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ABSTMCT 

The experimental data obtained from two groove geometries of the 

viscoseal bearing were analysed to study the bearing characteristics and 

the sealing performance. 

compared with the Dubois and Ocvirk Short-bearing Approximation. The 

sealing performance analysis of the bearing included (1) the determina- 

The experimental bearing characteristics were 

tion of the sealing coefficient which was compared with the Stair and 

Hale method of theoretical prediction and (2 )  the effect of the bearing 

eccentricity ratio on the sealing coefficient, which was compared with 

the Vohr and Chow method of theoretical prediction. 

The results of the study indicated that, at constant load and 

speed, the bearing supply pressure had no effect on the bearing eccen- 

tricity ratio; at a constant flow rate, however, the bearing supply 

pressure decreased as the bearing eccentricity ratio increased. 

for the shaft center locus findings, the experimental results were in 

Except 

fair agreement with the Short-bearing Approximation. The experimental 

results showed good agreement with a numerical analysis of the viscoseal 

bearing. The study also indicated that an increase in the land width 

resulted in an increase in the load-carrying capacity of the bearing. 

The experimental sealing coefficient did not agree with the theoretical 

prediction, although the results indicated that the sealing coefficient 

increased with an increase in the bearing eccentricity ratio. 
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CHAPTER I 

INTRODUCTION 

This t h e s i s  i s  concerned with t h e  continued development of t h e  

v iscosea l  as a bearing. 

The v iscosea l  i s  a device i n  which a pressure gradient  is  

generated i n  a viscous f l u i d  enclosed i n  a t h i n  annulus or s l i t  by 

means of grooves on a r o t a t i n g  sha f t  or p l a t e .  Such a device i s  known 

as a viscopump if operat ing with a ne t  efflux of f l u i d  at t h e  high 

pressure end, and as a v iscosea l  when operating at shut-off head. 

Figure 1 describes the bas ic  elements of t h e  viscoseal .  While one o f  

1 t h e  earliest treatments of t h e  viscoseals  w a s  published i n  1924 [ 11 , 
technological development of t h e  viscoseal  has been exploi ted only i n  

recent years  [2, 3, 4 ,  5 ,  61. 

Previous work [2 ]  reported t h a t  t h e  v iscosea l  would sus t a in  a 

r a d i a l  load which w a s  approximately'12 t o  15 per  cent of t h e  capacity 

of a p l a i n  journal  bearing of t he  same ove ra l l  dimensions. The obvious 

reason f o r  reduced capacity i s  t h a t  grooves in t e r rup t  t h e  ac t ive  length 

of t he  bearing and divide t h e  bearing i n t o  a number of sho r t  bear ings,  

each having a low length-to-diameter r a t i o .  However, t h e  v iscosea l  has 

s u f f i c i e n t  bearing-load capacity t o  give it u t i l i t y  i n  c e r t a i n  high 

speed, low load appl icat ions.  

'Numbers appearing i n  braokets refer t o  references l i s t e d  i n  

1 

reference sec t ion .  
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s e a l  I \ I 
ps 

i n t e r f a c e  .A 

P = system pressure 
S pa - 

I I Pa = ambient pressure 

Figure 1. Basic elements of t he  v iscosea l ,  
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A general  equation [3] f o r  t h e  sea l ing  performance of t h e  visco- 

seal i n  laminar and turbulen t  operations has been developed as follows: 

6r! VL 

c AP 
' A  = L (111 2 

O f  several analyses discussed i n  131, t h e  work of Boon and T a l  shows t h e  

bes t  agreement with experiment. 

coe f f i c i en t  derived by Boon and T a l  [3] is: 

The equation f o r  t h e  laminar s e a l i n g  

which shows that t h e  laminar s ea l ing  coe f f i c i en t  i s  a function of groove 

geometry and independent of Reynolds number. The equation f o r  t h e  

turbulen t  concentric s ea l ing  coe f f i c i en t  derived by S t a i r  and Hale [4]  

i s  : 

I1 + I 

I 4  
A =  K 4 (  

where 

2 
Il = (1 - y )  t , 

3 2  
1 2 = B y t  Y 

- - B3 
I3 

[y + s3(1 - y ) l  
Y 

( 3 )  

( 4 )  

( 5 )  

'Numbers appearing i n  parentheses r e f e r  t o  equations. 
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and 

Here, F and F are t h e  r a t i o s  of t h e  w a l l  shearing s t r e s s  i n  

turbulen t  flow t o  t h e  w a l l  shearing s t r e s s  for laminar flow, with t h e  

same maximum channel ve loc i ty .  Thus, 

5 0 

Here, f o  and f k  a r e  t h e  r e s i s t ance  coe f f i c i en t s  for tu rbulen t  and 

laminar operations respec t ive ly .  

a t  which t r a n s i t i o n  from laminar t o  turbulen t  operation occurs i s :  

From 141 , t h e  c r i t i c a l  Reynolds number 

D/2 ] 1/2 
(1 - y)c  + y Bc Re = 4 1 . 1  [ 
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An analys is  of t h e  v i scosea l  i n  tu rbulen t  operation suitable f o r  

eccen t r i c  as w e l l  as concentric operations w a s  performed by Vohr and 

Chow [ 6 ] .  

on a spiral-grooved screw seal,  i s :  

Their equation f o r  t h e  sea l ing  c o e f f i c i e n t ,  which i s  based 

where subscr ip ts  X, Y ,  z a r e  t h e  d i r ec t ions  of coordinate axes, r 

and g ind ica t e  land and groove regions,  and Gx and G are turbulen t  

flow cor rec t ion  f a c t o r s  which depend on t h e  Reynolds number based on 

sur face  ve loc i ty  UHp/v , t h e  dimensionless pressure  gradient H App/!-~ , 
and t h e  included angle between t h e  d i r ec t ions  of t h e  pressure gradient 

and t h e  d i r ec t ion  of t h e  sur face  ve loc i ty .  The authors i n d i c a t e ,  

however, t h a t  f o r  t h e  conditions t h a t  p r e v a i l  i n  a v iscosea l ,  G-- and 

Y 

3 2 

G may be generally 

UH p / v  alone. With 

t h e  value of Gx i n  

Y 

ii 

considered t o  be functions of t h e  Reynolds number 

t h e  Reynolds number varying from 1000 t o  100,000, 

t u r n  va r i e s  from 0.056 t o  0.0024 and t h e  value of 

G 

s ea l ing  c o e f f i c i e n t ,  A , increases  as t h e  e c c e n t r i c i t y  r a t i o  increases .  

The 

va r i e s  from 0.067 t o  0.0025. The ana lys i s  a l s o  ind ica tes  t h a t  t h e  
Y 

r a t i o  of t h e  sea l ing  coe f f i c i en t  a t  0.9 e c c e n t r i c i t y  r a t i o  t o  t h e  
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concentric s ea l ing  coe f f i c i en t  w a s  found t o  be 1.35 f o r  a Reynolds 

number of 1000 [61. 

The v iscosea l  bearing, as t h e  name implies ,  i s  a combination of 

a v iscosea l  and a journa l  bearing as shown i n  Figure 2. This repor t  

describes t h e  experimental study of two d i f f e r e n t  groove geometries of 

t he  v iscosea l  bear ing,  hereaf te r  t o  be ca l l ed  Bearings No. 1 and No. 2. 

The c r i t i c a l  Reynolds numbers f o r  Bearings No. 1 and No. 2 ,  t h e  geometries 

of which are tabula ted  i n  Figure 3, were found from Equation (12)  t o  be 

449 and 548 respec t ive ly .  The highest  Reynolds number encountered i n  

the  experiment was  less than 40. Thus, t h e  study envisaged laminar 

operation only. The r e s u l t s  obtained from t h e  study have been analyzed 

with respect  t o  bearing c h a r a c t e r i s t i c s  and sea l ing  performance. The 

t h e o r e t i c a l  predict ions for sea l ing  performance were obtained from 

Equations ( 2 )  through (13). The equations f o r  bearing cha rac t e r i s t i c s  

were obtained from t h e  Short-bearing Approximation [ 7 ]  , which i s  con- 

s i dered i n  the  following paragraph : 

From Figure 2 ,  it i s  observed t h a t  t h e  v iscosea l  bearing having 

m number of grooves can be considered as composed of m shor t  bearings.  

Thus, t h e  length-to-diameter r a t i o  of each shor t  bearing i s  given as a /d ,  

Therefore, t h e  r e s u l t s  were ca lcu la ted  f o r  a bearing having length-to- 

diameter ra t iQ,  a/d, and compared with the  Short-bearing Approximation 

f o r  t h e  same r a t i o .  The ana ly t i ca l  and experimental inves t iga t ion  of 

the  Short-bearing Approximation w a s  conducted by Dubois and Ocvirk [ T I ,  

who considered the  following Reynolds' equation: 



I r Direction of flow L 

- 
Direction of seal 
pumping 

Figure 2. Elements of the viscoseal bearing. 
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The authors derived the following equations for the circumferential 

and endwise flow rates: 

H3 - d y ,  UH 
Qx = (ar - 1211 ax 

and 

The principal simplifying assumption made by the authors was that, of 

the two right-hand terms in Equation (15), the second is negligible 

compared with the first. Therefore, Dubois and Ocvirk assumed that 

Qx - m d y .  - 2 

Thus, this analytical approximation includes the endwise flow caused by 

ap/ay 

the surface velocity and local film thickness. This assumption results 

eventually in the omission of the first of the left-hand terms in 

Reynolds ' equation (14) . 
Equation (14) and made available all the bearing characteristics and 

verified them experimentally for length-to-diameter ratios 1, - , and 
1 , by the development of equations for load-carrying capacity, W , 

and that part of the circumferential flow which is related to 

With this assumption, the authors solved 

1 
2 
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capacity number, Cn, a t t i t u d e  angle,  $ , f r i c t i o n  r a t i o ,  F/Fo , and 
f r i c t i o n  var iab le ,  Fv, as follows: 

2 1/2 E [a2 (1 - c 2 )  + 166 1 2' '2 
IJ UR3 

4c2 i l  - E v = -  Y 

112 
1 , (19) 1 

IT (1 - E ) + 1 6 ~  

2 2  
d 2 2 2 -  ( I - E )  Cn E - [ *  2 2 IT& P d 

2 1/2 
( 1 - € 1  

E .  
t a n $  = f ¶ 

2 2 21T 
2 112 kt 3 f ( d / c d ) (  2ld)  = Cn 

( 1 - E )  

The purpose of t h i s  pro jec t  was t o  study the v iscoses l  bearing 

i n  t he  following ways: 

1. To inves t iga t e  the e f f e c t  of t he  bearing eccen t r i c i ty  r a t i o  

on t h e  bearing supply pressure.  Results obtained from previous work [2] 

ind ica ted  tha t  the  bearing eccen t r i c i ty  r a t i o  increased w i t h  an increase 

i n  the bearing supply pressure , for  da ta  taken at a constant load of 164.5 l b .  

and a constant speed of 1275 RPM wi th  various supply pressures .  
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2. To study the bearing characteristics and the sealing 

performance of the viscoseal bearing. 

3. To determine the possibility of increasing the bearing 

performance by changing groove geometry without having a significant 

reduction in the seal effectiveness. 



CHAPTER I T  

EXPERIMENTAL APPARATUS AND TEST PROCEDURE 

I. TEST BEARING ASSEMBLY 

Test Bearings No. 1 and No. 2 ,  which w e r e  constructed with a c e n t r a l  

supply groove, had pumping lands of opposite hand pumping toward t h e  supply 

groove. 

316 stainless s t e e l .  Measurements of t h e  sha f t  diameter and t h e  diametral  

clearances for Bearings No. 1 and No. 2 were found t o  be 2.479, 0.0052 and 

0.005 inches,  respec t ive ly .  The dimensions and the  groove geometries of 

t h e  bearings a re  described i n  Figure 3, page 8. 

manner i n  which the  tes t  elements were supported and loaded. The compound- 

wound D.  C .  motor used t o  dr ive  t h e  tes t  equipment could be run a t  speeds 

ranging from 600 t o  3400 RPM through t h e  use of an armature cont ro l  speed 

regulator .  The hydraulic system f o r  t he  t e s t  equipment i s  i l l u s t r a t e d  

i n  Figure 5 .  Gulf Harmony 47 o i l ,  which is  similar t o  SAE 1 0  o i l ,  w a s  

The bearings were made of  brass, and t h e  s h a f t  w a s  made of type 

Figure 4 i nd ica t e s  t h e  

used for t h e  loading pad as wel l  as the  lub r i ca t ion  o f  t he  bearings.  The 

bearings had a groove on each end, i n  which o i l  d ra in  holes were located.  

The o i l  drained from the  bearings w a s  pumped back t o  t h e  supply tank 

where it w a s  cooled by a water heat  exchanger before  being returned t o  

the  bearings.  

11. FILM THICKNESS MEASUREMENT 

Four inductance type transducers were used t o  measure t h e  bearing 

film thickness  which would determine t h e  s h a f t  cen ter  locus and 

1 2  
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eccentricity under dynamic conditions. The device, which consists of a 

sensing element and a detector driver, operates on inductive proximity 

principles. 

element, and it incorporates an adjustment that may be used to vary 

sensitivity, providing a wide choice of scale factors. 

requires an external regulated power supply that will deliver 18 volts 

dc at 20 ma. The output of the detector driver is a negative dc voltage 

that varies from 0 to 16 volts. 

clearnace between the conductive surface and the sensing element. 

Figure 6 illustrates a schematic diagram for the installation of the 

device. The actual film thickness was determined by subtracting the 

change in clearance caused by the thermal expansion of the bearing from 

the film thickness determined from the voltage output of the detector 

driver. The calibration of the device is described in Appendix B. 

The detector driver provides the energy for the sensing 

The device 

The output varies linearly with the 

111. FRICTION TORQUE MEASUREMENT 

A thin cantilever beam as shown in Figure 7 was used to measure 

the torsional constraint. The friction torque exerted by the bearing 

was transmitted through the torque arm to the torque beam. 

resistance type strain gages were attached to the torque beam to indicate 

the strain on the strain indicator. The calibration of the torque beam 

is described in Appendix C .  

Four 



. e . .  

x x x x  . . .  
b i 4 P ; P ;  
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2- 
0 
rl 
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r l  
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Figure 7. Torque-beam assembly. 
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IV. TEMPERATURE MEASUREMENT 
b 

Two thermocouples were inserted in the bearing drain pipes to 

measure the oil exit temperature. One thermocouple was located in the 

oil inlet tube immediately after the flow meter. Copper-constantan 

thermocouples were connected to a Rubicon Potentiometer, and the 

reference junction was kept in an ice bath. The oil exit temperature 

was taken as the film temperature in the bearing, and viscosities based 

on these temperatures were used in the calculation of the bearing per- 

formance. An equation was derived by the series solution method to 

calculate the oil temperature for any voltage. This equation was: 

wherein V is the potentiometer voltage in millivolts and T is the 

temperature in degrees Fahrenheit. The difference between the calcu- 

lated value of T and the value supplied by the manufacturer of the 

thermocouple was found to be less than 0.5 per cent. 

V. OIL FLOW MEASUREMENT 

A Fischer and Porter tri-flat flow meter was used to measure the 

flow rate of the lubricating oil entering the bearing. The flow meter 

was calibrated so that the flow rate could be available at any given 

supply oil temperature and float indication. Two methods were avail- 

able by which the flow meter calibration could be achieved. The first 
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employs a c t u a l  measurements of t h e  flow rates a t  d i f f e r e n t  temperatures 

and s c a l e  readings. 

p red ic t ing  t h e  meter c a l i b r a t i o n ,  I n  t h e  f irst  method, t h e  constant 

temperature during t h e  flow rate measurement was not guaranteed. There- 

f o r e ,  t h e  second method ou t l ined  by Fischer and Por t e r  [8] was employed 

i n  c a l i b r a t i n g  t h e  flow meter. The complete c a l i b r a t i a n  so lu t ion  was 

obtained by running t h e  program on t h e  IBM 7040 computer. This C a l i -  

b r a t ion  gave t h e  flow r a t e s  f o r  temperatures ranging between 66.6' F 

and 90' F i n  increments of 0.1' F , and f o r  s c a l e  readings of 1 t o  25 

with an increment of 1. The c a l i b r a t i o n  of t h e  flow meter is  described 

i n  Appendix D. 

with t h e  t h e o r e t i c a l  p red ic t ions  f o r  t h e  same temperatures and s c a l e  

readings,  The d i f fe rence  between predic ted  and a c t u a l  value was found 

t o  be l e s s  than  6 per cent .  

"he second method employs t h e o r e t i c a l  p r inc ip l e s  

Several  flow rates were ac tua l ly  measured and compared 

VI. PROPERTIES OF GULF HARMONY 4'7 OIL  

O i l  v i s c o s i t i e s  i n  Saybolt Universal Seconds a t  any temperature 

within t h e  operating range can be obtained from Figure 8. 

from SUV seconds t o  cent ipoises  can be obtained by: 

The conversion 

cp = (0.22t - 180 / t )  p .  (24) 

where t is  t h e  v i s c o s i t y  i n  SW seconds. The v i s c o s i t y  i n  Reyns or 

l b  sec/inch2 i s  obtained by: f -  
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Figure 8. Viscosity versus temperature on ASTM type B chart. 
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However, for convenience in the use p f  the computer, the Lagrangian 

interpolation method was employed. This method woulct give the viscosity 

in Reyns or centipoises at any temperature for four degrees of interpo- 

lation. The error i'nvolved in this method was estimated to be approxi- 

mately 1 per cent. 

The relation between temperature and density [g]  was obtained as: 

VII. TEST PROCEDURE 

In this study, nineteen test series were conducted on Bearing No. 1 

and fourteen test series were conducted on Bearing No, 2. Tables 1 and 

I1 illustrate the nature of each test for Bearings No. 1 and No. 2 

respectively. 

Table VII, Appendix A. Before beginning a test, a 30-minute period of 

running the equipment at constant speed was allowed so that the system 

would tend toward thermal equilibrium. 

The manner in which the data were recorded is shown in 
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TABLE 1 

DETAILS OF TEST SERIES ON BEARING NO. 1 

Test Flow 
Ser i e s  No. Load Speed Rate Other 

1 
2 
3 
4 
5 
6 
7 
8 
11 
12 
13 
14 
1 5  

17 
18 
19 
20 
21 

16 

constant 
var ied  
constant 
var ied  
constant 
constant 
var ied  
var ied  
var ied  
varied 
var ied  
var ied  
var ied  
var ied  
var ied  
constant 
constant 
constant 
const an t  

constant 
var ied  
constant 
var ied  
varied 
var ied  
var ied  
constant 
var ied  
var ied  
var ied  
constant 
var ied  
var ied  
var ied  
var ied  
var ied  
var ied  
var ied  

* var ied  
const an t  
var ied  n 
constant 
const a n t  
constant 
constant 
const an t  
const an t  
constant 
constant 
constant 
constant 
constant 
constant 
const an t  
constant 
constant 
constant 

n 
The bearing supply pressure w a s  adjusted t o  pre-selected 

value. 
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TABLE I1 

DETAILS OF TEST SERIES ON BEARING NO. 2 

Test Flow 
Ser ies  No. Load Speed Rate Other 

22 
23 
24 
25 
26 
27 
28 
29 
30 
3 1  
32 
33 
34 
35 

var ied  
var ied  
constant 
constant 
constant 
constant 
constant 
constant 
constant 
constant 
constant 
constant 
constant 
constant 

var ied  
var ied  
constant 
constant 
constant 
const an t  
constant 
constant 
cons t ant  
const an t  
constant 
const an t  
constant 
constant 

c ons t a n t  
constant 
varied 
var ied  
var ied  
var ied  
var ied  
varied 
varied 
var ied  
var ied  
varied 
var ied  
var ied  

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
The bearing supply pressure was adjus ted  t o  pre-selected 

value. 



CHAPTER I11 

RESULTS ON BEARINGS NO. 1 AND NO. 2 

The e f f e c t  of t h e  bearing supply pressure on t h e  bearing eccen- 

t r i c i t y  r a t i o  w a s  s tud ied  i n  two d i f f e r e n t  ways. I n  t h e  first method, 

t e s t  series 1 and 3 were conducted a t  constant load and constand speed. 

Variation i n  t h e  bear ing  supply pressure w a s  achieved by a l t e r i n g  t h e  

o i l  flow rate. The p l o t  of t h e  bearing e c c e n t r i c i t y  r a t i o  versus t h e  

bearing supply pressure  i s  shown i n  Figure 9.  I n  t h e  second method, a 

change i n  t h e  bearing supply pressure  was e f f ec t ed  by changing t h e  

bearing e c c e n t r i c i t y  r a t i o ,  which i n  t u r n  w a s  a l t e r e d  by varying t h e  

load and speed. 

supply pressure  and t h e  bearing e c c e n t r i c i t y  r a t i o .  

Figure 10 i nd ica t e s  t h e  r e l a t ionsh ip  between t h e  bearing 

Figure 11 compares t h e  t h e o r e t i c a l  s h a f t  cen ter  locus with t h e  

experimentally measured values.  The t h e o r e t i c a l  values of a t t i t u d e  

angle, based on t h e  Short-bearing Approximation, were obtained from 

Equation ( 2 0 ) .  

obtained from Equation ( 5 3 ) .  

The experimental values of t h e  a t t i t u d e  angle were 

This ind ica ted  t h a t  t h e  v iscosea l  bearing 

operates at high e c c e n t r i c i t y  r a t i o  even at high a t t i t u d e  angle. 

Figure 12 compares t h e  t h e o r e t i c a l  capacity number with t h e  

experimentally measured values.  

of t h e  capacity number ,based on t h e  Short-bearing Approximation ,were 

obtained from Equation (19). 

The experimental and t h e o r e t i c a l  values 

F r i c t ion  c h a r a c t e r i s t i c s  of t h e  bearing are presented i n  Figures 

13  and 1 4 .  The experimental and t h e o r e t i c a l  values of f r i c t i o n  r a t i o ,  

24 
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F/Fo , and friction variable, Fv , were obtained from Equations (21) 
and (22) .  

Figure 12, page 28, also illustrates the performance of Bearing 

No. 2 having a wider land. From this figure, for 0.85 eccentricity 

ratio, the approximate capacity numbers for Bearings No. 1 and No. 2 

were found to be 0.0025 and 0.0055 respectively. Thus, the ratio of 

capacity number of Bearing No. 2 to that of Bearing No. 1 is: 

‘%B,E92 - - 0.0055 
Cn 0.0025 

VB ,E $1 

= 2.2 . (27) 

From Equation (18), for the same eccentricity ratio, surface velocity, 

and viscosity, the ratio of the theoretical load-carrying capacities of 

the two bearings is: 

= (0.233/0 ~667)~( 0.0026/0.0025 I2 
= 2.94. (28) 

The percentage of load-carrying capacity of the viscoseal bearing 

was computed in two different ways. For example, in test series No. 7, 

the experimental eccentricity ratio was found to be 0.862 for a total 

load of 70.6 lb. For the same eccentricity ratio, the theoretical load- 
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carrying capacity of the viscoseal bearing having eight grooves was 

computed from Equation (18 ) : 

2 112 - - 811 Ua 3 E  [n2 ( L E )  2 + 1 6 ~  ] . W 
VB,T,l 4c2 (&)2 

Thus, under identical conditions, the percentage of experimental load- 

carrying capacity to the theoretical one is: 

WVByEyl 100 = 98.31 per cent . W ( 3 0 )  
VB,T,1 

The theoretical load-carrying capacity of the plain journal bearing of 

the same overall dimensions computed from Equation (18) is: 

Thus, the percentage of experimental load-carrying capacity of the 

viscoseal bearing to the theoretical load-carrying capacity of the plain 

journal bearing of the same overall dimensions may be found by: 

WVB’E31 100 = 0.70 per cent. (32) 
‘JB , T , 1 

Tables I11 and IV show such comparison for test series No. 7 f o r  Bearing 

No. 1 and Test series No. 22 for Bearing No. 2 respectively. 
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TABLE 111 

PERCENTAGE LOAD-CARRYING CAPACITY OF BEARING NO. 1” 

0.8623 

0.8952 

0 8980 

0.8973 

0 8944 

0.8717 

0.8530 

0.8466 

0.8290 

0.8202 

0.8217 

0.7947 

0.7908 

0.7818 

0.7745 

0 7959 

98.31 

73 99 

81.96 

97.09 

117.80 

201.44 

299.60 

348.19 

449.43 

485.26 

470.34 

585.78 

678-66 

809.09 

930.12 

806.84 

0.700 

0,527 

0.584 

0.692 

0.839 

1.436 

2.135 

2.482 

3.203 

3.459 

3.352 

4.175 

4.837 

5.767 

6.629 

5.751 

a Test Series No. 7. 
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TABLE IV 

PERCENTAGE LOAD-CARRYING CAPACITY OF BEaRING NO. 2a 

0.8434 

0.8691 

0.8913 

0.9342 

0.9386 

0.9225 

0.9331 

0.9178 

0 9318 

0,9362 

0.9219 

0.8967 

0.8854 

0.8645 

68.83 

53.12 

38 $09 

14.41 

13.73 

24.76 

20.80 

34.81 

25 -65 

23.94 

38.43 

68 .go 

89.09 

128.59 

1.783 

1.376 

0.987 

0.373 

0.356 

0.641 

0 539 

0.902 

0.664 

0.620 

0.996 

1.785 

2.308 

3.331 

Test Series No. 22. a 
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The seal ing performance of t he  bearings w a s  determined i n  t w o  

ways. I n  t he  f i rs t ,  t h e  sea l ing  coef f ic ien t  was computed by subs t i tu t ing  

the  bearing supply pressure f o r  t he  term Ap i n  Equation (1). The 

values obtained from tes t  s e r i e s  Nos. 1 4 ,  15 ,  and 18 were compared with 

the  theo re t i ca l  values obtained from Equations ( 2 )  through (12) ,  as 

shown i n  Figure 15. In  the  second method, tes t  se r i e s  nos. 25 through 

35 were conducted a t  constant load, constant speed, and varying flow 

rates. The term Ap i n  Equation (1) was taken as t h e  bearing supply 

pressure.  Graphs of Ap/p versus flow r a t e  were p lo t ted  for each test  

series. Figure 16 i l l u s t r a t e s  such a graph fo r  tes t  series No. 25. 

This curve, e s sen t i a l ly  a s t r a igh t  l i n e ,  was extended as shown by a 

broken l i n e  i n  the  f igure ,  t o  obtain Ap/p for zero flow r a t e .  

the  seal ing coef f ic ien t  w a s  computed by subs t i tu t ing  the  above value of 

Ap/p i n  Equation (1) The r e s u l t s  obtained from t e s t  s e r i e s  Nos. 25 

through 35 are  p lo t ted  i n  Figure 15.  

Thus, 

Figure 17 indicates  t he  e f f ec t  of eccent r ic i ty  r a t i o  on t h e  

seal ing coef f ic ien t .  The theo re t i ca l  curve w a s  p lo t ted  from t h e  analysis 

performed by Vohr and Chow [ 6 ] .  

by t h e  first method described i n  the  preceding paragraph. Although t h e  

experimental values and theo re t i ca l  predictions a re  far from agreement, 

both indicate  t h a t  t h e  sea l ing  performance de ter iora tes  with an increase 

i n  t h e  bearing eccent r ic i ty  r a t i o .  

The experimental values were obtained 
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Figure 16.  Flow rate versus Ap/p . 
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Figure 17.  Eccentricity ratio versus sealing coefficient. 



CHAPTER IV 

DISCUSSION AND CONCLUSIONS 

Except for the shaft center locus findings, the results obtained 

from the experimental study of two different groove geometries of the 

viscoseal bearing seemed to be in fair agreement with the Short-bearing 

Approximation. 

however, was not very satisfactory. 

The actual picture obtained from Figure 12, page 28, 

The extent to which the experi- 

mental results agreed with the Short-bearing Approximation is indicated 

in Tables I11 and IV, pages 33 and 34. 

however, from available data of the work by Dubois and Ocvirk [TI, that 

their experimental results also did not agree very well with their own 

theoretical analysis. This information is presented in Table V. 

It is interesting to note, 

The locus of shaft center is an important parameter in bearing 

performance. The experimental evidence indicated that the bearing 

operated at high eccentricity ratio even at high attitude angle. 

nature of the curve, as shown in Figure 12, page 27, indicated that 

the behavior was similar to that of a gas bearing or an elliptical 

bearing. 

of the bearing, the grooves tend to disrupt the formation of high fluid 

pressure. 

groove on pressure distribution as shown in Figure 18, from which it 

is clear that the total load-carrying capacity of two short bearings 

each of length 1’ is much smaller than that of the bearing having 

The 

Shaw’ and Macks [lo] have pointed out that in the loaded area 

Radzimovsky [ll] describes the influence of circumferential 

39 
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TABLE V 

THEORETICAL AND EXPERIMENTAL CAPACITY NUMBER FOR A PLAIN 
JOURNAL BEARING BY DUBOIS AND OCVIRK" 

Short-bearing Approximation Ratio of Experimental 
Eccentricity for Capacity Number Cn to Theoretical 
Ratio Theoretical Experimental Cn 

0.253 

0.384 

0 477 

0.531 

0.623 

0 695 

0.740 

0.805 

0.860 

0.897 

0.8238 0.5200 

0.1835 0.2880 

0.1186 0.2000 

0 0907 0. I530 

0.0546 0.1030 

0 0341 0.0772 

0.0242 0.0621 

0.0131 0.0445 

0.0066 0.0347 

0.0035 OqO279 

0.63 

1.57 

1.69 

1.69 

1.89 

2.26 

2.57 

3.30 

5.25 

7 992 

2 &l/d = 1/2, Supply Pressure = 100 lb/ineh , 



41 

--- 

/ \---With groove \ 

Figure 18. Influence of a circumferential groove upon the axial pressure 
distribution in the oil film. 
with three grooves. 

(a) Bearing with one groove; (b) bearing 
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length  1. Therefore, t h e  bear ing  having a c i rcumferent ia l  groove w i l l  

have a g rea t e r  e c c e n t r i c i t y  r a t i o  than a comparable bearing without 

such a groove operating under i d e n t i c a l  conditions.  

f o r  a given o i l - f i lm  th ickness ,  t h e  load i s  smaller than  a permissible 

load f o r  a bearing without c i rcumferent ia l  groove, but with o ther  

operating conditions and bearing c h a r a c t e r i s t i c s  being i d e n t i c a l .  The 

e f f e c t  becomcs more pronounced, as t h e  number of grooves increases ,  as 

shown i n  Figure 18b, page 41. 

Or, i n  o ther  words, 

Very i n t e r e s t i n g  but l imi t ed  data were ava i l ab le  from W .  L. Roberts 

[12], who i s  present ly  engaged i n  i nves t iga t ing  t h e  numerical computation 

of t h e  load capacity and s t a b i l i t y  of t h e  v i s c o s e a l b e a r i n g  under a 

pro jec t  e n t i t l e d  "An Analysis of t h e  Viscoseal Bearing." 

locus obtained from these  da t a  seemed t o  agree b e t t e r  than t h e  Short- 

bearing Approximation as shown i n  Figure 11, page 27. The loads computed 

from t h e  numerical ana lys i s  were compared with t h e  experimental values 

i n  Table V I .  From these  data it i s  evident t h a t  t h e  numerical ana lys i s  

agrees wel l  with t h e  experimental r e s u l t s .  

Shaft  cen ter  

From Figure 12 ,  page 28, it w i l l  be observed t h a t  t h e  experimental 

r e s u l t s  obtained from Bearing No. 1 are of a d i f f e r e n t  nature than those 

obtained from Bearing No. 2 i n  t h a t  t h e  values of e c c e n t r i c i t y  r a t i o  f o r  

Bearing No. 2 l i e  f a r t h e r  above t h e  t h e o r e t i c a l  curve than those f o r  

Bearing No. 1. The d ra in  pipes f i t t e d  t o  t h e  d ra in  tubes of Bearing 

No.  1 seemed t o  prevent t h e  f r e e  movement o f  t h e  bearing, and they were 

removed during t h e  test  runs f o r  Bearing No. 2. This modification may 
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TABLE V I  

EXPERIMENTAL AND THEORETICAL LOAD-CARRYING CAPACITIES 
OF BEARING NO. la 

Load Computed by 
Numerical Analysis Short-bearing 

Load Computed by 

Eccentricity Experimental of Complete Approximation, 
Ratio Load, Lb . Reynolds Equation ,Lb. Lb. 

0,6036 43.40 

0.7226 56.10 

0.8347 77 80 

0 goo0 172.10 

33 5 '06 

36 8.95 

44 19.40 

75 56.14 

199 * 00 158 

Test Series No. 8. a 



44 

have been the reason for obtaining such results. 

observed from Figure 12, page 28, that some experimental values of the 

eccentricity ratios at high capacity numbers were far below the 

theoretical curve, The accuracy of these results cannot be guaranteed 

since Bearing No. 1 vibrated at any load less than approximately 50 lb. 

and at a speed of approximately 2000 RPM. For Bearing No. 2, vibration 

occurred at a load of approximately 100 lb. and a speed of 1500 RPM. 

It may also be 

This vibration caused difficulty in or prevented the obtaining of readings 

on the film thickness measurement device. 

Very careful observation of Figures 10, 11, and 12, pages 25, 26, 

and 27 reveals that after a certain point the bearing eccentricity ratio 

decreased slightly with an increase in load. 

The sealing performance of the bearings, determined by two 

different methods, did not agree with the theoretical predictions. This 

may indicate the need for a different approach to the determination of 

the sealing coefficient. 

some flow of oil which is opposite to the direction of pumping, as 

shown in Figure 2, page 7. 

viscoseal nor as a viscopump. Therefore, it is suggested that a three- 

way valve be incorporated in the oil supply line prior to the supply 

pressure gauge so that during an experiment the oil supply to the bearing 

may be cut off momentarily by the valve and the resulting pressure 

noted. 

viscoseal bearing, and when substituted for 

give the correct sealing coefficient. 

It should be noted that the bearing always has 

Thus, the bearing functions neither as a 

Presumably this pressure would be the pressure generated by the 

Ap in Equation (1) would 
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Finally the following conclusions were drawn from the study: 

1. The eccentricity ratio is not affected by the bearing supply 

pressure or the flow rate at constant load and speed. 

2 .  The bearing supply pressure decreases with an increase in the 

bearing eccentricity ratio at a constant flow rate. 

3. The shaft center locus of the viscoseal bearing does not 

follow the Short-bearing Approximation. In fact, the bearing operates 

at high eccentricity ratio even at high attitude angle. 

4. The experimental results were only in fair agreement with the 

Short-bearing Approximation. However, the agreement found in this 

experiment was similar to the agreement between theory and experiment 

found by Dubois and Ocvirk [ T I .  

5. Increasing the land width increases the load-carrying capacity. 

The experimentally obtained value showed rather close agreement with the 

theoretically predicted value. 

6 .  Limited data available from the numerical analysis were 

encouraginge The results showed better agreement with the experiment 

than did the Short-bearing Approximation. 

7. The sealing performance of the viscoseal bearing could not 

be reliably determined by the methods followed. The actual pressure 

gradient generated by viscoseal action might be determined by the method 

suggested in this chapter. 
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APPENDIXES 



APPENDIX A 

SAMPLE CALCULATIONS AND DATA SHEET 

Table VI1 shows a typical data sheet for test series No. 16. The 

symbols used for all the items of the data sheet were the same as those 

used in the IBM 7040 computer program. The actual calculations for the 

first reading of the sample data sheet are given below: 

Temperatures in degrees Fahrenheit at left and right oil exit are : 

TEMPL = -l,094(VTC1)2 + 47.42(VTC1) + 30.48 

= 94.59OF. 

TEMPR = -1.094(1,434)2 + 47.42(1.434) + 30.48 

= 96.23OF. 

Average film temperature is : 

TEMPAV = ( TEMPL + TEMPR) /2 

= 94.4loF. 

Supply inlet temperature is: 

TEMPS = -l.094(0.822)2 + 47.42(0.822) + 30.48 

= 68.72'3'. 

(33) 

(34) 

(35) 
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Total load on the bearing is: 

P = 14.5W + 27.13 

= 27.13 lb. ( 3 7 )  
Here, 14.5 is the loading-arm ratio, and 27.13 is t h e  combined weight of 

the test bearing, the loading arm and the loading pad. 

short bearing is: 

Unit load on each 

PUNIT = P/(m a d) 

= 27.13/(8 x 0.1667 x 2.4842) 

= 8.189 lb. (38) 

Length-to-diameter ratio is: 

RLTD = (0.1667)/(2,4842) 

= 0.0671. 

Diameter-to-diameter-clearance r a t i o  is: 

DTCD = d/cd 

= 477.77 

Film thickness measured by sensing element 1 is: 

Similarly, 

FILMT2 = (vDD2-5.4)(0.0052)/(11.4-5.4) 

= 0.00390 inch. 

(39) 



F I W 4  = (VDD4-5 -4) ( 0 ~ 0 5 2 )  / (  11.6-7.4) 

= 0,0041 inch. 

Change in radial clearance due to thermal expansion is: 

CHINRC = (TEMPAV-70 ( 6.2545 x low6) /2 

= (0.7946 x inch. 

Film thicknesses corrected to room temperature are: 

FILMTCl = FILMT1-CHINRC 

= 0.00264 inch. 

FILMTC2 = 0.00382 inch. 

FILMTC3 = 0,002T3 inch. 

FILMTC4 = 0.00403 inch. 

Average film thickness at shaft bottom is: 

FILMTA1 = (FILMTC1 + FLLMTC3)/2 

= 0.00268 inch. 

Average film thickness at 90' from shaft bottom line is: 

FICLMTA2 = (FILMTC2 + FILMTC4)/2 

= 0.00392 inch. 

( 4 3 )  

( 4 4 )  

(45)  

(51) 
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Average eccentricity ratio at operating, temperature is: 

ECRATA = /'( FILMTA1-c )' + ( FILMTA2-c 2/ ( c + CHINRC 

= 0.4957. 

Tangent of attitude angle is: 

TANGPA = ( FILMTA2-C ) / ( FIWA1-C ) 

= 15.218. 

Attitude angle is: 

PHI = Arc tan (TANGPA) 

=86.24 degrees. 

From Figure 6, page 16, viscosity at TEMPAV = 9S.4l0F is: 

Revolution per second is: 

RPMSEC = RPM/6O 

= 26 .  

Surface velocity is: 

U = .rrd(RPMSEC) 

= 203 inch/sec. 

( 5 3 )  

(54 )  

(57) 

Sommerfeld number is: 
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SOMMER = ( VCSITY ( RPMSEC ( DTCD 2 / ~ ~ ~ ~  

= 4.607. 

Capacity number i s :  

CAPANO = ( SOMMER ( RLTD ) 

= 0.0207. 

Load number i s :  

RLOAD = l/CAPANO 

= 48.19. 

F r i c t i o n  force  i s :  

( 2  x 5.97)(E-STRANI) 
FRFoRC = (122 x 4.536)(md) 

= 0.601 l b .  

Pe t ro f f  f r i c t i o n  force  i s  : 

2 FRPTRF= 2 7~ a d.(VCSITY)(RPMsEC)(DTCD) 

= 0.645. 

Friction r a t i o  is: 

FRMTI = ( FRFORC ) /( FRPTRF) 

= 0.931. 

(59) 

( 6 3 )  
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Friction variable is : 

FRVARI = m( FRFORC ( DTCD) ( RLTD) */ P 

= 0.381. 

Flow rate at TEMPS = 68.72OF and float indication 14 is: 

FLOW RATE = 45.97 cc/min. 

Assuming the pressure at oil exit to be atmospheric, the sealing 

coefficient is: 

A = G(VCSITY)(U 2 ) / ( c 2  BSP) 

= 22.4. 

Reynolds number based on clearance is: 

From Equation ( l g ) ,  p = 0.862 gm/cc at TEMPAV = 94 .41°F. Thus : 

R e c  = 6.67. 



APPENDIX B 

CALIBRATION OF FIZM THICKNEGS MEASUREPIENT DEVICE 

Figure 19 shows the arrangement in which sensing elements were 

installed. 

mounted a$ 90 degrees radially should suffice to make the measurement. 

For careful observation of eccentricity, however, two sensing elements 

were mounted at each end of the bearing, 

mounted 0.005 to 0.008 inch away from the bearing surfaae as shown in 

Figure 19. sensing 

elements 1 and 3 would indicate some output in volts. This was called 

initial voltage for zero clearance. 

of the bearing measured the vertical displacements as the bearing was 

lirted. 

In a similar way, sensing elements 2 and 4 were calibrated. 

ducer was adjusted for  a scale factor that would render an output of' at 

least 1 volt (on voltmeter) per mil clearance. 

relationship between the voltage output and clearance. In the first 

phase of the experiment, in which eight test series were conducted, 

the equations f o r  oil film thickness measurement were found to be: 

For all shaft relative motion studies, two sensing elements 

The sensing elements were 

When the bearing was kept in the position shown, 

Dial indicators mounted on the top 

Voltage output was recorded for known vertical displacements. 

Each trans- 

Figure 20 shows a linear 

FILMTl = (v~n1-6.4) /1000. ( 6 9 )  

FILMT2 = (VDD2-5.8) /xi36 e (70)  

FILMT3 = (VDD3-6.6)/1174. (71) 

FILMT4 = (VDD4-5.6) /1193. (72) 
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APPENDIX C 

CALIBRATION OF TORQUE BEAM 

Figure 7,  page 17, presents  a perspective view of t h e  torque-beam 

assembly. To c a l i b r a t e  t h e  beam t h e  torque arm w a s  removed from t h e  

holder temporarily,  and known weights were applied at t h e  poin t  on t h e  

torque beam where t h e  torque a r m  would s i t .  

known weight was recorded from t h e  s t r a i n  ind ica to r .  Ten readings were 

taken i n  t h i s  manner. 

on t h e  torque beam. From t h e  graph t h e  average s t r a i n  per  100 gm. of 

load w a s  found t o  be 122 microinch/inch. Thus, i f  t h e  bearing of 

diameter d inches and torque-arm length L inches exerts torque, and 

t h e  s t r a i n  ind ica to r  reads E microinchlinch of s t ra in:  

S t r a i n  corresponding t o  t h e  

Figure 21 shows t h e  graph of s t r a i n  versus load  

( E-STRANI ) ( ~ O O L  1 lb-inch. (122 x 453.6) T =  (73) 

A t  zero speed of t h e  s h a f t ,  E w a s  found t o  be equal t o  STRANI. 
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APPENDIX D 

CALIBRATION OF FLOW METER 

The theo re t i ca l  prediction method f o r  f low meter ca l ibra t ion ,  

suggested by Fischer and Porter [ll], gives t h e  following equations: 

The values of A ,  B ,  and p for t h e  f low meter were found from the  

catalog Ill] t o  be 1142, 434, and 16.6 respectively.  

'OPT 

the  f l o a t  charac te r i s t ic  curves, from which t h e  value of flow coef f ic ien t ,  

C , could be picked off  fo r  a calculated value of viscous influence 

number, R and given sca le  reading. Then, from Equation (75) t h e  flow 

r a t e  can be calculated.  For example, t o  f ind  the  flow rate at TEMPS = 

73.4OF and 20 sca le  reading for Gulf Harmony 47 O i l :  

Fluid density,  

, w a s  obtained from Equation ( 2 6 ) .  Figure 22 describes 

From Figure 8,  page 20, pOpT = 125.7 Reyns . 

From Equation (26), pOpT = 0.8684 gm/cc . 

From Equation (74) t h e  value of R is  found t o  be: 
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Figure 22. Float characteristic curves reproduced from the catalog by 
Fischer and Porter, Tri-flat Variable-area Flowmetem, Handbook 
lOAgOl0, Warminster: Fischer and Porter Co. , January 1964, 
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From Figure 22, a t  sca le  reading 20, and 

found t o  be 0.074. 

R = 48.77, t he  value of C i s  

From Equation(75) , the  flow r a t e  is  given by: 

Q = (0.074x 434) $(16.6-0.8684)(0.8684)/0.873 

= 136.04 s td .  cc/min. (77) 

A sample calculat ion sheet f o r  flow r a t e s  at sca le  readings 1 through 

25 and B supply temperature of 73 .4OF i s  presented as follows: 

Supply i n l e t  temperature =73.boF 

Density of oilz0.8684 gm/cc 

Absolute viscosity=l25.7 Reyns 

Flow rates i n  Std.cc/min 

Q(1) = 0.1107 

Q(2)  = 0.3714 

Q(3) = 0.9210 

Q ( 4 )  = 2.0406 

Q(5)  = 3.4929 

Q(6)  = 5.4452 

Q(7) = 8.1864 

Q( 8) =11 3799 

Q( 9 ) =16.3251 

Q ( l 0 )  = 20.645 

Q(l1) = 28.k85 

Q(12)  = 34.929 

Q ( l 3 )  = 45.133 

Q ( 1 4 )  = 53.056 

Q(15) = 65.539 

Q(161 = 73.463 

Q(17) = 90.958 

= 105.804 

= 123.728 

= 136.042 

= 152.999 

= 173.357 

= 195.826 

= 217.103 

= 237.235. 
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13 A B S T R A C T  

The experimental data obtained from two groove geometries of the viscoseal 
bearing were analysed to  study the bearing character is t ics  and the sealing perform- 
ance. The  experimental bearing character is t ics  were compared w i t h  the Duboi s and 

included (1) the determination of the sealing coeff ic ient  which was compared w i t h  
the S ta i r  and Hale method of  theoretical prediction and ( 2 )  the ef fec t  of the bearing 
eccentricity r a t i o  on the sealing coeff ic ient ,  which was compared w i t h  the Vohr and 
Chow method of theoretical prediction. 

The  resu l t s  of the study indicated tha t ,  a t  constant load and speed, the 
bearing supply pressure had no ef fec t  on the bearing eccentricity ra t io ;  a t  a con- 
s tan t  flow ra te ,  however, the bearing supply pressure decreased as the bearing 
eccentr ic i ty  r a t io  increased. Except fo r  the shaf t  center locus findings, the 
experimental resul ts  were i n  f a i r  agreement w i t h  the Short-bearing Approximation. 
The experimental resu l t s  showed good agreement w i t h  a numerical analysis of the 
viscoseal bearing. The study also indicated tha t  an increase i n  the land w i d t h  
resulted i n  an increase i n  the load-carrying capacity of the bearing. The experi- 
mental sealing coeff ic ient  d i d  no t  agree w i t h  the theoretical preduction, a1 though 
the resu l t s  indicated t h a t  the sealing coefficient increased w i t h  an increase i n  

. Ocvirk Short-bearing Approximation. The sealing performance analysis o f  the bearing 

, the bearing eccentricity ra t io .  
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