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ABSTRClCT 

Thjs paper s tudies  two damping systems which can be used a s  par t  

of the a t t i t u d e  control  systems of geomagnetically, gravi ta t ional ly ,  

or spin-stabil ized spacecraft .  The devices are  act ive and passive 

geomagnetic r a t e  dampers tha t  use the  r e l a t ive  motion between the  

spacecraft  and an ambient magnetic f i e l d  t o  produce the required 

torques. 

are derived. To invest igate  the  usefulness of the  dampers, an  

ana ly t i ca l  study i s  made of the a t t i t u d e  performance of grav i ta t iona l ly  

s tab i l ized  spacecraft .  

make the  dynamical problem ana ly t ica l ly  t rac tab le ,  a d i g i t a l  simulation 

study i s  presented. G o o d  agreement i s  obtajmed. The charac te r i s t ics  

and app l i cab i l i t y  of each type of damper are a l s o  discussed, 

The expressions f o r  the torques generated by each device 

To ver i fy  the  assumptions t h a t  were made t o  
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NOMENC MTURE 

= spacecraft  posi t ion vector from center of mass of ear th ,  meters 

2 coeff ic ients  used t o  express magnetic f l u x  densi ty  of t he  core 

of an eddy-current rod i n  terms of t he  magnetic f l ux  in t ens i ty  

2 
= area,  meter 

= 

= 

= f l u x  densi ty  of a dipole geomagnetic f i e l d  i n  the  equatar ia l  

plane at  a radial distance from the  center of t he  ea r th  of 

2 cross-sect ional  area of electromagnet, meter 

magnetic f lux  densi ty  of ambient f i e ld ,  webers/meter 2 

L magnitude a , webers/meter 

= magnetic f lux  densi ty  i n  t h e  permeable core of an eddy-current 

2 rod, webers/meter 

= electromotive force,  vo l t s  

= energy, newton-meter 

= act ive geomagnetic r a t e  damper sepsor voltage output per unit  

volt-meter-sees 
amp-turn time rate of change of magnetic f i e l d  in tens i ty ,  

F amplifier voltage gain of act ive geomagnetic rate damper 

=' magnetic i n t ens i ty  of ambient f i e l d ,  amp-turns/meter 

= component of the magnetic i n t ens i ty  of the  ambient f ie ld ,  

amp- t urns /me t e r 

= magnetic f i e l d  in t ens i ty  i n  the  permeable core of an eddy-current 

rod , amp- t urns /me t e  r 

= current,  amperes 

=; current Ln the  ac t ive  geomagnetic r a t e  damper electromagnet, 

amperes 

- i x  - 
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A A A  
mass moments of i n e r t i a  of the spacecraft about t he  i, j ,  k 

2 axes re spec t ive ly  , kilograms -meter 

GM where G i s  universal  g rav i ta t iona l  constant and M i s  

mass of ear th ,  metera3/sec 

length of eddy-current rod, meters 

torque, newton-meters 

mass of passive geomagnetic r a t e  damper exclusive of f i t t i n g s ,  

kgms 

2 

magnetic moment of the  dipole representation of the  geomagnetic 

f i e l d ,  ear th ,  weber-meters 

magnet i z a t  ion of an eddy- current rod , amp- t urns /mete r 

number of tu rns  Qf electromagnet winding 

Cartesian frame of reference fixed i n  the spacecraft  

ov(e e ) = l o c a l  v e r t i c a l  Cartesian frame of reference 

q = number of eddy-current rods along each ax i s  of an orthogonal 

8’ (p’ r 

s e t  of rods 

= maximum radius  of t he  permeable core of an eddy-current rod, 

meters 

r 
C 

- 
r 

C 

r 
S 

- 
r 

S 

R 

m R 

= ma:cimum radius of eddy-current rod, meters 

r 
S - -7 

= resis tance,  ohms 

= res i s tance  of electromagnet of the act ive damper, ohms 

- x -  
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= .6378166 x 10 7 meters, nondimensionalizing constant approximately 
0 

R 

t = time, sec 
equal t o  the  mean equator ia l  radius of t he  earth 

T = time constant, o r b i t a l  revolutions 

V = volume of the  core of an eddy-current rod, meters 

voltage output of the  act ive damper sensor) volts V 

3 
C 

= 
S 

a = in-orbi t  plane angular displacement of spacecraft from loca l  

v e r t i c a l ,  rads. 

a 
a 

a 
S 

B 

A 
8 

A 
8 i 

P 

= amplitude of osc i l la tory  in-orbi t  plane angular displacement, degs. 

= in -orb i t  plane b i a s  angle, rads. 

= angle measured from the  uniform ambient magnetic f lux  densi ty  

vector t o  *he ax is  of an eddy-current r d ,  rads. 

m a s s  densi ty  of t h e  core material, kgms/meters 

mass densi ty  of t h e  conducting she l l ,  kgms/meters 

un i t  vector p a r a l l e l  t o  ax i s  of e i t h e r  an eddy-current rod o r  a 

3 = 

= 

= 

3 

s ingle  axis act ive geomagnetic r a t e  damper 

= un i t  vector p a r a l l e l  t o  Tth axis of a orthogonal t r i a d ,  

i = l t o 3  

U 
- - . , nondimensional damper cha rac t e r i s t i c  parameter 

I e  
P 

= angle measured from the  geographic pole to spacecraft  posi t ion 

vector,  rads. 

= permeability of t he  core of an eddy-current rod, webemlamp-meter 

- x i  - 
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= permeability of free space, 417 x webers/amp-meter 'e 

P = r e s i s t i v i t y ,  ohm-meters 

w = angular veloci ty  of eddy-current rod with respect t o  uniform 
-+ 

ambient magnetic f i e l d ,  rads/sec. 

Ir 
= denotes un i t  vector 

( * I  = denotes t i m e  aer iva t ive  

= denotes t i m e  der ivat ive with respect t o  the  Os reference 

frame 

(3 = denotes vector quantity 

0 = denotes average value 

- x i i  - 
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Introduction 

The repeated success of geomagnetically and gravi ta t iona l ly  stabi1ie;ed 

spacecraft has promoted increased in t e re s t  i n  the  use of these techniques 

for future  satel l i te  missions. In  a geomagnetic s t ab i l i za t ion  system, a 

magnetic moment generated within t h e  spacecraft  i n t e rac t s  wlth t h e  geo- 

magnetic f i e l d  t o  e s t ab l i sh  the  preferred or ientat ion.  1% i s  t h e  in t e r -  

act ion of the  i n e r t i a  e l l i p so id  of the  spacecraft with the  second der ivat ive 

of the  grav5ta;tional po ten t ia l  which es tab l i shes  the  equilibrium orientat ion 

of a gravi ta t iona l  s t ab j l i za t ion  system. Both of these kechniques require a 

damping system t o  remove excess l i b r a t i o n a l  energy t h a t  i s  introduced by 

dis turbjng torques and a nonpreferred i n i t i a l  or ientat ion.  In  t h i s  paper 

two dampers, one ac t ive  apd one passive, are discussed which can be used with 

geomagnekically or gravi ta t iona l ly  s tab i l ized  spacecraft .  Both of khese 

dampers can a l s o  be used t o  remove undesirable qpin momentum induced i n  a 

spacecraft  by a Spin s t ab i l i zed  launch vehicle.  I n  addition, the act ive 

damper can a l s o  be used i n  a, spin s tab i l ized  spacecraft  t o  increase or 

decrease the  spin rate or  used i n  a closedrl,oop mode t o  maintain a specified 

ro ta t ion  rate with respect to the  geomagnetic f i e l d ,  

The two torque producing devices t h a t  a r e  studied here are  e n t i t l e d  

the  Passive Geomagnetic Rate Damper and t h e  Active GeomagneCic R q t e  Damper 

even though the  ac t ive  system i s  not r e s t r i c t e d  t o  energy diss ipat ion.  

passive damper cons is t s  of eddy-current rods which have a highly permeable 

core encased i n  a s h e l l  of conducting mater ia l  as i l l u s t r a t e d  i n  Fig. 1. 

Angular motion of t h e  device with respect t o  an ambient magnetic f i e l d  is 

The 
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Fig. 1 SINGLE-AXIS PASSIVE GEOMAGNETIC RATE DAMPER 
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r e s i s t ed  by a d iss ipa t ion  of energy through eddy-current loss i n  the conducting 

she l l .  The ac t ive  damper i l l u s t r a t e d  i n  Fig. 2 cons is t s  of a sensor which 

measures the r a t e  of change of the compwent of the ambient magnetic f i e l d ,  

sensor e lec t ronics ,  and an amplif ier  t ha t  dr ives  an electromagnet whose ax is  

i s  p a r a l l e l  t o  the sensor ax is .  The magnetic moment of the electromagnet i s  

maintained proportional t o  the  time r a t e  of change of the  measured f i e l d .  

Angular motion of t he  device with respect t o  the ambient magnetic f i e l d  i s  

r e s i s t ed  by the  torque generated by the in te rac t ion  o f  t he  magnetic moment 

of the electromagnet with the  ambient magnetic f i e l d .  

The use of eddy-current rods t o  despin orb i t ing  ea r th  s a t e l l i t e s  has 

been studied and proposed f o r  use with geomagnetically and gravi ta t iona l ly  

s t ab i l i zed  spacecraft  i n  [ 1 1 .  A study of t h e i r  app l i cab i l i t y  for the  GEOS-I1 

spacecraft  is  presented i n  [E'] i n  which an averaging technique i s  used t h a t  

gives nei ther  an e x p l i c i t  expression for the  torque nor a measure of the  

induced perturbations.  The ac t ive  damper can be used as an a l t e rna t ive  t o  

the  passive damper, and an ac t ive  geomagnetic rate damper w a s  proposed by 

F. F. Mobley i n  ['I. powever, the system discussed here d i f f e r s  from t h a t  

proposal i n  t h a t  a phase lag need not be e x p l i c i t l y  introduced by the  instru-  

mentation. This should simplify the  implementation of such a system. The 

ac t ive  damper discussed here w a s  conceived by the  author as a r e s u l t  of an 

attempt t o  improve the  damping cha rac t e r i s t i c s  of the  passive geomagnetic rate 

damper. The technique w a s  formulated independently by F. F. Mobley and 

B,  E ,  Tossman of the  Laboratory f o r  use as a nutat ion damper on a spin s t a b i l -  

ized spacecraf t .  This author i s  unaware of any discussiQn of the  ac t ive  geo- 

magnetic r a t e  damper i n  the  l i t e r a t u r e  but the  conceptual s implici ty  of the  

device implies t h a t  it may have been proposed elsewhere. 

The analysis  i s  i n i t i a t e d  by the  der ivat ion of t h e  torque exerted on 

- 3 -  



THE JOHNS HOPKINS UNIVEPSITY 

APPLIED PHYSICS LABORATORY 
SILVER SPRINa. MARVUND 

r ,. , , ,  

AMPLIFIER 
SENSOR 

SENSOR 
ELECTRONICS 

- 5 .  ' ' '  

- - 

Fig. 2 SINGLE-AXIS ACTIVE GEOMAGNETIC RATE DAMPER 
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each type of s ingle  ax is  damper by an ambient magnetic f i e l d .  For a mag- 

ne t i ca l ly  l inear  core material  it is  shown t h a t  t he  torque expressions fo r  

a set of three mutually orthogonal dampers of e i t h e r  type are mathematically 

equivalent. The a t t i t u d e  prformance p f  a grav i ta t iona l ly  s tabi l ized space- 

c r a f t  is  then investigated.  Analy-bical expressions are developed for the  

fxansient and s teady-state  performance of a satel l , i te  i n  a c i r cu la r  and geo- 

graphically and geomagnetically polar o rb i t ,  These r e s u l t s  a re  *hen ver i f ied 

by a d i g i t a l  simulation of the  nonlinear d i f f e r e n t i a l  equations which do not 

include the approximations t h a t  were requii '1 t o  make the equations analy- 

t i c a l l y  t rac tab le .  A discussion of the r e l a t ive  merits of t he  passive and 

act ive dampers concludes the paper. 

D a m p e r  Torque Expressions 

Passive geomagnetic r a t e  dampr 

If an eddy-current rod of t he  type i l l u s t r a t e d  i n  Fig. 1 i s  inser ted 

i n t o  a magnetic f i e l d  of i n t ens i ty  Re , a chaqge i n  the  component of the  

f i e l d  along the  rod w i l l  intwduoe an electromotive force i n  the  conducting 

she l l .  The electromotive force i s  given by Faraday's l a w  $0 be 

B d A  d 
d t  JAcom r 

e z - -  
For a magnetic flux densi ty  t h a t  i s  uniform over the  core 

The current i n  an elemental r ing  of the  conducting s h e l l  is  given by Ohm's 

law t o  be 

e 
d I  = - R 

if  the  resis tance is assumed t o  be much greater  than +he inductance. The 

resis tance,  which As equal t o  the  res$stlv;i'cy times the length of the 

- 5 -  
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conducting path divided by the Tross-sectional area of the  conducting path: 

i s  given by 

where 

Then the current i n  the  conducting a h e l l  i s  given by subs t i tu t ing  Eqs .  (2) 

and (4) i n t o  Eq. (3) so  t h a t  

or 

i f  '3 

If the  conducting s h e l l  cons t i tu tes  a standard solenoid (one i n  which the 

length t o  diameter r a t i o  i s  very la rge)  the  magnetic f i e l d  intensiCy i s  

uniform over the  cross-gection and is  given by 

i s  equal t o  ( -  k Br). 

induced magnetic f i e l d  in t ena i t i e s  i n  $he rod is  given by 

I/R Which, by Eq. (6.1, 

With t h i e  approximation %be sum of the  ambient and 

H r = H  e r  - k i r  

- 6 -  
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where 

If t he  magnetic f l u x  densi ty  of the rod is  related, t , ~  the magnetic flux 

i n t ens i ty  of the rod by the pOwer s e r i e s  expansion 

n 

j = O  

then Eq ,  (7a) cap be wr i t ten  as 

n 
H = H - k irr j a j  Hp j-1. 
r e r  ( 9 )  

Eq. ( 9 )  is  a f i r s t -o rde r  nonlinear different,ial equation for 

applications of i n t e rea t  here 

Hr . I n  the  

n 

j = O  

s o  t h a t  an approximate solut ion t o  Eq. ( 9 )  i s  

n 
j -1  H E H - k Ger 1 Jaj Her + .., r e r  

The torque exerted on t h e  eddy-current rod is  given by 

-8 -4 
4 = vc Mr x ije 

- 7 -  
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Since the core i s  ferromagnetic, 

Br Br 
'e - Her 

M = -  

so  t h a t  

n v 
3 j!, = -  C B r e x g e  

'e 

where 

n n 

i= 0 J=o 

Eqs .  (14) give the  desired r e s u l t ,  the  torque exerted on an eddy-current 

rod because of r e l a t i v e  motion w i k h  respect  t o  an ambient m9gneCic f i e ld .  

I n  the  case 00 a magnetically ;Linear core materisl, t h a t  i s ,  one i n  

which 

a = O  0 

a1 = ' 
a2 = a3 - ... = 0 - 

Eqs .  (14)  reduce t o  

- 8 -  
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where 

(16b) 

The va l id i ty  of' E q s .  (16) can be established since the  average r a t e  

of energy diss ipated by gn eddy-current rod ro ta t ing  in  a uniform magnetic 

Yield has been derived i n  [l]. 

an ax is  normal t o  the  ambient f i e ld  as i l l u s t r a t e d  i n  Fig. 3, 

For ro ta t ion  of  an eddy-current rod about 

ff c = H  A C O S @  
e e 

s o  tha t  the torque exerted on the  rod as given by Eq.  (16a) i s  

The r a t e  of energy d iss ipa t ion  i s  given by 

4 A b w which pecomes, a f t e r  subs t i tu t ion  of Eq. ($8) and w 

The average rate of change of energy over one comzlete revolution, assuming 

- 9 -  
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Fig. 3 GEOMETRICAL CONFIGURATION OF SINGLE- AXIS PASSIVE GEOMAGNETIC 
RATE DAMPER IN UNIFORM MAGNETIC ENVIRONMENT 
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t h a t  the  angular veloci ty  is  a constant, i s  given by 

For a t h i n  conducting s h e l l ,  Eq, (20b) can be 9pproxiWted by 

where the  negative s ign indicates  t h a t  energy i s  being dissipa$ed. 

Eq.  (21) agrees with Eq. (38) of [l] i f  one takeq i n t o  account a ty-po- 

graphical e r ro r  i n  the  la t ter  equation which wakes it too sqall  by a 

f ac to r  of ten: 

I n  an ac tua l  appl icat ion,  any number of eddyTcurrenC rods cqn be 

employed. The t o t a l  number, t h e i r  re la t ivf ;  direc$ions and t h e i r  charac- 

t e r i s t i c s  a re  best  determined by the individual spacecraft  configuration 

and mission objective.  

Eq. ( lgb) ,  which follows d i r e c t l y  from the fir& term of the torque ex- 

pression can J u s t l y  be characterized adversely ag primari ly  providing 

dis turbing torques while the  second term can be characterized as pr ipa r i ly  

providing damping torques. 

The f irst  term of the energy expressisn a s  given by 

When using the  passive geomagnetic rate damper with a geomagnetic 
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s t ab i l i za t ion  system, Eq. (16a) indicates t h a t  by placing the eddy-current 

rods e i t h e r  pa ra l l e l ,  normal or symmetrical with r e s p c t  to the  axis which 

is  t 9  be s tab i l ized ,  it is  possible t g  obtain a dis twbance f ree  system. 

When used with a, gravi ta t iona l  s t ab i l i za t ion  system, a disturbance f r ee  

system cannQC be real ized.  Except for a geostatipnayy t ra jec tory ,  when 

the  spacecraft  i s  s tqbi l ized  there  w i l l  s t i l -$  be r e l a t ive  motion between it 

and the  geomagnetic f i e l d .  However, i t  i s  possible to minimiqe the  perturb- 

ing e f f ec t  of the  damper. If the  same nutuber of rods of i den t i ca l  charac- 

t e r i s t i c s  are  placed i n  the  spacecraft  along each ax i s  of an orthogonal 
A 

t r i a d ,  denoted by c (i = 1 t o  3 ) ,  then i 

3 

i=l 

s o  t h q t  the  torque expres s iw  given by Fq. (16a) becomes 

The subscript  s denotes t h a t  t he  der ivat ive i s  taken with respect t o  the  

frame of reference fixed i n  the  spacecraft .  This par t i cu la r  se lec t ion  of rod 

or ientat ion has succeeded i n  completely eliminating t h a t  portion of the eddy- 

current rod torque which generates a perturbation without damping, 

course, it is  not pecessary t o  use rods with t h e  same cha rac t e r i s t i c s  a$ 

long as the  sun of t h e  K 's of t he  rods along eqch ax i s  i s  iden t i ca l ,  

O f  

1 



THE JOHNS HOPKINS UNIVERSITY 

APPLIED PHYSICS LABORATORY 
SILVER SPRING. MARYLAND 

Active geomagnetic rate damper 

The seqsor output of the  ac t ive  geomagnetic rate damper i l l u s t r a t e d  

i n  Fig. 2 is  a voltage t h a t  is proportional t o  the rate of change of the 

component of the  ambient magnetic f i e l d  in t ens i ty  along the a x i s  of the  

sensor and i s  given by 

The voltage output of the l i nea r  amglif ier  i s  

passes through the  electromagnet i s  

Q Vs aqd the  current whiqh 

vs 1 = -  
m R  m 

The torque exerted on the  electromagnet by the ambient f i e l d  i s  

4 L = N I A : x z e  
m m m  

o r  

-4 a 

where 

A comparison of the  torque expressions f o r  the two s ingle-axis  dampers as 

given by Eqs. (16) and (26) i s  informative. 

for t he  passive damper, whose funct;lon w g s  shown t o  be d e t r i m n t a l ,  i s  absent 

The term i n  .the torque expression 

- 13 
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i n  t he  torque expression for the  act ive damper. 

expression have t h e  same mathematical form. 

Tl?e damping terms of each 

If three s ingle-axis  act ive geomagnetic r a t e  dampers a re  oriented ortho- 

gonally the  torque expression becomes 

It i s  in te res t ing  t o  note t h a t  the  torque expressions f o r  mutually orthogonal 

dampers of e i t h e r  type, as given by Eqs. ( 2 3 )  and (27), are mathematically 

equivalent. Consequently, it is possTble to generalize the  torque exFression 

and w r i t  e 

where 

K 
- , ac t ive  geomagnetic rate damper 
’e 

K = [ 2  , passive geomagnetic r a t e  damper 

This makes it possible t o  ipvestdgate the  performance of both dapper systems 

i n  terms of the  s ing le  parameter K.  

- 14 - 
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Damper Performance with Gravi ta t ional  StabilizaGion 

The a t t i t u d e  performance of a gravi ta t iona l ly  s t ab i l i zed  spacecraft  

with an orthogQna1 s e t  of dampers of e i t h e r  type i s  studied here.  To make 

the  equations of motion ana ly t i ca l ly  t r ac t ab le ,  so $hat preliminary design 

formulae can be obtained, severa l  res t r ickion$ and simplifying assumptions 

a r e  made. The spacecraft  i s  taken t o  be on a c i r cu la r  and geographically 

polar o rb i t .  

with the  geographic poles so  t h a t  it coincides with the d a j l y  mean posi t ion 

of the  dipole component of the  t rue  f i e l d .  

f i e l d  a t  the  spacecraf t  w i l l  l i e  i n  the o r b i t a l  plane. For l i b r a t i o n a l  

motion i n  the  o r b i t a l  plane the  time der ivat ive of the  geomagnetic f l u x  

d-ensity vector  w i l l  a l s o  be i p  t he  o r b i t a l  plane. 

t h a t  t he  damper system w i l l  introduce a .torque about an sx i s  normal t o  the 

o r b i t a l  plane. This means thae t h e  in-orb i t  plane l i b r a t i o n  of gravi ta t ion-  

a l l y  s t ab i l i zed  spacecraft  which is  upcoupled from t he  out-of -orb i t  plane 

motion i n  the  presence of g rav i t a t iona l  forces  remains uncoupled i n  the  

presence of the  d a m p r  torques. 

The geomagnetic f j e l d  is  approximated by a dipole aligned 

Consequently, the geomagnetic 

X t  follows from Eq. (28) 

The large spacecraft  iner-bia required for  gravi ta t ionax s t a b i l i z a t i o n  i s  

usual ly  obtained a f t e r  the spacecraft  is  I n  o r b i t  by th9 extension of tubular  

s t a b i l l z i n g  booms, 

of the a t t i t u d e  motion i s  of the oraer of the  o r b i t a l  period. The large 

change i n  i n e r t i a  which accompanies boom extienqion w i l l  reduce the  angular 

ve loc i ty  of t he  spacecraft  i n  i n e r t i a l  space $0 near zero exaept possibly 

for the  component about the longi tudinal  aliie i n  a d,Umbbell configuration. 

Extension of t he  booms usual ly  occurs when the  period 

- 15 - 
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Since a gravi ta t iona l ly  s tab i l ized  spacecraft i n  i t s  equilLbrium posit ion 

has an angular ve loc i ty  normal t o  the o r b i t a l  plane of one revolution per 

o r b i t a l  revolution, in-orbi t  plane motion about t he  equilibrium orientat ion 

will r e su l t .  Whether there  i s  any out-of-orbit plane motion depends on the  

par t icu lar  or ientat ion of the spacecraft a-t; t he  time of boom extens iw.  This 

can be made s m a l l  by proper select ion of the  in s t an t  a t  which the  booms are 

extended or by a technique employing geomagnetic s t ab i l i za t ion  pr ior  t o  

boom extension. For these reasons the  ana ly t ic  study i s  r e s t r i c t ed  t o  the  

in-orb i t  plane l i b r a t i o n a l  motion of the  spacecraft  i n  order t o  character- 

i ze  the  t rans ien t  and s teady-state  performance. 

reference system, Ov The components of t he  geomagnetic f i e l d  i n  the  

as i l l u s t r a t e d  i n  Figs. 4 and 5 are  given by 

h A 3 = -B [Sine F + 2 Cos8 c r I  
e 0 0 

where 

M 

a 

e 
0 3  
B 3- 

For s m a l l  in-orbi t  plane Libration amplitudes, t he  geomagnetic f i e l d  i n  the  

spacecraft  frame of reference Os i s  given by 

- 16 - 
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Fig. 4 ORBIT CONFIGURATION AND LOCAL VERTICAL REFERENCE SYSTEM 
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Fig. 5 SPACECRAFT REFERENCE FRAMES 
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so t h a t  

4 
The der ivat ive of Be i n  Qs i s  

The damper torque, as givep by Eqs .  ( 2 8 ) ,  (30) and (311, is 

The d i f f e r e n t i a l  equation for the in-orbi t  spacecraft motion is given. i n  

[4] to be 

so t h a t  f o r  a small amplitude l i b ra t ion  

*. 
I a + K B (1 + 3 Cos20) + 3 i2 (Ir - Iy) = 2K Bo2 6 P 0 

By defining 

(35) 
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o == 

I - I 
r y 

I 
p 

() /= ~() ld( ) 
- de = -: dt e 

K B 
2 

11 
0 ---. 

I e p 

Q - 211 

Eq. (35) can be rewritten as 

(36a) 

(36e) 

(36f) 

Eq. (37) is a second- order linear nonhomogeneous differential equation with 

a periodic coefficient . The parameter denoted by 11 is a nondimensional 

representation of the damper characteristics . Eq . (37) can be reduced to 

a homogeneous form by defining 

= Z + g] 
30 

(38a) 

(38b ) 
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If S(e)  i s  real and continuous with period n and 

then a l l  solutions of Eq. (41) a r e  bounded for - m < 8 < 03 . 
For the  S(8) given by Eq, (42b), the  s t a b i l i t y  c r i t e r i a  a re  t h a t  

The in tegra t ion  can be e a s i l y  prformed only for spec i f ic  values o f  o and 

1 -  
A simplified s t a b i l i t y  c r i t e r i o n  can be obtained when 

In  t h i s  case, the  periodic coeff ic ient  given by Eq. (4-2b) can be approximated 

bY 
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The s t a b i l i t y  c r i t e r i a  given by Eqs. (43) now give 

o > o  

If the  independent 

4 S in  281 de I -  n 

var iable  i s  changed by the  transformation 

(473) 

( 4 P )  

t h e  d i f f e r e n t i a l  equation of motion given by Eq. (41) can be rewri t ten using 

Eq. (46) as 

A 

+ (u  - 2v cos 2y) x = 0 
d' X - 
dY2 

where 

u = 36 

Eq. (48a) has the  form of the  well-studied Mathieu equation which a r i s e s  

i n  several  d i f f e ren t  Oypes of physical problems, Exact locations of 

boundaries between s tab le  and unstable soJution a$ a function of u and 

v a re  readi ly  avarilable, e.g. [ r ] .  For 

- 23 - 
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-2u < < 2D (49b) 

the  solutions t o  the  Mathieu equation a re  e s sen t i a l ly  s tab le  with only 

narrow regions of i n s t a b i l i t i e s .  

An approximate solut ion fo r  the l i b ra t ion  amplitude of t he  spacecraft  

i s  possible when the  periodic coef f ic ien t  S(@)  as given by Eq. (42) has 

r e l a t i v e l y  s m a l l  var ia t ions about a large mean value. This solut ion of 

Eq. (41) is  known as the  WKBJ approximation and. i s  given by 

1 
2 [A Cos cp ( e )  f B Sin cp ( e ) ]  _ -  

X = [ G ( 8 ) ]  

where 

i f  

The primes denote d i f f e ren t i a t ion  with respect t o  the  independent var iable  

8 and the  A and B are  the constants of integrat ion t h a t  must be deter-  

mined from the  i n i t i a l  conditions. For S(0)  given by Eqs ,  (42), t he  
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l i b ra t iona l  motion is  given by 

The time constant of t he  motion, whiqh i s  the time required_ f o r  the  l i b ra t ion  

amplitude t o  reduce t o  e of i t s  i n i t i a l  value, i s  obtained d i r e c t l y  from 

Eq. (31) to be 

-1 

2 T = -  
5n 11 

where T i s  in  o r b i t a l  revolutions.  

It a l s o  follows d i r e c t l y  from Eq. (31) t h a t  the  motion of the  geo- 

magnetic f i e l d  r e l a t i v e  t o  the l o c a l  v e r t i c a l  frame of reference introduces 

a steady-state bias of magnitude 

The time constant and steady-state bigs  angle given by Eqs ,  ( 5 2 )  and ( 5 3 )  

are i l l u s t r a t e d  i n  Figs,  6 and 7 as funotions of t he  damsr  parame-ter 11 . 

Comparison of Analyt ical  and Simulation Results 

b The formulae developed i n  the  preceeding sect ion f o r  the  t i m e  constant 

and steady-state b i a s  angle are par t icu lar ly  useful f o r  preliminary design. 

To es tab l i sh  confidence i n  the  formulae it i s  necessary to obCsin a measure 

- 25 - 



THE JOHNS HOPKlNS UNIVERSITY 

APPLIED PHYSICS LABORATORY 
SILVER SPRING. MARYLAND 

70 

60 

UI 
c 
.- 
5 50 

!! 

- 
0 

- 
0 
c .- 
2 

t-l 

w 30 
5 

I-- 

- 40 
I- 
z 
4 

z 
0 
W 

I- 

20 

10 

c 

I E SIMULATION RESULTS 

2 
T =- I 5 =TI 

.002 .004 .006 .oon .010 .a12 .014 

q, DAMPER PARAMETER 

Fig. 6 TIME-CONSTANT VERSUS DAMPER PARAMETER OF A GRAVITATIONALLY 
STABILIZED SPACECRAFT IN CIRCULAR POLAR ORBIT 

- 26 - . 



THE JOHNS HOPKINS UNIVERSITY 

APPLIED PHYSICS LABORATORY 
SILVER SPRING. MARYLAND 

I 
(a) MEAN IN.ORBIT PLANS BIAS ANGLE FOR u 1 I "' J 

'I .6 

,L - a s = 3  3a 
H SIMULATION RESULTS 

I 
I I .6 

(b) AMPLITUDE OF OSCILLATORY STEApY-STATE 
MOTION ABOUT MEAN BIAS ANGLE OBTAllJED 
FROM SIMULATION FOR u = ?  1 

%= 18 7 t .06 (degrees) 
.4 - 

FOR q 2.002 

.2 

.002 .004 .006 ,008 .010 .012 .( 
0 

?,DAMPER PARAMETER 

4 
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of the  e f f ec t s  of the  assumptions tha t  were made t o  make the  dynamical solution 

ana ly t i ca l ly  t rac tab le .  This i s  accomplished by a comparison of the  analy- 

t i c a l  r e su l t s  with those obtained from a f u l l  scale  d i g i t a l  simulation of t he  

nonlinear d i f f e r e n t i a l  equations of motion. The simulation used fo r  t h i s  

purpose i s  a general purpose Dig i t a l  Att i tude Simulation developed a t  the  

Applied Physics Laboratory and i s  d.escribed i n  [6] .  

study, the  simulation i s  operated i n  an abbreviated mode i n  t h a t  t he  majority 

of the o-$,tional capab i l i t i e s  a r e  not exercised. The center of mass of t h e  

spacecraft  i s  constrained t o  a c i rcu lar  and geographically polar orb i t .  Only 

A s  used f o r  t he  current 

torques t h a t  arise from the interact ion of the i n e r t i a  e l l i p so id  with the 

Newtonian component of the  geopotential  and the  in te rac t ion  of the  damper 

with a r e a l i s t i c  model of the  geomagnetic f i e l d  are considered. The geo- 

magnetic f i e l d  i s  represented in  a ro ta t ing  earth-fixed coordinate system 

by the  eight  leading terms of t he  spherical  harmonic. expansion discussed i n  

[ T I .  

measured geomagnetic data  a The three second-order nonlinear d i f f e r e n t i a l  

equations a re  integrated numerically by the  fourth-order Runge-Kutta-Gill 

method. The charac te r i s t ics  of the  spacecraft  and o rb i t  t h a t  are used i n  the  

simulation are  given i n  Table I. 

The model has an rms res idua l  of 9 percent when compared with s a t e l l i t e  

The r e su l t s  of t he  d i g i t a l  simulation a re  superimposed on Figs. 6 and 7 

Excellent s o  t h a t  a d i r ec t  comparison can be made with the  ana ly t i ca l  r e su l t .  

agreement i s  obtained. To determine the  t rans ien t  response from the  simu- 

l a t ion ,  the  i n i t i a l  conditions were selected so t h a t  t h e  spacecraft  w a s  

al igned with the  l o c a l  v e r t i c a l  a t  t he  geographic north pole with zero 

angular ve loc i ty  i n  i n e r t i a l  space. This i s  typ ica l  of t he  conditions t h a t  
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Table 1. Spacecraft and o rb i t  cha rac t e r i s t i c s  
for d i g i t a l  simulation 

Mass propert ies  

I =  
P 
I =  r 
I =  
Y 
m =  

2 

2 

2 

300 kgm- me t e r  

500 kgm-meter 

20 kgm-me t e r  

70 kgms 

Orbit cha rac t e r i s t i c s  

semimajor ax i s  

ec cent r ic  it y 

inc l ina t ion  

argument of ascending node 

argument of perigee 

mean anomaly 

epoch 

mean motion 

= 1.2 ear th  r a d i i  

= o  

= 90 degrees 

= o  

= o  

= 90 degrees 

67 80 0.0 year-day-sec 

.943 x rads/sec 
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preva i l  when the  mass d i s t r ibu t ion  of a gravi ta t iona l ly  s t ab i l i zed  spacecraft 

i s  achieved by extendible m e m b e r s .  The time constant i s  computed from the 

l i b ra t ion  h i s to ry  over 39 o r b i t a l  revolutions of the  s a t e l l i t e  which corres- 

ponds t o  approximately three days. To determine the steady-state dynamic 

behavior from the  simulation, the  i n i t i a l  conditions were selected s o  t h a t  

t he  spacecraft w a s  aligned with the  loca l  v e r t i c a l  a t  the geographic north 

pole but with an in-orb i t  plane angular veloci ty  equal t o  the  o r b i t a l  mean 

motion. In  the  absenpe of perturbations the  spacecraft  would remain aligned 

with the  l o c a l  v e r t i c a l .  The mean in-orbi t  plane b i a s  angle is  computed 

from averaging the  peak l i b ra t ion  amplitudes over t he  last  13 o r b i t a l  rev- 

olutions out of a t o t a l  of PO revolutions. Fig. 7b represents the  amplitude 

of the  envelope of the osc i l l a to ry  l i b ra t ion  about t he  mean b ia s  angle t h a t  

i s  present i n  the  simulation r e su l t s .  For a spec i f ic  value of ll addi t ion 

of the ordinates of Figs. 7a and 7 b  gives the  maximum deviation from the  

loca l  ve r t i ca l .  

Damper System Character is t ics  

The choice between the  ac t ive  or passive damper w i l l  i n  general  be 

determined by the  par t icu lar  s t ab i l i za t ion  requirements and spacecraft  

constraints .  Mass, volume, power requirement, r e l i a b i l i t y ,  and f l e x i b i l i t y  

a re  the  more important damper charac te r i s t ics  t h a t  w i l l  influence the  choice 

The ac t ive  damper can be implemented i n  severa l  ways. The function of 

the  sensor i s  t o  determine the  time rate of change of the geomagnetic f lux  

density.  This can be accomplished by time d i f f e ren t i a t ing  t h e  output of a 

vector magnetometer or by detect ing the magnitude of t he  current induced i n  
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a c o i l  of conducting material. The function of the electromagnetic i s  t o  

generate a dipole moment which in t e rac t s  with the  geomaenetic f i e l d  t o  

produ-ce the  damping torques. Ei ther  an a i r  or i ron  core electromagnet can 

be used i n  e i t h e r  a continuous or discontinupus mode. In  t h e  continuous 

mode the  output of the amplifier el-ectronics i s  fed continuOusly i n t o  the  

electromagnet so  t h a t  it has good f i d e l i t y  with the  sensor output. The 

discontinuous mode u t i l i z e s  a chargeable electromagnet so $'ha$ pulsed charging 

of the  electromagnet r e s u l t s  i n  a dipole moment tha t  i s  a s t e p  approxima- 

t i o n  t o  the  desired function. This would have the  advan%age of minimizing 

power c onsmpt ion. 

It i s  obvious t h a t  t he  act ive damper can be psCckaged i n t o  a r e l a t ive ly  

s m a l l  un i t  and can be made extremely f l ex ib l e  by incorporating the a b i l i t y  

t o  change the amplifier gain by ground command. 

damper i s  i t 5  extreme r e l i a b i l i t y .  However, for  a t  l ea s t  some appl icat ions 

The v i r tue  of t he  passive 

it appears t o  require an inordinate amount of mass and volume, 

the  passive damper, exclusive of f i t t i n g s ,  can be obtained from Eq. (36.2) 

The mass of 

which can be rewrit ten a s  

- 
For given values of 

determining the  number of rods required along each axis from 

7 , Ip , rc , 1-1 , %L , and , the  problem i s  one of 
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subject t o  a constraint  on the  length of the rods. The t o t a l  m a s s ,  exclusive 

of f i t t i n g s ,  i s  then given by 

3 - 2  - 2  - 2  m = 39 TI R [ r e  6c + (rs - r bS1  
C 

- 
Repeating t h i s  calculat ion for several  values of r r e su l t s  i n  the  deter-  

mination of a damper system of minimum mass. 

S 

It is instructi-Je t o  compute the  m a s s  of the  passive damper for a 

t y p i c a l  application. Consider the spacecraft  and o rb i t  whose characteris-  

t i c s  a r e  described i n  Table 1 and a mutually orthogonal s e t  of eddy-current 

rods t h a t  have a core material of mu metal whose propert ies  are given for 

- 
r = .002 

C 

i n  [l] t o  be 

4 (’”) = 10 
’e 

6 = 7.86 x lo3 kgm/meter 3 
C 

For a conducting s h e l l  of copper 

-8 
p = 1.7 x 10 ohm-meters 

Ss = 8.9 x 10 3 kgm/meter 3 
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The mass of t he  passive damper exclusive of f j t t i n g s  f o r  an 1 of .OO25, 

which i s  equivalent t o  a t i m e  constant of approximately 50 o r b i t a l  revolutions,  

as a functioq of t h e  nondimensionalmaximum radius  of t he  conducting s h e l l  

i s  given i n  Fig. 8. 

mass of 45 kgms i s  required while fo r  a maximum allowable length of 0.5 

meters a mass of 57 kgms i s  required. Consequently, unless the  permeability 

of t he  core mater ia l  can be increased appreciably the  passive damper appears 

t o  have l imited appl icat ion for missions i n  which the  emphasis is  on the  

t rans ien t  performance, For gravi ta t ion31 s t ab i l i za t ion  it i s  possible , by 

multiple boom extensions, t o  capture the  spacecraft  s o  t h a t  i t s  i n i t i a l  

l zbra t ion  energy i s  small, In  addition, d i g i t a l  simulation, s tudies  a s  

well, as experimental evidence accumulated a t  the  Laboratjory indicate t h a t  

some gravi ta t iona l ly  s t ab i l i zed  spacecraffj w i l l  maintain good s t ab i l i za t ion  

i n  the  absence of any damping mechanism f o r  extended periods of t i m e .  Con- 

sequently, i n  appl icat ions i n  which the  s teady-state  performance i s  of prime 

importance, so  t h a t  a damping parameter of appreciably smaller wagnitude 

can be u t i l i zed ,  t h e  passive damper may be competitive. 

For a maximum allowable Length of one meter a damper 

Summary and C onc l u s  ions 

This p p e r  s tudies  the  app l i cab i l i t y  of both ac t ive  and passive geo- 

magnetic r a t e  damping t o  spacecraft  a t t i t u d e  control  systems. Torque 

expressions which can be used i n  d i g i t a l  simulation s tudies  are derived fo r  

each type of damper. It is  shown t h a t  a t r i a d  of mutually orthogonal s ingle-  

ax i s  passive dampers with a magnetically l i nea r  core mater ia l  has the  same 

mathematical form f o r  t he  torque expression as a t r i a d  of mutually orthogonal 
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single-axis ac t ive  dampers. 

Design formulae a re  derived which characterize the t rans ien t  and steady- 

state motion of grav i ta t iona l ly  s tab i l ized  spacecraft i n  geographically polar 

and c i rcu lar  orb i t s .  The v a l i d i t y  of the  assumptions t h a t  are necessary t o  

make the  dynamical solut ion ana ly t ica l ly  t r ac t ab le  i s  established by agree- 

ment between the  ana ly t i ca l  r e s u l t s  and those of a de ta i led  d i g i t a l  simu- 

l a t i o n  study. 

It i s  fur ther  shown tha t  f o r  a typ ica l  appl icat ion t h a t  t he  passive 

damper requires an inordinate amount of m a s s  t o  provide good t rans ien t  

performance s o  t h a t  i t s  usefulness appears t o  be l imited t o  applications i n  

which only a s m a l l  amount of damping i s  required. The ac t ive  damper has 

good po ten t i a l  t o  complement the  a t t i t ude  s t ab i l i za t ion  systems of geomaeetic 

and gravi ta t iona l ly  s t ab i l i zed  spacecraft .  I ts  lack of moving pa r t s  implies 

t h a t  good r e l i a b i l i t y  should be at ta ined.  Since the  charac te r i s t ics  of t he  

ac t ive  damper can be changed by ground command it i s  an extremely f l ex ib l e  

device. It can a l s o  be used i n  a, closed loop feedback mode t o  maintain a 

specif ied spacecraft  ro ta t ion  r a t e  with respect t o  the  geomagnetic f i e ld .  
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This paper studies two damping systems which can be used a s  part of 
the attitude control systems of geomagnetically, gravitationally, o r  spin-sta- 
bilized spacecraft. 
dampers that use the relative motion between the spacecraft and an ambient 
magnetic field to produce the required torques. 
torques generated by each device a r e  derived. 
of the dampers, an analytical study is made of the attitude performaoce of 
gravitationally stabilized spacecraft. To verify the assumptions that were made 
to make the dynamical problem analytically tractable, a digital simulation study 
is presented, Good agreement is obtained, The characteristics and applicability 
of each type of damper a r e  also discussed. 
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