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ABSTRACT

The experimentsl dats obtained from two groove geometries of the
viscoseal bearing were gsnalysed to study the bearing charscteristics and
the sealing performence. The experimental bearing characteristics were
compered with the Dubois and Ocvirk Short-bearing Approximation. The
sealing performance analysis of the bearing included (1) the determina-
tion of the sealing coefficient which was compared with the Stair and
Hale method of theoretical prediction and (2) the effect of the bearing
eccentricity ratio on the sealing coefficient, which was compared with
the Vohr and Chow method of theoretical prediction.

The results of the study indicated that, at constant load and
speed, the bearing supply pressure had no effect on the bearing eccen-
tricity ratio; at a constant flow rate, however, the bearing supply
pressure decreased as the bearing eccentricity ratio increased. Except
for the shaft center locus findings, the experimental results were in
fair agreement with the Short-bearing Approximation. The experimental
results showed good agreement with a numerical analysis of the viscoseal
bearing. The study also indicated that an increase in the land width
resulted in an increase in the load-carrying capacity of the bearing.
The experimental sealing coefficient did not agree with the theoretical
prediction, although the results indicated that the sealing coefficient

increased with an increase in the bearing eccentricity ratio.
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CHAPTER I
INTRODUCTION

This thesis is concerned with the continued éevelopment of the
viscoseal as a bearing.

The viscoseal is a device in which a pressure gradient is
generated in a viscous fluid eﬁclosed in a thin annulus or slit by
means of grooves on a rotating shaft or plate. Such a device is known
as a viscopump if operating with a net efflux of fluid at the high
pressure end, and as a viscoseal when operating at shut-off head.
Figure 1 describes the basic elements of the viscoseal. While one of
the earliest treatmeﬁts of the viscoseals was published in 192k [l]%
technological development of the viscoseal has been exploited only in
recent years [2, 3, 4, 5, 6].

Previous work [2] reported that the viscoseal would sustain a
radial load which was approximately 12 to 15 per cent of the capacity
of a plain journal bearing of the same overall dimensions. The obvious
reason for reduced capacity is that grooves interrupt the active length
of the Dbearing and divide.the bearing into a number of short bearings,
each having a low length~to-diameter ratio. However, the viscoseal has
sufficient bearing-load capacity to give it utility in certain high

speed, low load applications.

1 . . . .
Numbers appearing in brackets refer to references listed in
reference section.
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A genersal equation [3] for the sealing performance of the visco-
seal in laminar and turbulent operations has been déveloped as follows:
6 UL 1
A ———— . (l)
c Ap
Of several analyses discussed in [3], the work of Boon and Tal shows the
best agreement with experiment. The equation for the laminar sealing
coefficient derived by Boon and Tal [3] is:

831 + %) + 31 - y)(83 - 1)

£ y(1 - v)(85 = 1)(8 - 1)

> (2)

which shows that the laminar sealing coefficient is.a function of groove
geometry and independent of Reynolds number. The equation for the

turbulent concentric sealing coefficient derived by Stair and Hale [L]

is:
A=Ku(Il;uI2)+K5-i—3-, (3)
where
I, = (1-y)t°, (1)
1, = 8% 12, (5)
1, = * , (6)

[y + 832 - 1)1

JlNumbers gppearing in parentheses refer to equations,



3(1-
, =t l1-y+ys-LEEQDrE-D g (g
y+ B7(1 - v)

l1-F
3 F

£ £ :
K ==—[1~ + = 1, (8)
bR 1058 ~ T3 3.92F§ - L.4F- 1
and
i 1-F
K, == [1 n + n 1. (9)

5 2Fn lO-5Fn - T.5

2
3.92Fn - 1.th- 1

Here, Fg and Fn are the ratios of the wall shearing stress in
turbulent flow to the wall shearing stress for laminar flow, with the

same maximum channel velocity. Thus,

F, = (TO/TQ)E = (fo/fz)g , (10)

and

Fo= (TO/TSL)n = (fo/fl>n . (11)

Here, fo and f% are the resistance coefficients for turbulent and
laminar operations respectively. From [L4], the critical Reynolds number

at which transition from laminar to turbulent operation occurs is:

D/2 ]1/2
ylc + vy B¢

Re = b1.1 [ 7= . (12)
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An enalysis of the viscoseal in turbulent operation suitable for
eccentric as well as concentric operationsIWas performed by Vohr and
Chow [6]. Their equation for the sealing coefficient, which is based

on a spiral-grooved screw seal, is:

3
o 0.5y t(1 - y)(B -2)(B”° G -G )
C
b= %wz [53 G G + t2 21- )UG G+ 33’023(’?. )2}: G
yroyg YNV Syrtxe Y NyrUxg
23 .2 g 2 I (23)
+ t° G G + B t° y(1 - G
Y8 veCxr B ¥( Y) Gyg xg

where subscripts X, ¥, Z are the directions of coordinate axes, »r

and g indicate land and groove regions, and Gx and Gy are turbulent
flow correction factors which depend on the Reynolds number based on
surface velocity UHp/u , the dimensionless pressure gradient H3 App/u2,
end the included angle between the directions of the pressure gradient
and the direction of the surface velocity. The authors indicate,
however, that for the conditions that prevail in a viscoseal, GXA and
Gy may be generally considered to be functions of the Reynolds number
UH p/u alone. With the Reynolds number varying from 1000 to 100,000,
the value of G, in turn varies from 0.056 to 0.002L4 and the value of
Gy varies from 0.067 to 0.0025. The analysis also indicates that the

sealing coefficient, A , increases as the eccentricity ratio increases.

The ratio of the sealing coefficient at 0.9 eccentricity ratio to the
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concentric sealing coefficient was found to bé 1.35 for a Reynolds
number of 1000 [6].

The viscoseal bearing, as the name implies, is a combination of
a viscoseal and a Journal bearing as shown in Figuré 2. This report
describes the experimental study of two different groove geometries of
the wviscoseal bearing, hereafter to be called Bearings No. 1 and No. 2.
The critical Reynolds numbers for Bearings No. 1 and No. 2, the geometries
of which are tabulated in Figure 3, were found from Equation (12) to be
449 and 548 respectively. The highest Reynolds number encountered in
the experiment was less than LO. Thus, the study envisaged laminar
operation only. The results obtained from the study have been analyzed
with respect to bearing characteristics and sealing performance. The
theoretical predictions for sealing performance were obtained from
Equations (2) through (13). The equations for bearing characteristics
were obtained from the Short-bearing Approximation [7], which is con-
sidered in the following paragraph:

From Figure 2, it is observed that the viscoseal bearing having
m number of grooves can be considered as composed Qf m shorf bearings.
Thus, the length-to-diameter ratio of each short bearing is given as a/d.
Therefore, the results were calculated for a bearing having length-to-
‘diameter ratio, a/d, and compared with the Short-bearing Approximation
for the same ratic. The analytical and experimental investigation of
the Short-bearing Approximation was conducted by Dubois and Ocvirk [T],

who considered the following Reynolds' equation:
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3 3
o (H dpy . 3 (H 3y _ yoH
o ( Eﬁ'ax) * oy (—Zﬁ'ay )=1U ik (1k)

The authors derived the following equations for the circumferential

and endwise flow rates:

3
= (Ui N )
and
- ( _.If'_._?.'P. ) dx (16)
%y - TIow oy .

The principal simplifying assumption made by the authors was that, of
the two right-hand terms in Equation (15), the second is negligible

compared with the first. Therefore, Dubois and Ocvirk assumed that

Q = gﬁ-iy . (17)

Thus, this analytical epproximation includes the endwise flow caused by
-9p/dy and that part of the circumferential flow which is related to
the surface velocity and local film thickness. This assumption results
eventually in the omission of the first of the left-hand terms in
Reynolds' equation (14). With this assumption, the authors solved
Equation (14) and made available all the bearing characteristics and

verified them experimentally for length-to-diameter ratios 1, %-, and

%-, by the development of equations for load-carrying capacity, W ,
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capacity number, Cn, attitude angle, ¢ , friction ratio, F/Fo , and

friction variable, Fv, as follows:

3 1/2
W= = : gg (1'8 2)2 [n2 (1 - 82) + 1682] ’ (18)
C - e
, 2.2 1/2
cnz M (@22 Q-e) 1 17 (19)
P! cq @ e 72(1 - €°) + 16e°
2,1/2
tan ¢ = L a -;) , (20)
F F 1
o - , (21)
Fo 2ﬂ2u as N'(d/cd) (1 - 52)1/2
2
- 2 _ 2 m
Fv = f(d/cd)(z/d) = Cn (1 - e2>1/2 (22)

The purpose of this project was to study the viscoseal bearing
in the following ways:
1. To investigete thé effect of the bearing eccentricity ratio
on the bearing supply pressure. Results obtained from previous work [2]
indicated that the bearing eccentricity ratio increased with an increase
in the bearing supply pressure,for data taken at a constant load of 16L4.5 1b.

and a constant speed of 1275 RPM with various supply pressures.
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2. To study the bearing cﬁaracteristics ;nd the sealing
performence of the viscoseal bearing.
3. To deterﬁine the possibility of increasing the bearing
performance by changing groove ge&metry without having a significant

reduction in the seal effectiveness.



CHAPTER II
EXPERIMENTAL APPARATUS AND TEST PROCEDURE
I. TEST BEARING ASSEMBLY

Test Bearings No. 1 and No. 2, which were constructed with a central
supply groove, had pumping lands of opposite hand pumping toward the supply
groove. The bearings were made of brass, and the shaft was made of type
316 stainless steel. Measurements of the shaft diameter and the diametral
clearances for Bearings No. 1 and No. 2 were fognd to be 2.479, 0.0052 and
0.005 incheé, respectively; The dimensions and the groove geometries of
the bearings are described in Figure 3, page 8. Figure 4 indicates the
manner in which the test elements were supported and loaded. The compound-
wound D. C. motor used to drive the test equipment could be run at speeds
ranging from 600 to 3400 RPM through the use of an armature control speed
regulator. The hydraulic system for the test equipment is illﬁstrated
in Figure 5. Gulf Harmony 47 o0il, which is similar to SAE 10 oil, was
used for the loading pad as well as the lubrication of the bearings. The
bearings had a groove on each end, in which oil drain holes were located.
The o0il drained from the bearings was pumped back to the supply tank
where it was cooled by a water heat exchanger before being returned to

the bearings.
II. FILM THICKNESS MEASUREMENT

Four inductance type transducers were used to measure the bearing
film thickness which would determine the shaft center locus and

12
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15
eccentricity under dynamic conditions. The device, which consists of a
sensing element and a detector driver, operates on inductive proximity
principles. The detector driver provides the energy for the sensing
element, and it incorporates an adjustment that may be used to vary
sensitivity, providing a wide choice of scale factors. The device
requires an external regulated power supply that will deliver 18 volts
dc at 20 ma. The output of the detector driver is a negative dc voltage
that varies from 0 to 16 volts. The output varies linearly with the
clearnace between the conductive surface and the sensing element,
Figure 6 illustrates a schematic diagram for the installation of the
device. The actual film thickness was determined by subtracting the
change in clearance caused by the thermal expansion of the bearing from
the film thickness determined from the voltage output of the detector

driver. The calibration of the device is described in Appendix B.
III. FRICTION TORQUE MEASUREMENT

A thin cantilever heam as shown in Figure T was used to measure
the torsional constraint. The friction torque exerted by the bearing
was transmitted through the torgque arm to the torque beam. Four
resistance type strain gages were attached to the torque beam to indicate
the strain on the strain indicator. The calibration of the torque beam

is described in Appendix C.
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IV. TEMPERATURE MEASUREMENT

)

Two thermocouples were inserted in the bearing drain pipes to
measure the oil exit temperature. One thermocouple was located in the
oil inlet tube immediately after the flow meter. Copper-constantan
thermocouples were connected to a Rubicon Potentiometer, and the
reference junction was kept in an ice bath. The o0il exit temperature
was taken as the film temperature in the bearing, and viscosities based
on these temperatures were used in the calculation of the bearing per-
formance. An equation was derived by the series solution method to

calculate the oil temperature for any voltage. This equation was:
T = —:L.o9hv2 + L7.42V + 30.48 , (23)

wherein V 1is the potentiometer voltage in millivolts and T - is the
temperature in degrees Fahrenheit. The difference between the calcu-
Jated value of T and the value supplied by the manufacturer of the

thermocouple was found to be less than 0.5 per cent.
V. OIL FLOW MEASUREMENT

A Fischer and Porter tri-flat flow meter was used to measure thé
flow rate of the lubricating oil entering the bearing. The flow meter
was calibrated so that the flow rate could be available at any given
supply oil temperature and float indication. Two methods were avail-

able by which the flow meter calibration could be achieved. The first
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employs actual measurements of the flow rates at different temperatures
end scale readings. The second method employs theoretical principles
predicting the meter calibration. In the first method, the constant
temperature during the flow rate measurement was not guaranteed. There-
fore, the second method outlined by Fischer and Porter [8] was employed
in calibrating the flow meter. The complete calibration solution was
obtained by running the program on the IBM TOUO computer. This cali-
bration gave the flow rates for temperatures ranging between 66.6° F
and 90o F in increments of 0.1° F , and for scale readings of 1 to 25
with an increment of 1, The calibration of the flow meter is described
in Appendix D. Several flow rates were actually measured and compared
with the theoretical predictions for the same temperatures and scale
readings. The difference between predicted and actual value was found

to be less than 6 per cent.
VI. PROPERTIES OF GULF HARMONY 47 OIL

0il viscosities in Saybolt Universal Seconds at any temperature
within the operating range can be obtained from Figure 8. The conversion

from SUV seconds to centipoises can be obtained by:
Cp = (0.22t - 180/t) p. (2k4)

where %t is the viscosity in SUV seconds. The viscosity in Reyns or

lbf-sec/inch2 is obtained by:

W= (145 x1071) cp . (25)
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However, for convenience in the use of the computer, the Lagrangian
interpolation method was employed. This method would give the viscésity
in Reyns or centipoises at any temperature for four degrees of interpo-
lation. The error involved in this method was estimated to be approxi-
mately 1 per cent.

The relation between temperatﬁre and density [9] was obtained as:

L

p = 0.873 - (T-60)(3.43 x 107 ) . (26)

VII. TEST PROCEDURE

In this study, nineteen test series were conducted on Bearing No. 1
and fourteen test series were conducted on Bearing No, 2. Tables I and
II illustrate the nature of each test for Bearings No. 1 and No. 2
respectively. The manner in which the data were recorded is shown in
Table VII, Appendix A. Before beginning & test, a 30-minute periocd of
running the equipment at constant speed was allowed so that the system

would tend toward thermal equilibrium.
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TABLE I

DETAILS OF TEST SERIES ON BEARING NO. 1

Test _ Flow
Series No. Load Speed Rate Other
1 constant constant varied *
2 varied varied constant
3 constant constant varied *
L varied varied constant
5 constant varied constant
6 constant varied constant
T varied varied constant
8 varied constant constant
11 varied varied constant
12 varied varied constant
13 varied varied constant
1L varied constant constant
15 varied varied constant
16 varied varied constant
17 varied varied constant
18 constant varied constant
19 constant varied constant
20 constant varied constant
21 constant varied constant

*
The bearing supply pressure was adjusted to pre-selected

value.
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TABLE II

DETAILS OF TEST SERIES ON BEARING NO. 2

Test Flow

Series No. Load Speed Rate Other
22 varied varied constant
23 varied varied constant
24 constant constant varied *
25 constant constant varied *
26 constant constant varied #*
27 constant constant varied *
28 constant constant varied *
29 constant constant varied *
30 constant constant varied *
31 constant constant varied *
32 constant constant varied *
33 constant constant varied *
34 constant constant varied ¥
35 constant constant varied *

%* -
The bearing supply pressure was adjusted to pre-selected
value.



CHAPTER III
RESULTS ON BEARINGS NO. 1 AND NO. 2

The effect of the bearing supply pressure on the bearing eccen-
tricity ratio was studied in two different ways. In the first method,
test series 1 and 3 were conducted at constant load and constand speed.
Variation in the bearing supply pressure was achieved by altering the
oil flow rate. The plot of the bearing eccentricity ratio versus the
bearing supply pressure is shown in Figure 9. In the second method, a
change in the bearing supply pressure was effected by changing the
bearing eccentricity raiio, which in turn was altered by varying the
load and speed. Figure 10 indicates the relationship between the bearing
supply pressure and the bearing eccentricity ratio.

Figure 11 compares the theoretical shaft center locus with the
experimentally measured values. The theoretical wvalues of attitude
angle, based on the Short-bearing Approximation, were obtained from
Equation (20). The experimental values of the attitude angle were
obtained from Equation (53). This indicated that the viscoseal bearing
operates at high eccentricity ratio even at high attitude angle.

Figure 12 compares the theoretical capacity number with the
experimentally measured values. The experimental and theoretical values
of the capacity number,based on the Short-bearing Approximation,were
obtained from Equation (19).

Friction characteristics of the bearing are presented in Figures

13 and 14. The experimental and theoretical values of friction ratio,

2k
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F/Fo , and friction variable, Fv , were obtained from Equations (21)
and (22),
Figure 12, page 28, also illustrates the performence of Bearing
No. 2 having a wider land. From this figure, for 0.85 eccentricity
ratio, the approximate capacity numbers for Bearings No. 1 and No. 2
were found to be 0.0025 and 0.0055 respectively. Thus, the ratio of

capacity number of Bearing No. 2 to that of Bearing No. 1 is:

Cn
Tt - 32
nyBLE,1 -0025
= 2.2, (27)

From Equation (18), for the same eccentricity ratio, surface velocity,
and viscosity, the ratio of the theoretical load-carrying capacities of

the two bearings is:

W
WE§4242 = (323/022)/(313/0 2)

VB,T,1 1

(0.233/0.1667)>(0.0026/0.0025)°

i

2.94. (28)
The percentage of load-carrying capacity of the viscoseal bearing

was computed in two different ways. For example, in test series No. 7,

the experimental eccentricity ratio was found to be 0.862 for a total

load of T0.6 1b. For the same eccentricity ratio, the theoretical load-
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carrying capacity of the viscoseal bearing having eight grooves was’
computed from Equation (18):

3 1/2

Wyp o1 = 8u U & 5 [1° (1 - €°) + 1662] . (29)
Le (1-€7)

Thus, under identical conditions, the percentage of experimental load-

carrying capacity to the theoretical one is:

W
ﬁzgi&l& 100 = 98.31 per cent . (30)

VB,T,1

The theoretical load-carrying capacity of the plain Journal bearing of
the same overall dimensions computed from Equation (18) is:

3 1/2

_ 2u Ug € 2 2 2
Wip pq = 5 22[1r (1 - %) + 16c°] . (31)
L he (1-€7)

Thus, the percentage of experimental load-carrying capacity of the
viscoseal bearing to the theoretical load-carrying capacity of the plain

Journal bearing of the same overall dimensions may be found by:

W
E
YBE:L 100 = 0.70 per cent. (32)

JB,T,1

Tables III and IV show such comparison for test series No. T for Bearing

No. 1 and Test series No. 22 for Bearing No. 2 respectively.
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TABLE TII

PERCENTAGE LOAD-CARRYING CAPACITY OF BEARING No. 1%

Eccentricity (Wyg’E’l)(§OO)_ (¥¥B’E’l)§loo)
Ratio VB,T,1 JB,T,1
0.8623 98.31 0.700
0.8952 73.99 0.527
0.8980 81.96 0.584
0.8973 97.09 0.692
0.894k 117.80 0.839
0.8717 201 .4k 1.436
0.8530 299.60 2,135
0.8466 348.19 2.482
0.8290 Lh9 .43 3.203
0.8202 485.26 3.459
0.8217 L70.34 3.352
0.79L7 585.78 L.175
0.7908 678.66 4,837
0.7818 809.09 5.767
0.7745 930.12 6.629
0.7959 806.84 5.751

8Test Series No. T.
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TABLE IV

PERCENTAGE LOAD-CARRYING CAPACITY OF BEARING No. 2%

Eccentricity (WYS’E’Q)gjOO) (WYS»E’Q)(jOO)
Ratio VB,T,2 JB,T,2
0.8k434 68.83 1.783
0.8691 53.12 1.376
0.8913 38.09 0.987
0.93L2 1h. b1 0.373
0.9386 13.73 0.356
0.9225 2k 76 0.6L41
0.9331 20.80 0.539
0.9178 34.81 0.902
0.9318 25.65 0.66h
0.9362 23.9L4 0.620
0.9219 38.43 0.996
0.8967 68.90 1.785
0.885L 89.09 2.308
0.86k45 128.59 3.331

8Test Series No. 22.
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The sealing performance of the bearings was determined in two
ways. In the first, the sealing coefficient was computed by substituting
the bearing supply pressure for the term Ap in Equation (1). The
values obtained from test series Nos. 14, 15, and 18 were compared with
the theoretical values obtained from Equations (2) through (12), as
shown in Figure 15. In the second method, test series nos. 25 through
35 were conducted at constant load, constant speed, and varying flow
rates. The term Ap in Equation (1) was taken as the bearing supply
pressure. Graphs of A@/u versus flow rate were plotted for each test
series. Figure 16 illustrates such a graph for test series No. 25.

This curve, essentially a straight line, was extended as shown by &
broken line in the figure, to obtain Ap/u for zero flow rate. Thus,
the sealing coefficient was computed by substituting the above value of
Ap/u  in Equation (1). The results obtained from test series Nos. 25
through 35 are plotted in Figure 15.

Figure 17 indicates the effect of eccentricity ratio on the
sealing coefficient. The theoretical curve was plotted from the analysis
performed by Vohr and Chow [6]. The experimental values were obtained
by the first method described in the preceding paragraph. Although the
experimental values and theoretical predictions are far from agreement,
both indicate that the sealing performance deteriorates with an increase

in the bearing eccentricity ratio.
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CHAPTER IV
DISCUSSION AND CONCLUSIONS

Except for the shaft center locus findings, the results obtained
from the experimental study of two different groove geometries of the
viscoseal bearing seemed to be in fair agréement with the Short-bearing
Approximation. The actual picture obtained from Figﬁre 12, page 28,
however, was not very satisfactory. The extent to which the experi-
mental results agreed with the Short-bearing Approximation is indicated
in Tables III and IV, pages 33 and 34, It is interesting to note,
however, from available data of the work by Dubois and Ocvirk [7], that
théir experimental results also did not agree very well with their own
theoretical analysis. This information is presented in Table V.

The locus of shaft center is an important parameter in bearing
performance. The éxperimental evidence indicated that the bearing
operated at high eécentricity ratio even at high attitude angle. The
nature of the curve, as shown in Figure 11, page 27, indicated that
the behgvior was similar to that of a gas bearing or an elliptical
bearing. Shaw:and Macks [10] have pointed out that in the loaded ares
of the bearing, the grooves tend to disrupt the formation of high fluid
pressure. Radzimovsky [11] describes the influence of circumferential
groove ohApressure distribution-és shown in Figure 18, from which it
is clear that the total load-carrying capacity of two short bearings

each of length 1' is much smaller than that of the bearing having'

39
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TABLE V

THEORETICAL AND EXPERIMENTAL CAPACITY NUMBER FOR A PLAIN
JOURNAL BEARING BY DUBOIS AND OCVIRK®

Short—bearing Approximation Ratie of Experimental

Eccentricity for Capacity Number Cn to Theoretical
Ratio Theoretical  Experimental Cn
0.253 0.8238 0.5200 0.63
0.384 0.1835 0.2880 1.57
0.477 0.1186 0.2000 1.69
0.531 0.0907 0.1530 1.69
0.623 0.0546 0.1030 1.89
0.695 0.0341 0.0772 2.26
0.T40 0.0242 0.0621 2.57
0.805 0.0131 0.0L45 3.30
0.860 0.0066 0.0347 5.25
0.897 0.0035 0.0279 7.92

81/4 = 1/2, Supply Pressure = 100 lb/inch2;
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Figure 18. Influence of a circumferential groove upon the axial pressure
distribution in the oil film. (a) Bearing with one groove; (b) bearing
with three grooves.



Lo

length 1. Therefore, the bearing having a circumferential groove will
have a greater eccentricity ratio than a comparable besring without
such a groove operating under identical conditions. Or, in other words,
for a given oll-film thickness, the load is smaller than a permissible
load for a bearing without circumferentiasl groove, but with other
operating conditions and bearing characteristics being identical. The
effect becomes more pronounced, as the number of grooves increases, as
shown in Figure 18b, page Ll.

Very interesting but limited data were available from W. L. Roberts
[12], who is presently engaged in investigating the numerical computation
of the load capacity and stability of the viscoseal bearing under a
project entitled "An Analysis of the Viscoseal Bearing.'" Shaft center
locus obtained from these data seemed to agree better than the Short-
bearing Approximation as shown in Figure 11, page 27. The loads computed
from the numerical analysis were compared with the experimental values
in Table VI. From these data it is evident that the numerical analysis
agrees well with the experimental results.
' From Figure 12, page 28, it will be observed that the experimental
results obtained from Bearing No. 1 are of a different nature than those
obtained from Bearing No. 2 in that the values of eccentricity ratio for
Bearing No. 2 lie farther above the theoretical curve than those for
Bearing No. 1. The drain pipes fitted to the drain tubes of Bearing
No. 1 seemed to prevent the free movement of the bearing, and.they were

removed during the test runs for Bearing No. 2. This modification may
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TABLE VI

EXPERIMENTAL AND THEORETICAL LOAD-CARRYING CAPACITIES
OF BEARING NO. 1%

Load Computed by " Load Computed by
Numerical Analysis Short-bearing

Eccentricity  Experimental of Complete Approximation,
Ratio Load, Lb. Reynolds Equation ,Lb. Lb.
0. 4697 34.38 33 5.06
0.6036 43.40 36 8.95
0.T226 56.10 bh 19.40
0.8347 77.80 75 56.1k4
0.9000 172.10 158 199.00

®Test Series No. 8.
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have been the reason for obtaining such results. It may also be
observed from Figure 12, page 28, that some experimental values of the
eccentricity ratios at high capacity numbers were far below the
theoretical curve, The accuracy of these results cannot be guaranteed
since Bearing No. 1 vibrated at any load less than epproximately 50 1b.
and at a speed of approximately 2000 RPM. For Bearing No. 2, vibration
occurred at a load of approximately 100 1lb. and a speed of 1500 RPM,
This vibration caused diéficulty in or prevented the obtaining of readings
on the film thickness measurement device.

Very careful observation of Figures 10, 11, and 12, pages 25, 26,
and 27 reveals that after a certain point the bearing eccentricity ratio
decreased slightly with an increase in load.

The sealing performance of the bearings, determined by two
different methods, did not agree with the theoretical predictions. This
may indicate the need for a different approach to the determination of
the sealing coefficient. It should be noted that the bearing always has
some flow of oil which is opposite to the direction of pumping, as
shown in Figure 2, page 7. Thus, the bearing functions neither as a
viscoseal nor as a viscopump. Therefore, it is suggested that a three-
way valve be incorporated in the oil supply line prior to the supply
pregsure gauge so that during an experiment the oil supply to the bearing
may be cut off momentarily by the valve and the resulting pressure
noted. Presumably this pressure would be the pressure generated by the
viscoseal bearing, and when substituted for Ap in Equation (1) would

give the correct sealing coefficient.
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Finally the following conclusions were drawn from the study:

1. The eccentricity ratio is not affected by the bearing supply
pressure or the flow rate at constant load and speed.

2. The bearing supply pressure decreases with an increase in the
bearing eccentricity ratio at a constant flow rate.

3. The shaft center locus of the viscoseal bearing does not
follow the Short-bearing Approximation. In fact, the bearing operates
at high eccentricity ratio even at high attitude angle.

4. The experimental results were only in fair agreement with the
Short-bearing Approximation, However, the agreement found in this
experiment was similar to the agreement between theory and experiment
found by Dubois and Ocvirk [71.

5. Increasing the land width increases the load-carrying capacity.
The experimentally obtained value showed rather close agreement with the
theoretically predicted wvalue.

6. Limited data available from the numerical analysis were
encouraging. The results showed better agreement with the experiment
than did the Short-bearing Approximation.

T. The sealing performance of the viscoseal bearing could not
be reliably determined by the methods followed. The actual pressure
gradient generated by viscoseal action might be determined by the method

suggested in this chapter.
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APPENDIX A
SAMPLE CALCULATIONS AND DATA SHEET

Table VII shows a typical data sheet for test series No. 16. The
symbols used for all the items of the data sheet were the same as those
used in the IBM TO4O computer program. The actual calculations for the

- first reading of the sample data sheet are given below:
Temperatures in degrees Fahrenheit at left and right oll exit are:

TEMPL = ~1.094(VTC1)® + 47.42(VTCl) + 30.48

9L.59°F. (33)

TEMPR

|

_1.09u(1.u3u)2 + b7.4h2(1.434) + 30.48

i

96.23°F. (3h)
Average film temperature is:

TEMPAV = (TEMPL + TEMPR)/2

94, 41°F. (35)

[}

Supply inlet temperature is:

-1.094(0.822)2

68.72°F. (36)

TEMPS + L7.42(0,822) + 30.48

I

49
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Total load on the bearing is:

1h.5W + 27.13

Lao)
]

27.13 1b. (37)
Here, 14.5 is the loading-arm ratio, and 27.13 is the combined weight of

the test bearing, the ioading arm and the loasding pad. Unit load on each

short bearing is:

PUNIT = P/(m a 4)

27.13/(8 x 0.1667 x 2.4842)

8.189 1b. (38)

Length-to-diameter ratio is:

"RLTD

]

(0.1667)/(2.4842)

L]

0.06T1, (39)

Diameter-to-~diameter-clearance ratio is:

DTCD

[}

d/cd

LT7.77. (Lo)

H

Pilm thickness measured by sensing element 1 is:

FIIMT1 = (VDD1-6.2)/1000
= 0.00272 inch. (1)
Similarly,
FIIMT2 = (VDD2-5.4)(0.0052)/(11.4-5.4)

0.00390 inch. (L2)



FILMT3

FILMTU
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(VDD3~6,3)(0.0052)/(12.4-6.3)

0.00281 inch.

(VDDL4-5.4)(0,0052) /(11.6~5.4)

0.0041 inch.

Change in radial clearance due to thermal expansion is:

CHINRC

Film thicknesses corrected

FIIMIC1

FILMTC2

FILMTC3

FIIMTCh

(TEMPAV-T0)(6.2545 x 10’6)/2

(0.7946 x 10™™) inch.
to room temperature are:

FILMT1~-CHINRC

0.0026k4 inch.
0.00382 inch.
0.,00273 inch.

0.00403 inch.

Average film thickness at shaft bottom is:

FILMTAL

Average film thickness at 90o from shaft bottom line is:

FILMTA2

(FILMTC1 + FILMTC3)/2

0.00268 inch.

(FILMTC2 + FILMTCL)/2

0.00392 inch.

(43)

(45)

(46)

(50)

(51)



53

Average eccentricity ratio at operating temperature is:

ECRATA /(FILMTA:L--c)2 +'(F1LMTA2-c)2/(c + CHINRC)

0.4957. (52)

Tangent of attitude angle is:

TANGPA = (FILMTA2-c)/(FILMTAl-c)

15.218. (53)
Attitude angle is:

PHI = Arc tan (TANGPA)

=86.2L degrees. (5k4)
From Figure 6, page 16, viscosity at TEMPAV = 95.41°F is:
VCSITY = (63.59)(107) Reyns. (55)

Revolution per second is:

RPMSEC = RPM/60
= 26, (56)
Surface velocity is:
U = nd(RPMSEC)
= 203 inch/sec. (57)

Sommerfeld number is:



SOMMER

Capacity number is:

CAPANO

Load number is:

RLOAD

Friction force is:

FRFORC

Petroff friction force

FRPTRF= 2 ﬂ2 a 4 (VCSITY)(RPMSEC)(DTCD)

Priction ratio is:

FRRATT

it

]

il

i}

5L
(VCSITY)(BPMSEC)(DTCD)2/PUNIT

4.60T7.

(SOMMER)(RLTD)2

0.0207.

1/CAPANO

48.19.

(2 x 5.97)(E-STRANI)
(122 x L4.536)(md)

0.601 1b.

is:

0.645.

(FRFORC) /(FRPTRF)

0.931.

(58)

(59)

(60)

(61)

(62)

(63)
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Friction variable is:

FRVARI= m(FRFORC)(DTCD)(RLTD)z/P

= 0.381.
Flow rate at TEMPS = 68.72°F and float indication 1k is:

FLOW RATE = 45.97 cc/min.

Assuming the pressure at oll exit to be atmospheric, the sealing

coefficient is:

-
i}

6(vcsITY)(U 2)/(02 BSP)

22k,

Reynolds number based on clearance is:

Re = (2.54)3 Upc
¢ (453.6 x 32.2 x 12) u

From Equation (19), p = 0.862 gm/cc at TEMPAV = 9L, 41°F.

Rec = 6.67.

Thus:

(64)

(65)

(66)

(67)

(68)



APPENDIX B
CALIBRATION OF FILM THICKNESS MEASUREMENT DEVICE

Figure 19 shows the arrangement in which sensing elements were
installed. For all shaft relative motion studies, two sensing elements
mounted at 90 degrees radially should suffice to make the measurement.
For careful observation of eccentricity, however, two sensing elements
were mounted at each end of the bearing, The sensing elements were
mounted 0.005 to 0.008 inch away from the bearing surface as shown in
Figure 19. When the bearing was kept in the position shown, sensing
elements 1 and 3 would indicate some output in volts. This was. called
initial voltage for zero clearance. Dial indicators mounted on the top
of the bearing measured the vertical displacements as the bearing was
lifted. Voltage output was recorded for known vertical displacements.
In a similar way, sensing elements 2 and U4 were calibrated. Each trans-
ducer was adjusted for a scale factor that would render an output of at
least 1 volt (on voltmeter) per mil clearance. Figure 20 shows a linear
relationship between the voltage output and clearance. In the first
phase of the experiment, in which eight test series were conducted,

the equations for oil film thickness measurement were found to be:

FILMT1 = (VDD1-6.4)/1000. (69)
FILMT2 = (VDD2-5.8)/1136. (70)
FIIMT3 = (VDD3-6.6)/11Th. (11)
FILMTh = (VDD4-5.6)/1193. (12)

56
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Figure 20. Distance detector voltage output versus bearing clearance.



APPENDIX C

CALIBRATION OF TORQUE BEAM

Figure T, page 17, presents a perspective view of the torque-beam
assembly. To calibrate the beam the torque arm was removed from the
holder temporarily, and known weights were applied at the point on the
torque beam where the torque arm would sit. Strain corresponding to the
known weight was recorded from the strain indicator. Ten readings were
taken in this manner. Figure 21 shows the graph of strain versus load
on the torque beam. From the graph the average strain per 100 gm. of
load was. found to be 122 microinch/inch. Thus, if the bearing of
diameter 4 inches and torque-arm length L inches exerts torque, and

the strain indicetor reads E microinch/inch of strain:

(E-STRANT ) (100L)
(122 x 453,6)

1b-inch. (73)

At zero speed of the shaft, E was found to be equal to STRANI.

59
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Figure 21. Load versus strain on the torque beam.



APPENDIX D

CALIBRATION OF FLOW METER

The theoretical prediction method for flow meter calibration,

suggested by Fischer and Porter [1l], gives the following equations:

A(1.45 x 10‘7)/(pf (74)

=]
i}

)

= Popp/®opr/ Hopr

(75)

O
]

CB Vlog - popp) Popp/Pgrp

The values of A, B, and p for the flow meter were found from the
catalog [11] to be 1142, L3k, and 16.6 respectively. Fluid density,

Popp » Was obtained from Equation (26). Figure 22 describes

thé float characteristic curves, from which the value of flow coefficient,
C , could be picked off for a calculated value of viscous influence
nunber, R , and given scale reading. Then, from Equation (75), the flow
rate can be calculated. For example, to find the flow rate at TEMPS =

73.4°F and 20 scale reading for Gulf Harmony 47 Oil:

From Figure 8, page 20, = 125.7 Reyns.

HopT

From Equation (26) = 0.8684 gm/cc.

> Popr

From Equation (Th) the value of R is found to be:

(1142 x 1.45x1071) /' {16.6=0.868%)(0.8885)/125.7 (76)

o]
il

48.77.
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Figure 22. Float characteristic curves reproduced from the catalog by .
Fischer and Porter, Tri-flat Variable-area Flowmeters, Handbook
10A9010, Warminster: Fischer and Porter Co., January 1964,
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From Figure 22, at scale reading 20, and R = 48.77, the value of C

found to be 0.0ThL,

A sample

25 and a

O
LI}

136.04 std. ce/min.

(0,07hx* 434) /(16.6-0.868L)(0.8684)/0.873

From Equation(75) , the flow rate is given by:

is

(77)

calculation sheet for flow rates at scale readings 1 through

Supply inlet temperature =73.4°F

Density of 0il=0.8684 gm/cc

Absolute viscosity=125.7T Reyns

Flow rates in Std.cc/min

Q1)
a(2)
Q(3)
Q)
Q(5)
Q(6)
Q7)
Q(8)
Q(9)

0.1107

0.371k

0.9210

2.0k06

3.4929

il

5.4452

8.186k

=11.3799

=16.3251

Q(10)
Q(11)
Q(12)
Q(13)
Q(1k)
Q(15)
Q(16)
Q(17)

20,

28.

34
Ls

53.
65-

73
90

6L5
k85

.929
.133

056

239

463
958

supply temperature of ’T3.hOF is presented as follows:

Q(18)
Q(19)
Q(20)
Q(21)
Q(22)
Q(23)
Q(2k)
Q(25)

105

123.

136

i52.

173,

195

= 217

237

.80k

728

.0k2

999
357

.826
.103

.235.
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