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ABSTRACT 

A computer program has been developed to graphically and 

analytically define the static shape of the liquid-gas interface in the 

annular region between any two concentric cylinders in a n  axial force 

field for any Bond number and contact angle. 

as a subroutine a previously reported method of calculating the static 

shape of the liquid-vapor interface within a single cylindrical tank. 

Static fluid surface coordinates for both the annular and central  regions 

The program a lso  includes 

a r e  given for Bond numbers (with inner cylinder radius as characterist ic 

length) ranging from 10 to 500, for a contact angle of 5 degrees,  and for 

a radius ratio of 1 .  5. 
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INTRODUCTION 

For  the smooth, reliable, and consistent operation of a vehicle 

propulsion system, only liquid must  be delivered to the engine. 

the liquid phase must  a lways be located a t  the outlet of the propellant 
1 tank. Clodfelter , recognizing that the pressure  drop ac ross  a liquid- 

gas  interface could be utilized for m a s s  t ransfer ,  suggested that tanks 

consisting of several  properly sized, interconnected, concentric 

cylinders be used to position liquid propellants a t  low gravitational 

accelerations. 

the present report  utilizes the mathematical techniques developed by 

Bashforth and Adams and Geiger3’ * to predict the static shapes of 

axially symmetr ic  liquid surfaces within concentric cylinder tankage 

systems a t  desired Bond numbers and contact angles. 

is used to predict the surface shapes for a radius ratio (outer to inner 

cylinder) of 1. 5, for a contact angle of 5 degrees,  and for Bond numbers 

from 10 to 500 (using the inner radius as the characterist ic length). 

Therefore, 

In an extension of the concepts advanced by Clodfelter, 

2 

The method 

An alternate analysis of the annular region has been given by 
5 Seebold et  a1 , 

equations describing the surface using the Adams predictor -corrector  

method. 

can be read i s  not great. 

considerably more accurate results.  

who numerically integrated one of the differential 

Their resul ts  a r e  plotted, but the accuracy with which the graphs 

The present method can be expected to yield 
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STATEMENT O F  THE PROBLEM 

The problem can be defined in  consecutive steps as follows: 

Consider a section of an  interconnected concentric cylinder tankage 

system filled with fluid (Figure 1). Select a y-axis along the axis of 

symmetry of the system and an r -axis perpendicular to the y-axis in 

the radial  direction. Let the effective acceleration of gravity, g, ac t  

in the minus y-direction. 

region be &b and the mean height of the fluid in the central  region be 

hma. 
that liquid density, surface tension, contact angle, and pressure  above 

the liquid a r e  constant throughout the system. 

coordinates of the liquid-vapor interface in each region of the system. 

Let the mean height of the fluid in the annular 

Let the height of the liquid a t  a n  a rb i t ra ry  r be h(r) .  Assume 

Find the h-  and r -  

2 
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Figure 1. F lu id  i n  Concentric Cylinder Tankage System with Axis 
P a r a l l e l  t o  the E f fec t ive  Acceleration o f  Gravity 
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METHOD OF ANALYSIS 

FUNDAMENTALS OF CAPILLARY HYDROSTATICS 

The basic equation of capillarity, sometimes re fer red  to as the 

Young and Laplace equation, is 

where 

Po - Ps - the difference in  pressure  ac ross  a liquid-gas 
interface at any point of the interface 

the principal radi i  of curvature of the interface 
a t  that point 

R , Rc,  - c1 

PO - the pressure  in the gas at the interface 

- the pressure  in the liquid at the interface pS 

T - the surface tension of the liquid 

Whenever a liquid-gas interface is axisymmetric,  Rc l  and Rcz  can be 

expressed explicitly. Thus, 

h r r  hr Po - Ps = T t 
r (1 t hr2)”2 

where h( r )  is the ordinate of the liquid-gas interface and the subscript  

r indicates the derivative with respect  to r. 

4 
In a previous report ,  Geiger used the procedure which follows 

to relate the hydrostatic pressure,  p = p(r ,  y), a t  any point in a fluid 
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to the pressures ,  Po and P,, on either side of the liquid-gas interface 

for a single cylinder of radius R ,  . 
of two concentric cylinders of radius R ,  and R 2 .  

Here  the procedure is used for the case  

F i r s t  the pressure,  p, a t  any point, (1, y), is expressed as 

follows (see  F i g u r e  1): 

where A is a constant to be determined. Thus, 

ps + p g h = P o  + A  

Ps is now eliminated from Equations 2 and 4, yielding 

r h r  = p g h  - A T d  ' dr [(' t h/)lI2 ] 
Equation 5 is integrated after multiplying it by r to give 

where R ,  and R2 a r e  any two radii. 

Fo r  the annular region between concentric cylinders of radii R1 

and R2 (see  Figure l ) ,  

hr - - - cot 0 a t  R ,  

hr = t cot 0 at R 2  

where 8 is the contact angle between the liquid-gas interface and the tank 

wal l  (measured in the fluid). Therefore, 

5 



Now 

R; - R t  f: d r  = 2 

. 

Let V be the volume of fluid above the r-axis. Then 

R2 

V = 2 n  h r d r  = IT(R: - R:) hmb (9 )  

R1 

where hmb is the average height of the interface above the r-axis. 

The above resul ts  are then substituted into Equation 6, giving 

T (R2 t R1) c o s 8  = p g  (R: 't) hmb - A (R: R? ) 

f rom which it follows that 

The p res su re  at any point in the fluid is now written 

which defines the p res su re  at all points in the annular region. 

single cylindrical tank, the expression for the p re s su re  a t  any point 

can be written 

F o r  a 

4 
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where R1 is the radius of the cylinder. This completes the procedure. 

Equations 12 and 13 therefore define respectively the p re s su re  

in the annular and central  regions of any concentric cylinder system. 

At the same y,  p is the same  and 

when 

- hma = 0 hmb Rz = 2R1 , 

Thus the relative importance of the radii  in a concentric cylinder tankage 

system in positioning the fluid in one region with respect to its position 

in the other becomes apparent. 

NONDIMENSIONAL FORMS O F  THE GENERAL DI FFERENTLAL 
EQUATION FOR AXISYMMETRIC SURFACES IN ANNULAR REGIONS 

The general  differential equation of capillary hydrostatics for 

axisymmetric surfaces can be 

Letting 

obtained from Equations 5 and 11. Thus 
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one obtains 

The h and r coordinates a r e  made nondimensional here  by dividing 

by the radius of the inside cylinder, R1. Actually, this amounts to 

taking the quantity R1 as the unit of length. 

the following transformations have been made: 

F o r  the sake of simplicity, 

r 
= t ,  - 

R1 
K 
R1 
- = H ,  

where the Bond number, Bo, is the ratio of the body forces to capillary 

forces in the prevailing force field. 

equation of the equilibrium surface profile can now be written 

The dimensionless differential 

1 t  Ht 
t dt [(1 +Hp] = B O H  

F o r  the special case  of zero  Bond number, the reader  is re fer red  to a 
1 report  by Clodfelter in which numerical solutions for the shape of the 

liquid-vapor interface in the annular region between concentric cylinders 

are given. 

The nonlinearity of Equation 17 renders  general closed-form 

solution impossible. However, various schemes have been devised by 

Geiger3, Seebold et a1 , and Bashforth and Adams 

equation o r  an  equivalent equation numerically. 

Geiger proposed will be used in this report. 

transformations. 

5 2 
to integrate this 

The technique which 

This involves further 

Let  

Ht = t a n a  
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where CY is the angle between the H-to-t (or  the h- to- r )  curve and the 

t (or r )  axis.  Equation 17 then can be written 
t 

- 1 d  - (t sin 0) = B o k w  + S t a n  CY dt) 
t dt 

o r  
1 t \ 

sin t CY t cos C Y -  da, dt = Bo (Hw t t a n a d t )  
1 

sin t CY t cos C Y -  da, dt = Bo (.- t tan CY d t )  

where Hw is the undetermined value of H a t  the wall a t  which t = 1 o r  

r = R1. The boundary conditions a r e  

a t  t = 1: 0 = -(; e> 
IT @ = - - e  
2 

R2 

R1 ' 
a t  t = - -  

for  any contact angle. 

it  is difficult to use  for low contact angles (where (Y i s  large).  

difficulty can be avoided by changing the independent variable from 

t to s, the a r c  length in the H-to-t plane. This technique was first 

used by Bashforth and Adams 

as characterist ic length (i. e. ,  in place of R l ) .  

Although Equation 18 can be integrated numerically, 

This 

2 
although they used a surface curvature 

Thus, 

COSCY , dt 
d s  
- =  

t S 1 dt = 

1 0 

COS CY ds  

where s = 0 a t  t = 1, and 
S 

cos CY ds s t =  1 t 

0 

Also, 
da ds - da, 

COSCY - = COSCY - - -  - d a  
dt ds dt d s  ' 

9 



S 
Now, Equation 18 becomes 

-- sin a, 
.t - da = B o k w  t sins ds) ( 19) ds  

1 t l c o s  a, ds  0 

0 

dcu 
ds  where - is the curvature of the surface in the H-to-t plane. 

NUMERICAL INTEGRATION O F  THE DIFFERENTIAL EQUATION 

Equation 19 is to be integrated numerically to obtain the shape of 

the interface in the annular region between concentric cylinders. 

, where n is a large number; 
1 subinterval of s is chosen of length As = - 
n 

e. g. ,  10,000. Starting at s = 0, a forward difference scheme is used 

to calculate the values of (Y, t, and (h - hma)/R, at the end of each 

successive subinterval. 

A 

Since - and Hw are unknown (they a r e  interrelated 
s = o  

through Equation ZO), an iterative procedure must  be employed to 

determine that value of - which satisfies the boundary conditions. 

A minimum possible value of - is easily determined. F r o m  

Equation 19 i t  follows that 

= BoHw - sin 0 

= BoHw t cos 0 

[ 

hw - hmb 
= B  

0 R1 

- z] 2 

10 



Since h, - hmb is positive for acute values of 8 and is negative for obtuse 

values of 8, it is clear  that 

o r  that the la t ter  is the minimum sought. Unfortunately, no convenient 
dcr maximum value for I - ds I = ol has been found. 

I I 

A s  an  initial o r  trial value of - , a n  arb i t ra ry  value is 
d s s = O  I 

selected somewhat la rger  in magnitude than the minimum possible value. 

The corresponding value of H 

of CY, H, t, and - at the end of each subinterval, A s ,  are calculated. 

In making these calculations, the following approximations are made: 

is found from Equation 20. Then values W 
dcr 
d s  

S i n a i  t sincri t 1 
= Hi t 

Hiti 

and da/ is calculated from 
ds i t 1  

R2 cos CY ds  becomes equal to - , ~ ( s )  must  - s R1 
When t = 1 t 

0 
IT equal - - 8 o r  be very close to it. If it is not, a new value of 
2 

must be selected and the procedure repeated. 

used to obtain - 
In the iterative technique 

for acute contact angles, i t  should be noted that: 
d S s = O  I 

1 1  



is too large. 
RZ 1. If 1 t f c o s a  ds  < - 
R1 

0 

S 
TT - -  RZ 

s = o  
, 2  

C O S C Y  ds = - s R1 
2. If at 1 t 

0 

is  too large.  
S 

is too small. 
contact angles. 

Similar conditions can be written for  obtuse 

- h a  
R1 

Once - is known, the surface coordinates 

and t(&) a r e  a l so  known. In fact, 

S 

cos (Y ds s t =  1 t 

0 

2 + f s inczds  t - 
BO R2 - R1 

0 

12 



A listing of the FORTRAN IV computer program which was used 

to obtain surface profiles values of 

values of t = - 
cylinder tankage systems is given in the Appendix. 

- hma and the corresponding ( R1 
for both the central  and annular regions of concentric 
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RESULTS OF CALCUIATIONS 

Computer calculations were made for - R 2  = 1.5, for seven 
R1 

Bond numbers between 10 and 500, and for a contact angle of 5 degrees.  

Fo r  these calculations, an  a rb i t ra ry  value of As, the increment of a r c ,  

was selected for  the central  region and the value of A s  for the annular 

region was chosen such that the e r r o r  in the contact angle was less 

than 0.0005 radians o r  0.0286 degrees.  

The resul ts  of the calculations a r e  plotted in Figures  2 through 8. 

Selected resul ts  a r e  given in Tables 1 through 7 .  

las t  point is that point for the minimum ordinate in the annular region 

for which the resul ts  were printed by the computer. 

printed for every 50th calculated point in this region. 

the expected trends. 

Seebold et a1 

I n  the tables the 

Results were 

The resul ts  show 

5 
numerically integrated one of the differential 

equations describing the surface in the annular region using the Adams 

predictor -corrector  method. 

length (inner radius is used in this report) ,  and their maximum Bond 

number was 30 (the corresponding Bond number of this report  would be 

13. 3). They plotted height a t  the outer wall, maximum depression, and 

height at the inner wall against radius ratio for various Bond numbers 

for contact angles of 0,  5, and 15 degrees.  

They used the la rger  radius as characterist ic 

When the resul ts  of the present study a r e  compared with those 

just discussed (and this can only be done for the lowest Bond number of 
hmb this report ,  10, and for the one radius ratio),  a difference in 

appears which is of the order  of magnitude of *O. 01 ;  and this number 

is too large to be explained on the basis of e r r o r s  in interpolation and 

in curve reading, estimated as * O .  004. 

the two sets of resul ts  cannot be said to be good. 

R2 

Thus the agreement between 

To what this is attributable is not known. It is believed, however, 

that the present resul ts  should be cor rec t  to within about 0.0001 in 

(h - hma) /R1 o r  to  within 0.00007 in  (h - h,b) /R2.  

14 
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Figure 2. S t a t i c  Surfaces K2 = 1.5, B = 10, e = 5 O  
0 - 

R1 
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i: 

Figure 3 .  S t a t i c  Surfaces - R2 = 1.5, Bo = 25, 0=5O 
R 1  
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Figure 4, S t a t i c  Surfaces - R2 = 1.5, Bo = 50, 0=5O 
R1 
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r 
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Figure 5. S t a t i c  Surfaces - R2 = 1.5, Bo = 75, 8=5* - 
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Figure 6. S t a t i c  Surfaces - R2 = 1.5,  Bo = 100, 8=5O 
R1 
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R2 = 1.5, Bo = 250, 0=5' - Figure 7. S t a t i c  Surfaces 
R 1  
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TABLE 1 

COORDINATES OF SURFACES 

Bo = 10 8 = 5" 

AS = 2.5 x (annular region) 

Central Region 

t R i  
- hma 

Annular Region 

t R i  
- hma 

0 00000 -0.13601 1 .ooooo 0.32979 

0.12497 -0.13352 

0.24971 -0.12575 

0.37392 -0.11 179 

0.49698 -0.09004 

0.61775 -0.05801 

0.73398 -0.01 227 

0.84124 0.051 54 

0.93125 0.13774 

0.98961 0.24746 

1 .00002 0.301 1 1 

1.01174 0,28164 

1.03670 0.23849 

1.07185 0.2031 0 

1.11417 0.17667 

1.16105 0.15953 

1.21034 

1.26027 

0.151 59 

0.15254 

1.30930 0.16203 

1.35600 0.17970 

1.39894 0.2051 9 

1.43657 0.23801 

1.46717 0.27744 

1.48888 0.32237 

1 .49980 0.37104 

1.50001 0.37328 

1.23533 0.15098 
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TABLE 2 

COORDINATES OF SURFACES 

!k= 1.5 
R 1  

As = 2.5 x 

Central Region 

- hma 
t R i  

0.00000 

0.12500 

0.24997 

0.37487 

0.49954 

0.62351 

0.74534 

0.86066 

0.95657 

1 * 00000 

-0.07220 

-0.071 45 

-0.06897 

- 0 . 0 640 1 

-0.05505 

-0.03925 

-0.01 168 

0.03590 

0.11483 

0.21716 

Bo = 25 e = 5' 

10-4 (annular region) 

Annular Region 

- hma 
t Ri 

1 .ooooo 0.19996 

1.01345 0.15235 

1.04195 0.11 150 

1.08053 0.07990' 

1.12523 0.05769 

1.17332 0.04426 

1.22298 0.03885 

1.27289 0.04094 

1.32195 0.05032 

1 ,36900 0.06708 

1 .41254 0.09152 

1.45051 0.12391 

1 .48007 0.16407 

1.49755 0.21072 

1.50001 0.22753 

1.23547 0.03868 
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TABLE 3 

COORDINATES OF SURFACES 

!2= 1.5 
R 1  

Bo = 50 e = 5" 

AS = 1.25 x (annular region) 

- hma 
t R i  

0.00000 -0.03907 

0.12500 -0.03891 

Central Region Annular Region 
- hma 

t R i  
1 .ooooo 0.14712 

1.01 575 0.10025 

0.25000 -0.03834 

0.37499 -0.03698 

0.49995 -0.03395 

0.62476 -0.02723 

0.74880 -0.01 220 

0.86894 0.02136 

0.96986 0.09290 

1 .ooooo 0.16392 

1 .04849 0.06278 

1.09065 0.03614 

1.13753 0.01 897 

1.18658 0.00949 

1.23645 0.00644 

1.28635 0.00924 

1.33554 0.01797 

1.38307 0.03333 

1.42727 0.05653 

1.4651 9 0.08890 

1.49186 0.1 3091 

1.50000 0.16404 

1.23645 0.00644 
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R2 
R i  - =  1.5 

TABLE 4 

COORDINATES OF SURFACES 

Bo = 75 

AS = 2.5 x 10-4 (annular region) 

Central Region 

0.00000 -0.02642 

0.1 2500 -0.02638 

0.25000 -0.02620 

0.37500 -0.02572 

0.49999 -0.02443 

0.62494 -0.02098 

0.74955 -0.0 1 1 60 

0.87168 0.01 395 

0.97564 0.08028 

1.00002 0 13795 

hrnb - hrna 
R 1  

= 0.02657 

e = 5" 

Annul a r  Region 

t R1 
- hma 

1 . 00000 

1.01746 

1.0531 2 

1.09744 

1 .14545 

1.19492 

1.24487 

.29476 

.34411 

.39203 

.43671 

1.47431 

1.49747 

1 .50002 

1 .24487 

0.1 2440 

0.07841 

0.04374 

0.02087 

0.0071 1 

0.00005 

-0.00177 

0.00111 

0.00901 

0.02310 

0.04534 

0.07801 

0.12186 

0.13663 

-0.001 77 
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- =  R2 1.5 
R1 

TABLE 5 

€OORDINATES OF SURFACES 

AS = 2.50 

Central Region 

t R i  
- hma 

0.00000 -0.01989 

0.1 2500 -0.01 987 

0.25000 -0.01981 

0.37500 -0.01961 

0.49999 -0.01 899 

0.62498 -0.01702 

0.74980 -0.01073 

0.87295 0.00956 

0.97903 0.07186 

1.00002 0.12159 

Bo = 100 

x 10-4 (annular region) 

8 = 5O 

Annular Region 

t R i  
- hma 

1 .ooooo 
1.01892 

1.05677 

1.10251 

1.15118 

1,20086 

1 .25083 

1.30075 

1.35021 

1.39845 

1.44348 

1.48059 

1 ,49983 

1.50000 

1.23834 

0.11056 

0.06530 

0.03306 

0.01315 

0.001 88 

-0.00355 

-0.00467 

-0.001 93 

0.00518 

0.01818 

0.03966 

0.07279 

0.11828 

0.12002 

-0.00475 
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TABLE 6 

COORDINATES OF SURFACES 

- -  R2 - 1.5 Bo = 250 0 = 5" 
R1 

AS = 1.0 x (annular region) 

Central Region - 

- hma 
t Ri 

0.00000 

0.10000 

0.20000 

0.30000 

0.40000 

0.49999 

0.59999 

0.69998 

0.79995 

0.89933 

0.98693 

1 .ooooo 

-0.00797 

-0.00797 

-0.00797 

-0.00797 

-0.00796 

-0.00794 

-0.00783 

-0.00734 

-0.0051 3 

0.00501 

0.04898 

0.07995 

Annular Reg1 on 

t R i  
- hma 

1 .ooooo 
1.01 730 

1.05027 

1.08829 

1 .12776 

.16762 

.20759 

.24758 

1.28757 

1.32753 

1.36738 

1.40684 

1.44496 

1.47867 

1.49908 R 1  

1 .50001 

1 .24258 

0.07520 

0.04010 

0.01788 

0.00569 

-0.00069 

-0.00391 

-0.00538 

-0.00575 

-0.00521 

-0.00356 

-0.0001 6 

0.00629 

0.01820 

0.03937 

0.07305 

0.07918 

-0.00576 
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!b= 1.5 
R1 

TABLE 7 

COORDINATES OF SURFACES 

Bo = 500 

AS = 1.0 x (annular region) 

Central Region 
- 

t R i  
0.00000 

0.10000 

0.20000 

0.30000 

0.40000 

0.49999 

0.59999 

0.69998 

-0.00398 

-0.00398 

-0.00398 

-0.00398 

-0.00398 

-0.00398 

-0.00398 

-0.0039 2 

0.79998 -0.00345 

0.89985 0.00075 

0.99082 0.03591 

1.00001 0.05772 

e = 5 O  

Annular Region - 
- hIna 

t R i  
1 .ooooo 
1.02102 

1.05752 

1.09694 

1.13684 

1 .17682 

1.21682 

1 ,25681 

,29681 

.33680 

,37676 

,41656 

1 .45538 

1.49870 

1 .50001 

1 .24181 

0.05526 

0.02279 

0.00697 

0.00043 

-0 * 00220 

-0.00324 

-0.00362 

-0.00367 

-0.00346 

-0.00 281 

-0.001 20 

0.00269 

0.01201 

0.05040 

0.05727 

-0.00368 
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APPENDIX 

CY 

FORTRAN IV COMPUTER PROGRAM FOR INTERFACE 
CONFIGURATIONS IN CONCENT RIG CYLINDER 

TANKAGE SYSTEMS 

C r o s s  -Reference Between Symbols 
(Input and Output) 
Main P rogram 

Algebraic 
Symbol 

AS 

2 i - 1  d s i - l  
- dcu 

CY t -  

s 

1 t (' cos cw ds  

1' sin CY d s  

0 

da, 
d s  
- 

As 

hmb - hma 

Rl  

ma h 

HW 

R1 

FORTRAN 
Symbol Description 

ALPHA Local angle of inclination 
of surface 

ALPME 

ANTCOS t = -  
R l  

ANTSIN 

BO 

DADS 

DADS0 

DS 

DIFF 

HM 

HR 1 

R1 

H - H, 

Bond number 

Local curvature of surface 

dcY - at inner wall 
d s  

Increment of a r c  

Nondimens ional difference 
between mean heights 

Mean height in annular region 

Value of H at inner wall 

Inner radius 
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Rz 

IT 

0 

0 

Alg e b r  aic FORTRAN 
Symbol Symbol Description 

R2 Outer radius 

OLIM Ratio of outer to inner radius 

PI 3. 14159 

THET Contact angle in degrees 

THETA Contact angle in radians 

xxx Contact angle in radians 
(for subroutine) 
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FOWTHAN i V  L ISTING O f  M A I N  PROGRAM 
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FORTRAN 1 V  LXSTIkG OF MAIN PROGFiAH 
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CROSS-REFERENCE BETWEEN SYMBOLS 
(INPUT AND OUTPUT) 

SUBROUTINE FRED 

Algebraic 
Symbol 

a 

(Y 

B O  

sin a1 

sin ( ~ 2  

cos  a1 

cos a2 

d(Y 
ds 
- 

HO 

hm 

As 
2 
- 

As 

FORTRAN 
Symbol De sc ripti on 

A Radius of tank 

ALPHA 

BO Bond number 

BOHO 

SALPl 

SALP2 

CALPl 

CALP2 

Local angle of inclination of surface 

DADS0 Curvature on axis of symmetry 

DALPDS Curvature a t  general point 

HO 

HM 

Value of H on axis of symmetry 

Mean height of surface 

HALFDS Half of increment of a r c  length 

DS Increment of a r c  length 

KOUNT Number of i terations 

LL Integer determining what data is printed 
(every 10 o r  every lo2) 

THETA Contact angle in  radians 
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Algebraic 
Symbol 

I T  e - -  2 

J:CQS a d s  

c s i n  CY ds 

FORTRAN 
Symbol 

THET 

TCOS 

T SIN 

XALP 

YI 

XI 

t ( = $ )  

H - Ho 

Description 

CY at wall 

Storage location for surface heights 

Storage location for radial distances 
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FORTRAN f v  PROGRAM L I S T I N G  OF SUuROUTINE FRED 

C* 

2+ 

G* 

C**** CUI, ULA 



FirHTRAh AV PROGRAM LXSTIIdG OF SUBROUTINE FRED 



FOHTHAN X V  PROGRAM LXSTING OF SUbRoUTINE FRED 
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FORTRAiV 6 V  PHOGRAM LASTING OF SUBROUTINE FRED 
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FORTRAN T V  PROGRAM LISTING OF SUBROU~INE f3C 
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FCiHTHAN I V  PROGRAM LISTSNG OF SU~ROUTINE RPRIN 
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5.8 

7 

l c l .  

22.  

5 U  . 
73. 

ltrt . 
ilsu 

500. 

SAMPLE Q A T A  

3. 
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