LIQUID-GAS INTERFACE RELATIONS IN INTERCONNECTED CONCENTRIC CYLINDER TANKAGE SYSTEMS

by Dr. F. W. Geiger Dr. J. C. May

September 1967

RESEARCH LABORATORIES

BROWN ENGINEERING COMPANY, INC.
HUNTSVILLE, ALABAMA

LIQUID-GAS INTERFACE CONFIGURATIONS IN INTERCONNECTED CONCENTRIC CYLINDER TANKAGE SYSTEMS

September 1967

Prepared For
PROPULSION DIVISION
PROPULSION AND VEHICLE ENGINEERING LABORATORY GEORGE C. MARSHALL SPACE FLIGHT CENTER

Prepared By
RESEARCH LABORATORIES
ADVANCED SYSTEMS AND TECHNOLOGIES GROUP BROWN ENGINEERING, A TELEDYNE COMPANY

HUNTSVILLE, ALABAMA

Contract No. NAS8-20073

By

Dr. F. W. Geiger
Dr. J. C. May

Abstract

A computer program has been developed to graphically and analytically define the static shape of the liquid-gas interface in the annular region between any two concentric cylinders in an axial force field for any Bond number and contact angle. The program also includes as a subroutine a previously reported method of calculating the static shape of the liquid-vapor interface within a single cylindrical tank. Static fluid surface coordinates for both the annular and central regions are given for Bond numbers (with inner cylinder radius as characteristic length) ranging from 10 to 500 , for a contact angle of 5 degrees, and for a radius ratio of 1.5 .

Approved:

Mechanics and Thermodynamics Department
Approved:

Vice President
Page
INTRODUCTION 1
STATEMENT OF THE PROBLEM 2
METHOD OF ANALYSIS 4
Fundamentals of Capillary Hydrostatics 4
Nondimensional Forms of the General Differential Equation for Axisymmetric Surfaces in Annular Regions. 7
Numerical Integration of the DifferentialEquation10
RESULTS OF CALCULATIONS 14
REFERENCES 29
APPENDIX. FORTRAN IV COMPUTER PROGRAM FOR DEFINING THE STATIC SHAPE OF SURFACES IN THE CENTRAL ANNULAR REGIONS OF CONCENTRIC CYLINDER TANKAGE SYSTEMS 30

LIST OF FIGURES

Figure Title Page
1 Fluid in Concentric Cylinder Tankage System with Axis Parallel to the Effective Acceleration of Gravity. 3
2 Static Surface $\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=1.5, \mathrm{~B}_{0}=10, \theta=5^{\circ}$ 15
3 Static Surface $\frac{R_{2}}{R_{1}}=1.5, B_{O}=25, \theta=5^{\circ}$ 16
4 Static Surface $\frac{R_{2}}{R_{1}}=1.5, B_{O}=50, \theta=5^{\circ}$ 17
5 Static Surface $\frac{R_{2}}{R_{1}}=1.5, B_{O}=75, \theta=5^{\circ}$ 18
$6 \quad$ Static Surface $\frac{R_{2}}{R_{1}}=1.5, B_{0}=100, \theta=5^{\circ}$. 19
7 Static Surface $\frac{R_{2}}{R_{1}}=1.5, B_{0}=250, \theta=5^{\circ}$. 20
8 Static Surface $\frac{R_{2}}{R_{1}}=1.5, B_{0}=500, \theta=5^{\circ}$. 21

LIST OF TABLES

Table

 Title Page1 Coordinates of Surfaces $\frac{R_{2}}{R_{1}}=1.5, B_{o}=10, \theta=5^{\circ} \ldots 22$
2 Coordinates of Surfaces $\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=1.5, \mathrm{~B}_{\mathrm{o}}=25, \theta=5^{\circ} \ldots \ldots 23$
3 Coordinates of Surfaces $\frac{R_{2}}{R_{1}}=1.5, B_{o}=50, \theta=5^{\circ} \ldots 24$
4 Coordinates of Surfaces $\frac{R_{2}}{R_{1}}=1.5, B_{o}=75, \theta=5^{\circ} \ldots 25$
Coordinates of Surfaces $\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=1.5, \mathrm{~B}_{\mathrm{O}}=100, \theta=5^{\circ} \ldots . . .26$
6 Coordinates of Surfaces $\frac{R_{2}}{R_{1}}=1.5, B_{o}=250, \theta=5^{\circ} \ldots 27$
7 Coordinates of Surfaces $\frac{R_{2}}{R_{1}}=1.5, B_{0}=500, \theta=5^{\circ} \ldots 28$

LIST OF SYMBOLS

Symbols

Definition

A constant, $\mathrm{lbm} / \mathrm{ft}-\mathrm{sec}^{2}$
Bond number ($\left.=\rho g R_{1}^{2} / T\right)$
Effective acceleration of gravity, $\mathrm{ft} / \mathrm{sec}^{2}$
Dimensionless modified y-coordinate of surface (\hbar / R_{1})
y-coordinate of surface of fluid, ft
Modified y-coordinate of surface, ft
Pressure of vapor and gas above liquid, $\mathrm{lbm} / \mathrm{ft}-\mathrm{sec}^{2}$

Static pressure in liquid, $\mathrm{lbm} / \mathrm{ft}-\mathrm{sec}^{2}$
Radius of inside cylinder, ft
Radius of outside cylinder, ft
Principal radii of curvature of surface at a point, ft

Radial distance (from axis of symmetry), ft
Nondimensional arc length in H , t -plane
Surface tension of liquid, $1 \mathrm{bm} / \mathrm{sec}^{2}$
Nondimensional radial distance ($\mathrm{r} / \mathrm{R}_{1}$)
Distance perpendicular to r -direction, ft
Inclination of surface in H, t-plane, radians
Density of fluid (liquid), $\mathrm{lbm} / \mathrm{ft}^{3}$
Contact angle

LIST OF SY MBOLS (Continued)

Subscripts

Definition

a
b
i
m
r

S
t

W

Of central region
Of annular region
Value at end of ith step of integration process
Mean value
Derivative with respect to r
Value at surface
Derivative with respect to t
Value at inner wall of annulus

INTRODUCTION

For the smooth, reliable, and consistent operation of a vehicle propulsion system, only liquid must be delivered to the engine. Therefore, the liquid phase must always be located at the outlet of the propellant tank. Clodfelter ${ }^{1}$, recognizing that the pressure drop across a liquidgas interface could be utilized for mass transfer, suggested that tanks consisting of several properly sized, interconnected, concentric cylinders be used to position liquid propellants at low gravitational accelerations. In an extension of the concepts advanced by Clodfelter, the present report utilizes the mathematical techniques developed by Bashforth and Adams ${ }^{2}$ and Geiger ${ }^{3,4}$ to predict the static shapes of axially symmetric liquid surfaces within concentric cylinder tankage systems at desired Bond numbers and contact angles. The method is used to predict the surface shapes for a radius ratio (outer to inner cylinder) of 1.5 , for a contact angle of 5 degrees, and for Bond numbers from 10 to 500 (using the inner radius as the characteristic length).

An alternate analysis of the annular region has been given by Seebold et al ${ }^{5}$, who numerically integrated one of the differential equations describing the surface using the Adams predictor-corrector method. Their results are plotted, but the accuracy with which the graphs can be read is not great. The present method can be expected to yield considerably more accurate results.

STATEMENT OF THE PROBLEM

The problem can be defined in consecutive steps as follows: Consider a section of an interconnected concentric cylinder tankage system filled with fluid (Figure 1). Select a y-axis along the axis of symmetry of the system and an r-axis perpendicular to the y-axis in the radial direction. Let the effective acceleration of gravity, g, act in the minus y-direction. Let the mean height of the fluid in the annular region be $h_{m b}$ and the mean height of the fluid in the central region be $h_{m a}$. Let the height of the liquid at an arbitrary r be $h(r)$. Assume that liquid density, surface tension, contact angle, and pressure above the liquid are constant throughout the system. Find the h-and rcoordinates of the liquid-vapor interface in each region of the system.

Figure 1. Fluid in Concentric Cylinder Tankage System with Axis Parallel to the Effective Acceleration of Gravity

METHOD OF ANALYSIS

FUNDAMENTALS OF CAPILLARY HYDROSTATICS

The basic equation of capillarity, sometimes referred to as the Young and Laplace equation, is

$$
\begin{equation*}
P_{0}-P_{s}=T\left(\frac{1}{R_{c 1}}+\frac{1}{R_{c 2}}\right) \tag{1}
\end{equation*}
$$

where
$P_{0}-P_{s}-$ the difference in pressure across a liquid-gas interface at any point of the interface
$R_{c_{1}}, R_{c_{2}}$ - the principal radii of curvature of the interface at that point
$P_{0} \quad$ - the pressure in the gas at the interface
$P_{s} \quad$ - the pressure in the liquid at the interface
T - the surface tension of the liquid

Whenever a liquid-gas interface is axisymmetric, $R_{c 1}$ and $R_{c 2}$ can be expressed explicitly. Thus,

$$
\begin{align*}
P_{0}-P_{S} & =T\left[\frac{h_{r r}}{\left(1+{h_{r}^{2}}^{2}\right)^{3 / 2}}+\frac{h_{r}}{r\left(1+h_{r}^{2}\right)^{1 / 2}}\right] \\
& =\frac{T}{r} \frac{d}{d r}\left[\frac{r h_{r}}{\left(1+h_{r}^{2}\right)^{1 / 2}}\right] \tag{2}
\end{align*}
$$

where $h(r)$ is the ordinate of the liquid-gas interface and the subscript r indicates the derivative with respect to r.

In a previous report, Geiger ${ }^{4}$ used the procedure which follows to relate the hydrostatic pressure, $p=p(r, y)$, at any point in a fluid
to the pressures, P_{0} and P_{s}, on either side of the liquid-gas interface for a single cylinder of radius R_{1}. Here the procedure is used for the case of two concentric cylinders of radius R_{1} and R_{2}.

First the pressure, p, at any point, (r, y), is expressed as follows (see Figure 1):

$$
\begin{equation*}
p+\rho g y=P_{0}+A \tag{3}
\end{equation*}
$$

where A is a constant to be determined. Thus,

$$
\begin{equation*}
P_{s}+\rho g h=P_{0}+A \tag{4}
\end{equation*}
$$

P_{S} is now eliminated from Equations 2 and 4, yielding

$$
\begin{equation*}
\frac{T}{r} \frac{d}{d r}\left[\frac{r h_{r}}{\left(1+h_{r}^{2}\right)^{1 / 2}}\right]=\rho g h-A \tag{5}
\end{equation*}
$$

Equation 5 is integrated after multiplying it by r to give

$$
\begin{equation*}
T\left[\frac{r h_{r}}{\left(1+h_{r}^{2}\right)^{1 / 2}}\right]_{R_{1}}^{R_{2}}=\rho g \int_{R_{1}}^{R_{2}} h_{r} d r-A \int_{R_{1}}^{R_{2}} r d r \tag{6}
\end{equation*}
$$

where R_{1} and R_{2} are any two radii.
For the annular region between concentric cylinders of radii R_{1} and R_{2} (see Figure 1),

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{r}}=-\cot \theta \text { at } \mathrm{R}_{1} \\
& \mathrm{~h}_{\mathrm{r}}=+\cot \theta \text { at } \mathrm{R}_{2}
\end{aligned}
$$

where θ is the contact angle between the liquid-gas interface and the tank wall (measured in the fluid). Therefore,

$$
\begin{equation*}
T\left[\frac{r h_{r}}{\left(1+h_{r}^{2}\right)^{1 / 2}}\right]_{R_{1}}^{R_{2}}=T\left(R_{2}+R_{2}\right) \cos \theta \tag{7}
\end{equation*}
$$

Now

$$
\int_{R_{1}}^{R_{2}} r d r=\frac{R_{2}^{2}-R_{1}^{2}}{2}
$$

Let V be the volume of fluid above the r -axis. Then

$$
\begin{equation*}
V=2 \pi \int_{R_{1}}^{R_{2}} h r d r=\pi\left(R_{2}^{2}-R_{1}^{2}\right) h_{m b} \tag{9}
\end{equation*}
$$

where h_{mb} is the average height of the interface above the r -axis. The above results are then substituted into Equation 6, giving

$$
\begin{equation*}
T\left(R_{2}+R_{1}\right) \cos \theta=\rho g\left(\frac{R_{2}^{2}-R_{1}^{2}}{2}\right) h_{m b}-A\left(\frac{R_{2}^{2}-R_{1}^{2}}{2}\right) \tag{10}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
A=\rho g h_{m b}-\frac{2 T \cos \theta}{\left(R_{2}-R_{1}\right)} \tag{11}
\end{equation*}
$$

The pressure at any point in the fluid is now written

$$
\begin{equation*}
P+\rho g y=P_{0}+\rho g h_{m b}-\frac{2 T \cos \theta}{R_{2}-R_{1}} \tag{12}
\end{equation*}
$$

which defines the pressure at all points in the annular region. For a single cylindrical tank, the expression for the pressure at any point can be written ${ }^{4}$

$$
\begin{equation*}
P+\rho g y=P_{0}+\rho g h_{m a}-\frac{2 T \cos \theta}{R_{1}} \tag{13}
\end{equation*}
$$

where R_{1} is the radius of the cylinder. This completes the procedure.
Equations 12 and 13 therefore define respectively the pressure in the annular and central regions of any concentric cylinder system. At the same y, p is the same and

$$
\begin{equation*}
h_{\mathrm{mb}}-h_{\mathrm{ma}}=\frac{2 T \cos \theta}{\rho g}\left(\frac{1}{R_{2}-R_{1}}-\frac{1}{R_{1}}\right) \tag{14}
\end{equation*}
$$

when

$$
\begin{aligned}
& \mathrm{R}_{2}=2 \mathrm{R}_{1}, \quad \mathrm{~h}_{\mathrm{mb}}-\mathrm{h}_{\mathrm{ma}}=0 \\
& \mathrm{R}_{2}>2 \mathrm{R}_{1}, \quad \mathrm{~h}_{\mathrm{mb}}-\mathrm{h}_{\mathrm{ma}}<0 \\
& \mathrm{R}_{2}<2 \mathrm{R}_{1}, \quad \mathrm{~h}_{\mathrm{mb}}-\mathrm{h}_{\mathrm{ma}}>0
\end{aligned}
$$

Thus the relative importance of the radii in a concentric cylinder tankage system in positioning the fluid in one region with respect to its position in the other becomes apparent.

NONDIMENSIONAL FORMS OF THE GENERAL DIFFERENTIAL EQUATION FOR AXISYMMETRIC SURFACES IN ANNULAR REGIONS

The general differential equation of capillary hydrostatics for axisymmetric surfaces can be obtained from Equations 5 and 11. Thus

$$
\begin{equation*}
\frac{T}{r} \frac{d}{d r}\left[\frac{r h_{r}}{\left(1+h_{r}^{2}\right)^{1 / 2}}\right]=\rho g h-\rho g h_{m b}+\frac{2 T \cos \theta}{R_{2}-R_{1}} \tag{15}
\end{equation*}
$$

Letting

$$
\hbar=h-h_{m b}+\frac{2 T \cos \theta}{\rho g\left(R_{2}-R_{1}\right)}
$$

one obtains

$$
\begin{equation*}
\frac{T}{r} \frac{d}{d r}\left[\frac{r \hbar_{r}}{\left(1+h_{r}^{2}\right)^{1 / 2}}\right]=\rho g \hbar . \tag{16}
\end{equation*}
$$

The \hbar and r coordinates are made nondimensional here by dividing by the radius of the inside cylinder, R_{1}. Actually, this amounts to taking the quantity R_{1} as the unit of length. For the sake of simplicity, the following transformations have been made:

$$
\frac{\mathrm{r}}{\mathrm{R}_{1}}=\mathrm{t}, \quad \frac{\hbar}{\mathrm{R}_{1}}=\mathrm{H}, \quad \mathrm{~B}_{\mathrm{o}}=\frac{\rho \mathrm{g} \mathrm{R}_{1}^{2}}{\mathrm{~T}}
$$

where the Bond number, B_{0}, is the ratio of the body forces to capillary forces in the prevailing force field. The dimensionless differential equation of the equilibrium surface profile can now be written

$$
\begin{equation*}
\frac{1}{t} \frac{t}{d t}\left[\frac{t H_{t}}{\left(1+H_{t}^{2}\right)^{1 / 2}}\right]=B_{o} H \tag{17}
\end{equation*}
$$

For the special case of zero Bond number, the reader is referred to a report by Clodfelter ${ }^{1}$ in which numerical solutions for the shape of the liquid-vapor interface in the annular region between concentric cylinders are given.

The nonlinearity of Equation 17 renders general closed-form solution impossible. However, various schemes have been devised by Geiger ${ }^{3}$. Seebold et al^{5}, and Bashforth and Adams ${ }^{2}$ to integrate this equation or an equivalent equation numerically. The technique which Geiger proposed will be used in this report. This involves further transformations.

Let

$$
H_{t}=\tan \alpha
$$

where α is the angle between the H-to-t (or the h-to-r) curve and the t (or r) axis. Equation 17 then can be written

$$
\frac{1}{\mathrm{t}} \frac{\mathrm{~d}}{\mathrm{dt}}(\mathrm{t} \sin \alpha)=\mathrm{B}_{\mathrm{o}}\left(\mathrm{H}_{\mathrm{w}}+\int_{1}^{\mathrm{t}} \tan \alpha \mathrm{dt}\right)
$$

or

$$
\begin{equation*}
\frac{\sin \alpha}{\mathrm{t}}+\cos \alpha \frac{\mathrm{d} \alpha}{\mathrm{dt}}=\mathrm{B}_{\mathrm{o}}\left(\mathrm{H}_{\mathrm{w}}+\int_{1}^{\mathrm{t}} \tan \alpha \mathrm{dt}\right) \tag{18}
\end{equation*}
$$

where H_{w} is the undetermined value of H at the wall at which $t=1$ or $r=R_{1}$. The boundary conditions are

$$
\begin{array}{ll}
\text { at } t=1: & \alpha=-\left(\frac{\pi}{2}-\theta\right) \\
\text { at } t=\frac{R_{2}}{R_{1}}: & \alpha=\frac{\pi}{2}-\theta
\end{array}
$$

for any contact angle. Although Equation 18 can be integrated numerically, it is difficult to use for low contact angles (where α is large). This difficulty can be avoided by changing the independent variable from t to s, the arc length in the H-to-t plane. This technique was first used by Bashforth and Adams ${ }^{2}$ although they used a surface curvature as characteristic length (i.e., in place of R_{1}). Thus,

$$
\begin{aligned}
\frac{\mathrm{dt}}{\mathrm{ds}} & =\cos \alpha \\
\int_{1}^{\mathrm{t}} \mathrm{dt} & =\int_{0}^{\mathrm{s}} \cos \alpha \mathrm{ds}
\end{aligned}
$$

where $s=0$ at $t=1$, and

$$
\mathrm{t}=1+\int_{0}^{\mathrm{s}} \cos \alpha \mathrm{ds}
$$

Also,

$$
\cos \alpha \frac{\mathrm{d} \alpha}{\mathrm{dt}}=\cos \alpha \frac{\mathrm{d} \alpha}{\mathrm{ds}} \frac{\mathrm{ds}}{\mathrm{dt}}=\frac{\mathrm{d} \alpha}{\mathrm{ds}}
$$

Now, Equation 18 becomes

$$
\begin{equation*}
\frac{\sin \alpha}{1+\int_{0}^{\mathbf{s}} \cos \alpha \mathrm{ds}}+\frac{\mathrm{d} \alpha}{\mathrm{ds}}=\mathrm{B}_{\mathrm{o}}\left(\mathrm{H}_{\mathrm{w}}+\int_{0}^{\mathrm{s}} \sin \alpha \mathrm{ds}\right) \tag{19}
\end{equation*}
$$

where $\frac{\mathrm{d} \alpha}{\mathrm{ds}}$ is the curvature of the surface in the H-to-t plane.

NUMERICAL INTEGRATION OF THE DIFFERENTIAL EQUATION

Equation 19 is to be integrated numerically to obtain the shape of the interface in the annular region between concentric cylinders. A subinterval of s is chosen of length $\Delta s=\frac{l}{n}$, where n is a large number; e.g., 10,000. Starting at $s=0$, a forward difference scheme is used to calculate the values of α, t, and ($h-h_{m a}$)/ R_{1} at the end of each successive subinterval.

Since $\left.\frac{\mathrm{d} \alpha}{\mathrm{ds}}\right|_{\mathrm{s}=0}$ and H_{w} are unknown (they are interrelated through Equation 20), an iterative procedure must be employed to determine that value of $\left.\frac{\mathrm{d} \alpha}{\mathrm{ds}}\right|_{s=0}$ which satisfies the boundary conditions.
A minimum possible value of $\left.\frac{\mathrm{d} \alpha}{\mathrm{ds}}\right|_{\mathrm{s}=0}$ is easily determined. From
Equation 19 it follows that

$$
\begin{align*}
\left.\frac{d \alpha}{d s}\right|_{s=0} & =B_{0} H_{w}-\left.\sin \alpha\right|_{s}=0 \\
& =B_{0} H_{w}-\sin \left[\theta-\frac{\pi}{2}\right] \\
& =B_{o} H_{w}+\cos \theta \\
& =B_{0} \frac{h_{w}-h_{m b}}{R_{1}}+\frac{2 R_{1} \cos \theta}{R_{2}-R_{1}}+\cos \theta \\
& =B_{0} \frac{h_{w}-h_{m b}}{R_{1}}+\frac{R_{1}+R_{2}}{R_{2}-R_{1}} \cos \theta \tag{20}
\end{align*}
$$

Since $h_{w}-h_{m b}$ is positive for acute values of θ and is negative for obtuse values of θ, it is clear that

$$
\left|\frac{d \alpha}{d s}\right| s=0\left|>\left|\frac{R_{1}+R_{2}}{R_{2}-R_{1}} \cos \theta\right|\right.
$$

or that the latter is the minimum sought. Unfortunately, no convenient maximum value for $\left.\left|\frac{\mathrm{d} \alpha}{\mathrm{ds}}\right|_{\mathrm{s}}=0 \right\rvert\,$ has been found.

As an initial or trial value of $\left.\frac{d \alpha}{d s}\right|_{s=0}$, an arbitrary value is selected somewhat larger in magnitude than the minimum possible value. The corresponding value of H_{w} is found from Equation 20. Then values of α, H, t, and $\frac{d \alpha}{d s}$ at the end of each subinterval, Δs, are calculated. In making these calculations, the following approximations are made:

$$
\begin{gather*}
\alpha_{i+1}=\alpha_{i}+\left.\frac{\mathrm{d} \alpha}{\mathrm{ds}}\right|_{i} \Delta \mathrm{~s} \\
\mathrm{H}_{\mathrm{i}+1}=\mathrm{H}_{\mathrm{i}}+\left(\frac{\sin \alpha_{i}+\sin \alpha_{i}+1}{2}\right) \Delta \mathrm{s} \\
\mathrm{t}_{\mathrm{i}+1}=\mathrm{t}_{\mathrm{i}}+\left(\frac{\cos \alpha_{i}+\cos \alpha_{i}+1}{2}\right) \Delta \mathrm{s} ; \tag{21}
\end{gather*}
$$

and $\left.\frac{d \alpha}{d s}\right|_{i+1} \quad$ is calculated from

$$
\begin{equation*}
\left.\frac{\mathrm{d} \alpha}{\mathrm{ds}}\right|_{i+1}=\mathrm{B}_{\mathrm{O}} \mathrm{H}_{i+1}-\frac{\sin \alpha_{i+1}}{t_{i+1}} \tag{22}
\end{equation*}
$$

When $t=1+\int_{0}^{s} \cos \alpha d s$ becomes equal to $\frac{R_{2}}{R_{1}}, \alpha(s)$ must equal $\frac{\pi}{2}-\theta$ or be very close to it. If it is not, a new value of $\left.\frac{d \alpha}{d s}\right|_{s=0}$ must be selected and the procedure repeated. In the iterative technique used to obtain $\left.\frac{\mathrm{d} \alpha}{\mathrm{ds}}\right|_{\mathrm{s}}=0$ for acute contact angles, it should be noted that:

1. If $1+\int_{0}^{s} \cos \alpha d s<\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$ for all $\mathrm{s},\left.\frac{\mathrm{d} \alpha}{\mathrm{ds}}\right|_{\mathrm{s}=0}$ is too large.
2. If at $1+\int_{0}^{s} \cos \alpha \mathrm{ds}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}, \frac{\pi}{2}-\alpha(\mathrm{s})<\theta,\left.\frac{\mathrm{d} \alpha}{\mathrm{ds}}\right|_{\mathrm{s}}=0$ is too large.
3. If at $1+\int_{0}^{\mathrm{s}} \cos \alpha \mathrm{ds}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}, \frac{\pi}{2}-\alpha(\mathrm{s})>\theta,\left.\frac{\mathrm{d} \alpha}{\mathrm{ds}}\right|_{\mathrm{s}=}=0$ is too small. Similar conditions can be written for obtuse contact angles.

Once $\left.\frac{\mathrm{d} \alpha}{\mathrm{ds}}\right|_{\mathrm{s}=0}$ is known, the surface coordinates $\frac{\mathrm{h}-\mathrm{h}_{\mathrm{ma}}}{\mathrm{R}_{1}}$ and $t\left(\frac{r}{R_{1}}\right)$ are also known. In fact,

$$
\begin{align*}
t=1 & +\int_{0}^{s} \cos \alpha d s \\
\frac{h-h_{m a}}{R_{1}}= & \frac{h-h_{m b}}{R_{1}}+\frac{h_{m b}-h_{m a}}{R_{1}} \\
= & \frac{1}{B_{o}}\left(\left.\frac{d \alpha}{d s}\right|_{s=0} ^{-\cos \theta)-\frac{2}{B_{o}} \frac{R_{1}}{R_{2}-R_{1}} \cos \theta}\right. \\
& +\int_{0}^{s} \sin \alpha d s+\frac{2}{B_{o}} \cos \theta\left(\frac{R_{1}}{R_{2}-R_{1}}-1\right) \\
& =\frac{1}{B_{0}}\left(\left.\frac{d \alpha}{d s}\right|_{s=0}-3 \cos \theta\right)+\int_{0}^{s} \sin \alpha d s \tag{23}
\end{align*}
$$

A listing of the FORTRAN IV computer program which was used to obtain surface profiles (values of $\frac{h-h_{m a}}{R_{1}}$ and the corresponding values of $t=\frac{r}{R_{1}}$) for both the central and annular regions of concentric cylinder tankage systems is given in the Appendix.

RESULTS OF CALCULATIONS

Computer calculations were made for $\frac{R_{2}}{R_{1}}=1.5$, for seven Bond numbers between 10 and 500, and for a contact angle of 5 degrees. For these calculations, an arbitrary value of Δs, the increment of arc, was selected for the central region and the value of Δs for the annular region was chosen such that the error in the contact angle was less than 0.0005 radians or 0.0286 degrees.

The results of the calculations are plotted in Figures 2 through 8. Selected results are given in Tables 1 through 7. In the tables the last point is that point for the minimum ordinate in the annular region for which the results were printed by the computer. Results were printed for every 50th calculated point in this region. The results show the expected trends.

Seebold et al ${ }^{5}$ numerically integrated one of the differential equations describing the surface in the annular region using the Adams predictor-corrector method. They used the larger radius as characteristic length (inner radius is used in this report), and their maximum Bond number was 30 (the corresponding Bond number of this report would be 13.3). They plotted height at the outer wall, maximum depression, and height at the inner wall against radius ratio for various Bond numbers for contact angles of 0,5 , and 15 degrees.

When the results of the present study are compared with those just discussed (and this can only be done for the lowest Bond number of this report, 10 , and for the one radius ratio), a difference in $\frac{h-h_{m b}}{R_{2}}$ appears which is of the order of magnitude of ± 0.01; and this number is too large to be explained on the basis of errors in interpolation and in curve reading, estimated as ± 0.004. Thus the agreement between the two sets of results cannot be said to be good.

To what this is attributable is not known. It is believed, however, that the present results should be correct to within about 0.0001 in $\left(\mathrm{h}-\mathrm{h}_{\mathrm{ma}}\right) / \mathrm{R}_{1}$ or to within 0.00007 in $\left(\mathrm{h}-\mathrm{h}_{\mathrm{mb}}\right) / \mathrm{R}_{2}$.

$\stackrel{r}{R_{1}}$
Figure 2. Static Surfaces $\frac{R_{2}}{R_{1}}=1.5, B_{0}=10, \theta=5^{\circ}$

$\frac{r}{R_{1}}$
Figure 4. Static Surfaces $\frac{R_{2}}{R_{1}}=1.5, B_{0}=50, \theta=5^{\circ}$

$\frac{r}{R_{1}}$
Figure 5. Static Surfaces $\frac{R_{2}}{R_{1}}=1.5, \quad B_{0}=75, \quad \theta=5^{\circ}$

$\frac{r_{1}}{R_{2}}$
Figure 7. Static Surfaces $\frac{R_{2}}{R_{1}}=1.5, B_{0}=250, \quad \theta=5^{\circ}$

Figure 8. Static Surfaces $\frac{R_{2}}{R_{1}}=1.5, B_{0}=500, \theta=5^{\circ}$

TABLE 1

COORDINATES OF SURFACES

$$
\begin{array}{cc}
\frac{R_{2}}{R_{1}}=1.5 & B_{0}=10
\end{array} \theta=5^{\circ}
$$

TABLE 2

COORDINATES OF SURFACES

$$
\begin{gathered}
\frac{R_{2}}{R_{1}}=1.5 \quad B_{0}=25
\end{gathered} \theta=5^{\circ}
$$

Central Region		Annular Region	
	$h-h_{m a}$		$h-h_{\text {ma }}$
t	R1	t	R1
0.00000	-0.07220	1.00000	0.19996
0.12500	-0.07145	1.01345	0.15235
0.24997	-0.06897	1.04195	0.11150
0.37487	-0.06401	1.08053	0.07990
0.49954	-0.05505	1.12523	0.05769
0.62351	-0.03925	1.17332	0.04426
0.74534	-0.01168	1.22298	0.03885
0.86066	0.03590	1.27289	0.04094
0.95657	0.11483	1.32195	0.05032
1.00000	0.21716	1.36900	0.06708
		1.41254	0.09152
		1.45051	0.12391
$\underline{h_{m b}-h_{m a}}$		1.48007	0.16407
R_{1}		1.49755	0.21072
		1.50001	0.22753
		1.23547	0.03868

TABLE 3

$$
\begin{gathered}
\frac{R_{2}}{R_{1}}=1.5 \quad B_{0}=50 \quad \theta=5^{\circ} \\
\Delta S=1.25 \times 10^{-4} \text { (annular region) }
\end{gathered}
$$

Central Region	
t	$\frac{h-h_{m a}}{R_{1}}$
0.00000	-0.0390
0.12500	-0.0389
0.25000	-0.0383
0.37499	-0.03698
0.49995	-0.0339
0.62476	-0.0272
0.74880	-0.0122
0.86894	0.0213
0.96986	0.0929
1.00000	0.1639
$h_{m b}-h_{m a}$	
R_{1}	0.03985

Annular Region	
$\mathrm{h}-\mathrm{h}_{\mathrm{ma}}$	
t	$\frac{\mathrm{R}_{1}}{1.002}$
1.00000	0.14712
1.01575	0.10025
1.04849	0.06278
1.09065	0.03614
1.13753	0.01897
1.18658	0.00949
1.23645	0.00644
1.28635	0.00924
1.33554	0.01797
1.38307	0.03333
1.42727	0.05653
1.46519	0.08890
1.49186	0.13091
1.50000	0.16404
1.23645	0.00644

TABLE 4
COORDINATES OF SURFACES

$$
\begin{array}{cc}
\frac{R_{2}}{R_{1}}=1.5 \quad B_{0}=75 & \theta=5^{\circ} \\
\Delta S=2.5 \times 10^{-4} \text { (annular region) }
\end{array}
$$

Central Region	
$\frac{t}{h-h_{m a}}$	
0.00000	-0.02642
0.12500	-0.02638
0.25000	-0.02620
0.37500	-0.02572
0.49999	-0.02443
0.62494	-0.02098
0.74955	-0.01160
0.87168	0.01395
0.97564	0.08028
1.00002	0.13795
$h_{\text {mb }}-h_{\text {ma }}$	
R_{1}	0.02657

Annular Region	
$\mathrm{h}-h_{\mathrm{ma}}$	
t	$\frac{R_{1}}{t_{1}}$
1.00000	0.12440
1.01746	0.07841
1.05312	0.04374
1.09744	0.02087
1.14545	0.00711
1.19492	0.00005
1.24487	-0.00177
1.29476	0.00111
1.34411	0.00901
1.39203	0.02310
1.43671	0.04534
1.47431	0.07801
1.49747	0.12186
1.50002	0.13663
1.24487	-0.00177

TABLE 5

COORDINATES OF SURFACES

$\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=1.5$		$B_{0}=100$	$=5^{\circ}$
$\Delta S=2.50 \times 10^{-4}$ (annular region)			
Central	$\begin{aligned} & \text { Region } \\ & h-h_{\text {ma }} \end{aligned}$		$\begin{aligned} & \text { Region } \\ & h-h_{m a} \\ & \hline \end{aligned}$
t	R 1	t	R1
0.00000	-0.01989	1.00000	0.11056
0.12500	-0.01987	1.01892	0.06530
0.25000	-0.01981	1.05677	0.03306
0.37500	-0.01961	1.10251	0.01315
0.49999	-0.01899	1.15118	0.00188
0.62498	-0.01702	1.20086	-0.00355
0.74980	-0.01073	1.25083	-0.00467
0.87295	0.00956	1.30075	-0.00193
0.97903	0.07186	1.35021	0.00518
1.00002	0.12159	1.39845	0.01818
		1.44348	0.03966
$h_{m b}-h_{m a}$	$=0.01992$	1.48059	0.07279
R_{1}		1.49983	0.11828
		1.50000	0.12002
		1.23834	-0.00475

TABLE 6
COORDINATES OF SURFACES

$$
\begin{array}{cc}
\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=1.5 \quad \mathrm{~B}_{0}=250 & \theta=5^{\circ} \\
\Delta \mathrm{s}=1.0 \times 10^{-4} \text { (annular region) } &
\end{array}
$$

Central Region	
$\frac{\mathrm{h}-\mathrm{h}_{\mathrm{ma}}}{\mathrm{t}}$	$\frac{\mathrm{R}_{1}}{-0.00797}$
0.00000	-0.00797
0.10000	-0.00797
0.20000	-0.00797
0.30000	-0.00796
0.40000	-0.00794
0.49999	-0.00783
0.59999	0.00734
0.69998	0.00501
0.79995	0.07995
0.89933	
0.98693	$h_{m b}-h_{m a}$
1.00000	0.00797
R_{1}	

Annular Region	
t	$\frac{\mathrm{h}-\mathrm{h}_{\mathrm{ma}}}{\mathrm{R}_{1}}$
1.00000	0.07520
1.01730	0.04010
1.05027	0.01788
1.08829	0.00569
1.12776	-0.00069
1.16762	-0.00391
1.20759	-0.00538
1.24758	-0.00575
1.28757	-0.00521
1.32753	-0.00356
1.36738	-0.00016
1.40684	0.00629
1.44496	0.01820
1.47867	0.03937
1.49908	0.07305
1.50001	0.07918
1.24258	-0.00576

TABLE 7
COORDINATES OF SURFACES

$$
\begin{gathered}
\frac{R_{2}}{R_{1}}=1.5 \quad B_{0}=500 \quad \theta=5^{\circ} \\
\Delta s=1.0 \times 10^{-4} \text { (annular region) }
\end{gathered}
$$

$\begin{aligned} & \text { Central Region } \\ & \qquad h-h_{\text {ma }} \end{aligned}$		Annular Region$h-h_{\text {ma }}$	
t	RI	t	R1
0.00000	-0.00398	1.00000	0.05526
0.10000	-0.00398	1.02102	0.02279
0.20000	-0.00398	1.05752	0.00697
0.30000	-0.00398	1.09694	0.00043
0.40000	-0.00398	1.13684	-0.00220
0.49999	-0.00398	1.17682	-0.00324
0.59999	-0.00398	1.21682	-0.00362
0.69998	-0.00392	1.25681	-0.00367
0.79998	-0.00345	1.29681	-0.00346
0.89985	0.00075	1.33680	-0.00281
0.99082	0.03591	1.37676	-0.00120
1.00001	0.05772	1.41656	0.00269
		1.45538	0.01201
$\frac{h_{m b}-h_{m a}}{R_{l}}=0.00398$		1.49870	0.05040
		1.50001	0.05727
		1.24181	-0.00368

1. Clodfelter, R. G., "Fluid Mechanics and Tankage Design for Low Gravity Environments', Air Force Aero-Propulsion Laboratory, Wright-Patterson Air Force Base, ASD-TDR-63-506, 1963
2. Bashforth, F. and Adams, J. C., An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid, Cambridge, England (at the University Press), 1883, Authorized reprint by University Microfilms, Inc., Ann Arbor, Michigan
3. Geiger, F. W., 'Hydrostatics of a Fluid in a Cylindrical Tank at Low Bond Numbers", Brown Engineering Company, Inc., Technical Note R-207, July 1966
4. Geiger, F. W., "Axially Symmetric Static Surfaces for Bond Numbers 10-1000 and for Contact Angles of Zero and Five Degrees'", Brown Engineering Company, Inc., Technical Note R-207A, October 1966
5. Seebold, J. G. et al, "Capillary Hydrostatics in Annular Tanks", Journal of Spacecraft and Rockets, Vol 4, No. 1, January 1967, pp. 101-105.

APPENDIX

FORTRAN IV COMPUTER PROGRAM FOR INTERFACE CONFIGURATIONS IN CONCENTRIC CYLINDER TANKAGE SYSTEMS

Cross-Reference Between Symbols
 (Input and Output)
 Main Program

Algebraic	FORTRAN
Symbol	Symbol

α
$\alpha_{i-1}+\frac{\mathrm{d} \alpha}{\mathrm{ds}}{ }_{\mathrm{i}-1} \frac{\Delta \mathrm{~s}}{2} \quad$ ALPME
$1+\int_{0}^{s} \cos \alpha d s$
\int_{0}^{s}
B_{0}
$\frac{\mathrm{d} \alpha}{\mathrm{ds}}$
$\frac{\mathrm{d} \alpha}{\mathrm{ds}} \mathrm{s}=0$
Δs
$\frac{h_{m b}-h_{m a}}{R_{l}}$
$h_{m a}$
H_{w}
R_{1}
ANTCOS

ANTSIN

BO
$\Delta \mathrm{s}$

HM
HR 1
RI
$\mathrm{t}=\frac{\mathrm{r}}{\mathrm{R}_{1}}$
$\mathrm{H}-\mathrm{H}_{\mathrm{w}}$

Bond number

DADS Local curvature of surface
DADSO $\quad \frac{\mathrm{d} \alpha}{\mathrm{ds}}$ at inner wall
DS Increment of arc

DIFF Nondimensional difference between mean heights

Mean height in annular region
Value of H at inner wall
Inner radius

	Algebraic Symbol	FORTRAN Symbol	Description
R_{2}		R2	Outer radius
$\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$		OLIM	Ratio of outer to inner radius
π		PI	3.14159
θ		THET	Contact angle in degrees
θ		THETA	Contact angle in radians
θ		XXX	Contact angle in radians (for subroutine)

FORTRAN IV LISTING OF MAIN PROGRAM

```
    DIMENSSIOIV ALPHA(2),X(2000),Y(2000),K(2000),BCDX(12),BCDY(12)
    OINEIOSLON ARKAY(%)
    DIFELSSION XX(2000),YY(2000)
    EOUIVALEIVCE (P1,PI)
    UATA BCD/GA /
    CMLL CAMRAV(935)
    00 100u JJ=1.12
    BCOX(JJ) = BCO
1000 BCLY(JU) = BCD
    CALL BC (BCUA(6), GH R/R1)
    CALL BC (BCDY(G), 6H (H-HM)
    CALL BC (3COY(7), 6H)/R1)
    PI=3.1415927
    READ(5,5) 7HET P RL, R2
    OLIM=R2/RL
    XXX = THET
    XXX = xXX * PI/180.
    THETA=「HET /57.29578
    READ(5.90) KK
    90 FOLMAT(I4)
        DO 488 N = 10kK
    READ(5,5) GO
    IF(BC - 100.) 401,401.402
401 US =.00025
    GO TO 403
```

```
    402 DS =.00010
    403 COn\INUE
        OX=100.
        OY = (K2+R1)/(R2-R1)*COS(THETA)
        CALL FRED (BO, XXX, US, XX, YY, JJ)
    105 HN=0.0
        KOUN:=0
        5 FOKMAT(3F10.0)
L** BO=FHHO*G*R1**2/T
        WFITE(O.1011) BO. US
1011 FORMAT(1H ,10X,3HBO=,1X,E15.8. E15.8)
    DX=DX+1.
    DY = DY - 1.
    DALSO = OX
    DALFUS = DADSO
    IF(DS.LT. .0U1)LL=50
    IF(DS.LT..0001)LL=ivo
    IF(NS.LT..0000L)LL=1000
    10 HR1 = (DALPOS - SIN(P1/2--THETA))/30
        KOUNT=KOUNT + 1
    IF(KOUNT - 100) 50,30,30
    50 CONTINUE
        ANTCOS=1.0
    ANTSIN=0.0
    X(1)=1.0
```

```
    Y(i)=0.0
    K(1) = 1
    IK =2
    II=1
    I=1
    ALFHA(1)=-(F1/2.-THETA)
    WFITE(0.0) DALPUS, HRI
    - FOMMAT(1HO, DHUALPUS, 2X, F10.5. 3HHK1, <X. F10.5/)
20 COnTliuE
    I=c
    ALHHA}(I)= ALPHA(I-1) + OALPDS*DS
    ALPME = ALPHA(I-2) + DALPDS*US/2.
    AMTSIN = AMTSIN + DS/6.*(SIN(ALPHA(I))+4.*SIN(ALPME) +SIN(ALPHA(I-1
    1)))
    SAvE= ANTCOS
    ANTCUS = ANTCOS + OS/6.*(COS(ALPHHA(I))+40*COS(ALPME)+COS(ALPHA(I-1
    i))
    IF(I1 - II/LL*LL) 90.90.91
90IK=IK + 1
91 ColvtINuE
X(IK) = ANTCOS
Y(IK) = ANTSIN
K(IK)=II
II=II + I
IF(SAVE-ANTCUS) 51.51.22
```


FORTRAN IV LISTING OF MAIN PRUGRAM

```
51 contlaue.
    OALPUS = BO*HRI + BO*ANTSIN - SIN(ALPHA(L))/ANTCOS
    IF(OALPDS) 23,25,25
29 Contlinue
    ALPHA(1)= ALPHA(2)
    IF(ANTCOS - OLIM) 20.52.52
5a CONTINUE
    WRITE(0.0) ANTCOS
    O FOHMAT(1riU.GNANTCOS. F10.5)
        WRITE(6,7) ALPHA(1)
    7 FORNAT(1HO.6HALPHA , F1O.5)
    IF(AGS(ALPHA(I)+THETA-PI/2.) -.0005) 30.53.53
53 IF(ALPHA(I) - (P1/E.-THETA)) 23,30,22
22 DX = DX - (DX - DY)/2.
    IF(ABS(DADSO-DX)-.00000001) 101.101.103
101 US = DS/2.
    GO TO 105
103 DALSO = DX
    DALPUS = DX
    WRITE(6,75) ALPHA(2),ALPHA(1),X(IK),SAVE,Y(IK)
75 FORMAT(2X.10HALPHA(2) =,F1U.5.2X.10HALHHA(1) =0F10.5.2X.7HT(II)=,
    1F10.5.EX.9HT(II-1)=,F10.5.2X.7HH(II) =,F1(.5/)
    GO TU }1
23DX = DX + (DX - DY)/2.
    DY = DY + 2./3.*(DX-DY)
```

```
    IF(ABS(DADSO-DX)-.00000001) 102.102.104
102 DS = DS/2.
    GO TO 10S
104 DACSO = UX
    DALPUS = OX
    WR1TE(0.75) ALPHA(E),ALPHA(1),X(IK)PSAVE,Y(IK)
    GO TO 10
    30 contanue
    DIFF=2.100 * (R1/(R2-R1) - 1.) * COS(THETA)
    DO 606 I=1,IK
    Y(1)= HM/K1 + 1./BO*(UAUSO-CQS(THETA)-2.*R1*COS(THE
    ITA)/(R己-к1)) + Y(I) + UIFF
6 6 6 ~ C O N T I N U E ~
    ALFHA(2) = ALPItA(2) * 57.29578
    WRITL(0,66) DO. ALPHA(2), THET, DS
    GO FOMMAT(1A.10HBOND NO. =,F1U.0.3X.7HALPHA =,F10.5.3X.7HTHETA =oF10.
    25.3X.9HARC LG. =,F10.6/)
    weATE(0067)
    67 FOKMAT( 5X.7HPT. NO..7X.4HR/R1,7X.9H(H-HM)/R1/)
    WR\TE(0,E8) (K(J), X(J), Y(J), J= I,IK)
66 FOHMAT(I10. 4X. F1U.5. 4X. F10.5)
    YMIN = 1000.
    YMAX = -1000.
    DO 4000 II = 1,IK
    IF(Y(II).LT.YMIN) YMIN=Y(II)
```

```
    IF(Y(IL).GI.YMAX) YMAX=Y(II)
4000 CONTANUE
    YB=-.5
    YT = 1.0
    XL= xX(1)
    XHi}= OLI
    CALL SCUUTV
    WRITE(16,1600)
    180.
    1THET ,
    10LIM,
    IY(1) .
    MY(IK) ,
    LYMIN ,
    1US.
    1DIFF
1600 FORMAT(1H1.5X.12HBONO NO. = % F10.5.//.5X.31HACTUAL CONTACT ANGLE
    1.TMETA = FF10.5.//.5X.9HRZ/R1 = F10.5.//.5X.21HLEFT WALL HEIGHT
    2 = "F10.5.//.5X.21HRIGHT WALL HEIGHT = PF10.5. //
    35\times.12H MINIMUM = F10.5.//5\times.6HOS = F10.5
    4.//5X.S5HMEAN HEIGHT(AINULAR REG.) - MEAN HEIGHT(CENTRAL REG.) =.
    SF1u.b)
    CALL QUIK3L (-1,XL,XR,YB,YT,42,BCCXPBCOY,JN:XX,YY)
    CALL QUIK3L( 0.1.0.OLIM,YB,YT,42,BCDXPBCUY,IK,X,Y)
488 CONTINUE
```


FORTRAN IV LISTING OF MAIN PROGRAM

STOP
ENO

CROSS-REFERENCE BETWEEN SYMBOLS (INPUT AND OUTPUT)
 SUBROUTINE FRED

Algebraic Symbol	$\begin{gathered} \text { FORTRAN } \\ \text { Symbol } \\ \hline \end{gathered}$	Description
a	A	Radius of tank
α	ALPHA	Local angle of inclination of surface
B_{0}	BO	Bond number
$\mathrm{B}_{0} \mathrm{H}_{\mathrm{O}}$	BOHO	
$\sin \alpha_{1}$	SALP1	
$\sin \alpha_{2}$	SALP2	
$\cos \alpha_{1}$	CALPl	
$\cos \alpha_{2}$	CALP2	
$\left.\frac{\mathrm{d} \alpha}{\mathrm{~d} \mathbf{s}}\right\|_{\mathrm{s}}=0$	DADSO	Curvature on axis of symmetry
$\frac{\mathrm{d} \alpha}{\mathrm{ds}}$	DALPDS	Curvature at general point
H_{o}	HO	Value of H on axis of symmetry
h_{m}	HM	Mean height of surface
$\frac{\Delta s}{2}$	HALFDS	Half of increment of arc length
$\Delta_{\text {s }}$	DS	Increment of arc length
	KOUNT	Number of iterations
	LL	Integer determining what data is printed (every 10 or every 10^{2})
θ	THETA	Contact angle in radians

Algebraic Symbol	FORTRAN Symbol	Description
$\theta-\frac{\pi}{2}$	THET	
$\int_{0}^{s} \cos \alpha d s$	TCOS	$\mathrm{t}\left(=\frac{\mathrm{r}}{\mathrm{a}}\right)$
$\int_{0}^{s} \sin \alpha d s$	TSIN	$\mathrm{H}-\mathrm{H}_{0}$
	XALP	α at wall
	YI	Storage location for surface heights
	XI	Storage location for radial distances

FORTRAN IV PROGRAM LISTING OF SUBROUTINE FRED

```
    SUQROUTINE FREU(GO, THETA, DS. X, Y, II)
C*
C*
C*
C**** CALCULATE THE APPROXIMATIONS OF AXIALLY SYMMETRIC
C*** STATIC SURFACES AT ZERO CONTACT ANGLE
C*
C*
C*
    DIMENSION ALPHA(2 )
    OIMENSION X(2000):Y(2000),Z(10),W(10)
C
c CALL CAMRAV(935)
c
    HM=0.0
    A=1.0
    PI=3.1415927
    4 continue
    & Continue
256 FORMAT(I2.2F10.0)
    IF(L.EQ.1)60 TO }999
    IF(DS.GT.0.00005)LL=100
    IF(DS.GT.0.0005)LL=10
    9 FORMATIIH, 2X,7H RHO= FF10.5.1.3X,7H G= pF10.5.%
    13X.7H T=,F10.5./.3X.7H }\quadA=,F10.5./13X.7H\quadHM=,F10.5%%
```

 23x,7HTHETA= FF10.5./.
 43\timesP7H US=,F10.5)
 Kount = v
 DX=.5
 5 FORMAT(5F1U.u)
1U11 FORMAT(1H •10X,3HBO=.1X.E16.8)
WRITE(6.1011)BO
WFITE(0,1012)THETA
1012 FORMAT(1H .10X.6HTHETA=,1X,E16.8.4H DEG)
WRITL(0.1013)DS
1013 FOKMAT(1+i ,10X,3HOS=,1X,E1b.8)
HALFLS=DS/2.
THET=THETAMFI/2.
DALPUS =.5
DALSU=UALPUS
10 HO=2.*DALPUS /B0
BOHO=130*140
KOUNT = KOUNT+1
IF (KOUNT.GT.100) GO TO 30
rcus=0.0
TSIN=0.0
x(1) =0.0
Y(1)=0.0
DALP=0.0
IK=1

```
    \(I I=1\)
    SALPA=0.0
    CALP \(1=1.0\)
    6 FORMAT (1HO,GRIDALPOS,2X,F10.5,I4)
    ALPHA(1) \(=0.0\)
20 Continue
    ALFHA(2) \(=A L P H A(1)+\) ILALPUS \(* D S\)
    SALPC=SIN(ALPHA(2))
    TSIN \(=T S I N+(S A L P 2+S A L P I) * H A L F O S\)
    save \(=\) tcus
    CALPZ \(=\operatorname{COS}(A L P H A(2))\)
    TCUS \(=T C O S+(C A L P 2+C A L P 1) *\) HALFLS
    SALP1=SALPE
    \(C A L P L=C A L P 2\)
    IJ=MUD(IK,LL)
    IF(IJ.NE.0)60 TO 80
    \(I I=1 I+1\)
    \(X(I I)=1 \cos\)
    \(Y(11)=T S I N\)
\(80 \mathrm{I} K=I K+1\)
    DALPDS \(=\) BOHO \(B O\) OFTSII-SALP2/TCOS
    \(A L P H A(1)=A L P H A(2)\)
    IF (SAVE.GT.TCOS.ANL.TCOST. U00001.LT.1.)GO TO 22
    IF(TCOS+.000 U01.LT.1.0)50 TO 20
8 FORMAT(1H0, GHINTCOS.F10.3)
XGLF=ALPHA(2)*57.29570
WF. TTE(ODOGU) AALF \({ }^{2}\)
7 Fowimal(1ho: bhalfma ofio.b)
IF(ADS(SAVLI-ALPHA(C)).LT..000001) GU T0 30
SAVEL =ALPMA(2)
IF (AUS(ALPrAA(2) +THET).LI..0002)OU 1030
IF (ALPhA(2).LT.(U.B-THET ))GOTO23
2acnilanue
\(\mathrm{Dx}=\mathrm{L} \mathrm{A} / \mathrm{s}\).
DRESUELADSU-LX
Qalfus=DadSo
GO TO 10
\(230 x=0 x /<\).
DAUSU W VAUSURLX
DALFUS=DADSU
GO TU ..... 10
3u Contanue
\(I I=I I+I\)
\(X(X I)=T \cos\)
\(Y(I I)=15 I N\)
00660 ..... \(1=1 \cdot 1 I\)
\(Y(1)=\mathrm{HM} / \mathrm{A}+\mathrm{Z} \cdot 10 \mathrm{~B}\) *(0AUSO-COS(THETA))+Y(I)
666 CONTINUE
65 FORMAT (1H0.//.5x.5E \(15.8 . / .5 \times .5 \mathrm{EL} 15.0\) )
660 FORMAT(1HO.10X.OHALHHA \(=1 \times, E 16.8 .4\) ri DEG
WRITE(0.06)(x(J),J=1,II)WRITE (O, 05 ) (Y(J): \(J=1, I I)\)
GO FOKMAT (1m0.1UF10.5)
67 FOKMAT(1H1,5x.3HIK=.18)
RFTUKN
9999 CONT INUE
STOF
ENU

SUBROUTINE BC (A,B)
\(A=B\)
RETUKN
ENu

\title{
FOKTRAN IV PROGRAM LISTING OF SUBROUTINE RPRIN
}
SUEROUTINE RPRINT (BCD, X)WRITE (0.1401) BCO. \(X\)

RETURA
Eilu
\begin{tabular}{ll}
5.0 & 2. \\
7 & \\
20. \\
50. \\
70. \\
100. \\
250. \\
500.
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multirow[t]{2}{*}{1. ORIGINATING ACTIVITY (Corporate author)
Research Laboratories, Brown Engineering Company, Inc., Huntsville, Alabama} & \begin{tabular}{l} 
2e. REPORT BECURITY CLASHIFICATION \\
NONE \\
\hline
\end{tabular} \\
\hline & 2b. anoup None \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
3. REPORT TITLE \\
Liquid-Gas Interface Configurations in Interconnected Concentric Cylinder Tankage Systems
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{4. DESCRIPTIVE NOTES (Typo of report and incluaive dateo)
Technical Note R-244} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
5. AUTHOR(S) (Last name. ifrei neme. inillal) \\
Geiger, Dr. Frederick W. and May, James C.
\end{tabular}} \\
\hline \begin{tabular}{|l|l|}
\hline 6. REPORT DATE \\
September 1967 & 7a. TOTAL NO. OF PAGES \\
\hline
\end{tabular} & 7b. No. OF REFA \\
\hline \begin{tabular}{l}
8. CONTRACT OR GRANT NO. \\
NAS8-20073 \\
b. PROJECTNO. \\
Technical Note R-
\end{tabular} & \[
\begin{aligned}
& 18 \pi(s) \\
& 244
\end{aligned}
\] \\
\hline  & other numbere that may bo eacloned \\
\hline \multicolumn{2}{|l|}{10. AVAILABILITY/Limitation notices} \\
\hline \multicolumn{2}{|l|}{None} \\
\hline \begin{tabular}{l}
11. SUPPL EMENTARY NOTES \\
None \\
12. SPONSORING MILITARY ACT \\
Propulsion and Ve George C. Marsha Huntsville. Alabam
\end{tabular} & hicle Engineering Lab. 11 Space Flight Center \\
\hline \begin{tabular}{l}
13. AbSTRACT \\
A computer program has been developed to graphically and analytically define the static shape of the liquid-gas interface in the annular region between any two concentric cylinders in an axial force field for any Bond number and contact angle. The program also includes as a subroutine a previously reported method of calculating the static shape of the liquid-vapor interface within a single cylindri cal tank. Static fluid surface coordinates for both the annular and central regions are given for Bond numbers (with inner cylinder radius as characteristic length) ranging from 10 to 500 , for a contact angle of 5 degrees, and for a radius ratio of 1.5 .
\end{tabular} & \begin{tabular}{l}
14. ker monds \\
hydrostatics \\
fluid mechanics \\
free surface \\
low g \\
Bond number \\
surface tension
\end{tabular} \\
\hline
\end{tabular}```

