General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

SEMIANNUAL STATUS REPORT:

National Aeronautics and Space Administration
Grant NGR 22-009-337
covering the period November 16, 1968 - February 15, 1969

Submitted by: Paul Penfield, Jr. March 20, 1969

SUMMMARY OF RESEARCH

During the period 16 November 1968 through 14 February 1969, advances have been made on both experimental and theoretical understanding of avalanche diodes.

Theoretical calculations of static n agative resistance in avalanche diodes were done during the previous six months. During the past three months, emphasis has been more on the transient.case. A computer program has been written and refined, to simulate the behavior of such a diode as a function of time. It is possible to excite the diode with an arbitrary current waveform and view not only the resulting voltage but also electron and hole profiles and electric.-field profiles. A collection of the resulting profiles shows how the transient behaves, and studies have been made on a variety of diodes and currents. It is also possible to consider the diode as excitegl through a circuit, and work has begun on writing the appropriate programs to simulate this.

We expect that these programs can be used to justify a lumped-circuit model for the diode. This model can then be used to design practical circuits such as oscillators.

An example of the use of these programs is shown in Fig. 1. Each line represents a profile of electron-current density at a specific time (the time in psec and the corresponding vcltage are printed at the left). Each symbol represents a range of electron-current values; thus, higher numbers represent higher values of electron current, and letters still higher values. The diode is a p-i-n diode with base width 10μ, excited with a constant current of $2 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2}$.

A series of runs for various driving currents (all constant) shows that the amount of voltage breakback produced by the transient depends upon the current. For stronger currents the breakback is much higher, and for currents not much larger than the current for Fig. 1, the breakback is so large that the computation cannot be trusted, and a more elaborate program will be necessary.

Experimentally, an IMPATT avalanche-diode oscillator has shown noise and power improvement at the fundamental as the higher (second
AVALANCHE TRPANSIENT 03/19/69 1340. 5
$J N O=1.000 F$ ON, $J P O=1.000 E .00, E O=2.000 E 07,40$ STEPS.

IMDEX: - JN LESS THAN 1000 AMPS/SOUARE METER. GTHER SYMBGLS:
SYNRU: 0 1 ? $3456789 A B C D E F G H 1, ~ K L M N O P Q R$
P促 QF 10: 3333344444555556666677777888

[^0]and third) harmonics were tuncd. The variation in noise performance appears to ie the important result, and a quantitive measure has shown that the tuning produced a $6-8 \mathrm{~dB}$ noise figure change when the oscillator was used as the local oscillator for a balanced mixer.

Incremental measurements of the avalanche impedance of the diode junction have been made as a function of the avalanche current in the range of frequencies from 4 GHz to 12 GHz . The negative real part still exists at 4 GHz , but is of little consequence, since the bulk series resistance of the diode overwhelms it. Considering both the real and imaginary parts of the impedance, there appears to be an optimum frequency at which to use the device as an oscillator. From these measurements, a small-signal model has been formed leading to a large-signal model of frequency-independent elements which we hope will predict the observed behavior regarding harmonic terminations.

[^0]: Fig. 1. Computer simulation of avalanche transients.

