shock wave t o  t r a v e l  through the nonuniform relaxation zone 

behind the incident shock wave. The gas pa r t i c l e s  which pass through the 

unsteady ref lected shock wave experience d i f fe ren t  thermodynamic h i s to r i e s  

than those which pass through the  l a t e r  steady shock wave, and hence 

ultimately reach d i f fe ren t  equilibrium s t a t e s  than the s t a t e  predicted by 

the steady-shock calculation. The spa t i a l  region containing t h i s  non- 

uniform equilibrium gas can be called an entropy layer; t h i s  terminology 

i s  consistent with t h a t  used t o  describe the region adjacent t o  the 

surface of a wedge i n  steady supersonic flow of a relaxing gas. 

It can be shown that an entropy layer w i l l  always be formed i n  the 

region behind the ref lected shock wave when the  flow i s  nonuniform behind 

the incident shock wave, e.g., owing t o  relaxation phenomena, radiat ive 

cooling, side-wall boundary-layer effects ,  e t c .  Unfortunately, exact 

solutions f o r  the thermodynamic properties throughout such entropy layers 

are d i f f i c u l t  t o  obtain, and even the qual i ta t ive character of these 

regions i s  not immediately obvious. ”* 
present an analysis f o r  a simpler but i l l u s t r a t i v e  case of shock-wave 

re f lec t ion  i n  which the flow behind the incident shock wave exhibits a 

l inear  density var ia t ion and the gas i s  everywhere ideal .  The density 

var ia t ion i s  assumed s m a l l  so  that a l l  quant i t ies  behind both the 

incident and ref lected shock waves vary only s l igh t ly  from t h e i r  unper- 

turbed values, and l inearized equations can be used t o  calculate the flow 

f i e l d .  

The object of t h i s  paper i s  t o  



11. ANALYSIS 

I n  order t o  solve the l inear ized gas-dynamic equations behind the 

ref lected shock wave, one must first determine the  boundary (jump) con- 

d i t ions  along the reflected-shock t ra jectory.  The values of the flow- 

f i e l d  properties along this  t ra jec tory  d i f f e r  from the unperturbed values 

due t o  two coupled e f f ec t s :  var ia t ions i n  the  flow properties behind 

the  incident shock wave, and var ia t ions i n  the speed of the ref lected 

shock wave. The determination of these boundary conditions i s  s t ra ight -  

forward, using standard shock-jump relat ions,  since the variations i n  the 

incident-flaw properties are a l l  known (because of the  specified density 

d is t r ibu t ion)  and the posi t ion of the ref lected shock wave can be approxi- 

mated by the  unperturbed t ra jectory,  even though the reflected-shock speed 

i s  allowed t o  vary. 

solution f o r  the flow f i e l d  behind the ref lected shock wave i s  obtained 

by solving the elementary wave equation i n  the perturbed flow variables 

of pressure and pa r t i c l e  velocity. 

Once the boundary conditions are determined, the 

The space-time diagram representing the overal l  flow process i s  

shown i n  Fig. 1, where x i s  the distance from the  shock-tube end wal l  

and t is  the  t i m e  a f t e r  re f lec t ion .  The density perturbation behind 

the incident shock wave w i l l  be represented by 

i s  the unperturbed value of the density, f3 i s  the density- p2 where 

gradient parameter, and s i s  the distance behind the  incident shock 

wave. For a given density dis t r ibut ion,  the variations i n  the values of 

other thermodynamic properties behind the incident shock wave are  deter-  

mined by the conservation equations of mass and momentum and the thermal 

equation of state. 

speed incident shock wave i s  given by 

For example, since the  pressure behind a constant- 

then the perturbation i n  pressure w i n g  t o  a s m a l l  var ia t ion i n  density i s  

2 



I f  one neglects p i n  the previous equation, the last equation can be 

rewri t ten i n  dimensionless form as 
1 

P;/P2 = f3S/(Pg1 - l), 

where the abbreviated notation P21 = P2/P1 has been adopted. Thus the 
parameter f3 f ixes  the variations of a l l  flow-field properties with 

distance behind the incident shock wave. See Appendix A f o r  a derivation 

of the per t inent  l inear ized re la t ions  i n  the incident-shock flow. 

The boundary conditions f o r  the flow i n  region 5 a re  determined from 

the standard shock-jump re la t ions .  For example, the r e l a t ion  f o r  the 

density jump across the ref lected shock wave i s  

where Mr represents the dimensionless speed of the ref lected shock 

wave with respect t o  the flow i n  region 2 and i s  defined by 

The quantity a2 i s  the loca l  speed of sound i n  region 2, i .e . ,  

Retaining only f i r s t -o rde r  terms i n  the perturbed quant i t ies ,  one f inds 

from the shock-jump re l a t ion  f o r  density t h a t  

where 

3 



and the care t  symbol has been used t o  denote the value of the quantity 

along the  reflected-shock t ra jec tory .  

The perturbation i n  the reflected-shock lkch number r e su l t s  from 

2 and Vr. However, the  var ia t ions i n  a and p 2' a2.' 2 var ia t ions i n  p 

are  re la ted  by 

a;/a2 = - [ ( P ~ ~  - 2 ) / 2 ( ~ ~ ~  - 1)Ip;/p2 

so tha t  the perturbation i n  Mach number becomes sirnply 

The quantity H i s  defined by 

where M2 i s  the  dimensionless speed of the flow 

respect t o  the incident shock wave, i . e .  

Finally,  one can write the boundary condition f o r  

i n  region 2 with 

density as 

Consistent with the use of f i r s t -order  perturbation theory, the jump 

conditions across the re f lec ted  shock wave can be sa t i s f i ed  along the 

unperturbed shock t ra jec tory  ra ther  than along the ac tua l  t ra jectory.  

The perturbed values f o r  the f l a w  properties immediately upstream of the 

ref lected shock wave are thus given simply by subst i tut ing 

s = (vr + vs)t 

i n t o  the appropriate equations f o r  the flow properties i n  region 2. 

Using Eq. (l), the density perturbation p^'/p i s  given by 5 5  

8 j ( t ) / P 5  = [1 + 4H/GILt + [~/GP~~I(V;/V,)~ 

4 



where 

L t  = B(Vr + V s ) t .  

For addi t ional  d e t a i l s  regarding t h i s  derivation see Appendix B. 

analyses f o r  pressure and pa r t i c l e  velocity (see Appendices C and D, 

respectively) y ie ld  the boundary conditions 

Similar 

and 

A l l  boundary conditions thus become functions of both time and the 

unknown quantity V ' .  

dimensional form (using the ident i ty  p5 = p5a:/y) as 

r 
These boundary conditions (Eqs. (2)  through (4) )  can be rewrit ten i n  

3 (t) = ALt + BV;, 5 

$;(t)/p5a5 = mt + DV;, 

and 

B ' ( t )  = ELt + FV', 5 r ( 7 )  

where the coeff ic ients  A through F are  d i r ec t ly  re la ted  t o  the 

bracketed quant i t ies  shown above. Equations ( 5 )  through (7) provide the 

boundary conditions f o r  the flow-field solution i n  region 5; the coeff i -  

c ien ts  A through F are re la ted  t o  known (unperturbed) quant i t ies  

since Ms and y are  assumed given. 

Because of the unusual boundary conditions, care must be exercised 

i n  eq loy ing  the l inear ized gas-dynamic equations t o  solve fo r  the flow 

f i e l d  i n  region 5. 
derivation. The continuity, momentum, and energy equations f o r  the 

This can best  be seen by considering the following 

5 



perturbed variables i n  region 5 are,  t o  first order, 

and 

p c dT'/& - &'/at  = 0. 
5 P  5 5 

Using the l inear ized equation of s t a t e ,  

P'/P 5 5  = P;/P5 + T;/T5, 

and the continuity equation, one can rewrite the  energy equation i n  terms 

of p; and u i . e . ,  5' 

&;/at + w5au5/ax = 0.  

The momentum equation and the second form of the energy equation can now 

be combined t o  y ie ld  elementary wave equations i n  the perturbed variables 

p; and u5, e.g., 

Note, however, f o r  t h i s  problem, t h a t  no combination of the conservation 

equations w i l l  y ie ld  an elementary wave equation i n  e i the r  of the per- 

turbed variables 

entropy var ies  between adjacent pa r t i c l e  paths i n  region 5 (non-homen- 

t ropio f l a w ) ,  so the usual adiabatic state r e l a t ion  f o r  pressure as a 
function of density cannot be invoked t o  replace ap'/ax i n  the momentum 

2 equation with a ap'/ax. The difference i n  entropy across the ref lected 5 5  
flow f i e l d  i s  generated, of course, by the mechanism which produced the 

i n i t i a l  perturbations i n  region 2, and by the  varying strength of the 

ref lected shock wave. 

or T' This i s  a r e su l t  of the f a c t  t ha t  the 
p; 5' 

5 

Af'ter applying the no-flow boundary condition at  the end w a l l ,  one 

and p '  as u5 5 can write the general solutions of the wave equation f o r  

6 



= f (x  + a5t) - f ( -x  + a t )  u5 5 

and 

-p'/p a = f ( x  + a t )  + f ( -x  + a t),  5 5 5  5 5 

where f i s  an arb i t ra ry  function. Applying the boundary conditions 

along the unperturbed shock t r a j ec to ry  ( 3 s .  (5) and ( 6 ) ) ,  one can then 
show t h a t  the function f i s  given by the l i nea r  r e l a t ion  

where 

K = (BC - DA)/(Ba5 + DVr). 

The perturbed velocity and pressure dis t r ibut ions are  therefore 
\ 

U5/Vr = - KLx/vr = - (Kx/B)Lt, ( 9 )  

and 

The quantity 

common form with the solutions shown below where 

variable. 

2 = Vrt  was introduced i n  Eq. (9) i n  order t o  provide a 
5? appears as a natural  

The perturbation i n  the reflected-shock velocity i s  given by 

where 

J = ( C  + Aa5/Vr)/(DVr + Bas). 

A more detai led analysis of these wave-equation solutions is  provided i n  

Appendix E. 

The density d is t r ibu t ion  can be established by integrating the 

continuity equation, i .e., 

7 



where g(x) 

boundary condition f o r  

y ie lds  

i s  a function which can be determined by sat isfying the 

a t  the shock wave, Eq. (7) .  This last s tep 
p; 

where 

I = (1 -I- 4H/G - ~ J / G P ~ ~  - K) 

For addi t ional  d e t a i l s  regarding the steps involved i n  the density 

solution, see Appendix F. 

Using the l inear ized equation of s t a t e ,  one can now show tha t  the 

temperature d is t r ibu t ion  i s  given by 

while the entropy perturbation becomes (see Appendix G )  

S$/R = -[yIL/(y - l)Vr]x. 

8 



111. DISCUSSION OF RESULTS 

trary, is  

the f l u i d  

monatomic 

%% at the 

4 / P 2  of 

Numerical r e su l t s  f o r  the dimensionless coeff ic ients  I, J, and K, 

which appear i n  Eqs .  (9) through (14), are presented i n  Fig. 2. 

coeff ic ients  vary only s l i gh t ly  f o r  M 2 3, and therefore one can 

approximate them w i t h  constants. 

These 

S 

An inspection of Eq. (9) shows t h a t  the velocity perturbation i s  a 
function of x only; the negative sign indicates t h a t  the motion i s  
toward the end w a l l .  The pressure perturbation (Eq. (lo)), on the con- 

not a function of x, 
pa r t i c l e s  i n  region 5. It i s  of i n t e re s t  that ,  f o r  e i the r  a 
or diatomic gas, the pressure perturbation p'/p i s  nearly 

ins tan t  the ref lected shock wave intercepts  a density var ia t ion 

10% ( r e c a l l  t h a t  p^;/p2 = L t  along the reflected-shock t ra jec-  

and it rises uniformly with time f o r  all 

5 5  

tory) .  
t h a t  any density increase i n  region 2 represents a proportionate increase 

i n  dynamic pressure as seen by the ref lected shock wave, and hence a 
s i m i l a r  increase i n  s t a t i c  pressure must arise i n  region 5. 

This last r e s u l t  i s  physically reasonable when one recognizes 

The solution f o r  the reflected-shock speed, given by Eq. (ll), 
indicates a perturbation which i s  negative and proportional t o  time so tha t  

the perturbed shock t ra jec tory  becomes parabolic. Although the speed of 

the ref lected shock wave decreases with time, the Mach number with respect 

t o  the incident flow actual ly  increases because of the decreasing value of 

the speed of sound i n  region 2. 

and of the  increasing value of mass density i n  region 2, i s  the development 

The r e su l t  of the increasing shock strength, 

of a large posi t ive per turbat ionindensi ty  immediately behind the ref lected 

shock wave (see Eq. (12)). Owing t o  compressive effects ,  the density per- 

turbation at  the end wall i s  a l so  posit ive,  but smaller than the perturba- 

t i on  at  the shock wave. 

negative gradient i n  density toward the end wall. 
The unsteady re f lec t ion  process thus creates a 

"he existence of an entropy layer  i s  confirmed by Eq. (14) which 

displays a functional dependence on x alone. This r e su l t  ve r i f i e s  the 

formulation of the  problem f o r  region 5 wherein the compression process 

along a pa r t i c l e  path was assumed t o  be isentropic and differences i n  

entropy could exist only between adjacent pa r t i c l e  paths. 

Y 



The solution f o r  the temperature d is t r ibu t ion  i s  perhaps the most 

important and in te res t ing  r e s u l t  of t h i s  analysis. 

Eq. (13) shows t h a t  the  temperature perturbation j u s t  behind the ref lected 
shock f ront  i s  negative and becomes more negative with time, while 

the perturbation at  the end w a l l  i s  posi t ive and increases with t i m e .  

f ac t ,  there  i s  a growing region of gas near the  end w a l l ,  of width 

[(y - l)K/I]f, 
increases s teadi ly  with time. This r e su l t  i s  shown graphically i n  Fig. 3.  

I n  the strong-shock l i m i t ,  (y - 1 ) K / I  i s  about 0.4 f o r  a monatomic gas, 

and 0.3 f o r  a diatomic gas, which shows t h a t  an important f rac t ion  of the 

gas i n  region 5 actual ly  experiences a posi t ive temperature perturbation. 

An examination of 

I n  

wherein the temperature perturbation i s  posi t ive and 

This unexpected r e su l t  f o r  the temperature can be explained as 

follows. 

perturbation i n  region 2. 

required such a specification. 

f o r  steady, one-dimensional flow of an idea l  gas, however, i s  the require- 

ment t ha t  the flow i n  region 2 lose thermal energy i n  order f o r  the 

density t o  increase,  

extract  energy from the gas and cause a temperature decrease, i f  the 

density i s  t o  increase. This energy loss  i s  a l so  responsible f o r  the 

negative temperature perturbation immediately behind the ref lected shock 

wave, as shown i n  Fig. 3. Whatever the mechanism f o r  energy extraction 

from region 2, however, the  momentum of this gas ( i n  laboratory coordinates) 

i s  increased, and t h i s  increase i n  momentum manifests i t s e l f  as a pressure 

r i s e  i n  region 5. The net e f f ec t  i s  t h a t  compressive work i s  continually 

being done on the gas i n  region 5 ,  thus adding thermal energy along each 

pa r t i c l e  path. Furthermore, the rate of energy addition i s  the same 

along a l l  pa r t i c l e  paths since the pressure rises uniformly. 

of a par t icu lar  gas element at  any given t i m e  thus depends on the i n i t i a l  

tnermal energy of the  element upon entering region 5 and the length of 

time spent i n  region 5. 

Recall t h a t  no mention has been made of the source of the density 

The r e su l t s  obtained thus f a r  have not 

Implici t  i n  the conservation equations 

Thus some nonadiabatic process must be present t o  

The energy 

A very in te res t ing  observation can be made by comparing the r a t e  at  
which in t e rna l  energy i s  gained by a unit mass of gas i n  region 5 with 

the  r a t e  at which in t e rna l  energy i s  l o s t  by a u n i t  mass of gas i n  region 

2. Since an idea l  gas i s  being considered, Eq. (13) i s  a l so  an expression 

10 



f o r  the perturbation i n  the in t e rna l  energy, i.e., 

e f / e  = [ ( y  - l ) ~  - I(x/iz)]Lt. 5 5  

The rate of change of i n t e rna l  energy following a f l u i d  pa r t i c l e  is 
theref ore 

i s  s m a l l .  Note t h a t  t h i s  quantity has the since the f l u i d  velocity 

sane value f o r  a l l  of the  p a r t i c l e s  i n  region 5 ( i .e . ,  it i s  not a func- 

t i o n  of x or t).  

u5 

For the  assumed density dis t r ibut ion,  the  perturbation i n  in t e rna l  

energy i n  region 2 i s  

e y e 2  = - 

The r a t e  of change of 

region 2 i s  therefore 

given approximately by 

in t e rna l  energy following a f l u i d  p a r t i c l e  i n  

(see Appendix H)  

which i s  a constant f o r  a l l  of the  pa r t i c l e s  i n  region 2. 

the rates of energy change for the  f l u i d  p a r t i c l e s  i n  the two regions 

thus becomes 

The r a t i o  of 

Figure 4 presents a p lo t  of t h i s  r a t i o  f o r  a range of Mach numbers and 

f o r  two values of y. The r e s u l t s  shaw that f o r  strong shocks i n  a 
diatomic gas the  rate at which a uni t  mass of gas i n  region 5 gains 

in t e rna l  energy i s  more than four t i m e s  the r a t e  at which a uni t  mass of 

gas i n  region 2 loses  in t e rna l  energy; 
as great  i n  a monatomic gas. 

Some of the results obtained here 

i n  understanding shock-wave r e f l ec t ion  

the rate is  more than s i x  t i m e s  

for an idea l  gas are also of use 

i n  non-ideal gases. Although the 

11 



numerical r e su l t s  may d i f f e r ,  many of the important physical concepts 

are  retained. For example, one must conclude t h a t  radiat ive cooling 

behind an incident shock wave, a non-adiabatic e f f ec t  which would increase 

the density i n  region 2, should a l so  cause an entropy layer  s i m i l a r  t o  

t ha t  discussed above. I f  rad ia t ive  cooling occurs i n  region 2, one may 

thus expect a trend toward higher temperatures near the end w a l l  and lower 

temperatures near the ref lected shock wave. I n  a r e a l  case, of course, 

when energy i s  being l o s t  by means of radiat ion from region 2, region 5 
w i l l  a l so  be losing energy, and t h i s  f ac t  would have t o  be included i n  

any meaningful calculation. Nevertheless, it i s  quite c lear  t ha t  the 

e f f ec t  discussed here can be s ignif icant  (as exhibited by the magnitude 

of the r a t i o  i n  Eq. (17)) and should be considered i f  one i s  t o  in te rpre t  

correct ly  the r e su l t s  of an experiment involving, say, the measurement of 

radiat ive in tens i ty  from region 5. 
The r e su l t s  for an idea l  gas a re  a l so  useful as an aid i n  explaining 

the overal l  character of the reflected-shock flow f i e l d  when vibrat ional  

or chemical re laxat ion a re  important behind an incident shock wave. This 

i s  possible since, i n  general, the perturbing ef fec ts  of relaxation i n  

region 2 can be isolated from those e f f ec t s  owing t o  relaxation i n  region 

5. That is, one can reasonably assume tha t  the gas i n  the reflected- 

shock flow f i e l d  relaxes extremely f a s t  (because of the higher temperature) 

and simply passes through a se r i e s  of l oca l  equilibrium s t a t e s  as the flow 
f i e l d  i s  perturbed by the nonuniformities behind the incident shock wave. 

I n  t h i s  case, the boundary conditions along the reflected-shock t ra jec tory  

would correspond t o  a s t a t e  of immediate l o c a l  equi l ibrat ion f o r  the new 

gas which passes in to  region 5. One major difference between the idea l  gas 

studied here and relaxing flows, however, i s  tha t  thermal energy i s  not 

actual ly  l o s t  from gas which relaxes i n  region 2, but simply transferred 

from the t rans la t iona l  energy mode in to  in t e rna l  energy modes, or in to  

changing the chemical composition of the gas. A s  a resu l t ,  the  energy 

perturbation in- region 5, along the reflected-shock t r a j ec twy ,  i s  

s l igh t ly  posi t ive instead of negative, and the ref lected shock wave 

accelerates slightly: ra ther  than slows down. However, relaxation i n  

region 2 must s t i l l  cause the pressure i n  region 5 t o  increase with time, 

much the same as f o r  the ideal-gas case, since the e f f ec t  of increasing 



density i n  region 2 i s  always t o  increase the pressure i n  region 5. 
Furthermore, as a r e s u l t  of the pressure rise, work is  done on the  gas, 

thus causing a nonuniform increase i n  the energy content of a l l  the 

pa r t i c l e s  i n  region 5 and a perturbation of the flow variables throughout 

region 5 s imilar  t o  t h a t  found f o r  the idea l  gas. 
There i s  another difference between the idealized flow examined 

above and relaxing gas flows which should be mentioned. 

involving relaxation, only a l imited density change occurs i n  region 2 so 

t h a t  the resu l t ing  perturbations i n  region 5 do not continue t o  grow with 

time. Neglecting t ransport  processes, the ref lected shock must eventually 

move away from the end w a l l  at a steady speed, leaving behind a growing 

region of gas with a uniform equilibrium s t a t e  and a s ta t ionary entropy 

layer  of f i n i t e  thickness adjacent t o  the end w a l l .  

"unperturbed" flow conditions i n  the ref lected region should be considered 

t o  be the uniform equilibrium s t a t e ,  ra ther  than the state present at  the 

ins tan t  of re f lec t ion .  

d i r ec t ly  w i t h  the  length of the relaxat ion zone behind the incident shock 

wave, and i s  essent ia l ly  the relaxat ion length compressed by the density 

r a t i o  across the re f lec ted  shock wave. 

For cases 

For such cases, the 

The thickness of the f i n i t e  entropy layer  scales  

It i s  of i n t e re s t  t o  note t h a t  more detai led analyses of shock-wave 

re f lec t ion  i n  relaxing gases have recently been reported, and the r e su l t s  

of those s tudies  confirm the existence of f i n i t e  entropy layers  of the  

same type discussed here. The simple model employing an idea l  gas i s  
therefore useful i n  providing, with a minimum of mathematical e f fo r t ,  an 

understanding of the character of ref lected f l o w  f ie lds  when perturbed by 

relaxat ion o r  radiative-cooling phenomena behind incident shock waves. 
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APPENDIX A 

LINEARIZED EQUATIONS FOR INCIDENT-SHOCK FLOW 

The conservation equations of mass and momentum fo r  one-dimensional, 

inviscid flow across a constant-speed normal shock wave are, i n  shock- 

fixed coordinates, 

and 

(A-2 1 2 
P1 + P1f = P2 + P2U2 . 

The subscript 1 re fe r s  t o  the constant properties upstream of the incident 

shock wave while subscript 2 r e fe r s  t o  the properties downstream of the 

shock wave. 

Rearranging these equations, one can show tha t  the pressure downstream 

of the shock wave i s  given by 

A small perturbation i n  pressure owing t o  a small perturbation i n  density 

is, accordingly, 

where the prime symbol denotes a perturbation quantity and the unprimed 

variables r e fe r  t o  the unperturbed values of the properties at  the shock 

f ront .  Neglecting p1 i n  Eq. (A-3) (a  reasonable approximation for  

M~ 2 3; e.g., p2/p1 = 10.3 

the dimensionless var ia t ion 

f o r  M = 3 and y = 1.4), one can write 
S 

i n  pressure as 

- 1). (A-5 ) 

The thermal equation of state f o r  an idea l  gas i s  

p = pRt .  



The l inear ized form of t h i s  equation, val id  f o r  s m a l l  perturbations 

away from a reference condition, i s  

Assuming t h a t  the density perturbation i s  specified, w e  see t h a t  the 

temperature perturbation i s  given d i r ec t ly  from Eqs. (A-5) and (A-6),  
i . e . ,  

Since the speed of sound i s  defined by 

it follows t h a t  the dimensionless perturbation i n  t h i s  quantity, at  any 

posi t ion i n  region 2, i s  

16 



APPENDIX B 

BOUNDARY CONDITION ON DENSITY ALONG THE REFLEZTED-SHOCK TRAJECTOFX 

The shock-jump re l a t ion  f o r  the density behind a ref lected shock 

wave i s  given by 

where Mr i s  the reflected-shock Mach number defined by 

Mr = [Vs(l-P12> + Vrl/a2* 

Retaining the f i r s t -order  terms i n  the perturbed quant i t ies ,  one finds 

from the density- jump re l a t ion  tha t  

where 

G = (y-l)< + 2, 

and the caret  symbol has been used t o  denote the value of the quantity 

along the reflected-shock t ra jec tory .  

2’ a2’ Although var ia t ions i n  Mr are  caused by variations i n  p 

and Vr, the  var ia t ions i n  p and a are  re la ted by (see Appendix A, 2 2 
Eq. (A-8) )  

so t h a t  

17 



can be wr i t ten  simply as 

G;/M r = [M~/M, + 

The quantity M represents the dimensionless speed of the flow i n  

region 2 with respect t o  the incident shock wave and i s  defined by 
2 

S ibs t i tu t ing  t h i s  last r e su l t  i n t o  Eq. (B-2) yields  the density boundarjr 

condition 

where 

This boundary condition can be evaluated along the unperturbed shock 

t ra jec tory  (2 = V t )  by subst i tut ing r 

s = (vs + vr>t  

in to  the expression f o r  the incident-flow density variation, Eq. (1) i n  
the text ,  i .e . ,  

p^'/p = p(vs + v )t = L t .  2 2  r 

The f i n a l  r e su l t  i s  

which i s  Eq. (2)  i n  the t e x t .  
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APPENDIX C 

BOUNDARY CONDImON ON PRESSURE ALONG THE REFLECTED-SHOCK TRAJECTORY 

The shock-jump re l a t ion  f o r  the pressure behind a ref lected shock 

wave i s  given by 

Retaining f i r s t -o rde r  terms i n  the perturbed quant i t ies ,  one f inds 

where 

Recalling Eq. (B-3) from Appendix B, 

and Eq. (A-5)  from Appendix A, 

one can eas i ly  show t h a t  

L J 

If t h i s  last r e s u l t  is evaluated along the unperturbed ref lected-  

shock t ra jectory,  one obtains 

which i s  Eq. (3) i n  the t ex t .  



APPENDIX D 

BOUNDARY CONDITION ON PARTICLE VELOCITY ALONG THE 

REFLECTED-SHOCK TRAJECTORY 

The application of the r e l a t ion  f o r  the conservation of mass 

immediately across the perturbed ref lected shock wave yields  

where u 

i .e . ,  

i s  the pa r t i c l e  velocity i n  region 2 i n  laboratory coordinates, 
P 

Retaining only the f i r s t -o rde r  t e r m s ,  one f inds 

p ( U  + 12' + V + V i )  + P ' ( u  + Vr) = p5(Vr + V i  - G ) + f i 'Vr-  (D-3)  
2 P  P r 2 P  5 5 

However, since 

from the  conservation relat-Jn apg ?d across the unperturbed shock wave, 

Eq. (D-3) can be simplified t o  read 

"/vr = (1 - P25)(v;/vr) + (fi;/P5 - s;/P2) - $'/P P 52 v r 

u' P = + vsPl2(P;/P2) 

(D-4) 

From Eq. (D-2) it follows t h a t  

so t h a t  

u;/p52vr = (vS/pcjlvr 1 (P ; /P~)  

and Eq. (D-4) becomes 

20 



Substi tuting the known boundary condition for density, Eq. (B-4) of 
Appendix B, t h i s  last resu l t  becomes 

Finally,  evaluating t h i s  boundary condition along the unperturbed 

reflected-shock t ra jectory,  on obtains 

which i s  Eq. (4) i n  the text .  
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APPENDIX E 

WAVE-EQUATION SOLUTIONS I N  REGION 5 

The wave equations i n  pa r t i c l e  velocity and pressure i n  region 5 
are  

and 
2 2  2 a2p;/at2 - a5a p;/ax = 0 .  

The boundary conditions are  given by 

u (x = 0, t )  2 0, 5 

5 fi (t) = A L t  + BV;, 

and 

c;(t)/p5a5 = c Lt + D V ~ ,  

where, i n  the  notation used i n  the tex t ,  

and 

The general solutions of Eqs. (E-1) and (E-2) are 

= f ( x  + a5t) + g(x - a5t) u5 

22 
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and 

-pl/p a = f ( x  + a t )  - g(x - a5t). 
5 2 5  5 

(E-7)  

Applying the  boundary condition at  the end w a l l ,  one f inds  

so t h a t  Eqs .  (E-6) and (E-7) can be rewri t ten as 

= f ( x  + a t )  - f ( -x  + a t )  (E-8) u5 5 5 

and 

-pl/p a = f ( x  + a t )  + f ( -x  + a t ) .  
5 5 5  5 5 (E-9)  

Applying the boundary conditions along the unperturbed shock t ra jectory,  

Eqs. (E-4)  and (E-5) ,  one can wri te  

ALT + BV; = 

and 

CLT + DV; = 

Eliminating V i  

(DA-BC)Lt = 

which yields  the 

where 

f [ (vr  + a,)tI - ~ [ C - V ,  + a,)%] (E-10) 

-f[(vr + Q t I  - f [ ( - V r  + a,)tl. 

from these last  two equations, one f inds t h a t  

(B+D)f [ (V  + a ' ) t l  + (B-D)f[(-Vr + a5)t1, 

solution 

(E-11) 

r 5  

BC - DA 
Ba + DVr K =  

5 

(E-12) 

(E-13) 

The f a c t  t h a t  t h i s  solut ion i s  unique can be seen by expanding the 

function f i n  a Taylor series, 
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f ( S )  = f (0)  + f '(0)E + f"(O)E2/2 . . ., 
and then subst i tut ing the expression in to  Eq. (E-12). The zeroth-order 

derivative of Eq. (E-12) evaluated at  t = 0 yie lds  

f ( 0 )  = 0, 

while the f i r s t -o rde r  derivative establ ishes  the re la t ion  

so t h a t  

1 BC - DA 
5 

f ' ( 0 )  = - - 2 Ba + DVr 

The expressions f o r  the second- and a l l  higher-order derivatives y ie ld  

f"(0) = 0, P"(0) = 0, . . , 
so t h a t  the solution f o r  f ( g )  i s  given by Eq. (E-13) .  

The solution f o r  the p a r t i c l e  velocity now follows from Eq. (E-8), 
i .e . ,  

u5 = - 1 2 K L [ ( ~  + a5t) - (-x + a5t)l ,  

which simplifies t o  Eq. (9) i n  the tex t ,  

u5/vr = - m / v r  = - (Kx/2)Lt. (E-14) 

By s i m i l a r  subst i tut ion i n  Eq. (E-g), one can show that the pressure 

solution, Eq. (10) i n  the tex t ,  i s  given by 

The solution for the  perturbation i n  the reflected-shock velocity can 

be obtained from Eq. (E-lo), i.e., 
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so t h a t  

This last r e s u l t  i s  Eq. (11) i n  the t ex t .  

(E-16) 
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APPENDIX F 

DENSITY SOLUTION I N  REGION 5 

The solution f o r  the density can be obtained through the continuity 

equation and the known solution f o r  pa r t i c l e  velocity. 

form of the continuity equation i s  
The l inearized 

where 

au /ax = - KL 5 

(from Eq. (9) i n  the t e x t ) .  

f inds  

Integrating the continuity re la t ion,  one 

where g(x)  

condition f o r  density at  the shock wave (Eq. (7) i n  the t ex t ) ,  

i s  a function which can be determined from the boundary 

6' = ELt + FV; . 07-3) 5 

Substi tuting the known values f o r  E, F, and Vi, one can rewrite 

Eq. (F-2) as 

"/p5 = + KLt + g(Vrt) = (1 + 4H/G)Lt - ( ~ / Q ~ ~ G ) J L ~ ,  

which y ie lds  the solution 

g(x) = [l + 4H/G - K - 4J/Gp521Lx/Vr* 

The solution f o r  density i s  therefore 

P$/P5 = [K + I x/2]Lt, 

where I = (1 + 4H/G - 4J/G-52. - K). 
the  tex t .  

This r e su l t  i s  a l so  Eq. (,12) i n  
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APPENDIX G 

ENTROPY SOLUTION I N  REGION 5 

The entropy solut ion follows from the d i f f e r e n t i a l  form of the  

combined F i r s t  and Second Laws of Thermodynamics, 

TdS = de - (p/p2)dp. (G-1) 

Substi tuting for the  internal-energy term, 

de = [R/(y-l)]dT, 

one can rewrite Eq. (G-1) as 

dS = [R/(y-l)]dT/T - (p/PT)dP/P. 

I n  dimensionless form, and f o r  s m a l l  perturbations, t h i s  last r e su l t  

becomes 

Substi tuting the known solutions f o r  temperature and density, Eqs. (12) 

and (13) i n  the tex t ,  one can write f i n a l l y  

or, equivalently, 

S' /R = - [rIL/(y-l)Vr IX, (G-4) 

which i s  Eq. (14) i n  the t ex t .  
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APPENDIX H 

ENERGY RATE -OF -CHA.NGE RELATION 

!The var ia t ion of the temperature perturbation with distance behind 

the incident shock wave i s  given by (see Eq. (A-7) i n  Appendix A) 

For an idea l  gas t h i s  quantity i s  a l so  equal t o  e;/e2 where e i s  the 

specif ic  i n t e rna l  energy. 

a f l u i d  pa r t i c l e  i s  therefore 

2 
The r a t e  of change of in te rna l  energy following 

where 

I n  order t o  wri te  t h i s  last r e su l t  i n  terms of 

divide by (Vs + V,), i .e. ,  
L, one can multiply and 

However, one can readi ly  show tha t  

vr/vS = (~21 - 1)/(~5l - ~21) 

so t h a t  Eq. (H-3) can be rewrit ten simply as 

which i s  Eq. (16) i n  the tex t .  
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Figure 1. Space-time diagram for shock-wave ref lect ion 
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Figure 2. Dimensionless Coefficients I, J, and K 
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Figure 3. Temperature d i s t r ibu t ion  
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Figure 4. In te rna l  energy gain-to-loss r a t e  
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