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ABSTRACT

Several different forms of integral solutions exist to
the problem of dipole radiation in presence of a half space
with plane boundary, all of which can be easily shown to
agree with one another by transformation. For the evalua-
tion of these integrals, a number of assumptions are usually
made on some parameters in the expressions such as the me-
dium property, the wavelength and so on. Unfortunately,
however, even with these simplifying (but meaningful) assump-
tions, practically useful results for the dipole radiation
problem are still lacking. Also it appears that there is no
theory of dipole radiation when the plane boundary is roughened.

This paper sets out to find steady state solutions in us-
able form for an arbitrarily oriented dipole source. The
smooth boundary case is considered first, which is followed
by a statistically rough boundary case. Use is made of a
method which may be called a "plane wave approach."” This
method differs from other classical plane wave methods in
that here the incident Hertzian wave is uniquely decomposed
so that the reflected and the transmitted waves are found for
each component Hertzian wave using the Fresnel coefficients.
The integrals are evaluated in the geometrical optics approx-
imation using the stationary phase method. The results are
either new (the rough boundary case) or of new form (the

smooth boundary case).



In the case of the smooth boundary, the applicability
of such results is carefully reviewed. In both the vertical
and the horizontal dipole cases for reflection as well as
transmission, it is found that the source and the observa-
tion points cannot simultaneously approach.the boundary.
An-exception to the above is the case of an horizontal di-
pole when the observation point lies on or near the dipole
axis for the reflected field. The results also indicate
that in the case of the horizontai dipole the total Hertz
potential everywhere need not of necessity have a vertical
component in addition to the component in the direction of
the dipole, as has been hitherto generally believed. In fact,
one finds that a Hertz potential, in order to be a solution to
the horizontal dipole problem, must have at least two compo-
nents in the rectangular coordinate system, so that there are
altogether four permissible resolutions of the Hertz potential.

For the formulation of Hertz potentials for the roughened
plane boundary, the vector Helmholtz integral is utilized, of
which we give a somewhat more general derivation. To accomo-
date the vector nature of scattering including the effect of
polarizations, dyadic reflection and transmission coefficients
are used at the boundary. The rough boundary is slightly
rough and considered to be a stationary random process with a
gaussian height distribution. The stationary phase method is
applied with respect to the mean plane of the rough boundary
for the evaluation of the integrals. This was motivated by

the physical fact that the density of the stationary points
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of such a rough boundary is the greatest in the neighborhood
of the stationary point of the mean plane. Results are ob-
tained for the expected values of Hertz potentials, electro-
magnetic fields, and power. Each of these results involves
a factor representing the effect of roughness, which in the
limit of a smooth plane boundary correctly reduces to unity..
A method for experimentally determining the r.m.s. slope of-
a class of natural surfaces by using overflight data is out-

lined.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Objectives of the Present Study

The problem of radiation of an oscillating dipole source
in presence of earth has been of great interest academically
as well as practically since the early part of this century.
The first investigation of the problem was made in 1909 when
Sommerfeld [1909] published his classical work on the effect
of a finitely conducting plane on the radiation of a dipole
located on the plane. Since that time spectacular progress
has been made by many researchers toward the solution and
better understanding of essentially the same problem: what
is the electromagnetic field everywhere due to radiation of
a dipole (electric or magnetic, vertical or horizontal) which
is located above the earth, or even embedded within the earth?
The reason for particular interest in this problem is obvious,
if one notes that any source of electromagnetic radiation can
be represented in terms of a distribution of electric and mag-
. netic dipoles and, if necessary, higher order poles.

It has been usually assumed with respect to the earth's
geometry that the surface of the earth is an infinite plane.
This assumption, being ideal, deviates from the more exact
earth's surface in two major respects. In the first place,
the true earth is of spherical shape rather than an infinite
half space so that there is diffraction of waves, and reflec-
tion of waves occurs in a different manner than from a plane

boundary. Thus if either or both of the source point and the



observation point is sufficiently far from the ground, the as-
sumption may become inapplicable. Secondly, the earth's surface
in general is rough rather than smooth. If the scale of rough-
ness 1s comparable to or greater than the wavelength of the ra-
diation, the assumption may also become inapplicably poor.

In the past, many attempts have been made with fair success
to solve the dipole-earth problem with the assumption of the
spherical earth by such workers as Watson [1918], Epstein [1935]
and Bremmer {1949].l However, no notable work has been reported
on the study of the problem involving a rough ground. This is
understandable in view of the extreme difficulties of solving
boundary value problems associated with a rough (irregular) sur-
face. Here the boundary conditions in terms of any fixed co-
ordinate system vary‘from point to point along the surface.

The study of scattering of waves from a bounded region
of rough surfaces was initiated in the late 19th century. In
recent decades with the advent of radar, an enormous amount of
research has been carried out on this subject. In most such
investigations, it is assumed that the transmitter is so far
removed from the finite area of the rough scattering surface
that the incident wavefront could be considered plane. This
is indeed the case for a great number of radar targets of in-
terest, such as the airplane, the ship, and the moon. For a
given surface roughness, the above two assumptions, namely,

the finiteness of the scattering surface and the plane wave

lThe year inside the bracket does not necessarily indi-
cate the year the author contributed the first time; rather,
it identifies the reference at the end of this paper.



incidence, considerably simplify the analysis in most theories
and enable one to carry out the necessa%y integrals.

These two simplifying assumptions, however, are not ap-
plicable to a dipole radiation problem in presence of an in-
finitely extending rough interface. Thus a new method must
be developed that is different from those employed in most
scattering theories from rough surfaces so far. This problem
is not only of an acaemic interest but also of great importance
in ground-to-ground and ground-to-air communications, or vice
versa. Often it is desirable to discriminate the background
clutter (ground or sea) from a desired radar echo from a fi-
nite target. In reference to the space exploration programs,
an important experiment involves a transmitter on an orbiting
spacecraft around a planet body and a signal bounced off from
it being received on earth. When the spacecraft is sufficiently
near the planet, a theoretical modeling of the problem may re-
quire consideration of the scattering surface infinite and the
incident wavefront curved.

No significant work, if any, has appeared on the problem
of scattered transmission through a rough interface. The ra-
diation of a dipole immersed in the conducting medium seems
to have been first studied around 1950 [Moore, 1951]. Sub-
sequently, fairly abundant work on this subject appeared.

All of these, however, assume the interface to be a plane.
The transmission theory also bears importance in numerous ap-
plications such as the air-to-submarine communications and
vice versa. It is also necessary for problems of wave propa-

gation through layered media with rough interfaces.



The objective of the present study is to obtain complete
solutions of the (arbitrarily oriented) dipole problem in preé—
ence of an infinite boundary, both smooth and rough. We will
derive integral expressions which represent Hertz potentials
inside and outside the interface by uniquely decomposing the
spherical Hertzian wave at the boundary and by satisfying the
boundary condition in terms of electromagnetic plane waves.
These integrals will be evaluated using the method of stationary
phase. Thus the results are strictly valid within the limit of
the geometrical optics approximation. The rough interface will
be described by a random process with a gaussian height dis-
tribution, and subsequently we will find expected Hertz poten-
tials as well as expected powers. We will assume the interface
to be gently undulating (large correlation distance) and slightly
rough (small variance). We will also assume that there is no
shadowing of one part by another and that no multiple scatter-
ing exists between elements of the interface. These assumptions
are necessary for the price of obtaining especially simple
closed form results allowing us greater physical insights in
the phenomena. Since we will be considering an arbitrarily
oriented dipole source, the integrals as well as the results
can be readily specialized to either the case of the vertical
or the horizontal dipole,l making two separate formulations
unnecessary.

We will consider only the steady state electromagnetic

radiation arising from a steady state excitation of an

lThe terms "vertical" and "horizontal" are with refer-
ence to the mean plane for the case of rough interface.



elementary dipole. Thus we do not consider such a special
feature as transient phenomena. In principle, however, we
can consider the steady state to be a member of the Fourier

expansion of a non-steady state problem.

1.2 Previous Work on Radiation of Dipole Located Above an
Infinite Plane Surface '

The exact problem attacked by Sommerfeld in 1909 was
that of a vertical dipole located at the interface of a fi-
nitely conducting plane earth. In view of the tremendous
amount of influence this work has had on later work by others
in radiation problems, we will outline it in a little more
detail [Stratton, 1941].

The axis of the dipole coincides with the z-axis of a
rectangular coordinate system, and the plane z=0 represents
the earth's surface. The wave numbers are denoted k2 and kl
of the media above (the air) and below the interface, respec-
tively, where k2=w/c. The coordinate of the observation
point is given as (r,¢,z) in the cylindrical coordinates and
R is the radial distance, R=Vr2¥zz. These relations are il-
lustrated in Figure 1-1.

In terms of thé z—-component of the total Hertz potentials-

the boundary condition is found as

II
9% 2 2
=5z 0 KT

BHl

92

Qo

where Hl and H2 are Hertz potentials within the earth and in
the air, respectively, and each is given as the sum of the

direct wave and the diffracted wave. Using the cylindrical
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wave representation of a spherical wave function

2 .2
kR w Jo(xr)e“‘/A k7 |z
0 (2,2
he is able to write
SN xznki z
Hl = [——— + fl(k)]J (Ax)e ar , z<0
- o)
0 22
1
o A ~VA2~k§ Z
1., = [w-————+ £, (A}]T _(Ax)e dar , z>0
2 0 5y 2 o
VA -k}

The functions fl(k) and fz(k) are determined from the bound-
ary condition. Thus Sommerfeld finally obtains a formal so-

lution in terms of infinite integrals:

N JO(Ar) /ﬁ2~k§ z
Hl = Zkzj(; N e AdA ’ z<0
, [ T () —/k2~k§ 2
H2 =‘2klj; —x— © Adx ,  z>0
where
_ 2 42,2 2 2 .2
N = kl VA -k2 + k2 A kl

The vertical dipole problem has been later generalized
by Weyl [1919] in the sense that the dipole was put a finite
distance above the surface. His method is based on the plane

wave expansion of a spherical function and Snell's law. The



results naturally reduce to an identity with Sommerfeld's re-
sults as the elevation pf the dipole is shrunk to zero. There

are a few other methods which lead to the same results. Among
these we mention in particular Niessen's [1933] and Brekhovskikh's
[1960]. Niessen uses a surface integral and the Kirchoff-Huygens .
Principle, and Brekhovskikh applies essentially the same plane
wave method as Weyl's, except, however, that he assumes the
Fresnel coefficients to be known.

The solution to the horizontal dipole problem was appar--
ently first obtained by Horschelmann [1912] and subsequently
by Sommerfeld [1926], Frank and von Mises [1935], and Niessen
[1938]. The steps leading to the integrals are shown to be
similar to the vertical dipole case but more involved owing to
the necessity of assuming two components for the Hertz potentials.
In all treatments, the choice of the components for the Hertz
potentials is the z-component in addition to the x--component
(for an x-oriented dipole).

The case of a magnetic dipole has also been treated ex-
tensively. It has been shown that solving a magnetic dipole
problem is a relatively simple matter once the solution to
the corresponding electric dipole problem is obtained. This
is understandable in view of the change of the roles of E and
H, and as a result the polarization of the elementary plane
waves into which the spherical wave is expanded.

Each solution to a dipole problem obtained from the afore-
mentioned methods is first given in integral representations

and as such is exact. The true difficulty has been the



evaluation of the integrals to yield results which are general
and simple enough to allow practical use of them. Sommerfeld
[1909], Weyl [1919], and others have obtained results using
techniques of complex integration. However, the results were
not all consistent and there was some controversy over the
possibility of resolving the terms into the sky wave and the
surface wave. Bafios [1966] concludes that Sommerfeld's sur-
face wave indeed exists. At any rate the interest of the cur-
rent investigation lies in the geometrical optics term of the
sky wave, and not in the surface wave.

For the vertical dipole problem the geometrical optics
results or the asymptotic results have been derived by Norton
[1937], Brekhovskikh [1960] and Banos [1966]. In particular,
Bafios in his book [1966] reports complete work on the horizontal

dipole problem including the results for the transmitted field.

1.3 Previous Work on Scattering from Rough Surfaces

The theory of scattering of electromagnetic waves from
rough surfaces has been studied continuously since the late
19th century, especially in a large number of papers on the
subject published in the last twenty years. Interest in the
problem has been not only in determining the scattered field
from a known surface, but also in the converse, namely, deter-
mining the surface characteristics of a body, such as the elec-
tromagnetic parameters (e.g., U, € or ¢) or roughness, from
a study of the scattered field. In connection with the radar

astronomy, emphasis has been shifted to the latter problem,



In spite of the great amount of work done on scattering
from (irregular) rough surfaces, it appears that there does
not as yet exist a satisfactory theory simple enough for use
and at the same time sufficiently rigorous. Most of the the-
oretical results also lack generality because of a number of
assumptions and approximations that had to be introduced to
obtain them. The assumptions are made according to the spe-
cifics of the problem, and some of the more important and fre-
quently made are [Beckmann and Spizzichino, 1963]:

1. The dimensions of the scattering elements of the
rough surface are taken as either much smaller or
much greater than the wavelength of the incident
radiation; |

2. The radius of curvature of the scattering elements
is taken to be much greater than the wavelength of
the incident radiation;

3. Shadowing effects are neglected;

4. Only the far field is calculated;

5. Multiple scattering is neglected;

6. The density of irregularities (number of scatterers
per unit length or area of the surface) is not
considered;

7. The treatment is restricted to a particular model
of surface roughness, e.g., sinusoidal or saw-tooth
undulations, protrusions of definite shape in ran-
dom positions, random variations in height given

by their statistical distribution and correlation, etc.
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Approximations are then applied in accordance with the set of-
particular assumptions.

In order to find the total field at the surface with
gentle slopes (assumption 2 of the above), one of the most
commonly made approximations is the tangent plane approxima-
tion.l In this approximation, the reflected field at each
point on the surface is given either by multiplying the in-
cident field by the Fresnel coefficient at that point [Bar-
rick, 1965] or by approximating the surface current by the
current on the tangent plane [Kodis, 1966]. There exists
another method that circumvents the tangent plane approxima-
tion by using a new set of approximate boundary conditions
directly'in terms of total fields. This new set of boundary
conditions was originally developed by Leontovich [1948] and
is also called the impedance boundary condition. It is ap-
plicable when the refractive index of the scattering medium
is large in addition to the gentleness of the surface slopes
(compared with the skin depth) [Senior, 1960].

For the case of a slightly rough surface, Bass and
Bocharov [1958] have developed a method which is essentially
based on the concept of perturbations. In this method, the
effect of the surface roughness is obtained in terms of an
equivalent source distribution on the unperturbed surface,
by expanding the perturbed field about the unperturbed sur-

face and applying the boundary condition to each term. Rice's

lSome authors also use for the same meaning the phrase
"Kirchoff approximation." But it seems that there are dis-
crepancies among people in the definition of these phrases.
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[1951] method is also based on a similar idea of perturbation
but uses the Fourier analysis. The Fourier coefficients of
the field are found by using the divergence relation and the
boundary condition. Aside from the problem of summing the
infinite series, the advantage of the perturbation methods
over that of the tangent plane approximation is obviously

the fact that the total field at the surface in the pertur-
bation method is exact.

The final stage of difficulties in most scattering the-
ories is the one associated with the carrying out of the inte-
gration. Given the total field at the surface, the next
usual procedure is to evaluate the Helmholtz integral or the
Stratton-Chu integral. The Green's function in the integrand
can be readily approximated if the surface is finite and the re-
ceiver is in the far-~zone, which facilitates integration. Usu-
ally more approximations are needed that depend on the spe-
cifics of the problem, especially on the particular model of
surface roughness. Where the high frequency approximation
is applicable, the method of stationary phase has been used
to obtain geometrical optics results [Semenov, 1964] that

further simplify the evaluation of the integral.
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CHAPTER 2

REFLECTION AND TRANSMISSION OF DIPOLE RADIATION
DUE TO AN INFINITE PLANE INTERFACE

2.1 Hertz Potential Due to a Dipole Source

When the source currents have a common direction, the
primary electromagnetic field due to such sources can be de-
scribed in terms of a single scalar function, namely, a rec-
tangular component of the Hertz potential in the direction
of the currents. If the coordinate system for the problem
is so chosen that the Hertz potential in the direction of
the currents may be decomposed into more than one component
in that coordinate system, each component Hertz potential can
be considered separately. By the principle of superposition,
the electromagnetic field due to the actual currents can then
be found by adding the electromagnetic fields described by
eéch component Hertz potential. Therefore, for a boundary
value problem of an arbitrarily oriented dipole antenna above
or on an infinite plane interface, it is sufficient to con-.
sider only two components, the vertical and the horizontal,
for the incident Hertz potential, by choosing one of the co-
ordinate planes to coincide with the plane interface.

When the source currents consist of small current loops
whose axes have a common direction, due to the symmetry be-
tween E and H in Maxwell's equations, we can consider another
kind of Hertz potential which has the same use for the analy-
sis of the problem as the Hertz potential for linear current

sources. The linear current sources and the Hertz potential,
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usually denoted ﬁ,‘are called "electric type," while the loop
current sources and the Hertz potential, ﬁ*, are called "mag-
netic type."

In the present study, the case of the magnetic type
sources will not be tréated,separately, since in most cases
the aforementioned symmetry between E and H in Maxwell's
equations enables us to immediately write the results for
the case of magnetic type sources by simple inspection of
the results obtained for the case of electric type sources.
However, the results for the case of a vertical dipole and
those for the case of a horizontal dipole are considerably
different--usually the former are simpler than the latter.
The reason can be easily seen by noting that the geometry
of the vertical dipole is cylindrically symmetrical, whereas
that of the horizontal dipole is not.

Therefore, at the outset we will assume an arbitrary
orientation for the dipole and obtain results for this gen-
eral case so that results corresponding to the vertical di-
pole or the horizontal dipole can be obtained by specializing
the dipole polarization in the general results. The medium
in which the dipole is situated is assumed to be the air,
which is homogeneous and isotropic and occupies the upper
half space above. the infinite plane interface. The lower
medium is arbitrary; it could be the earth, the sea, or
some gaseous medium such as the ionosphere. To distinguish
the symbols for the medium parameters between the upper and
the lower medium, subscript 2 will be used to refer to the

upper medium and subscript 1 to refer to the lower medium.
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We will now derive an expression for the incident, or
primary, Hertz potential for a dipole oriented in an arbi-
trary direction. For current sources distributed in a vol-

-iwt-

ume V with density given by 3=30e , it can be shown that

the primary Hertz potential is given by [Stratton, p. 431]

ik, R
i, = =— _[3 = av (2-1)

where R is the distance between the source point and the ob-
servation point. As usual the time dependence of ﬁi is ne-
glected by writing 30 instead of J as the source function.
If the source is a dipole, which may be physically considered
as a straight filament of wire with an infinitesimal length,
say, df&, then on replacing 3cdv by Idlgw, where I is the cur-
rent in the filament and gﬁ is the unit vector in the direc-
tion of the current, and dropping the integral sign, we obtain
from (2-1)

ik

>  iIdg e
i~ 4ﬂwa2

R

2
—).
= ar . (2-2)

The factor multiplying the spherical function in (2-1) charac-
terizes the strength of the wave function and is irrelevant:
as far as investigations of reflection and transmission from
and through interfaces are concerned. Therefore for simplic-
ity we may‘drop this factor and write the incident Hertz po-

tential as

i, = a . (2-3)
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As we are going to use a "plane wave approach" as the
basis for our formulation, we need to express (2-3) in terms
of a family of plane waves. This can be done by using the

formula [Brekhovskikh, 1960, p. 239],

ik R 1k S + 1k2yy + 1kzz(h—z)

[+¢]

€ = i -

= f %5 dk, dky (2-4)
-0 )

/2 . 2 2 2, .2 2 . .
where k2 = K2—k2X k2y ’ R=/; +y“+(h-2z)“ and h is the height

to the dipole from the interface zZ0, so that the incident

Hertz potential can be expressed as

0

eJ.k2xx+1k2yy+lk22(h—z)

->
T aﬁdeXdk2y .

ﬁ.(x,y,z) =i
i 27 27

(2-5)

If we choose the x-coordinate in the direction of the projec-
tion of the dipole on the horizontal plane, then the dipole

R . >
lies in the xz-plane and a . can be resolved as

> > > > > e
a = (aw-ax)ax + (aﬂ°az)aZ . (2-6)

The symbol 3 will be used for the unit vector with a subscript
indicating the direction of the unit vector; for example, the
unit vectors in the x-, y- and z-directions are given by gx’
- > ,

ay and a,r respectively.

2.2 Reflection and Transmission Coefficients for Plane
Hertzian Waves

Considering a typical member of the Hertzian plane waves

given in the integrand of (2-5) (except for the factor 5;%——),
2z
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ik, _x+ik., y+ik. _(h-z)
?T-i(XIYIZ) = e 2x 2y 2z —;T\' ’ (2-7)

we now introduce a new rectangular coordinate system (x',y',2)
with the z-coordinate unchanged so that the y'z-plane coin-
cides with the plane of incidence of %i’ Then the x'-direc-
tion is perpendicular to the plane of incidence. With respect

to the new coordinate system, (2-7) can be ﬁritteh as

> . 5> o -> > > -
T (X,y,2) = {(aw'ax,)ax.+(aﬂ'ay.)ay,
- > ikzy,y'+ikzz(h—z)
+(a, az)az}e (2-8)
where kzy,=V §x+k§y and y'=/x2+y2. Thus each component in

the (x',y',2) system is given by

ik, .y'+ik, _(h-2)
ﬂix.(x,y,Z) = (gﬂ'gx.)e 2y 2z ’ (2-9)
: ik, ,y'+ik,_(h-2z)
ﬂiyl(XIYIZ) = (;ﬁ.gyl)e 2y 22 r (2-10)
ik, ,v'+ik,_(h-2)
ﬂiz(x,y,z) = (aﬂ'gz)e 2y 22 . (2-11)

Next we will obtain the reflection and transmission coeffi-~

cients for Megre T 7, by converting these into electro-

iy'’ iz

magnetic waves through the eduations,

> 2
vV « Iy + k0,

oy By

-iweV x T, (2-12)

and requiring that the resulting E and H satisfy the boundary
condition. It can be easily shown. that each of UFP ﬂiy|

17



and T, also represents a plane electromagnetic wave, and
therefore it is sufficient to consider either E or H alone
in determining the reflection or the transmission coefficients
for the Hertzian waves. It will be also assumed that the lower
medium is homogeneous and isotropic as we assumed for the air,
and its conductivity is either finite or infinite. Let us now
consider the following distinct cases of polarization of the
incident T-wave (see Figure 2-1).

1) Ty & Tixe

This is the case where the vector direction of the Hertz-
ian wave is directed perpendicular to the plane of incidence.

Putting (2-9) into the first of (2-12) and carrying out the

indicated vector operations, we immediately obtain

. (2-13)

Thus Ei is also directed in the same direction as %i’ and is
hence perpendicular to the plane of incidence. For such Ei
the boundary condition is satisfied only if [Stratton, 1941,

p. 493]

£ =RrRE., , E,=T8, (2-14)

where R* and T  are the Fresnel reflection and transmission
coefficients, respectively, for perpendicularly polarized

waves;

(2 . 2
H,.COs0 - Vn'-sin-o

R (o) = ~ ,

M .cosa + Vnz—sinza
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N Zurcosa
T (o) = ’ (2-15)

urcosa + Vnz—sinza

where n is the index of refraction; n=kl/k2, and ur=ul/u2.
In analogy to (2~13), we can write
> 2 -+
7 Et —-— klﬁtx'ax' ® (2_16)
Finally combining (2-13), (2-14) and (2-16) yields the re-

flection and the transmission coefficients for the Hertzian

wave, M. .

-
7

da
T ., =R®, , , = 27 T . (2-17)

n

ix!'
2) U ﬂiy,
In this case the Hertz vector lies in the plane of inci-
dence and parallel to the interface. Inserting (2-10) into

the second of (2-12) and manipulating give

.%. ,.),
Hi = —wezkzzwiy.ax, . {2-18)

This time ﬁi is in the direction perpendicular to the plane
of incidence, and therefore Ei is in the plane of incidence.
Denoting respectively the Fresnel reflection and transmission
coefficients for parallel polarized waves by R” and T/, so

that
2 /2 . 2
n“cosa - | vn'-sin-a
2 /L2 L 2
n-coso + M,.¥nT-sin”a

RII (a) -
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2 2 0
™ (4) = n_cos , (2~19)

nzcosa + ur/nz—sinza‘

we have [Stratton, 1941, p. 494]

> _ ”—)' - _ nr -
B = R'H, , H =7T'H, £ . (2-20)

Since, by (2-18),

ﬁ = Wwe,k a ﬁ = -pe.k a

r 2 ZzﬂrY'ax' ’ t 1 1zwty'ax' ! (2-21)

where the plus sign in ﬁr is because of the change in sign of-
k2z on reflection, we finally obtain
€2k

T, ==R'nr, , , w, , = =22 q'y, . (2-22)

ry iy ty Elklz iy!

In the above €y is the complex dielectric constant, €, =

1
ei+(icl/w). Since ki=w2ulel, (2-22) can be alternatively
written as

u k
T, o= =R, , , m. ., = -Z2Z qug (2-23)
ry iy ty n2k iy
1z
3) Ty = Ty

For this case the Hertz vector is directed perpendicular

to the interface. Using the second of (2-12) on (2-11l) gives

>

>
H. = we k, ,7._a_,
iz™x

i 272y ! (2-24)

which shows that Ei is again in the plane of incidence. Thus

combining (2-20) and (2-24) along with
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> > > -
Hr = wazkzy,ﬂrzax, ' Ht = welkly’ﬂtzax' ' (2-25)
we obtain
u i
T = Ry T = X T (2-26)
ra iz ! tz n2 iz ° ‘

For easier.reference, we summarize the results of the reflec-
tion and the transmission coefficients for each component

plane Hertzian wave:

— — _ph .
Text = R Migr s TTry' R ﬂly‘ v Tyg R g i

N U k

—,?___ _ r 2z "
Texr = 2 Tig' 7 Ty 7 n%k T Tigr 7
1z

T"

T = fr .5 . (2-27)
tz n2 iz

We also list for comparison the reflection and the trans-

3 3 3 & -+
mission coefficients for each component of E:

pr s = ws = g
Erx' =R Eix' ' ! -R"E., , , E = R"E, ;
Y iy rz iz
i, -r'E 3otz g 5 2TUE L (228
tx' ix' ! ty' nk, iyt ! tz  n iz ° '

It is interesting to note that the reflection coefficients
for each corresponding component of T and E are identical
whereas the transmission coefficients are not.

2.3 PFormulation and Evaluation of Reflected and Transmitted
Hertz Potentials

Now that the reflection and the transmission coefficients

for a typical Hertzian plane wave are found, we are able to
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write integral expressions for the reflected and the trans-
mitted Hertz potential owing to the original incident Hertz

potential (2-5) as

<o
> . - 1 + T - ol +..+ >
I (%5,¥502,) = 5= J;[ {R (aptagi)ay~R™(a; ay|)ay.

NF‘

. s

1k2y,y2+1kzz(h+22)

+R" (3_-a)a_} &
T "z’ "2

k

dk.,_dk
22 X

2 2y

2]
. + u_k
_ i T = Jx > r 22z nr -+
ﬁt(xlly:‘_lzl) = '—"2“.[1 {n—z(a,n. ax|)axl+ nzkl T (aTF ayl)ay!
Z

. - s
r o R elk2y‘yl+lk22h lklZZl
+ —= T"(a_*a_)a_} dk,_dk
n2 T k2Z 2X2y
(2-29)
where we have used the fact that kly'=k2y' in writing the

phase fuhction of the exponential in the expression for ﬁt'
On writing the integrands of ﬁr and ﬁtrin terms of the com-

ponents in the primary system (x,v,z), (2-29) becomes

. ) _ i_ 4 > .+ > ‘+ ol > .+ > .+ >
ﬁr(xz,yz,zz) = 5= ;i-[{R (aﬂ ax,)(aXl ax) R (a,'T ay,)(ay. ax)}a
+ o> - O I S + x >
+{R (aTr a i) (@, ay) R" (a_ ay,)(ay, ay)}ay
1k2xx2+1k2yy2
dk xdk

T 2z k2z 2

+lk22(h+22)

2y
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o -+
> _ i T > > >
T (xqryy02y) = E?.lf[{EE(aw agr) (agitay)

u k e > -> <> - T-L -> > -
" . ° e .
= TG ra) By, ax)}ax+{n2(aTr ayr) (ag.ta,

My o
T (@B @R YA 5 TE 03 )E, ]
- ,

elkzxxl+lk2yyl+lk2zh_lklzZl
. - ~ dk,_dk
k 2x
2z

2y ° (2-30)

Here we have to keep in mind that the unit vectors ;x' and gy"

as well as the Fresnel coefficients R$, rRY, 7" and ", are

all functibns of the variables of integration, k2x and k2y°
Before we attempt to evaluate the integrals given in

(2-30), we mention an interesting observation. If we let

§ﬂ=gx (the horizontal dipole problem), then the z-components

of both ﬁr and ﬁt vanish and all three vectors ﬁi’ ﬁr and ﬁt

become purely horizontal. Since the total Hertz potential

above and below the interface can be given by, respectively,

i, =%, +1_ , #. =1, , (2-31)

the result is that the total Hertz potential everywhere con-
tains only the horizontal components. At first sight, this
seems embarrassing since, according to most previous works

on the horizontal dipole problem including those by Sommer-
feld [1949, p. 257], the Hertz potential everywhere.is shown
to require a vertical component in addition to the horizonhtal

component.in the direction of the dipole orientation. A
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rather important task of resolving this apparent difficulty
will be postponed until Section 2.6, so that we may presently
proceed with our original problem of evaluating ﬁrband ﬁt'

Returning to the integrals (2-30), we will use the
stationary phase method for evaluation [Carrier, et al.,
1966]. This method makes use of the self cancelling oscil-
lations of -an exponential factor in an integrand so that the
evaluation of the integral is carried out by neglecting con-
tributions of the integrand everywhere except in the neigh-
borhood of a critical point where the phase of the exponential
is stationary. This is the point at which the law of reflec-
tion is satisfied (the specular point) between the incident
and the reflected rays in the case of reflection, and the
point at which the law of refraction is satisfied between
the incident and the refracted rays in the case of transmis-
sion. Thus the results obtained through the application of
the stationary phase method are those of the geometrical
optics approximation.

With respect to the integrals (2-30), it is not diffi-
cult to see what happens physically. When the observation
point is far from the source point, the phase of a plane wave
reaching the observation point after reflection (or trans-
mission) oscillates rapidly as the direction of the incident
wave on the interface changes. As a result, most plane waves
virtually cancel one another, for each neighborhood of inci-
dent wave direction, as they are superposed at the observa-

tion point. However, in the neighborhood of a particular
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direction for which the phase is stationary, the phase changes
slowiy from one wave to another despite the great distance the
waves travel between the source and the observation point, and
hence these waves add up and amplify themselves.

Consider the following integral:

i¢
1= ij £ dk,, dk, (2-32)
= 2z

where we first let, for the purpose of evaluating ﬁr’

ko x

2% + k

-
I

+ kZZ(h+22) ’

2 2y7 2

u+
li

+ o > -> Iyl (T L2 - L2 ->
{rR (a ra ) (a ,va )-R" (a ay.)(ay. ax)}aX

+ > .-a- -> .->- _nl - .—> -> .-> > T e .->~ ->
+HR (a2 ) (&, ay) R’(aTr ay,)(ay. ay)}ay+R (a,a )a, .
(2~-33)

For the applicability of the stationary phase method, we as-

_ _ 2, 2 2
sume k2RT to be large where RT-RO+R2—/§2+y2+(h+zz) . The

geometry is illustrated in Figure 2-2. To find the values

of k

o and k2y at which point ¢ is stationary, which we

will call k2x and k2y' we put

-0 , 2t=0 , (2-34)
2% 2y
obtaining
Roek o2 Ro-x 22 k. =k 2, (2-35)
2% 2 Ry ' Fy T RaRy o Koz 2 Ry C
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Figure 2-2. Symbols and Geometry.
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On expandihg ¢ in a power series at the stationary point up

to the second order,

2 2
_ 1[3% =2, 1[0% =2
¢ = [¢]ev+2[ 2 ] (Kox ko) F 2[ 2 } Koy~
ok ev ok ev
2x 2y
+ {_;_EjﬁL__] (k. -%. ) (k. -%_ ) (2-36)
Bkzxakzy ov 2x 2% 2y T2y

where the symbol []ev indicates evaluation of the function
inside the bracket at the stationary point, and replacing 3
and k22 in the factor by their values evaluated at the sta-

tionary point, (2-32) becomes

- i{¢]
I =[—-g—] e ey, (2-37)
k 1
2z 4 ev
where
[or]
. 2 2
3¢ ~ 2 97 ¢ ~ 2
I =jIexp 3‘—{{ . ] (k. ~k. )"+ ] (k, -k. )
1 J 2 ak2 ov 2x T2x akz ov 2y 2y
2% 2y
[ 82¢ ] - . ,
+ 2 | mor——t— k.. -k. )Yk, -k ) dk, dk o (2-38)
BkZXBkzy av 2x 2% 2y T2y 2% 2y

It is easy to show that (2-38) integrates out to

2 2 2 2 -1/2

_2mf{19% 37¢ 37 ¢ -

I, =1 [—_7”] [”‘i?‘] - [SE“?E“’] > » (2-39)
Bkzx ev akzy ev y v

With reference to Figure 2-2, we have at the stationary point

+ o5t o o_ .
R —R(oco)‘ ;, R —R(ao) ;
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o
il

. > >
51n¢o y, & _,*a_ = coscbO ’

- . > .,
a_,*a._ = —COs¢O - = s1n¢o . (2~-40)

[¢]ev = kZRT !
a2, R X R
9 3 = - EE {1+(h+Z )2} = - E£(l+tan2aocos2¢o) ’
LakZX.ev 2 2 2
(02, ] R Vv R
3 g = - k_T {1+ (____h+§ )2} = - E—T-(1+tan2aosin2¢o) '
;3k2y.ev 2 2 2
2 y R
&ﬂgi%%z__} = _,____E_E__ = - EE tan2a cos¢ 51n¢ . (2-41)
2% T2ylev k (h+z ) 2

Using (2-41) we can simplify (2-39), which then becomes

27k ,coso,
I, = —_2 o (2-42)
T

so that I, (2-37), can be given by

(2-43)

I S > .\
If we let aﬂ-ax~31neo and aTr azfcoseO in {(2-6), then we can

write

-> . > -

a. = 51n60ax + COSean ’ (2-44)
and therefore

-> -+ N . -> - - N H_

a ta ., = 51n6081n¢0 roan ay, = 51neocos¢o . (2-45)
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By (2-40) and (2-45), E given by (2-33) becomes at the sta-

tionary point
P = * .2 Y 2 . ->
(g]oy = {R (@ )sin¢ - R" (o )cos ¢O}Slneoax

_Ip™ " . . >
{rR (@) + R (uo)}31neocos¢051n¢oay

n T _
+ R (ao)coseoaz . (2-46)

i, (2-47)
we finally obtain the reflected Hertz potential,

ﬁr = [{R*(ao)sin2¢o—R"(uo)cosz¢o}sineogx—{R*(uo)

1k2RT

Ry

" ) . > " . > e _
+R (uo)}51neocos¢051n¢oay + R (ao)coseoazl . (2-48)

Next, for the purpose of evaluating ﬁt’ we put in (2-32)

O = kpy¥y ¥ oKpy¥y Ko h = kg
§=Lurt G -3 )G, )+ oy (3 A ) (3,3 ) )3
g = _7 a-"n' ax! aX' aX & aﬂ ay, ay' ax ax
n 1z
+H{T (3 +3_,) (B, "3 )+ brlag T(3&_+3_,) (a_,*3_)}a
Y P A )
el BerE )2 (2-49)

For this case we assume k2Ro+klRl to be large for the validity
of the stationary phase method. The stationary point can be

found again through (2-34) (see Figure 2-3);
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k,sino ¢
2 o OSq)o

2x 1x . d
k131nBOcos¢o
_ _ kzslna051n¢o
k2y _'kly B . . d
k151n8051n¢o
k2z = kzcosoco ’ klz = leOSBO . (2-50)

Using (2-50), we obtain

ev
r 2, " R R
0 g = - E9(1+tan2a cosz¢ )~ El(l+tan26 cosz¢ ) ’
2k Jev 2 °© © 1 °© ©
-7 2%
o 2, R R
24| = - P+tan’e_sin® )~ E(l+tan®s_sin®s ) i
9kZ  lev 2 © © 1 °© ©
s 2y
- 2 R R
9% __ "o, 2 R .
§E—"§E__] = o tan aocos¢081n¢o T tan Bocos¢051n¢o ,
L 2x 7 T 2yJev 2 1
(2-51)
which on inserting into (2-39) and reducing now give
k,coso_cosB
=& e 2o . (2-52)

) 2 2
/QnRo+Rl)(nRocos Bo+Rlcos uo)

3 given in (2-49) at the stationary point becomes

u coso
P = ;_ + . 2 r .n 2 . > et
lgloy = nz[{T (0 )sin®¢ + == T (oco)coSBO cos ¢O}31n60ax {T (ao)
Ur u COéd . . > " >
- =T (ao)cos80}31n60cos¢os;n¢oay+urT (a )cosd a 1 .

(2-53)
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The transmitted Hertz potential can be given by

>
F g -
Iy = [kz'_"]ev I, o (2-54)
Z
and hence
i, = [{T*(a ) cosB sin2¢ + EE T (0. ) cosa cosz¢ }sind a
t ’ (o) o O n o o o] S o X

{T" () cosB urT"() }sind ind a
a,)cos o~ n oy coscxo sin Ocos¢o51n¢oay

N elkz(Ro+an)
+urT”(aO)cosBOcosean]

2 2
n/knRo+Rl)(nRocos BO+Rlcos a)
(2-55)
ﬁr and ﬁt given in (2-48) and (2-55) are the desired results
for the reflected and the transmitted Hertz potentials due

to a dipole of general orientation and an infinite plane in-

terface.

2.4 Some Special Cases

The previous results have been obtained under the geo-
metrical optics approximation, and hence their validity is
limited by the requirement of far-zone observation as we
have assumed in applying the stationary phase method. How-
ever, in some limiting cases, they become exact and lead to
well known results, namely, when n+l or n+«, The limit n>1
corresponds to the case where there is no interface (an
imaginary interface). For n=1 we easily see from (2-48)

and (2-55) that
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e1k2(RO+Rl)

=
i
o

. > ->
ﬁt = (s:.neoax + coseoaz)

R _+R (2-56)
o 1

where now RO+R1=/;i+yi+(h—zl)2. As we should expect, no re-

flection occurs and the transmitted Hertz potential-is just:
the same as the incident Hertz potential at that point. On
the other hand, the limit n>* corresponds to the case of the
lower medium being perfectly conducting. In this limit, from

(2-15) and (2-19)

R'(a) = -R (@) = 1 ,
e
T () = T'() =0 , (2-57)
and thus (2-48) and (2-55) reduce to
f = (-sin® _a  + 6 a )elkZRT . Tz o0 (2-58)
r T \Tsinv,a, v cosva, __EE_— ’ £t

in agreement with what we already know from the theory of
imageg for a dipole in presence of a perfectly conducting
half space: the image of a vertical dipole is a dipole of
the same maghitude and orientation, while thgt of a horizon-
tal dipole is a dipole of the same magnitude but of opposite
orientation, both images located at their mirror image points
with respect to the interface.

There is one situation in which the geometrical optics
results even for a far-zone observation be@ome inapplicable.
This situation arises in both cases of the vertical dipole

and the horizontal dipole when the source point and the

34



observation point simultaneously approach the interface, so
that the:incident wave (at thé stationary point) becomes
close to grazing. We will examine this separately for the
two cases as we now specialize the general results to the
vertical dipole case and the horizontal dipole case.

a) The Vertical Dipole

By (2-3) the incident wave can be described by

I._ = ' Hix = Hiy =0 , (2-59)

and the reflected and the transmitted waves are given by

letting 6 _=0 in (2-48) and (2-55), yielding

1k2RT

=]
I

n € 1 = = .
= RUeg) g s My F Hry =0

rz i

ik, (R_+nR,.)
urT"(a YcosB e 270 1
I., = 2 2 , N, =1, 20 .

tz / 5 tx ty
n (nRO+Rl)(nRocos BO+R

coszu )
1. ° (2-60)

The above expression for ﬁr igs well known and has been ob-
tained by Wise [1929], Norton [1937] and others. It is also
identical to the first term of equation (19.36) of Brekhov-
skikh [1960, p. 255] which was obtained by using the saddle
point method. Using the energy flux method, Brekhovskikh

. . >, . .
also derives an expression for II, in the geometrical optics

t
approximation, his equation (23-8), which can be easily shown.

to be identical to the above ﬁﬁ by rearranging.
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To see -whether the geometrical optics approximation is
applicable when the incident wave is near grazing, we look
at the total Hertz potentials, given by adding ﬁi and ﬁr in
the upper medium and by ﬁt alone in the lower medium. They

then become

e1k2R i elszT
sz = R + R (OLO) —-—R—r ’ HZX = sz =0 ;

ik, (R _+nR.)
urT”(uO)cosBOe 270 1
n,, = , T, =10, =0 .

1z
2
n/(nRO+Rl)(nRocos BO+R

coszu )
1 © (2-61)

If the incident wave is sufficiently close to grazing, we

have aozﬂ/Z, and hence

1] -~ " - ~ -
R (ao) = =1 , T (ao) = 0 , RT'” R (2-62)
so that (2-61) becomes
HZZ = 0 , an E H2y =0 ;
le = 0 , Hlx = Hly =0 . (2-63)

Thus the geometrical optics results become vanishingly small,
in which case the terms neglected in the approximation be-
cause of the use~of the stationary phase method are no longer
negligible and become either comparable to or greater than
the geometrical optics results. The geometrical optics ap-
proximation for both ﬁr and ﬁt is therefore inapplicable for

the grazing incidence. The rate of the approximation getting
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poor as to the grazing incidence of course depends on the

value of kl or n. From (2-19) and (2-61) it can be seen

that as n increases, the region of uo for which the geo-

metrical optics approximation is applicable also increases.

b) The Horizontal Dipole

By replacing Eﬂ by ;x’ we obtain from (2-3)

M, = ; My, EM =0,

and with 90=ﬂ/2, (2-48) and (2-55) yield

~e

’

ik ,R
27T
T__ = {R (a_)sin®6 ~R" (o )cos’¢ } &
rx o o o o R,
lszT
I = -{R" (a_)+R" (a )}sing cosdp e — il z
ry o'~ o o e} R ! rz
nT (o _)cosB sin2¢ +u_T" (0 ) coso cosz¢ ik (R_+nR,)
I _ o} 0 o 'r 0 0 0 o 270 1
tx
2/ 2 2
n (nRO+Rl)(nRocos BO+Rl¢os uo)
-~ _ n . :
—— {nT (oco)coseO W T (ao)cosuo}51n¢ocos¢o e1k2(RO+an)
it nZ/QnR +R.)} (nR coszB +R. co 2@ )
o 1 o) o TH1C08 G4

(2-64)

An expression for ﬁr in the case of a horizontal dipole and

a finitely conducting plane interface is also obtained in

Brekhovskikh [1960, p. 259], which, however, is different

from our-ﬁr shown in (2-64) in magnitude as well as in the

vector direction. The apparent discrepancy between our

37



Hertz potentials and those obtained previously using the res-
olution of ﬁ=(Hx, 0, Hz) was already mentioned earlier when

we derived the integral formulas for ﬁr and T namely, (2-30).

y
These two distinctively different ﬁr‘s for the horizontal di-
pole problem, although both are approximations, will serve as
a particular example when we demonstrate the nonuniqueness of
the Hertz potential in the horizontal dipole problem in Sec-
tion 2.6. This apparently has been overlooked by all previous
workers in this area and is believed to bear great significance.
The expression for ﬁt given in (2-64) is new. In fact, this
seems to be the first time that a closed form result for ﬁt
in the horizontal dipole problem is derived.

Next we will examine the applicability of (2-64) in the
special case when the incident wave is grazing. Using (2-62)
and the following approximate values for the other Fresnel

coefficients

+ -
R (@O) = -1 , T (ao) =0 (2-65)

we obtain in terms of the total Hertz potentials

isz isz
~ 3 e . °
H2x I g © 251n¢ocos¢o R ’ 24 H

u
N
Q
O
(03
©-
0

I

R
o
-
=
123
o
~
=

= 0 . (2-66)

1x 1z

By the same argument as presented in the case of the vertical
dipole, here the geohetrical optics approximation of ﬁl for
the grazing incidence is also seen inapplicable. It is in-

teresting to note that for ﬁz, however, whether or not the
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approximation for the grazing incidence is inapplicable is
dependent on the vaiue of ¢o. For example, we obtain for

$,=0

ik2R
~ e o~ = -
H2x z 2 5 ’ H2y," o , sz =0 , (2-67)
and for ¢o=ﬂ/2
HZX ~ 0 , sz ~ 0 , sz =0 . (2-68)

Thus considering both the dipole and the observation point
located slightly above the interface, when the observation
point is located in the direction of the dipole polarization,
the reflected Hertz potential is about as large as the inci-
dent Hertz potential with the same sign so that the geomet-
rical optics results for the total Hertz potential become
even larger, making the approximation for this case guite
valid. As the observaton point is moved further and further
from this direction, the reflected Hertz potential first be-
comes smaller and smaller, and then after changing the sign
it again grows until finally when the observation point lies
in the direction normal to the dipole polarization, the in-
cident and the reflected Hertz potentials almost cancel out
each other making the approximation invalid. Actually the
electromagnetic field derived from (2-67) is very close to
zero in spite of the reenforcement in the Hertz potentials,
which appears disturbing. But in this case the contribution

from the neglected terms in ﬁt is even smaller.
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This is in contrast to the vertical dipole case where the
total Hertz potential in the geometrical optics approximation
at any point becomes invalid for the grazing geometry.

2.5 Derivation of Reflected and Transmitted Electromagnetic
Fields

From the Hertz potentials obtained in Section 2.3 the
reflected and the transmitted electromagnetic fields can be
derived through the relation (2-12) in which the differential
operators are to operate on the field point coordinates. 1In
carrying out the indicated differentiations, we can assume
the factors multiplying the exponential, including R_l, to
be approximately constant. This is justified since the fac-
tors change much more slowly in comparison to the exponential
under the condition of far-zone observation. The far-zone
approximation is equivalent to a high frequency approximation,
which can be easily seen. With this assumption, the manipu-
lation is straightforward, as each of the differential opera-

tors is replaced by

., : 3 . . . 3 . .
s F 1k251naocos¢o rosys T 1k251na031n¢o o5y ik cosocO
2 2 2 2
3 ikzsinuocos¢o 5 ikzsinaosin¢o
%%]  |ik.sing cosé Y1  |ik.sing_sing '
1= 0 o) 1 o) o)

2 ik cospB . (2-69)
le 1 0

The results are tabulated in the following (Appendix A):
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a) The Vertical Dipole.

The reflected field:

iszT
E = —k2R"(a )sino cosa _cosd &
rx 2 o o o o} RT !
ikZRT
. — - 2 n 3 : e
Ery = k2R (ao)51naocosu081n¢o RT ’
ik ,R,
E_ = kZR"(a )sinzu E__E_E ;
rz 2 o) o) RT !
k; n : elkZRT
er = Eﬂ; R (a0)51na031n¢o = '
T
kg elkZRT
H = - —=~ R’ (0_)sina _cos¢
ry wuz (o] o (0] RT
H., =0 . (2-70)

In view of the cylindrical symmetry of the dipole orientation
with respect to the interface, (2-64) becomes particularly

simple in terms of the cylindrical components:

- ' elszT
Err = —sz (ao)51nuocosuo ——§;- '
Er¢ =0 ,

- lszT
Erz = sz (ao)51n o R ;

T

Hrr =0 ,

kg elk2RT

- e n :

Hr¢ = T R (uo)s1na R, ’
sz = 0 . (2—71)
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In writing the components for the transmitted fields, we de-

note for simplification

cOs
BO

1 .
=35 - (2-72)

/?;ﬁ +R.,) (nR cosZB +R cosza )
o 1 (o) o1 o)

Then the transmitted field is given by

1k2(Ro+an)

- 2 " : e
Etx = kzurT (ao)s1naocosBocos¢o RT ’
, ) 1k2(Ro+an)
Ety = —kzurT (ao)51na00056051n¢o RT r
, ) ' elk2(R0+an)
Etz = kzurT (ao)slna651n60 ﬁT ;
kgn ) elkz(Ro+an)
Htx = Eﬂ; T (ao)51na051n¢o - '
kgn ) e:Lkz(Ro+an)
th = - Eﬂ; T (aO)SLnaocos¢o 5 ’
th =0 (2-73)

which in the cylindrical components become

) ) elkz(R°+an)
Etr‘= -k urT (ao)s1na°cosso 5 ’
E£¢ =0 ,
, ) | | e1k2(RO+nR1)
E = k urT (uo)51na051n80 B ;

tz 2
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tr
kgn ) e1k2(Ro+an)
Ht¢ = - JFE'T (oto)s:l.nm-o 5 ’
th = 0 . (2-74)

b) The Horizontal Dipole

The reflected field:

ikZRT
- 2 + 2 _nl 2 2 e
E.x = kz{R (ao)31n ¢O R (ao)cos a _cos ¢°}__§E_— ,
ik2RT
E = —kz{R*(a ) +R" (o )cosza }siné cosd S
ry- 2 o o o o) o Ro !
- elszT
Erz = sz (ao)slnaocosaoces¢o ——ﬁg—— ;
‘ kg +- " elkZRT
Hop = Eﬁ;{R (ao)+R (ao)}cosaosln¢ocos¢o R '
k3 lszT
H = —3;{R*(a )sin2¢ -R" (a0 )cosz¢ }cosa , S
ry = wi, o) " Yo o o © Rp '
Ky . JEafr
Hrz‘= - EF; R (ao)51na051n¢o ——ﬁ;—— . (2=75)

In the cylindrical coordinate system,

ik.R
E ='-k2R”(a )cosza cos¢ E—-E—E
rr 2 o o o RT ’
) sz.a_ ( . elszT
Er¢ T T2 a02s1n¢o Ry ’
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ik2R
2.1 . ~ e T
kK R" (0 _)sino _coso _cos¢

Yz 2 o} (o} lo} o} RT

w

) ) 3 R¢( | ‘ elszT
rr = E‘; aoxcosa051n¢o "

o

= - _zn R” (o) cosa cosod *——3*3
£ T o o o R !

o

L > e o MR
vy = - m—-—-z- O'OA s:.no&osa.mbo ——-ﬁ'&-‘—-—- .

(2-76)

The transmitted field:

lkz(Ro+an)

2 -+ 2 " 2 e _
kz{nT (ao)SLn ¢o+urT (uo)cosaocossogos ¢o} 5

=
it

tx
1k2(Ro+an)

o ok 2iamt - " , . e _
Ety = kz{nT (“o)‘“rT (ao)cosaocosBo}sln¢ocos¢o 5

ikz(R +an)
g = “KoHT" (3) {nf cost S
Etz = kzurT ao cosuos1n oS08 o

~o

3

kgn 1k2(Ro+an)

= - n ;
He o wul{nT (a )cosB e T (a )cosa }sing cos¢ 5

k3 1k (R +nR

N 2" " e
th = BEI{nT (u )cosB sin ¢ +u T (0 )cosaocos ¢ } B

1)

kgnz . elkz(Ro+an)
He, = - e T (0,)sinB sing 5 . (2-77)

In the cylindrical coordinate system,

1k (R +an)

e
tr = kzu T"(a ) cosa cosB cos _— ,

E B
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) . . elk2(Ro+an)
Et¢ =f—k2nT (uo)51n¢o 5 ;
X i . elkz(RO+an)
Eig = —kZMrT (ao)cosa051nBOcos¢o‘ 7 i
k;nz . e1k2(RO+an)
Htr = ey T (uo)c058051n¢0 B ,
kgn ) e1k2(Ro+nR’l)
Ht¢ = Eﬁ; T (ao)cosaocos¢oy B ’
kgnz . elkz (RO+an)
th = = By T (ao)51n6051n¢0 5 . (2-78)

These results confirm that the radiation field is zero

along the dipole axis.

2.6 Nonuniqueness of Hertz Potentials

In the classical horizontal dipole problem where the
dipole is oriented in the x-direction of a rectangular coor-
dinate system (x,vy,z), and is located above or on an infinite
plane interface (the xy-plane) of a finitely conducting earth,
it is well known that the x-component of the Hertz potential,
fo alone cannot:describe the electromagnetic field every-
where. This is because E and H derived from Hx alone cannot
satisfy the required boundary condition, namely, the conti-
nuity of- the tangential components of E and H. Sommerfeld
[1949, p. 258] thus assumed a z-component, Hz, in addition
to Hx’ which then led to a set of boundary relations in. terms
of Hx_and Hz that were consistent with the boundary conditions.

on E and H. In view of his work, a question naturally arises
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whether Sommerfeld's ik is unique for the problem. It ap-
pears that most workers assume his choice of components for
i to be unique and the resolution ﬁ=(HX,O,HZ) to be neces-
sary. So does Brekhovskikh [1960, p. 259] in stating that:
"It turns out that;,; in addition to Hx’ the reflected and re-
fracted waves will also contain the component.Hz, since other-
wise the four boundary conditions. expressing the continuity
of the field components, Ex’ Ey, Hx andHy across. the inter-
face could not be satisfied.”

Thus assuming that ﬁr=(nrx,o,nrz), Brekhovskikh [1960,
p. 259] obtains a complete solution for er and Hrz by using
the saddle point method. The first terms of his expressions
correspond to the usual geometrical optics results, which in

the present notations become

. elszT
er = R (ao)‘ RT !
. ) elkZRT 2
n,., = {R (ao)+R (uo)}cotaocos¢or——§;—— . (2-79)

Our Hertz potential, (2-64), shows for the same problem that

g
Hr=(er,Hry,O) where

lIn Sommerfeld, the symbol il denotes the total Hertz
potential above the earth, but in this section I will be
used to méan the general term "the Hertz potential," when-
ever distinction between two Hertz potentials above and
within the interface is not necessary.

2grekhovskikh's equation (19.49) appears to be in
error in that the azymuthal dependence factor cos¢y is
missing. Multiplying (19.49) by coscbO and rearranging

gives I__.in (2-79).
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ik,R

i = {R+(a )sin2¢ -R" (a0 ) 2¢ }g——-z——E
rx o o o’ €98 %4 R, '
ikZRT
I = —{R+(u )+R" (6 )}sind cosp S (2-80)
ry o o o o R *

It can be seen that (2-79) and (2-80) are two distinctively
different Hertz potentials. We have already calculated Er
and ﬁf in (2-75) corresponding to ﬁr of (2-80). If we do
the same for ﬁr of (2-79) using the same approximation
(2-69), then it is found that the result is identical to
(2-75). This indicates that there are at least two soclu-
tions for ﬁr for thig problem. In fact we will show in
what follows that there exists an infinite number of solu-
tions for the Hertz potential, the reflected as well as the
transmitted, for the horizontal dipole problem. Furthermore
it will be seen that the existence of infinite solutions for
T is not only true for the horizontal dipole problem but ac-
tually for any boundary value problem.

We first note that the regquirement on ﬁr is that Er and
ﬁr derived from ﬁr satisfy the boundary condition and that
ﬁr be any solution of the homogeneous vector wave equation

[Stratton, p. 430]

VxVxE-v(ved —kgé’:o ) (2-81)

Let us suppose that ﬁr is a solution of (2-81), and let,ﬁr
and ﬁr be the corresponding electric and magnetic fields
that satisfy the boundary condition. If we add to ﬁr_the

gradient of any solution ¢ of the homogeneous Helmholtz
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equation

v 2y +.k§w =0 |, (2-82)

then ﬁr+V© is also a solution of (2-81) -but in view of the
operations indicated in (2-12), Er‘and ﬁr do not change, re-
gardless of the magnitude and the particular form of ¢. The
specific factor in ﬁr must of course be determined according
to the form of the incident wave and- the boundary condition.
However, the boundary condition is actually given in  terms

of E and E and not directly in terms of ﬁ; hence, insofar as
the derived boundary relations in terms of the components of
i are compatible with each other, all such ﬁ's correctly des-
cribe one and the same electromagnetic field. The nonunique-
ness of the acceptable boundary relations in terms of T can

be verified immediately. The boundary relations for ﬁ2=

(HZX,sz,O) and ﬁl=(Hlx,H1y,O) become
511 o1l
9 & _ .2 .2 2 2% 2 1x
ST Hymed)) = ki k0T, 0 k) e = K] 55
o1l i
) . 20 2 2 %%y 2 %M1 _
5V dymvel)) = ki mkOT, o Ky gk = k] 5 . (2-83)

For comparison, we list the boundary relations for Sommer-

feld's resolution, i.e., for ﬁ2=(n2x,o,n22) and ﬁl=(n1x,o,nlz>:
x2n, = k21 w2 lax 2 Phix
272% Tl71lx ! 2 3z 1 3z !
)21 k21 Moy . ol , - ol x _ o ox (2-84)
272z ~ 171z ! 9z oz 9z 3z °

48



It can be seen. that the four equations. in (2-83) are mutually
compatible just as are those in (2-84). Since (2-82) has an

infinite number-of solutions, so does (2-81).

Fogfllluétratlon, let ﬁr=(nrx’nryfo) with er and Hry~
given by (2-80) and choose.
{R" (0 ) +R" (o ) lcosd 1KoRy
? = zk sineao . E—E’ . (2-85)
2 e} T

Using the approximations (2-69), we can easily show that ¢

is a solution of (2-82), and also that

. ik, Ry
ve = R (4 )+R" (0 )) cos’s Se —
' 1o) o > To . RT' ’

lszT

’
RT'

<R"' (a ) +R" (occ)) sing cos¢ =

ik.R
R (a_)+R" (0._) e *7T (2-86)
(ao : “o) cos“09°s¢o{_fﬁg—_ . a

Adding (2-80) and (2-86) gives a.new solution ﬁ;;

ik.R ik.R
5 . e 27T . ) o 2T
' = - B A,
r. = {R (?o) RT“ ' Q , 1R (ao)+R (ao)}cotaocos¢° R&'
(2-87).

which is none other than Brekhovskikh's reflected Hertz po-
tential, (2-79). Thus in this illustration the particular
choice of the factor for ¢ in (2-85) was made in order to

eliminate .the y-component of (2-80) and obtain Brekhovskikh's
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expression.. It may be observed that, by choosing the factor
in T properly, we can actually eliminate any one component
of ﬁr’ but not two components simultaneously, or leave all
three components finite; hence there are all four possible
resolutions for ﬁr'

M, also satisfies an equation of the same form as equa-

t

tion (2-81) in addition to the boundary condition on Et and

ﬁt“derived from ﬁto Therefore, by the same argument as in
the above, it can be inferred that ﬁt,is also not unique.

Since both ﬁr and ﬁt are not-unique independently, it
can be further said that the resolution of ﬁr and that of
ﬁt’need;not be the same in a problem; for example, in terms
of total Hertz potentials. we can let ﬁ2=(H2X,O,H22) and
ﬁl=(ﬂlx,ﬂly,0), i1f such a combination of different resolu-
tions is desired. Needless to say, the derived boundary
relations are compatible with each other.

It may be worthwhile in connection with the preceding
discussions on the nonuniqueness of ﬁr and ﬁt to examine

whether the incident Hertz potential can be given uniquely.

ﬁi satisfies the nonhomogeneous equation

VxVxE-v@d -xk=27F . (2-88)

We have used the particular solution of the above equation,
given in (2-1), as our incident Hertz potential. From the
mathematical, standpoint, the complete solution includes also
the general solution of the homogeneous equation. We have

seen that (2-88) has nontrivial homogeneous solutions.
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Therefore. according to the Fredholm theory [E§stein, 19621,
there exists an infinite number of solutions for (2-88).
However, on the physical grounds, all the homogeneous solu-
tions are interpreted to represent the contributions from
the sources other than 3, and hence must be zero in the ab-
sence of any other sources than 3. Thus there is a unigue
choice for the,incident-potential, namely, that given by

(2-1).
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CHAPTER 3

INTEGRAL FORMULATION OF REFLECTED AND TRANSMITTED
HERTZ POTENTIALS FOR AN INFINITE ROUGH INTERFACE

3.1 Vector Helmholtz Integral

As was shown in the preceding chapter, when the inter-
face was a smooth plane, the spherical function of the inci-
dent Hertz potential was first expanded into a family of plane
waves. Then the boundary condition on each of the plane waves
in the integrand could be prescribed in a manner independent
of the spatial coordinates. Thus spatial integrations were-
not necessary in the formulation of the reflected or. the
transmitted Hertz potential for a smooth plane boundary.
However, this is no longer the case when the-interxface be-
comes rough and this roughness is to be considered. Obvi-
ously, spatial integrations now become necessary in addition.
to the integrations with respect to wave numbers in order to
account for all contributions from each differential area of
the interface with varying height and orientation.

For this purpose it is convenient to use the vector
Helmholtz integrals given in terms of the Hertz potentials
as the wave funﬁtions. The derivation of the vector Helm-
holtz integral is usually made by first deriving the scalar
Helmholtz integral for each rectangular component of the
wave function using Green's theorem. Each resulting d@mpo—
nent Helmholtz integral is then,récombined-to yield the vec-
tor Helmholtz integral. Alternatively, if we carry out this

recombination of each rectangular component for Green's
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theorem instead of the Helmholtz integral we then obtain
"vector Green's theorem." Namely, for twice differentiable

functions, G and C,

Jr { (v26)&- (v¥&)Glav = Jr a__+{(v@)C~(Ve)Glds (3-1)
v s on

where S is a closed surface whose volume is V andigén is the
outward unit normal of S. A more general derivation of (3-1)
using some dyadic identities is given by Ezell, Erteza, Doran

and Park [1968]. The following are the dyadic identities:

>

Ve (RB). = (V-A)B + R:VB ,

Ve (GR) = VG*A + GV*A , (3-2)

I

where A and B are any two vectors, 2 is a dyadic, and G is a
->

scalar function. In-(3-2) let A=VG, B=C, and A=V¢, then

(3-2) becomes

Ve { (V&) 8} = (V-9G)& + VG-vE

Ve (GVE) = VG*VE + GV-VE . (3-3)

Finally subtracting the top equation from the bottom equation

and applying the divergence theorem immediately gives (3-1).
The vector.Helmholtz integral follows. from (3-1). To.

show this, suppose,E satisfies the homogeneous vector Helm-

holtz equation

v2%E + k% = -1 (3-4)

and let G be the Green's function defined by
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V3G + k2G = -418 (P=F") (3-5)

ikR
R 7

and R=I?—;']. Then just as in the scalar case, we can ob-

where 6(?—?') is the dirac delta function, G(?,?')= =

tain. from (3-1)

1 <> > ' 1 > I > >
Clr") = 7w J, L(r)e(r,r")dv + s j; a,, V(@ G (z,x")

-{VG(%,2")}C(¥)1ds . (3-6)

If we let EEO, i.e., if,E gatisfies the homogeneous Helmholtz

equation
v%E + k% =0 (3-7)

then the first term of (3-6) vanishes, leaving the vector

Helmholtz integral
-2 1 3 >, Wz _
C=z= j; aon {(v&)e - (Ve)Clds {3-8)

where for conciseness we left out the arguments for the func-

tions ¢ and .G.
The applicability of (3-8) for the purpose of evaluating
ﬁr and,ﬁt in the dipole problem is obvious,; since they also

satisfy the homogeneous equation (3-7):

2= 2% 2% _
Vi + kol =0 VoI, + kjlly = 0 . (3-9)
1f we define the Green's functions in the two media by G.

and Gt so that
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2 2

- -7-_-9-' 2 2 _ —>_->- _
v Gr + k2Gr = -478(xr-x') , V Gt + let = =478 (r-r') , (3-10)

then, making proper repiacement in (3-8), we obtain

= 1 S >
Hr = I J(an.{(VGr)ﬁr - (Vﬂr)Gr}ds ’

i, =- -ﬁ.ﬁ. f?{n-{(vst)‘?ft_— (vﬁé)ct}ds , (3-11)

where the minus sign in front of the integral for ﬁt is be-
cause of our definition of gn, which is directed from the

lower medium (medium 1) to the upper medium (medium 2).

3.2 Derivation of Integral Formulas for Reflected and.
Transmitted Hertz Potentials

We define the coordinate system for the case of the
rough interface the same way as in the case of the smooth
plane interface except that here the plane z=0 is chosen to
coincide with the mean plane of the interface, the height.

of which from the mean plane is described by the function
z = g(x,y) . (3-12)

The definition of the medium propertiegs above and below the
inteiface and the convention regarding the use of the sub-
scripts are the same as .in the previous chapter. To reduce
the Helmholtz integrals given in (3-11) to the forms from
which we can readily evaluate ﬁr and ﬁt at any point with
specification of the interface function r(x,y), it is first
necessary to evaluate ﬁr and ﬁt and their gradients at the

interface. To do so, however, some form of approximation
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is neceSéary, since the interface, being irregularly rough,
cannot be separated in any coordinate system. A simple and
by far the most.frequentl§-used approximation is the tangent
plane approximation. Here, we suppose that the incident plane
wave . at a point P(x,v,z) on the interface is reflected and
transmitted as if the interface were a plane tangent to the
true interface at P. Thus it can be seen that the tangent
plane apéroximation reqguires the roughness of the interface
to be locally gentle everywhere relative to the wavelength.
Brekhovskikh [1952] shows the criterion for the applicability
of this approximation in terms of the local radius of curva-

ture as
4ﬂrccosa >> A (3-13)

where ry is the smaller of the two principal radii of curva-
ture and o is the local angle of incidence.

Assuming this is the case for the present interface, we
again are required to expand the incident Hertz potential in
terms of the plane waves. At P(x,vy,t) on the interface, we

obtain from (2-5)

ll—'

(P kgt yrik,, (a-0)
. (3-14)

k

5
I, (P) =
i 2%

dk
X

[3%]

T J 2

-
aﬁdk 2y

Since the phase function of the exponential does not change

on reflection, we can write the reflected Hertz potential at

P due to.(3-14) as
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) -/p e1k2xx+1k2yy+1kzz(h-—t;) .
> J & Re aﬂdk xdey (3-15)

i_(p)
r 22 2

where R is the dyadic reflection coefficient. The assumption
of dyadic nature for R is necessary because the reflection
coefficients for each component of the incident plane wave
are different and also because in general there are cross
polarizations present on reflection. Similarly, assuming a.
dyadic transmission coefficient T, the transmitted Hertz po-

tential at P can be given by

R : jp e1k2xx+1k2yy+lkzz(h—c) R
Ht(P) T J T'aﬂdk xdk . (3~16)

kzz 2 2y

The components of R and T are functions of the Fresnel coef-
ficients and parameters of the interface r(x,y). The explicit
expressions for these will be derived in Section 3.3.

In order to evaluate (3-15) and (3-16) in the geometri-
cal optics approximation, we assume that the source point
is sufficiently far removed (compared -with the wavelength)
from the interface according to the requirement of far-zone
observation. Thus the geometrical optics results for ﬁr

and ﬁt become

ik, R,
4 - A .-)s e
Hr(P) = [R]eV a'ﬂ" Ri 4
ik,R,
= n .—) _e________ ——
I (@) = [T1 -3, R; ' (3-17)
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22 3 v ~ A ~ A
where Ri"/; +y“+(h-g)° , an@k[R]ev and [T]ev are R and T
evaluated at the stationary point
y_ | = h-g -
n v ko, =k w . (3-18)
kzz was obtained by deflnltlon’kzz= kz-kzx-kzy. See Figures
3-1 and 3-2 for related symbols and geometry.

For the evaluation of the gradients of ﬁr and ﬁt at the
interface, we note»that, in the integrands of (3-15) and
(3-16) , the factors ﬁ'gﬂ and @’3“ vary much more slowly com-

W

i .
pared to e~ , where w—k2xx+k2yy+k22(h—§L along the interface,

and hence we can approximately set

[°3) A
vi (p) = Lo Jr (Vei"’)R'atw dk._ dk
x To2n J Koy 2x 2y !
o0 A
vit, () = & Jf (v "‘W)T.aTT dk. dk (3-19)
£ 2w J © 'k, Thax®Fey

On denoting the reflected and the transmitted wave vectors
corresponding to the incident wave vector K2=(k2x’k2y'k22)’

by ir and it’ respectively, it can be easily shown that

e for vﬁr(P)

k
V5 ; (3-20)
kte for V t(P)

so that (3-19) becomes
, iw
_ i T AT e
Vﬁr (P) = 5 _j:[ J.krR aﬂ, E-z-—z— dkzxdkzy ’
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Q2<x2,y2,zz)

tangent plane

Figure 3-1. Symbols and Geometry for Re-
flection from a Rough Boundary
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tangent plane

Qy (¥yr¥ye2y)

Figure 3-2. Symbols and Geometry for Trans-
' mission through a Rough Boundary
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K

w

. iw
vﬁt(p) = %F-£[ iitm-éﬂ — dk, dky . (3-21)
= 22

The results for the above integrals in the geometrical optics-

approximation can be simply written down, in analogy to (3-17):

ik,Re
T () = ik Rl -a &
rv’ rCev W Ri ’
ik.R
T.(p) = i[k. %] a2 & 21 (3-22)
t = ilk Tl o —x .

The Green's functions in (3-11) for the observation points of

Qz(xz,yz,zz) and Ql(xl,yl,zl) are explicitly

:Lk2Rr
‘ e
Gr = " r
Y
eJ.klRt
Gt = ‘T—" ’ (3_23)
t

2 2 _ 2 2 2 2
where Rr=/Qx2—x) +(y2—y) +(zz—;) and Rt=/7§lfx) +(ylfy) +(zl—C) .
We have already assumed that the source point is sufficiently
far removed from the interface. Now supposing that the obser-

vation point is also sufficiently far away from the interface,

so. that k2Rr>>l and-klRt>>l, we have approximately
elszr elszr R
VG_ = ik VR_ = -ik a '
r 2 TR, 2 R, R,
| elkl - elklRt .
VG, = ik VR, = =ik, = — a, . (3-24)
t- 1 Rt t 1l Rt Rt
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Inserting (3-17), (3~22), (3-23), and (3-24) into the corre-

sponding equation of (3-11l), we finally obtain the desired

formulas,
ik.R. ik.R
ﬁr(Qz) = tﬁ‘ _[;n.(gR +-";R )[ﬁ]ev';ﬂ . R2 - = R2 - ds '
‘ 1 r i i r
ik,R, ik.R
ﬁ(Q)=—]-<—]lf3'(—5 +ax ) [®1_ & & ‘le ltds (3-25)
t =1 ani n R k ev T R, R ’
t. Tt 1 t
where we have used that
> - > > > > -> > >
an.[kr]ev = kzan'air = kzan°aRi ! an.[kt]ev - klan'ait ‘

(3-26)

The integrals (3-25) have the familiar form of an integral in
the physical optics, which is not surprising since (3-25) is
a generalization of the physical optics integral for the case
of a rough interface and an arbitrary medium property below
the interface.

Making use of new symbols, we may write in place of

(3-25)
(0, = j%r(QZ,P)'Hi(P)ds ,
T (Qq) = j;t(Ql,P)-ﬁi(P)ds , (3-27)

where the new dyadic guantities are
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x ik,R

_ 1 - . (T - A e -
640)/) = g7 2y (g *ag ) B, S— (3-28)

t t

From (3—27), it is seen that, at each point on the interface,
the contribution to the total reflected or transmitted Hertsz
potential is given by multiplying the incident Hertz potential
by a functional, 8r'or 6t. This form for ﬁrlin,terms of Sr'
was first. introduced by Erteza, et al. [1965] through a use
of a different method. Although their 8 _, which is called
"the differential reflectivity," differs slightly from that
given in (3-28), the agreement of their results after evalu-
ating the integrals in the geometrical optics approximation.
can be easily noted. By the same reason for calling 8r the
differential reflectivity, 6trmay be called "the differential
transmissivity.“l
The evaluation of the integrals (3-25) can be again
carried out by using the method of stationary phase. éince
there are in general more than one stationary point for
rough interfaces, we first calculate the contribution from
each stationary point cbnsidering one stationary point at
a time. ‘The total reflected or transmitted Hertz potential
can then be given by summing the contributions from each-
stationary point, provided ﬁhat~the total number of sta-

tionary points and their locations are known. For arbitrary

Lrhe terms "reflectivity" and "transmissivity" are some-
times used-to refer to the ratio of energies of reflected or
transmitted over incident. See, for example, Born and Wolf
{1964, p.4]. These two uses should not be confused.
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rough interfaces (including random rough interfaces), however,
the number of stationary points as well as their respective
locations are usually not known, or at least are extremely
difficult to determine.

In Chapter 4, we Will assume the rough interface to be a
stationary random érocess and will be able to approximately
evaluate the integrals without resorting to knowledge of in-
dividual stationary points.

3.3 cCalculation of Dyvadic Reflection and Transmission
Coefficients

In order to derive explicit expressions for each compo-
nent of dyadic quantities R and T in the primary coordinate
system (x,y,z), it will prove useful to use the matrix nota-
tion.

Again considering a point P(x,y,t) on the interface, we’
define an auxiliary coordinate system, namely, a local rectan-

Lo > > ,
gular coordinate system (at,a ,an) given by

p

a
2., 3d_=3a_ xa,_ (3-39)
a

where 3n is the unit normal to the interface as defined
earlier. The new coordinate system is illustrated in Figure
3-3. Then gn.is also normal to the tangent plane drawn at-

t

decompose the incident Hertzian plane wave at P into comgo_

P, and both 3, and gp lie on the tangent plane. Thus if we

nents in the (Et,zp,3n> system, by (2-27) we can write
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Figure 3-3. Local Coordinate System»(gt,gp, n
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Tr Tit

'lTrp = (RO) Trip ’

Trrn 7Tin

Tee Tit

ﬂtp = (TO) ﬂip , (3-30)
7Ttn 1Tin

where (RO) and (TO) are diagonal matrices

=N
R 0 0
(RO) =0 ~-R?" 0 ,
0 0 R"
ade
T 0 0
vk
(P ) = 2| o E2D e g (3-31)
e} n2 kln .
i
0 - 0 prT

If we denote the transformation matrix from the (x,y,z) system
to the (gt’gp’gn) system by (A) and that in the opposite direc-
tion by (A)gl, we have, considering only the reflected waves

for the time being,

Tit Tix

Tip| = (A) Tiy ’

Tin Miz

Trx -1 Trt

ﬂry = (A) ﬂrp ’ (3-32)
rz Trn

where it can be easily shown that
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; -> > -> > >
*a a,*a *a
t X t Ty a4y
> > > -> -»> ->
(A) =| a_+a a_*a a_+a ’
p X P Y p 2
- > -> -> > >
a_-+a a_*a -
n x n -y qn %z
5> > > .3 > >
a,*a a a_*a
t "x p X n x
-1 > > > > > >
(A) ={ a,*a a_*a a_*a . (3-33)
t 7y P Y h 'y
-> 3 - 3 >
a, - a_- a_*a
t "z P 2 n z

Finally, inserting (3-32) into the top equation of (3-30)

yields
Trx Tix
ﬂry = (R) ﬂiy (3-34)
Trz Tiz

with the definition of (R)=(A)—1(RO)(A). Defining the compo-

nents of (R) by
(R) = er Thy Ty ’ (3-35)

we can obtain expressions for each component of (R) by car-
rying out multiplication of three matrices, (A)_l(Ro)(A), in

a straightforward manner. If we do, it is found that

i

> .* 2_ w > .+ 2 i .+ 2
11 = R (at ax) R (ap a. ) "+R (an a)
R o 2 > 2 T T > 2 neroJr > >
12 = R (at ax)(at ay) R (ap ax)(ap ay)+R (an ax)(an ay)
+ >
r = R (a

e > T N_ou (T T > nT . >
13 £ ax)(at az) R (ap ax)(ap az)+R (an ax)(an az)

_ ot e > x ol (T JZ > 2 uw(Z >
Ty = 3 (at ay)(at ax) R‘(ap ay)(ap aX)+R (an ay)(an ax)
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It

R < .+ 2_ w7 2 u .+ 2
oo R (at ay) R (ap ay) +R (an ay)

Lo e > x T e > > nZo T > x
o3 = R (at ay)(at a )-R (ap ay)(ap az)+R (an ay)(an a)

r

_ 4 °+ -> .+ ol -> .+ -> .+ n 2> .+ - _+
Ty = R (at az)(at ax) R (ap az)(ap ax)+R (an az)(an ax)

s S e R R s > w7z >
Ly, = R (at az)(at ay) R (ap az)(ap ay)+R (an az)(an ay)

+ > d 2_ neTo . 2 s 2 _
R (at az) R (ap aZ) +R (an az) . (3-36)

T33

We have now derived the reflection coefficient matrix (R)

for the plane Hertzian waves in terms of the Fresnel reflec-
tion coefficients and the unit vectors of the primary and the
auxiliary coordinate systems. The presence of finite nondi-
agonal terms in (R) indicates the existence of cross polar-

izations on reflection. Furthermore, we note that

r =r r (3-37)

12 21 * T13 T ¥31 r To3 T I3y

which states that the effect of cross polarization from one
component to another is the same as in the opposite case.

To further develop (3-36) to more explicit expressions,
it is now necessary to write the local unit vectors, gt’ gp

> co
and a  in terms of surface slopes and the incident wave vec-

tor. It is not difficult to show that gn can be given by

> _ 1 _ _ ‘ -
3, = 5 (Lt (3-38)

where Cx and CY are partial derivatives of ¢ with respect to

x and y, respectively, and Jn=/ci+§;+l" Following the defi-

nition and remembering that k2=(k2 ), we get

x’k2y’k22
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L

-
A T T (k Cy+k2y’_k22Cx ’k2ycx ;y) y
_ 2 12, _ 2
where th/QkZZ;y+k2y)_+(k22Cx+k2x) +(k2ycx kzxcy) .
maining unit vector Ep is found to be
3= 2 (k. +k, L_-k +k,
8 = 3; 2x %055 ZnyCy Cy ¢
2
k2y+k22Cy CXCY+k ny '
2
k2xCx+k2yCy+k22Cx+kZch) !

n t°
(3-36) becomes

where J _=J_J
p

C+k

[

g

Y

11 J

t

o [RogBytRog\ (Ko btk
r,, = -R
12 3, 3,

p

r . =&t ( 227y y)z_Ru(k2x+k22§x;k2y X7y Kox

(3-39)

The re-

(3-40)

Thus, on taking the indicated dot products,

2
g
nog Xy 2
>+R ()
n

2 2
-R" <k2x+k2zcx Cny+k2 Cz) <k2y+k22Cy 2xcxcy+k2ycx>
J J
p p
¢ C
e Ky oY
+R (3_)(J )
n n
21 7 T12
2
k,_ t_+k 2 ko +k,_C c o tk, C g
r,, =,R¢ ( Zsz 23) -R”( 2y 2z yJ 2x Xy 2y x>+R"(EX)2
t
b n
2
r - -R+ kZZCy+k2Y Tk Yg +k2xcz> ~R" k2x+k Kx_kZYCxcy+k2ny)
13 Je Jy Jp
k +ko Ttk C+k, g2 4
2x°x 2y°y T2zZ°x 227y )\ Jponm, 0%, L
. L IR (=2 (3-)
P . n n
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t31 T 13
. < r* k2sz+32x> —kzny+k2ny>
23 Jt Jt
Ko +k, T -k, T _T.+k Cz k, L +k, C +k C2+k Cz
—R"( 2y 227y T2X°X’y 2y x) ( 2X°xXT2y’y T2z°x T2z y)
J J
P p
Syy 1
-R" (L) (3-)
J J
n n
Y32 © T23
k. fo+k, L. \2 [k, C_+k. L_+k, z2+k, g2
_ o* 2y°X 2x°y n| 2X7X T2y’y T22°X 22°y n,l 2
33 = R 5 -R 5] +R (3—) .
t P n
(3-41)

Now turning to the transmitted waves, we define the com~

ponents of (T) by

t t t

11 %12 %13
(T) ={ ty; ty, tog , (3-42)
t31 T3 t33

where (T)=(A)_1(To)(A). Then each component of (T) can be

given simply by replacing (R ,-R”,R") in the corresponding

+ Uk it
component of (3-41) with (2— , ZrP2n qa , — T"). But the
ko n® " nfkyy n’
factor,EIE in the middle term can be transformed first.
n
Since
> >
k k,.*a
2n _ 72 n > 2_ 7 T 2 2_ 7 2,2 _
e 2R R = Ad-RpR) P = AS-GRyeE) (3-43)
1n kl-an
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k %.+a

22 = . (3-44)
ln 2 > 2
/%1—(k2 ap)
which, on noting that k.,-a_=|k.x&_|=J,, finally becomes
2 p 2 'n t
Kon  “Roxbx” Zy;y+k22
%1n 5 2
n 1"t
Thus we have
b = T k2y+k2 : )2 He [ Roxbx Ko ycy+k22>
= |22 X)) T
1l 2 J 2
n t n J k2_J2
n 1l"t
2
. k2x+k2 g yc CykaXCy 2+ EE Tu(E§)2
J 2 J
P n n
£ - - 2_ k2y+k22§y (k2x+k22Cx)
12 n2 Jt Jt
2
+ M Tu(_kZch—k 2y°y K > (k2x+k22§x—k22CxEy+k2x;y)
2 J
n g_vk3-g2 P
n 1"t
k. +k. ¢ E ;. +k Cz z 4
2y T2z X, 2x X’y 2y X ur n, X v
P n n “n
t21 = t12
T [Rax®22%%\2 Mr L TFaxbxRay byt Ros
£y = —7' 3. |t 32T
t n J’ &2 2
1 t
ko +k, C -k, C T +k §2 2 u g
J 2y "2z7y T2x7X°y "2y ”x + £ T”(_X)Z
J 2 J
p n n
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o + k2y+k22Cy>(—k2ny+k2X§y)

= - L
13 2 T, Te

' 2
+ E%’Tn( k2x2;x k2ycy+k22) (k2x+k225x—k2ycxcy+k2xﬁy)
' J
n J/kz—Jz P
n' 1l 7t
k, t +k, g _+k C2+k €2 : z
JO2xTx T2yty 220X T2zZ°y ) EE T”(_E)(i_)
J 2 J J
o) n n “n
£31 = t13
b = i (k2x+k22Cx‘><_k2ycx+k2xcy> . Hy T"<—k2xcx—k2ycy+k22
23 7 2 J J 2
n t t n J /kZ_JZ
n1l~ t
k., +k, o~k .z +k., 22\ [k, z +k, ¢ +k, zi+k. z2
J 2y 2z7y 2x°x°y 2y°X 2x°x T2y’y T2z°X 2z y)
J J
p b
H C
- Lo ¥y (L
5 T (3) (37)
n n n
t32 = a3
b = 7™ —k2ny+k2x§y 2+ e o —kZXCx_kaCy+k22
33 7 2 Te 02 —
n g vki-J

1t

T" (___)

n 2 2
.(k2x5x+kzycy+kzzcx+k2zcy)2+ Pr (3-46)

Jp n2

Aside from the tangent plane approximation, expressions
for each component of (R) and (T) given in (3-41) and (3-46)
are exact, and are seen to be extremely complicated functions
of,Z;x and ;y, since the Fresnel coefficients are also depen-
dent on these slopes. In order that the integrals, in which
X

z. and Cy are variables, be manageable, it is necessary to

simplify these expressions with respect to_cx and Cy' To
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do Eo,,we assume that the interface is slightly rough, and
slopes everywhere are so gentle that we may neglect all the
high order terms and retain only up to the first order terms
in Cx and/or cy’ A rough computation shows that slopes of up
to 20 degrees from the horizontal plane can be considered for

this class of interfaces.. Then we can set

Jn ~ 1 ,
kZZ 2 2 2
Te & Kop t E;;(k2xgx+k2ygy) where k, . =‘k2x+k2y '

Next we expand the Fresnel coefficients up to the first order
using (3-47). Since the Fresnel coefficients with respect

to the tangent plane can be written as

R = uran—kln
= T L [4
urk2n+k1n
T* _ zurk2n
Snal s eI Jr— r
prk2n+kln
2
" o_ n kln_uran
R = — ,
noky Ko
2n2kln
T = 5 ’ (3-48)
n kln+urk2n

on inserting kln and k2n given by (3-45) and expressing in
the power series up to the first order (the details are

given in Appendix B), we obtain
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2,.2
U k2Z ka 2urk2(n -1)

R = - (k.. z.+k. T.)
u_k, +k 2 2x°x 2y°Y !
r 2z Ta ka(urk22+ka)
) 2, 2
2u_k 2u_ko(n"-1)
T = u kr ii - —=£2 2 (k2x€x+k2ycy) !
ro2z ka(urk22+ka)
2 o 2 ’2_‘.
s n ka urkzz Zurkl(n 1) . .
T on%k_+uk * k_(n’k_+u_ k. )° Faxtxhayty)
a ur 22 a avur 22
20’k 2urki(n2—l)
T + (k. z.+k...2.) (3-49)
2 2 2 2x°x T2y°y !
n ka+urk22 ka(n ka+urk22)

where we have denoted /ki—kgr =ka. For further convenience,

we write each of the above expressions in the form

-+
R
+ - + 1 -
R™ = R+ K (k2x§x+k2yzy) , etc. (3-50)
where
u k, -k 2u_k2 (n%-1)
+ 22 Ta + r 2
Ry = o,k 0 P17 7 v ete (354
r 2z (urk22+ka)

Incorporating (3-50) and continuing application of the first

order approximation then give (Appendix C)

Tl % 2 Rk R k2x+ (k2y 1" koxR1) (Koututko o)
2r
2k22 2 iy
" (4
- k (k yRo k2x o)(kz ;x+k2ycy)+2k22(R k ycy ok2xc )}
2r
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12

21

22

13

31

23

32

33

and

11

¥

R

144

']

2Ltk k. (RT+R” Faxfoy gt yqe X K
k2 2x 2y(Ro+ o)+ ka (R1+Rl)( 2x:x+ 2ycy)
2r
2k, k. k
- 2xX Zy 2z + n + n
k2 (R0+Ro)(k2x§x+k2ycy)+k22(R0+Ro)(k2ycx+k2xcy)}
2r
12
l -+ 2 it 2 _.1.__ 2 ""_ 2 n
2 (R ko Rk, * K, (koxR17ko R1) (Ko bytky ty)
2r
——Zkzz(kz RY-k2 R") (k K 2. (R k "y }
- 2 2x%0 " R 2yRo ( 2xcx+'2y€y)+ 2z Rok2xtxRo ZyCy)
2r :
L Rk, (-k. r_+k z. )-R"'k,_(k, z_+k., z )}-R"C
k2 o2y 2y7°xX T2x°y 0 2x 727X T2y7Y 0°X
2r
T13
—l—{RJ“k (~k. ¢ +k. ¢t )-R"k_ (k. t +k.. z )}-R"¢
k2 o 2% 2y°x 2X°y O 2y T2Xx°X T2y7Y o’y
2r
T23
R"
R+ —L(k. £ +k. z.) (3-52)
o} ka 2x7°x T2y7Y
2 2
k k k5 k
1 " 2 " 2z . 2 + T2y ot 2y 22z
2.7 [Tkt ol K, koxtiTy K, ~“To 2
2r 2r
2 2 2 n
ko k T k
i L 2X .. 22 2X 22 _i _omit 22
To k (1 2 )+“r k (k 2To 2 )}(k2xcx+k2ycy)
a k a a
a 2r
Ky . s
i
+2To“rk2x ka Cx+2Tok2yk22cy]
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u !
ta. % L {7+ E(k. g +k, £.)} (3-53)
337 2770 k_Taxx 2yvy ’

According to (3-25), we are actually interested in find-
ing (R) and (T) for a particular incident wave vector, whose

components are given by (3-18), namely,

k., =k, 2 k., =k, &— k. =k, 2. (3-54)
2x = T2 R, ' 2y ~ T2 R, ' 2z 2 R. !
i i i
where
z' = h-gz , Ri = r-2+z'2 , ¥ = ¢x2+y2 . (3=55)

We denote the components of (R) and (T) and the Fresnel co-
efficients evaluated for (3-54) by tilding. Then from (3-52)

and (3-53) we get

s 1l a2 5y 2 1 27" =+ 2
1% =3 {Roy ROX + (x;x+ycy) —5—(Roy
r 2.2 2 r
n R.-r

1
—ﬁ”xz)(xc +yL )+22'(§+yc -R'%z.)}
o X vy o’y To"’x
~ ~ _ l >4 ~n X md ~py
B, = = {xy(RO+RO)+ *‘“‘Z—“(R1+R1)(XCX+YCY)
r 2.2 2
n“RS-r
1
_ 2xyz'  ~+ ~n g -} ]
—;%——(RO+RO)(x;x+y;y)+z'(Ro+Ro)(xcx+ycy)}
o1 = F12
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These components of (R) and (T) given in the above are
of course also the compohents of [ﬁ]ev and ['f‘]ev as used in

our integral formulas (3-25) when written in the dyadic form:

[ﬁ] x> + + > > + > > +3 > >
ev - F11%x%x F 129 ay T3, T a8, 8,8 00 538,8,
+5 > > 3 > > +3 >
£31%2% r32azay L3338 ¢
(f1 =% .3 3 +E +£ +E +£, .3 a
ev = t11%x%x* 12 xay l3axaz 21 yax 22ayay 23%y%z
+%..2 a +E..2a a +t,.a a
31%28x 7328 ay 337z z °
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CHAPTER 4

EXPECTED VALUES OF REFLECTED AND TRANSMITTED HERTZ
POTENTIALS AND POWER FOR A GAUSSIAN INTERFACE

4.1 Gaussian Random Interface

Natural interfaces such as terrain and sea are always
rough. Moreover, the prgfile of the roughness is never peri-
odic, nor is each element of the profile of simple shape.

Thus, in oxrder to deal with boundary value problems involving
natural rough interfaces, it appears best to use a statistical
approach in which the entire surface is described by a random
process and a statistical distribution is prescribed to some
random parameter of the interface. With almost no exception,
the height coordinate  of the interface is chosen for such
random parameter. However, a random interface cannot be com-
pletely represented by the statistical distribution of ¢ alone,
since this tells us nothing about the distances between the
hills and wvalleys, that is, about the density of the irreqular-
ities. This information is supplied by the autocorrelation
function, or its normalized equivalent, the autocorrelation
coefficient.

In what follows, we will assume a stationary gaussian
random process to describe the rough interface. The use of
a gaussian process for a natural interface is by now widely
accepted and probably correct considering the fact that the
roughness of such an interface is caused by many contributqry
factors (central limit theorem). This is a fortunate situation

for us since manipulations involving gaussian processes are
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especially simple and convenient. Thus ¢ is assumed a gaus-
sian with mean value and variance, both of which are indepen-

dent of the horizontal coordinates, given by

<c> =0 , <;2> = o2 , (4-1)

The probability density function of ¢ then becomes

1l 20

f(z) = e . (4-2)

VY2To

Thus Z(x,y) is the random height of the interface from the
mean plane z=0. By the same reason as for choosing a gaus-
sian height distribution, one of the most commonly used
autocorrelation functions for terrain or sea type interfaces

is also of the gaussian form, namely,

2
r

5
plr) = 02e ’ (4-3)

ol

where r is the distance between two points and d is the cor-

2e_l. We have

relation distance for which p(r) falls off to ¢
assumed that the roughness of the interface is isotropic
(the random process is stationary), so that p(r) depends
only on the distance between two points, and not on the co-
ordinates of the individual points separately.

Slopes of the interface, Cx and Cy’ are also random

processes. By the isotropy of the roughness, all three

random variables z, s and Cy are mutually independent at
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a given point and the probability density functions of the
two slopes, f(;x) and f(cy), must be the same. The form of
f(gx) or f(cy), however, is not arbitrary with respect to
f(z). It turns out that it also becomes gaussian with mean
value zero and its variance completely given by the variance

and the correlation distance of . Explicitly they are

2
_tx
2
20
f(g) = —=—e
/2ﬂ01
2
4
- “Xj
1 20,
f(C ) = e 7 (4"’4)
Y ¢2ﬂ01

2_/.2\_ /. 2\ . .
where 0= <2;X>— <¢:y> is given by

1= To 00 = /~Te,] (4-5)

XX"r=0 yy ¥=o0

oy is related to the r.m.s. slope, Oy by [Barrick, 1965,

p. 194]

(4-6)

- 20 -
g, = 3 (4-7)

The above information on our random rough interface

should guffice as far as determination of the mean field or
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the mean Hertz potential is concerned. For calculation of
mean pointing vector or mean power, we need to specify a two
dimensional statistical distribution of 7. The gaussian

density function of ¢ in two dimensions is

2 2
B Cl"2Y§1C2+C2
2 2
1 o 207 (1-vy"7)

£(zy,8,) = (4-8)

where Cl and §2 are two random variables and vy is the auto-

correlation coefficient, y= Bf" which in the gaussian case
o

is simply

Y = € (4-9)

4.2 Calculation of Expected Hertz Potentials and Electro-
magnetic Fields

As the interface function z(x,y) is assumed to be a
gaussian random process described in the preceding section,
we first evaluate the expected values of the Hertz potentials.

By taking the expectation of both hand sides, (3-25) becomesg

ik, R, 1ik,R
k 271 27
_ 2 > 7 -> A e e
<ﬁr(Q2)> _'<4wi_/;n (ap *ap VIRl e, =7 R_ ds> !
, i r i r
ik,R. ik.R
k 271 1t
_ 1 > +~ -> iq e e
<ﬁt(Ql)> - <” 4ﬂi_/;n (akt+aRt)[T]ev &y R R . ds> ’

(4-10)
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which on interchanging the order of the two operations--the

expectation and the area integration--can be written

ﬁ jr * eiszi eiszr
< r(Q2)> = 41r1 < r) [R] an Ri Rr >ds !
ik,R. ik, R
271 1t
' - —)- -> A Tooe e
<Ht(,Ql)> - 4T1‘l [< a aRt) [T]ev &y R; Rt >ds
(4-11)

We now evaluate the expectation of the integrands first, where

each integrand is a function of random variables [ as well as

Cx and Cy

Specifically, £ is involved in the integrands through the

it vectors 3 a a d a
uni 7 7 7 l an a r
Rj Ry ke Re

B A LN '
Ri’ Rr and Rt' z also shows in [R]ev and [T]eV through z', as

and through the distances,

can be seen from (3-56) and (3-57). In all these expressions,
¢t appears always in the form of either h-g, 22~§ or z,-g. But,
according to our earlier assumptions (Chapter 3), both the source

and the observation points are far away from the interface, i.e.,

ho>> gl o2y >> gl . Jzg] > Jg] (4-12)

so that except in the principal exponentials we can approximately

set
h-¢z =~h , Z, = T = 2y 1 Zp - z = zy - (4-13)
Therefore
a. =z a a. =z a a. =z a
~ 4 ~ ’ ~ ’
Ri Rib Rr Rro Rt Rto
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R, = R. =/>:2+y2+h2

1 10
. _ 2 — 2 2
R, = Ry = /xy - 0%+ (v, - )% + 25
. Y AN 2 2 _
R, = R, = /(;1 x)© + (yl. y)© o+ zy - (4-14)

Also z' in each component of [f?.]ev and ["I\‘]e Vis replaced by z-h.

v
Symbols and geometry are illustrated in Figures 4-1 and 4-2.

The expression and its derivation of the unit vector EE
to

more involved than others because of its dependence on slopes

are

at each point. First we can express

<z _ 2 2 o> 0 2.1/2 > T > >
ke = (k] - (k, as) } a + (k, ap)ap , (4-15)
where expression for gp has been given in (3-40). Reduction

to the final expression for ;E is given in Appendix D. The
to

result is in the first order (in slopes)

-+ 1 2_2 2,1/2 2_2 2,1/2
ar ow —[x+hz - (n°R; _-r°%) z. , y+hz. ~(n"Ry ~-r™) T
kto nRio X io X v io vy
2_2 2.1/2 h
(n“RS _~r7) +{1l- ————}(xg _+yr )1 (4-16)
io s Y X Y
anio—r2

where the first of the approximation (4-13) has been incorpo-

rated.
In the exponentials, we expand as usual the phase func-

tion up to the first order and put

R R a z

. ~ R, - a .

i io R. s
io
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Q2 (xz IY2lzz)

P(XIYI )

Figure 4-1. More Symbols and Geometry for Reflection
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N

Qo (0,0,h)

R
O
Rio
R,
1
-+
3 -
> R, a
aRi 10 R
| \ o
\{ PO(XOIYOIO\_/
P(x,y,C) >
a
R >
; to
R
Rt to

Figure 4-2.

Qq (%1,¥7,27)

More Symbols and Geometry for Transmission
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Yo
-> >
R, ~ R - a ez , (4-17)
t to Rto
where E=C3z and
z Z
> <> >
gR 'Z = EE—C r ap ’Z = EE*C R §l“€ . (4-18)
io io ro ro to to

The criteria for the validity of the approximations (4-17) can
be given by requiring the second order terms of the Taylor ex-
pansion of Ri’ Rr or Rt about the mean plane to be much smaller

than unity. Thus we have for all x and y

kg ko2 kg’
g << 1 SR << 1 , Fr— << 1 (4-19)
io ro
for each corresponding approximation in (4-17). On incorporat-

ing the above approximations, we can now write

lkZ(Rio+Rr )

o
e
T_(a,) = f( )R] -3
< r 2> 4ﬂl Rro ev w RioRro
z
. h 2
Tikptlg -t g )
io ro
Y= >ds r
. > % . e1k2(Rio+nRto)
(Q,) =—~f< (3 ) (813
< t'=1 i k Rto ev T RlORtO
z
—ikor (=2 4+ p=i
2 Rio Rto
e ' >ds . (4-20)
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Since, by (4-13), [R]ev and [T]ev are now functions of Ly and
Cy only and do not involve Z, and since I and both Cx and Cy
are independent random variables, we can split the expectation

in (4-20) into products of two expectations and write

Z

K -iky L (g + )
e _ 2 > T > Ay 2 i0 O
<Hr(Q2)> - 4ﬂi./<an (aR. tagp )[R]ev aw><é >
io o
e1k2(RiO+RrO)
. R, R dS 4
io ro
2
K ~ik2§(Rh + an )
- —_];_ e . -)-~ <> A .—> io fe)
<ﬁt(Ql)> - 4mri [<an (ak tag )[T]ev aﬁ> <e >
: t to
elkZ(Rio+nRto)
. AR ds , (4-21)
io to

where we have factored some deterministic parts outside the
expectation.

The latter expectation in each integral is just the well
known characteristic function of . On using the density func-

tion given in (4-2), they are found as

z Z 2
. h 2 1 2.2, h 2
—iky g —+g ) 50 k(g —+g )
io io o
<e > = e v
Z z 2
\ h ‘1 12,2, h !
—1k2c(R + nRtO) ~50 k2(Rio + nRto)
<e io >= : (4-22)

The arguménts of each remaining expectation is up to the sec-

ond order in Cx and cy. We again neglect the second order
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terms and the expected value of the first order terms vanish

since <Fx>=<?y>=0, thus leaving only the zero order terms
> >

(3, (Gp +3p VIRl 3 > = 3, Gy 45, ) (IR )3
~ r
n Rio Rro ev T Z Rio Rro ev T
> <> -»> > > - > A >
<a + (a~ +a ) D] a > ~ a_r{ar +a ) <PP] >°a ’
n kto Rto ev 7w z kto Rto ev, T
(4-23)
where now
1/2
EE = 1 X,V n2R. —r2 . (4-24)
to nk, io
io

and the components of <[ﬁ]ev> and <[T]ev> are the same as
those given in (3-56) and (3-57), but with only the zero

order terms:
<r11>

<f12> o o’
r
(F21) = (F12)
1
—7(
r
0

144
et
N
~~

14
N

18]

(22)
(F13)
(1) = (E13)
(F23) =
<?32> = <fzs>

~ ~ ToE —
<;33> RY (4-25)

124

3
o

2
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and

. 5
T"u_hx
<t > - 1 (T"'yz + (o}l o )
11 n2r2 o) 55 5
n“R, _=-r
io
m i
To“rh

~ %X ~ e
<t12> (T

<E21> = <E12>

N
|
——~
1
'

~ 2
. T u hy
t ~ + (‘T‘J‘x2 2L
22 n2y? © /2.3 2
n R, -r
10
()= 0

i
o

<E31> 13
(22

14
o

<t32> = ty3
TR
~ - r O
<t33> = I (4-26)

Since in the first order

ds = Jndxdy x dxdy , (4-27)

we can now write after inserting (4-23) and (4--24)

> k > -> A
<Hr(Q2)> = Z%T Jgraz'(gR. +aRro)<[R]ev>

10

Z 2

1 2.2, h 2 \

L R E R D) IR (RighR)
‘a e 1o ro ¢ - dxdy

il R. R ’

10 ¥o
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-k 2
> - 1 > . >
f @) = 1 L[ 22" (3,

2
122, h 21 N
N '2'(5 k2 (E;-—;+nﬁ;—;) elkz(RiO+nRto)
a e TR dxdy (4-28)
io to

G+?£Rto) <['T?] ev>

To obtain results in the geometrical optics approxima-
tion, we again apply the statidnary phase method to (4-28).
The general procedure is identical to those used for the in-
tegrals in the case of the smooth interface (Chapter 2), except
that here we have spatial integrals and thus the stationary
point is given in spatial coordinates rather than in wave num-
ber coordinates as before. In physical terms, this means
that we now neglect those reflected (or transmitted) waves
from all parts of the mean plane, except from the small
neighborhood of a poiﬁt at which the phase of the exponen-
tial is stationary. With regard to the actual rough inter-
face, this indicates that local orientations of the interface
containing the stationary points are so much denser near the
stationary point of the mean plane that contributions from
other favorably oriented elements of the interface can be
neglected. A good example of this can be found in the fact
that the image of an electric bulb above a slightly rough desk
appears as a blurred reflection in the surface of the desk.

The stationary point is of course the specular point
in the case of reflection and the point at which the law of
refraction is satisfied (between the rays) in the case of

transmission. At this point
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Rio = Ro ! Rro ='RZ ! Rto = Rl i
a a =32 -a = cosa a_+a 3 _-a cosB
-— —4 ’ ° ~ — . [ J— H
z Rio 2 ro ° 2 kto z to °
<[R] ev> =M , <[T]ev> =N . (4-29)
where components of M and §, which we denote m, and»nij,
where i,3=1,2,3, are given by
- ot . 2 R 2
myq ~ R (a0)51n ¢o R (ao)cos ¢o
~ — 4- I »
my, % {R (uo) + R (uo)}cos¢051n¢o
My1 = M2
. T 2 _ ol .2
My, = R (ao)cos ¢O R (ao)51n ¢o
ml3 ~ 0
M3y = M3
m23 =z 0
M3y = My3
~ n -—
May = R (uo) {(4-30)
and
T"(0_)u_cosa cos2¢
ny, x i 7" (o )sin2¢ + ° = e e
11 - 2 o) o) ncospB
n o)
T" (0 _)u_cosa
I o' "r o) .
N * 2 T (ao) ncosf 51n¢ocos¢o
n o
o1 = M2
1 - 5 T”(ao)urposaosin2¢o
Ny2 * EEAT (ag)cos ¢, + u ncosBo
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nl3 z 0
N33 = 013
n23 =z 0
N3y = Oo3
u T"(OL )
n33 ~ '-—E—TO—— (4—31)
n

The explicit forms of the Fresnel coefficients are given
by (2-15) and (2-19).

We can now write in place of the integrals (4-28) that

2,2 2 ik,R
k2 n -20 kzcos ao e 2°T
ﬁ (0,.)) = =— coso M+a e B e I
r =2 2T1i o) T R R r '
o2
k ulozkz(cosa -ncosfB )2 lk2(R0+nR1)
i (Q.) /7 = = cosB Nea e 2 2 o o &_ I
t'*=1 To2mi o ﬂ R R t
o1l
(4-32)
where RT=RO+R2, and Ir and It are
ik 2 2 2
2 29 29 3
. —5— (x g;j + vy g—j + 2xy§§§§)RT
Ir = e y dXdy ’
ik 2 2 2
2 29 237 3
—5- (x ?;{—2- + v 5—2- + ZXY-B—}-{—W) (Ro+1’1Rl)
I, = e Y dxdy, (4-33)
. 52 52 .
in which we mean 3;7 RT=[g;§(Rio+Rro]ev’ etc. Carrying out

the required differentiations and using the formula (2-39),

we can show that
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2'rr1ROR2 2ﬂ1RoRl

I = e, I, = e,
r szTcosao t kchosBO

(4-34)

where P is defined in (2-72), namely,

cosB
= : _° . (4-35)

' 2 2
J(nRo+Rl)(nRocos Bo+Rlcos ao)

vl o

Thus we finally obtain the results

N
2
o4
()

~ -202k§coszao iszT
<ﬁ (Q )> e ,
r =2 T -—_3;;_
<ﬁ n > “%Ozkg(COSdo~nCOSBO)2 eikZ(Ro+nR1)
i t(Ql)> a'n' . S .

2
=
=
)

(4-36)

We again choose without loss of generality ;ﬂ to lie in the
. > . 54 > . .

xz~-plane, i.e., aﬂ—31neoax+coseoaz and write (4-36) with

ﬁ-gﬂ and ﬁ'gﬂ shown explicitly. Then using the following

new symbols

-Zozkzcosza
2 o
§ = e '
r
~%02k§(cosao—ncosso)2
6t = e ’ (4-37)
we have
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<ﬁr(Q2)> = [{R*(ao)sincho-R”(ozo)cosz¢o}sineozx

_rpt I . . >
{R (uo)+R (mo)}51neocos¢051n¢oay
) . elszT
+R (ao)cosean]Gr — ’

Rep

2
T" (0. ) u_cosa_cos“¢
S o 2 }sineogx

<ﬁt(Ql)> = [T (a ) sin®p +

ncos
8 O

T”(ao)urcosa

-+ [e) . . ->
~{T (o)~ }31neocos¢051n¢oa

ncosBO y

e1k2(RO+an)

(4-38)

" >
+T (cxo)urcoscpoaz]st P

We note that the results above are identical to those
of the smooth plane case, namely, (2-48) and (2~-55), except
for the factors 6r and 6t which account for the effect of
the roughness of the interface. The limit 0+0 corresponds
to the smooth plane case, and indeed in this limit both 6r+l
and 6t+l so that two expressions in (4-38) become complete
identities to (2-48) and (2-55), respectively. Also we note
that in the imaginary interface limit (n->1), <ﬁr>+0 and
<ﬁt>+exp{ik2(Ro+Rl)]/(Ro+Rl), both regardless of g, as ex-
pected.

The expected values of the reflected and the transmitted
electromagnetic fields can be obtained from (4-38) using the

equations
> > 2
<Er(Q2)> = V(V~<Hr(Q2)>)+ k2<ﬁr<92>> :
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2
k
<Hr(Q2)> = iw'ﬁz vt )

(Eeapy = vl + x3(H @)

2
<ﬁt(Q1)> = Ty V"<ﬁt(91)> . (4-39)

I

ki

where the right hand sides of (4-39) are justified by wvirtue
of the linear;ty of expectation and interchanging the order
of expectation and vector (differential) operations. The re-
maining procedure for carrying out (4-39) is the same as the
smooth plane case including the use of the approximations
(2-69). The results are simply those given in Section 2.5
modified by the factors 6r for the reflected fields and §

t
for the transmitted fields.

4.3 Calculation of Expected Power

In the previous section, we have derived expressions for
the expected values of the Hertz potentials as well as the
electromagnetic fields. However, in practice measurement on
an electromagnetic wave is also often made in such a manner
that the quantities measured are proportional to‘the Poynting
vector or simply power associated with the electromagnetic
wave.

In order to calculate the reflected and the transmitted
power, we start from the definition of the Pbynting vector,
For a steady state sinusoidal radiation, the (time) average

Poynting vector is given by

->_._’_[__ > ->* _
S f 5 Re(E x H*) (4-40)
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where the symbol * means the complex conjugate of the quantity.
. . > > N v

On writing out E and H* into the rectangular components, the

reflected and the transmitted Hertz potentials, Er and gt’

can be given by

§ =s_a_+5_4a +5_a
r - "rx®x ryly rz%z
§ =s_3a +sS,_a_ +68,_4&a , (4-41)

t tx"x ty'y "tz Tz

and hence the expected values of §r and §t become

<§t> <er>~3x + <$ry>gy + <srz>'£Z ,
<§t> <St)5>;x +<Sty>3y +<Stz>gz , (4-42)

where
S = lR'{E H* -E_H* } s = lR-{E H* ~E _H* }
rx 2e ry rz rz ry ' ry 2¢ rzrx rxrz '
S = lR {E__H* -E_H* } ; 8§, = lR {E 'H* ~-E, H* }
rz 2 e rxry ry rx ' tx 2'e "ty tz "tzty '
. 1 1
S; = %=R {E_ H* -E__H* } , s8_= =R {E_ H } . (4-43)

* R H*
ty 27e Ttz tx Ttx 'tz tz 2e Ttx ty Tty tx

In general the random functions E and H are mutually corre-
lated. Thus it is necessary to derive the components of E and
A from ﬁvin the integral form. This can be done by applying
the relations (2~12) to (3-25) under the integral sign. Again
performing the differentiations only on the exponentials then

yields
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ry

rz
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3
k2

4ri

]’ X,—X 2
mr[{l— Rr }(r1151n6°+r13coseo)

(xz—x)(Yz“Y)

R2
r

(r2151n60+r23coseo)

3
k2

ari

2'Y
+{l—(¥R
r

(yz-y)(zz*c)

(%,-%) (2,-L)

2
Ry

JENS

(r3151n60+r33cos60)]@iQrds

(xzfx)(y2~y) . . .
’R2 (rllslneo+rl3coseo)
r

2
) }(r2131n60+r23coseo)

3
ks

i

R2
r

(r3151n60+r33coseo)]¢i®rds

2

(xz—X)(zz—C)
mer[— (Ellsin60+fl3coseo)

R
r

(yz—y)(zz-c)

k
4ri

2z

2
Ry

4
wuz
2_2;

Ry

(r21s1n60+r23coseo)

coseo)]éiérds :

2
> }(r3131n60+r33

2 Jf Yo¥ .
i mr[————(r3151neo+r3300560)

Rp
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H

ry

rz

4

= 4ﬂ1wu2

= 4w1wu2

XA=X :
—.—ﬁz—(r3lsln90+r33coseo)]@iQrds

4

Ky

Y2_Y

- 5

" (rlls1neo+rl3coseo)]@iQrds

and similarly

E

E

tx

ty

k3

t

- - 5 (t2151n90+t23coseo)

Re

(xl—x)(zl~C)

- 5 (t3151n90+t33c0560)]@i@tds

Rt'

k3

5
Ry

4ri

YioY\e. N
+{1- —ﬁz— }€t2l51n60+t23cos60)

(y-y) (29-2) .
S . . (t3lsineo+t

)
Re

33

101

k2 . ZZ-C . ) L
— mr[—§;~(rlls;neo+rl3coseo)

X,=X
Jﬂn [ —emn (r2151n6 +r23coseo)
r

14

r

1 XX 2 -
= 4ﬂljfm [{1- —ﬁ——) }(tlls1n60+tl3coseo)

l j (Xl—X) (yl_Y) " ) -
— mt[— (t1151neo+t13coseo)

coseo)]éiétds
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where

k3

. Rt

(yl-y)(zl~C)

- 5 (tzlsin60+t23coseo)

Re

zl—c 2 -
+{1- ) }(t3181n60+t33coseo)]@iétds ;

t
4
Ky Yi7Y . , N
Triuny m [ R, (t5y8inb +t;5c080 )
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- Rt (t2151neo+t23
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k4
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t
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coseo)]®i®tds 7

kq Z;7% o -
= ZFIEEI mt[ n (tlISlneo+tlBCoseo)

1 Jf i T
Trzany ) Me TR (F21510857 5230088

1 (xl-x)(zl—c) . .
EEIJ[mt[— ‘ 2 (ty,51in6 +t,; jc0s6 )

Rt (t3151n60+t33coseo)]@iétdsrr

= 1151neo+t13cosao)]®i®tds ’
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and rij's and tij's are given in (3-56) and (3-57), respec-
tively.

We start caiculation of §r given in (4-42) from computa-
tion of the first term <#ryH§%>' The primed coordinates and
symbols will be used for E,, and the nonprimed for H% for
expressing the product of two integrals. On applying the
same far-zone approximation, (4-18), to the spherical func-
tions as well as to other factors in the integrand, the expec-

tation of the product of Er and H;Z thus becomes

Yy

7 L
L\ ko, ' (xy=x") (y,-y") o ..
<EryHrz> = > [mrmr][— 5 (r1151n90+rl3coseo)
(4m) Wi

'
(Rro)
yz_yl‘z ~ot . ‘;‘l (yz—y')zz > | 3
+{1- = }(r2151n60+r23coseo)— ———T—ji——(r3151neo
ro (R! )
Yo
+r33coseo)][Rro (r21s1neo+r22coseo)— ﬁ;;—(r1151n o

z

—ikzc'(ﬁg— + §%—)
Sk Vst Gk &k io ro
+rchoseo)Mio@roq)io@roe
z
, h 2
lk,zl;(ﬁ; + ﬁ;;) |
e ds'ds> . (4-47)

.First we consider only the zero order slope terms in the

brackets, that is, we approximate mé and m, by

m' ~ a s(al +a' ) , m_ = a - (a +a ) (4-48)
r Z R. R .
io ro io ro

and use only zero order rij's given in (4-25). The expectation
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then becomes the joint gaussian characteristic function,

—k2a‘;'+ik2a; - % kgcz(a'z—Za'ay+a2)
e >=e (4-49)
where
z z
NIV S I S T (4-50)
io ro io ro

and the autocorrelation coefficient y(x',y':x,y) has been
given in (4-9). We note that if the usual stationary phase
method is used to evaluate the integral (4-47) as we have

in the previous calculations, then it turns out that the re-~-
sults are identical to those of the smooth plane case and do
not depend on the roughness of the interface. This is due

to the fact that the exponential (4-47) representing the ef-
fect of the interface roughness disappears for y=1l and a=a',
for, in both primed and nonprimed coodinate systems, the
phase is stationary at one and the same point (xo,yo). Such
results are certainly not very interesting. To avoid this
difficulty, we introduce a refinement to the usual stationary
phase method by also considering the variation of the correla-
tion coefficient y in the neighborhood of (xo,yo). Thus we
expand y in Taylor's series about (xo,yo). To describe‘this
procedufe more élearly, we write the integral (4-47) in the

following form

<EryH§Z> =.[ffﬁ(x'y;x'rY')eg(x'Y7X'rY )

ei¢(x',y')e‘i¢(x'y)dxdydx'dy‘ , (4-51)
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where

g'x.yixl,y') = kgczaa'v ,

¢(X,Y) =‘k2(Rio+Rro) r ¢(X IY 'Y =k (RJ'.O+R]:.'O) ’ (4-52)

and f£(x,y;x',y') is the remaihder of the integrand of (4-47)
including the constants. We now first evaluate the integral

with respect to x and y by writing

[g-idl %2
I(x',y") = [£f]__e J[[éxp xlg, ] oty Lo, ot > K L
2 . |
+ 35 [gyy~1¢yy]ev+xy{qu-1¢xy]ev dxdy , (4-53)

where the indicated evaluation is to be made at the stationary

point, (xo,yo). (4-53) can be exactly integrated, yielding

' 2
1 2, 2(AF-BC)
- = {C%+ =5} :
4A ) [g-i¢]
I(X',y') = - -—————g—-——-—[f] e 4AD B e ev

ev

/4AD—B2 (4-54)

The new symbols in (4-54) represent

A= %[gxx - ityler

B = lg,, - 10,]qy

C = layley

R

F = [gy]ev . (4-55)

Next notind in the right hané'side of (4-54) the exponential
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in front is much more slowly changing than the last one, we
expand the exponent of the latter exponential only up to the
second order in x' and y' about (xo,yo). Carrying out the re--
maining integration of (4-51) with respect to x' and y' then

gives

2 .
<Er H;Z> = i 2 [f]ev ¢ (4-56)
y | 4AD-B*|

where the functions, £, A, B, and D are all to be evaluated
at (xo,yo) in both the primed as well as the nonprimed co-.
ordinates. Substituting explicit expressions for the symbols,

we obtain

.2 . ,
%* o —
<?ryHrz> K2{ sin a051n¢ocos¢o(m1151n60+m13coseo)
+(l—sin2a sin2¢ ) (m.,,sin® +m,.,cosHd )
o) (o) 21 o 23 o
—SLnaocosu031n¢o(m3lslneo+m3300360)}
fai % o *
{31na0cos¢o(m 31n60+m coseo)

21 22

—ai : * o * -
51na051n¢o(m1151neo+ml3coseo)} , (4-57)

where mij‘s are given in (4-30) and
5

k
K o

2
5 =
2/
wquT l+Q2

' (4-58)

Q, is derived in Appendix E:

4,1 1 ,-4,,. 2 4
cs(——-+ ﬁ—) {4k20 ao}

Ro 2

2,1

2 1,2, L
2 R RO

Q. = 4k
2 2

4 4 1 1.2
5cos a0+(§— + + ﬁ') cos

2

+ (

(4-59)
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where Og is the r.m.s. slope.

Other expectations of similar products of components
of Er and ﬁr can be found in an identical manner. Using

the definition (4-43), we thus obtain

2
< rx> [——[{ ~sin“o_sin¢ cos¢ (mlls1ne oMy 3€086 )
+(l—sin2a sin2¢ ) (m,,s8in6 +m,.,cos® )-sina_coso_sing
o~ o 21 o 23 Q (o) o o
. x.
(m3ls1n6 +m33C0S6 ) Hsina oCOs9 (m¥,5ind +m% cosb )
~sino 31n¢ (m1131n6 +ml3cosﬁo)}—{—sinaocosaocos¢o
-(mlls1neo+ml3coseo)—51naocosaosln¢o(m2151n60+m23cos60)
2
+sin“o (m3lsln6 +my,cOs0 ) }{cosa o (m¥,sind oM} 3cos6 )

- * *
51naocos¢o(m l31n6 +m33coseo)}]] ’

< r£> [2 [{- 51na COSsa cos¢ (m1151n6 +mlBCose ) ~sino cosa051n¢
. . .2 - ) .
(m2151n60+m23coseo)+sln uo(m3lslneo+m33coseo)}
{SLna051n¢ (m3131n6 +m33c036 ) -cosa (mZISlne +m23coseo)}
—{(l-sinza cbsz¢ ) (m,,sin® +m. ,cosb )—sinza sin¢_cos¢
o o” 11 o 13 o o} o ‘o
~(m2131n60+m23coseo)-51naocosaocos¢o(m31s1neo+m33coseo)}
*{sino_cos¢ (m2151n9 +m23coseo)--51noa051n¢o

o

- % .
(m1151ne +ml3coseo)}]] '
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K
%22 2 ,
<‘5rz> = Re[Z [{(l-sin a,cos $,) (my,5in6 +m, scos0 )

In

and use

.2 . . .
sin aosln¢ocos¢o(m3131n60+m3300560) 51naocosaocos¢o

-(m3lsineo+m33coseo)}{cosao(milsin90+mi3coseo)
—sinaocos¢o(mglsineo+m§3coseo)}-{~sin2aosin¢ocos¢o
-(mllsin60+ml3coseo)+(l—sinzaosin2¢o)(lesin60+m2300seo)
—sinaocosaosin¢o(mBlsin60+m33coseo)}{sinaosin¢o
-(mglsineo+m§3coseo)—cosao(mglsin80+m§3coseo)}?]. (4-60)
order to find the components of St , we let

> - -> -> >
ot — b -L 1 - — ° ~ —
x a, (ak +aR ) m, a, (akt+aRt) ’ (4-61)

zero order terms of tij's given in (4-26). For this

case, we have

e

where

b|

-ikb 't +ik, b

—% kécz(b'z—Zb'bY+b2)

= e ' (4-62)

2z
=.ﬁ§1._+n§%__,b=§ll_+n_— , (4-63)
[

o to io to

o

and obtain
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K
o L 2, :
<%tx>‘— Re[z [{-sin Bos1n¢0cos¢o(nlls1n6°+nl3coseo)
+(l—sin28 sin2¢ ) (n,,sin® +n,,cos6 )--sinB _cosB_sin¢
o o 21 o 23 o) o o) o)
c‘ ] +n 5 1 *
(n3131n60+q33coseo)}{51nBocos¢o(n§151n60+n23coseo)
—sinBosind)o(nilsin60+ni3coseo)}~{—sinBOcosBOcos¢0
-(nllsin90+nl3coseo)—sinBocoseosin¢o(nlein60+n23coseo)
l2 £] kd *
+sin Bo(n3151neo+n33coseo)}{cosBo(n3131n60+n13coseo)

— * 1 *.
51nBocos¢o(n3131neo+n3300s60)}]] '

K
_ 1 . : . .
<%ty> = Re[f—[{~51nBocosBOcos¢o(n1151n60+nl3coseo)—s1n600058051n¢o
. .2 .
(n2131n60+n23coseo)+51n Bo(n3ls1neo+n33coseo)}
o { a1 1 % oq * - L] *
{51n6051n¢0(n3151neo+n33coseo) cosBO(n2131neo+n23coseo)}
~{(l—sin28 cosz¢ ) (n,,5in6 4n,.,cosH )—sinZB sin¢ cos¢
o) o) 11 o 13 o] 0 o} o
-(nlein60+n23co$60)—s1nBocosBchs¢o(n3lsin60+n33coseo)}

° 1 * 1 * -} 3
{s1nBOcos¢o(n2181n60+n23coseo) sinB sin¢

-(nilsineo+ni3coseo)}]J '

K
- 1 2 2 . a2, ,
<%t;> = Re[§~[{(l sin Bocos ¢o)(n1151n60+nl3cosgo) sin 6051n¢ocos¢o
[3 P L ‘
-(n21s1n60+n23coseb)—s1nBocosBocos¢o(n3131n60+n33coseo)}
. * ad : —_—d O *
{cosso(n1131neo*ni3coseo) 31nBocos¢o(n3151n60+n33coseo)}
-{—sinZB sin2¢ cos$ (n,,sinb +n,.,cosb )+(1_sin28 sin2¢ )
o) o TVpo 1l o 13 o) o) o)
-(nélsin60+n23coseo)—sinBocosBosin¢o(n3lsineo+n33cosﬁo)}
;°{sinBosin¢o(nglsin60+n§3coseo)—cosBo(nglsin60+n§3coseo)}]}

(4-64)
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nzki
Kl = 5 y (4—65)
wulP ¢1+Ql

and P has been given in (4-35). Ql is also derived in Ap-

pendix. E:

2
Q = kzc l_ + n_
1 2 R R

16 I~

-2 cosza ncoszﬁ -2
) ( 2 ° 4 e ) (cosao—ncosBo)4
o 1 '

cosza nc0526 k204
. _(l_ + E_)( _9 4 °) + —2 8 (cosa_-ncosB )2
1 o o

8

1/1 n \2 1 cosZu ncosZB
+5(§-+§*)+(§—+§—) ot TR
1 "o 1

cosfa ncos B 2
+ %( ° 4 °> . (4-66)

1/2 “1/2 in (4-60) and (4-65) are the

(l+Q2)_ and (1+Q;)
correction factors due to the roudghness of the interface,
which in the smooth plane limit approach unity as expected.
Next we examine the case when for a givenvcS the source
and the observation points recede even further away from the
interface. The last two terms in (4-59) eventually become

negligible and thus

3.4 81 1. -4 4 -
Q2 e lezos(R + = ) “cos oy (4-67)
o 2
and
1+0y 20, . (4-68)

110



Therefore from (4-58)

K5 K
K, = 5 —— 5 . (4-69)
wquTVQZ 4wuzosRocos ao

(4-69) indicates that by (4-60) the reflected power asymptot-
ically becomes inversely proportional to the fourth power of
r.m.s. slope. Equivalently, by substituting in O the ex-
pression (4-7), it can be also said that the reflected power
becomes inversely and directly proportional to the fourth

power of r.m.s. height and the correlation distance, respec-

tively.
If we do the same for Kl in (4-65) by increasing R, and
Rl, then
4 8 2 2
ko cos“a ncos” B -2
. 281 n \-2 1 o 0 _ 8
Q; N"ﬂ?‘(ﬁf’+ & ) ( = + = ) (cosoc0 ncosBO) ;
o 1 o 1
(4-70)
and for sufficiently large n
1+0Q, 20 (4-71)
so that
nzki 4n4kic0526o
K, = . (4-72)

wulPZVQi‘ wulo:RgRi(cosao—ncosBo)4
It is seen that the depe%dence of Ky of <§t> on o, or o/d is

simiiar to that in the previous case. The dependence of K1

on kl is as ki. However, other factors in each component of
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<§t> are proportional to kI4 so that when the lower medium
is perfectly conducting <§t> correctly becomes zero.
Next we consider higher order terms in the integrand of

(4-47). We write (4-47) up to the first order terms as

;E:H*>= ffj<(u+u?;+uz+u?; +ui;.)
< ry rz (4ﬁ) wu, 1 3

alkza';'¥ik2a;>

e ! e 0% o* dx'dy'dxdy (4-73)

io ro io ro

where the coefficients u's are independent of random variables
and can be computed in a straightforward manner by writing out
the integrand in the first order. We can then show that (See

Appendix F)

~ik,a'c'+ik.,ac - k202(a'2—2a'ay+a2)
2 2 . 2 2
z.e = —lkza oy e

N} b=

—ik.a'z'+ik.ar - 2 %252 (ar? 2aray+a?)
2 2 2 2
z..e = —1k2a o y..e

DO} b=

< ' —ikza'c'+ik2ac> 5 - kgoz(a'z—Za'ay+a2)
z!,e = ik,ac"y_,e
X 2 X

N}

-ik.,a'g'+ik,az I kzwz(a'z—Za'ay+a2)
z!,e 2 2 = ik aqz‘ e 272 (4~74)
yl 2 Yyl
However, at the origin (r=0),
Y = Yy = Ygr =Yg =0 (4-75)
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leaving only the zero order term in (4-73). The first order
terms vanish in all other such expectations and thus the zero
order results (4-60) and (4-64) are actually equivalent to

at least the first order approximation,

Lastly we consider the second order terms. Those second
order terms that show up as we write 6ut the product of three
first order brackets in the integrand of (4-47) represent only
part of the entire second order terms, since we have neglected
such terms all along up to that point. We could, of course,
include from the beginning all the second order terms if we
had so desired, which obviously would have turned out quite
tedious if not difficult. More interesting, however, is to
calculate the general form for the second order power. Thus
again appropriately denoting each coefficient of such terms by

symbols, we write

.
<%r H§z>'= kg .[z[[«u +u5C2+u6§2+u7cxC gL Ly
Yy (47) wu, =@ o X y y

+u9§ g!',+u

2
X7y 10§y€§'+ull§y ;

l2 1 !

-ik,a't'+ik,ay
. 1 ' * §* ' 1 _
e >®i0®ro®ioérodx dy'dxdy (4-76)

and in addition to (4-49) make the following substitutions

(see Appendix F):

. . 1.2 2 2 2
<%2e—1k2a';'+1k2a§>‘_ (02—k204a'2y2)e_ 5 k20 (a| -2a‘ay+a“)
X R ] X
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. . 1.2 2 2 2
<: 2 —1k2a';?+1k2a;> 4 2 - kzc (a'“-2a'ay+a”)

N

2 2 2
é,e = (01~k20 a yx,)e

—ikza';'+ik2a; 5 4 - % kgcz(a'Z»Za'ay+a2)
T 5y® = -ky0 v, e
X’y 2 x'y
~ik,a'z'+ik,azc —lkzdz(a'z-Za'ay+a2)
z.cl,e 2 2 = (0'2 +k2cy4aa'“{ Je 272
x°x' Yxx' %2 x %! )
(4-77)

Other second order expectations can be written on inspection

of (4-77):
2 Hikza';'+ik2a; 2 24 29 T % kgoz(a'z—Za'ay+a2)
— - 1
;ye > = (cl kzo a Yy)e
5 —ikza';'+ik2ac . 2 242 2 - % kgoz(a'Z“Za'ay+a2)
§§,e >:= (c]-k50"a Yy,)e :
~ik,a'g'+ik.,azg -3 kzcz(a'Z"Za'ay+a2)
v o 2 2 2 4 2 72
Exlcyle = _kzg Yleyle
—ikza'c'+ik2ac 2 2 4 «%kgcz(a'z-Za'ay+a2)
Ty Cyre 4>= (07Y g r1tkTo aaty v e
< —ikza'§'+ik'2'a; 2 2 2 ~%—k§dz(a'2-2a'a~(+a2)
] - ]
Txtby® >— (o Yx.y+k20 aa Yx.Yy)e
~ik2a'c' +ik2a§ 2 2 4 —%k;o;(a'2—2a‘ay+a2)
1 -t - 1
cycy,e >— (o Yyy'+k2° aa Yyyy,)e .
(4-78)
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For r=0, (4-77) and (4-78) become

~1k a §'+1k azg -1k a'c'+ik ac —1k2a z'+ik ac
@ (g
/ “lk a'z'+ik ag —1k a'cg'+ik.,ac
=ei2e 2

s T
AT 1k2a z +1k2a; _ 02
Yy 17
-1 LI " 3 ¥ .
<€ e J.k2a g +:Lk2a2;>= <§' e 1k2a ?;'+J_k2az;>
X y Xl yl

-1k a'c' +ik ac -lk a't'+ik ac
O A O

(4--79)
Thus the modified stationary phase method yields
< kg 2
g H*>= . (lu 1_+lw 1 o2 , (4-80)
ry rg 4wu2R;cosza /ITo- o ev s'ev'l
o) 2
where [uO]ev has been evaluated in (4-57) anq
ug, = ug + ug + Ug + Uy + ulz + Uq 3 (4-81)

Other similar expectations which are required for computing
<§:> will have the same form of results except for different
U, and ug - Similarly, a typical expectation in the case of

transmitted power becomes
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5

k
1 2
B, o >= (v _+Iv.1 o2 (4-82)
<ty €2/ awu plcos?a _vI¥q; OV Sevi

where the nature of vO and vS are similar to that of ug and

u .
s
For small Ql the second order power is seen to be directly
proportional to the mean square slope of the interface, or

equivalently, to the mean square height of the interface.

4.4 Determination of Mean Square Slope by Experiment

It is evident from (4-69) and (4-72) that the mean
square (m.s.) slope for a class of natural rough surfaces
can be determined by experiment. For this purpose, it is
more convenient to consider the reflected power and the mono-
static geometry, namely, the geometry that the source and the
observation points are at the same point. Then the usual over-
flight test can be performed where a single airborne antenna
is used for transmitting and receiving. We assume that the
velocity of the airplane can be neglected so that the antenna
can be considered stationary in order to permit the steady
state analysis. The normal or near-normal signal incidence
(strictly, with respect to the stationary phase paint) fur-
ther simplifies the analysis.

On putting o _= % in (4-60), the horizontal components

o

of <§r> vanish and the backscattered compohent is found as

=

2 2
<Srz> -7 (]mllI2 + ]leI ) (4-83)
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‘where we have also put 60= % considering a horizontal dipole

so that the maximum radiation is in the vertical direction.

Also o= T and (4-69) give

2
k3
Ky= 177 (4-84)
4wpzoSRoR2

The extra factor Cg is introduced now to account for the
strength of the transmitted field, which we have put as
unity so far in our investigation. Thus this corresponds

to writing our incident Hertz potential as

5 . (4-85)

, . : , . . T
On inserting m, 4 and m,, given in (4-30) with ao= 5 4 (4-83)

becomes

K k.-k,1{2
_ 2 2 _ 72 1 72 _
(Sp2) = 2= Impy 1% = 52 }kl+k2‘ ' (4-86)
since
+,my _ 1-n wTy _ _ 1-n _
R (2) - l+n r R (2) - l+n ) r (4 87)
and
M,y = 0o . (4-88)
Using (4-84) and (4-86), we can write for Oz
3.2 ‘ .
2__ 1 [}C% lkl“kz {4-89)
s 2ROR2/2wu2<Srz> k1+k2
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Define thée following quantities:

Pn = peak power radiated by the airborne antenna

GT gain of the transmitting antenna over an isotropic
antenna
GSD = gain of an electric dipole antenna over an iso-
tropic antenna = % .
Then the power that must be radiated by the dipole to give

the same power density in the main lobe is given by [Erteza,

et al., 1965]

PTGT _ 2PTGT

= (4-90)
Sb GSD 3

CO can be given in terms of WSD by
CO = . (4-91)
Since
2
<S >G A
_ rz/ "R _
P e ’ (4-92)

where GR is the gain of the receiving antenna over an iso-
tropic antenna, we finally obtain from (4-89), (4-90) and
(4-91)

2 .1 GpCRPyp

p
r

)
k7K,

. (4-93)

Usually the gdins of an antenna in transmitting and receiving

are identical. Thus
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R =R r G, =G, =G (4-94)

o 2 T R
and
2 ¢ [Pr K17k,
s = 252 B K%, (4-93)
4k2R r 172
If the lower medium is highly conducting so that k,>>k then

1 27
the last factor in (4-95) can be neglected, further simplify-

ing the results

/P
0'2 = ———g—? P'—T . (4-96)
4k2R r

Thus by measuring Pr and R, 02 can be determined., Here

it should be remembered that Pr and P, are steady state powers.

t
However, most radars employ pulse signals rather than CW sigu
nals. If a pulse used is of fairly long duration compared
to the carrier wavelength, then the wave train in a single
pulse can be to a good approximation considered a steady state
wave with the cdrrier frequency Wy

It is interesting to see that if we assume a vertical di-

pole instead of a horizontal one, by letting GO=0 in (4-60),

we find

K
K 2 2, B}
<Sr%>* 2 (my 2+ myy d) 3o (4-97)

since ml3:m23:0. This result is not surprising, which simply
verifies the well khown fact that the radiation field is zero

along the dipole axis.

119



CHAPTER 5

SUMMARY AND CONCLUSIONS

Using the concept of Hertz potentials and a new plane wave
approach, integral expressions describing the reflected and the
transmitted Hertz potentials everywhere due to an arbitrarily
oriented dipole source have been obtained for a smooth and a
rough infinite plane interface. It is assumed that the upper
medium'(kz) in which the dipole is situated is the air and the
lower medium (kl) has an arbitrary medium property, both media
being homogeneous and isotropic.

After an introductory remark and a review on some of the
more important work .en the classical dipole-earth problems and
on the rough surface scattering theories in Chapter 1, Chapter
2 deals with the smooth plane boundary case. The integrals
(2-30) are exact in this case and the integrations have been
carried out by using the method of stationary phase. Restric-
tions on the validity of such results have been discussed in
great detail., For these results to be applicable, it is found
that both the source and the observation points cannot simul-
taneously approach the interface in either case of reflection
and transmission. However, there is one exception. For a
horizontal dipole source, the aforementioned restriction holds
true only for the reflected field when the observation point
is located in or near the normal direction to the dipole axis.
On the other hand, if the observation point lies in or near

the direction of the dipole axis, then, even for a grazing
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incidence, the results become valid, provided the source and
the observation points are far apart. We believe that this
interesting situation has received attention for the first
time. Also such a particﬁlarly simple form of our results

for the reflected and transmitted Hertz potentials is prob-
ably new, except perhaps for the form of the reflected Hertz
potential in the case of a vertical dipole source. The re-
sults corresponding to two distinctive dipole orientations,
namely, vertical and horizontal, have been obtained by spe-
cializing a parameter in the general results. Specializations
have been also made with respect to the medium property of

the lower medium. As k1+k2 (no interface) and kl+oo (perfectly
conducting), the results obtained in the geometrical optics
approximation gradually improve in their applicability until
finally in the limit they become exact and reduce to well known
expressions. From the Hertz potentials, the electromagnetic
field expressions are also derived.

Another interesting and apparently important observation
has been made on integrals (2-30), although the same observa-
tion can be made on the final results also. As we specialize
the dipole direction to be horizontal, the vertical (z-) com-
ponent term vanishes and we are left with only the horizontal
(x~ and y-) components of the Hertz potential. If we choose
the x-direction as the dipole direction, the incident Hertz
potential can be described by Hx alone, and hence, consequently,
the total Hertz potential everywhere will have only the hori-

zontal components. This contradicts all the previous work on
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the classical horizontal dipole problem in which the Hert:z
potential everywhere is shown to always have x- and z-compo-
nents. The entire section 2.6 has been devoted to clarifying
this apparent discrepancy. It has been successfully shdwn
with illustration that the Hertz potential is not unique in
the horizontal dipole problem (or in any boundary value prob-
lem for that matter) and that as to the resolution of Hertz
potentials there are altogether four possible resolutions:
They are ﬁ=(nx,ny,0), A=(n,,0,1 ), ﬁ:(o,ny,nz) and ﬁ=(nx,ny,nz).
The second one is the resolution chosen by others. TIf Sommer-
feld himself has not been mistaken on the nonunigqueness of
the Hertz potential resolution, his remark in assuming the
particular resolution is certainly misleading, which undoubtedly
has led others to believing his resolution to be unique.

In Chapter 3, we derive the vector Helmholtz integral
using a somewhat more general method. From this integral an
integral formulation has been developed for an arbitrary non-
planar interface given by z=c(x;y). This is also believed
to be the first time that an electromagnetic scattering from
a rough interface has been formulated starting from the vector
Helmholtz integral using the Hertz potentials. With respect
to the rough interface the following assumptions have been
made:

1. The radius of curvature at every point of the

rough iyterface is much greater than the wave-

length.

2. Shadowing effects are neglected.
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3. Multiple scattering is nedglected.
4. Both the source and the observation points
are far from the interface.
5. The interface is assumed to be a stationary
random process with a gaussian height dis-
tribution.
6. The height variation ¢ from the mean plane
is assumed to be small and the slope every-
where is such that the second order slope
terms can be neglected. Statistically this
is equivalent to small o/d.
7. The lower medium is homogeneous, isotropic
and otherwise arbitrary.
The single most important approximation that is used in our
formulation of the scattering from the rough interface is the
tangent plane approximation, which is the reason why the first
three assumptions in the above must be made. Integrals (3-25)
obtained usiné this approximation represent the reflected and
the transmitted Hertz potentials at points far from the inter-
face. The reflection aﬁd the transmission coefficients in the
integrands are dyadic quantities so that they account for the
different coefficients for each component and also for the
change of polarizations (with respect to a fixed coordinate
system) on reflection or transmission.
Chapter 4 is concerned with the carrying out of those
integrals with the assumption of ¢(x,y) as a gaussian random

process. By approximating the phase variation from the mean
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plane which is constant for a stationary process, the sta-
tionary phase method is applied with respect to the mean plane.
Each of the resulting expected Hertz potentials and the elec-
tromagnetic fields are identical to the smooth plane interface
case except for an exponential factor representing the effect
of the roughness.

Expressions for the expected power (poynting vectors)
are also derived, using a modified stationary phase method.
The modification is made in order to account for the varia-
tion of the correlation function in the neighborhood of the
stationary point. The results show an interesting dependence
on the roughness of the interface. As the source and the ob-
servation points recede from the interface, the reflected and
the transmitted power eventually become inversely proportional
to the fourth power of the r.m.s. slope. It is shown that
this asymptotic result for the reflected case can be applied
to an experimental determination of the r.m.s. slope using
overflight tests. The result is specialized to a monostatic
case and the normal incidence is considered. The general
expression for the higher order power is also indicated. It
is shown that the first order power vanishes and the second
order power is virtually directly proportional to fhe mean

square slope.
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APPENDIX A

CALCULATION OF ELECTROMAGNETIC FIELDS

For the vertical dipole case, the reflected Hertz

potential is given from (2-48) as

elszT,
- — n = = -~
I, =R (ao) ——ﬁ;-—, er = Hry = 0. (A-1)
- > .
E. and Hr can. thus be derived from
azﬂrz
B = X2 .
rx szaz2
2%,
Ery = 8y2322 !
2
9 Hrz 2
Erz = 7 k2 Hrz;>
9z
2
2 .
H = ) ol
= - ,
rx 10H, Byz
2
H = - kyo o,
ry iwy 9K, '
H_ =0, (A-2)

On using thé approximations (2-69), we at once obtain

2 " elkZRT
Erx =,—k2 sln‘ao cosfoco cosf¢OR (qo) —ﬁg—_— ,
2 e?szT
E__ = -k sin a_cos a_ sin ¢ R"(a ) ————— 71/,
Ty . 2 o) 0 o} o RT
ik ,R
E =k 2 sin2 a R"{(a ) E_ﬁf;f'.
rz 2 ' o o RT o

3
(9]

I..J
1}



k23 lszT

- : . uwy. L

H . _'mﬁg sin o sin ¢0,R,(ao) RT oy
k23 . elk2 T

Hry = Eﬁ; sin ub cos ¢0 R (ao) RT' r

These can be converted to the cylindrical components-

by using
Err-= Erx cos ¢o + E.ry 51p ¢O/
Er¢ =—Erx sin ¢o + Ery cos ¢O,
E., = Unchanged’ (A-4)

and similar ones for the magnetic fields.
The components for Et and ﬁt for the vertical case

can. also be found analogously, which we will neglect to
show.

The manipulations for the horizontal dipole case
is a little more involved but again straightforward,

which will also be. neglected of showing.
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APPENDIX B

DERIVATION OF (3-49)

Exact expression for the reflection and the trans--

mission coefficients are given in (3-48).

It is first

necessary to express k2n and kln in terms of the rectan-

gular components (x,y,z). Since

Kz = (k Ko , ko) 7

2x, 2y 2z
- 1 _ - . ~ (o -
al’l = 3‘1"1'( Cxl Ey' 1) = ( er ny 1)«
we have
o> 2 _
Kon = ka2t 3 = “koylx k2xcy+k2z'
By (3-43) and (3-47),
2 > >\ 2
kln = /i{l.—(k2 ap)
)
« x 2k, 222k, (k,_t 4k, C.)
B 2r 2z'72x°x 277y
k
- 2 2 _ . 2z _
% kl 'k2r' . - 2i(kzxz;x+k
k.“=k
1l T2r
k22

H
W
|

where k_ =/x.?%-x, % .
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Therefore;

X4

ukan_kln
urk2n+kln

pr‘kZkaZXQX-ka

cy)

k
2z
—‘ka E——(k

a

* 2x§x+k2y§y)

u. (k

~k
r

2z ZXfokaC

. 2z
{“rk2z’ka+(E;_‘ My

kZZ
k

a

°{“J:kZZ"i-ka - ¢

kZZ

k
a

{urkZkaa +

-1,
{l+(urk22+ka)

urk’ZZ_ka + kZz-"M

y <

k
(E—— + ur)(k

N k R :
T2z
) + kg - —E;(k2xcx+k2y;y)

) (k 2% Cx-l-k

| -1
'+“r)(k2x€x+k2y;y)}

~1
—ur)(k2x;x+k2ycy)}<“rk22+ka)

2z
a » ZXCXfKZYCy)}

k

ra (urk2sza)(k22+urka)

+

Hpkotky vka(urk

2z" "a ka‘$r322+ka)

,(kZch+k2ycy). (B-4)

'(kZXfok2y§y)
2
HikKop kg 2u k,n’-1)
u k., +k° , 2
r 2z Ta. ka(urkzz+ka)

Similar calculations can yield the remaining three

. + oL " + u ,
equations for T , R* and T". T and T" can. also be

obtained from R and R” through the relations

J4
T

ot

(B~5)

which can be easily checked out. in (3-49).
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APPENDIX C
DERIVATIONS OF (3-52) AND (3-53)

We first show the derivation of (3-52). On using

(3-47) and further performing the first order approxi--

mations, each term in»rll of (3-41) reduces to the fol-

lowing: 5
. k. Z+2k, k.,
First Term ® R { ,ZY 2z 2y°y }
Rpp 2Ky, (Kpul tky C.)
2k
~ R =2, 2z ‘ 7
@ R (kg kg B kg, (dm —25 Gk, Tty T))
2r
“k, "2k, 2- 2 yakay
~ Rk {k 2y -_,__51_
k2r-

which by (3-50) further becomes

2_+ 2 .+
o k., “R 2k, _k R
First Term ~ k. 2{k. °R% +(=2L L _ 222y ‘o,
2r 2y "o k 2
a k
2r1
) (k2xcx+k2yCY)+2k2z 2yR ot (Cc-2)
Similarly
~nll 2 -2
Second Term x-R (k +2k22kzxc ) k2
2k
+ {1 - ——255 (k2x§x+k2yCY)}
k
2r-
2.n 2
ek 2o 2pr - 2R Podox L
T M2r 2xX "o ké X 2 o
2r
L ] - : " —
(k2x€x+k2yc ) ,2k22k2xRoc } (c 3}
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Third Term ® O. (C~4)

Adding all three terms now gives Tyge

Next i, is the sum of the following terms:

. - =2
First Term z~ -R k2r {kzxk2y+k22(k2x§y+k2ycx)}
2K ; -
. 22 U
{1 - ;”"71(k2x§x+k2ycy)}
2r
v R T2 . '
TR Ky Tk Ky TR g (R Ty tkag Ty
- Zesfaday gk )
2 2X°x° 72y°y
k2r

N _ & A
> X 2{k2xk2yRo + kZZRb (k2xcy+k2y;x)
2r
2k. k., k . k, .k
_ 222X 2y _+ z z 2X 22 o
K = Ry (k2x x+k2y y)+ k KRl-
2r a
© (oxtxtRoyty)d (c-5)
k +k k. +k
Second Term = -R" 22°x" " 2x 22°y 2y
‘ - Jt J )
t
' 2k, k. k
~ 1 ’ " " - 222X 2yn,,
~ % §{k2xk2y30fk22Ro(k2xcy+k2y§x) k. 2 =
2r ‘ 2r
k, .k
. 2% 22 " .
Raxtxthoy®y) * —k T R1
t Ry Ttk ty) (C-6)
Third Term ~.0 (C-7)
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sy can be obtained by exchanging x and y in every sub-
script in the expression of rjj.

Next r is found by adding

13

2

First Term » -R k,_ kzy(—kzycxkaXFY)

2k2z ‘
« {1 - 2 (kzxcx+kzyzy)}
2r
= Rk, "%k, ( =k, L tk, Z.) (C-8)
~ o 2r 2y 2y’x’ 2x§y

-2

Second Term = Rok2r k2x(k2xgx+k2y§y) (C-9)
. e -
Third Term ~7'Ro;x (C-10)

¥o3 is also obtained by exchanging x and .y in every. sub-

script in rqy3e

r ~ Third Term

33

(C-11)

u R&'__
* RY + E; (k2x;x+k2y;y)

tij's-will now be derived. For t,, we can write

2_+ 2
k T 2k, k
. .1 2. + L2y 1 2272y L
First Term ~,;§;——7 {k2y T, + ( ka T To)
2r 2r
(ko rotk. T )47k, ko Tre )
2x°x Ry by TR 252y 100y (c-12)
Second Term=z EE o {k, -(k, C.+k-. T )}
e s ne 2z "T2x°x 2y7y
2 . 2. » 1/2
. {klﬂ—er —ZkZZ(kzxcx+k2ygy)}
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“2(k, 2+2k, k, ) {1 - oz (k, T _+k, T )}
2r 2x 2z72x°x’ X 2 2x°x 2y7yY
2r

EE T”k'—l{k -(k +k, )+ kzzz(k c tk, z.)}
2 a 22" Foxtx 2y§y % 2 2xex 2yCy
a

* k

b

n
2
2 2k. k

_ oo 272X
b4 +2ksz2xcx K 2

2r

-2
2r

- ky C 1k, (K byt T) )

, 2
u T"- k
r 2 2,72z ,
o7 ooy Ry (T3 B (kg iy ty)
a 2r- a
2, 2
2k, .k
_ 22 ;2%
k2r
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2

* Zky,

k

2%

2
U , " k
r . 2_.n 2T 2.1 27 -
77 Fagkax Totlkagkax 2 Koy Tol7 7 7Y
N Xa¥or , a a
2, 2
2k k _
22 2X n 2 0/
- . 2 To} (k2xgx+k2ycy)+2k22 kZXTogx]
2r

2

(C-13)
Third Term ~ 0 (C-14)

Adding the above three terms, we get tll' For t,, .

. 1 + +
First Term =z - ;5;——7 {k2xk2yTo+k22To(k2xcy+k2ycx)
2y

2k22k2xk2
2 N
k2r

2xcx+k2y€y)

z ol
T, (k

Koxloy o
+-——E-¥ ) (k2xcx+k2ycy)} (C-15)
a

, s o )}
Second Term % —5——5— {kZZ—(l_’ > )(k2x;x+k2ygy)

n kzr'ka ka

2k, _k, k

7} " T2272X 72V o
{k2xk2yTo + kZZTb(kacy+k2ny) - x 2 To

2r

k., k
2x 2 ! / - .
2xbxtRayty) Y TR Th (kpulytkayty) d

(k



2

H k
~ I , no_ " _ 2z
~ n2k 2k. [kZZkZXkZYTO {kZXkaTm(l " 7)
2r TE a
2
2k, "k, .k kqa ks k,
, 22 2X°2Y on _ _2X°2Y 2Z . :
+ N ~ 2 To Ea ' Tl}(k2xcx+k2y§y)
2r
2 n . -
+ k22 Tb (k2xcy+k2y;x)] (C-16)
Third Term = 0 (C-17)

from which tl2 follows. t13 obtains from

oL
™ .
. ) _ _
First Term =z W'kzy( k2y2;X+k2XCY) (Cc-18)
2r '
T L .
L r o 2x -
Second Term x. nzk 2k‘ kZZ(k2x;x+k2yCy) (C-19)
2r &
. 1'll’.' a
Third Term » - ~5 Tocx (C~20)
n
t22 and t23 are found by exchanging x and y in tll and

t13 respectively.

t Third Term

33 %
u o

oo Lok |
3 {rg + k. (Kol thayty)
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APPENDIX D

DERIVATION OF (4-14)

+ 9
By decomposing kt into Zn and Zp directions, we have.

2 LN 2 > >
kt = (kt-an}an +‘(kt'ap)ap
> >
_ 2 _ T 2.1/2 » A
= {kl (k. ap) } a, + (k ap)ap
_ 2 _ % 2 .2,1/2» 2 s _

In terms of - components
z k. k

2
ky = g= (%, ¥, h=0)= = (%, y, h), (D-2)
1 1.
d =1 (-z., -z, Dat-z_, -2, 1) (D-3)
an = 3‘; er; Cyl ~ :CXI Cyl ’

and hence
> k

> 2 - -
k2 ,an ~ R—l ( X(;x ycy'i‘h) . (D-4)

From (3-40) Ep can be written

k, .

> _ 72 _ wr 2 - - 2
% ~ TRy O A IR A L e AP
Xt _+yz +ht 2+ z 2) (D-5)
x Yoy x Y y
Since from (3~47)
J_ = J, = E& {1+ B (xg_+yz )} (D-6)
P~ "t R; 2 txtYly .
(D-5) in the first order becomes
> 1 h
a, * ¥ {1—;§(xcx+ycy)}(x+th,y+hCy: XCX+YCY)
N _ hx . hx .
» = {x+hg ;5-(xcx+y§y), y+ht, £2<X€X+Y€y),
xCX+yCy} | (D-7)
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oxr

W
)
0

2 2 2, ..
> k,“r* k,"h(xg_+yz )
X x'<k12 _ .2 1 - 2 X v

4

o~ —
~

k
2 . .
+;§; {X+thr Y+h€y,-XfoyCy}
k , 1/2 1/2
= ﬁz-[x+hzx (n Ri_ r") Ty y+h2;y (n R,"-r ) Qy
1/2 .
2.2 _2 - h ’ :
(n"R,“-r7) + {1e — - '1/2:}(XCX+YCY)]
222
'(n‘Ri -r~)
(D-9)
> 1 2 2 2 0% 2. 2 2 1/%
~ -(n V- y. . - R. -
akt7'5§; xthg - (n"R; "-r") cx’ ' y+hcy (n g T ) Ly
1/2 y . L
2. 2.2 il h
(n“R; “-r ) +{1 . 3 173 }(xcx+ycy)
(n R, "-r )

2 .
R.2
1
2 ,1/2 2
2 Y
2 2 2.2
i

il {r? + h(xz_+yz )},
TR, r KE Y Gy T

X 2

1{]

1/2-

R, % k
i .

r

2

1 Ri -k

T 1 iyl

—2§:{r2+2h(xcxfycy)}- (D-8)

1)

2 2, _ hx"
,;55— {r +h(xcx+y;y)} {x+h;x. rz (xcx+ycy),

5
_ hy _ + |
y+he = =5 (XT 4L ), XC +yC )

r
/ 2
1 -

Xk 2r2 1/2

r .
% 7

2
R kl Ri k2 r
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so that

+~
a
k

to

1/2
2, 2__2 A
1 ) X+h§x‘ (n RiO r) ?':'X. ’
nR.
io
1/2
2 2 2 A
Y'*‘hCy (n Rio "r’) ;Y T
] 1/2 _ h
(an. 2—r2)° 1t 1/2 }
io 2 2
(n"R, =-r°)
io
(xcx+y§y) (D-11)

136



APPENDIX E

DERIVATION OF Q2 AND Ql

We will first derive Q2’ Square of the denominator

of (4-56) can be given by

|4AD—B2|2 = [Re{4AD—B2}]2 + [Im{4AD—B2}]2 ' (E-1)
where from (4-55)
Re{4aD-B%} = [g,, 1 000, Voy = 0000y [0 10y
In{4aD-B°} = - [¢xx]ev[gyy]ev - [¢yy]ev[gxx]ev
+20g, 1 o, 1] . (E-2)

Xy ev 'xy ev

Evaluations are made at the stationary point (xo,yo) and in
both primed and nonprimed coordinate system. g and ¢ are de-
fined in (4-52). If we assume that a and a' are much more

slowly varying than y, we have

_ 2 2, _
gxx = k20' aa YXX (E 3)

and hence

2.2, -
[gxx]ev - [kZG aa Yxx] (E-4)

ev

i

2 2 2
4k2cos a o [Yxx]ev

2 2 2
= —2k2c5s cos ao .
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Similarly we can find
a2 2 2
[gyy]ev = - 2k,0_ "cos”a_,
[gxy]ev = 0. (.E_S)
Also
P A § 2
[¢xx]ev‘_ kZ(R R2)(l sin“a cos ¢ ),
. 1 1. 2
[¢y-y]eV = kZ(R R2)(l sin a051n ¢ Y,
[, ] =~ %k (i +; )sinza sind _cos¢ (E-6)
Xy ev 2 RO R2 o} o] o
(E-2) thus becomes
2, _ 4.4 4 2.1 2
Re{4AD-B“} = 4kzcs cos "o, k2'(R ) ‘cos Oy
2, _ ,.3_2,1 .1 2 .2 _
Im{4AD-B"} = 2k;0_"(§ +z ) (l+cos”a ) cos oy (E-7)

o}

2

Therefore by sduaring and adding the two equations in the

above, we get

, 2,2 _ 4,1
| 4aD-B“ | = kz(Ro

6
4k2 s

+

6
2%¢

=

4k

4.1

=k

-{4kZo

l—‘l\)l\)

+
o

o

R

2 g
O
4 4
cOos O
b

=
2

1
Ry
4(§
(R
1

R,y

O

)?ccs

cos O
) (0]

'2
4. 1 l

4

4

)ZCOs4a
o

.)2cossuo
2

4

2 .
) cos uo[l + 4k20S

1,1 .2
+ (§‘+§2)
GO}]IK
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from which (4-59) follows.

Ql can be. found much the same way as above. Here

12 2 a2
9 dey = = 3K59¢ (cosa ncosBo} ,
_ 1.2 .2, ; 4 2
[gyy]ev‘f FK50 (cos&QanosBo) ’
[gxy]ev‘= 0,
k k
_ 2 - 2 Tl aia2 2
[¢xx]ev _"ﬁg (1-sin IRELE ¢O) +4Ro(l sin”B _cos ¢o),
k k.
_ S22 L2 K10 L2, .2
[¢yy]ev = Ro.(l sin“o_sin®¢ ) +'R1(l sin®g sin®¢ ),
sinzuo sin280
[ 1] = -k ( : + n e I (E-9)
Xy-ev 2 RO Rl
Thus
k2
2, _ L4 4 4 ehAO: 4 _ "2 2
Re{4AD—B } = %kzos (cosoco ncosBO) Eicos oy
© 2
kék k<
- 1 2, 4 oaos? o1 2, 4
R R (cos o, + cos Bo) cos Bb
o'l R
1
2 kgasz o l+cos20co
Im{4AD-B“}= - 5 (cosao—ncosBO) { =
o
(1+cos?8 )
ra ety 10

1

and therefore we finally obtain

2,2 4.1 .n 2~°°52“o' nc05230 2
|48D-B%| = k(5 +g ) g+ —g—)°
o 1 o) 1

6_ 4
o . .
228 (% +2 ) (coso _~ncosB )4
o Rp o} o

k

cos?q nCOSZB x8;_®
2 4 9) + 2.5 (cosq_-ncosB ) °
Ro Ry 16 ° °

- (
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k5O
2°s 4
+ =7 (cos o -ncosB )
K6, 4
1 P 9N 2 z ‘S . . 4 l n
. (5 +5)° + 5= (cosy_ -ncosB ) (5 +% )
Coszao ncpszﬁo 4 Kgc 4
A S e ) ) bOSao—ncosBo)
2
cos a ncos. B
- + - ‘ )
Ro Rl
cosza ncos26 2
A4lun,2 " o o 2 4,1 .n, -2
Cos a ncos’ B
-2 4 1l ,n
gt ) (cosa - ncosB ) " {- (g +x.)
‘ o 1
cos“a ncos“g k§@54 | | \
gt =) + —g—(cosa - ncosB )
o 1
1,1 n 2 1 cosa ncos Bo
PR ) G H )
°c 1 o 1 o) 1
1 cos”o ncosze 2
2 RO Rl

is evidently the second term in the bracket.
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APPENDIX F
EVALUATION OF ENSEMBLE AVERAGES
Expected value of the following exponential is

given (Stogryn, 1967):

' _ T ‘ .
N ZH+N,C' HNT N, T, (1/2)N"TN (F-1)

<e > = e

where N is the column matrix and NT'is:its transpose:
T

N™ = (N N, Ny N, (F-2)
and I' is the variance-=covariance matrix
<;2> <gg'> <gr_ > <gg!,>
X - x!
<g'g> <E'2> <g'tg > <g'gl,>
r = F X l(F-3)
1 L |
<t z> <L g'> <T > Tl
2
<C%.§> <C%.§'> <§§'Cx> <C’X. >

For a stationary random process, each component of

I' becomes

2 2 2
g a7y 0 8] Yxl
czy y2 ozyx 0
r = ) , 5 (F=4)
o YX Gl g Yxxl
2 2 2
O Yyt 0 O Yxx! °1
Thus
T - 2.2 2.2 2_ 2 2. 2 2
NTIN = N1 o + N2 o +N3 01 +N4 01 +2N1N20 Y
+ 2N.N 02Y + 2N,N GZY
174 x' 273 b4
2 .
+ 2N3N40 Yxx" (F~5)

Thus a typical expectation in the integrand of (4-73)

can be written as
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ikz(ag—a'ci) ) 3
<tye > =g, <e
3

1
N EHN L NSO N T
il
(6]

(F-6)

where
3

N'= (N;, N, Ny, N}, ﬁo = (ik,a, -ik,a', 0, 0)

(F=-17)
By (F-1),(F-6) reduces to
ik, (az-a'tc")
, 2 - 2 2. 2
<cxe >—(N30l +N20 YX+N4Q Yxx')
_(1/2)N7rN
‘e > >
No= No
(1/2) k,%0% (a' *~2a'ay+a’)
= —ikza'c Yy © ‘ (Fr-8)

Other first order expections'can,be evaluated similarly.

For the second order expectations we write, for

example,
ik,(ag-a'zc')
<z 2e 2 >
X
2 N, C+N, C'"+N.CZ_ +N,z'
_ 3 co 17772% T3
3N32 N =X
o
ikz(ag—a'c')
<C Ll e >
2 1 '
RN L LA LS
oN.,oN,
3774
N ==
o)

(F-9)
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For mixed (in x and y) second order expectations,

we can then write

ikz(aC*a’c')g'

<CXEY€
I\ ' :
_ 52 <erC+N2; +N3cx+N4cX>]
NN,
N =N (F-10)
o
where I' is now given by
<;2> <gg'> <tr > <;;y>
<g'c> <g'2> <g'rg > <g'g >
r = ~ Y
1
<g o> <L L' <g > <§X;y>
< > < E> < > <z 2>
cyC £yt 2 %% £y, %
o2 ozy 0 0
02Y 62 OzYx 02Y
= 5 > Y (F-11)
0 o%yx oy 0
2 0 2
0 o Yy gy
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