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SUMMARY

It is known that a relationship exists between the Fourier Spectrum of a transient excitation

and the maximum residual response of an undamped mass-spring system to this excitation. This
relationship is derived in detail and unified to cover all common forms of excitation and response
of an undamped single~degree-of-freedom system. The method provides a simple design tool for
application to many types of transient response problems. For a step~type transient excitation,
the method specifies the overall transient response magnitude . For pulse-type transient excita-
tions, the maximum residual response, or residual shock spectrum, specified by the method, is
equal to the maximum response for a pulse whose duration T is less than about 1/2 the natural
period of the system.

The Fourier Spectra of a variety of common transient excitations is presented in graphical form
in the text. Analytical expressions for these spectra, expressed in a normalized form so that
they are numerically equal to the corresponding residual response spectra, are given in the
Appendix. In addition, the Appendix contains a summary of the expressions for the response
time history of an undamped system and the primary shock spectra, or envelope, of maximum
response during the transient excitation.
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1.0

INTRODUCTION

The response of an undamped single-degree-of-freedom system to a transient excitation
is a classical problem in dynamics which can be solved by a number of methods, includ-
ing the use of the Duhamel (convolution) integral, Laplace Transform, numerical inte~
gration, and graphical phase plane methods (References 1, 2 and 3). In all cases,
however, these methods lack a simple and direct means of establishing the peak response
to the transient excitation. It is this latter quantity which is ordinarily of concemn

for engineering purposes. One direct method is available, however, for defining the
peak residual response to a transient excitation (References 1 and 3). This residual
response occurs after the end of the transient excitation and can be determined solely
by a Fourier Spectrum of the excitation itself. This relationship between the Fourier
Spectrum of a transient excitation and its residual shock spectrum is explored in detail
in a unified form for most types of excitation and response of an undamped single-degree~-
of-freedom system.




2.0

BASIC THEORY

v(t)

e(t——+ ot} |

For any linear system, initially at rest, the response time history v(t) to any input
excitation €(t) can be defined by the Duhamel integral

f

v(t) = [ g(t-7) e(r) dv a -
0
where
7 = dummy time variable < t
g(t) = response of system to a unit impulse at time t, and

v(t), €(t) = generalized response and input variables to be defined.

A general equation of motion for the undomped single-degree-of-freedom system can
be expressed in the form (Reference 1):

=5 9(1) + (1) = e(1) @
0

where €(t) and V(1) represent generalized variables for the specific forms of excitation
and response which are listed in Table I and identified in Figure 1. The undamped
natural frequency of the system isw . The particular form for Equation 2 is chosen
for reasons to be made clear later on.

It is sufficient, for now, to emphasize that the generalized excitation variable &(t)
can have any of the forms listed in the left-hand column of Table 1. The corresponding
generalized response variable v(t) is listed in the middle column of Table I.

For example, if the undamped mass-spring system in Figure 1 has its base attached to a
rigid foundation and the mass m is driven by a transient vertical force P(t), the usual
form for the equation of motion of the mass would be

m k() + k x(t) = P(t)



TABLE 1

EXCITATION AND RESPONSE VARIABLES FOR A FIXED-BASE OR
MOVING-BASE UNDAMPED SINGLE-DEGREE-OF-FREEDOM SYSTEM

Excitation Response
System e(t) v(t)
Fixed . { P(t)/k x(t) = §(t) - Mass Displacement
Baie Force on Mass P(t) P(t) - Reaction Force on Base
Base Displacement u(t) x(t) - Mass Displacement
Base Velocity u(t) x(t) - Mass Velocity
u(t) x(t) - Mass Acceleration
Movin B . . . .
8 o:e 9 A(::sceelerafion - u(t)/ug §(t) - Relative Displacement of Spring
m U(t) P1(t) - Reaction Force on Base
3:ii -'L'i(i')/(..)o2 8(1) - Relative Velocity of Spring
P(t)

Mass ®—
s m ‘ x(f)

Spring 5(t) k
pose L =1 u(t)
P
u: =k/m

Figure 1. General Model for Response and Excitation of Undamped
Single Degree-of-Freedom System
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2.1

Dividing through by the spring constant k and setting m/k = 1 /uoz , this becomes

':;!T x(t) + x(t) =—P|¥l

0

This is the same as the generalized form given by Equation 2 and identified by the
first entry in Table I where the excitation e(t) is P(t)/k and the response v(t) is x(t).

The remaining entries in Table I are formed in a similar manner so that Equation 2
becomes a single general form for the equation of motion for all the forms of excita-

tion and response listed.

Unit Impulse Response

The unit impulse can be defined, in general form, by the integral

t

lim /‘ er)dr =1 (3)
t—0 J
0

where 1 is a dummy time variable of integration < t.

This represents an excitation whose duration is vanishingly small and whose integral
with time is unity. Since it corresponds fo an excitation with essentially zero dura~
tion, it may be treated as an initial condition to the solution of Equation 2 for free

vibration where ¢(t) is zero.

This general solution to Equation 2 for €(t) = 0 is
v(t) = Acosuyt +B sin ut (4)

The initial value of the response variable v(0) is
v(t—0=A | (5)

so that for a system starting at rest, A =0. The initial rate of change of the response
variable is

\':(t—->0)=uoB (6)



2.2

However, Equation 2 can also be used to define the initial rate of change, in the
limit, as t—0. Since the initial response magnitude is zero, then the initial rate of
change is obtained by setting v = 0 in Equation 2, integrating V = dV/dt with time,
and taking the limit as t—=0. The resulf is

t t
v(t—=0) = lim f%‘z «dr| = lim uoz /e('r) dr (7)
t—0 T t—0 0

The left-hand side, v (t — 0), is given by Equation 6 and the right side by uoz times
Equation 3 for the unit impulse excitation, so that

(8)

or B=u

Thus, the generalized unit impulse response for the form of the equation of motion in
Equation 2 is (see Appendix A)

g(t) = W, sin w,t (9)

This can be shown to have the units corresponding to (units of v)/(units of € s time).

General Response Equation

If Equation 9 is inserted into Equation 1, and the sine function expanded, the general
response equation for any input €(t) becomes

i
v(t) f“’o sin uo(f--r) e(t)dr
0

t

w, sinwgyt /e(-r) cos Wt dr
0 .

t

- W, cosuot/e('r) sinuo'r dr (10)
0




Note that v(t) is still a general response variable, not necessarily a displacement .
The generalized rate of change is obtained by differentiating Equation 10 with respect
to time t. This does not involve the integrals in Equation 10 since these are indepen-

dent of time t. Thus,

t
V() = uoz cos u t f &(v) cosw T dv
0

t
+ u: sin wpt /e('r) sin 0, dr (an
0

Residual Response and Fourier Spectrum

Equations 10 and 11 can now be used to define the response magnitude v(T) and its
rate of change V() at the end of a transient excitation of finite duration T. These
will then become initial conditions for the free vibration after cessation of the
transient. This is the period of residual vibration for which ‘an envelope of maximum
response as a function of u is desired. This will be shown to be directly related to

the Fourier Spectrum of the excitation only, without requiring any knowledge of the
forced response during the transient (Reference 3). The system itself is defined only

by zero damping and its undamped natural frequency w,-

Thus, by replacing t in Equations 10 and 11 with the pulse duration T, the initial
response magnitude and rate of change at the end of the transient input are determined.
Consider now the two integrals in each of these equations. The Fourier Spectrum F (jw)

of the excitation e(t) is
T
F(ju) = /e(t) eIt gy (12)
0

or, in trigonometric form,

T T

F(ju) = fe(f) coswt dt - j /e(f) sin wt dt (13)
0 0

= RIFGo)] + L F(j)]



where

T

RIF(jw)] = / €(t) cos ut dt = Real Part of Fourier Spectrum
o .
T
S [F(jw)] = - f €(t) sin wt dt = Imaginary Part of Fourier Spectrum
0

Comparing Equation 13 with the integrals in Equations 10 and 11, it is clear that these
are identical providing t becomes T, T becomes t, and w, becomes w. The first trans-
formation has already been established as a requirement to define conditions at the
end of the transient excitation. This allows T to become the actual time t during the
transient, or 1 =t < T. Finally, the natural frequency of the system w can take on
any value since a specific system has not yet been defined, only its mathematical
model, so thatw, can become any frequency uw, or vise versa.

Thus, Equations 10 and 11 can be modified to specify the response magnitude and its
rate of change at the end of the transient excitation by the form

Vo, T) = w, {,%?[ F(jwg)] sin o T+ LIF(jug)] cos uor} (14)

(I(uo,T) = w:{%[F(juo)] cos uoT-J[F(juo)] sin on> (15)

For this period of free vibration after the transient excitation, the residual response
v (1) =v(t > T) can now be defined by retuming to Equations 4, 5 and 6 to give

v (W, T)

vr(t) = v(wo, T) cos w,t + sin uof (16)

Wy

This is, of course, a pure sinusoidal motion with a frequency w, and has a magnitude

v ,M1?)2
Ve max - {[v(«»(,n]2 +[——;’;——] } (17)

Inserting Equations 14 and 15 into Equation 17, the cross-product terms in the square
cancel and, since sin?x +cos2 x =1, one obtains

= o { R [FGu)) +L” [F(juon}% (18)

v =
rmax

7



However, the square root term is simply the absolute value of the Fourier Spectrum
of the excitation so that Equation 17 becomes:
= . 19
Vemax -~ % IF(Juo)I (19)
Thus, a simple expression is obtained which relates the maximum amplitude of the

residual vibration in terms of the absolute value of the Fourier Spectra of the excita-
tion and the resonance frequency of the system.

Consider now the units of the right side of Equation 19. From Equation 12, the units
of F(jw) are (units of excitation variable €) x (time). Thus, the units of w lF(iu)' will
have the same units as the excitation. This is also obvious from Equations 2 and 19.
Clearly, if the transient excitation is always normalized by its maximum value € ax
then one can write Equation 19 in the dimensionless form,

v ) W, |F(juo)|

r max

€ €
max max

(20)

This is the key result which dictates the reason for choosing the particular form of
the equation of motion given by Equation 2. In other words, for any given type of

excitation €, a nondimensional plot can be made of the quantity w |F(j¢..\)|/emCIX

Even more generality is provided

which specifies the ratio of v, toe

max ax *
however by the fact that the right-hand side of Equation 20 will always reduce to a
function of only a single nondimensional quantity, wyT, for any given form of transient
excitation where T is the duration (or some characteristic time proportional to duration)
of the transient excitation. '

Equation 20 can now be combined with Table I to summarize the maximum residual
response for specific response variables, as shown in Table II. The first column is the
specific form of the general excitation variable €(t). It can be given by the various
forms ranging from input force P(t) to the mass to various derivatives of ground motion.

The second column represents the Fourier Spectrum of this excitation, nondimensionalized,
according to the right side of Equation 20, by the maximum value of the transient exci-
tation. Note that this quantity is totally independent of the responding system.

The third column, equal to the second column, term by term, is the nondimensional
form of the maximum residual response, as specified by Equation 20. This parameter
is, of course, determined for a specific frequency w equal to the natural frequency w,
of the system.



TABLE I

MAXIMUM RESIDUAL SHOCK RESPONSE OF UNDAMPED
SINGLE DEGREE-OF-FREEDOM SYSTEM IN FIGURE 1 RELATED TO
NORMALIZED FOURIER SPECTRUM OF TRANSIENT EXCITATION

Generalized Excitation Normalized Fourier Normalized Maximum
e(t) Spectra Residual Response
w [F(ju) /emax (1) vrmax/emax
m .
S Force P(t)/k w [FGu) ]/ Xs 2 erax / X (2)
- on
(1] .
X Mass P(t) w |FGw) ]/ Pmax PT mox / Pmox
Base Displacement u(t) w |FGu)|/ Umax Xr max / Umax
o Base Velocity u(t) w [F(jw)|/ Umax Xr max / Umax
g
22 6(t) “ |FGa)|/ Umc:x Xr mclx/ 'Umux
N Base - .
> -3 2 . 2
§ Acceleration G(t)/ Y | ¢ FGu)]/ Um¢:|x “o 8r max/ umc:lx
mi(t) w |[FGuw)]/ Umax PT max /m Umax (3)
" 2 . )
Base Jerk -Ui(t)/w o w {F(ju)]|/ Umax wy Sr max / Umux
n F(ju) = Fourier Spectrum of €(t)
(2) Xs = Pmax/k' Static Displacement to Peak Force.
(3) ' = Maximum Dynamic Reaction Force on Bose for Maximum Ground

T max
Acceleration U
max




3.0

3.1

APPLICATION TO PREDICTION OF RESIDUAL SHOCK SPECTRA FOR
TRANSIENT EXCITATION

The preceeding results may now be used to define the maximum response amplitude

of an undamped single-degree-of-freedom system following the end of a transient
excitation. The envelope of this response, plotted versus the natural frequency of the
system, is the Residual Response Spectra.

Pulse-Type Transient Excitation

For o pulse-type excitation, the peak response generally occurs after the end of

the excitation (i.e., residual response period) whenever the characteristic dura=-

tion (T) of the shock is less than 1/2 the natural period (2n/uw_) of the single degree-
of-freedom system. This condition applies in a large number of practical cases of
interest in shock design.

The value of the residual response spectra is given, in normalized form, by Equa-
tion 20. The right hand side of Equation 20 has been evaluated for a number of
common types of pulse excitation and the results are plotted in Figure 2. The
analytical expressions used to derive these plots are summarized in Appendix A.

Example - As an example, consider a 10 millisecond half-sine pulse excitation
with a peak amplitude of 100 g's applied to the base of an undamped
system with a natural frequency of 46 Hz. The following parameters
can be defined:

e(t) = U(t), the generalized excitation
€max - Umax = 100g, the peak excitation
T = 0.01 sec.

W, = 2n(46) = 290 radius/sec.

W, T = 2.9

This case meets the criteria that T < (21t/w0) so that the peak response of the

system will occur after the end of the half-sine pulse.

Referring to Figure 2, for wT = QOT = 2.9, the normalized Fourier spectrum, w IF(, u)|

for a unit excitation is 1.50. Thus, according to Table II, the maximum residual
acceleration response is defined as follows:

uIF(ju) X .
- °|= X = 1.5
max Umcx
or X x=1.5-0__ =1.5-100=150 gs.

10
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3.2

Other response variables, such as the maximum relative displacement Sr max O
reaction force PT can be defined in a similar manner by using the relationships
max :

in Table II between the desired excitation and response variables.

Step-Type Excitation

If the transient excitation consists of a step-type input, the maximum transient
response v occurs after the excitation has reached its maximum value € nax and is

given by (Reference 1)

v =y + € (21)

max  rmax  max
as shown in Figure 3.

Thus, for this type of excitation, the maximum residual relative response, added to the

maximum excitation defines the maximum total response y . In this case, com-
max

bining Equations 20 and 21, the maximum total response, in nondimensionalized form,
is simply

v 9 [FGuy)|
max = +

€ €
max max

1 (22)

The first term in Equation 22 has been evaluated for several common types of

step~type excitation (see Appendix A) and the results are shown in Figure 4.

,/ \\ Vr max/ \
/ { \
€ (f) 7 |\ I Il X
€ <f) { \ / \\ v
or : \\ // \ max
v(t) | €
| max
|
|

]
T

Figure 3. General Form of Excitation and Response to a Step-Type Transient
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Example - For illustration, consider the case of a ramp-step force P(f) applied to
the mass of a single degree-of-freedom system. The following parameters
are assumed.

e(t) = P(t)/k, generalized excitation

Pmclx = 10* lbs, maximum value of the step force

k = 2-10° lb/in., stiffness of the system

Xs = Pmax/k =0.05 in., static displacement to the
maximum force

fo = ©y/2m =46 Hz, natural frequency

T = 10 milliseconds, rise time

w, T = (2n) (4) (.01) =2.9

From Figure 4, for the ramp step excitation, the maximum relative residual response
for T = 2.9 is

(7]

F(juo)|
= 0.67

€
max max

v
rmax _
€

The maximum generalized excitation € is simply X =P /k. According to
max s max

Equation 21, the maximum total generalized response is

\Y =v + €
max r max max

Therefore, for this case, when v =X , V =X and € =X,
max max’ rmax f max max s

the maximum total displacement is

X

max

it

X
s

X
[__.fm“ + 1} X, = [0.67 + 1] (0.05) = 0.083 in.

Note that the relative displacement response, after the end of the ramp
excitation, is purely sinusoidal. The velocity and acceleration response X(t)
and x(t) can be determined exactly by simply differentiating this relative dis-
placement response xr(t) . Thus, the following additional maximum response

parameters can be defined.

15 o o



3.3

Maximum Velocity of Mass

_ dxr(f)
xm<:1x - dt fmax = Wt xrmax
X
or X = Tmax X
max 0 Xs s
T
X =2 . 46[0.67) (0.05) = 9.7in./sec |

Maximum Acceleration of Mass

B d?x (1) ,
Xmox T dt? |max -~ % xr max
X X X
or max _ 2 rmax| _s
g 0 Xs g

(2n - 46)? (0.67) (0.05)/386 = 7.25g's

N-Wave and Decaying Sine Excitation

Two special forms of transient excitation are treated separately in this section
because of their particular application for analyzing shock response to sonic
booms, and response of equipment mounted on structure which is itself subjected
to a transient pulse load.

The N-wave characterizes the ideal time hisotry of the free-field overpressure due
to a sonic boom. A decaying sine is a useful approximation for the time history of
the response of a building subjected to an impulse load such as that-induced by an
explosive blast. The normalized Fourier Spectra, as defined by Equation 20, are
shown in Figures 5a and 6 for these two types of shock excitation.

16
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Figure 5a. Normalized Fourier Spectrum (Residual Shock Spectrum) and Primary
Shock Spectrum for N-Wave of Unit Peak Amplitude
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Response for N-Wave

Note that the N-wave has a zero net impulse and the normalized Fourier Spectra

is proportional to WT)2 for small values of wT. This low-frequency approximation
for the normalized Fourier Spectra is characteristic of all double shocks with a net
impulse of zero. In contrast, the spectra shown earlier in Figure 2 for single pulse-
type shocks, vary as wT for low values of uT. See Appendix A for a more complete
analysis of this.

For comparison with the residual shock spectrum for the N-wave, the primary shock
spectra for the N-wave is also shown in Figure 5a. This defines the envelope of the
maximum or minimum response peaks during the forced response period (i .e.,

0 <t <2T). Both a positive (v;cx) and negative (v, . ) primary shock spectra must

be defined for this type of pulse. For simplicity, only the upper envelope of these
two combined primary shock spectra are shown in Figure 5a. The analytical expres-
sions which define all of these shock spectra for the N-wave, as well as the actual
time history of response for an undamped system are summarized in Appendix A.

Example

For application of these generalized response spectra to a particular case, the
relationships between the generalized and specific excitation response variables

in Table II, page 9, may be used. For example, if the peak overpressure of a sonic
boom is Proax ™ Ib/in.2 and the stiffness of the responding system is k(lb/in.2)/in.,

the corresponding peak excitation is

e =P /k=X, in.

max max S

where X_ = static displacement to the peak load, Pmux’ and the corresponding

value of the peak response, v___, is the peak displacement of the mass X . The
max max

residual shock spectra, vrmox/emcx = erax/xs is given by the normalized Fourier

Spectra © |F(ju)| in Figure 5a for € ox - unity. The forced response peaks,
+ - . -
Xmax/xs or xmin/xs are found from the plot of the corresponding primary shock

+ - . .
€ v, /e nF 5a. Th hock tra are replotted
spectra Vmax/ max mm/ max 11 Figure These s spectra are rep
in Figure 5b in a more convenient form for the particular variables just defined. In
this case, frequency w is specified on the abscissa as f; = u0/21r; where f) = natural

frequency of the undamped system in Hz.

20



Response for Decaying Sine

The decaying sine shock has no finite duration so that a discrete residual shock
spectrum does not exist. However, the maximum response of an undamped system
to this type of excitation tends to occur near the end of the transient for systems
with a natural frequency w, equal to or less than about 1.5 times the frequency wgy

of the damped oscillation. For this condition, the normalized Fourier Spectrum,
plotted in Figure 6, is a good approximation for the overall shock response spectra
of an undamped system. For the case where wy > 1.5 w4 the peak response occurs

near the beginning of the damped oscillation, and the normalized Fourier Spectrum
is no longer applicable for estimating the shock spectra. Approximate values for
this range of wy/w; are given in Appendix A.

It is clear, from Figure 6, that this normalized Fourier Spectra has a maximum value
at a frequency w equal to the frequency w, which is the limiting value for the fre-
quency wy of the damped sine pulse when the decay constant approaches zero. That

is,
w [F(o)]—~ maximum for w = W, = ey ‘/l - 82
where '
e
Fjw) = / [e-Su,f sin udt] e-"m dt
-

This normalized Fourier Spectrum is identical to one form of the sinusoidal frequency
response function for a damped single-degree-of-freedom system. In this case, how-
ever, it approximates the peak response of an undamped system to a damped sine
wave for wy/w < 1.5. The analytical expressions which define this normalized

Fourier Spectra as well as the response time history for any value of “’o/“’d are

are summarized in Appendix A.
Example

Assume a ground shock excites a single mode of a structure so that the building
response can be described approximately by

o) = 0 e sin (o, Vi-871)
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where

U = peak velocity of the envelope of the decaying sine extrapolated
max
back tot =0
S = decay constant for decaying sine response
w, = undamped natural frequency of building mode
g = damped natural frequency of building.

According to Table II, page 9, if the excitation €(t) to an equipment item in the
building is the base velocity U(t), the peak "residual" response velocity X is
given by Fmax

r max

¥omex = Uns [0 FG)]

The bracketed term is the normalized Fourier Spectrum plotted in Figure 6, for unit
excitation, and is evaluated at the natural frequency w, of the system.

To illustrate a specific case, assume the following parameters.

Umax = 20 in./sec
u|/21r = 3 Hz
5 = 0.1

w, /2n = 2.5 Hz, natural frequency of equipment to be analyzed.

The following response parameters can now be determined.

[A]
L =22 - g g33

Lo
TR

From Figure 6,

w |FGuw)| = 2.4

22



Peak Velocity Response, )'(maxz' (2.4) (20) = 48 in./sec

XX
. max _ max _ (2n)(2.5) (48) _ .
Peak Acceleration Response, — " 3 388 1.95¢g's
X
Peak Displacement (Approx .), X o™ ;nax = (215)4(82) 5 = 1.53 in.
0 .

It should be emphasized that these calculated response peaks are close approximations

to the true values since uo/ud =2.5/3 \/'I--(.l)i =~ 0.83 < 1.5. In this case,

the peak vibration response occurs after the damped sine excitation has decayed to a
low value so that the response is very nearly one of free sinusoidal vibration.

There is one important limitation of the normalized Fourier Transform for predicting
response of a single-degree-of-freedom system to a damped sine excitation. Damping
of the responding system is very influential in limiting the peak response for values
of w,/w from 2/3 to 3/2. In this range, the natural frequency of the responding

system is close to the frequency of the damped sine excitation. The resonant response
build-up is therefore very sensitive to damping in the responding system. This is not
true for the other types of shocks considered earlier. For these cases, the peak
response of a damped system to the shock excitation is only slightly less than the
undamped response for the usual amount of damping encountered in structure (i.e.,
§<0.1).
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APPENDIX A

NON-DIMENSIONAL FOURIER AND SHOCK RESPONSE SPECTRA
FOR SEVERAL TYPES OF TRANSIENT EXCITATIONS

Fourier Spectra

The Fourier transform at a function €(t) is

+ oo
FGuw) = / e 9" di (A
-
The absolute value of F(jw) can be expressed in non-dimensional form by
o [Fo) (A2)

€
max

where € ox is the maximum value of €(t).

This non-dimensional normalized form is listed in Column 3. of Table III for several types of
transient excitation identified in the first two columns.

For step type pulses which have a finite value at t =0, it is necessary to modify Equation
Al by adding a decay term e~ 1o the integral and take the limit as @ —>0 so that
Equation A1 becomes

+ o

FGuw) = lim f et) o @O gy (A3)

This insures that the integration can be performed since the function ¢(t) e approaches
zero for t—sco. The normalized Fourier Spectra given by Equation A2 have been plotted

for a variety of pulse and step transients in Figures 2, 4, 5 and 6.

Transient Response

The response time history v(t) to these transient excitations can be determined by well known
methods such as the Duhame! integral solution given by Equation 10 in the text. Known solu-

tions for these response time histories were obtained from Reference 1 or derived independently
where necessary. The resulting solutions are listed in Column 4 of Table III.
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TABLE III

SHOCK EXCITATION, FOURIER SPECTRA, RESPONSE TIME HISTORIES AND
SHOCK SPECTRA FOR UNDAMPED SINGLE-DEGREE-OF-FREEDOM SYSTEMS

92

Column 1 Column 2 Column 3 Column 4 Column 5
Shock Excitotion(!) Normalized Fourier Spectrum .
(Residual Shock Spectrum or Primary Shock Spectrum
Time History 1) v - After Excitation) Generalized Response Time History v(t) v {During Excitation)
rmax . max
Unit Impulse t
T lim f e(r)d v =) W lF(ju)l =1-u, wWty=1- 9y sin uot
t—0
0
it Pyl
Unit Pulse v(i)=l-cosuot, ,OST
1.0 1.0, t<7 |2 sin ©1/2)] ouw . 2, wT>w
v (1) = 2sin\—5~] sinw, ('-3 )
5 ! 0. t>T r 2 =
Half-Sine sin (x4/T) = (v/yT) sin (u,t) sin [Z‘n f (l +£)]
Pulse sinwt/T, <7 wt) = ,t<T X wT>e
- (nfo,D? = 1 - IR R
207 o n=1,2,3
1. _L"_ﬁ_z_ cos (1/2)
1~ @T/v) (2 uoT/u) cos (uoT/2) sin ay (t-T/2)
0 T 0, t>T v (= 2 2T /2 , wgT=%
1- (uoT/n)
1-Cosine
Pulse I 1 (ﬂ/ﬂonz cos ("’o') -cos (nt/T) {No Closed Fosm Solution)
3 1 = cos (nt/T)1, +<27 vy = 7 1+ " , <27 Moaximum occurs when
- 1-(n/,T) . - .
1. sinel o sin (g4/T) = (x/ugT) sinwg?
1 - wl/m) sin (1) sin uo(t- n Ymox l 1.73 l 1.35 ‘ 1.0
¢ o, t>27 v = ————— t>27
‘ 1= 0,1/ sol/2n |05 |10 [ 215
Exponentiol Pulse o
-t
1. (1 /D) sinu t - cosut+e
T iso ) S— vt = 0 zo -2, wI>n
I Y en 14 (1/ogD
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Column 1

Column 2

TABLE III (Continued)

Column 3

Column 4

Column 5

Shock Excitcﬁon(l)

Normmalized Fourier Spectrum
(Residual Shock Spectrum or

@ Primary Shock Spectrum
Time History e(t) V. max © After Excitation) Generalized Response Time Hisfory v(t) Y max {During Excitation)
Triangulor ' sin (wt) tan™" wT
Pulse V-t/T, t<T 3 vif) =l-=-cosu t+ , t<T vt =421 - ———
- 2 sin uoT sin uoT/2 2 T o UOT - max ol
1.0 1- wT + w 1/2 ) .
(] o 2 sin (uoT/2) coswy (t-T/2)
I 0, t>T vr(f) = “’oT - coswyt, t>T v’;in =-2xn/,T, n=1,2,3
Triangular .
Pulse sin uo'
/7, t<T vty =4/T- o7 ¢ t<T No peak occurs for t < T
o >
1.0 {Same os above) .
2 sin (uoT/Z) cos uo(t— 1/2)
, 0, t>T v’(t) =cos uo(t- n- o7 27 Moximum amplitude is
o T 0 V- (sinwgT) /T att=T
Ste:-'Romp 1, 0<t<T v(t) =1-cosut , , 0<t<T Viax - 2, ul>mn
- Pulse . -
. 2 1 sinw (t-T)
2- 41, T2t [(sm!;a/;/m NPTl °°‘(3_2U'T)”]§ V() =2 - 3 - cos gt + ——— , T<r<2r
T : 0
1.0l w w
' 2 sin (0,7/2) cos w(t-3T7/2)
o T 0, > v = — - cosagt, +> 2T
[}
Unit Step
l'(i[: 1, t>0 1 1-cosuyt 2
0 t
Romp .
Step sin wot
t/7 0<t<T v(t) =t/T- t<T .
’ sinwT/2 | vl 7 - . sinwgT/2
1. *
ul/2 sin (4,T/2) woT/2
t = -
0T 1, t>T v'_(?) 1+ .7 coswg(t-T/2), t>7T
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Column 1

Column 2

TABLE 11l (Continued)

Column 3

Column 4

Column 5

Shock Exci'c'ion(')

Normalized Fourier Spectrum
(Residual Shock Spectrum or

Primary Shock Spectrum

Time History e(t) v - After Excifuﬁon)(z) Generalized Response Time History v(t) v {During Excitation)
r max max 9
1-Cosine 2
1 ) {r/wg) ® cos (wgt) - cos {nt/T)
Step Fl-cosnt/T], +<T vin =z [1+ - , 1<
1= (n/sgD cos uyT/2
r-o[ : _coal/2 N R
\ T/52-1 cos (wyT/2) cos uy(t- 7/2) (uoT/l)z- 1
) T t 1, t>T vr(r)=l+ B t>T
(Uor/l)z -1
Exponential
Step /T 1 (c.:oT)z e-'/T + (o) sin wyt +-cos wgt 1
. 1-¢1, 150 | —d v =1- b, W T>
P/ h +(u-|-)5 (QoT)z +1 ‘[I+("°n2' ' %o
o T
N-Wave tan™" w,T
1-4/T, t<27 i) =13+ VTH(1/ogD)? sin (agt- tan~"agT), t<2T i =42 [; ‘_..,TL]
[}
1.0 sinol _
27 2 i cosuT sin wyT
0 T o0, t>21 vr(')=2 —:oT— - coswyT| cosugt-T), t>27 v:"in=—2nn/uo'l', n=1,2,3,...
Domped Syt !
Sine 8wt g fog" (0g /o) - |H)| v(t) = |H(u°)| [e o1t i {wgt+8) -;o—ﬁn (uot+a,)] —= 1.0, w, <ug
2
~1.7, v =%
where where where 1.7, @ 3 Y
1O = w1 w2 P L wy=uw
W 2 - - ! ! 2 26 ' 1%
0 " oug=e V18 K@ = [(1- @ /o) +(280, /o 17 8, =tan"' [28(;; Vi-¢ - u—o) (1-28%
2n/uy

8 =ton™' [2 8w, fug 1/11- (/) ]

wgfoy, wyDuy
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Column 1 Column 2

TABLE III (Continued)

Column 3

Column 4 Column 5
Shock Excitationt!) Nor!nalized Fourier Spectrum
o (Residual Shock Spectrum or Primary Shock Spectrum
Time History «n Ve mox After Exci'a'ion)(z) Generalized Response Time History v(f) Vax (During Excitation)
sinuyt - (0 /o) sinagt sin [ 2nw/(1 + 4y gg) |
Finite sinagt, t<NT wt) = , P<NT v ey S
Sine - ( 1- (“'/%)2 mw; Wy /ig) = 1
. cos (Nx w/20,) N, odd
Train 201/ 1 2 o Nea 1k n<> (1 +ug/fay)
or _ 0 -
1.0 0, +>NT (u|/u)’ -1 vr(') = o )2-' [2-2:0: Nucos o ] cos [ug(t=- NT) +8;] Forw;/w =1
W_, sin (Nvw/2uw,) J N, even /% nw
01 l!lT . cos Nx = cos Nwug /oy Vmax ©” 7 <@ ™, n<N
/e, 8 = ton sin N wy /oy
Blast Pulse . (u.,n’ Wy (u".nz -, .
wt) = 7 1° T ) teo {wot - 8,) @D, wf <1
1.0 " @0 1+ (gD (@D’ +1
BV fi=4/1 1+ @i Vmax ™
+
° 1 ' 8,=2tan"! u,T 2, wI>»)

(1) In all cases, the excitation and response is zero for t < 0

(2) For Residual Shock Spectrum w is set equal to w, .



For most of the types of transient excitation, two expressions are required to define the maxi-
mum response - one for the response during the excitation and one for the residual response
period.

Transient Response to an Ideal Impulse

An impulse excitation is defined by the limiting value of the time integral of the excitation
e(t) as

t
lim /e(‘r)d-r=l (A4)
0

t—0

where 1 = dummy time variable of integration, and (1) = generalized excitation defined in
Table I, page 3.

For a unit impulse, I = 1, which is the first case treated in Table Ill. The generalized response
v(t) to impulse excitation is given by

v(f) = Ig() (A5)

where g(t) = w; sin @t the generalized response to a unit impulse when €(t) has the form

defined in Table I, page 3.
Thus, the amplitude of the response to an impulse is equal to the shock spectra and is given by

=luw (A6)

\Y
r max 0

As discussed in Section 2.1, page 4, the magnitude of the impulse I times 002 is equal to the

initial rate of change v (t = 0) of the generalized response variable v(t). Examples of the
specific value of this "initial condition" and the resulting expressions for the response time
history are given in Table IV for several common types of impulse excitation.

Transient Response to Finite Single and Double Pulse

When the natural period (211/(.)0) of a single-degree-of-freedom system is much greater than

the duration T of a single shock pulse, the transient response to this pulse is classified as an
impulse response. In this case, w,T < 1and the expressions derived in the preceding para-

graph for response to an ideal impulse define the actual response to a single, finite duration
pulse to a close approximation.
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An example of this concept is illustrated in the next to last row in Table IV for the general
case of response to a single rectangular pulse with a maximum amplitude € ax and duration T.
The impulse for this pulse is

so that, according to Equation A5, the generalized response v (t) is

v(t) = I u,sin w,t = € ax uoT sin w t

and the normalized shock spectrum is

\Y

e = 0,7 (A7)

max

€

Thus, as discussed in Section 3.3, the normalized Fourier Spectrum for all single positive
pulses, regardless of their shape, varies directly as w0, T for w,T < 1. For any shape other than

a rectangular one, the area under the time history of the excitation e(t) defines the impulse I.

If the maximum value of e(t) during the pulse is € ax’ the normalized shock spectrum is given
by

v
max _ [ I/T] agT (A8)

€ €
max max

where 1/T = the average value of €(f) over the pulse duration T.

For a symmetrical double pulse of very short duration relative to the natural period of a
responding system, a slightly different result is obtained. Consider the case, illustrated in the
last row of Table IV, for a double rectangular pulse of duration 2T with equal positive and
negative peak amplitudes +emax and - € ax” Using the Duhamel integral method, the

generalized response to this pulse can be expressed as (see Equations 1 and 9)

t

v(t) = uofsin uo (t-7) e(r) dr
0
t
= 0, sin uot/cos W, e(t) dv
0

t
- w, cos @t /sm 0, e(7) dv
0
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TABLE IV

SPECIFIC FORMS FOR IMPULSE EXCITATION AND RESPONSE
OF UNDAMPED SYSTEM ILLUSTRATED IN FIGURE 1

Type of Impulse

Magnitude

Initial Rate of

Impulse Response

Excitati £ Impul hange of R Mass Mass Spring Rel . Spring
xetiation o imputse Change esponse Mass Displ . Velocity Accel. Displ . Velocity
t—~0
- e(t) = f e dr | W(t—=0) =wll x(t) (1) x(1) (1) &1)
0
. . = ———q 5
lP m X, Xo . Initial | Xo = . . Xy .
Force on Mass P()/k T T Xo» Mass :G— sin wgt, Xg cos wot = Xy0psinwgt | = sinugt X, cos wgt
(Fixed Base) v, Velocity e 1 - 0 -_—
{Momentum Step) /k
Base Initial —_————
Base Velocity o Uy, Displacement u: U, Accel. of U [1-cosat] |1 1 Ug agsin wgt | i Uy ud cos ugt Ugcos wt () = Uyug sin ugt
Step e I
. Base . Initial . sinot11 . | mmm——= 00 sin w,t .
Base Accel. a1 Uy, Velocity wl U, » Jerk of Glt-— ] Uy [1-cos ugt] on o @ sin uofl — U, cos gt
~ Step Mass ] ] ————
Rectangular I=e T Wt—=0=¢ 2T lv(_ti-:—e_—u_o‘l'—;r:;o_ﬂ
Pulse with ~ € max max max"0 T mex
Finite Duration (7 w,T <1 V(t) = e wgt Tcos wyt weT <1
T—0 _ t —ax
T U(t) > ¢ uosT sinwgt
Rectangular . t=ec 1 v(t—-0) =0 h(T; € (uoT) cos uof'
Double Pulse e(l* max L= !
with Finite F=-¢ T Initial Response () = - emx u: T2 sinogt T < 1
Duration mox =0 = e (N
2T—-0 - 1=1r+1 =0 v € max Y0 W(H =-e  of T2 cosuyt
T < 1
[: :::_-j Identifies response variable related to input excitation by Equation AS.

Identifies excitation or response parameter which will undergo an instantaneous step change at t = 0 due to the impulse excitation.




In this case, on <<1 so that, for a first approximation,

cos W, T —~ 1

sin (a)o‘l' - UOT

Since the excitation is zero for t > 2T for this symmetrical pulse, the response for all values of
t > 2T is given by
2T 27
v(f) = W, sin woff e(v) dr - (.)02 cos w, f T+ e(t)dt (A9)
0 0

The first integral is zero for the symmetrical double pulse since its net impulse is zero. For
the double rectangular pulse, the second integral is

2T T 2T
/1‘ e(t) dv =/-r "€ ax «dr +f7(-emcx) dv
0 0 T
_ I (_“_Tf - i)
max | 2 2 2
= -€ T2
max

Thus, to a close approximation for uoT <<1, the response to the double rectangular pulse is

- 2
v(t) = € ax (uoT) cos w, t (A10)

and the corresponding normalized shock spectrum is

\Y .
max _ 2
. (uoT) (A1)

max

For any double pulse shape with zero net impulse, and positive phase duration T, when
w,T < 1, the normalized shock spectra is closely approximated by
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T,/ T

:max - - o, / () [:(1) ] e (%) | (A12)

max max
0

where T, = total duration of double pulse.
The integral will normally be negative giving an overall positive value for the shock spectrum.

Shock Response Spectra

As discussed in the main body of the text, the Residual Response Spectra, or envelope, as a
function of w, , of the maximum response amplitude after the transient excitation ends, is

defined by the normalized Fourier Spectra. This has been given in Column 3 of Table III.

The envelope of maximum response amplitude during the transient excitation is called the
Primary Response Spectra. Available solutions for the Primary Response Spectra have been
obtained from Reference 1 or derived in the usual way by differentiating the response time

“history and solving for the time and amplitude when the rate of change of response is zero.

These solutions are listed in the last column of Table III for the pulse-type excitations. For
the ramp-type excitations, the Shock Response Spectra listed correspond to the total response
spectra after the end of the ramp and are numerically equal to one plus the normalized
Fourier Spectra listed in Column 3.

Application of Superposition Principle

The derivation of the response time history to o transient excitation is generally carried out
most efficiently by applying the superposition principle. With this method, known solutions
for the response to simple transient excitations can be utilized by defining a discrete shock as
the summation of two or more elements for which the response time histories are known. This
method was used for several of the entries in Table III.

As an example of this method, the residual response to a unit pulse of duration T can be defined
as the sum of the response to a unit step starting at the t =0 minus the response to a unit step
starting at time t = T. The response of an undamped system to a unit step is

v(it) = 1 -cos w,t

Thus, the residual response of an undamped system to a unit rectangular pulse is written down
directly as :
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v(t-T)

i

v() V(f)unir step unit step

= 'l-coswot- []-cosuo(f-'l')]
= cos uo(f-T)-cos w,t

= 2sin uoT/Z " sin @ (t - T/2)

This simple process of summation of known response solutions is generally much easier than the
alternate method of defining the amplitude and rate of change of the response at the end of one
forcing period to define initial conditions for the next period.
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