NASA CR 100888

N

Services Provided in Support of the Planetary Quarantine Requirements of the National Aeronautics and Space Administration under Contract R-137

> Report No. 25 January - March 1969 COPY

Applied Microbiology and Planetary Quarantine Section Phoenix Laboratories Ecological Investigations Program National Communicable Disease Center Public Health Service U.S. Department of Health, Education, and Welfare Phoenix, Arizona

Contributors:

Biophysics Unit	Experimental Microb	piology Unit Spacecraft Bioassay Unit
N. Petersen	W. Bond	J. Puleo
J. Marshall	R. Kieso	G. Oxborrow
Report submitted b	s: Jones	Report reviewed and forwarded by:
Martin S. Favero,	Ph.D., Chief	James E. Maynard, M.D., Chief
Applied Microbiolo	gy and	EIP Phoenix Laboratories

Planetary Quarantine Section

In the past, studies on dry heat resistance of bacterial spores have been 1. conducted in a forced air oven (Precision Scientific model no. 625). Stainless steel strips $(1/2" \times 1/2")$ and unlaquered #1 paper clips were cleaned and sterilized separately, assembled aseptically, and inoculated with spore suspensions suspended in either water or 95% ethanol. Three strips were suspended from wire hangers in the oven for each individual heating interval. After the door was closed, the comeup time to 125 C for the strip-paper clip units was 2.5 minutes. This oven has been modified to allow insertion and removal of samples without opening the door. Six 1" x 5" ports were installed in the oven top. Hangers were constructed of bronze rod, fiberglass sheeting and #30 aluminum aligator clips, each capable of holding a maximum of six quintuplicate samples. Under this system the comeup time of a stainless steel strip to 125 C was 1.5 minutes in any portion of the oven as measured by thermocouples. The D₁₂₅₀ values of the standard B. subtilis var. niger spore crops as determined in the modified oven was identical to the value obtained with the previous procedure (i.e., 15 min.).

In the past, strip-paper clip units were inoculated with 0.05 ml of ethanol or water suspensions from a 1 ml pipette. Since this procedure was very time consuming pipette droppers (Scientific Products stock no. B-11861, 0.025 ml) were evaluated as a more rapid means of strip inoculation. Using the 0.025 ml dropper, the mean coefficient of variation between numbers of spores recovered from 20 strips was 9.5%, and consequently, this instrument will be used routinely in future studies.

2. As reported last quarter, addition of 0.2% yeast extract and 0.1% soluble starch to TSA improved recovery of both heated and unheated bacterial spores. During routine survival tests, several isolates showed survival curves with "shoulders" indicating a requirement for "heat activation". When the TSA with supplements was compared to standard TSA as a recovery medium, the supplemented medium appeared to satisfy a portion of the "heat activation requirement" for spores in the unheated controls (See Report #24, Figs. 1, 2 and 3). D_{125C} values calculated from the logarithmic death portions of the survivor curves were equivalent when either TSA or supplemented TSA was used as the recovery medium.

To investigate the possible relationship between heat activation and constituents in the plating medium upon recovery of unheated and heat-injured spores, two spore crops in 95% ethanol were used: 1) isolate G-2 sporulated at 35 C for 48 hours on AK Medium #2 (BBL) supplemented with 20 ppm magnesium sulfate and 80 ppm calcium chloride, and 2) isolate G-2 sporulated in the same manner on TAM Sporulation Agar (Difco) supplemented with 20 ppm magnesium sulfate and 80 ppm calcium chloride. Triplicate strips of each spore crop were suspended in a forced air oven for each of six time intervals, and processed as usual (Report #19). The suspension was plated in triplicate with both TSA and TSA supplemented with yeast extract and soluble starch. The suspensions were then heat shocked in an 80 C water bath for 15 minutes. Replicate portions were again plated in triplicate with both media. Survivor curves are shown in Figs. 1 and 2. Supplemented TSA was superior to regular TSA as a recovery medium in every instance. When plated with regular TSA without conventional 80 C moist "heat shock", both spore crops exhibited increased viable counts (shoulders) compared to the unheated controls during the first 30 minutes of exposure to 125 C dry heat. Recovery during this period was appreciably improved by 80 C "heat shock" prior to plating. Heat shocking

at 80 C failed to appreciably increase recovery of G-2 (TAM) spores after 30 minutes of exposure at 125 C. In addition, recovery of the G-2 (AK) spores decreased rapidly after 45 minutes at 125 C followed by heat shock. The most dramatic increases in recovery were noted when both crops were plated with supplemented TSA. Heat shocking the suspension prior to plating with this medium yielded very little, if any, improvement in recovery. Table 1 illustrates the effects of 80 C heat shock and supplemented TSA upon recovery of spores which were not exposed to dry heat. The greatest increases with both crops were noted when supplemented TSA.

Although complete explanation of the above results is unclear at the present . time, several observations can be made. Classically, heat shock or "heat activation" is thought to involve loss of spore constituents (for example, calcium dipicolinic acid) into a liquid medium or certain enzymatic rearrangements or a combination of both. The great majority of studies concerning spore activation has dealt only with moist heat. As can be seen by the survivor curves presented here, dry heating of dessicated spores apparently satisfys a portion of the heat activation requirement. The mechanisms involved may or may not be similar to those of moist heat but certainly could provide a tool for more exact definition of dry heat activation. Whether or not the increased recoveries noted upon addition of yeast extract and soluble starch to the TSA recovery medium involve physical or nutritional mechanisms is also open to speculation. It is evident, however, from the "shoulders" in Figs. 1 and 2 that some factor(s) necessary for maximum recovery of the viable unheated spores is still required even after application of a heat shock treatment and use of the supplemented medium.

3. As mentioned last quarter, the Planetary Quarantine Officer, NASA, has requested production of a standard spore crop of <u>B</u>. <u>subtilis</u> var. <u>niger</u>. The crops was prepared employing the liquid medium described by Lazzarini and Santangelo (J. <u>Bacteriol</u>. 94:125-130):

· · · · · · · · · · · · · · · · · · ·	
к ₂ нро ₄ •3н ₂ 0 7.3	g
KH ₂ PO ₄ 2.4	g
Sodium Citrate 1.0	g
Tris (hydroxymethyl) Aminomethane (free base) 3.6	g
Glutamic acid 4.4	g
Glucose 1.5	g
Tryptophan 25.0	g
Methionine 25.0	g
CaCl ₂ 111.0	mg

SSM-10 (Synthetic Sporulation Medium-10), per liter

MgS0 ₄ •7H ₂ 0	246.5	mg
ZnCl ₂	6.81	mg
$MnC1_2 \cdot 4H_20$	9.89	mg
FeCl ₃	2.703	mg

The above materials with the exception of the metal salts were dissolved in 900 ml of distilled deionized water. The metal salt solution was made up in ten-fold concentration and 100 ml were added aseptically after sterilization for 15 min at 121 C. Three hundred milliliter portions of the complete medium in 1 L baffled flasks were inoculated with 5 ml of a 24 hr <u>B</u>. <u>subtilis</u> var. <u>niger</u> culture (obtained from A. Irons, Jet Propulsion Laboratory) in the SSM-10 liquid medium. Flasks were then incubated at 136 RPM and 32 C for 5 days (ca. 90% spores) in a Psychro-Therm Incubator Shaker (New Brunswick Scientific Co.). After incubation, growth in 800 ml of medium was harvested with a refrigerated continuous flow centrifuge at 936 x g. Pellets were pooled and exposed to ultrasonic energy to disrupt clumps and cell debris. The bulk of vegetative cell material was removed by repeated centrifugation. Three quarters of the cleaned spores were suspended in distilled water (5.6 x 10 /ml). Preliminary D_{125C} values were 40 min for the ethanol suspension and 36 min for the water suspension.

- 4. In conjunction with the study to obtain a frequency distribution of D_{125C} values of spores associated with pertinent spacecraft, one-hundred and forty-five spore isolates from the Mariner '69 spacecraft were received from Cape Kennedy. As cultures were received, they were streaked on TSA, and 12 impure cultures or cultures other than gram positive rods were discarded. Pure cultures were streaked on quadrant plates of TAM Sporulation Agar supplemented with 20 ppm magnesium sulfate and 80 ppm calcium chloride. Plates were incubated at 32 C for a maximum of 96 hr and growth was stained to observe spore production. Eighteen cultures of gram positive rods not forming spores were discarded. Growth showing any degree of sporulation was harvested in 3 ml of sterile buffered distilled water, exposed to ultrasonic energy, washed twice and suspended in 2 ml of 95% ethanol and stored at 4 C for subsequent titering. A total of 115 spore crops were prepared. The frequency distribution of D_{125C} values will be obtained using the modified dry heat oven described above in part 1 and a rapid assay system.
- 5. As discussed in Quarterly Report #23, variations in death rate of a particular spore isolate can be attributed to cultural conditions as well as the method and/or location in which a dry heat assay is performed. Table 2 shows a summary of D_{125C} values obtained at this laboratory from several different suspensions of <u>B</u>. <u>subtilis</u> var. <u>niger</u> spores. This summary serves to emphasize the care which must be taken in interpretations of data employing such a "standard reference organism" with regard to heat resistance. Argument has been made in the past (Reports 20-24) against using a subcultured spore preparation, particularly <u>B</u>. <u>subtilis</u> var. <u>niger</u> spores, as an absolute dry heat resistance index of naturally occurring spores.

Studies on the dry heat resistance of naturally occurring spore populations from spacecraft assembly and testing environments is underway and results will be reported later. 6. The Virginia Polytechnic Institute (VPI) technique for recovering anaerobic bacteria was evaluated at Cape Kennedy using samples of microbial contamination associated with spacecraft. This technique was compared with the one specified in the "NASA Standard Procedures for the Microbiological Examination of Space Hardware" in three ways. (1) Naturally contaminated components were insonated using the VPI procedure (i.e., use of pre-reduced rinse fluid and containers flushed with nitrogen gas prior to insonation) and the rinse fluid was split and assayed by each recovery technique (pre-reduced agar and roll tube vs TSA pour plate. (2) Additional components from the same batch were both insonated and assayed using the NASA technique (TSA pour plates). (3) A series of swabs taken from adjacent areas on the surfaces of spacecraft were assayed using both the VPI and NASA techniques.

Table 3 shows the mean values of anaerobic microorganisms in 90 split samples from components and the mean values of anaerobic spores in 74 split samples. The results of 110 additional component assays using the NASA technique are also presented. The VPI and NASA techniques produced comparable mean values for total anaerobic microorganisms in the split samples. Components insonated using the NASA technique, however, gave lower values than the VPI method suggesting that insonation in presence of oxygen may have had a detrimental effect on the recovery of certain anaerobes. The NASA anaerobic spore assay technique used on the split samples gave markedly higher results than the VPI method and even the mean value obtained using the NASA insonation technique was three times that of the VPI value.

Table 4 presents the results of assays for total anaerobes on matched swabs taken on three different days. The results obtained by both techniques was comparable on the first and third days. On the second day the VPI technique indicated a much higher level of anaerobes than the NASA technique. No apparent explanation for this inconsistency was evident. The results of anaerobic spore assays on swabs taken on these three days are presented in Table 5. Although the levels were very low, both techniques appeared to give comparable overall results. In contrast to the results from the component assays the NASA technique for recovering anaerobic spores from swabs did not result in markedly higher levels than the VPI method.

On the basis of these data it is obvious that there was no consistent superiority of either technique in the recovery of anaerobic microorganisms associated with spacecraft. Considering the relative simplicity of the NASA technique it would appear to remain the assay method of choice.

7. The Apollo 9 (CSM-104) spacecraft was studied during its residency at the Manned Spacecraft Operations Building (MSOB), Vehicle Assembly Building (VAB) and at Launch Complex 39A. The levels of microbial contamination present on the Command Module (C/M), Instrument Unit (I.U.) and the Saturn S-4B engine are presented in Table 6. Contamination levels for the C/M remained basically the same throughout the study period except for the sample taken 2/11/69 when a marked increase was observed. Samples taken from five sampling sites, (a total of fifteen sites were sampled), revealed relatively high levels of microbial contamination, which was reflected in the high mean obtained for that sampling period. The I.U. and S-4B were sampled only once due to scheduling difficulties. The levels of aerobic mesophilic microorganisms were lower than those observed for the I.U. and S-4B sampling areas

4

with hypergolic blankets plus the forcing of high volumes of air beneath the blankets could have caused the reduction by means of dessication and physical removal.

Tables 7 and 8 present all of the quantitative data collected on the interior and exterior surfaces of the ascent and descent stages of the Lunar Module 3 (LM-3). The levels of microbial contamination in the interior of the LM-3 (Table 7) ranged from 1.8×10^4 to 1.2×10^5 per square foot during the sampling period. The exterior surfaces of the LM-3, ascent and descent stages, showed some variation in the contamination levels at different sampling period (Table 8). A one to two log reduction in contamination levels was noted when the LM-3 was enclosed in the SLA and located at Launch Complex 39A. The exterior surfaces of the LM-3 were continually being purged with large volumes of filtered air while at Complex 39A and this may have contributed to the reduction in contamination levels.

The percentage of aerobic spores and molds detected on the interior surfaces of the Apollo 9 Command Module (CSM-104), the I.U. and the S-4B are shown in Table 9. The levels for both the aerobic spores and molds were relatively low for the Command Module. Although the I.U. revealed lower levels of aerobic mesophilic microorganisms (Table 6) than was reported for the I.U. of Apollo 8 (Report #24), the percentage of aerobic spores and molds was found to be twice as high for the aerobic spores and four times as high for molds. Similar results were obtained with the S-4B and the interior surfaces of the LM-3 (Table 10). The percentage of spores and molds on the exterior surfaces of the LM-3 (Table 11) was greater than those observed on the interior surfaces of the Command and Lunar Modules. An increase in percentage of spores and molds detected on the LM-3 while it was located at Launch Complex 39A correlates with the decrease in the aerobic mesophilic levels (Table 8) observed during the same period. The constant flushing with filtered air might have selectively reduced the microbial vegetative population, resulting in a relatively high population of sporeformers and molds.

Studies were initiated on the Apollo 10 and Apollo 11 spacecraft. This includes the Command Module (CSM-106) of the Apollo 10 and the Lunar Module 5 (LM-5) of the Apollo 11. Results of the preliminary sampling are presented in Table 12. The initial data appears to be similar to those obtained with previous Apollo Command and Lunar Modules.

The types of aerobic mesophilic microorganisms isolated from the Command Modules of Apollo 8 (CSM-103) and Apollo 9 (CSM-104) are shown in Table 13. A total of 1561 isolates were identified from the interior of CSM-103. Most of the contaminants isolated from Apollo 8 Command Module (CSM-103) were <u>Staphylococcus</u> spp. and <u>Micrococcus</u> spp. (<u>ca</u>. 98%). Aerobic sporeformers (<u>Bacillus</u> spp.) accounted for less than 2% of the population. The Apollo 9 Command Module (CSM-104) revealed a higher percentage (ca. 21%) of gram positive non-sporeforming rods (<u>Corynebacterium-Brevibacterium</u> group) than were found on CSM-103. Whether this increase is due to seasonal variation is yet to be determined. The percentage of molds was low in both command modules. The types of aerobic mesophilic microorganisms detected on LM-3 and LM-4 are shown in Tables 14 and 15. In both lunar modules the predominant types of microorganisms were <u>Staphylococcus</u> spp. and <u>Micrococcus</u> spp. A total of 2561 microorganisms was isolated from the Apollo 8 spacecraft and 4262 microorganisms from the Apollo 9 spacecraft. For both spacecraft, 6823 microorganisms were isolated, and to date 4698 have been identified. The remaining 2124 isolates are in the process of identification and will be reported in the next quarter

Figure 3 shows the percentage of microorganisms considered to be indigenous to humans (<u>Staphylococcus</u> spp. and <u>Micrococcus</u> spp.) compared to those associated with soil and dust in the environment (<u>Bacillus</u> spp., molds and actinomycetes). A decrease in the types of microorganisms indigenous to the environment was noted in the two month period that the CSM-103 was in the Manned Spacecraft Operations Building (MSOB). A slight increase was observed after moving the spacecraft from the VAB to Launch Complex 39A. The levels remained stable while located at Launch Complex 39A.

- 8. At the request of Mr. George Mallison, Chief, Biophysics Section, Epidemiology Program, National Communicable Disease Center, air samples, using sterile millipore field monitors, were taken in three different environments at Cape Kennedy, Florida, and in four different environments at Phoenix. Continuous seven hour samples were taken in each of the following environments: 1) outside the Spacecraft Bioassay Laboratory, 2) inside the MSOB high bay area, 3) inside the Spacesuit Clean Room (Class 100,000), 4) outside the Phoenix Laboratories, 5) inside the Phoenix bioclean room (Class 100), 6) inside a microbiological laboratory in the Phoenix Laboratories, and 7) in the hallway serving the administrative offices in the Phoenix Laboratories. The purpose of this study is to investigate the resistance of naturally occurring microbial contaminants recovered on membrane filters to ethylene oxide.
- 9. The Protocol for the Identification Schemes for Microorganisms Isolated from Apollo Spacecraft was completed. A total of 2,000 isolates from each Apollo spacecraft during the next several missions will be identified to species by these procedures.
- 10. In accordance with a request from the Planetary Quarantine Officer, a study for detecting virus on space hardware was initiated. Swab samples were taken from the interior surfaces of the CSM-106 and Lunar Module 5 and sent to the EIP Phoenix Laboratories for virus assay. Specific methods and preliminary results will be described later.

TABLE 1. EFFECTS OF MEDIUM AND MOIST HEAT SHOCK UPON RECOVERY OF BACTERIAL SPORES.

Ratio of Colony Counts ¹						
Isolate G-2 (TAM) ⁴	Isolate G-2 (AK #2) ⁵					
17.6:1	20.7:1					
8.9:1	2.5:1					
1.6:1	1.7:1					
3.1:1	14.7:1					
	Ratio of Col Isolate G-2 (TAM) ⁴ 17.6:1 8.9:1 1.6:1 3.1:1					

¹Counts obtained from unheated controls; see Figs. 1 and 2.

²TSA supplemented with 0.2% yeast extract and 0.1% soluble starch.

 $^{3}80$ C, 15 minutes.

⁴Sporulated on TAM Sporulation Agar (Difco) supplemented with 20 ppm magnesium sulfate and 80 ppm calcium chloride.

⁵Sporulated on AK Medium #2 (BBL) supplemented with 20 ppm magnesium sulfate and 80 ppm calcium chloride.

Suspension Designation	Source	Sporulation Medium	Suspending Fluid	D _{125C} Value (min)
BgHA	Phoenix Laboratories	TAM + minerals 2	95% ethanol	15
BgAK+	Phoenix Laboratories	AK #2 + minerals ³	95% ethanol	15
BgTAM-S	Phoenix Laboratories	TAM + soil extract	495% ethanol	18
BgC	Phoenix Laboratories	Charcoal Agar ⁵	95% ethanol	13
BgLRL	Lunar Receiving Laboratory, Houston	not known ⁶	distilled water	15
BgSSM10A	Phoenix Laboratories	SSM-10 ⁷	95% ethanol	40
BgSSM10W	Phoenix Laboratories	SSM-10	distilled water	36
BgJPL	Jet Propulsion Laboratory, Pasadena	SSM-10	distilled water	21
BgS	Sandia Laboratories, Albuquerque	ТАМ	distilled water	. 36
ВдТ	Taft Sanitary Engin- eering Center (R. Angelotti)	8	distilled water	15

TABLE 2. D_{125C} VALUES OF VARIOUS <u>B. SUBTILIS</u> VAR. <u>NIGER</u> SPORE PREPARATIONS¹.

¹D-values obtained at Phoenix Laboratories by standard procedure (Report #19).

²TAM Sporulation Agar (Difco) supplemented with 20 ppm magnesium sulfate and 80 ppm calcium chloride.

³AK Medium #2 (BBL) supplemented with 20 ppm magnesium sulfate and 80 ppm calcium chloride.

⁴Prepared with a boiling water-soil extract:clean filtrate of 100 g soil/100 ml distilled water to make 100 ml medium.

⁵Difco

⁶Suspension made at Phoenix Laboratories from B. subtilis var. niger spore powder originally cultured and prepared by the U.S. Army Biological Laboratories.

⁷Synthetic Sporulation Medium-10 (liquid), see this report for composition and procedure.

^{*8}Seitz filtered glucose, 0.25%; casamino acids (tech.), 0.25%; yeast extract 0.5%; MnSO4.H20, 0.001%; FeSO4.7H20, 0.0014%.

TABLE 3. COMPARISON OF VPI AND NASA TECHNIQUES FOR RECOVERY OF ANAEROBIC

4000 ⁰⁰ 0000000000000000000000000000000	Sp1	it Samples		Separate Samples		
	No. Assayed	Mean No. No. Microorganis sayed <u>Recovered</u> VPI NASA		No. Assayed	Mean No. Microorganisms <u>Recovered</u> NASA	
Total Anaerobes	90	23	17	110	7.6	
Anaerobic Spores	74	2.2	13	110	6.7	

MICROORGANISMS FROM COMPONENTS.

.

	No. Samples Assaved by	Mean No. Anaerobic Microorganisms Recovered					
Day	Each Technique	VPI Technique	NASA Technique				
1	40	98	105				
2	40	109	17				
3	40	50	66				

TABLE 4. COMPARISON OF VPI AND NASA TECHNIQUES FOR RECOVERY OF TOTAL ANAEROBIC MICROORGANISMS FROM SWABS.

	No. Samples	Mean No. Anaerobic Microorganisms Recovered					
Day	Each Technique	VPI Technique	NASA Technique				
1	40	2.5	4.7				
2	40	2.3	0.8				
3	40	0	0.1				
	un an						

TABLE 5. COMPARISON OF VPI AND NASA TECHNIQUES FOR RECOVERY OF ANAEROBIC SPORES FROM SWABS.

۰.

***** <u>****</u> ***************************		Area Sampled ¹ (sq.in.)	Micr	Microorganisms per square foot				
Source	Date Sampled		Aerobes	Anaerobes	Aerobic spores	Anaerobic spores		
Command Module	10-29-68 ²	108	12,053	3,845	158	43		
(CSM-104)	11-14-68 ²	104	18,086	5,484	27	14		
	11-26-68 ²	120	11,865	7,747	24	30		
	12-19-68 ³	56	52,949	19,872	115	0		
	1-17-694	56	13,051	3,021	91	13		
	2-11-694	60	140,904	8,266	46	48		
	2-21-694	60	11,549	2,606	84	36		
Instrument Unit	2-12-69 ⁴	60	6,019	1,123	763	84		
S-4B	2-12-69 ⁴	40	18,331	3,931	1,022	163		

TABLE 6. MICROBIAL CONTAMINATION DETECTED ON THE APOLLO 9 COMMAND MODULE (CSM-104), INSTRUMENT UNIT AND THE SATURN S-4B.

¹Swab-rinse technique.

²Samples taken from the interior of Command Module while located in the Manned Spacecraft Operations Building.

³Samples taken from the interior of Command Module while located in the Vehicle Assembly Building.

⁴Samples taken from the interior of the Command Module, Instrument Unit and S-4B while located at Launch Complex 39A.

		Area	Microorganisms per square foot				
Source	Date Sampled	Sampled ¹ (sq.in.)	Aerobes	Anaerobes	Aerobic spores	Anaerobic spores	
· · · · · · · · · · · · · · · · · · ·	,, <u>, , , , , , , , , , , , , , , , , ,</u>		<u>, , , , , , , , , , , , , , , , , , , </u>			<u></u>	
Lunar Module 3	7-2-68 ²	116	28,101	16,647	87	37	
	7-18-68 ²	84	17,803	7,526	231	43	
	7-31-68 ²	112	47,131	9,144	1,080	919	
	8-19-68 ²	96	100,901	35,467	143	45	
	8-28-68 ²	108	65,707	29,030	274	46	
	9-13-68 ²	92	82,987	38,909	157	16	
	9-24-68 ²	92	, 54,187	19,915	94	32	
	10-10-68 ²	100	57,744	20,275	151	43	
	11-29-68 ³	112	17,654	8,986	86	19	
	12-20-684	116	61,603	40,032	173	49	
	1-16-69 ⁵	56	67,507	28,426	141	52	
	2 - 11-69 ⁵	40	21,139	4,090	· 72	19	
	2-20-69 ⁵	60	115,200	43,920	533	25	
		•					

TABLE	7•	MICROBIAL	CONTAMI	NATION	DETECT	ed on	THE	INTERIOR	SURFACES	OF	THE
		LUNAR MODI	JLE 3 OF	THE A	POLLO 9	SPACI	ECRAI	T			

¹Swab-rinse technique.

²Samples taken while Lunar Module was located in the Manned Spacecraft Operations Building.

 $^{3}\mbox{Samples}$ taken 5 days after LM-3 was placed in the Spacecraft Lunar Module Adapter.

.

4Samples taken while LM-3 was located in the Vehicle Assembly Building.

5Samples taken while LM-3 was located at Launch Complex 39A.

		Area	Microorganisms per square foot				
Source	Date Sampled	Sampled ¹ (sq.in.)	Aerobes	Anaerobes	Aerobic spores	Anaerobic spores	
			10 -12	0.007			
Lunar Module 3	7-03-68-	116	19,744	3,997	248	155	
Ascent Stage	7-17-682	120	12,816	2,232	132	30	
	8-01-682	120	1,843	346	43	0	
	8-14-682	120	6,408	2,333	101	43	
	8-28-68	120	53,698	20,333	259	86	
	9-13-682	120	15,293	4,162	379	91	
	9-26-68 ²	116	13,579	3,010	266	75	
	$10-09-68^2$	120	11,722	4,003	72	12	
	11-29-68 ²	120	21,096	2,232	475	138	
	$12 - 19 - 68^{4}$	120	10,570	1,195	30	12	
	1-16-69 ⁵	60	2,534	432	0	29	
	2-11-69 ⁵	60	907	518	108	36	
	2-20-69 ⁵	.60	5,731	1,642	72	12	
Lunar Module 3	7-03-68 ²	116	7,703	2.886	75	25	
Descent Stage	$7 - 17 - 68^2$.88	15,357	2.790	49	33	
2000000000000000	$8-01-68^2$	112	10,411	2,002	65	26	
	$8 - 14 - 68^2$	120	8,770	2,434	30	42	
	8-28-683	92	48 571	12,686	212	32	
	$9-13-68^2$	104	15 350	4,334	187	27,	
	9-26-682	104	47 246	5,040	346	125	
	$10-09-68^2$	120	8 373	2,040	158	12	
	$11 - 29 - 68^2$	48	33 120	4 867	965	230	
	12 10 694	40	10 509	4,007	60	250	
	1 16 605	40	17,070 700	4,000	26	20	
	$1 - 10 - 09^{-1}$	60	7 000	2 200	0C 076	27	
	2-11-09-	60	7,920	3,420	14	14	
	2-20-69	6U	2,995	648	128	97	

OF THE LUNAR MODULE 3 ASCENT AND DESCENT STAGES.

1_{Swab}-rinse technique.

²Samples taken while Lunar Module 3 was located in the Polarity Fixture Work Stand in the Manned Spacecraft Operations Building.

³Samples taken while Lunar Module 3 was located in the Altitude Test Chamber in the Manned Spacecraft Operations Building.

⁴Samples taken while Lunar Module 3 was located in the Vehicle Assembly Building.

⁵Samples taken while Lunar Module 3 was located at Launch Complex 39A.

TABLE 9. COMPARISON OF AEROBIC BACTERIAL SPORES AND MOLDS DETECTED ON THE APOLLO 9 COMMAND MODULE (CSM-104), INSTRUMENT UNIT AND THE SATURN S-4B.

Source		,	Area	Percent ²			
	Sample Date Number Sampled		Sampled ¹ (sq.in.)	Aerobic Bacterial Spores	Molds		
Apollo 9 ³	1	10-29-69	108	1.30	0.17		
(0011 204)	2	11-14-68	104	0.15	0.04		
	3	11-26-68	120	0.20	0.20		
	4	12-19-68	56	0.20	0.05		
	5	1-17-69	56	0.70	0.10		
	6	2-11-69	60	0.03	0.02		
	7	2-21-69	60	0.73	0.00		
Instrument Unit ³	1	2-12-69	60	12.68	14.66		
s-4 ³	1.	2-12-69	40	5.58	2.85		

¹Swab-rinse technique.

²Percentage of total aerobic mesophilic microorganisms.

.

³Interior surfaces.

			Area	Percent ²			
Source	Sample Number	Date Sampled	Sampled ¹ (sq.in.)	Aerobic Bacterial Spores	Molds		
Lunar Module 3	1	7-02-68	116	0.30	0.09		
	2	7-18-68	84	1.30	0.24		
	3	7-31-68	112	2.30	0.00		
	4	8-19-68	96	0.10	0.01		
	5	8-28-68	108	0.40	0.01		
	6	9-13-68	92	0.20	0.00		
	7	9-24-68	92	0.20	0.06		
	8	10-10-68	100	0.30	0.10		
	9	11-29-68	112	0.49	0.15		
	10	12-20-68	116	0.28	0.06		
	11	1-16-69	56	0.21	0.13		
	12	2-11-69	40	0.34	0.09		
	13	2-20-69	60	0.50	0.00		

TABLE 10. AEROBIC BACTERIAL SPORES AND MOLDS DETECTED ON INTERIOR SURFACES

OF THE LUNAR MODULE 3 OF THE APOLLO 9 SPACECRAFT.

¹Swab-rinse technique.

·²Percentage of total aerobic mesophilic microorganisms.

TA BLE	11.	AEROBIC	BACTER TAL	SPORES	AND	MOLDS	DETECTED	ON	THE	EXTERTOR	SURFACES
			The s of the state of the state	01 0100		110.000	22202202	- A.			0014 020

		<u>, </u>	٨٣٥٩	Percent ²			
Source	Sample Number	Date Sampled	Sampled ¹ (sq.in.)	Aerobic Bacterial Spores	Molds		
	-						
Lunar Module 3	1	7-03-68	116	1.30	0.19		
Ascent Stage	2	7-17-68	120	1.00	3.04		
	3	8-01-68	120	2.30	0.31		
	4	8-14-68	120	1.60	0.66		
	. 5	8-28-68	120	0.50	0.50		
	6	9-13-68	120	2.50	15.58		
	7	9-26-68	116	2.00	0.18		
	8	10-09-68 120		0.60	0.47		
	9	11-29-68	120	2.30	2.10		
	10	12-19-68	120	0.30	0.20		
	11	1-16-69	60	0.00	1.42		
	12	2-11-69	60	11.90	10.70		
	13	2-20-69	60	1.30	1.70		
Lunar Module 3	1	7-03-68	116	1.00	0.80		
Descent Stage	2	7-17-68	88	0.30	0.70		
-	3	8-01-68	112	0.60	0.87		
	4	8-14-68	120	0.30	0.70		
	5	8-28-68	92	0,40	0.39		
	6	9-13-68	104	1.20	1.90		
	7	9-26-68	104	0.70	0.35		
	8	10-09-68	120	1.90	0.57		
	9	11-29-68	48	2.90	1.20		
	10	12-19-68	48	0.30	1.00		
	11	1-16-69	60	3.60	3.61		
	12	2-11-69	60	3.50	1.60		
	13	2-20-69	60	5.30	6.24		

OF THE LUNAR MODULE 3 ASCENT AND DESCENT STAGES.

¹Swab-rinse technique.

²Percentage of total mesophilic microorganisms.

•

.

TABLE 12. MICROBIAL CONTAMINATION DETECTED ON THE SURFACES OF APOLLO 10 COMMAND MODULE (CSM-106) AND LUNAR MODULE 5 ASCENT STAGE OF THE APOLLO 11 SPACECRAFT

•		Area	Microorganisms per square foot						
Source	Date Sampled	Sampled ¹ (sq.in.)	Aerobes	Anaerobes	Aerobic spores	Anaerobic spores			
Command Module 106 (Interior)	12-18-68 ²	60	22,565	8,870	97	84			
Lunar Module 5 (Ascent Interior)	2-27-69 ²	60	47,866	12,643	48	25			
Lunar Module 5 (Ascent Exterior)	2-27-69 ²	60	4,637	1,152	48	12			

¹Swab-rinse technique.

 2 Samples taken while modules located in the Manned Spacecraft Operations Building.

TABLE 13. TYPES OF AEROBIC MESOPHILIC MICROORGANISMS ISOLATED FROM THE

APOLLO COMMAND MODULE 8 (CSM-108) AND COMMAND MODULE 9 (CSM-104)

	CSM-103	(Interior)	CSM-104 (Interior)		
Microorgamisms	No.	Percent	No.	Percent	
	ayaa —	te, magananan musakan perintahan di terdak di terd			
<u>Staphylococcus</u> epidermidis	204	13.1	75	18.8	
Staphylococcus aureus	.3	0.2	0	0.0	
Micrococcus spp.	1,087	69.6	220	55.2	
Corynebacterium- Brevibacterium Group	139	9.0	81	20.4	
Miscellaneous gram negative rods	5	0.3	1	0.2	
Bacillus spp.	17	1.1	8	2.0	
Molds	10	0.6	1	0.2	
Sarcina spp.	10	0.6	0	0.0	
<u>Gaffkya</u> spp.	47	3.0	11	2.8	
Streptococcus spp.	38	2.4	1	0.2	
Yeasts	0	0.0	1	0.2	
Actinomycetes	1	0.1	0	0.0	
TOTAL	1,561	100.0	399	100.0	

LUNAR	MODULE	3	\mathbf{OF}	APOLLO	9	SPACECRAFT
						1

.

	Ascent Stage Interior		Asce Sta Exte	Ascent Stage Exterior		Descent Stage Exterior		Total	
Aicroorganisms	No.	%	No.	%	No.	%	No.	%	
Staphylococcus	070	01 E	7 6 7	10.0	170	10 /	(00	00.0	
epidermidis	278	31.5	121	16.2	1/9	19.4	608	22.2	
Staphylococcus	0	0.0	2	0.2	1	0.1	3	0 1	
	Ŭ	0.0	-	0.2	÷	0.1	,		
<u>licrococcus</u> spp.	527	59.6	590	63.2	563	61.1	1680	61.4	
Corynebacterium- Brevibacterium	10				50		1/0	- /	
Group	18	2.0	/1	1.1	59	0.5	148	5.4	
iscellaneous gram negative rods	7	.0.8	5	0.5	28	3.0	40	1.5	
Bacillus spp.	7	0.8	31	3.3	36	3.9	74	2.7	
Molds	19	2.1	31	3.3	22	2.4	72	2.6	
Sarcina spp.	0	0.0	2	0.2	3	0.3	5	0.2	
Gaffkya spp.	23	2.6	31	3.3	17	1.9	71	2.6	
Streptococcus spp.	4	0.5	3	0.3	7	0.8	14	0.5	
Yeasts	1	0.1	12	1.4	4	0.4	17	0.6	
Actinomycetes	0.	0.0	4	0.4	2	0.2	6	0.2	
TOTAL	884	100.0	933	100.0	921	100.0	2738	100.0	

TABLE 15. TYPES OF AEROBIC MESOPHILIC MICROORGANISMS ISOLATED FROM THE LUNAR

	Ascent Stage Interior		Asce Sta Exte	Ascent Stage Exterior		Descent Stage Exterior		Total	
Microorganisms	No.	%	No.	%	No.	%	No.	%	
<u>Staphylococcus</u> epidermidis	47	23.5	40	20.5	23	11.6	110	18.5	
<u>Staphylococcus</u> <u>aureus</u>	0	0.0	0	0.0	0	0.0	0	0.0	
Micrococcus spp.	112	56.0	106	54.4	135	67.8	353	59.4	
Corynebacterium- Brevibacterium Group	24	12.0	23	11.8	21	10.6	68	11.5	
Miscellaneous gram negative rods	0	0.0	0	0.0	3	1.5	3	0.5	
Bacillus spp.	1	0.5	1	0.5	3	1.5	5	0.8	
Molds	0	0.0	5	2.6	3	1.5	8	1.4	
Sarcina spp.	2	1.0	0	0.0	1	0.5	3	0.5	
<u>Gaffkya</u> spp.	11	5.5	19	9.7	6	3.0	36	6.1	
Streptococcus spp.	1	0.5	0	0.0	2	1.0	3	0.5	
Yeasts	0	0.0	1	0.5	1	0.5	2	0.3	
Actinomycetes	2	1.0	0	0.0	1	0.5	3	0.5	
TOTAL	200	100.0	195	100.0	199	100.0	594	100.0	

MODULE 4 OF THE APOLLO 10 SPACECRAFT

