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ABSTRACT

Augmented complex Fourler polynomials, in which constant and linear terms

are added to a Fourler series for a complex variate, are developed to represent
a hodograph. They are applied to hodographs representing the projection, on a
horizontal plane, of the wind at equal intervals in the vertical, and hence to
describe the vertical profile of horizontal wind velocity. Reasons for selecting
this function, and methods for its computation and application, are given in

Part I, with polynominal coefficients for mean monthly winds over Cape Kennedy,
Florida, and for four consecutive soundings over Montgomery, Alabama. In
Part II, seasonal differences, differences between the velocity and momentum
representations of the wind, length and specific interval in a sounding, and the
effect of averaging and normalizing on a profile are discussed, with 11 tables
based on two 34~km soundings and two sequences of 6-hourly soundings from
Montgomery, Alabama. In Part I1l,serially complete 6-hourly wind observations
from the surface to 27-km over Cape Kennedy during 1962 are used to compute
5200 serial correlations of wind integrated over 7-km layers. Criteria for wind
profile predicting are formulated from these correlations, for four representations
of the wind, four atmospheric zones and their sum, thirteen calendar intervals,
and four time lags. In Part IV, properties of the augmented complex Fourier
polynomials are summarized, and detailed procedures are developed for predicting
a future vector wind profile from present and past profiles, for application to
winds at Cape Kennedy, Florida.

NOTE: The work documented in this report was prepared under the
sponsorship of the Aerospace Environment Division, Aero-Astrodynamics
Laboratory, Marshall Space Flight Center, NASA, Huntsville, Alsbama.
Mr. Orvel E. Smith, Chief, Terrestrial Environment Branch, was the
contract technical monitor.

The four parts of this Report previously received very
limited distribution as Lockheed Reports 17683 (March
1964), 18734 (May 1965), 18989 (August 1965), and
19128 (October 1965). Part I was issued as NASA CR-
61195 in February 1968, and is now rescinded by this
combined version. The four parts have been edited
slightly by the senior author to form four chapters of
a single Report; with consecutive paging and unified
references. Distribution is provided in the interest

of information exchange; responsibility for the contents
resides with the original authors.
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MATHEMATICAL WIND PROFILES
PARTI
SUMMARY

Augmented Fourier polynomials, in which constant and linear terms
have been added to a complex Fourier series, appear to offer a means
for representing the vertical profile of the horizontal wind velocity.
Reasons for selecting this function, and methods of its computation
and application, are given. Polynomial coefficients are presented for
mean monthly winds over Cape Kennedy, Florida, and for four consecutive
soundings over Montgomery, Alabama,

1. 1Introduction (I)

Mathematical representation of the vertical profile of wind is
desirable for many purposes, and essential for the rigorous comparison
of profiles and the prediction of profiles by statistical regression
techniques. Because wind is a two-dimensional vector (neglecting the
vertical component, which is at least an order of magnitude smaller
than the horizontal components), the vertical profile of the instan-
taneous wind is a curve in three-dimensional space. The graphical and
analytical difficulties in describing such a curve have thus far pre-
vented any systematic deseription of complete wind profiles. In this
report, various possible methods of representation are explored, and
one of them, using complex Fourier series, is developed in detail.
Application of the method, and its evaluation, will be the subjects of
future reports.

Notation has been chosen carefully for consistency and clarity.
The wind speed toward the east is denoted by x, that toward the north
by y. Their vector resultant is called z, and the modulus or absolute
value of the resultant is z:

|z|2 = 22 = x2 + y2, (1.1)



The direction of this resultant, in degrees clockwise from north,
is

@ = arc sin

N X

= arc cos %-. (1.2)

This double definition eliminates the ambiguity of sign inherent in a
definition based on arc tan y/x. The meteorological convention for
angles, used also in-surveying and navigation, differs from the mathe-
matical practice, in which angles are measured counterclockwise from
the x-axis (east in meteorological practice). For the mathematical
development, therefore, the direction is designated as

- p = arc sin §-= arc cos'§, (1.3)

oY
]
(ST

and hence measured counterclockwise from east.

Alternative to the Cartesian (x, y), polar (z, @), and vector (z)
representations of a wind vector is its representation as a complex
variable, {:

t=z=x+iy=ze?, (1.4)

To reduce the number of subscripts, a second wind vector will be
denoted as (u, v), (w, ¥), w, or = w exp (it). Height upward from
the ground will be designated as h, atmospheric density as q, true
correlation as p and its sample estimate as r, true variance as o2 and
its sample estimate as s2, and gravity as g.

The complex conjugate of a complex number will be denoted by an
asterisk:

g* =x - iy = ze-i¢. (1.5)

~ * ig -ig
R(t) = £ ; C.z& ; < = 2z co8 ¢ = X,
(1.6)
~ - p* ig = -ig
c@) = 4 > C .z 5 £ =z sin g = y,

Other notation will be identified when used.
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2. Representations

Because a wind profile is a curve in three-dimensional space, its
graphical representation on two-dimensional paper requires elimination
of one dimension. Various graphical methods have been used for many
years, each with some advantages and many disadvantages. The four basic
methods, illustrated in Figure 1 with mean January winds for Cape
Kennedy, Florida, are

a. each component, separately, vs height

b. speed and direction, separately, wvs height
c. velocity hodograph

d. position hodograph.

The first two methods require mental addition of values from the
two lines to give a picture of the actual wind vector and its changes.
This difficulty is eliminated in the hodographs, in which the vertical
dimension (or time) is indicated only by successive points along the
path.

A hodograph is a curve connecting the end-points of successive
vectors drawn from a common origin. The vectors may be successive in
height, to represent the wind profile, or in time, to show the time
variation of wind. The former application is used here, but the mathe-
matical formulation is equally applicable to the time series case. The
vectors may represent the actual wind velocity at each level, or they
may represent the integral of -the velocity, which gives the position of
an object, such as a balloon, rising with constant speed through the wind
field. The usual plotting-board representation of a pilot balloon tra-
jectory is a position hodograph of the vertical wind profile, while the
similarity trajectory of a constant-level balloon is a position hodo-
graph of the time variation of wind. A position hodograph can be pre-
pared from wind velocity information by plotting the successive vectors
additively rather than from a common origin.

Hodographs appear more suitable for mathematical representation
of the vertical wind profile than separate representations by components,
or by speed and direction. But choice between the two hodographs, veloc-
ity and position, is more difficult. Fortunately, the computational
procedures of fitting a function to observations are the same for either
type of hodograph, since the purpose is merely to obtain an analytic
function describing the curve.
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When positions actually are measured (as in most meteorological
observations using balloons, rising or falling), the position hodograph
should be fitted. One differentiation of the fitted function then will
give the velocity hodograph function, and a second differentiation the
wind shear, which is of considerable iwportance. Actually, most routine
wind information is obtained from finite differences of balloon positions,
and shzars from finite differences of these computed velocities, i.e., by
smoothed second differences of the basic observations.

When wind velocities are obtained directly, as by sound ranging, the
velocity hodograph should be fitted. One differentiation then will yield
shears, while integration gives the positions to which they apply. Such
positional information is needed for studies of the trajectories of falling
or suspended objects, such as radioactive fallout or toxic pollutants.

Any mathematical function used to approximate a hodograph must be
continuous and have continuous first and second derivatives. Since the
hodograph is a vector-valued function z(h) of a scalar argument, h, in
practice, representation by components is more convenient. Compactness
of representation and relative ease of manipulation make the complex
form,

x(h) + iy(h), z(h) exp [ig(h)],

suited for an attempt at developing an expression for z(h).

3. Functions

Selection of a mathematical function to approximate the vertical
wind profile, as represented by its position or velocity hodograph, must
be based largely on convenience and general suitability, including pos-
session of continuous derivatives. Meteorological theory and hydrodynamic
theory are as yet inadequate to provide a definitive functional form,
except for certain height ranges.

In the lowermost ten meters of the atmosphere, air flow increases
with height without material change in direction (Hess, 1959) [1]. When
the temperature lapse rate is neutral, the logarithmic wind profile
appears to fit available observations:

z = —T-I/;g'— In -1:-1— (3.1)
)



where 7 is the eddy stress, q the density, k von Karman's constant, and
ho a "roughness parameter.'" When the lapse rate is not neutral, an
exponential profile seems more appropriate:

z = z;(h/h )" (3.2)

where z; is the wind speed at height h; (usually a few centimeters) and
m_is a positive exponent less than unity. A generalization, for variable
lapse rates, is offered by the Deacon profile:

1-8
.= | Nt/d | [(h -
5@ ) -

For several hundred meters above this boundary layer, wind increases
in speed with height, and turns clockwise, in the northern hemisphere,
generally according to the Ekman spiral. At about the l10-meter level,
the wind is directed toward the left of the geostrophic wind, which blows
along the isobars at 1 km or higher. The wind vector at height h in
this spiral or friction layer is

z(h) = zg [ei¢ - e"ah ei(ah-¢)}. 3.4)

Here z, is the magnitude of the geostrophic wind, blowing at an angle ¢
(in mathematical notation) to the positive x-axis, and a is a function
of density, Coriolis force, and eddy viscosity. Actual winds do follow
this Ekman spiral when the upper wind flow is straight or only slightly
curved, and the lowermost kilometer of air has no appreciable horizontal
gradients of temperature.

Above the spiral layer, wind speed generally increases with height
up to the level of maximum wind, which usually occurs slightly below
the tropopause at 10 to 12 km. Often the increase in speed with height
is at about the same rate as the decrease of density with height, so
that between 5 and 10 km "Egnell's law" states that the momentum is con-
stant, A justification of this empirical rule,. deduced from cloud and
pilot balloon observations 70 years ago by Clayton in Massachusetts and
Egnell in France, was offered by Humphreys (1929, pp. 135-136) [2].




Above the maximum wind layer, wind speed decreases with height to
a minimum, on the average, at 22 to 25 lm, but no law or rule describing
this decrease, or the accompanying change in direction, has yet appeared.
Thus, while some theoretical formulations are available for wind behavior
in the boundary and spiral layers, a few guidelines can be found for the
form of a function to dcscribe the wind profile above 1 km.

4, Series

In the absence of any theory on which to base a functional fowr for
wind profile description, some empirical function must be chosen. TLogical
candidates for this.purpose are polynomials. The wind vector z = (x, y)
could be represented as a function of height, h, by two separate poly-
nomials, one for each component:

m n
7 k k
Xpom /. a, h, Yh,n = bk h (4.1)
=0 k=0

o

where m and n are the numbers of terms required for satisfactory fit or
agreement of the polynomial with the observations. Agreement would be
determined by the variance (mean squared difference) of the observations
about the polynomials. The absolute or unconditional variances are,
respectively, s§ and s§, and the conditional variances Si,m and s§ n:

s2 = vt Z (xp - x)% = y~1 Z x2 - (03
(4.2)

si,m = -1 Z (=, - xh’m)z =yt Z x2 + vt th,m(x.n’m - 2x),

and similarly for sZ and sZ p. (All summations are for h =
N, and v= N + I.X The extent to which the variance of x

by use of an m-term polynomial is

O’ 1’ 2’ e ooy
is reduced

$2 82w v ) R G - ) - 2, (.3)



Of greater interest than this absolute reduction in variance is the
relative reduction, or squared correlation (sometimes called the coef-
ficient of determination):

- 82 thm%m-zw - v®*
X,m _ > bl
.

X,m s
* z xE - v(x)2

Similar expressions yield the absolute and relative reductions in the
variance of y.

. o (4.8)

As more and more polynomial terms are used, i.e., as m and n
increase, the variance reduction increases and the correlations approach
one, attaining this value for m = v = n., But when r2 = ,9, the fit of
the polynomial to the observations is considered adequate for most pur-
poses, although in some cases values as high as .95 are desired,

However, the various terms of the polynomials may not be equally
effective in reducing the variance. A higher power, such as ash*, may
be more effective than a lower one. Hence, the terms should be chosen
not in simple order, but according to the amount of variance reduction
that they provide.

A more efficient polynomial, in the sense of having fewer terms,
would be formed from those terms, regardless of their exponents, pro-
viding the greatest reduction in variance, or highest correlation. The
various terms, aghK, should be arranged according to their contribution
to the variance reduction. Coefficients ordered in this way may be
denoted as a(k)h(k), and the first m.of them will be considered to form
the index set M,

In this notation, the polynomial providing the required (e.g., 90%)
relative reduction in variance is

m
X.h M = Z a(k)h(k) = Z akhk, (4_5)
(k)=1 keM

and similarly for Yhon
b




Such.polynomials would provide suitably efficient procedures for
representing each of the components separately. But they offer no link

between the components; they do not apply to the wind vector itself,
When results obtained by two such polynomials are combined to provide
estimates of the wind vector at each level, excessive interlevel shears
could be indicated. Hence, they do not seem particularly suited for the
mathematical representation of wind vectors.

The same objections apply to the fitting of a complex variable by
a single power series with complex coefficients:

_ k _ . k_ k|, . k
C‘h,M = Z ch = z (a,k + i bk) h™ = L ah”+1 Z b h. (4.4)
keM keM k keM

These objections to expressing the wind components as polynomial
functions of height apply regardless of the method of estimating the
polynomial coefficients., Orthogonal polynomials, while possessing the
great advantage that they need not be recomputed after selection of the
highest-order term contributing significantly to the variance reduction,
are no better in these respects than simple power series.

5. Fourier

Complex trigonometric polynomials (Fourier series) are not subject
to the same drawbacks as univariate polynomials, just discussed. The
estimation of the coefficients of each component (i.e., the real and
imaginary parts) is based.on both components of the observed wind, and
hence such a complex series actually estimates the vector, or entire
complex number, rather than separate components.

Fourier series often are used to represent functions known to be
periodic, but are not restricted to such use. Lighthill (1960) [3]
declares (p.4) that a common application is '"to represent a function
which is not periodic, but instead is defined in the first place dﬁiy
in a restricted interval," covering perhaps 30 km in the vertical.
Wind information usually is available only for a restricted interval.
Description of the time and space variations in such a 30-km profile
may be possible through the fitting of Fourier series or polynomials.

Such polynomials, however, have no linear terms. Since the wind
often increases rather regularly with height, at least over certain
height ranges, a linear term obviously is desirable in any expression
for the vertical wind profile. This can be provided by defining a plane
about which the actual wind observations vary, and then describing such



variations by Fourier polynomials. The required plane is defined by
two intersecting straight lines, in the vertical x, h and y, h planes,
respectively, that represent the individual wind components.

The original observations of the wind at level h,

CL =X + i Yy T %, eXP (ig), (5.1)

may be expressed in terms of the least squares linear trends as

gh c, + dooh + Th, - (5.2)

The departure
'qh=uh+1vh
is given by

w =x -c -a. h, v, =y - cy - booh' (5.3)

The linear coefficients - reasons for the double zero subscripts will be
apparent later - are

o;Z"hh-Z"hZh’ L) LY

| bOO
V) -2 vz(h—ﬁ)z

The constant terms are

a

(5.4)

c_=%-a_h, c. =y -b_h, (5.5)

10




Thus, the variations of the wind vector about the least squares plane
are

My = by - € - d B -d b, (5.6)

where dggo = 2o + 1 bpo is obtained from (5.4).

Fourier polynomials describing Th are

= d, exp (iA jh A= 2x/v. 5.7

T]h,M Z i p ( jh), ( )
jeM

The complex coefficients dj = aj + i bs are estimated (as explained in

Appendix A, and discussed in the next section) from the v values of Mo
obtained from the v observations of {;. Summation is over the set M
of the m terms contributing most to the reduction in variance, as dis-
cussed in the previous section for univariate polynomials.

After the {dj] have been estimated and the set M chosen, the
resulting Fourier polynomial can be augmented by the constant and linear
terms to provide a complete expression for the actual wind profile:

gh,M =t + d & - h) + Z dj exp (iA jh). (5.8)
jeM

Application of this expression for the wind profile to actual wind
observations is discussed in the following sections.

6. Properties

Expansion of (5.7) shows that the estimation of each component
of the wind vector @} y and hence of gh,M’ involves coefficients from
both the real and imaéinary parts of the polynomial:

T}h,M = Z (aj + i bj) (cos A jh + i sin A jh) = Z(aj cos A jh - bj sinA jh)
jeM jeM
+ i j{:(bj cos A jh + aj sin A jh). (6.1)
jeM
11



The least squares estimators of the complex coefficients dJ are,
as shown in Appendix A,

N
. 1 iy s
d. =a, +1ib, =3 2{: Ny, eXP (- 1A jh)

J J J
N
1 . . .. .
=-; }Z (uh + i yh) (cos A jh - 1 sin A jh) (6.2)
h=0
N

1 . . : .1 . . :
=;Z (u.h cos?\Jh+Vh s1n7\Jh)+1;Z(vh cos)\Jh-uh81n7\Jh).

=0 h=0

That these estimators actually minimize the sum of the squared depar-
tures of the observations from the least-squares regression plane is
shown in Appendix A. These squared departures are the sums of the
squared departures of the two components; divided by v, the total
number of observations, they yield the conditional variance about the
polynomial:

< |-
Q
SN

N

*

nat = E: Si,h;M - }; (= “h;M) (g, - ﬂh;M) . (6.3)
h=0 h=0

A major purpose of this study is to determlne the magnitude of
the absolute reduction in variance, ¢ - o2 M and the relative reduc-
tion M (4.4), when a wind profile, from which v observations are
obtalneg at equal height intervals, is approximated by (5.8) for m = 4,
If the representation is adequate, {;.y may be evaluated for any value
of h, not necessarily those equally-spaced values at which {y was
observed. This would provide a continuous representation of a wind
profile originally described for discrete points only.

In addition, the function (5.8) can be differentiated to provide
a continuous representation of the wind shear, ofy.q/Op. Alternatively,
the ¢, may be the balloon positions at successive heights, and dif-
ferentlatlon then will provide wind speeds at any height.

12




Not only do the coefficients {dj}, estimated by (6.2), minimize
S%;M’ but, as discussed in Appendix B, they seem to be approximately
orthogonal, although the precise extent of any slight dependence
between them is still to be determined.

Orthogonality insures that for any set {M} of coefficients,

s = sz |
nM EZ %3’

that is, that the contribution of each term to the total variance

does not depend on what other terms are included in that total, This
desirable property has been assumed in the preliminary applications of
Fourier polynomials to the description of wind profiles.

Orthogonality properties are increased when. the original observa-
tions {;, expressed as departures w, from the least-squares plane, all
have the same variance. Thus, rather than n,; as defined by (5.6), com-
putations of dj by (6.2) should use n/0,.h, Where o2., is the variance

Since ny, is, by (5.6), a 1i Bundiion of Cy, Hhei -

Ty - Nh is, by (5.6), a linear function of (}, 'their variances
are the same. Such variances should be used, when available, to adjust
the values of n;,, as just indicated.

When the original observations {; = x, + i y, are means, as for
a month or season, variances are available for such adjustment. But
when they are single observations,the proper choice of values is not
obvious, In the following sections, examples are given of profiles
computed from mean values adjusted for variance, and of profiles fitted
to individual sets of observations without variance adjustment. The
propriety of this second procedure, although it seems to provide an
adequate fit, requires further investigation.

Another topic for further study is the method of computing the
plane about which the departures T, are taken. The Fourier poly-
nomials may provide an even better approximation to the observations
if this trend plane is constructed through the mean point so that the
first and last observations (lowest and highest wind observations) are
equidistant from it.

13



7. Applications

Augmented Fourier polynomials, as developed in the preceding two
sections, were fitted to two sets of wind data to determine whether the
method showed sufficient promise to warrant further study and develop-
ment, Results of such application, presented in this section, are quite
encouraging.

One set of wind data was composed of monthly mean winds, at l-km
levels, over Cape Kennedy, Florida. They are based on 5 years of observa-
tions (the first 321 days were at nearby Patrick Air Force Base), 1956-
1961. Missing observations had been interpolated before averaging, so
that sample sizes were the same at all levels. These data were furnished
by Mr. Orvel E. Smith of the Aero-Astrodynamics Laboratory, George C.
Marshall Space Flight Center, in advance of publication.

The other set was made up of four consecutive observations, at
6-hour intervals, over Montgomery, Alabama, on 9 January 1956. These
were the first four consecutive soundings, each reaching to at least
25 km, in an extensive compilation of winter and summer soundings fur-
nished by the National Weather Records Center, U. S. Weather Bureau, at
Mr. Smith's request. These soundings also contained data on atmospheric
density, so that momentum density as well as wind speed could be fitted
by augmented Fourier polynomials. (Units of momentum density, the pro-
duct of wind speed and atmospheric density, are dynes per cubic centimeter,)

These two sets of data provided a total of 20 "soundings,' each
sounding being a set of values of {; for successive values of h, Of
these, 12 were monthly means for Cape Kennedy, four were successive wind
observations at Montgomery, and four were the corresponding momentum
density observations. For each such "sounding," the lowermost 2 km were
ignored, because of possible friction layer effects, as discussed in
Section 3, and only the levels from 2 to 25 km, inclusive, were used.

In the notation already developed, hg = 2 km, hy = 3 km, ..., by = 25 km.

Results of the fitting of the augmented Fourier polynomials to these
20 soundings are given in Tables 1 and 2. After the constant and linear
terms, the coefficients are presented in decreasing order of the amount
of variance "explained" by them. That is, the coefficients dj have been
ordered as dg;y, as discussed in Section 4, For example, in the first
line of Table i (for January mean winds over Cape Kennedy), a(y) and
b(,) are, respectively, aos and box, so that j = 23 is used in the trigo-
nometric terms that they multiply.
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Coefficients are given in Tables 1 and 2 for each wind component
separately, as indicated in the formulas at the head of Table 2, which
are based on (5.8) and (6.1). The two formulas may be combined into
one expression, in complex notation. Thus, the mean January wind over
Cape Kennedy may be written as

gfl y = (2.61 +0.126 i) - (0.054 - 0.003 i) h

(0.575 - 0.014 i) cos 23y h/12 - (0.014 + 0.575 i) sin 23x h/12

(0.530 + 0.100 i) cos =n h/12 + (0.100 - 0.530 i) sin x h/12
+ (0.044 + 0.173 i) cos 22x h/12 - (0.173 - 0.44 i) sin 22x h/12

+ (0.043 - 0.140 i) cos 2x h/12 + (0.140 + 0.043 i) sin 2x h/12,

7.1

The superscript "s'" indicates that the values of gﬁ M obtained from
(7.1), and from Table 1 generally, are for "standardized" values. They
must be multiplied by the standard deviations of the wind components for
the appropriate level to give values approximating the observed means.

For example, evaluation of (7.1) for h = 10, i.e., 12 km, gives
2.41 + 0.226 i. When each of these values is multiplied by the standard
deviation of the corresponding wind component at 12 km over Cape Kennedy
in January, 16.04 and 14.24 m/sec, respectively, estimated wind speeds
are obtained which may be compared with the observed means:

Estimated X0 = 38.66 Yi0 = 3.22

Observed 44,04 3.26.

In Figure 2, five hodographs are shown for the mean January winds
over Cape Kennedy. In the upper panel, one hodograph depicts the actual
means, in meters per second, while a second one shows the effect of
dividing the speed at each level by its standard deviation, and expres-
sing the result as a departure from the least-squares plane. The "trend"
hodograph is centered at the origin, and is in units much smaller than
those of the original values.

The lower panel of Figure 2 shows three hodographs, computed by
Fourier polynomials, not augmented, i.e., as variations about the least-
squares plane. The "one-term" hodograph is a circle, representing only
the j = 23 term, without the preceding constant and linear terms or the

15



z san814

717 T 1 1 1 v 1 1 1 T T ' [ 1 [ 1| N A R A
- zI o'l %0 %0 vo T0 00 Rzo- »o- 90~ vo- ol 7 -
o x | N _ vo—
7 T N
\\IEUS n/ .
“dl\l
&
[:)
SYeiaL o4 ..\|||.|.nn/.o\.\a|\llul|\||\\\H - - k 00—
I\‘o.‘\\l\llno\ v ] b —" -3 \
(| oweaLomy (oeerw)_ |
14\Aﬁ II\.\I..WI“nu T [ A
SWH3L WNOS 3
“dl
| Q3AOMIY ONIUL HLM
J3ZITVPNON SONUM WYIN-9 /._ RuZL 3NO \\ TR kAN ] J
N A SHAVH900H ¥FUN04 (3L +0 —
- /n N —
_ _ | | | L~ d V1 | | | | | | |
_____14_____________ﬁ______q____ﬂﬁ_______‘_-___.___ﬂ__
~ 1 ] $0 oo so- -
- toesrw) X « 7]
f— \IIN " lﬂ.
= c\o\\nlnlo 00—
— - - |..\\4J\ " ] O toewvus
— * BAONGY ONYL| A
-1
— 0 NS 0 —
o0 u)
ﬂ > |||Iln““=\\ - -
— * NS ’
J““.. ——T ¢ 1961 -966 ANVOWYT -1
f VA0 4 “TVHIAVNYS 34VYD. -
- ¢ SHAVHOOGOK ONIM N3N
| aesrw) X .
- o» s¢ ot '] oz st o [ 0 _
I T S T I U N N N U N W A U Y 0 Y T A T N U 50 A U N Y I O T O

16




final three terms. The '"two-term" hodograph represents computation of
the j = 23 and j = 1 terms in (7.1), without the constant and linear
terms or the final two terms. The "four-term" hodograph presents
results of using all terms of (7.1) except the constant and linear.

Shown as dots in the lower panel of Figure 2 are the same points,
for each 1-km level, as in the '"trend removed" hodograph of actual winds
in the upper panel. The thin lines from these dots to the "four-term"
curve indicate the extent of the vector difference between the observed
mean winds, at each level, and the values computed from (7.1). The sum
;f the szuares of the lengths of these thin lines is the S%,M of (6.3),

or M = 4,

For the individual soundings over Montgomery, no estimates of wind
variance at each level were readily available, The observed values were
assumed to have the same variance, and no adjustments were made. Thus,
the coefficients in Table 2, when introduced into the appropriate formula,
give estimated winds directly in meters per second.

8. Discussion

Under each pair of coefficients in Tables 1 and 2 are two additional
entries: the value of the index j for the pair, and the value of r2®, the
relative reduction in variance (4.4) attained by using that term, and all
preceding ones, in the augmented Fourier polynomial,.

For the Cape Kennedy mean monthly wind profiles, the comnstant and
linear terms alone reduce the variance by 80 percent in summer, but
hardly at all in November and December. Two additional terms provide
r2 of 85 percent or more in all months, indicating that augmented
Fourier polynomials of as few as four terms (m = 2) may provide descrip-
tions adequate for some purposes. In nine of the months, term 23 pro-
vides the greatest reduction in variance, followed by term 1, while the
same terms appear in reverse order in the other three months.

For all four Montgomery 6-hourly soundings, term 1 contributes
most to the reduction in variance for both wind speed and momentum
density. But whereas term 23 is second most important for wind speed,
terms 2 (once) and 22 (thrice) have this role for momentum density.
Values of r2 for momentum density are consistently higher than for wind
speed alone. Most of this difference arises in the constant and linear
terms, for which r2 is between 75 and 86 percent for momentum density,
but only from 39 to 44 percent for wind speed. This may be a reflection
of "Egnell's law," outlined in Section 3, and requires further study.
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The extent to which these results depend on the particular height
interval chosen also requires additional investigation. The strongest
wind speeds in all the soundings are near the middle of the 2 to 26
km interval studied, which may explain the consistent appearance of
term 1 as contributing significantly to the relative reduction in
variance, Similarly, the importance of term 23 may indicate excessive
level-to-level variability, perhaps actual but also possibly arising from
observational errors- and computational procedures in the compilation of
wind information.

These and other considerations indicate that the most fruitful
application of augmented Fourier polynomials to wind profile description
may be their use to describe the position hodograph, as obtaimed directly
from a balloon or other indicator, and the subsequent differentiation of
the polynomial to provide wind speeds. This may provide considerable
improvement over the present method employing successive finite dif-
ferences, and may give greater detail of the wind profile and of its
derivative, the wind shear.

Other topics for further study are statistical tests for the simi-
larity or differences of two wind profiles, leading to criteria for their
combination, For example, are January and February wind profiles over
Cape Kennedy sufficiently similar that a combined winter profile des-
cribes them adequately? Also requiring study are procedures for pre-
dicting one profile from another, as in the case of the 6-hourly soundings
over Montgomery.

Despite the need for these various extensions of the study, and
further elaboration of the technique, the work reported here shows that
mathematical description of an entire wind profile, either means or
"instantaneous," can be attained with acceptable precision by the use
of augmented Fourier polynomials.
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APPENDIX I-A
ESTIMATION OF COEFFICIENTS

Complex coefficients dj = a; + i by, for j =10, 1, ..., N, are to
be estimated from a set of vy = g + 1 complex numbers T SO as to mini-
mize the sum of the squared differences

N
nse = z SpshM = Z (= Typg Oy = Tpgp)™ (A-1)
h=0 h=0

for each index set M containing 1 s m = y elements, when the estimators
Th.M 3re obtained from
?

TheM Z dj exp (iA jh), A= 2x/v. (A-2)
jeM

The v numbers {m;,] are assumed to represent values or observations
at vy equal intervalsng =0, 1, ..., N. These may be intervals of time
or space; in the specific applications to be made here, they are equal

intervals of height, and the numbers {n,) represent wind vectors at suc-
cessive levels in the atmosphere. These vectors are expressed as depar-
tures from a plane of best fit, in the sense of minimizing variance, to
the basic data; that is, any linear trend with height has been removed.

For each value of h

Si;h,M = (nh - nh;M) (UE - T]ikl;M)

(T‘h 4 in >( Z em 1A Jh> @-3)
=2+ anj SIA jh ) 2ﬁ<“h }M:d; oin jh>

* The asterisk, *, denotes the complex conjugate.
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*
because Ly = lthg = wﬁ, in the notation of Section 1. Since

exp [iA h(j - k)] = 1 when j = k, the second term becomes

2
Z d, eI 3Bl | Z Z 4, a* 1N h(G-K)
J j ok
jeM jeM keM
=Z 4,12+ z Zdj gk ARG (a-4)
jeM j#k

Expression of n, exp (- iA jh) as Ohj + ith permits the final
term in (A-3) to be written as

%* -iN jh _ " -iA jh
Ny Z dj e = L dj T ©
jeM jeM

[

Z (aj -1 bj) (o(hj + iﬁhj). (A-5)
jeM

Since Idj|2 = a%? + b5 and £ exp [iA h(j - k)] = 0, the sum of
squares (A-1) to be minimized becomes

N
32 = 32 =
;M 2 nsh,M
h=0

h=0 jeM
-2 Z Z(aj Oy 5 + bj ahj). (A-6)
h=0 jeM
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The usual minimization procedures give, for each value of j,

asz_M N
L= = 2,4, - 2 a. .
da, h| hj’
J h=0
(A-7)
N
52
—gﬂiﬂ =2yb, -2 z B+~
bJ. ] 3
h=0
Setting these derivatives equal to zero gives
N N
a, =+ Z b, =1 (A-8)
iV L %y iTY Phj-
=0 h=0
Consequently,
N N
_ 1 R _ 1 iy s
dj_v Z(ahj-'-lshj) =3 Znh exp (- iA jh). (A-9)
h=0 =

For computation, the real and imaginary parts are evaluated separately:

N
aj =;1; Z [u~h cos (A jh) -‘i-vh sin (A jh)]1,

h=0

N (A-10)
bj =% Z [vh cos (A jh) - u, sin (A jh)]1.

h=0
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In polar coordinates,

N
a, = L j{: w, cos ( A jh
j v h gh = J ),
h=
(A-11)
N
_1 . X
bj == z w, sin (gh - A jh).
h=0
Use in (A-2) of any set of m of these values for d; = as + i by

will insure that the resulting estimator, nh M, when introduced into
(A-1), will minimize the sum of squares Sn M. Whenm = vy, i,e,, when

the sum (polynomial) has as many terms as the original observatlons,

S2 .M = 0. For smaller sets, i.e., for m < y, the sum of squares Sn M
w111 depend on the exact composition of the set M. Thus, S2, .M can be
computed for each of the v sets M in whichm =1, i,e., for one term
only, and for the v(v + 1)/2 sets of two terms each, and so on, to find
the combination giving an acceptably small S%;M from the smallest set M,

However, when the coefficients {dj] are orthogonal, in the statistical
sense, the contribution of each is independent of that of the others, and

2 = Z s2 ., A-12
;M = nsJ ¢ )
h|

Then, 32;- can be computed for each orthogonal d. and ranked in descend-
ing order to determine the minimum set M for Whlgh s2. M ts acceptably
small, The extent to which the coefficients {d.], estimated by (A-9),
(A-10), or (A-11), satisfy these requirements is examined in Appendix B.
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APPENDIX I-B
ORTHOGONALITY

Two different kinds of orthogonality are involved in the develop-
ment of complex Fourier polynomials for the respresentation of wind
profiles. One kind is that of the series of orthogonal polynomials
used to represent a sounding. In such representation, functional ortho-
gonality requires that

iA jh _iA kh _ Jv, 3
Z e € 0, j

Use of such a system of orthogonal functions permits judgement of
the adequacy of the representation in terms of the sum of the squares of
the coefficients. This sum measures the sum of the squares of the dif-
ferences between the polynomial representation and the function being
fitted, after removal of linear trend. When orthogonal functions are
used, a smaller number of terms can be selected without recomputation
of coefficients.

4
N
~ ~

Another kind of orthogonality appears when a sounding is viewed
as a collection of random variables. Then the coefficients {dj] in the
Fourier representation (5.7) are also random variables, since they are
linear combinations of the original rdndom variables (6.2). Orthogonality
of the system of coefficients {dj} is tantamount to their being uncor-
related. Uncorrelated Gaussian random variables are statistically
independent - a very highly desirable property in computing probability
statements, The basic physical quantities, i.e., balloon displacements
or wind speeds, expressed in cartesian coordinates, are usually assumed
to be approximately Gaussian. Hence the coefficients {d;}, being linear
combinations of them, also should be approximately Gaussian, especially
because of central limit effects,

Orthogonality of the {dj} is almost impossible to establish unless
the {nh} are second-order stationary with a real covariance function.
The need for second-order stationarity, that is, that the covarjance of
(nh»> my) depend only on the difference ]h - z|, appears in the evalua-
tion o% the expression for the variances of the individual d;. When the
expectations of the {qh}, and hence of the {dj}, are zero, tﬂe variance
of each dj is given by

N N
E(dj d';f) = y~2 2 Z exp [iA (£ - )] E(ny nj). (8-1)
h=0 =0

* The asterisk, %, denotes the complex conjugate.
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This involves the covariance of the obgerved values, or their departures
from the plane, which in turn depends on the correlation (r) between the
two components:

E(nh n;) = E[(uhuz + vhvz) + i(uzvh - uhvz)}
| (B-2)

[r(uh,uz) + r(vh,vz)} + i[r(uz,vh) - r(uh,vz)] .

Second-order stationarity requires that these correlations depend,
for each variable u or v, and for any separation h - 4, denoted as T,
only on the separation:

r(uy, uz) = ru(h - 4) = ru('r) =r (-7). (B-3)

Certain properties of the separation 7 are needed:

tT=h - g, ~-N=sts+N,
(B-4)
max (-1, 0) £ £ smin (N - ¢, N).
In this notation, (B-2) becomes
E(ny, ) = [ru('r) + rv('r):] + i[ruv(-r) - rw('r):l= c(n), (B-4)

where C may be called a correlation function; C(0) = 2, because

ry(0) = ry(0) = 1, 1In terms of this function C, the expression (B-1)
for the variance is

+N
E(d; df) = v°2 Z C(1) exp (iA j7) (v - 7)
Y
(8-5)
+N
-t Z @ - /v) cos (M) Ric(n)]
-N
N
— [c(o) + 2 Z (1 - 7/v) cos (Aj©) R C(T)]
1
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because the variance is real-valued. [All summations are over the range
of 7 given by (B-4).] Similarly, the covariance function for the coef-

ficients is
N N
V2 Z z exp [n (k& - jh)]ﬂ(nh )

*y —
E(dj dk) =
h=0 4#=0
(B-6)
N
= y~2 z C(t) exp (-~ iA j1) Z exp (iA £p),
=-N £

p = k'j9

because kg - jh = gp - jt. This must be zero for d; and dy to be ortho-
gonal., To determine whether such is the case, (B-6) must be examined
term by term, invoking the orthogonality properties of trigonometric
series,

Since
m
i 1o
=71 .-r
j=0
1 - [exp (iNp)]"
N T fep (0] ° P70
}2 exp (iA jp) = (B-7)
=0 N+1-=v, p=0.

The last summation in (B-6), over 4, is, by definition (B-4), from
max (-t, 0) to min (N - 1, N), and hence depends on T as well as on
p. It may be denoted as y(t, P):

=0,
0 ‘{0 =4 =5 N;
i _, 1 - exp (-iA p1) T >0,
7(t, P) =ZexP (inp) =¢ 1 exp (ilp) 0=4= N- 1
£
1 - exp (-iA pT) T <0,
1 - exp (iNp) - T= 4= N.
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Thus, y(-7, p) = -y(7, p). In the expression for y(t, p) when 7 >0,
multiplication of numerator and denominator by 1 - exp (-iAp) gives

(1 - ei?\p)il - e'i7\PT)
2 - 2 cos Ap

y(t, p) = T > 0. (B-9)

This is zero when pt is an integral multiple of v and is small for 7
such that pt is close to an integral multiple of v.

Next, the correlation function C(t1) must be examined. It is real
if and only if it is even, i.e., if ryy(-1) = ryy(7). 1In this case,
(B-6) becomes

N N
saad =2 { ) o e e + ) oo M Hiyenm}
=1

=1

]

N
%{ Z o) Ly(r,p)/v] L™ - e'”wi]}
=1

(B-10)

N
%{- Z C(v) [y(r,p)/v] [21 sin J7\T]}
=1

0(%).

The summand of equation (B-10) will not be large since lC(T)lé c(0) = 2
and tends to zero as T becomes large. The multiplier sin iAt will have
a dampening effect for the smaller values of .

Thus, E(djdﬁ) apparently is always small, although that it is
identically zero for all 1, as is required for complete orthogonality,
has not been proved. Actually, E(d dﬁ) 2>0as N+ 1= 5w, i,e., as
more and more levels are used and tée discrete model approaches a con-
tinuous one. Thus, the question of orthogonality may be analogous to the
general problem of the extent to which large sample theory can be used
for small samples, or to which properties of a continuous function can be
applied to a discrete one. For the present purpose, the assumption of
orthogonality seems reasonable.
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MATHEMATICAL WIND PROFILES
PART I

SUMMARY

The application and properties of the augmented Fourier polynomial
are examined in detail. Seasonal differences, differences between the
velocity and momentum representations of the wind, length and specific
interval in a sounding, and the effect of averaging and normalizing on a
profile are treated in the discussion, Numerous tables are presented for
comparative purposes. The basic data examined were two 34-kilometer
soundings and two sequences of 6-hour soundings from Montgomery, Alabama,

1.  INTRODUCTION (i)

Mathematical representation of the vertical profile of wind by aug-
mented Fourier polynomials was proposed in Mathematical Wind Profiles ,
hereafter referred to as MWP-1. In that report, the basic problems of wind
representation were discussed, and the augmented Fourier polynomials
were developed. In such an exploratory study, many questions were posed
which could not be answered immediately. Some of these questions are
discussed further in the present (second) report, which also explores some
problems mentioned in MWP-I as requiring additional investigation.

1.1  Model

For completeness, the basic properties of augmented Fourier poly-
nomials are summarized here from MWP-1. The eastward (x) and north-
ward (y) components of the horizontal wind at a given level are combined
into a complex variable z = x +1iy. A new complex variable w=u +iv,
obtained from z by the removal of linear trends, utilizes the residuals u
and v, which have zero means. The Fourier representation of this new
variable w is

29



n
w (h) = Zdj exp (1\jh), h=0,1, ..., n, (1.1)
j=0

where X = 2n/vand v =n + 1, Each complex Fourier coefficient d. is com-
posed of a real and imaginary part: di = a; +ib;. The d; are estilated

J J J J
by the method of least squares as

n

1
ay =g Z [uh cos (Ajh) +vy gin ()\jh)]
h=0
(1.2)
n
1
bj =3 E [vhcos(XJh)-uhsin(th)] .
h=0
Forj =0, ao =b, = 0 because u=v =0, The variance of w is glven by

n n n

2 _1 2 2| _ 2

8, =3 E up” + E Vi —z A (1.3)
h=0 h=0 j=0

where Ajz = a jz + bjz. The variance of the original variable z is computed
as

s =8" + 8 (1.4)

n

2 _ -1 =2 2_—12 _o\2

where 8" =y E (x, - x)° and s,” =V (y,-vy) .
h=0
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The percent reduction in variance by removal of trend lines in x and y,
referred to as percent variance explained by the linear term, is

2 2, 2
100 8, % = 100 (1- s "/8.%). (1.5)

The percent of the total variance explained by the jth harmonic is

2 _ 2, 2

The partitioning of the total variance of w (1.3) into v parts in terms of
the complex Fourier coefficients is a consequence of the Parseval identity.
Orthogonality of the d;'s implies independence and allows for meaningful
partitioning of the totdl variance into components of variance for each
harmonic. The d;'s are shown to be almost orthogonal in Appendix B of
MWP-1. The percent variance explained by each harmonic is a measure
of that harmonic's importance in the mathematical description of the pro-
file,

1,2 Harmonics

The method was applied in MWP-I to twelve monthly averages from
Cape Kennedy and to four soundings at consecutive six-hour intervals in
January, 1956 from a two-year (1956-1957), winter (Dec., Jan., Feb.)
and summer (June, July, Aug.) set of data from Montgomery, Alabama.
In" the Montgomery data, both velocity and momentum representations were
used. All cases were analyzed in terms of 24-point profiles of 2 through 25
km. The total variance in each case was composed of contributions from
the linear term and 23 harmonics. In these 20 cases analyzed in MWP-I,
only the linear term plus four selected harmonics were needed to explain
85 to 95 percent of the total variance.

The original intention was to base the final regression equations for
prediction on a reduced number of selected harmonics, However, subse-
quent computer runs have shown that only about two seconds of IBM 7094
time are required per profile for computation of all quantities needed in
complex Fourier analysis. This includes the trend lines in x and y and
their removal, all complex Fourier coefficients, and the percent variance
explained by the linear term and each harmonic. Use of all harmonics for
regression thus seems more advantageous because of the perfect fit there-
by given, with negligible increase in computation time.

However, is some cases, the use of all coefficients, linear trend and com-
plex Fourler, may not be possible. The number of profiles available for
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estimating regression coefficients may be less than the total number of
coefficients; computer capacity may be inadequate to solve sets of linear
equations of large order. Linear regression for the complete representation
requires estimation of regression coefficients which number twice the
number of data points plus three. A minimum of N observations is required
to estimate N regression coefficients, but for good regression estimates

the number of observation should be much larger than the number of coef-
ficlents to be estimated. In many cases, sufficient observations may not

be available, and the reduced harmonic representation should be used.

The major computer operation in linear regression is the solution of a
linear set of equations, say p equations in p unknowns, which in matrix
form requires the capacity to invert a matrix of order p. Inversion of a
normal matrix of order 100 can be handled in core on the IBM 7094. Although
a matrix of order 450 to 500 can be inverted with considerable time and
difficulty, the small magnitude of some Fourier coefficients, plus pro-
gramming difficulty, suggest about 100 as the maximum number of regres-
sion coefficients that could be used for prediction. While the present exa-
mination of 24-point profiles can be handled easily, soundings with more
than 48 points would cause problems. Thus, for representation and pre-
diction of a long enough sounding with data spacing of less than 1/2 km

a reduced number of harmonics is almost mandatory.

Although all barmonics may ultimately be used for the present study,
sufficient ihformation exists to point out the importance of studying various
features of the reduced harmonic representation. The relative importance
of the various harmonics and their contribution to the variance were studied
for additional soundings to supplement the results of MWP-I and to provide
information about the method of reduced harmonics. The discussion, in
terms of what was found in particular representations, -may provide suf-
ficient guides to more important developments.

1.3 Applications

In this further application and extension of the previous work, the
complex Fourier method is used to represent and examine the two highest
winter and summer soundings of the two-year Montgomery, Alabama
data, These representations involve 11 overlapping 24-point partitions of
each soundings. Two additional series of 6-hour observations over periods
of 24 hours or longer and to 25 km or higher also are studied.

The basic wind data for each sounding were represented and ana-
lyzed separately in terms of velocity and momentum, Velocity is repre-
sented by the x and y Cartesian components of the wind at consecutive
heights. The momentum representation is the product of the velocity
(x» y) and the atmospheric density p at sequential heights and has units
of dynes per cubic centimeter. The importance of momentum as a pre-
dicting variable has not as yet been established.
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Often, over certain intervals in the atmosphere, an increase in
wind speed with height is accompanied by a proportionate decrease in atmos-
pheric density with height, which implies that the momentum is constant
throughout the interval., This situation, observed many years ago, forms
the basis for "Egnell's law" (see MWP-I) which states that between 5 and
10 km the momentum is constant. Therefore, momentum may be a better
predicting variable than velocity, provided it is constant over a large
enough portion of the prediction interval. In MWP-]I the momentum repre-
sentations of the 6~-hour Montgomery data showed larger cumulative per-
cent variance explained than the velocity representations when compared
for an equal number of harmonics.

2, SCOPE OF WORK AND BASIC DATA

The material presented in this section is primarily descriptive.
Empirical results, in the form of tables, are used to explore some ques-
tions posed in MWP-I and to supplement the work of that report. Basic
considerations, in addition to application of the method, are: seasonal
differences, velocity=momentum differences, importance of the first 2 km,
importance of various 24-km intervals in a longer profile, differences in
importance between arbitrarily selected harmonics and those observed,
and the length of the profile in variance explanation. By necessity most
of the results are very general and may have serious limitations because
of the small sample size.

Complex Fourier analysis was performed on the highest winter
and summer soundings in the two years of Montgomery data on hand, These
were for 0300Z on 12 February and 1000Z on 8 June, 1956 both from 0
through 33 km. The basic data for both are given in Appendix A, In all,
52 Fourier representations were computed from the two soundings. These
were for 0 through 33 km, 2 through 33 km, and 0 through 23 km, 1 through
24 km, ...., 10 through 33 km, on each sounding separately for velocity
and momentum.

2.1  Explained Variance

In MWP-I the large amount of cumulative percent variance explained,
hereafter referred to as CPVE, by a few harmonics was of particula¥
interest in the representation and analysis of the monthly wind averages
from Cape Kennedy and the 24-hour sequence in January from Montgomery.
Differences in CPVE were observed between the velocity and momentum
representations of the wind in both sets of data, Monthly comparisons of
the Cape Kennedy data showed some seasonal effect on the CPVE; seasonal
comparisons were not possible for the routine 6-hour soundings for Mont-
gomery because only one sequence was computed for January, From
Eqgs. (1.5) and (1.6)
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(J)
(CPVE) ;) = 100 s 2+ Y sjz . @.1)
=1

The preliminary nature of MWP-I left unanswered the question
whether the observed differences were real, or were due to spurious sam-
pling fluctuationi, The answer to this question would provide insight into
the method of representing the wind and the possible seasonal limits to
prediction,

Another question of importance left unanswered was that of how the
CPVE changes with the particular interval and length of interval chosen.
Whether one particular subset of a wind profile has a greater CPVE in a
limited Fourier representation than any other was not determined in MWP-I,
The amount of CPVE apparently varies inversely with the length of the in-
terval when a reduced number of harmonics is used for the representation;
this will be discussed later in this report.

Of special interest in the interval representation are the surface
and first kilometer. These were excluded in MWP-I because of assumed
friction effects, and representation began at the 2-km level.

First, the decomposition of each of the 34-point soundings (mom-
entum and velocity for each season) into eleven profiles of 24 points each
is considered. Information about the representation of the total profiles
is given later in this report. Table 1 gives the CPVE by the linear term
alone and the linear term plus the four or six highest ranked harmonics
in variance explanation. In a 24-point profile with zero mean 23 harmonics
are possible; thus, four and six terms represent 17.4% and 26. 1% of the
possible number of harmonics.

The results shown in Table 1 are only indications of a more com-
plicated situation and are applicable only for the special case of a reduced
number of harmonics based on a particular sample of two soundings. The
results do have additional value as examples of the application of the com-
plex Fourier method of representing a wind vector profile. Only the CPVE
by the linear plus four highest ranked harmonic terms will be discussed.
The linear plus six highest ranked harmonic terms gives approximately
the same indications about seasonal and velocity-momentum relationships,
although the inclusion of two extra terms gives a larger CPVE and a smaller
range of CPVE values, as expected. The particular height interval used
in the discussion will be designated by its lower and upper limits, with a
dash between, e.g., 2 through 25 km will be written 2-25.
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In general the CPVE values in Table 1 show a considerable degree
of variation with interval. The 12 Feb 56 momentum values increase
monotonically with increasing height interval; the other three soundings
show no consistent increase or decrease with interval height. A more
complicated analysis of the pattern of variation of CPVE with interval
is not warranted; this depends critically on the number and importance
of the frequency components of the original wind, This decomposition
into frequency components is discussed later in terms of similarity of
the harmonic numbers observed.

Table 2 presents the maximum, minimum, and range of CPVE
values found in Table 1.

TABLE 2

Maximum, Minimum, and Range of CPVE from Table 1

Max. Min, Range
%) %) (%) (as % of Max.)
Velocity 95 87 8 8.4
WINTER { Momentum 98 89 9 9.2
Velocity 92 80 12 13.0
SUMMER { Momentum 97 77 20 20.6

The range of CPVE for velocity is less than that for momentum,
while the winter ranges for both are considerably less than the summer.
Momentum, although having a larger range, has a larger maximum CPVE
value than velocity in both seasons.

In winter, the maximum CPVE for velocity is found in the 0-23 and
1-24 intervals, while the minimum CPVE for momentum is found in the 0-23,
1-24 and 2-25 intervals. In summer the maximum CPVE for velocity and
minimum CPVE for momentum occur in the 0-23 intervals for winter and
the 5-28 intervals for summer; a secondary CPVE minimum for momentum
is also found in this same 5-28 interval. CPVE maxima for momentum
are found in intervals 7-30,+..., 10-33 for winter and 9-32 and 10-33 for
summer.

Four meaningful comparisons can be made by using the differences
of CPVE at each level among velocity, momentum, and season. In the winter
at the 3-26 interval and above, CPVE for momentum is larger than that for
velocity, where a maximum difference of 11% is obtained in the 8-31 interval,
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In summer CPVE for velocity is larger from 0-23 through 5-28 with a
maximum difference of 15% at 0-23; CPVE for momentum is larger from
6-29 through 10-33 with a maximum difference at 9-32 of 13%.

The comparison of CPVE for velocity in each interval between
winter and summer shows, excepting for three intervals where the dif-
ference is small, that larger values of CPVE occur in the winter sounding.
CPVE for momentum in winter is larger than that for summer in all in-
tervals and considerably larger in all except the 9-32 and 10-33 intervals.

If a reduced number of harmonics is to be used, indications based
on this limited sample are that CPVE, and hence predictability, can vary
considerably with the interval chosen. While in practice the interval pro-
bably would be chosen on the basis of physical importance, the information
given here can provide guidelines for a choice among several alternatives.
For example, velocity shows more CPVE in the intervals containing the
first two kilometers, while momentum CPVE increases away from intervals
containing the first two kilometers. In terms of CPVE, indications for
season and type of representation are that winter will be better than summer
for both velocity and momentum, and in both seasons momentum will be
better than velocity, excluding the near surface layers.

2.2 Ranking Order

The CPVE discussed in the previous section is important for indi-
cations about the limits of predictability in terms of season and type of
representation, This section deals with the ranked harmonic numbers
associated with these CPVE values. If a reduced number of harmonics
is to be used for prediction, some indication is needed as to the relative
importance of each harmonic in terms of season and the velocity and
momentum representations and how they change with the interval chosen,
This would provide clues to the specific harmonic numbers to be used in a
predicting equation. Harmonic numbers are given in Table 3 for the six
highest ranked harmonics, in terms of percent variance explained both
for velocity and momentum, for the eleven 24-point profiles of the 12 Feb 56
and 8 Jun 56 soundings.

In the winter (12 Feb 56) sounding, the harmonic numbers for
velocity and momentum are almost identical in the first two ranks. Only
the 1st harmonic is found in the first rank, while in second rank the 23rd
dominates along with a few 22nd harmonics. The third and fourth ranks
are mixed, with the 2nd and 22nd harmonics being the most frequently
present. The fifth and sixth ranks are completely mixed.

In the summer (8 Jun 56) sounding, the first three ranks of velocity
and momentum are dominated by the 1st, 2nd, and 23rd harmonics, with
the 2nd harmonic replacing the 18t as most important in the middle intervals
for momentum. The fourth rank is mixed but is dominated by the 21st
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TABLE 3

First Six Ranked Harmonic Numbers, on Basis of Percent Variance Explained

PROFILE WINTER 12 Feb 56 SUMMER 8 Jun 56
RANKS
INTERVAL 1 II m I1Iv Vv Vi 1 o m I1Iv VvV VI
(km) Velocity

0-23 1 23 15 16 10 4 1 23 2 20 21

1-24 1 23 15 14 9 1 23 2 21 20

2-25 1 23 16 15 6 11 1 23 2 21 19 20
3-26 1 23 2 22 3 16 1 23 2 21 20 4
4-27 1 23 2 22 3 15 1 2 23 21 20 22
5-28 1 22 23 2 3 21 1 2 23 21 22 20
6-29 1 22 2 23 6 16 1 2 22 4 21 23
7-30 1 22 2 15 18 2 1 22 3 4 19
8-31 1 23 22 19 2 1 2 22 17 7
9-32 1 23 3 19 22 15 1 2 23 20 21 22
10-33 1 23 3 15 14 4 1 23 2 21 20 4

Momentum

0-23 1 23 2 4 3 22 23 1 2 4 3 6
1-24 1 23 22 2 4 21 1 23 2 22 21

2-25 1 23 22 2 21 1 23 2 22 21 7
3-26 1 22 2 16 21 2 23 21 22 20
4-27 1 22 2 3 21 9 2 1 23 21 22 20
5-28 1 23 22 2 17 16 2 23 21 20 22
6-29 1 23 2 4 22 16 2 23 1 20 3 4
7-30 1 23 9 15 4 2 2 1 23 5

8-31 1 23 16 17 2 10 1 23 2 17 7

9-32 1 23 2 15 22 16 1 23 2 21 20 16
10-33 1 23 22 2 16 15 1 23 2 19 17 20
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harmonic. The fifth and sixth rankings are mixed, the 21st, 20th, and 22nd
harmonics being most frequent.

In both soundings, the harmonic numbers in the first four ranks are
consistent over all intervals for each of the four situations. As the specific
interval changes, the order of the harmonics may change slightly. The
fifth and sixth ranks do not seem to be consistent over all intervals but are
usually represented by harmonics which contribute little to the CPVE, This
indicates that an appropriate choice of two extra harmonics for prediction
would be difficult, The similarity of all 23 ranked harmonics from interval
to interval will be discussed later.

Overall, the harmonic numbers shown in Table 3 are quite similar
to those found in MWP-I, where the ranking order was usually the 1st,
23rd, 2nd, and 22nd harmonics, Considering velocity and momentum
for each sounding separately, the order and importance of the harmonic
numbers change slightly in this limited sample. A compilation of the fre-
quency of occurrence of harmonic numbers for velocity and momentum
with season is given in Table 4. Only the four highest frequencies of
occurrence have been tabulated. A harmonic number could appear a max-
imum of 11 times.

TABLE 4

Frequency of Occurrence of the Four Most Important Harmonic Numbers

Harmonic Number 1 23 2 22 21 15
Velocity 11 10 5 6 - 5

12 Feb 56 { Moment 11 9 9 6 - -
Velocity 11 8 11 - 6 -

8 Jun 56 { Momentum 1 1 1 - 4 -

The actual rank order of the harmonics for prediction is not important
unless the Fourier coefficients of each are to be weighted in some special
way. Therefore, the three most important harmonics for this sample
would be 1, 23, and 2, with 22 for winter and 21 for summer as fourth
most important,

2,3 Effect of Arbitrary Selection

In MWP-], certain harmonic numbers seemed to be consistently
important in CPVE, The difference in CPVE which would result if pre-
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selected harmonics were used rather than the actual ranked harmonics was
studied for this report. Based on MWP-I, the first four preselected har-
monics used were the 1st, 23rd, 2nd, and 22nd, with the 3rd and 21st added
for the fifth and sixth terms. The difference in CPVE by the best actual
and by the preselected harmonics is given in Table 5, with the median and
average over all 11 intervals, The values are given as percent of total
variance explained, and are the amount that the CPVE by the preselected
terms was less than that by the actually best terms,

TABLE 5

Difference in CPVE by Preselected and by Actually Best Harmonics,
Given as Percent of Total Variance Explained for 4 and 6 Harmonic Terms

12 Feb 56 8 Jun 56
PROFILE Velocity Momentum Velocity Momentum
INTERVAL
4 6 4 6 4 6 4 6
) A L
0"33 105 2¢5 0. 8 2. 1 1. 8 2.9 100 109
1"24 1. 9 2. 4 0. 0 OQ 3 2. 1 2. 1 0. 0 0. 6
2-25 0. 8 1. 3 0. 0 0. 1 3. 0 1. 6 00 0 0. 8
3—26 000 0.6 0.2 0.2 3.7 1.5 0.3 0.1
4-27 0.0 0.5 0.4 0.2 3.3 2.7 0.7 0,8
5-28 0.0 0.0 0.0 0.1 1,0 2,8 1.1 2.5
6-29 0.0 0.4 0.1 0.4 1.2 1.3 L3 1,7
7-30 009 3.1 0.2 0.4 2.2 207 1.7 3.0
8-31 0.8 2,2 0.3 0.6 L3 2.1 0.5 1.0
9—32 0. 7 0.9 0. 0 0.3 0.4 1.9 0.4 0.4
10-33 2.2 1,2 0.0 0.4 5.5 6.1 0.5 1,0
Median 0.8 1.2 0.1 0.3 2,1 2,1 0.5 1.0
Average 0.8 1.4 0.2 0.5 2.3 2.5 0.7 1.3
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The differences shown in Table 5 are svrprisingly small. Except
for the velocity in June, where the average difference is about 2% of the
total variance, the average difference is less than 1% for four terms and
about 1% for six terms for the other three stratifications, Use of prese-
lected harmonics rather than computing all harmonics and then selecting
a reduced number for prediction may be useful if large computers are not
available.

2.4 Long Profiles

In this section the results for the total 0-33 km profile and the
2-33 km profile are considered for the February and June soundings for
both velocity and momentum. Table 6 gives the CPVE by the linear, and
the linear plus four, plus six, plus eight, and plus ten highest ranked var-
iance-reducing harmonics.

TABLE 6

CPVE for Two Long Profiles, for Velocity and Momentum

PROFILE
INTERVAL L L# L% L+ L+0
(km)
Velocity 15 8¢ 88 91 93
12 Feb 56 { Momentum 50 84 8 92 94
033 ) sumse | Velocity 19 80 8 90 93
Momentum 37 75 80 82 84
Velocity 30 82 8 89 92
pa3 12 Feb 56 { Momentum 69 90 92 93 95
-3
{ Velocity 20 80 88 90 92
8 Jun 56 | Momentum 48 85 89 92 94
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TABLE 7

Ranked Harmonic Numbers for Velocity and Momentum
(The first four profiles have a total of 33 harmonic numbers, the last four 31).

PROFILE RANKS
INTERVAL
1 I m v Vv VI
(km)
Velocity 1 2 32 33 4 5
12 Feb 56 { Momentum 1 2 32 3 4 33
0-33
Velocity 2 1 33 32 30 3
8 Jun 56 { Momentum 2 33 32 1 3 28
Velocity 1 30 2 31 4 6
12 Feb 56 { Momentum 1 2 30 29 3 6
2-33
Velocity 2 1 31 30 28 27
8 Jun 56 { Momentum 2 31 30 3 1 28

The first six ranked harmonic numbers are shown in Table 7.

In general, indications in Table 6 and 7 are similar to those found
in the earlier discussions of the 24-point profiles, The harmonic numbers
follow about the same pattern: the first and last two harmonics dominate the
CPVE. For the 0-33 km profile the CPVE for velocity in both February and
June is about the same as the February momentum, while that for momentum
in June is less. For the 2-33 km profile CPVE for velocity is about the same
for both dates and less than for momentum, for which the CPVE is larger
in winter than in summer. The influence of the first two kilometers is again
shown: CPVE for momentum in the 2-33 km profile is larger than for the
0-33 km profile but for velocity is smaller.

For equal numbers of terms, the CPVE in these 32 and 34-point profiles
is smaller than for the 24-point profiles: as the interval length increases
the likelihood that the wind vector can be represented adequately by a few
frequency components decreases. Thus, in the longer profile more frequency
components are needed to describe mathematically the wind profile, and less
CPVE is found in comparison with a shorter profile, which would require
fewer components for representation,




3e SIMILARITY OF COMPLETE INTERVAL REPRESENTATIONS

The previous sections have been devoted to descriptive material about
the February and June soundings and their decomposition into 24-point pro-
files. The discussion has been in terms of cumulative percent variance ex-
plained (CPVE) by various harmonic numbers. Another important aspect
of the general problem is whether the complete Fourier representation changes
over various portions of a long sounding, This question is discussed in detail
in this section.

One problem of ranking in this case is that the first four or six ranked
harmonics are large and differ considerably, while the rest are small and
differ slightly. The question still remains as to whether the slight differences
observed are real or are due mainly to sampling fluctuations.

Comparison of the complex Fourier coefficients for two overlapping
intervals in the same sounding is much more complicated statistically than
the comparison of a similar representation of two different soundings. The
major difficulty is that overlapping values cause the comparison to be made
between profiles which are not independent. For example, when a 0-33 km
sounding is decomposed into eleven 24-point profiles, adjacent intervals
differ only in the higher value of each profile, and all eleven intervals con-
tain values for 10 through 23 km, Effectively, the problem is one of exa-
mining the results of a moving average on a mathematical representation,
Because of this moving average, the sum of the variance about x and y, and
about the reduced zero-mean variables u and v, changes from interval to
interval,

The complete set of complex Fourier coefficients for each of the
eleven 24-point profiles obtainable from the two 33-km soundings was used
for comparison, These were also compared for only the nine upper intervals,
which excluded the 0-23 and 1-24 km profiles, A non-parametric method
was used to eliminate some of the statistical problems of comparison and
as a time saving device in computation and development of new methodology,

Each of the 23 possible harmonics in a zero-mean 24-point profile
can be considered to be a rankable attribute in terms of the importance of
the frequency it represents. Analogous in terms of parametrics would be
a discrete vector periodogram of the profile, each point being a measure
of that component of variance. The ranking of all the harmonics in a pro-
file was on the basis of the size of the Fourier coefficients, which in turn
is related to the percent variance explained by each harmonic. Ranking
considers relative rather than absolute differences in size.

One of the oldest and perhaps the best known rank statistics is the
Spearman rank correlation coefficient,
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where A; is the difference in ranks of the jth terms and N is the number of '
terms ranked. For comparison of two 24-point intervals, N is 23, and
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The probability of occurrence of any particular rg value is the ratio of the
number of permutations of rankings giving rise to that value to the N! rank-
ings possible.

The Spearman rank correlation coefficient measures the agreement
between two sets of rankings, but for this study the amount of agreement
between eleven sets of rankings is of greater interest. One method of estab-
lishing the degree of relationship between multiple rankings would be to com-
pute all possible rank correlations and then average them. For eleven inter-
vals this is the combination of eleven things taken two at a time, or fifty-five
coefficients to compute., Fortunately, another statistic, developed for com-
parison of multiple rankings, is less tedious to compute and is linearly
related to the average of all rank correlations. The Kendall coefficient of
concordance, W, is an index of divergence between the actual agreement
shown in the data and the maximum or perfect agreement possible:
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W:———-—_.—————-
k2N (N2 - 1)

’ (3.2)

where k is the number of ranked sets, N is the number of terms ranked, and
S is a measure of dispersion among k sets of rankings given by

N N 2
5= Ri'§2 R,
j=1 j=1




k

Rj = m§ ijﬁ' where ij = the rank of the jth item in the mth set. The
average o% the Spearman rank correlation coefficients, denoted rgyy, has a
range of values -1 < rg,, < 1 and is related to W, with rangeof 0 < W < 1,
by

_ kw-1

Ysav ™ k-1 ° 3.3)

The probability of occurrence of W for small N is found by enumerating all
possible outcomes and then taking the ratio of the favorable to the total out-
comes possible, as in the Spearman. For N > 7 the following statistic,

128 ~ 2

KN(N+1) ~ X(N-1) °* (3.4)

i.e. a chi-square statistic with N - 1 degrees of freedom.

The 23 harmonics in each of the 11 intervals (0-23 to 10-33) for
velocity and momentum in both soundings were ranked on the basis of the
size of the percent variance explained by each, Two W values were computed
for each of the four decompositions, one for the 0-23 through 10-33 intervals
and the other for 2-25 through 10-33 intervals. Two sets were used to deter-
mine the effect of the first two kilometers on the overall agreement of all
interval representations.

The W and rg,, values, computed using equations 3.2 and 3.3, are
given in Table 8.

TABLE 8

W anc Toav Values

Intervals 0-23 through 10-33 Intervals 2-25 through 10-33

w Tsav 4 T say

Velocity 45 -40 .54 .49

12 Feb 56 { Momentum .51 .46 .51 A4
Velocity .65 .62 .66 .62

8 Jun 56 { Momentum .60 .56 .60 .56
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Tested by the statistic of equation 3.4, all W-values were found to significant
at less than the 0,001 level, i.e., the probability that the observed W values
could occur by chance is less than 1 in 1000,

For both velocity and momentum on the June sounding, W is higher
than for the February sounding. Inclusion of the 0-23 and 1-24 intervals
seems to make little difference in the amount of agreement found, with the
possible exception of velocity in February where the 2-23 through 10-33
shows a larger W.

Although values of W are not close to 1.0, showing a perfect agree-
ment, they are significant and high enough to indicate a large amount of con-
sistency in the relative importance of the Fourier coefficients in all inter-
vals,

Some of the deviation from perfect agreement arises because many
Fourier coefficients in each interval are small and differ only slightly in
magnitude. In the non-parametric ranking process, small differences are
given the same weight as large differences. If these small differences
could be established as due to sampling fluctuation, the small Fourier coef-
ficients could be ranked as ties, which would increase the value of W,

In general, these limited observations indicate that the Fourier
representation does not change markedly with the interval chosen in a long
profile.

In the previous discussion, inclusion of the intervals containing the
surface and first kilometer made no appreciable change in W. However,
dissimilarity of the rankings for the 0-23 and 2-25 km intervals appeared
in certain cases. As a check on the agreement between the rankings for
the 0-23 and 2-25 intervals with the other ten intervals, Spearman rank
correlation coefficients, denoted rg, were computed for these compari-
sons (Table 9), For the 23 ranked harmonics, rg values of 0,35 and 0.50
are significant at the 0,05 and 0,01 levels, respectively, for the one-tailed
test of a positive correlation,
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In general, the rg values given in Table 9 show that the Fourier
representation for the 2-25 km interval is better related to the other inter-
val representations than is the 0-23 km interval representation. In most
cases the rg values are slightly larger for the 2-25 km interval, The table
also shows how one interval is related to another and how this relation
changes with interval position in the longer soundings;,

Thus, a more representative description of the profile may be
obtained if the surface and first kilometer were not used in the wind sound-
ing to be represented. Whether the second, third, etc. kilometers should
also be eliminated for better representation could only be determined by
more extensive analysis., The 2-km lower limit, however, seems reason-
able on the basis of observed wind variability, theory, and practical con-
siderations.,

Although the representations over all intervals are related and
similar, the physical uses of the prediction are more basic and important.
What heights are critical? How does prediction reliability change in rela-
tion to the position of critical heights within the interval used for repre-
sentation? Should all height information be used, or should the interval
of representation be shortened? These questions will have to be answered
when the final method of prediction is developed by studying the variability
of predicted values with changing intervals.

4, SEQUENTIAL SIX-HOUR SOUNDINGS

In MWP-I results of complex Fourier analysis on four consecutive
soundings at 6-hour intervals, from 0900Z 9 Jan 56 through 0300Z the
next day at Montgomery, were given as an example of the method. This
example has been supplemented by analysis of the only other two series
of consecutive soundings from the Montgomery data with duration of 24
hours or longer and a maximum height, without gaps, of at least 25 km.
These were for consecutive 6-hour intervals from 0300Z on 29 Jan 56
through 0300Z the next day and from 1200Z on 1 July 57 through 1800Z
on the next day. The CPVE by the linear, linear plus four, and linear
plus six ranked harmonics is given in Table 10,
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TABLE 10

CPVE for Consecutive Six-Hour Soundings

Velocity Momentum

Date Hour L L+ L+6 L L+4 L+6
29 Jan 56 0300 2 92 95 47 89 91
29 Jan 56 0900 3 80 84 50 85 90
29 Jan 56 1500 16 69 76 64 84 88
29 Jan 56 2100 12 81 88 74 91 94
30 Jan 56 0300 16 74 83 74 89 92
1 Jul 57 1200 71 89 93 65 89 92
1 Jul 57 1800 75 88 91 61 87 91
2 Jul 57 0000 69 85 91 64 90 93
2 Jul 57 0600 60 84 88 71 91 94
2 Jul 57 1200 65 93 96 78 92 95
2 Jul 57 1800 78 91 93 76 91 93

Some aspects of Table 10 are a little surprising, while others are
consistent with indications from MWP-1. As usual for a fixed number of
terms, CPVE for momentum is greater than for velocity, However, CPVE
for velocity and momentum for the summer values are larger than those for
winter in this report. This is the opposite of the situation in MWP-1. The
summer CPVE values of this report are smaller than those found for 9 Jan 56
in the first report, which had a range over the sequence for the linear plus
four terms of 88 to 94% for momentum,., For the 29 Jan 56 sequence, CPVE
for the linear plus four terms ranges are 69 to 92% for velocity, and 84 to
93% for momentum, while the 1 July 57 sequence had 84 to 91% for velocity
and 87 to 92% for momentum,

Thus, in a sequence of 6-hour soundings, the amount of CPVE can
vary considerably. Indications of monthly and yearly variability are present.
Perhaps the sequence analyzed in MWP-I was unusual, with a consistent
pattern of harmonic numbers and large CPVE,

The ranked harmonic numbers associated with the CPVE in Table 10
are about the same as those found for the 9 Jan 56 sequence in MWP-1. The
first and second most important harmonics are the 1st and 23rd, However,
in the two new sequences, the 23rd was generally more important than the
1st, just the opposite of the 9 Jan 56 sequence. The third and fourth most
important harmonics were mixed among the 2nd, 22nd, and 21st harmonic
numbers. In general the harmonic numbers are not so consistent in order
and frequency of appearance as those found in MWP-1.
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One further analysis was performed on the sequential 6-hour sound-
ings to examine how the Fourier representations vary with time. As a crude
method of examining the consistency of the Fourler representation, Spear-
man rank correlations were computed for the ranked Fourier coefficients
of all possible pairs in each sequence. The ultimate result of these rg
values was to be some indication of how the representation changed with
selected time lags, which would also give some indication of best predic-
ting times. With the short lengths of sequences available, the time lags
would have to be limited to 6 and 12-hour lags.

Results were highly inconclusive, and the actual rg values are not
presented. The 9 Jan 56 profile from MWP-I showed good agreement for
both the 6 and 12-hour lags for all times in the sequence for velocity,
while the 6-hour lag was good but the 12-hour poor for momentum. In
contrast, 29 Jan 56 and 1 Jul 57 sequences have highly variable rg values.
In general the rg values were small even for some 6-hour lags. Persis-
tence is being examined in more detail in another phase.

5. MODIFICATION OF OBSERVATIONS

Two questions about modification of the original observations were
raised in MWP-1, The first was about the best way to remove linear
terms in the analysis, and the second was concerned with normalization
of data through division by the intra-height standard deviations.

The method used for linear trend removal was simply to compute
the least square linear regression coefficients of x on h and y on h separ-
ately and then to remove the linear trend lines from x and y to form zero-
mean residuals u and v. The question was then raised as to whether a
better method was available such as equidistant end points. This is a
difficult question to answer on a mathematical basis., A surface could be
removed as readily as trend lines. The answer seems only to be found by
trial and error., If all harmonics were used for prediction, the effect of
different methods would be minimized, and elaborate and time-consuming
comparisons would not seem to be justified at this time.

The 4-term CPVE for the normalized monthly Cape Kennedy data
was consistently larger than for the non-normalized daily Montgomery
soundings in MWP-I, either because of smoothing by monthly averaging
or because of normalization. No intra-level standard deviation pertaining
soley to an individual sounding is available., Reciprocal intra-level standard
deviations may be used as a weighting function, but which of the available
climatological values is best for filtering or smoothing is not known. This
question should be answered as a refinement to the first or subsequent
predicting methods by experimenting with various intra-level standards
deviations based on hours, days, weeks, months, or a year. These would
also be a function of the time scale of the prediction desired.
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The degree to which averaging and normalizing of wind data stabilizes
sequential Fourler representations is of interest. To examine this question,
comparisons were made using the complex Fourier coefficients from the
24-point, normalized Cape Kennedy monthly averages given in MWP-1, As
a crude estimate of the similarity between profile representations, a num-
ber of Spearman rank correlations along with a W (coefficient of concordance)
value were computed. Considering the degree of agreement among all 12
months, the value W = 0,685 (rgav = 0.656) was found, which is significant
at less than the 0.001 level. This shows that a surprising amount of simi-
larity exists between all 12 monthly Fourier representations.

As the monthly data were averaged over a number of years, the
twelve months can be considered to be circular for lag comparisons. The
Spearman values were computed for twelve comparisons of one, two and
three month lags. Examples would be for lag one Dec.-Jan., Jan. - Feb.,

eeses Nov,.-Dec.; lag two Dec.- Feb.,...., Nov.-Jan,; lag three Dec.- Mar.,

sceey NOVQ_Febo

The frequency of occurrence of rg values for the monthly data is
given in Table 11, All 36 coefficients were significant at the 0,01 level.

TABLE 11

Frequency of Rank Correlations for Monthly Cape Kennedy Data

rg LAG 1 I m
> 0.80 2 0 1
0.70- 0. 79 4 6 2
0.60- 0.69 4 4 7
0.50- 0,59 2 2 2

The W and r_ values for Cape Kennedy are reasonably large and
indicate a relationship between the 12 monthly Fourier representations.
These W and rg values are larger than those found for the Montgomery data,
indicating that monthly representations are related and in a better fashion
than the long Montgomery soundings in intervals or 6-hour sequences.

This is probably due in part to the smoothing by taking averages, but some
is probably due to normalization.

6. CONCLUSIONS (II)

The method of augmented Fourier polynomials has been used to
describe the wind mathematically for different seasons, basic wind repre-
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sentations (velocity and momentum), soundings of 34 kilometers, 24-point
overlapping intervals within a long sounding, and sequences of 6-hour sound-
ings. The results presented show the versatility of the method in a variety
of situations.

Although the conclusions are based on a limitéd number of samples
and are at best only indications, most of the results of analysis are rea-
sonably consistent over all samples and are valuable as guides for pre-
diction, This summary will be mostly in terms of a linear plus four har-
monic (reduced harmonic) representation, unless otherwise noted.

The CPVE (cumulative percent variance explained)and the four
most important harmonics of the new soundings analyzed were quite similar
to the findings in MWP-1. The CPVE, although a little lower generally,
was consistently in the 82-95% range. The important harmonic numbers
were again found to be the 1st, 23rd, 2nd, and 22nd. However, the new
data indicated that for summer the 22nd harmonic should be replaced by the
21st. The ability of four important harmonics given above plus a linear
term to explain a large percentage of the variance was shown in the sec-
tion on arbitrary selection, where the CPVE by the selected harmonics was
only about 1 percent variance explained less than that given by the actual
four most important harmonics plus the linear term.

The momentum representation of the wind showed consistently
larger CPVE than the velocity in both winter and summer. Seasonal com-
parisons of CPVE are a little confused, In the two long soundings, winter
had a larger CPVE, while in the 6-hour sequences, the summer values
were larger than the winter for the new data, but both were smaller than
the CPVE values for the winter sequence given in MWP-1. Probably,
based on these results and the configuration of the winter wind profiles in
general, winter will be better for prediction using a reduced harmonic
representation.

The effect of profile length on CPVE was examined. Indications
from the data are that CPVE vary inversely with the length of the interval
taken., This also follows logically when the frequency content of the ori-
ginal sounding is considered.

In the decomposition of a long sounding into 24-point overlapping
intervals, the CPVE was found to vary within the 82-95% range. The
individual importance of the harmonics also varied from interval to inter-
val, but in general the complex Fourier coefficients showed a good agree-
ment when considered over all intervals, showing that the interval chosen
is not usually critical. However, indications were given that the repre-
sentations found for the intervals including the surface and first kilometer
did not agree well with the other interval representations, suggesting that
the surface and first kilometer be excluded from soundings for prediction.

The 6-hour sequences showed considerable variation in CPVE and
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representation from sounding to sounding. Although the first four important
harmonics were usually the same, they varied in the relative magnitude of
importance within each profile. The complete sets of Fourier coefficients
did not agree very well from sounding to sounding in a sequence, suggest-
ing some problems in prediction may be encountered.

The effect of averaging and normalizing on a sounding also was
examined, Comparisons with the monthly Cape Kennedy data showed that
averaging and normalizing does have a stabilizing effect on the complex
Fourier representation,

All this preliminary work should prove valuable for the development
of a set of regression equations to predict wind profiles. The method of
regression and ultimately prediction will follow.
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APPENDIX TI-A

Long Soundings from Montgomery, Alabama

1000Z 8 Jun 56

Density

1.202
1,071
0.984
0.879
0.797
0,722
0.652
0.587
0.528
0,475
0,425
0.378
0.333
0.291
0.246
0.211
0.180
0. 153
0,130
0,110
0,093
0.078
0,066
0. 056
0,048
0,041
0.034
0.029
0,025
0,021
0,018
0.016
0.013
0.012

Xcomp

0.000
-0.436

0,696

2.509

3.527

1,658

1,042

2.924
-3.708
-7.452
-7.458
-7.321
-4.918
-3.598
-5.198

0.000
-1.099
-1.706

0.471
-1, 042
-6.252
~5.563
-2.971
-3.,990
-6, 894
10. 064
11.370
11,820
11,326
-9, 830
~7.947
-9.456
-10.466
-11,437

Ycomp

0.000
-4,981
-4.951
-6.535
-4.854
-1,118
-5.909
-9.563
-11,413
-15.279
-21.747
-16.444
-18.353
-22.717
-24,454
-23.000
-20.971
-13.986

-8.988

-5.909

-6.474

-2.248

0,418
-0.279
"'50 785
-6.536
-6.303
-9.235
-8.229
-6.883
-4,225
-7.388

-13.396
-17,612
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0300Z 12 Feb 56

Density

1,254
1,140
1,011
0.910
0,817
0,737
0.665
0.592
0.530
0.464
0.405
0,347
0.298
0.260
0,225
0.194
0.168
0,143
0.121
0.103
0.088
0.074
0.063
0,054
0. 046
0.039
0.033
0.028
0,024
0.020
0,017
0.015
0,013
0.011

Xcomp

1,532
7.518
12. 840
17,669
22,092
29.670
27.851
31.947
38. 105
40,189
40.873
45.962
37.900
38.184
45.962
25.916
34.648
23.783
9.506
8.756
1.710
1,307
2. 877
-3.473
-0.070
4,881
1,035
0.345
3.064
2,158
15.035
22.825
12,364
12,364

Ycomp

1,286
-2.736
-2,034

3.435

9.378
11,988
19,502
22,370
22,000
31,399
36, 802
38.567
34,126
38.184
38.567
27.791
34.648
28,343
14,094
14.572

4.698
14,943
-2,779
~-3.597

1,999
10.963

3. 864

1,813
-2.571
-2.084

5.472

7.416

4,017

4,017




MATHEMATICAL WIND PROFILES
PART II

SUMMARY

Serially complete 6-hour wind observations from the surface to 27 km
over Cape Kennedy during 1962 were used to compute 5200 serial correlations
of wind integrated over 7 km layers, The correlations are for four represent-
ations of the wind, four atmospheric zones and their sum, thirteen calendar
intervals, four observation times separately and all four combined, and four
time lags. The correlations have been used to formulate criteria for wind
profile prediction by the augmented Fourier polynomials, which represent
mathematically a vertical two-dimensional wind profile.

1, INTRODUCTION (III)

Augmented Fourler polynomials for representing mathematically a
vertical wind profile, and various properties of this method, are described
in '"Mathematical Wind Profiles, Part I and II'. Before such polynomials
could be used for a wind prediction model, answers were required to two
questions:

a. Which basic physical representation, speed or momentum,
and in scalar or.vector form, is best for prediction?

b. How many past soundings should be used to predict one future
sounding ?

To answer these questions, serial correlations were computed for
scalar speed, vector speed, scalar momentum, and vector momentum over
time lags of 6, 12, 18, and 24 hours. Rather than for individual levels,
integrated air movement over layers (zones) 7 km thick was used.
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As basic wind data, a serially complete set of winds from Cape Kennedy
for the year 1962 were supplied on magnetic tape by Mr. O. E. Smith of NASA,
George C. Marshall Space Flight Center, Huntsville, Alabama, It provided
velocity V and direction 6 at 1 km intervals from 0 through 27 km at 6-hour
intervals (0000, 0600, 1200, and 1800 GMT) on all 365 days. For correlation
computation, each wind sounding is denoted as T; where i= 1, 2,..., 1460,
in sequence from 0000 GMT on 1 Jan, 1962 (i =1) through 1800 GMT on 31
Dec, 1962 (i = 1460).

To obtain the vector representation, values for each level (h) on each
sounding (i) were transformed from polar (Vy, 6,) to cartesian (xy, yy)
coordinates by

X, = - Vh sin eh, Yp = -Vh cos eh‘

For each of 5 atmospheric zones (four of 7 levels each, one for all levels),
four different physical representations of the wind were used:

Scalar Speed: G = Zh Vh

Vector Speed: G' = [(Zh xh)2 + (zh yh)z] 1/2

Scalar Momentum: D = Zh qy Vh

2 2
[(Eh q X))+ (E 9y, V)

Vector Momentum: D'

] 1/2

Here q is the atmospheric density at height h on the ith sounding.

The index of summation for h can be changed appropriately to define
the different atmospheric zones. Three of the zones, 7 to 13, 14 to 20, and
21 to 27 km, may be considered as 7 km thick, e.g. 6.5 to 13.5 km. The
lowermost zone, 0 to 6 km, is at most 6.5 km thick, and the fifth zone,

0 to 27 km, is 27.5 km thick.

Density values for individual soundings were not included in the basic
data tape and were not otherwise readily available to compute momenturg.
Instead, average monthly density profiles (0-27 km) from Cape Kennedy” were
examined, The difference between the maximum and minimum density at
each height level over all months ranged from 0.6 to 5.9 per cent of maximum
density; the average difference for all heights was about 3.2 per cent, much
smaller than the difference in densities at the surface and 27 km, which differ
by a factor of 40, Because any average monthly density profile would yield
approximately the same result, momentum for each sounding was computed
from the December average density profile, a typical high density profile
(Table 1).
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TABLE 1

AVERAGE MONTHLY DENSITY (g/cms) FOR DECEMBER AT CAPE KENNEDY

From "Atlantic Missile Range Reference Atmosphere for Cape Kennedy,
Florida (Part 1)", IRIG Document 104-63.

___Zonel Zone 2 Zone 3 Zone 4

h qQ h q h 9 h qQ

0 1.2097 7 0.5885 14 0.2504 21 0. 0777
1 1.0982 8 0.5285 15 0.2150 22 0. 0652
2 0.9895 9 0.4736 16 0.1850 23 0. 0554
3 0. 8915 10 0.4230 17 0.1576 24 0. 0470
4 0.8044 11 0.3766 18 0.1328 25 0. 0398
5 0. 7251 12 0.3328 19 0.1110 26 0.0341
6 0.6534 13 0.2902 20 0.0926 27 0. 0293
———————————————————————————————— Zone 5 —~-mmmTmsmmmmsomo s e —m—m e

After scalar and vector speeds and momenta G, G', D, and D' were com-
puted over each of the five atmospheric zones of each sounding, they were divided
into 13 equal time intervals, representing calendar intervals, for serial correla-
tion. Each interval contains 28 days of 112 soundings each (Table 2). In each,
one day (four soundings) of overlap from the previous interval was included for
continuity of serial correlations; for the initial interval, the 1st of January was
the overlap day. Thus the initial interval is composed of 112 soundings from
2 Jan. through 29 Jan,, with the four soundings from 1 Jan. for overlap, and
the last interval is composed of 112 soundings from 4 Dec. through 31 Dec.,
with 3 Dec. for overlap.
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TABLE 2

CALENDAR INTERVALS USED FOR SERIAL CORRELATIONS

Intervals go from the 0000 GMT observation on the begin date to the 1800 GMT
observation on the end date; the first date includes one day of overlap.

Interval Begin
0 Jan 1 -
1 Jan 29 -
2 Feb 26 -
3 Mar 26 -
4 Apr 23 -
5 May 21-
6 Jun 18 -
7 Jul 16 -
8 Aug 13 -
9 Sep 10 -
10 Oct 8 -
11 Nov 5 -
12 Dec 3 -

End

Jan 29
Feb 26
Mar 26
Apr 23
May 21
Jun 18
Jul 16
Aug 13
Sep 10
Oct 8
Nov 5
Dec 3
Dec 31

Record Numbers

1- 116
113 - 228
225 - 340
337 - 452
449 - 564
561 - 676
676 - 788
785 - 900
897 - 1012

1009 - 1124
1121 - 1236
1233 - 1348
1345 - 1460

Time lags of 6, 12, 18, and 24 hours were denoted t =1, 2, 3, 4 for

computation of serial correlations.

One further stratification for each repre-

sentation, atmospheric zone, and calendar interval was made on the basis of
observing times: 0000, 0600, 1200, and 1800 separately, and all times to-
gether., This provides the serial correlation of the 0000 observation with that
of 0600, 1200, 1800, and 0000 (next day) for time lags of 6, 12, 18, and 24
hours, Similar relationships are found in terms of the 0600, 1200, and 1800
observations, while all times gives the simple lag correlations irrespective

of observing time.

2. CORRELATION COMPUTATIONS

All serial correlation computations used a slightly modified formula:
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R, = Cov (x;, X, (2.1

. i+ t) [Var (xi) Var (x

i+t)] G

(N-A)(Ex %, 0 (Zx)(Tx,,)

[(N—A)E X - (s xi)2]1/2 [(N—A)Exiz+t - (= xi+t)2] 1/2

where A =1 when N =29 and A =4 when N =116,

The one-day overlap provides four additional values for possible multi-
plication. Therefore, the number of multiplications (N - A) for fixed N is
the same for all four time lags. The summations in (2. 1) have been appropri-
ately indexed so0 that the same multiplicative pair is not included in two con-
secutive calendar intervals. This allows for simple recombining of calendar
intervals to obtain serial correlations over longer time intervals in multiples
of the original interval length. To accomplish the recombination if needed,
the output includes the necessary sums, sums of squares, and cross products.

Each sounding was indexed as T, , where i =1, 2, 3,..., 1460,
Thus, Tj, Ty, T3, and Ty (treated ad overlap for this calendar interval)
represent the 0000, 0600, 1200, 1800 GMT soundings on 1 Jan. 1962; T5,
Tg» Ty, and Tg, represent the same sequence on 2 Jan., and Ty en»
T1458’ T;1459» and Ty46¢. the four observations on 31 Dec. 1962. ﬁxe same
indexing was used on all four wind representations G;, Gi, D;, Dj.

A particular wind representation in a particular atmospheric zone
may be denoted as x. A dummy index K on x provides the appropriate
multiplicative pairs for correlations associated with each observing time.
The covariance is given by

29-F
Cov (x., X, )=—1—Ex . x .
i* *i+L) T 28 K+(i-1)4 *K+(i- D4 +L (2:2)

i=1+E

29-F 29-F

) i3

28 XK+(-1)4 28 XK+ (- 1)4+L
i=1+E i=1+E

K=1, 2, 3, 4 gives correlations for the 0000, 0600, 1200, 1800 GMT obser-
vations, L =1, 2, 3, 4 gives correlations for each K for time lags of 6,
12, 18, and 24 hours;
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E=1, F=90 for K+L 4

E=0, F=1 for K+L 25.

For the correlation based on the 0000 observing time, the multiplicative
pairs for the cross-product term, (VARIABLE Z in the printout, Fig. 1)

29-F

Z X1+ (- 1)4 X1+ (- 1)4 +L (2.3)
i=1+E

for the lags L =1, 2, 3, 4 are:

Lag 1: 2 X- ° t e

* X113 * *114

Lag 2: L x. X t Xg o Xy tFoeees F Xy1q 0 Xqgs

Lag 3: L X5« Xg * Xg ° seee F Xyy3 0 X19g

Lag 4: leox t Xe o Xy toaeee t Xipg * Xpy3 e

The first and last multiplicative pairs for the first calendar interval (M = 0)
for the four observing times are given in Table 3. From this table the first
and last pairs for other calendar intervals can be obtained by adding 112(M)
to the subscripts of each term (M =0, 1, 2, ..., 12). The sequence of
multiplicative pairs for fixed M is then found by sccessively adding 4 to
each term in the pair, starting with the first pair.
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TABLE 3

FIRST AND LAST MULTIPLICATIVE PAIR IN THE CROSS-PRODUCT TERM

FOR THE FIRST CALENDAR INTERVAL (M =0} Xy X

2' os 0 x116)

First Pair
0000 0600 1200 1800
X5 * Xg Xg * X7 Xg ° X3 X, * X5
X5 ° Xq Xe ° Xg X3 ¢ X5 X4 %
X5 ° Xg X %5 X3 * Xg X4+ X%
X1 % X2°* % X3 * Xq X4 * %g
L.ast Pair

0000 0600 1200 1800
X113 * *114 X114 * X115 X115 ° *116 *112 ° *113
X113 ° *115 *114 * *116 X111 ° *113 X112 * *114
%113 ° *116 X110 * *113 X111 ° *114 X112 * *115
X100 ° %113 X110 ° *114 X111 ° *115 X112 ° *116

When all observing times are used the appropriate pairs in the cross-
product summation for M =0 are

Lag 1:
Lag 2:
Lag 3:
Lag 4:

Zx4
Zxa
sz

le

* X195 °

t X1t

X116

X116

+ X

113 ° *116

* X112 * %118



The first and last pairs for other intervals are found by adding 112(M) to
each term of the pair.

3. CORRELATION SIGNIFICANCE

The significance of serial correlations is much more difficult to
assess than that of ordinary product-moment correlations, Except when the
true correlation p = 0, the usual (linear) product moment r gives a
biased estimate of p, and the sampling distribution of r about p is
skewed and difficult to evaluate directly for significance tests.

The z' transformation, introduced by R. A. Fisher, is usually
preferred for significance testing:

g =1 12X (3.1)

The variable z' is asymptotically normally distributed, with mean and
variance

2

2

o

2 N 4- o2 , 176 - 21p
z' n-1 2(n-1)

4
'221" T 3. 2)
48 (n - 1)

Very good approximations are obtained by using only the first term for the
mean, and 1/(n - 3) for the variance, as long as only one sample correla-
tion is being tested. But valid evaluation of a complete set of correlation
coefficients for different lags requires not only the sampling distribution of
R; about p;, but also the joint variation among Rj, Ry, «..s Rp .

Most of the results on significance testing of serial correlation have
been in terms of large sample theory, for testing for serial dependence with
Rj. General distributions, derived under appropriate assumptions, depend
upon the unknown population values of p; and, for covariance, also on all
possible population partial correlation coefficients. For coefficients other
than R, atest, based on a circular definition and other assumptions, uses
an incomplete beta function. Most sampling distributions assume normality
and stationarity, which may not be met in practice. Some problems can be
avoided by assuming a theoretical form for pt and testing the sample results
for goodness of fit. If an autoregressive model is desired, modified regres-
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sion methods can be used to test, provided not too much accuracy is desired.

The serial correlations reported here were computed to obtain a gen-
eral evaluation of four representations of the wind, and of how many lags were
to be used in the autoregressive prediction model. For more elaborate test-
ing for comparative purposes, the standard z' transformation can probably
be used for some significance tests and confidence interv%ls with reasonably
accurate results, depending on the rigor needed. Hannan" suggests that Rj
can be tested by considering (R + 1/n) as an ordinary correlation coefficient
from (n + 3) observations.

Testing individual coefficients other than R; requires extreme care.
A significance test of R, is me rely a test of seriai dependence among all
observations, but a test of Ry or higher order coefficients in an autoregres-
sive model is equivalent to determining how much serial dependence exists
between observations separated by more than one time step, and whether the
dependence is large enough to be important in explaining (modeling) the pro-
cess. Such a test is based on partial correlation coefficients, which repre-
sent the amount of dependence left for that particular lag after the effects
(dependences) of all other lags on the process have been removed from the
serial correlation coefficient. The lag correlation values computed for

t= 2, 3, and 4 are not partial correlation coefficients, and should not be
treated as such.

For direct evaluation of the lag 1 correlations, Table 4 presents
approximate 95% confidence intervals for the true correlation coefficient
based on correlations obtained from samples of 28 and 112 observations.
These confidence intervals were computed from the %' transformation (3.1)
by adding and subtracting two standard deviations: z' + 0.14, for 28 and
112 observations, respectively. Results are in excellent agreement with
exact confidence intervals scaled from the charts in David's monograph )
or interpolated from the tables therein.

Table 4 shows, for example, that in a sample of 28 observation pairs,
the correlation must be greater than about 0,50 in order to be considered
significantly different from 0. Almost all the lag 1 correlations well exceeded
this value, and hence may be considered '"significant'. But, for 28 pairs,
correlations of 0, 80 and 0,90 cannot be considered as differing, since the
confidence interval for each includes the other.
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TABLE 4

95% CONFIDENCE INTERVALS FOR CORRELATION COEFFICIENTS

0,10
0.20
0.30
0.40
0.50

0.55
0.60
0.65
0.70
0.75

0.80
0.82
0.84
0. 86
0.88

0.90
0.91
0.92
0.93
0.94

0. 95
0.96
0.97
0.98
0.99

BASED ON 28 AND 112 PAIRS

n =28
Lower Upper
-0.29 0.46
-0.20 0.54
-0.10 0.60
-0.02 0.68

0.15 0.74
0.22 0.77
0.28 0.80
0.36 0.83
0.44 0.85
0.52 0.88
0.60 0.91
0,64 0.92
0.68 0.92
0.71 0.93
0.75 0.94
0.79 0.95
0.81 0.96
0.83 0.96
0.85 0.97
0.87 0,97
0. 89 0.98
0,91 0.98
0.94 0.99
0.96 0.99
0.98 1,00
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n =112
Lower Upper
-0.04 0.24

0.06 0.33
0.16 0.41
0.27 0.51
0.39 0.60
0.45 0.64
0.50 0.68
0.56 0,73
0.62 0.77
0.69 0.80
0.74 0.85
0.77 0.86
0.79 0.88
0.82 0.89
0.85 0.91
0.87 0.92
0.88 0.93
0.90 0.94
0.91 0.95
0.92 0.95
0,94 0.96
0.95 0.97
0.96 0.98
0.97 0.98
0.99 0.99
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4, RESULTS

The 5200 serial correlations, and the sums of squares and cross-pro-
ducts from which they were derived, form a computer printout about six inches
thick, One page of this output is reproduced in Figure 1, and the various en-
tries thereon are identified in this Section.

The first row classifies the correlation., The '"M COUNT IS'" gives
the calendar interval (see Table 2). The "RECORD NOS. RANGE FROM"
gives the range of the soundings used for the correlation in terms of each
sounding indexed from 1 through 1460. The "LISTED VARIABLE IS" gives
the type of wind representation: G is scalar speed, G' vector speed, D
scalar momentum, D' vector momentum. The last entry on the right, the
atmospheric zone, is made by hand on the basis of the computational order;
for a fixed M and representation, the atmospheric zones were computed
in the order 0-6, 7-13, 14-20, 21-27, and 0-27.

Column headings refer to the time of observation (0000, 0600, 1200,
1800 GMT). The "TOTAL'" heading is used for all four observing times con-
sidered together.

Row headings are the lag units, where L =1, 2, 3, 4 refer to time
lags of 6, 12, 18, and 24 hours, respectively. The I entry refers to the
quantity being summed, with the first value used in the correlation and ex-
cluding the last, while the I +1 eniry refers to the first being excluded and
the last included.

The first three matrices (Fig. 1) give the values used to compute
the serial correlation coefficients in the fourth matrix:

VARIABLE Z gives the cross-product term T X, X4y
VARIABLE T gives the sums of squares T xi2 and T x12+t N

VARIABLE S gives the sums T X and in+t.

VARIABLE R gives the serial correlation coefficients Rt of (2.1).

For the column headed TOTAL, (N-A) is 112 for each lag, For the other
four columns, (N-A) is 28 for each lag.

In almost all cases, the correlation coefficients for 6 hour lags were
considerably higher than for 12, 18, or 24 hour lags. For example, correla-
tions for the various lags for vector speed for the entire 27 km profile, con-
sidering all observation times, were:
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Calendar
Interval: 0 1 2 3 4 5 6 7 8 9 10 11 12

6-hr lag: .95 .92 .93 .96 .93 .85 .94 .91 .96 .93 .97 .90 .96
12-hr lag: .87 .81 .88 .89 .81 ,71 .86 .79 .90 .84 .92 .74 .88
18-hrlag: .76 .72 .84 .77 .67 .55 .76 .70 .82 .73 .85 .55 .80
24-hr lag: .63 .63 .81 .64 .54 .45 .66 .61 .73 .64 .79 .37 ,72

Correlations for lags 2, 3, and 4, corresponding to 12, 18, and 24
hours, were not evaluated rigorously., They were generally smaller than the
6-hour lag correlations, and were discarded without further testing to deter-
mine whether the differences were significant because of the evaluation dif-
ficulties discussed in the previous Section. Further examination was restricted
to the 6-hour lag values.

5. COMBINED INTERVALS

Correlations for 6-hour lags for combinations of two and more calen-
dar intervals were computed to demonstrate the feasibility and results of such
computation. The one-day overlaps provided at the start of each interval
insured that the same multiplicative pair was used in only one calendar interval.

Values for the cross-products, sums of squares, and sums (matrices
Z, T, and S in Fig. 1) for one calendar interval can be added to the corres-
ponding values in the next interval to provide a serial correlation coefficient
for the combined period. Such combination can be extended to as many inter-
vals as desired, with (N-A) in Eq. (2. 1) taken as the number of combined
intervals multiplied by 28 or 112; the variances and covariance are obtained
from the sums of the corresponding values for each interval.

Combined coefficients were computed only for the scalar speed
representation for the entire 0-27 km zone, for all observations ('total").
Computations were for the first two, first three, etc., intervals up fo the
entire year of 13 intervals. Coefficients for 6-hour lag of scalar wind for
the entire profile, for each interval separately and for the combined interval
are:
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Interval: 0 1 2 3 4 5 6 7 8 9 10 11 12

Separate: .95 .92 .91 ,94 .88 .90 .81 .86 .87 .92 .97 .92 .95
Combined: .95 .94 .93 .94 ,96 .97 .91 .98 .98 .98 .98 .98 .98
Speed: .21 19 23 17 11 9 10 9 9 9 12 15 20

The last line gives the mean speed, in knots, for the interval, found by aver-
- aging the wind speeds in each profile over all heights,

Correlations for combined intervals (2nd line) are greater than the
average of the correlations of the individual intervals (1st line) because of the
differences in the meang for the intervals (3rd line). This effect can be exa-
mined most readily by ¢omputing the correlation for a combination of two
intervals, A and B, each of length N =112, For lag 1 correlation, the
means and variances for the first N observations do not differ materially
from those for the N observations from 2 to N +1, and the covariance
between the first N and second N observations is substantially the same
as that between the observations from 2 to N+1 andfrom N +2 to.
2N +1, '

Assuming these equalities, straightforward but tedious algebra
(Appendix A) gives the lag 1 correlation over the two intervals in terms of
the average, T, of the correlations r, and rp over the two intervals
separately, and the corresponding variances Si and S% , and the difference

A between their means:

2 .2

R - 1-F (ry ~Tp)S4 ~ Sp)
1,AB - T % 3 2.2 T T2 ) 2
142 (3% + 82) 4 0%+ 2(87 + 8p)

(5.1)

As long as T > 0, the second term is positive, The third term vanishes if
either the correlations are equal or the variances are equal, and

R ___?.'.__(_1__2‘)_

. (5.2
LAB 1+48%/

In this special case, the correlation for the combined sample is never less
than the average, T, gf the correlations over A and B separately, and
is greatest when (S/A)* is smallest, i.e. when A2 >> S2 ., Thus when

the difference between the sample means is much larger than their common
standard deviation, the correlation over the two samples will exceed the
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the average correlation. Only when the difference between the means, A,

is zero will the combined correlation be no greater than the average. Even
under more general conditions, without equality of variances, these tendencies
still are present, as can be shown by evaluation of the second and third terms
of (5.1).

The square of the (linear) correlation coefficient represents the rela-
tive reduction in variance of one variable when it is predicted by (linear)
regression on the other. The increase in correlation achieved by combining
samples with different means thus represents an increase in prediction
accuracy, but only with respect to the unconditional variance, which is the
combined variance over the two samples. This is greater than the mean vari-
ance over the two samples by one-fourth the squared difference of the two
sample means, and hence the apparent increase in prediction accuracy is
illusory. Samples should not be combined for correlation, or for regression
prediction, if their means differ significantly.

The usual t - test for equality of means in two normal samples, each
of size N, involves

X -
NV/2_TAZTB (5.3)
(SZ + S2)1/2 f
A B
where the number of degrees of freedom is given by
(S5 + 857
f=N+)—5—p -2 . (5.4)
S; +
A * Sp
Hence tz/N = Az/(S: + Sg) and (5.1) becomes
2 2
- S, - S r, -r
- l1-r A B A B
R1 AB - T ¢ = + > > > . (5.5)
’ 1+ 2Nt 8, + 83 2 +t°/N

For large samples, the 0,05% value of t is approximately 2. Even if the
difference in the sample means is not quite large enough to warrant rejection
of a hypothesis of equality, combining the samples will increase the correla-
tion, and hence the apparent accuracy of prediction.
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For purposes of wind profile prediction, combining samples seems
unwarranted. The period of interest should be broken into intervals just
large enough for valid means, variances, and covariances to be computed,
unless no trend whatever is expected in the means.

6. CONCLUSIONS (I11)

Tables 5 to 9 present all 6-hour lag serial correlation coefficients
for the five atmospheric zones. In general, the correlations were quite high,
and all were significantly greater than zero at the 95% level. All correlations
presented in the tables ranged from 0,58 to 0.98.

As a quick mathod of assessing which representation was best, the
correlations for the four representations were ranked on the basis of magnitude
for each atmospheric zone and time of observation over each of the 13 calen-
dar intervals. Vector speed consistently ranked first or second more times
for all observing times and atmospheric zones, except in the 14-20 km zone.

In this zone, vector momentum, the next highest in ranking, was higher in
the first and second ranking for all observing times.

The work presented, in this report was directed toward finding the
best wind representation and number time lags to be used for prediction.
However, many other possibilities exist for using the data, Some of these
uses have been touched on in an exploratory manner. The most important
are various comparisons with atmospheric zones and observing times, the
decay rate of the lag correlations and the behavior of the serial correlations
with variable interval length.

Ultimately more work must be performed on the best calendar
interval for prediction. Some of the summer and winter calendar intervals
might be combined into longer intervals, Correlations for many different
combinations of interval length (in units of 28 days) can be computed from
the basic data,

In most cases, the correlation coefficients for vector speed are
larger than those for vector momentum, scalar speed, or scalar momantum,
The 6-hour lag correlations are consistently larger than those for the 12, 18,
and 24 hour lags. Based on this evidence, the first prediction model will be
in terms of vector speed and the previously observed sounding.
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APPENDIX III-A

SERIAL CORRELATIONS FOR COMBINED INTERVALS

Serial correlation coefficients computed for combinations of two or
more time intervals tend to be greater than the average of the serial correla-
tions computed for each interval separately. This increase depends primarily
on the differences between the means for the various intervals. It can be
examined most readily by computing the correlation for a combination of
two intervals, A and B, (With N =112, addition of 3 to all summation
limits will make them correspond to those implied by Egs. (2.1) and (2.2),
e.g. '"Lag 1" in Table 3.)

) 1/2,
Because Rl,AB - covAB (xi xi+ 1) + 1)]

the numerator and denominator are developed separately before combination.

2N 2N 2N

w0 S 2 Z S
VaB &1 ¥14+1) T N’ & %41 " 3N 2N Xi41

i=1 i=1

[var (xi) var (

N 2N

11 1

=3 izxi X+1 YN X X541 (A.1)
L 1 N+1
N 2N N 2N

111 1 1 1

T2 'ﬁz S X Nin+1 *N X1

L1 N+1 1 N+1

Adding and subtracting the means,

N+1

N N
z: 1 z: _ 1 2:

X A+t TN X = § X4 (A.2)
1 2 ‘1

Zl'-‘

with EB and 'iB.,. defined similarly, provides an expression involving vari-

ances and covariances:
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e N N
covap® X1 T 3 ﬁle Xip1 " Xa¥at v RN le X, 1 - Xg Xp+
1 N+1

t2 ("A"A+ T Xp XB+) T 1 <XA Xp+ * Xy Xge * XpaXg xA+"13+> )
=l(cov reovy) + 1 (%, % X, Xt — X, 4 Xy + X X

2 A B' T3 \*A XAt T XaA ¥gt+ T Xp+*p 7 X *p+
= 1 cov, + cov + 1(s X. X X

7 (Covy B) T 2 \Xa ~ *g) \Xa+ ™ *p+
-1 (cov, + co + 1 A A A.3

g (covy VB) T 7 %aB fa+m+ (A.3)

where = X, T Xp and AA+B+ = Xp4 " Xpy oo

A B " The difference between
these dii‘%erences is

N 2N N 2N
- % H2 D ox%-
MW~ 84+B+ TN x1+zxi'xN+1" in "N X tEN+1 T X T XN+1
2 N + 2 2 N +2
_ 1 2
TN\ T N+l T *eN+d (A.4)

On the average, this term is quite small, so the two differences may be equated
with negligible error, and

21 1,2
coVag (X X4 1) T 3 (€OV4 * V) T 5 lag (A.5)
Similar development for the variances gives

72




2 - L EB 2
AB 2N X 2N i
| 1 1
' - N 2N

1|1 2 -2 1 2 2
T =3 ﬁle'("A) *'ﬁZXi'G‘B)
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the difference in variances is
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> o

Z|-

Z|-

X~ Xy 42 [(xl t ANy T 2Ky Yo - xN+1)/N]

-2 B —
=N"(x; - xg,q) [N+1)x; - 2Nx, + (N- 1) xN+1]

p—

= NGy -y ) [N Dy xg ) - 200+ Ry 1)] (A.8)

On the average, the first difference is small and the second one still smaller.
Division by N2 makes the whole expression negligible, and the difference in
variances may be neglected.

2 . o2 2 ., 2
Consequently, SA & SA+ and SB * SB+ and

2 2. .1 ,2
+85) *+ 7 bxp (A.9)

Combining this result (A.9) with that for the covariance (A.5) gives

1
covA + cov +§ A

- B
1,AB 2 2
SA +SB +

1 .2
3 8B

+rBS

(A. 10)

2
+SB

(X; = Xy yq) (X + X, - [ZEA - (% +xN+1)/N] (xl-xN+1)/N



= 2
because r, covAA_,_/SA SA"'
mean r = (T At rB)/2, and dropping the subscripts on A, gives

Ri,aB =~

=]

T

-+

+

+

cov , / Si . Adding and subtracting the

.2 2 2 1 2 2 2
ZrASA +2rBSB + A > (rA+ rB)(ZSA +ZSB + A7)
3 .2 2
2(87 +82) + &
2 .2 2 2 2 .2 2 .
r, 287 - 8; - 82) +ry@82 - 52 - 82) + 4 (1-7)
2 .2 3
2(82 + 83) + &
2 .2
1-F (rp - Tg)(84 - Sp)

1+2(s) +82)/42

+

A

2 +2(S§ +S§)

This is Eq. (5.1), which is examined farther in Section 5.
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0000 =~
Scalar

Scalar
Vector

Vector

0600 -
Scelar

Scalar
Vector

Vector

1200 -
Scalar

Scalar
Vector

Vector

1800 -
Scalar

Scalar
Vector

Vector

TABLE 5

0600
Speed

Momentum
Speed

Momentum

1200
Speed

Momentum
Speed

Momentun

1800
Speed

Momentum

Speed

Momentum

0000
Speed

Momentum
Speed

Momentum

A1l Hours
Scalar Speed
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Vector Speed

Vector Momentum

<95
«95
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.9k
.88

.87
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TABLE 6

0000 - 0600
Scalar Speed

Scalar Momentum
Vector Speed

Vector Momentum

0600 - 1200
Scalar Speed

Scalar Momentum
Vector Speed

Vector Momentum

1200 - 1800
Scalar Speed

Scalar Momentum

Vector Speed

Vector Momentum’

1800 - 0000
Scalar Speed

Scalar Momentum
Vector Speed

Vector Momentum

All Hours
Scalar Speed

Scalar Momentum
Vector Speed

Vector Momentum

SERIAL CORRELATIONS FOR 6 Hr. Lag, 0-6 Kilometers
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0000 -
Scalar

Scalar
Vector

Vector

0600 =
Scalar

Scalar
Vector

Vector

1200 -
Scalar

Scealar
Vector

Vector

1800 -
Scalar

Scealar
Vector

Vector

TABLE 7

0600
Speed

Momentum
Speed

Momentun

1200
Speed

Momentum
Speed

Momentum

1800
Speed

Momentun
Speed

Momentum

0000
Speed

Momentum
Speed

Momentum

All Eours

Scalar
Scalar

Vector

Speed
Momentum

Speed

Yector Momentum

. 9k
.94
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0000 -
Scalar

Scalar
Vector

Vector

0600 -
Scalar

Scalar
Vector

Vector

1200 -
Scalar

Scalar
Vector

Vector

1800 -
Scalar

Scalar
Vector

Vector

TABLE 8

0600
Speed

Momentum
Speed

Momentum

1200
Speed

Momentum
Speed

Momentum

1800
Speed

Momentum
Speed

Momentum

0000
Speed

Momentum
Speed

Monmentum

A1l Hours

Scelar
Scaler

Vector

Speed
Momentum

Speed

Vector Momentum

SERIAL CORRELATIONS FOR 6 Hr. Lag, 14-20 Kilometers
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TABLE 9

0000 = 0600
Scalar Speed

Scalar Momentum
Vector Speed

Vector Momentum

0600 - 1200
Scalar Speed

Scalar Momentum
Vector Speed

Vector Momentum

1200 - 1800
Scalar Speed

Scalar Momentum

Vector Speed

Vector Momentum -

1800 - 0000
Scalar Speed

Scalar Momentum
Vector Speed

Vector Momentum

All Hours
Scalar Speed

Scalar Momentum
Vector Speed

Vector Momentum

SERIAL CORRELATIONS FOR 6 Hr. Lag, 21-27 Kilometers
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MATHEMATICAL WIND PROFILES
PART 1V (Final Report)

SUMMARY

Properties of augmented complex Fourier polynomials, developed
to represent the complete vertical profile of horizontal wind vectors, are
summarized from three previous reports. Procedures for predicting a
future vector profile from present and past profiles are developed in detail,
for application to winds at Cape Kennedy, Florida.

L. INTRODUCTION (IV)

Description and prediction of vector wind profiles has been an unsolved
meteorological problem of increasing importance for many years. No standard
procedure for the mathematical description of a profile has yet emerged, des-
pite many attacks on the problem. Forecasting of an entire profile has been
even less successful, and most forecast procedures are for the winds at indivi-
dual levels, separately, rather than for the whole profile.

Mathematically, a vector wind profile is a continuous function of three
variables: height, and two horizontal components of the wind at each height.
(The vertical component of wind is neglected because it is some two orders
of magnitude smaller than the resultant of the two horizontal components. )

The quest for a suitable representation of such a 3-dimensional function, which
could be used in predicting the wind profile at some future time, or over a
specified place for which data are not immediately available, was undertaken
under Contract NAS 8-5380 with the Marshall Space Flight Center, NASA,
Huntsville, Alabama,

In this fourth and final report on that contract, first the development
and testing of a method of represen w%nd profiles is summarized; details
were given in three previous reports » 2, , designated hereafter as MWP-],
MWP-II, MWP-IIL. Most of this report is devoted to prediction schemes
for wind profiles, as described mathematically by augmented complex Fourier
polynomials,
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Such trigonometric polynomials, from the detailed studies reported
in MWP-] and MWP-II, seem appropriate for describing vector wind profiles.
They are direct extensions, to complex variables, of standard Fourier poly-
nomials, which are complex-valued functions of real variables and have been
used in many branches of applied mathematics for more than a century.
Apparently complex Fourier polynomials have not been used hitherto for
geophysical problems such as vector wind profiles.

For adequate representation of vector wind profiles, the Fourier

polynomials of a complex argument must be augmented, as explained later,
by terms describing any linear trends in each of the wind components.

2, BASIC FORMULAS

In the application of this Fourler representation, the eastward (x)
and northward (y) components of the wind at any height h are combined into
a complex variable z=x +iy . Observations on z at n +1 equally-spaced
heights, h=0, 1, 2, ..., n, are used to compute 2(n +2) complex coef-
ficients. They permit the estimation of the wind vector at any height as the
sum of n +2 complex quantities: a complex constant ¢, , the product of
a complex coefficient d,, and the height h, and n products of complex
coefficients dj and complex numbers:

n
z(h) = c, +d h+ E) dj exp (irjh), (2.1)
J:

where X = 2m/v and v = n+1. As explainedlater, d,=0.

The first two terms represent the linear trend, which can be removed
in any of several ways. A plane can be fitted to the vector wind profile by
ordinary least squares or by some modification so that its distances from the
two endpoints of the profile are equal. Alternatively, trend can be removed
from each component separately. Extensive research (some reported in
MWP-I and discussed in MWP-II) suggests that simple least squares linear
regression on each component separately is adequate. At each level h for
which wind data are available, the trend lines are

X = u+cx+aooh ’ y = v+cy+booh . (2.2)

The linear constants ¢. = c¢_ +ic__ and coefficients d__ = a__ +ib
are estimated as X y 00 00 00
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2

a,, = (\)thh-th‘L‘h)/\)Uh
- _ 2
b, = (VIy,h thZh)/\)rrh
cy =x—a°0h. cy=y-booh (2.3)

where/nlf = n(n +2)/12 because h = 0,1,2,...,n and hence h = n/2 =
(\)_ 1) 20

The rest of the Fourier representation is in terms of the departures
u and v from these trend lines. They are formed into a new variable
w = u-+1iv, which has a mean of zero. Ordinary Fourier representation
has n + 1 terms, of which the first is a constant, representing the mean.
The trend removal in effect replaces this constant term by two terms, so
that the complete representation requires only one additional term than the

ordinary procedure,

The complex Fourier coefficients dj = a; + ibj are estimated by
the method of least squares as

n
_ 1 § : . .
aj =3 [uhcos(Xj h)+vhsm(u h)]
h=0
n
1 }: . .
bj =3 [Vhoos(hh)-uhsin()\]h)] . (2.4)
h=0
For j=0, a = b°= 0 because u = v = 0, The variance of w is
given by
n n n
2 _ 1 z: 2 2: 2 _ 2: 2
Sw =3 w + A6y = Aj ’ (2.5)
h=0 h=0 =0

where A? = ajz + bj2 . The variance of the original variable z is computed
as




= + 2.6
8 8 Sy (2.6)

n n
2 _ ;Z -2 2 _ 1 Z =2
where s ' = = (xp, - X)” and s, T3 (y,-¥y) .
h=0 h=0

A FORTRAN IV program for computing the Fourier coefficients, and
calculating the variances, is given in Appendix A.

At each altitude h for which wind data are given originally, the sum
of the n +2 complex terms provides a computed wind which agrees precisely
with the observed winds. At any intermediate level, the estimated wind is a
function of all the observed winds, not just an interpolation between values
at the two adjacent levels of observation. Hence this procedure can be used
to estimate winds at any level in a sounding.

The method is not restricted to the representation of wind vectors.
It can be applied equally well to momentum, which is a vector obtained by
multiplying the wind vector by the atmospheric density, a scalar quantity.
The method can be applied also to the positions of a balloon, observed at
fixed time intervals, to give a position-time representation, A suitable
transformation, using the observed rate-of-rise of the balloon, will convert
this into a position height representation, from which wind speeds can be
obtained by differentiation. Although this is a very promising prospect for
more accurate reduction of upper wind observations than techniques in current
use, it was not developed to the point of application because it was outside
the primary purpose of the research,

3. VARIANCE REDUCTION

The basic augmented complex Fourier representation of a vector wind
profile (2.1) has a complex constant and n +1 complex coefficients, derived
from wind observations at n +1 equally-spaced levels. In most cases, many
of these coefficients are very small, indicating that only a few of the terms
are strongly significant. The significance of each term is indicated by its
contribution to the reduction in the variance of the difference befween the
estimated and actual winds.

Linear trends account for a substantial portion of the variance in the
basic wind observations, because of the general increase in wind speed with
height to a level of extreme wind, usually somewhat below the tropopause, and
a decrease of wind with height above this level. The percent reduction in vari-
ance arising from removal of trend is
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2 _ .2, 2
10().;L = 100 (1 sw/sz). (3.1)
The percent of the total variance "explained' by the jth Fourier term is

2 _ 2, 2
100 55 = 100 Aj/sz . (3.2)

The partitioning of the total variance (2.5) into y parts in terms of the Fourier
coefficients is a consequence of the Parseval identity. Orthogonality of the

dj implies independence and allows for meaningful partitioning of the total
variance into components of variance for each term; the d;. are almost
orthogonal (MWP-I, App. B). The percrnt variance explained by each term

is a measure of its importance in the Fourier representation,

Extensive research (reported in MWP-I and MWP-II) on wind sound-
ings at 1-km intervals between 2 and 25 km, giving data at 24 levels, showed
that 82 to 95 percent of the total variance would be removed by the linear
terms and only four Fourier terms, generally those for j = 1,2, 22, and
23; in some cases other terms, notably 21, were slightly more important
than 22, For other soundings, with data at a greater number of levels,
generally the first two and the last two terms provided the greatest reduction
in variance.

Thus for some purposes an adequate representation of a sounding
can be obtained by computing all the n + 2 complex coefficients, ranging
them according to the percent of variance represented (or explained) by each,
and then using only the half-dozen best (highest ranking) terms for the
representation, This approach, while not as precise as the use of all terms,
may be needed for certain purposes, especially prediction, as discussed
later.

4. PREDICTION

Augmented complex Fourier polynomials, which describe a complete
wind profile by the use of coefficients computed from observations at equally-
spaced height intervals, can be the basis of a wind prediction method. The
various coefficients, rather than the winds themselves, are predicted by some
regression procedure, then combined (2. 1) to yield the predicted winds at any
level of interest.

A suitable set of prediction equations is developed, conventionally
in four steps:
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a, The components and functional form of a prediction model are
established,

b. The unknown parameters of the model are estimated from a
set of known data.

c. These estimated parameters, and the adopted function, are used
to make independent predictions.

d. The predicted values are compared with actual ones, and the
degree of correspondence computed,

For purposes of this discussion, the n + 2 complex coefficients
cz» doos» and dj are separated into the real and imaginary parts, giving
2n + 4 coefficients. These are denoted as gy, using the subscript k to
identify the particular coefficient. Then gyj is the kth coefficient in the
Fourier representation of the ith wind sounding in some series of soundings,
generally at the same place in the same season,

The general problem is to represent the coefficients gk, j+1 of the
i + 1st sounding as functions of the coefficients gii of some or all of the pre-

ceding I soundings. This requires the assumption of some functional form
for the dependence of the i + 1st coefficients on the preceding ones:

gk;i"‘l = f(gki) 3 i=1, 25 e0es 1 (4-1)

Several prediction models are possible, using different functional forms.
The function f may be linear, quadratic, exponential or anything else. Thus
simple linear regression would be

Bki+1 T B * Byog  + By Bk,i-1°°° (4.2)

Polynomial regression would be

Y m
_ ) a
B,i+1 ~ Bok T Z Z Bika & (£.3)

j = 1 a= 1
which reduces to the linear form when m =1,

In terms of the Fourier representation of a sounding, Bk, 1+1
could be assumed to be related only to the same coefficient, i » on the
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previous sounding, to all such preceding coefficients, to all the coefficients

on the preceding sounding and no others, or any other combination. No valid
basis could be found for the assumption that the kth coefficient on one sound-
ing is solely a function of the corresponding coefficient on the preceding sound-
ing. This would imply that the complete Fourier form is fixed from observa-
tion to observation, Hence each coefficient was assumed to depend on all the
coefficients of the preceding sounding, and perhaps on those of a few previous
soundings.

That prediction would be more accurate in ferms of a momentum
vector than a velocity vector was suggested by elementary considerations of
the conservation of gnergy in the atmosphere, Physical reasoning, and
experience, also suggested that the diurnal cycle might be important in wind
prediction, especially in the subtropics, and that the wind 24 hour prior to
the prediction time might be of some use in prediction, although the latest
available previous wind, generally 6 hours before prediction time, would
still be the most useful.

To test these suggestions, serial correlation coefficients were com-
puted (MWP-III) for one year (1962) of wind observations at 6 bour intervals
over Cape Kennedy. Any missing data had been previously interpolated to
complete the set of data. Correlations were computed for integrated atmo-
spheric zones for four basic wind representations (scalar wind, vector wind,
scalar momentum, vector momentum) at lags of 1. 2, 3, and 4, time inter-
vals of 6 hours each,

Vector speed showed the highest serial correlation, and the correla-
tion for lag 1 (6 hour) was much higher than for the other lags, including
24 hours - which was not as good as the 12 hour lag. Thus the prediction
model was developed for coefficients of the Fourier representation of vector
wind, using the corresponding representation of the wind 6 hours earlier.

5. FORMULATION

The regression model for predicting the Fourier coefficients of a
vector wind sounding from those of the preceding sounding can be developed
most readily in matrix notation. The notation to be used is generally stand-
ard, but is summarized here for convenience. Matrices are denoted by
capital letters, their elements by lower case letters. The first subscript
on an element always refers to the row, the second to the column position.
Rows are numbered downward, columns from left to right. For example,
in matrix X of n rows and p columns, X is in the ith row and kth
column, nxp

The transpose of a matrix, denoted by the superscript T , has rows
and columns interchanged: in XT ; the element Xy in the kth row and ith
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column is element xj; (ith row, kth column) of the original matrix X.
Two matrices can be multiplied only if the first has as many columns as the
second has rows. The product of U(AxB) and V(BxC) is W(A x C).
The transpose of a matrix product is the reversed product of the transposes:

onyT = wT = vTyT ,

Specifically, UT U is (B x B) while U UT is (AxA). Avectorisa

matrix with only one column; its transpose has only one row.

The principal diagonal of a matrix is the sequence of elements Xxi; .
The identity matrix I has all elements on the principal diagonal of unity
and zeros elsewhere. The inverse of a matrix, denoted by a -1 superscript,
is defined as the matrix such that

X X=XX"=1.

A matrix has a unique inverse only when it is of full rank, or non-singular,
that is, when no row or column is a linear combination of any other row or
column,

The adopted linear regression model is Eq. (4.2) for gy

as a linear function of all the 2n + 2 coefficients gy ; of the Fourler repre-
sentation of the previous (ith) sounding:

Bli+1 " B0 * Bk 18L1 Y P28, * et * SpBpi O

for k=1, 2, voe, 2n+2, and forany i. The 2n +2 =p equations are,
in matrix form, Gy ,; = Bg +By Gy or

o - o - o - - -
81,1 +1 81,0 B1,1 *** By,p 1,1
Bo,1+1 82,0 Ba,1°°° Ba,p Ba, i

= +
gp,i+1J Bp,OJ Lsp,l e E;p,p gp,iJ .
=1 L- - b
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The awkward addition of matrices can be avoided by adding a dummy variable
g0,i =1 to Gf , calling the new vector of p + 1 elements G; , and combin-
ing Bo and By intoa P x (P +1) matrix B:

- - _ 1T F T
Bl,i+1 B1,081,1° B,p 8o, i
89,1 +1 82,0 82,1+ 82,p 81,1
gp’i -+ 1 Bp’ 0 Bp)]- eeoe Bp’p gp,i (5.2)
L. - - - e -
or, simply, Gi +1 - B Gi .
Polynomial matrix regression, if desired, would be
G, = BGi+B[2] old +... + 5[] glm] (5.3)

where Q[ZJ is the principal diagonal of GT G and Q[m] is the principal
diagonal of (Q m -1 )T G , each formed into a p-element vector,

In many respects, the m-degree polynomial would be preferable to
simple linear matrix regression. Available data and estimation problems
suggest, however, that the linear model is sufficiently complicated for the
first attempt at a regression model. It will not give a better estimate than
the polynomial, but with a relatively small amount of data the linear model
will have somewhat narrower confidence intervals around its estimates than
would the polynomial.

6. COM PUTATION

Estimation of the elements of the prediction matrix B (5.2) for a
specific location, atmospheric height interval, and month or season requires
a set of appropriate wind soundings. The augmented complex Fourier repre-
sentation (2. 1) must first be obtained for each sounding, so that it is repre-
sented by 2n + 2 =p coefficients g1,j ..+» 8p,i- For computational conven-
ience, the first index is increased by one, so that the terms are g32,i «se>»
8p +1,i» and a dummy variable g; ; = 1 is introduced.

89



In applying the proposed wind vector profile forecasting procedure
for Cape Kennedy, one year (1962) of serially-completed soundings at 6 hour
intervals was available. To investigate serial correlation (MWP-III), they
had been divided into 13 consecutive time periods of 28 days or 112 soundings
each., Each sounding provided wind data at 1 km intervals from the surface
to 27 km, but to eliminate the problem of winds in the surface layer (MWP-I),
data from only 3 to 26 km were used. Thus each sounding had wind data
from n + 1 =24 levels, represented by 2n +2 =g = 50 coefficients preceded
by the dummy coefficient, or 51 in all. To provide for the continuity between
the end of one time interval and the start of the next, each 28-day interval
was preceded by the four soundings of the previous one, making a total of
112 + 4 = 116 soundings. Thus for each time period, the q +1 =116 repre-
sentations, each of 51 coefficients, form a 51 x 116 element matrix.

In this matrix, the ith column contains a one followed by all the
coefficients of the ith sounding. Discarding the last column gives a matrix
G , and discarding the first column gives another matrix S; each is
(p+1)xq, where p =2n +2 and n is the number of equally-spaced levels
for which wind data were obtained, while q is one less than the total number
of soundings, made at equal time intervals. The ith column of S is the same
as the i + 1st column of G . Hence, according to the regression model,
S; = B Gj . Interms of these two matrices, the least squares, and also
maximum likelihood, estimate of B is

T

B =(ch)las (6. 1)

The form of this estimating equation differs slightly from that often used in
multiple linear regression because, for this matrix linear regression, the
columns, and not the rows, of G and S represent individual observations --
in this case, Fourier representations of vertical wind soundings.

The major problem in estimating B from (6.1) is in inverting the
matrix G GT . A unique solution for B will be obtained only if the matrix
is non-singular, and if a computer with sufficient capacity is available for
the inversion, Most matrix inversion programs contain a singularity check
before starting the actual inversion procedure.

The possibility that G GT is singular can be lessened by eliminating
some of the coefficients in G , and thus reducing the number of rows, In
Fourier representations of vector wind profiles, many of the coefficients
contribute negligible reductions in the error variance (MWP-II). Equality
of the coefficients gkj for two or more k and for every i may cause singu-
larity, and the most likely cause for equality is that the coefficients are actually
zero. Thus any program in which soundings are represented by a large
number of coefficients - as would be the case in applying the complex Fourier
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representation to detailed wind soundings with data points every 10 or 20
meters - should include an option for selecting only the more significant
coefficients (MWP-I, MWP-II) for use in a prediction model.

Matrix inversion procedures are extremely sensitive to round-off
error. Even though computer storage can be increased markedly by addition
of storage units and by programming ingenuity, any computer must have
some upper limit to the size of matrix that can be inverted. For example,
the IBM 7094 of the Lockheed—-California Company can invert a 2000 by
2000 matrix of 8-digit elements, For wind prediction by augmented complex
Fourier polynomials, this limits the number of intervals in the original
soundings to 997, equivalent to wind observations every 20 meters through
a 20 km thickness, or every 50 meters through 50 km. But if each sounding
is represented by only half of the available coefficients, twice as many
levels can be evaluated in the first place.

7. CONCLUSIONS (IV)

The research program summarized here and in the three previous
reports was undertaken to develop a method for describing and forecasting
complete vector wind profiles. Of all the methods of representation that
were considered, Fourier polynomials of a complex variable seemed best
suited. However, the characteristics of vector wind profiles required that
such polynomials be augmented by linear terms.

Most of the investigation was devoted to developing computation
procedures for augmented complex Fourier polynomials and to studying
their properties: prediction would be futile if the Fourier representations
were not stable, but changed markedly from sounding to sounding, or depended
strongly on the particular height interval over which the representation was
made.

After the properties were found to be generally satisfactory for des-
cription, prediction methods and procedures were developed. Vector velocity
was found to have greater time consistency than scalar speed or scalar or
vector momentum, and 6 hour lag correlations were much greater than for
longer lags. Consequently, the first prediction model was for regression
of a vector velocity representation on the corresponding representation 6
hours earlier.

Computer programming of the regression model is simple, but the
estimation of the regression matrix encountered several difficulties, primarily
connected with matrix inversion. Several successive modifications of the
basic program did not yield a usable solution before termination of the study;
perhaps an additional 100 man-hours would suffice to obtain a working pro-
gram with which regression matrices could be computed. Programming
requirements are discussed in Appendix B.
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In summary, a method for representing the complete vector wind
profile was developed and some of its properties ascertained. Its useful-
ness in a prediction model could not be determined, however, because
unexpected computer programming difficulties prevented the obtaining of
the required matrix of regression coefficients. Hence no actual predictions
were made for testing goodness of fit.

Even if the regression procedure proves unsatisfactory for short-
range prediction of vector wind profiles, the augmented complex Fourier
polynomials, developed for such intended use, offer one potentially valuable
application, Such a polynomial can be used to represent the time-position
hodograph of a rising (or falling) balloon or other radar target, transformed
into a position-height function, and differentiated to provide wind velocities
without the smoothing and interpolation inherent in present methods.
Further research and development of this application seems desirable for
better measurement of wind,
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APPENDIX IV-A
COMPLEX FOURIER ANALYSIS PROGRAM

The complete FORTRAN IV computer program for determining and
evaluating the coefficients of the augmented complex Fourier polynomial des-
cribing a single vector wind profile is given in Table A-1, The first part
of the program finds and removes the linear trend lines in the two components
x and y, to form the new variables u and v, computes the complex
Fourier coefficients for each term and determines the percent of total vari-
ance that is represented (or "explained") by each complex term. Input to
the program is a single sounding: values of x and y at n +1 equally-
spaced points, i.e, atmospheric heights., These values may be wind speed,
or merely position coordinates; if wind speed, they may be multiplied by
the corresponding density (RHO) to make momentum the input.

In the second part, which is optional, the Fourier coefficients
are used to compute u - v profiles using only one, only two, only three, etc.
to all n terms, selected in consecutive cumulative order starting with the
first coefficients (j = 1) to the last (j =n).

In the program output format, the first line gives all quantities
related to the trend removal in the original x and y:
SX2: variance of x
SY2: variance of y
Al: constant term for x (denoted as c, in 2, 3)
Bl: linear coefficinet for x (denoted as a0 in 2, 3)
A2: constant term for y (denoted as cy in 2,3)

B2: linear coefficient for y (denoted as bOO in 2.3)

The second line contains headings for the original and reduced
soundings, the Fourler coefficients, and percent variance explained. The
index H refers to the height level, reindex to run from 0 to N ; no pro-
vision is made for reverting to actual heights, as specified in the original
input. The index J identifies the complex Fourier coefficients; coefficients
for J =0 are 0 because of trend line removal,

X(H) , Y(H): original values of input sounding
U(H) , V(H): residual values of sounding after trend removal
R(J), C(J): real and imaginary parts of Jth complex coefficient

SW) : fraction of reduced variance, in terms of u and v,
represented ("'explained') by Jth Fourier term:
s@) = A;"/v. where Ajz = BB@) +c%@), v = 3 Ajz
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P) : percent of total variance, in terms of x and y , repre-
sented by Jth Fourier term: P(J) = 100 Q S{J),
where Q = V/Tand T = SX2 + SY2.

The next-to-last line gives a check onthe zero-mean variables u
and v, and the reduced variance V = T A2,

SUM USUBH and SUM V SUB H are summations of u and v
over H. The lastline gives R = 100 (1 -Q) , which is the percent of the
total variance represented by the linear terms.,

A sample of the program output is given in Table A-2 for the sounding
of 1000Z on 8 June 1956 over Montgomery, Alabama.,
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TABLE A-1

$IBFTC FCUR1

CWIND

C

£ W

70

69
71

73
79

12

78

10

LEAST SQUARES FIT OF A FOURIER SERIES
DIMENSION X{200)sY(200)sU(200)9VI200)sR(200)9C(200)9A(200)+5(200)
1 sRR{200)sCC(200)sUH(600)sVHI600) 2 XX(200)»YY (200)
DIMENSION P(200)s RHO(200)
FORMAT (T713)
FORMAT(T7F10e4)
FORMAT (1H 7TF1645)
FORMAT(1H I3s BFl14e5)
FORMAT(1H1)
FCRMAT (1H I337F1645)
TWOP1=6.2831853
READ(591)MsNFsLTOTAL»NO READs NO RHO » MOM2
IF NO RHO =U READS RHOs MOM2= 2 PROGRAM COMPUTES FOR RHO
AGAIN = MOM2
IF{NO READ) 7171469
READ(5s2) (XX(I)eI=1ls LTOTAL)
READ(592) (YY(I)sI=1s LTOTAL)
IF(NO RHO) 7997973
READ(592) (RHO{(I)sI=1s LTOTAL)
INDEX = 0.
LAST = M+NF - 1
DO 72 K=NFsLAST
INDEX = INDEX + 1
X{INDEX) XX(K)
Y (INDEX) YY(K)
CONTINUE
TIME = 1.
CONTINUE
WRITE(6+5)
LINE=D.
SXA=040
SXB=040
SYA=0.0
SYB=0e0
SXHA=040
SYHA=040
N=M=1
AM=M
AN=AM~-1.0
DO 10 I=1sM
SXA=SXA +X(I)#X(I)
Al=1
SXB=X(I) + SXB
SYA= SYA+ Y(I)*Y(])
SYB=Y{(I)+ SYB
SXHA=X{1)#(Al=1.0)+SXHA
SYHA=Y(I)}#(Al-1+0)+SYHA
CONTINUE
SH2=AN*(2+0%AN+1e0)/6¢0-AN*AN/4 0
SX2=(SXA -(SXB#SX8)/AM)/AM
SY2=(SYA-~ (SYB#SYB)/AM)/AM
SXH=(SXHA -~ (SXB®#AN/2.0))/AM
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100

15

16

18

19

20

101

SYH={SYHA = (SYB®*AN/2.0))/AM

T= SX2 + SY2

YB=SYB/AM

XB=SXB/AM

XHB= AN/2.0

BlH= SXH/SHZ2

AlH= XB = BlH#XHB

B2H= SYH/SH2

A2H= YB - B2H#*XHB

WRITE (6»100)

FORMAT (1HO»11X93HSX29s13X93HSY2913X2HA1s13Xs2HBLls14Xs2HAZ29913Xs
1 2HB2)

WRITE (693)5X2+5Y2sA1HsB1HsA2H,B2H

LINE = LINE + 3

SU=0.0

SV=0.0

DO 15 K=1sM

AK = K

UIK) = X(K)=(AIH+B1H#* (AK=1,0))

VIK) = Y{(K)=(AZH+B2H*#(AK=1.0})

SU = SU+U(K)

SV = SV+V(K)

CONTINUE

DO 18 J=1sM

AJ =
Rs =
Cs =
DO 16
AK = K

Z = (TWOPI®#(AJ~1e0)#(AK=1,0))/AM

Z=AMOD(Z»TWOPI)

$Z=SIN(2Z)

CZ=C0Ss(2)

RS = RS + (U(K)I*#CZ + V(K)*52Z)

CS = CS + (VIK)*CZ =~ U(K)*52)

CONTINUE

R({J) = RS/AM

CiJ)y = CS/AM

CONTINUE

SA = 0.0

DO 19 J=1M

AlLJ) = ROJI*%¥2 + C(J)#*2

SA = SA + AlJ)

CONTINUE

Q = SA/T

RRR = (1e=-Q)*100. -
DO 20 J=1sM

S(J)Y = A(J)/SA

P(J) = 100.%#Q% S(J) .
CONTINUE

WRITE (69101)

FORMAT (1HOs3HJ/Hs BXs4HX(H) 910X s4HY (H) 910X 94HU(H) 9 10X9s4HV(H) 910X
1 4HR(J) 910X 24HC(J) 910X 94HS(J) 910X s4HP(J) )

LINE = LINE + 2

J
040
Qa0
KzlsM
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DO 22 J= 1M
I1=)-1
WRITE (694)1sX(J)eY(J)sUCU)sVIU)RII)sCLI)sSTUIIP ()
LINE = LINE + 1
IF (LINE = 54) 22922921
21 WRITE (6+5)
WRITE (6+101)
LINE = 2
22 CONTINUE
WRITE (69102)SUsSVsSASRRR
102 FORMAT (1HO»14HSUM U SUB H = sF16e5916X914HSUM V SUB H = sF16e59
1 16Xs4HV = »F16e5/7/712H R=2100(1-Q)= F1l6e5)
LINE = LINE + 2
IF (LINE +M =51) 24+24y23
23 WRITE (6+5)
LINE = 0O
24 CONTINUE
11 = O
JPHI=0
DO 50 L=1M
H = L
IF (JPHI= 3) 25945+25
25 JPHI=JPHI+1
SUH = 0.0
SVH = 0.0
DO 30 J=1sM
A = J
Z = TWOPI#(H=1s01#(AJ=~1.0)/AM
2= AMOD(Z»TWOPI)
SZ2 = SIN(2)
€2 = COS(2)
SUH = SUH +R(J)#C2 - C(J)#SZ
SVH = SVH +C(J)#CZ + R(J)*S5Z

JJ=11+J
UH(JJ ) = SUH
VHIJJ } = SVH

30 CONTINUE
IT = 11 + M
GO TO 50
45 L3=L-4
L2=L=3
L1=L=2
IF (LINE + M = 51) 45294524451
451 WRITE (6+5)
LINE = O
452 WRITE (69103)L3,L2sL1
103 FORMAT (1HO»12HH SUBSCRIPTS+6Xs13930X913929X913/3H J 99X9s5HSU(H)
111X95HSVIH) s 11Xs5HSU(H) 911X sSHSVIH) 911X 95HSU(H) 911X9s5HSV(H))
LINE = LINE + 3
DO 48 J=1sM
I= J=1
JJ=M+J
JJJ=2¥M+J
WRITE (697)1sUH(J)sVHII)sUHIJI Y oVHIIY DV sUHIJIJ ) VHJJJ )
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47

48

50

51
52
53
54

55

56

57

58

59
80
75

76

77
60

LINE = LINE + 1
IF (LINE = 54) 4849484947
WRITE (645)
WRITE (6»103)0L3sL2sL1
LINE = 3
CONTINUE
JPHI=O
I =0
GO TO 25
CONTINUE
L3= M=2
L2= M-1
Ll= M
IF(JPHI)T70970s51
IF (LINE + M = 51) 534534952
WRITE (695)
GO TO (54956+58) 4 JPHI
WRITE (69103101
DO 55 J =1M
1 =0 -1
WRITE (627)1sUH(J)YVHI(J)
CONTINUE
GO TO 80
WRITE (69103)L2sL1
DO 57 J =21sM
1 =J -1
JJ=M+J
WRITE (6s7)IsUHIJ) o VHII)sUHIJI DV oVHIII )
CONTINUE
GO TO 80
WRITE (69103)L3sL2sL1
DO 59 J=1sM
I=J=-1
JJ=M+J
JJJ=2¥M+ )
WRITE (627)1sUHIJYsVHIJ) sUHIJI NV aVHIII ) HrUH(JIII
CONTINUE
IF(AGAIN-TIME) 77+77+75
TIME = 2.0
INDEX = O
DO 76 K=NFsLAST
INDEX = INDEX + 1

X(INDEX) = XX(K) *RHO(K)
YUINDEX) = YY(K) *RHO(K)
GO TO 78
IF(0) 60s70+60
CALL EXIT
STOP 7777
END
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APPENDIX' IV-B
PREDICTION EQUATIONS

This Appendix discusses some of the procedures required for the
satisfactory solution of Eq. (6.1).

A\ -
B=@ca)lesT,

expressing the matrix /1; of regression coefficients as a function of two
matrices, G and S. These represent, respectively, all except the last
and all except the first of a series of q +1 vector wind soundings through

a given height interval, at a given location, in a specified month or 'season''.

Each sounding is represented by the coefficients of an augmented
complex Fourier polynomial, computed by the FORTRAN IV program given
in Appendix A. Before such computation, however, several preliminaries
may be required. These may involve the separation of a long sequence of
soundings, such as for several years, into appropriate "'seasons, ' and
provision for overlap of one or more soundings from season to season.

The number of soundings for each season, as well as the lowest
and highest height levels for which data are to be used, must be specified.
So many steps and so many variable are required for the entire computation
that almost all letters of the alphabet are used, requiring in some place the
use of double letters. These indicate single numbers, and not multiplication.

Schematically, the steps to be followed are:

A. Enter basic sounding and convert, if needed, to x and y.
1, Introduce complex Fourier analysis subroutine (App. A.)
B, Compute coefficients for regression,
1. Printout Fourier representation (optional),
C. Index Fourier coefficients.
D. Compute regression coefficients.

1, Compute and printout standard error of estimate of estimated regres-
sion coefficients (optional).

2. Compute and printout multiple regression coefficients of estimated
regression coefficients (optional),

A
E. Form, store on tape, and printout regression coefficient matrix B .
Some of the instructions for preparation of a program to accomplish Step A
are:

1. Read basic data tape and label each sounding as
TL for L = 1. 2y eoes QQ.
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2. Divide into E intervals by ZZ = (QQ - PP)/E , where PP is the
the number of soundings to be used as overlap, Thus L = I + MM(ZZ)
for MM =0, 1, YY) E‘l. andl=1p 2) ceed ZZ+PP.

3. Reindex eachof the E segmentson I by I = L - MM(ZZ) for each
MM.

4, Callin ZZ + PP soundings, converting if needed from
vy % to Xy 0 Y by x =-vhsin9h and ¥y =--vhc:oseh
and store on tape for all h.

5. Specify the atmospheric height interval, compatible with the basic
input, and reindex soundings from

h =TT, TT=1, o0 WW-1, WW to H=20,1 ..., N,
6. Printout basic wind data with date and time.
Step B requires the FORTRAN IV program given in Appendix A, Only
the computed trend removal and complex Fourier coefficients are used in the
next step, but an option should be provided for the computation and printout

of part or all of the quantities in the basic program, including the date and
time of each sounding,

The complex Fourier program is applied to each of the q +1 soundings
to be used for estimating the regression coefficient matrix B. The linear
trend and Fourier coefficients are reindexed and stored.

For Step B, the constant and linear terms are labled Al, Bl for x
and A2 , B2 for y. The real and imaginary parts of the Fourier coefficients,
from Step B, are called R(J) and C(J) , respectively, and are converted to
a single sequence as ggj and stored.

1. Introduce the dummy variable gj; =1 forall i.
2. Renumber (Al)i to €o; * (Bl)i to g3i*
(A2); o g4, (B2); t0 g5
3. Exclude R(0) = C(0) = 0 and convert, for j = 1, 2, «0oes» N,
R(J) to gy for k = 2j+4,
C{J) to g4 for k = 2j+5,
Consequently, R(N) is 8 -1, and C(N) is gp.i.
4. Form and store the matrix G* whichis pX (q+1) e

An option should be provided for reducing the number of Fourier coefficients
by eliminating certain rows from G* and reindexing.

For Step D, matrices G and S, each pXq, are formed by eliminating
the last and first columns, respectively, from G*, Then G G! (pXp) is
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computed, inverted, and the ir_n{ersiOn stored and checked for validity by
verifying that (G GcT) (G GT) = 1, the indentity matrix, Suggested steps
are:

1. Call in each row, in turn, of $, starting with the second, for k = 2.
Identify this row vector as Sy . Transpose to a column vector Sy
and form the p - 1 products, one for each k, G Sy » which are

(P Xq) (aX1) = (PX1).
2. Premultiply each product by (G GT)-1 to obtain

8 =@achHle X1

K = @G TGSs (eX1).

3. Foreach k from 2 to p, compute the standard error of estimate
of the kth Fourier coefficient (Step D-1) and the multiple correlation

coefficient (Step D-2) of the kth Fourier coefficient with all the coef-
ficients of the preceding sounding as

T T Q
2 _ S %G8 By

°Ek "~ a-p
T4 < 2
Rk - .(Gsk> Bk_Q(Sk)
T - 2
S 8 - a(5)
where Sk is the mean of the q elements gy; or Sk’ or
q+1 q+1
Sk—qz.gki and 8 § ngi'
i=2 i=2

~ A A
4, Arraythe p - 1 vectors as the columns B, of the matrix B

whichis p - 1X p, with elements Bm¢ » Where m = k~-1=1, 2,
.-o’p-lp and 4 = 1’ 2, ssey Po

A
This matrix B may now be used to predict Gy 4 1 » the vector of Fourier
coefficients of the i + 1st sounding (preceded by 1), from Gj, the corres-
ponding vector for the ith sounding, by

a
G ,; = BG, .
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APPENDIX 1IV-C

PREDICTION AND VERIFICATION

Given a suitable matrix /B\ of regression coefficients (developed as out-
lined in Appendix B) and a wind sounding, the general procedure proposed for
predicting the subsequent wind sounding is to express the sounding by the coef-
ficients of its representation as an augmented complex Fourier polynomial,
arrange the coefficients into proper form, multiply them by the B matrix,
and convert the predicted Fourier coefficients into wind components at the
atmospheric levels of interest, which need not be the same as those for which
the first sounding is given.

Steps in procedure are:

1. Enter the squnding (App. B, Step A)
2. Compute the trend and Fourier coefficients (App. A)

3. Reindex coefficients (App. B, Step C) as g3 » 85+ ++.s gp » to form
the vector G .

Py
4., Multiply B G‘ri to obtain the predicted coefficients s~ for
m = 1. 29 ooo)p-lo

5. Reindex the coefficients into Fourier program notation as

sl=A1. 52=Bl, s3=A2, 54=B2;
8y = R(1), 8, = R(2)s eees sp_2 = R(N) ;
8¢ = c@1), 8g = C2)s saes sp_ 1= C(N).

6. Using R(j) and C(j) compute the predicted zero-mean wind com-
ponents for any height H, orfor H=0, 1, ..., N from

N

H E[R(j) cos \jH - C() sianH]
j=1

2 i[ca) cos \jH - R() sinij]

J_

<]
i

where A = 2n/(N +1).
An optional check on the initial computations is verification that

N N
Z“H = Z"H =0
H=0 H=0
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7. From each Up » Vg » OF only for those of interest, find

Xy = uH+(A1) + (B1)H, Yg = Yy + (A2) + (B2)H .
8. Convert the subscript H to the actual height indicator h,

9. Verification of the prediction, after the observed values xj ., yp

y
the i + lst sounding are obtained, may be in terms of any or aﬂ of
the following:

a. The scalar difference, Xy~ xﬁ s Yy T yl; ;
b. The vector difference,

‘I(xh-xl'l)z + (yh-yl;)2 ;

Yy " Yn

c. The percent difference, 100 v
h

and 100
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