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Synchronization 

1. 1 Introduction 

Synchronization between rece iver  and t r ansmi t t e r  i n  a coherent com- 

munication s y s t e m  basical ly  requi res  the ability to t ime lock a rece iver  signal 

genera tor  with a received synchronizing waveform f r o m  the t ransmi t te r .  The 

noise-free signal f r o m  the genera tor  can then be used for  all necessa ry  timing 

operations a t  the rece iver .  

using a tracking loop to generate  a timing e r r o r ,  which dr ives  the local  signal 

genera tor  into p rope r  synchronism. 

synchronizing signal the tracking loop i s  a phase-locked loop, while periodic 

digitally coded signals requi re  digital cor re la t ion  tracking loops. 

This  locking operation i s  typically performed by 

If a s in  wave (pure  tone) i s  used a s  the 

Any 

synchronizing sys t em c a n  ope ra t e  e i ther  i n  a "pure" o r  "impure" locking mode. 

In the f o r m e r ,  the sync sys t em operates  only upon the synchronizing signal 

(except for  additive noise) i n  attempting to obtain lock. 

zation, the locking i s  obtained by operating upon a sync signal immersed  within the 

des i red  data.  Although p u r e  synchronization i s  mos t  des i rab le ,  the t r ansmi t t e r  

m u s t  allocate a portion of i t s  bandwidth and power i n  o r d e r  to t ransmi t  the 

synchronizing signal in  addition to the data.  

excess  allocation i s  not necessa ry ,  but sync operation is hindered by the p re sence  

of the data.  

have been successfully employed. 

generally separated (multiplexed) f r o m  the data,  e i ther  in  frequency o r  t ime,  

and t racked independently of the data.  Impure  synchronization methods have 

been used extensively i n  PSK data  t ransmission,  i n  which "Costas" tracking 

loops and "squaring" loops have been used to f e r r e t  out the sync information 

f r o m  the data  modulation before  locking. 

In "impure" synchroni- 

In impure  synchronization this 

In p re sen t  day microwave communication sys tems both methods 

In pu re  synchronization, the sync signal i s  

The synchronization procedure basically requi res  two somewhat independent 

operat ions - acquisition and tracking. 

mus t  be  f i r s t  t ime  oriented so that the loop can genera te  a useable e r r o r  for  

In acquisition, the rece iver  locking signal 
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"pulling in" the received synchronizing signal. 

has  been generated,  the loop w i l l  act  to lock i n  the timing signal; i. e . ,  the 

signal has  been "acquired". After acquisition, the synchronizing sys tem must  

continue to operate  in o rde r  to maintain the locked condition i n  spite of 

synchronization anomalies ( t ime shifts due to relative motion, oscil lator j i t ter  

and drift ,  etc. ). That i s ,  the loop must  continually t rack the repetitive 

synchronizing signal during the presence  of these anomalies in o rde r  to maintain 

coherent operation. 

Once the proper  e r r o r  signal 

The choice of synchronizing signals plays an important ro le  in the 

This i s  due to the fact that ease  of design of a synchronization subsystem. 

initial acquisition and "tight" tracking (good resolution in  timing) a r e  some- 

what conflicting requirements .  Basically, sync signals with la rge  bandwidths 

yield good resolutions, but narrow band signals a r e  eas i e r  to acquire .  

1. 2 Synchronization of Optical Communication Systems 

An optical communication system will require  timing and synchronization, 

and therefore  the procedures  previously stated a r e  necessary  a s  in  any micro-  

wave link. 

frequencies involved introduce fur ther  charac te r i s t ics  that distinguish the 

optical synchronization problem f r o m  that a t  microwaves.  

munication sys tems the accepted method for  signal t ransmission a r e  either a )  

intensity modulation of an optical source,  followed by d i rec t  photo-detection 

a t  the rece iver ,  o r  b) modulating (AM, FM, o r  PM) a monochromatic source 

and using heterodyning detection a t  the receiver .  Recently, the advantages of 

a pulsed P P M  optical sys tem using d i rec t  detection have been reported [ l -41,  

and i t  appears  that this technique may  evolve a s  the p r imary  mode of PCM 

t ransmiss ion  when optical power i s  a t  a premium. 

has  been shown [3-41 to improve a s  the pulses  a r e  made extremely narrow, the 

synchronization requirements  simultaneously become m o r e  severe.  

reason  par t icular  emphasis in  this present  study effort will be devoted to 

problems endemic to this mode of operation. 

In addition the propert ies  of optical radiation and the higher 

In optical com- 

Although sys tem performance 

F o r  this 



- 3 -  

1. 3 P u r e  Synchronization with Direct  Detection 

The most  basic  synchronization operation that may  be  considered 

would be pure  synchronization of an intensity modulated tone by a phase lock loop 

following d i rec t  detection. 

cur ren t  process ,  whose s ta t is t ics  and proper t ies  have been well  documented. 

Although a plethora of l i t e ra ture  i s  available i n  phase lock loop theory, the 

behavior of such a device in  the presence  of shot noise input has  not been 

rigorously investigated. One of the first principle tasks  in  this study w a s  

the analysis of phase locking in  this mode of operation. 

signal is immersed  in  a ra ther  complicated way within the shot noise, the use  

of previous resu l t s  for  synchronizing in  additive noise a r e  in  general  not 

applicable. In addition, the loop behavior may  be  fur ther  complicated by 

thermal  noise, da rk  cur ren ts ,  photo-multiplier effects, and background radiation. 

At this point attention has  been p r imr i ly  devoted to determining the s ta t is t ics  

of the tracking e r r o r  for a f i r s t  o rde r  tracking loop, when dr iven by shot 

of known intensity. 

sys tem could be la te r  extended to higher o r d e r  loops i n  a fa i r ly  straight forward 

manner .  

will  appear in a forthcoming technical report .  

The output of the photo-detector is a shot noise 

Since the synchronizing 

noise 

I; is  felt that adequate understanding of this f i r s t  o rde r  

The following resul ts  for  the f i r s t  o rde r  loop have been derived, and 

1) 

e r r o r  with Poisson shot noise inputs has  been shown to be  a Kolgomorov par t ia l  

differential of infinite o rde r .  

The differential equation for  the steady s ta te  probability density of the tracking 

2) 

of the synchronizing signal (more  specifically, with the sync signal "denseness" - 
the number of synchronizing photo-electrons in  the reciprocal of the tracking 

loop bandwidth) 

The coefficients of this equation dec rease  ra ther  quickly with the intensity 

3)  

par t ia l  differential equation (i. e. the f i r s t  two coefficients of the infinite o rde r  

equation tend to dominate). 

Equation i s  known, and therefore  the probability density of the tracking e r r o r  

can be stated for  the high intensity case.  

F o r  high intensit ies the Kolgomorov equation approaches the Fokker-Planck 

The steady s ta te  solutions of the Fokker-Planck 

This resul t  can be related to the 
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resul t  for  addi t ive gaussean noise i f  the proper  definitions of variables is  made. 

4) 

s ta te  probability density of the tracking e r r o r  has  been explicitly stated. 

effect of background radiation and additive thermal  noise has  been included. 

The mean  square  tracking e r r o r  has  been computed fo r  this density, a s  a 

function of the design pa rame te r s  of the system. 

The solution for  the high intensity c a s e  has  been examined, and the steady 

The 

P resen t  study i s  continuing in  this a r e a  and is devoted to: 

1 )  Attempting to solve the third o rde r  Kolgomorov equation, hopefully to 

obtain a correct ion t e r m  to the previous high intensity result .  

would be par t icular ly  significant i n  our  study since i t  would indicate how 

performance i s  degraded as  the synchronizing signal intensity i s  decreased.  

This 

2) Attempting to der ive resul ts  for the digital sync signal case.  It appears  

a t  p resent  that s imi la r  resu l t s  can b e  stated for  this a s  with the phase lock 

loop. 

1 . 4  P u r e  Synchronization With Heterodyne Detection 

The problem to be  investigated in this case  consis ts  of phase locking, 

o r  correlat ion tracking, af ter  heterodyning an optically coherent signal. 

Analytically, the problem differs  f rom that previously stated in  that a) the 

counting s ta t is t ics  af ter  heterodyning a r e  not in  general  poisson. 

density for  the photo-election count af ter  heterodyning has  not been writ ten in 

closed fo rm,  although the moments  of the process  can be derived. b) The spatial  

charac te r i s t ics  of the impinging radiation field over the optical detector surface,  

which affects  the strength of the demodulated signal, mus t  be incorporated into 

the analysis.  c )  The effect of phase and amplitude distortion of the optical b e a m  

during t ransmiss ion  must  be considered i f  the synchronizing signal has  been 

phase modulated onto the optical c a r r i e r .  

phase locking the local l a se r .  

heterodyne frequency to control the phase of the local l a s e r  used for  heterodyning. 

Although t ime locking i s  not necessary  for  optical heterodyning, such a sys tem 

would have capability of tracking optical doppler changes and improving R F  detection. 

The actual 

A closely related problem is that of 

That i s ,  using the phase e r r o r  information a t  the 
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1. 5 P u r e  Synchronization With Pulsed L a s e r s  

The requirement  for  pulsed l a s e r  operation places  a constraint  on 

the synchronization sys  t em that eliminates the flexibility of sys tem design 

a s  to the choice of synchronizing signals. 

signals when extremely narrow synchronizing pulses  a r e  used introduces a 

difficult design problem. 

the d i rec t  detected signal may  be used i n  i t s  raw f o r m  for subsequent synchroni- 

zation. 

sys tem must  recover  the timing information f r o m  the noisy pulses.  

ca se  i t  appears  that, a f te r  d i rec t  detecting a pure  sync pulse s t r eam,  a f o r m  

of ear ly  and la te  gate tracking (often called split gate tracking) i s  the eas ies t  

to implement,  although there  m a y  be some advantages of a m o r e  complicated 

correlat ing signal. 

effect. 

Fur thermore ,  the generation of e r r o r  

If the received sync pulses  are extremely high powered, 

However, when the noise effects a r e  not neglegible the synchronizing 

In this 

This a r e a  will b e  fur ther  examined in  the present  study 

Since the tracking loop will operate  "electronically" the loop response 

will not be a s  fas t  a s  the optical pulse width. 

unnecessary to use optical sync pulses  nar rower  than t h e  loop response time. 

The narrow optical pulse,  since they represent  l a rge  bandwidth signals,  can  

be used to der ive  good resolution in  timing but a r e  difficult to initially acquire .  

Alternate schemes that make  use  of the harmonic content of the optically detected 

pulses  m a y  yield a suitable compromise of resolution 

It appears  therefore that i t  is 

and acquisition. 

1 . 6  Impure Synchronization With P P M  Systems 

In optical P P M  sys tems synchronization can be obtained without the 

necessity to t ransmi t  separate  sync pulses.  

position modulated to achieve PCM data word t ransmission.  

position changes f r o m  word interval  to word interval  according to the data ,  the 

presence  of a pulse  i n  each interval implies the existence of signal energy a t  

the word r a t e  frequency, which may be  used for  impure  synchronization. 

proper  fi l tering, the word ra te  frequency may  be extracted to achieve lock-up, 

although the data modulation will tend to hinder the operation. 

In PPM,  optical pulses a r e  

Although the pulse 

After 

P r e s e n t  study 



- 6 -  

is  attempting to determine the ability to acquire  synchronization in  this 

environment. 

1 .7  Effect of Tracking E r r o r s  on E r r o r  Rates  i n  P P M  Systems 

In previous l i t e ra ture  [ 3,51 ,  e r r o r  probabilities have been derived 

for  M-ary P P M  optical communication systems.  The p r imary  assumption . 
i n  the derivation i s  that the rece iver  can "count photons" over the exact interval  

i n  which the optical pulse was transmitted,  this i s  equivalent to an assumption 

of exact synchronization between t ransmi t te r  and receiver .  

synchronization is  present ,  the receiver  does not count photons over  the 

exact signalling interval.  This causes  a dec rease  in  the number of signal 

photons, with a proportionate inc rease  in photons in  adjacent non- signolling 

intervals.  

ra t io ,  since the background photon ra te  is  assumed constant. An initial objective 

i s  to attempt to a s s e s s  the corresponding degradation in e r r o r  r a t e s  by'rnodifying 

ea r l i e r  resu l t s  to account for  timing e r r o r s .  

i t  i s  hoped that an average over  the s ta t is t ics  of the typical timing e r r o r  can 

be  made,  so that the previously reported e r r o r  r a t e s  can be  replotted i n  t e r m s  

of the tracking pa rame te r s  of the synchronizing system. 

When imperfect  

The overal l  effect is  a two-fold decrease  in  optical signal to noise 

Using the resul ts  of Section 1. 3 

1. 8 Synchronization a s  an  Estimation Problem 

The use  of tracking loops for the maintainance of synchronization was 

presented a s  a somewhat ad hoc procedure for  acquiring synchronization. A 

m o r e  academic approach is to consider the phase o r  t ime delay of the received sync 

signal a s  an unknown pa rame te r  that is to be optimilly estimated by the 

synchronizing subsystem. 

an  optical sys t em i n  this context i s  present ly  under study. 

that i s  somewhat significant, and yet not intuitive, is that with pure  tone 

synchronizing signals and maximum aposter ior i  estimation, the optimal tracking 

device i s  - not the standard phase lock loop. 

however, under cer ta in  conditions; in  par t icu lar ,  high signal intensity, 

The formulation of the synchronization problem for  

A prel iminary resul t  

The resul t  does specialize to this ,  
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Studv in  Related Areas  

2. 1 P rope r t i e s  of Shot Noise P r o c e s s e s  

A study effort has  continued i n  the attempt to c lear ly  analyze the shot 

nois e p rocess  following optical photo-detection. 

radiation becomes the intensity of the shot noise process ,  the problem is 

basically that of relating the s ta t is t ics  of the shot noise, to the s ta t is t ics  of 

Since the intensity of the 

i t s  inherent intensity. 

i s  governed by Poisson countering s ta t is t ics  (i. e . ,  Poisson shot noise) and 

a r e  reported in the publication: 

Some resu l t s  have been obtained when the shot noise 

"On the Representation of a Continuous Stochastic Intensity by 

Poisson Shot Noise' '  

Authors - R .  M. Gagliardi - S. Karp 

USCEE Technical Report  No. 3 3 4  March 1969 

ABSTRACT 

In many applications a Poisson shot noise (PSN) process  is  said to 

statist ically "represent"  i t s  intensity process .  In this paper an investigation 

is  made  of the relationship between a PSN process  and i t s  intensity, when the 

la t te r  is  a sample function of a continuous stochastic process .  

of the moments  and the mean  square  difference between the two p rocesses  i s  

examined. 

of a sequence of moment  relationships in  which the effect of the PSN pa rame te r s  

can be seen. 

when the component functions of the PSN a r e  t ' rectangular ' ' ,  o r  when the intensity 

process  does not vary appreciably over  their  t ime width, 

i s  derived which defines the component function that minimizes the mean square  

difference between the two processes .  

component function induces complete s ta t is t ical  equality of the two processes .  

The problem has application to optical communication systems using photodetectors. 

The difference 

The continuity assumption on the intensity permi ts  the development 

The resul ts  simplify, and afford some degree  of physical interpretation, 

An integral  equation 

It  is  shown that a "degenerate" fo rm of 
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The resu l t s  of this  repor t  a r e  significant i n  that they indicate the 

conditions and manner  i n  which the shot noise s ta t i s t ics  a r e  related to those 

of the intensity. 

involving modelling of optical  radiation by Poisson shot noise p rocesses .  The 

component functions of the shot noise were  assigned physical meaning a s  

wave packets.  

analysis  of scat ter ing of optical  radiation. 

"jvave-packets" i n  channels of this type the s ta t i s t ics  of the radiation field and 

i t s  intensity can be examined. 

photo- e lectron count following photo-detection can be determined. 

In addition, the resu l t s  tend to  justify e a r l i e r  work [ 6 1 

The m o s t  important  application of this model i s  in  the s ta t is t ical  

By descr ibing the behavior of the 

Once these a r e  known, the s ta t i s t ics  of the 

2. 2 Optimal Optical Detection and Fi l ter ing 

There  a r e  h r e e  par t icu lar  problem a r e a s  under this topic that a r e  o r  

w i l l  be investigated. 

Deriving opt imal  mean square  f i l t e rs  for shot noise p rocesses  imbedded 

in  additii e Gaussian noise. 

Deriving optimal spatial  f i l t e rs  and de tec tors  for  the reception of a n  

optical radiation field.  

Continuing at tempts  to prove the universal  opt imal i ty  of the pulsed 

intensity set i n  a n  M-a ry  optical  d ig i t a l  communication sys tem.  

resu l t  has  been proven for  M=2 (binary sys t ems)  and fo r  any M a t  

asymptotically low signal to noise ra t ios  [ 3 I 
has  often been conjectured, but never  proven. 

The 

This universai  optimality 

2. 3 Information Capacity of Poisson  (Optical) Channels 

The determinat ion of the channel capacity,  under fixed energy constraints ,  

of a Poisson (optical) channel evolves as a deceptively complicated problem. A 

Poisson channel is  one i n  which a t ransmit ted intensity x is converted to y 

photo electrons,  where the conditional density of y given x i s  Poisson with 

intensity p a r a m e t e r  x. 

to give approximate capacity formulas ,  and even upper and lower bounds can 

Various approximations i n  the pas t  have been invoked 
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generally be established. However, determination of the probability density 

i n  x that achieves the capacity involves the solution of fa i r ly  complicated 

equations. 

field that achieves maximum information rate.  It is  known [ 7 1 that the 

entropy of the channel (photo-detector) output i s  maximized when y has  a 

Bo se-Einstein density, which implies a Rayleigh distributed radiation intensity 

corresponding to a Gaussian field. 

{entropy-equivocation) a r e  not so easily determined. 

variations appear  to indicate that the Bose-Einstein density i s  not the solution 

for  maximum capacity. 

Such a resul t  would be important since i t  would define the optical 

However, the resu l t s  for  channel capacity 

The use  of calculus of 

The addition of additive Poisson noise (e .  g. background radiation) appears  

a s  an even m o r e  complicated problem. 

for this c a s e  also. 

white noise lead to the conclusion that the capacity was approximately one half 

the entropy of  the source .  

It i s  hoped that resul ts  can be obtained 

In previous works [ 7 1 the assumption of additive gaussian 

This resul t  is somewhat suspect.  
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