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ABSTRACT 

Augmented complex Fourier polynomials, in whioh mmtant and linear terms 
are added to a Fourier aeries for a complex variate, a re  developed to represent 
a hodograph. Thex are applled to hodographs representing the projection, on a 
horizontal plane, of the wind at equal intervals in the v e r t i d ,  and hence to 
describe the vertical profile of horizontal wind velocity, Reasons for selecting 
this function, and methods for its computation and application, are given in - Part  I, with polynominal ooeffioients for mean monthly winds over Cape Kennedy, 
Florida, and for four ooneecutive soundings over Montgomery, Alabama. In 
Part  11, seasonal differences, differences between the velocity and momentum 
representationrt of the wind, length and specific interval in a sounding, and the 
effect of averaging and normalizing on a profile a re  diacussed, with 11 tables 
baaed on two 34-km soundhgs and two sequences of 6-hourly soundings from 
Montgomery, Alabama. In Part II1,serially complete 6-hourly wind observations 
from the surface to 27-km over Cape Kennedy during 1962 are used to compute 
5200 serial correlations of wind integrated over 7-km layers. Criteria for wind 
profile predicting are formulated from these correlations, for four representatlone 
of the wind, four atmospheric zones and their sum, thirteen calendar intervals, 
and four time lags. In Part  IV, properties of the augmented complex Fourier 
polynomials a r e  summarized, and detailed procedures are developed for predicting 
a future vector wind profile from present and past profiles, for application to 
winds at Cape Kennedy, Florida. 

NOTE: The work documented i n  t h i s  r e p o r t  w a s  prepared under the 
sponsorship of the Aerospace Environment Divis ion,  Aero-Astrodynamics 
Laboratory, Marshall Space F l i g h t  Center,  NASA, Huntsv i l le ,  Alabama. 
M r .  Orvel E. Smith, Chief, T e r r e s t r i a l  Environment Branch, was the 
cont rac t  technical  monitor. 

The four parts of this Report previously received very 
limited distribution as  Lockheed Reports 17683 (March 
1964), 18734 (May 1965), 18989 (August 1965), and 
19128 (October 1965). Part  I was issued as NASA CR- 
61195 in February 1968, and is now rescinded by this 
combined version. The four parts have been edited 
slightly by the senior author to form four chapters of 
a eingle RePOlTti with consecutive paging and unified 
references. Distribution is provided in the interest 
of information exchange ; responsibility for the contents 
resides with the original authors. 
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MATHEMATICAL W I N D  PROFILES 

PART I . 
SUMMARY 

Augmented Fourier polynomials, i n  which constant and l i n e a r  terms 
have been added t o  a complex Fourier s e r i e s ,  appear t o  o f f e r  a means 
f o r  represent ing the  v e r t i c a l  p r o f i l e  of the  hor izonta l  wind ve loc i ty .  
Reasons f o r  s e l ec t ing  t h i s  funct ion,  and methods of i t s  computation 
and appl ica t ion ,  a r e  given. Polynomial coe f f i c i en t s  a r e  presented f o r  
mean monthly winds over Cape Kennedy, F lor ida ,  and f o r  four consecutive 
soundings over Montgomery, Alabama. 

1. In t roduct ion  (I) 

Mathematical representa t ion  of t he  v e r t i c a l  p r o f i l e  of wind i s  
des i r ab le  f o r  many purposes, and e s sen t i a l  f o r  the  r igorous comparison 
of p r o f i l e s  and the predic t ion  of p r o f i l e s  by s t a t i s t i c a l  regress ion  
techniques. Because wind is  a two-dimensional vec tor  (neglecting the 
v e r t i c a l  component, which is a t  l e a s t  an  order of magnitude smaller 
than the  hor izonta l  components), the v e r t i c a l  p r o f i l e  of the instan-  
taneous wind i s  a curve i n  three-dimensional space. The graphical  and 
a n a l y t i c a l  d i f f i c u l t i e s  i n  descr ibing such a curve have thus f a r  pre- 
vented any systematic  descr ip t ion  of complete wind p ro f i l e s .  In  t h i s  
r epor t ,  var ious poss ib le  methods of representa t ion  are explored, and 
one of them, using complex Fourier series, is  developed i n  d e t a i l .  
Appl icat ion of the method, and i t s  evaluat ion,  w i l l  be the subjec ts  of 
f u t u r e  repor t s .  

Notation has been chosen ca re fu l ly  f o r  consistency and c l a r i t x .  
The wind speed toward the east i s  denoted by x, that toward the  nor th  
by y. 
va lue  of the r e s u l t a n t  i s  z: 

Their vec tor  r e s u l t a n t  is ca l l ed  E, and the modulus o r  absolute  

1 



The d i r ec t ion  of t h i s  r e s u l t a n t ,  i n  degrees clockwise from north,  
i s  

(1 2) 
X 

z 2 
e = a r c  s i n  - = arc  cos 1 . 

This double d e f i n i t i o n  el iminates  the ambiguity of s ign  inherent  i n  a 
d e f i n i t i o n  based on a r c  tan y/x. The meteorological convention f o r  
angles ,  used a l s o  in-surveying and navigation, d i f f e r s  from the  mathe- 
mat ical  p rac t ice ,  i n  which angles  a r e  measured counterclockwise from 
the x-axis (east i n  meteorological p rac t i ce ) .  For the mathematical 
development, therefore ,  the d i r e c t i o n  i s  designated a s  

and hence measured counterclockwise from eas t .  

Al te rna t ive  t o  the Cartesian (x, y) ,  po lar  ( 2 ,  e) ,  and vec to r  k) 
representa t ions  of a wind vector  i s  i t s  r ep resen ta t ion  as a complex 
va r i ab le ,  3: 

(1.4) c = = = x + i y = z e  i@ . 

To reduce the  number of subsc r ip t s ,  a second wind vec tor  w i l l  be 
denoted as  (u, v ) ,  (w, I#), 1, or  q = w exp (is) .  Height upward from 
the ground w i l l  be  designated as h, atmospheric dens i ty  as q,  t r u e  
c o r r e l a t i o n  a s  p and i t s  sample estimate as r ,  t r u e  var iance  as u2 and 
i t s  sample  es t imate  a s  s2, and g rav i ty  a s  g. 

The complex conjugate of a complex number w i l l  be  denoted by an  
a s t e r i s k :  

3* 

Therefore, the real  

a 5 1  = 

a 5 1  = 

Other nota t ion  w i l l  

(1.5) 
- i$ = x - i y = z e  . 

and imaginary p a r t s  of the complex number $ are 

e i@ + .-ig 
= z cos @ = x, 2 

d= 
2 

i@ -i@ e - e  = z s i n  @ = y. 2 
e= 

2 

be i d e n t i f i e d  when used. 

2 



I 

2. Representations 

Because a wind p r o f i l e  is  a curve i n  three-dimensional space, i ts  
graphica l  representa t ion  on two-dimensional 
of one dimension. 
years,  each wi th  some advantages and many disadvantages. 
methods, i l l u s t r a t e d  i n  Figure 1 with mean January winds f o r  Cape 
Kennedy, F lor ida ,  are 

paper r equ i r e s  e l imina t ion  
Various graphical methods have been used f o r  many 

The four b a s i c  

a. each component, separately,  vs he ight  

b. speed and d i r e c t i o n ,  separa te ly ,  vs he igh t  

c. v e l o c i t y  hodograph 

d. pos i t i on  hodograph. 

The f i r s t  two methods r equ i r e  mental add i t ion  of va lues  from the  
two l i n e s  t o  g ive  a p i c t u r e  of the ac tua l  wind vec tor  
This d i f f i c u l t y  is eliminated i n  the hodographs, i n  which the  v e r t i c a l  
dimension (or time) is indica ted  only by successive po in t s  along t h e  
path. 

and i t s  changes. 

A hodograph is  a curve connecting the  end-points of successive 
vec to r s  drawn from a cornanon or igin.  The vec to r s  may be successive i n  
he ight ,  t o  represent  the wind p r o f i l e ,  o r  i n  time, t o  show t h e  time 
v a r i a t i o n  of wind. The former app l i ca t ion  i s  used here ,  bu t  t he  mathe- 
matical formulation is  equal ly  appl icable  t o  the t i m e  s e r i e s  case. The 
vec to r s  may represent  the a c t u a l  wind v e l o c i t y  a t  each level, o r  they 
may r ep resen t  the i n t e g r a l  o f - t h e  v e l o c i t y ,  which g ives  the pos i t i on  of 
an ob jec t ,  such as a balloon, r i s i n g  wi th  constant speed through the wind 
f i e l d .  The usual plott ing-board representa t ion  of a p i l o t  bal loon t r a -  
j e c t o r y  i s  a pos i t i on  hodograph of the v e r t i c a l  wind p r o f i l e ,  while the 
s i m i l a r i t y  t r a j e c t o r y  of a constant-level bal loon is  a pos i t i on  hodo- 
graph of the time v a r i a t i o n  of wind. 
pared from wind v e l o c i t y  information by p l o t t i n g  the  successive vec to r s  
a d d i t i v e l y  r a t h e r  than from a c m o n  or igin.  

A pos i t i on  hodograph can be pre-  

Hodographs appear  more s u i t a b l e  f o r  mathematical r ep resen ta t ion  
of t h e  vertical wind p r o f i l e  than sepa ra t e  r ep resen ta t ions  by components, 
o r  by speed and d i r ec t ion .  But choice between the two hodographs, veloc- 
i t y  and pos i t i on ,  i s  m o r e  d i f f i c u l t .  Fortunately,  t he  computational 
procedures of f i t t i n g  a function t o  observations a r e  the same f o r  e i t h e r  
type of hodograph, s ince  the purpose i s  merely t o  ob ta in  an a n a l y t i c  
func t ion  describing the  curve. 

3 
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When pos i t i ons  a c t u a l l y  a r e  measured (as i n  most meteorological 
observations using balloons,  r i s i n g  or f a l l i n g ) ,  the pos i t i on  hodograph 
should be f i t t e 2 .  One d i f f e r e n t i a t i o n  of t he  f i t t e d  func t ion  then w i l l  
g ive  the  v e l o c i t y  hodograph function, and a second d i f f e r e n t i a t i o n  the  
wind shear,  w>!rh is  of considerable fvportance. 
w i n d  inforrnat..cn i s  obtained from f i n i t e  d i f f e rences  of bal loon pos i t i ons ,  
and shzars f r m  fI’n.lte d i f f e rences  of these computed v e l o c i t i e s ,  i.e., by 
smoothed secord d i f f e rences  of t he  bas i c  observations.  

Actually,  most r o u t i n e  

When wind v e l o c i t i e s  a r e  obtained d i r e c t l y ,  a s  by sound ranging, the! 
v e l o c i t y  hodograph should be f i t t e d .  One d i f f e r e n t i a t i o n  then w i l l  y i e l d  
shears ,  while i n t e g r a t i o n  gives the pos i t i ons  t o  which they apply. Such 
pos i t i ona l  information is  needed for  s t u d i e s  of t h e  t r a j e c t o r i e s  of f a l l i n g  
o r  suspended ob jec t s  , such a s  rad ioac t ive  f a l l o u t  o r  t ox ic  po l lu t an t s .  

Any mathematical func t ion  used t o  approximate a hodograph must be 
continuous and have continuous f i r s t  and second de r iva t ives .  Since t h e  
hodograph i s  a vector-valued function - z(h) of a scalar argument, h, i n  
p rac t i ce , r ep resen ta t ion  by components i s  more convenient. Compactness 
of r ep resen ta t ion  and r e l a t i v e  ease of manipulation make the complex 
f o m ,  

s u i t e d  f o r  an attempt a t  developing an expression f o r  ~ ( h ) .  

3. Functions 

Se lec t ion  of a mathematical func t ion  t o  approximate the v e r t i c a l  
wind p r o f i l e ,  as represented by i ts  p o s i t i o n  o r  v e l o c i t y  hodograph, must 
be based l a r g e l y  on convenience and general  s u i t a b i l i t y ,  including pos- 
s e s s ion  of continuous der iva t ives .  Meteorological theory and hydrodynamic 
theory are as y e t  inadequate t o  provide a d e f i n i t i v e  func t iona l  form, 
except f o r  c e r t a i n  he ight  ranges. 

I n  the  lowermost t en  meters of the atmosphere, a i r  fZow increases  
w i t h  he igh t  without  ma te r i a l  change i n  d i r e c t i o n  (Hess, 1959) [I]. When 
t h e  temperatme l a p s e  r a t e  is neu t r a l ,  the  logarithmic wind p r o f i l e  
appears t o  f i t  a v a i l a b l e  observations: 

5 



where T is  the eddy stress, q the densi ty ,  k von Karman' s constant ,  and 
ho a "roughness parameter." 
exponential  p r o f i l e  seems more appropriate:  

When the lapse ra te  i s  not neu t r a l ,  an  

z = zl(h/hl)m (3.2) 

where z ,  is the wind speed a t  he ight  h, (usual ly  a few cent imeters)  and 
m i s  a pos i t i ve  exponent l e s s  than uni ty .  A gene ra l i za t ion ,  f o r  va r i ab le  
lapse  r a t e s ,  i s  of fe red  by the  Deacon p r o f i l e :  I 

- 1  

(3.3) 

For several  hundred meters above t h i s  boundary layer ,  wind increases  
i n  speed with he ight ,  and turns  clockwise, i n  the northern hemisphere, 
genera l ly  according t o  the Ekman s p i r a l .  A t  about the 10-meter l e v e l ,  
the  wind i s  d i r ec t ed  toward the l e f t  of the  geostrophic  wind, which blows 
along the isobars  a t  1 km or  higher .  The wind vec to r  a t  he ight  h i n  
t h i s  s p i r a l  o r  f r i c t i o n  l aye r  i s  

i g  - e-ah e i(ah-g) (3  4 )  

Here zg i s  the magnitude of the geostrophic  wind, blowing a t  an angle  ei 
( i n  mathematical no ta t ion)  t o  the p o s i t i v e  x-axis ,  and a i s  a func t ion  
of dens i ty ,  Cor io l i s  force ,  and eddy v i scos i ty .  Actual winds do fol low 
t h i s  Ekman s p i r a l  when the upper wind flow i s  s t r a i g h t  or  only s l i g h t l y  
curved, and the lowermost kilometer of a i r  has no apprec iab le  hor izonta l  
g rad ien t s  of temperature. 

Above the s p i r a l  l ayer ,  wind speed gene ra l ly  increases  wi th  he ight  
up t o  the leve l  of maximum wind, which usua l ly  occurs s l i g h t l y  below 
the tropopause a t  10 t o  1 2  km. Often the increase  i n  speed wi th  he ight  
i s  a t  about the same r a t e  as the decrease of d e n s i t y  wi th  he ight ,  so 
t h a t  between 5 and 10 km "Egnel l ' s  law" s t a t e s  t h a t  the momentum i s  con- 
s t an t .  
p i l o t  balloon observat ions 70 years  ago by Clayton i n  Massachusetts and 
Egnell  i n  France, was  o f fe red  by Humphreys (1929, pp. 135-136) [2]. 

A j u s t i f i c a t i o n  of t h i s  empirical  ru le , .deduced  from cloud and 

6 



Above the inaximm wind l aye r ,  wind speed decreases wi th  he igh t  t o  
a minimum, oil the average, a t  22 t o  25 lm, but  no law o r  r u l e  flescribing 
t h i s  decrease,  o r  t he  accoqanying  change i n  d i r e c t i o n ,  b s  ye t  ap?eared. 
Thus, while some t h e o r e t i c a l  formulations a r e  ava i l ab le  f o r  wixd b e h a v h r  
i n  the boundary and s p i r J l  l aye r s ,  a few guide l ines  can be found for t\e 
form of a func t ion  t o  dLdcr ibe  the wind p r o f i l e  above 1 km. 

4. Ser i e s  

I -  

t 
8 

I n  the absence of any theory on which t o  base a functionhl fo-r! €or 
wind p r o f i l e  descr ip t ion ,  some empirical func t ion  must be chosen. Logical 
candidates f o r  thisapurpose are polynomials. The wind vec to r  z = (x, y) 
could be represented as a function of he ight ,  h,  by two sepa ra t e  poly- 
nomials, one f o r  each component: 

m n 

%,m - L ak k ’ 
.il 

k= 0 k=O 
’h, n = 1 bk hk 

- (4.1) 

where m and n are the numbers of terms required f o r  s a t i s f a c t o r y  f i t  o r  
agreement of t h e  polynomial wi th  the observations. 
determined by the  var iance  (mean squared d i f fe rence)  of the observations 
about t h e  polynomials. 
r e spec t ive ly ,  sg and sf, and the  condi t iona l  var iances  s ; , ~  and S$,n: 

Agreement would be 

The absolute o r  unconditional var iances  a r e ,  

and s i m i l a r l y  f o r  s2 and .s$,~. 
N, 
by use of an m- te rm polynomial is 

(All suimnations a r e  f o r  h = 0, 1, 2, ..., 
and v = N -k 1.7 The exten t  t o  which the var iance  of x is reduced 

7 



Of g r e a t e r  i n t e r e s t  than t h i s  absolute  reduct ion  i n  var iance  i s  the 
r e l a t i v e  reduction, or  squared co r re l a t ion  (sometimes ca l l ed  the coef- 
f i c i e n t  of determination):  

( 4 . 4 )  

U 

Similar  expressions y i e ld  the  absolu te  and r e l a t i v e  reduct ions i n  the  
var iance  of y. 

A s  more and more polynomial t e r m s  a r e  used, i . e . ,  a s  m and n 
increase,  the var iance reduct ion increases  and the co r re l a t ions  approach 
one, a t t a i n i n g  t h i s  value f o r  m = v = n. But when r2 = . 9 ,  the  f i t  of 
the polynomial t o  the observations i s  considered adequate f o r  most pur-  
poses, although i n  some cases  values  a s  high as .95 are  des i red .  

However, the var ious  terms of the polynomials may not be equal ly  
e f f e c t i v e  i n  reducing the variance.  A higher power, such a s  a4h4, may 
be more e f f e c t i v e  than a lower one. Hence, the terms should be  chosen 
not  i n  simple order ,  b u t  according t o  the amount of var iance reduct ion 
t h a t  they provide. 

A more e f f i c i e n t  polynomial, i n  the sense of having fewer terms, 
would be formed from those terms, regard less  of t h e i r  exponents, pro- 
viding the  g r e a t e s t  reduct ion in  var iance,  o r  h ighes t  co r re l a t ion .  The 
var ious terms, akhk, should be arranged according t o  t h e i r  cont r ibu t ion  
t o  the var iance reduction. Coeff ic ien ts  ordered i n  t h i s  way may be 
denoted as a(k)h(k) ,  and the f i r s t  m-of them w i l l  be considered t o  form 
the index s e t  M. 

In  t h i s  no ta t ion ,  the  polynomial providing the  requi red  (e.g. , 90%) 
r e l a t i v e  reduct ion i n  var iance  i s  

m 

and s i m i l a r l y  f o r  yh,” 
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Such polynomials would provide s u i t a b l y  e f f i c i e n t  procedures f o r  
represent ing each of the components separately.  But they o f f e r  no l i n k  
between the components; they do not apply t o  the wind vec tor  i t s e l f .  
When r e s u l t s  obtained by two such polynomials a r e  combined t o  provide 
est imates  of the  wind vec tor  a t  each l e v e l ,  excessive i n t e r l e v e l  shears  
could be indicated.  Hence, they do not  seem p a r t i c u l a r l y  su i t ed  f o r  the  
mathematical representa t ion  of wind vec tors .  

The same object ions apply t o  the  f i t t i n g  of a complex va r i ab le  by 
a single power s e r i e s  with complex coe f f i c i en t s :  

These object ions t o  expressing the wind components as polynomial 
funct ions of he ight  apply regard less  of the method of es t imat ing the  
polynomial coe f f i c i en t s .  
g r e a t  advantage t h a t  they need not be recomputed a f t e r  s e l e c t i o n  of the  
highest-order term contr ibut ing s i g n i f i c a n t l y  t o  the var iance reduct ion,  
a r e  no b e t t e r  i n  these respec ts  than simple power series. 

Orthogonal polynomials, while possessing the  

5. Fourier  

Complex trigonometric polynomials (Fourier s e r i e s )  a r e  not  subjec t  
t o  the  same drawbacks as univar ia te  polynomials, j u s t  discussed. The 
es t imat ion  of the  coe f f i c i en t s  of each component (i.e.,  the  real and 
imaginary p a r t s )  is based.on both components of the  observed wind, and 
hence such a complex s e r i e s  ac tua l ly  es t imates  the  vec tor ,  o r  e n t i r e  
complex number, r a t h e r  than separa te  Components. 

Fourier  s e r i e s  o f t en  a r e  used t o  represent  funct ions known t o  be 
per iodic ,  b u t  are not  r e s t r i c t e d  t o  such use. L igh th i l l  (1960) [3] 
dec lares  (p.4) that a common appl ica t ion  is " to  represent  a funct ion 
which is no t  per iodic ,  bu t  instead is defined i n  the f i r s t  place ok'ly 
i n  a r e s t r i c t e d  in te rva l , "  covering perhaps 30 km i n  the  v e r t i c a l .  
Wind information usual ly  is ava i lab le  only f o r  a r e s t r i c t e d  in t e rva l .  
Descr ipt ion of the  t i m e  and space v a r i a t i o n s  i n  such a 30-km p r o f i l e  
may be poss ib le  through the f i t t i n g  of Fourier series or  polynomials. 

Such polynomials, however, have no l i n e a r  terms. Since the  wind 
o f t en  increases  r a t h e r  regular ly  with he ight ,  a t  l e a s t  over c e r t a i n  
he ight  ranges,  a l i n e a r  term obviously is des i r ab le  i n  any expression 
f o r  the  v e r t i c a l  wind p ro f i l e .  This can be provided by def ining a plane 
about which the ac tua l  wind observations vary,  and then descr ibing such 
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v a r i a t i o n s  by Fourier polynomials. The required plane is defined by 
two in te rsec t ing  s t r a i g h t  l i n e s ,  i n  the v e r t i c a l  x, h and y, h planes,  
respec t ive ly ,  t h a t  represent  the individual  wind components. 

(5.1) 

(5.2) 

(5 .3 )  

The l i n e a r  coe f f i c i en t s  - reasons f o r  the double zero subsc r ip t s  w i l l  be 
apparent  l a t e r  - a r e  

a =  , b  = 
00 00 

y )1 (h - f i )2  I J ~  (h - GI2 
L 

(5.4 )  
/L 

The constant  terms a r e  

c = ; - a  L ,  c = 7 - booG. 
X 00 Y 

(5.5) 

The or ig ina l  observations of the wind a t  l eve l  h, 

{k = \ + i y = z exp ( i g ) ,  h h  

may be expressed i n  terms of the  l e a s t  squares l i n e a r  t rends as 

Sh = c + do,h + x. 
Z 

The departure 

q h = \ + i v  h 

i s  given by 
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Thus, the va r i a t ions  of t he  wind vector  about the  l e a s t  squares plane 
a r e  

T~ = Ch - (f - d 00 6)  - dooh J 
(5 6 )  

where do, = aoo + i boo is obtained from (5.4). 

Fourier  polynomials descr ibing vh a r e  

d .  exp ( i A  j h ) ,  h = 2 d V .  
vh,M = )- J (5.7) 

The complex coe f f i c i en t s  d j  = a j  + i b j  a r e  estimated (as explained i n  
Appendix A, and discussed i n  the  next s ec t ion )  from the v values  of qh, 
obtained from the v observations of (h. 
of t he  m terms contr ibut ing most t o  the  reduct ion i n  var iance,  as d i s -  
cussed i n  the  previous sec t ion  f o r  un iva r i a t e  polynomials. 

Summation is  Over the s e t  M 

After  the  {d j )  have been estimated and the  s e t  M chosen, the 
r e s u l t i n g  Fourier  polynomial can be augmented by the  constant and l i n e a r  
terms t o  provide a complete expression f o r  the  ac tua l  wind p ro f i l e :  

- 
(h ,M = 5 + do,& - 6 )  + 1 d j  exp ( i h  jh) .  (5.8) 

W 

Applicat ion of t h i s  expression f o r  the wind p r o f i l e  t o  ac tua l  wind 
observat ions i s  discussed i n  the following sec t ions .  

6 .  Prope r t i e s  

Expansion of (5.7) shows t h a t  the est imat ion of each component 
of the wind vec to r  vh 
both the  r e a l  and imaiinary p a r t s  of the polynomial: 

and hence of ch,M, involves coe f f i c i en t s  from 

i b . ) (cos  h j h  + i s i n  A jh) = 1 ( a j  cos A j h  - b .  s i n h  jh)  = 1 ( a j  + 
J J 93 >M 

ja ja 



The l e a s t  squares es t imators  of the complex c o e f f i c i e n t s  d j  a r e ,  
as shown i n  Appendix A,  

N 
1 F  

d = a + i b j  = L vh exp (- i h  j h )  
j j  

h=O 

= 1 f (I+, + i yh) (cos h j h  - i s i n  h jh )  
V 
h=O 

N N 
= I 1 (% cos A j h  + v h  s i n  h j h )  + i 1 1 (vh c o s h  j h  - \ s i n  h jh ) .  

V V 
h= 0 h= 0 

That these est imators  a c t u a l l y  minimize the sum of the  squared depar- 
t u re s  of the observations from the leas t - squares  regress ion  plane is  
shown i n  Appendix A .  
squared departures of the two components; divided by v, the  t o t a l  
number of observations,  they y i e ld  the condi t ional  var iance  about the 
polynomia 1 : 

These squared departures  a r e  the  sums of the 

A major purpose of t h i s  study i s  t o  determine the magnitude of 
06 7 a 2 ; ~  and the r e l a t i v e  reduc- the absolute  reduct ion i n  var iance,  

t i on ,  r 2 ; M  (4 .4) ,  when a wind p r o f i l e ,  from which v observat ions are  
ob ta ine l  a t  equal height  i n t e r v a l s ,  i s  approximated by (5.8) f o r  m 5 4 .  
I f  the representa t ion  i s  adequate, (h.M may be evaluated f o r  any Value 
of h, not  necessar i ly  those equally-sbaced va lues  a t  which ch was 
observed. 
p r o f i l e  o r i g i n a l l y  described f o r  d i s c r e t e  poin ts  only. 

7 

This would provide a continuous r e p r e s e n t a t i i n  of a wind 

I n  addi t ion,  the funct ion (5.8) can be d i f f e r e n t i a t e d  t o  provide 
a continuous representa t ion  of the wind shear ,  a(h.M/&. 
the (h may be the balloon pos i t ions  a t  success ive  he igh t s ,  and d i f -  
f e r e n t i a t i o n  then w i l l  provide wind speeds a t  any height .  

A l t e rna t ive ly ,  
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Not only do ;he coe f f i c i en t s  { d j ) ,  estimated by (6.21, minimize 
S$;M, but ,  as discussed i n  Appendix B, they seem t o  be approximately 
orthogonal,  although the  prec ise  extent: of any s l i g h t  dependence 
between them is  s t i l l  t o  be determined. 

Orthogonality insures  t h a t  for  any s e t  (M) of coe f f i c i en t s ,  

that is ,  that the  contr ibut ion of each term to  the t o t a l  var iance 
does no t  depend on what o ther  terms are included i n  that t o t a l .  
des i r ab le  property has been assumed i n  the preliminary appl ica t ions  of 
Fourier  polynomials t o  the  descr ip t ion  of wind p ro f i l e s .  

This 

Orthogonality p rope r t i e s  a r e  increased when the  o r i g i n a l  observa- 
from the  least-squares  plane, a l l  t i ons  ch, expressed a s  departures  

have the  same variance.  Thus, r a t h e r  than as defined by ( 5 . 6 ) ,  com- 
pu ta t ions  of d j  by ( 6 . 2 )  should use is the var iance 

N. 
a r e  the same. Such var iances  should be used, when ava i l ab le ,  t o  a d j u s t  
the  values  of qh, a s  j u s t  indicated.  

/uq;h, where a2 
Since qh is, by (5.6), a l i n e a r  !unction of ch,Qeir var iances  

When the o r i g i n a l  observations (h = Xh + i yh a r e  means, a s  f o r  
a month o r  season, var iances  a r e  ava i l ab le  f o r  such adjustment. But 
when they a r e  s i n g l e  observat ions, the proper choice of values  i s  not  
obvious. In  the following sect ions,  examples a r e  given of p r o f i l e s  
computed from mean values  adjusted f o r  var iance,  and of p r o f i l e s  f i t t e d  
t o  individual  s e t s  of observations without var iance adjustment. The 
p ropr i e ty  of t h i s  second procedure, although it seems t o  provide an 
adequate f i t ,  requi res  f u r t h e r  invest igat ion.  

Another top ic  f o r  fu r the r  study is  the method of computing the 
plane about which the  departures  a r e  taken. The Fourier  poly- 
nomials may provide an even b e t t e r  approximation t o  the  observations 
i f  th is  t rend plane i s  constructed through the  mean poin t  s o  that the 
f i r s t  and l a s t  observations (lowest and h ighes t  wind observations) a r e  
equ id i s t an t  from it. 

. 
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7. Applications 

Augmented Fourier  polynomials, a s  developed i n  the  preceding two 
sec t ions ,  were f i t t e d  t o  two s e t s  of wind da ta  t o  determine whether the 
method showed s u f f i c i e n t  promise t o  war ran t fu r the r  s tudy and develop- 
ment. R e s u l t s  of such appl ica t ion ,  presented i n  t h i s  sec t ion ,  a r e  q u i t e  
encouraging. 

One s e t  of wind da ta  was composed of monthly mean winds, a t  l -km 
l eve l s ,  over Cape Kennedy, Flor ida.  They a r e  based on 5 years  of observa- 
t ions  ( the f i r s t  321 days were a t  nearby Pa t r i ck  A i r  Force Base), 1956- 
1961. Missing observations had been in t e rpo la t ed  before  averaging, so  
t h a t  sample s izes  were the same a t  a l l  l eve l s .  These da t a  were furnished 
by M r .  Orvel E. Smith of the Aero-Astrodynamics Laboratory, George C. 
Marshall Space F l igh t  Center, i n  advance of publ icat ion.  

The other  s e t  was made up of four consecutive observat ions,  a t  
6-hour in t e rva l s ,  over Montgomery, Alabama, on 9 January 1956. These 
were the f i r s t  four  consecutive soundings, each reaching t o  a t  l e a s t  
25 lan, i n  an extensive compilation of winter  and s m e r  soundings fu r -  
nished by the National Weather Records Center, U. S. Weather Bureau, a t  
M r .  Smith's request .  These soundings a l s o  contained da ta  on atmospheric 
densi ty ,  so  t h a t  momentum dens i ty  as w e l l  a s  wind speed could be f i t t e d  
by augmented Fourier polynomials. (Units of momentum dens i ty ,  the pro- 
duct  of wind speed and atmospheric dens i ty ,  a r e  dynes per cubic centimeter.)  

These two sets  of da ta  provided a t o t a l  of 20 "soundings," each 
sounding being a s e t  of values  of (h f o r  successive va lues  of h.  Of 
these,  12 were monthly means f o r  Cape Kennedy, four  were successive wind 
observations a t  Montgomery, and four were the corresponding momentum 
dens i ty  observations.  For each such "sounding," the  lowermost 2 km were 
ignored, because of poss ib le  f r i c t i o n  l aye r  e f f e c t s ,  as discussed i n  
Section 3, and only the  l e v e l s  from 2 t o  25 km, i nc lus ive ,  were used. 
I n  the nota t ion  a l ready  developed, ho = 2 Ian, h, = 3 km, ..., IIN = 25 km. 

Resul ts  of the  f i t t i n g  of the  augmented Four ie r  polynomials t o  these 
20 soundings a r e  given i n  Tables 1 and 2. 
terms, the  coe f f i c i en t s  are  presented i n  decreasing order  of the amount 
of var iance "explained" by them. 

l i n e  of Table 
b( l )  a r e ,  respec t ive ly ,  a23 and b23, so t h a t  j = 23 i s  used i n  the t r i g o -  
nometric terms t h a t  they mult iply.  

Af te r  t he  cons tan t  and l i n e a r  

That i s ,  t he  coe f f i c i en t& d .  have been 
ordered as d ( j  , as discussed i n  Section 4. For example, i n  8 he f i r s t  

( for  January mean winds over Cape Kennedy), a ( l )  and 
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Coeff ic ien ts  a r e  given i n  Tables 1 and 2 f o r  each wind  component 
s epa ra t e ly ,  as ind ica ted  i n  the  formulas a t  the head of Table 2 ,  which 
a r e  based on (5.8) and (6.1). The two formulas may be combined i n t o  
one expression, i n  complex notation. Thus, the mean January wind over 
Cape Kennedy may be w r i t t e n  a s  

S 
= (2.61 + 0.126 i )  - (0.054 - 0.003 i) h (h,M 

- (0.575 - 0.014 i) cos 2311 h/12 - (0.014 + 0.575 i )  s i n  2311 h/12 

- (0.530 + 0.100 i) cos 11 h/12 + (0.100 - 0.530 i) s i n  r[ h/12 

+ (0.044 + 0.173 i )  cos 2211 h/12 - (0.173 - 0.44 i) s i n  2211 h/12 

+ (0.043 - 0.140 i) cos 21t h/12 + (0.140 + 0.043 i) s i n  2a h/12. 

(7 1) 
S The s u p e r s c r i p t  "s" i nd ica t e s  t h a t  the va lues  of fjh M obtained from 

(7.1), and f r m  Table 1 genera l ly ,  are f o r  "standardizeda values. 
must be mul t ip l i ed  by the  standard devia t ions  of the wind components f o r  
t h e  appropr ia te  level t o  g ive  values approximating the  observed means. 

They 

For example, eva lua t ion  of (7.1) f o r  h = 10, i.e., 1 2  km, gives  
2.41 + 0.226 i. When each of these va lues  i s  mul t ip l i ed  by t he  standard 
dev ia t ion  of t h e  corresponding wind component a t  12 km Over Cape Kennedy 
i n  January, 16.04 and 14.24 m/sec, r e spec t ive ly ,  estimated wind speeds 
are obtained which may be compared wi th  t h e  observed means: 

Estimated xlo = 38.66 y l o  = 3.22 

Observed 44.04 3.26. 

I n  Figure 2, f i v e  hodographs are shown f o r  the mean January winds 
over Cape Kennedy. I n  the upper panel, one hodograph dep ic t s  the a c t u a l  
means, i n  meters per second, while a second one shows the  e f f e c t  of 
d iv id ing  t h e  speed a t  each l eve l  by i t s  standard devia t ion ,  and expres- 
s ing  t h e  r e s u l t  as a depar ture  from the leas t - squares  plane. 
hodograph is centered a t  the  or igin,  and is i n  u n i t s  much smaller than 
those of t h e  o r i g i n a l  values. 

The "trend" 

The lower panel of Figure 2 shows three hodographs, canputed by 
Four i e r  polynomials, no t  augmented, i . e . ,  as v a r i a t i o n s  about t he  least- 
squares plane. The "one-term" hodograph is a circle, represent ing  only 
t h e  j = 23 term, without  the preceding cons tan t  and l i n e a r  terms o r  t he  
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f i n a l  t h ree  terms. 
t he  j = 23 and j = 1 terms i n  (7.1), without t he  constant and l i n e a r  
terms o r  the f i n a l  two terms. 
r e s u l t s  of using a l l  terms of (7.1) except t he  constant and l i n e a r .  

The "two-term" hodograph r ep resen t s  computation of 

The "four-term" hodograph presents  

Shown a s  dots  i n  the lower panel of Figure 2 are the same points ,  
f o r  each 1-km l e v e l ,  a s  i n  the  "trend removed" hodograph of ac tua l  winds 
i n  t h e  upper panel. The t h i n  l i n e s  from these do t s  t o  the "four-term" 
curve ind ica t e  the  ex ten t  of the vec tor  d i f f e rence  between the  observed 
mean winds, a t  each level, and the  values computed from (7.1). The sum 
of t h e  squares of the lengths of these t h i n  l i n e s  i s  the S ~ , M  of ( 6 . 3 ) ,  
f o r  M = 4, 

For the  ind iv idua l  soundings over Montgomery, no es t imates  of wind 

Thus, 
var iance  a t  each l e v e l  were r e a d i l y  ava i l ab le .  
assumed t o  have the  same var iance ,  and no adjustments were made. 
the c o e f f i c i e n t s  i n  Table 2, when introduced i n t o  the appropr ia te  formula, 
g ive  estimated winds d i r e c t l y  i n  meters p e r  second. 

The observed va lues  were 

8. Discussion 

Under each p a i r  of coe f f i c i en t s  i n  Tables 1 and 2 are two add i t iona l  
e n t r i e s :  t he  va lue  of t he  index j f o r  the p a i r ,  and the va lue  of r2, the 
r e l a t i v e  reduction i n  var iance  (4.4) a t t a i n e d  by using t h a t  term, and a l l  
preceding ones, i n  t he  augmented Fourier polynomial. 

For the  Cape Kennedy mean monthly wind p r o f i l e s ,  t he  constant and 
l i n e a r  terms alone reduce the  variance by 80 percent i n  summer, but 
hard ly  a t  a l l  i n  November and December. Two add i t iona l  terms provide 
r2 of 85 percent o r  more i n  a l l  months, i nd ica t ing  t h a t  augmented 
Four ie r  polynomials o f  a s  few as four terms (m = 2) may provide descrip- 
t i o n s  adequate f o r  some purposes. I n  nine of t he  months, term 23 pro- 
v ides  the g r e a t e s t  reduction i n  variance,  followed by term 1, while t h e  
same terms appear i n  reverse  order i n  the o ther  three months. 

For a l l  four Montgomery 6-hourly soundings, term 1 cont r ibu tes  
most t o  the  reduction i n  variance f o r  both wind speed and momentum 
density.  
terms 2 (once) and 22 (thrice) have t h i s  r o l e  f o r  momentum density.  
Values of r2 f o r  momentum dens i ty  a r e  cons i s t en t ly  higher than f o r  wind 
speed alone. Most of t h i s  d i f fe rence  a r i s e s  i n  the  cons tan t  and l i n e a r  
terms, f o r  which r2 is between 75 and 86 percent f o r  momentum dens i ty ,  
b u t  only from 39 t o  44 percent for  wind speed. 
of "Egnell 's  law," ou t l ined  i n  Section 3, and r equ i r e s  f u r t h e r  study. 

But whereas term 23 i s  second most important f o r  w i &  speed, 

This may be a r e f l e c t i o n  
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The ex ten t  t o  which these r e s u l t s  depend on the p a r t i c u l a r  he ight  
i n t e r v a l  chosen a l s o  requi res  add i t iona l  inves t iga t ion .  The s t ronges t  
wind speeds i n  a l l  the soundings a r e  near the 'middle of the  2 t o  26 
km in t e rva l  s tudied,  which may explain the cons i s t en t  appearance of 
term 1 a s  contr ibut ing s i g n i f i c a n t l y  t o  the  r e l a t i v e  reduct ion i n  
var iance.  S imi la r ly ,  the importance of term 23 may ind ica t e  excessive 
leve l - to- leve l  v a r i a b i l i t y ,  perhaps a c t u a l  bu t  a l s o  possibly a r i s i n g  from 
observational errors-  and computational procedures i n  the' compilation of 
wind inf  orma t ion. 

These and o ther  considerat ions ind ica t e  t h a t  t h e  most f r u i t f u l  
appl ica t ion  of augmented Fourier  polynomials t o  wind p r o f i l e  desc r ip t ion  
may be the i r  use t o  descr ibe the pos i t i on  hodograph, as obtained d i r e c t l y  
from a balloon or  o ther  i nd ica to r ,  and the subsequent d i f f e r e n t i a t i o n  of 
the polynomial t o  provide wind speeds. 
improvement over the present  method employing successive f i n i t e  d i f -  
ferences,  and may give g rea t e r  d e t a i l  of the wind p r o f i l e  and of i t s  
der iva t ive ,  the  wind shear.  

This may provide considerable  

Other top ics  f o r  f u r t h e r  study a r e  s t a t i s t i c a l  tes ts  f o r  the s i m i -  
l a r i t y  o r  d i f fe rences  of two wind p r o f i l e s ,  leading t o  c r i t e r i a  f o r  t h e i r  
combination. For example, a r e  January and February wind p r o f i l e s  over 
Cape Kennedy s u f f i c i e n t l y  s imi la r  t h a t  a combined winter  p r o f i l e  des- 
c r ibes  them adequately? Also requi r ing  s tudy a r e  procedures f o r  pre- 
d i c t i n g  one p r o f i l e  from another ,  a s  i n  the case of the 6-hourly soundings 
over Montgomery. 

Despite the need f o r  these var ious extensions of the study, and 
fu r the r  e labora t ion  of the technique, the  work reported here  shows t h a t  
mathematical desc r ip t ion  of an e n t i r e  wind p r o f i l e ,  e i t h e r  means o r  
1 1  instantaneous," can be a t t a ined  with acceptable  prec is ion  by the  use 
of augmented Fourier  polynomials. 

18 



- 
m o  

a m  
r - .  or- 
0 1  

N 
& 

m m 
O m  
o m  - I I  

1 - 
m o  
Q .  
0- . m  
4d 

& 

m e 4  
O N  

- I  
0-7 
I 

NO 
+rn . m  
-I. 

3 1  
I N  

& 

. 
n 
3 N  
- 1  
3-7 
I 

- 
h 

W 
d 
P 

n 
d 

6 
v 

- 
n 
PI 

e 
v 

n 
R 

la 
W 

- 
n 
N 

e 
v 

n 
(u 

6 
W 

- 

n 
.-I 

P 
W 

n 
rl 

a 
v 

- 

0 
0 

P 

0 
0 

m 

A 
L) 

X 
L) 

- 

- 

c) 

> N  
. I  

3 - l  

. n 
Z N  
. I I  

3 -  

0 

> N  - n  
> m  

n rl 
N 
3 N  

- w  
3 -  
I 

co 
O N  
O N  

* II o m  

o m  c n -  or- 
.OD 

o n  
I N  

& 

e 
ln 
O N  
. I  
0-7 

I-I- 
N .  

?3 
Od 

& 

N 
I-m 
m N  

. I  
0-7 

I 

m N  
N .  
O m  

O B  
N 
& 

e m  

0 
b c y  
r lN  
. I  o- l  

x"! 
4 J  
OI-  . m  

& 

m 
00 
lnd 
* I  o m  
I 

00 
0 .  
40 

e m  

& 
?or 
0 m 
ln4 
' I I  
0-7 
I 

.a \  

?J 
& 

0 
N 

0-7 
?.; 

m ?  

dd 

I 

- 

l n m  
d \ D  

& 

ln m m  

o m  
5 7  
I 

- 
m 
d 
0 
.ul 
0 .  

I C O  m 
II 

u)N 
P s &  
0 

0 
I 

N? 
m r l  

. I  
O N  

& 

~m 

m 
r l m  
In- 

' I I  
0- 
I 

~ 

\o 
m 
0 .o 
0 .  

'2 
n 

PsN 
P s &  
N 

0 
I 
- 
co 
N 

00 
0 
I 

m 

v 
d 

Q 
d - 

E - 

0 
0 

O N  

N 
W 

?IN 
d &  
0 

0 
I 

? 
m 
0 
0 
.u) 
0 .  

d 
H 

3 N& 
9 
0 
I 

\D 
N 
d 

00 
0 
H 
m 

d 
b n  

N 

r- 
rl 

0 .  
l r -  

4 

9 ,  

II 
CON e &  
0 

0 
I 

- 
m 
0 

00 
0 
U 

Q 

-7 
d 
d 

N 

5 
0 
.rl 
0 -  
Iu )  

N 
II 

\DN 
C O &  
0 

0 
I 

- 
0 
N 
m 
00 
0 
I1 
-7 

0 

N 

m 

0 
d 
0 
.cn 
0 .  

4 
i c n  

II 
\ D N  
ln& 
0 
0 
I 

rl 
N 
0 
.d 
0 .  

1 0  
r- 
II 

N N  
O &  
N 

0 
I 

N 
0 
0 

N 
2 P d 

2 
? 
00 

1 0  
1 
-7 m 

N 

Wi 
u) 
0 

00 
1 0  

-7 
n 

m 
u) 

4 

00 
0 
II 
-7 

m 
\o 

d 

F9 w Frr - 

19 



.. 
h 
P 
E 

.d 
M 

hl 
4 

$ 

B 

B 
i 

II 
X 
a 
$4 

n 

B 
hl 
U 
m 
M 
G .d 
U 
$4 
m u 
m 

B 
E 
.d 
W 

c 
U 

.r( 
-% 
2 

2 

u 
m 

A 
a 
E m 

x" 
m 
U 

ii 
i 0 

-0 
G 
d 
5 

-7 

E 
*I 
m 
n 

W 
cu 

P 
I 

% 
-7 

m 
0 
0 

N 

m 

n 

W 

W 

+ 
n 

3 
*r) 

E 
d 
m 
n 
4 

P 
W 

I 

3 
.r) 

m 
0 
c) 

n 
rl 

m 

+ 
n 

0 

W 

W 

m 
+ 

X 
W 

11 

s 
X 

+ 
n 

3l 
*m 

c 
.d 
rn 
n n 
P 
v 

I 

% 
'm 

m 
0- 

n n 
m 
W 

W 

+ 

*r) 

m 
0 
0 

cu 
P 

+ 

n 

W 

% 
q 

G 
.d 
m 
n 
N 

m 
W 

v 

+ 
n 

?4 
-l 

m 
0 
0 

n 
rl 
W 

P 

+ 
5 
*r) 

G rl 
ln 
n 
rl 

m 

+ 
W 

W 

% 0 
P 

+ 
h 

W 

II 
Jz 
h 

q-T$ hlN $4 

\O 
rlhl 

PI O W  " II m 0 -7 

hl u m  

m -7 w m ?Y 

Z? 

T d' 
O d  
.I- 

# I  $4 

hl 
n m 
rl a 4  
W II m w .r) 

I 

m 
d 
o w  

* II 
d N  

$4 

3" 

n z :  . I1 
& 
I - 

d \ O  
b .  
m r -  

.\O 
3 II 
I N  

$4 

m zrl . I I  
r- -m 
I 

0 m 
0- 

4 . W  . m  
II 

N 
m u  
0 m 
0 
I 

. .  

- 
hl 
m 
I- 
hl 
IO 
0 

II 
.I- 

In m 
hl 
hl - 
0 
0 m 
d 

hl 
m 
??  
rlrl I 
\ O h  
4 

9 
d 
I 

m + 
o\ m 
O N  
. .  
I 

\ O h  :: 
rl 

1 

d 
m N m  
d o  
. .  
P 

l n $ 4  
0 
I- 

O 
I 

hl W u \o 

?? o m  ".? o\O 

w $ 4  P P  
m $ 4  m PI 
I- 

O 0 
I I 

'9 

4 m 
h '9 

-7 " * ,  

" 5  4 1 0  1 0  

0 0 
n 

r- 0 
I- 

In m 
rl d 

? 

rl m 
hl 0 

20 



APPENDIX I-A 
ESTIMATION OF COEFFICIENTS 

= $ +  

Complex coe f f i c i en t s  d j + i b j ,  f o r  j = 0, 1, ..., N, a r e  t o  
be estimated from a set of v f ai + 1 complex numbers % so as t o  mini- 
mize the  sum of the  squared d i f fe rences  

- i h  j h  
-2E(% C d ; e  ) I d .  e i h  jh 

M M 
J 

h=O h=O 

f o r  each index setM containing 1 5 m 5 v elements, when the  est imators  
N ; ~  a r e  obtained from 

The v numbers { 1 are assumed t o  represent  values  o r  observations 
a t  Y equal i n t e r v a l s  % = 0, 1, ..., N. These may be i n t e r v a l s  of t i m e  
o r  space; i n  the  s p e c i f i c  appl ica t ions  t o  be made here,  they a r e  equal 
i n t e r v a l s  of height ,  and the  numbers {m) represent  wind vec to r s  a t  suc- 
cess ive  l e v e l s  i n  the  atmosphere, These vec to r s  a r e  expressed a s  depar- 
tures from a plane of b e s t  f i t ,  i n  t he  sense of minimizing var iance,  t o  
the  bas i c  da ta ;  t h a t  is, any l i nea r  t rend with he ight  has been removed. 

For each value of h 

(A-3) 

* The a s t e r i s k ,  *, denotes the  complex conjugate. 
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* because qhqh = IqhI2 = wg, i n  the no ta t ion  of Section 1. 

exp [ i h  h ( j  - k)]  = 1 when j = k, the  second term becomes 

Since 

=I ldj12 + 1 I d .  dk * e i h  h( j -k)  
J 

ja j f k  

( A - 4 )  

Expression of qh exp (- i h  jh)  as ahj + i&lj permits  the f i n a l  
term i n  (A-3) t o  be w r i t t e n  as 

Since ld j I2  = a? + bq and C exp [ i h  h ( j  - k) ]  = 0, the  sum of J squares (A-1) t o  be minimized becomes 
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t 

The usual minimization procedures give,  f o r  each value of j ,  

(A-7) 

Se t t ing  these de r iva t ives  equal t o  zero gives  

Consequently, 

N N 
d = L  4- i hj> =;Lo 1 exp (- i h  jh ) .  

j v  
h=O 

(A- 9) 

For computation, the  real and imaginary p a r t s  a r e  evaluated separately:  

a = -  [x cos (A j h )  + vh s i n  (A j h ) ] ,  j v  

23 
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I n  polar  coordinates , 

a = 1 L wh cos ($., - j h ) ,  j v  
h=O 

(A- 11) 
N 

. v  
b = A L w s i n  (5, - h jh ) .  j v  h 

h=O 

Use i n  (A-2) of any s e t  of m of these values f o r  d = a j  + i bj 
w i l l  insure  that the r e s u l t i n g  estimator,  qh;M, when i n  i roduced i n t o  
(A-1), w i l l  minimize the sum of squares S?;M. When m = v, i .e . ,  when 

the  sum (polynomial) has a s  many terms a s  the o r i g i n a l  observations,  
S 2 . ~  = 0. For smaller sets, i.e., fo r  m < v, the sum of squares S;.M 
,211 depend on the exact composition of the set M. Thus, S:;M can i e  
computed for  each of the v sets M i n  which m = 1, i .e . ,  f o r  one term 
only, and for  the v(v + 1 ) / 2  s e t s  of two t e r n s  each, and so on, t o  f i n d  
the combination giving an acceptably small S:;M from t h e  smallest s e t  M. 

However, when t h e  c o e f f i c i e n t s  { d j ]  are orthogonal, i n  the s t a t i s t i c a l  
sense, the cont r ibu t ion  of each i s  independent of t h a t  of the o the r s ,  and 

(A- 12) 

Then, SG;j can be computed f o r  each. orthogonal d .  and ranked i n  descend- 
ing order t o  determine the minimum s e t  M f o r  w h d h  s:;~ fs acceptably 
small. The ex ten t  t o  which the c o e f f i c i e n t s  ( d . ) ,  estimated by (A-g), 
(A-lo),  o r  (A-ll), s a t i s f y  these requirements i s  examined i n  Appendix B. J 
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APPENDIX I-B 

ORTHOGONALITY 

Two d i f f e r e n t  kinds of orthogonality a r e  involved i n  the  develop- 
ment of complex Fourier polynomials f o r  the respresenta t ion  of wind 
p ro f i l e s .  One kind is t h a t  of the s e r i e s  of orthogonal polynomials 
used t o  represent  a sounding. I n  such representa t ion ,  func t iona l  or tho-  
gonal i t y  requi res  that 

1 i h  j h  .ih kh = e 
j = k  
j-# k. 

U s e  of such a system of orthogonal functions permi ts  judgement of 
the  adequacy of the  representat ion i n  terms of the  sum of the squares of 
the  coe f f i c i en t s .  This sum measures the  sum of the  squares of the d i f -  
ferences between the  polynomial representat ion and the  funct ion being 
f i t t e d ,  a f t e r  removal of l i n e a r  trend. When orthogonal functions a r e  
used, a smaller  number of terms can be se l ec t ed  without recomputation 
of Coeff ic ients .  

Another kind of orthogonality appears when .a sounding is viewed 
a s  a co l l ec t ion  of random var iab les .  
Fourier representa t ion  (5.7) a r e  a l s o  random va r i ab le s ,  s ince  they a r e  
l i n e a r  combinations of the  o r ig ina l  random va r i ab le s  (6.2). Orthogonality 
of the  system of coe f f i c i en t s  {dj)  is tantamount t o  t h e i r  being uncor- 
r e l a t ed .  Uncorrelated Gaussian random var iab les  a r e  s t a t i s t i c a l l y  
independent - a very h ighly  des i rab le  property i n  computing p robab i l i t y  
statements.  The bas i c  physical  quan t i t i e s ,  i .e . ,  bal loon displacements 
o r  wind speeds, expressed i n  Cartesian coordinates,  a r e  usua l ly  assumed 
t o  be approximately Gaussian. Hence the  coe f f i c i en t s  { d - ) ,  being l i n e a r  
combinations of them, a l s o  should be approximately Gaussian, e spec ia l ly  
because of cen t r a l  l i m i t  e f f ec t s .  

Then the coe f f i c i en t s  { d j )  i n  the  

4 

Orthogonality of the { d j )  is almost impossible t o  e s t a b l i s h  unless  
the  {qh) a r e  second-order s t a t iona ry  with a r e a l  covariance function. 
The need f o r  second-order s t a t i o n a r i t y ,  that is ,  tha.t the  covariance of 
(qh, q#) depend only on the d i f fe rence  Ih - a [ ,  appears i n  the  evalua- 
t i o n  o the  expression f o r  the  variances of the  individual  d . When the  
expectat ions of the {qh), and hence of the  {d . ) ,  a r e  zero,  t i e  var iance 
of each d j  is given by 

1 

* The a s t e r i s k ,  *, denotes the complex conjugate. 
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This involves the covariance of the observed va lues ,  o r  t h e i r  depar tures  
from the plane, which i n  tu rn  depends on the c o r r e l a t i o n  ( r )  between the  
two components : 

r 1 

1 r 1 

Second-order S t a t i o n a r i t y  r equ i r e s  t h a t  these c o r r e l a t i o n s  depend, 
f o r  each va r i ab le  u o r  v, and for  any separa t ion  h - 1, denoted as 2, 
only on t h e  separation: 

Certain proper t ies  of t he  separa t ion  a are needed: 

(B-4) 
max (-T, 0) 6 R 5 min (N - 7 ,  N) .  

I n  t h i s  notat ion,  (B-2) becomes 

where Cmay be ca l l ed  a c o r r e l a t i o n  function; C(0) = 2,  because 
ru(0)  = rv(0)  = 1. 
f o r  t he  variance is 

I n  terms of t h i s  funct2on C, t he  expression (B-1) 

-N 
(B-5) 

1 = v-1 [C(O) + 2 f (1 - d v )  cos ( A j T )  E C(7)  

1 
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. 

because the  var iance is real-valued. 
of T given by (B-4).] S imi la r ly ,  the covariance funct ion f o r  the  coef- 
f i c i e n t s  is 

[All  summations a r e  over the  range 

N N  

E(d. J k  d*) = v - ~  1 1 exP [i, (ka - jh)]E(rth ria) 
h=O R=O 

N 
m 

L 
F - N  

& 
R 

p = k-j ,  

because k.8 - j h  = Jp - j T .  
gonal. 
term by term, invoking the  or thogonal i ty  proper t ies  of tr igonometric 
series. 

This must be zero f o r  d .  and dk t o  be ortho- 
To determine whether such is the  case, (B-63 must be examined 

Since 

m+l 1 - r  r j  = 1 - r  
Y 

j = O  

L 
j = O  p = 0. 

The l a s t  summation i n  (B-6) , over R ,  is ,  by d e f i n i t i o n  (B-4) , from 
max (-T., 0) t o  min (N - T, N), and hence depends on T a s  w e l l  a s  on 
p. It may be denoted a s  y ( z ,  p): 

0 7 = 0, 
0 5 . 8 5  N; 

T < 0, - 
- T S . ~ S  N. 

1 - exp (-ih PT) 
1 - exp (ihp) 



Thus, 7 ( - ~ ,  p) = -7(z,  p).  In  the expression fo r  y ( ~ ,  p)  when T > 0, 
mu l t ip l i ca t ion  of numerator and denominator by 1 - exp (-ihp) gives 

This is  zero when P T  is  an in t eg ra l  mul t ip le  of v and is small f o r  r 
such t h a t  p~ is c lose  t o  an in t eg ra l  mul t ip le  of V. 

Next, the  co r re lh t ion  funct ion C(T)  must be examined. It is. r e a l  
i f  and only i f  it is  even, i .e . ,  i f  ruv(-7) = ruv(T). I n  t h i s  case,  
(B - 6) be comes 

N 

Fl 

1 
= O(;). 

(B-10) 

The summand of equation (B-10) w i l l  not  be l a r g e  s ince  IC(r) I 5 C(0) = 2 
and tends t o  zero a s  T becomes large.  The m u l t i p l i e r  s i n  ihT w i l l  have 
a dampening e f f e c t  f o r  the smaller  values  of T. 

Thus, E(djdi)  apparent ly  is always small, although that i t  is 
i den t i ca l ly  zero f o r  a l l  T,  a s  is requi red  for complete or thogonal i ty ,  
has not  been proved. 

tinuous one. Thus, the quest ion of or thogonal i ty  may be analogous to  t he  
general  problem of the  ex ten t  to  which l a r g e  sample theory can be used 
f o r  small samples, or t o  which proper t ies  of a continuous funct ion can be 
appl ied t o  a d i s c r e t e  one. For the  present  purpose, t he  assumption of 
or thogonal i ty  Beems reasonable. 

Actual ly ,  E(d d t )  + 0 as N + 1 = 3 a, i.e., 8s 
more and more levels are used and t 4 e d i r c r e t e  model approaches a con- 
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MATHEMATICAL WIND PROFILES 

PART 11 

SUMMARY 

The application and properties of the augmented Fourier polynomial 
are examined in detail, Seasonal differences, differences between the 
velocity and momentum representations of the wind, length and specific 
interval in a sounding, and the effect of averaging and normalizing on a 
profile are treated in the discussion. Numerous tables are presented for 
comparative purposes. The basic data examined were two 34-kilometer 
soundings and two sequences of 6-hour soundings from Montgomery, Alabama, 

1. INTRODUCTION (IS) 

. 

Mathematical representation of the vertical profile of wind by aug- 
mented Fourier polynomials was proposed in Mathematical Wind Profiles , 
hereafter referred to as W P - I .  In that report, the basic problems of wind 
representation were discussed, and the augmented Fourier polynomials 
were developed, In such an exploratory study, many questions were posed 
which could not be answered immediately. Some of these questions are 
discussed further in the present (second) report, which also explores some 
problems mentioned in MWP-I as requiring additional inveetigation, 

t l  Model - 
For completeness, the basic properties of augmented Fourier poly- 

nomials are summarlzed here from MWP-I. The eastward (x) and north- 
ward @) components of the horizontal wind at a given level are combined 
into a complex variable z = x + i yo A new complex variable w = u + iv ,  
obtained from z by the removal of linear trends, utilizes the residuals u 
and v, which have zero means, The Fourier representation of this new 
variable w ie 
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n 
w (h) = E d j  exp ( iAjh) ,  h = 0 ,  1, n, 

j = o  

where A = Zdv and v = n + 1, Each complex Fourier coefficient d. is com- 
posed of a real and imaginary part: dj = aj + ibj. The dj are estimated 
by the method of least squares as 

n 

a j v  =I, [ U ~ C O S  (Ajh) + v h s i n ( X j h )  1 
h =  0 

n 
b j  =I v ~ [ v h c o s ( X j h ) - u h s i n ( h j h ) ]  

h =  0 

- -  
For j = 0, a. =bo  = 0 because u = v = 0. The variance of w is given by 

2 where A j 2  = a 
as 

+ bj2. The variance of the original variable z is computed 

2 + S  2 
Y 

s 2  = sx 
Z 

... n 

(1.4) 

h =  0 h =  0 
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The percent reduction in variance by removal of trend lines in x and y, 
referred to as percent variance explained by the linear term, is 

. 

2 2  100 SL2 = 100 (1 - sw /sz ). 

The percent of the total variance explained by the jth harmonic is 

(1.6) 
100 s j  2 = 100 A j  2 2  /sz , 

The partitioning of the total variance of w (1.3) into v parts in terms of 
the complex Fourier coefficients is a consequence of the Parseval identity, 
Orthogonality of the d s implies independence and allows for  meaningful 
partitioning of the to d' variance into componentsof variance for eaqh 
harmonic. The dj 's are shown to be almost orthogonal in Appendix B of 
MWP-I. The percent variance explained by each harmonic is a measure 
of that harmonic's importance in the mathematical description of the pro- 
file, 

1.2 Harmonics 

The method was applied in MWP-I to twelve monthly averages from 
Cape Kennedy and to four soundings at consecutive six-hour intervals in 
January, 1956 from a two-year (1956-1957), winter (Dec,, Jan. , Feb.) 
and summer (June, July, Aug,) set of data from Montgomery, Alabama, 
In'the Montgomery data, both velocity and momentum representations were 
used, All cases were analyzed in terms of %-point profiles of 2 through 25 
km, The total variance in each case w a s  composed of contributions from 
the linear term and 23 harmonics. In these 20 cases analyzed in MWP-I, 
only the linear term plus four selected harmonics were needed to explain 
85 to 95 percent of the total variance. 

The original intention was to base the final regression equations for 
prediction on a reduced number of selected harmonics. However, subse- 
quent computer runs have ahown that only about two seconds of IBM 7094 
time are required per profile for computation of all quantities needed in 
complex Fourier analysis. This includes the trend lines in x and y and 
their removal, all complex Fourier coefficients, and the percent variance 
explained by the linear term and each harmonic. Use of all harmonics for  
regression thus seems more advantageous because of the perfect fit there- 
by given, with negligible increase in computation time, 

However, is some cases, the use of all  coefficients, hear trend and com- 
plex Fourier, may not be possible. The number of profiles available for 
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estimating regression coefficients may be less than the total number of 
coefficients; computer capacity may be inadequate to solve sets of linear 
equations of large order, Linear regression for the complete representation 
requires estimation of regression coefficients which number twice the 
number of data points plus three. A minimum of N observations is required 
to estimate N regression coefficients, but for  good regression estimates 
the number of observation should be much larger than the number of coef- 
ficients to be estimated. In many cases, sufficient observations may not 
be available, and the reduced harmonic representation should be used. 

The major computer operation in linear regression is the solution of a 
linear set of equations, say p equations in p unknowns, which in matrix 
form requires the capacity to invert a matrix of order p, Inveraion of a 
normal matrix of order 100 can be handled in core on the IBM 7094. Although 
a matrix of order 450 to 500 can be inverted with considefable time and 
difficulty, the small magnitude of some Fourier coefficients, plus pro- 
gramming difficulty, suggest about 100 as the maximum number of regres- 
sion coefficients that could be used for prediction. While the present exa- 
mination of 24-point profiles can be handled easily, soundings with more 
than 48 points would cause problems. Thus, for representation and pre- 
diction of a long enough sounding with data spacing of less than 1/2 km 
a reduced number of harmonics is almost mandatory. 

Although all harmonics may ultimately be used for  the present study, 
sufficient information'exists to point out the importance of studying various 
features of the reduced harmonic representation. The relative importance 
of the various harmonics and their contribution to the variance were studied 
for additional soundings to supplement the results of MWP-I and to provide 
information about the method of reduced harmonics. The discussion, in 
terms of what was found in particular representations, may provide suf- 
ficient guides to more important developments. 

1,3 Applications 

In this further application and extension of the previous work, the 
complex Fourier method is used to represent and examine the two highest 
winter and summer soundings of the two-year Montgomery, Alabama 
data, These representations involve 11 overlapping 24-point partitions of 
each soundings, Two additional series of 6-hour observations over periods 
of 24 hours o r  longer and to 25 lan o r  higher also are studied. 

The basic wind data for each sounding were represented and ana- 
lyzed separately in terms of velocity and momentum. Velocity is repre- 
sented by the x and y Cartesian components of the wind at consecutive 
heights, The momentum representation is the product of the velocity 
(x, y) and the atmospheric density p at sequential heights and ha8 units 
of dynes per cubic centimeter, The importance of momentum as a pre- 
dicting variable has not as yet been established, 

. 
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Often, over certain intervals in the atmosphere, an increase in 
wind speed with height is accompanied by a proportionate decrease in atmos- 
pheric density with height, which implies that the momentum is constant 
throughout the interval. This situation, observed many years ago, forms 
the baais for "Egnell's law" (see MWP-I) which states that between 5 and 
10 km the momentum is constant. Therefore, momentum may be a better 
predicting variable than velocity, provided it is constant over a large 
enough portion of the prediction interval. In MWP-I the momentum repre- 
sentations of the 6-hour Montgomery data showed larger cumulative per- 
cent variance explained than the velocity representations when compared 
for an equal number of harmonics. 

2. SCOPE OF WORK AND BAslC DATA 

The material presented in this section is primarily descriptive. 
Empirical results, in the form of tables, are used to explore some ques- 
tions posed in M W P I  and to supplement the work of that report. Basic 
considerations, in addition to application of the method, are: seasonal 
differences, velocity-momentum differences, importance of the first 2 km, 
importance of various 24-km intervals in a longer profile, differences in 
importance between arbitrarily selected harmonics and those observed, 
and the length of the profile in variance explanation. By necessity most 
of the results are very general and may have serious limitations because 
of the small sample size. 

Complex Fourier analysis was performed on the highest winter 
and summer soundings in the two years of Montgomery data on hand. These 
were  for 03002 on 12 February and lOOOZ on 8 June, 1956 both from 0 
through 33 h. The basic data for both a re  given in Appendix A. In all, 
52 Fourier representations were computed from the two 8oundings. These 
were  for 0 through 33 @n, 2 through 33 km, and 0 through 23 lan, 1 though 
24 km, . . . . , 10 through 33 km, on each sounding separately for velocity 
and momentum. 

2.1 Explained Variance 

hereafter referred to as CPVE, by a few harmonics was'of particular 
interest in the representation and analysis of the monthly wind averages 
from Cape Kennedy and the 24-hour sequence in January from Montgomery. 
Differences in CPVE were obeerved between the velocity and momentum 
representations of the wind in both sets of data. Monthly comparisons of 
the Cape Kennedy data showed some seasonal effect on the CPVE; seasonal 
comparisons were not possible for the routine 6-hour soundings for  Mont- 
gomery because only one sequence was computed for January. From 
Eqs. (1.5) and (1.6) 

In MWP-I the large amount of cumulative percent variance emlained, 
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The preliminary nature of MWP-I left unanswered the question 
whether the observed differences were real, o r  were due to spurious sam- 
pling fluctuatioi. The answer to this question would provide insight into 
the method of representing the wind and the possible seasonal limits to 
prediction. 

Another question of importance left unanswered was that of how the 
CPVE changes with the particular interval and length of interval chosen. 
Whether one particular subset of a wind profile has a greater CPVE in a 
limited Fourier representation than any other was not determined in MWP-L 
The amount of CPVE apparently varies inversely with the length of the in- 
terval when a reduced number of harmonics is used for the representation; 
this will be discussed later in this report, 

Of special interest in the interval representation are the surface 
and first kilometer, These were excluded in MWP-I because of assumed 
friction effects, and representation began at the 2-km level. 

First, the decomposition of each of the 34-point soundings (mom- 
entum and velocity for each season) into eleven profiles of 24 points each 
is considered, Information about the representation of the total profiles 
is given later in this report. Table 1 gives the CPVE by the linear term 
alone and the linear term plus the four or  six highest ranked harmonics 
in variance explanation. In a 24-point profile with zero mean 23 harmonics 
a re  possible; thus, four and six terms regresent 17*4% and 26.1% of the 
possible number of harmonics, 

The results shown in Table 1 are only indications of a more com- 
plicated situation and are applicable only for the special case of a reduced 
number of harmonics based on a particular sample of two soundings. The 
results do have additional value as examples of the application of the com- 
plex Fourier method of representing a wind vector profile. Only the CPVE 
by the linear plus four higheat ranked harmonic terms will be discussed. 
The linear plus six highest ranked harmonic terms gives approximately 
the same indications about seasonal and velocity-momentum relationships, 
although the inclusion of two extra terms gives a larger CPVE and a smaller 
range of CPVE values, as expected, The particular height interval used 
in the discussion will be designated by its lower and upper limits, with a 
dash between, e.g., 2 through 25 k m  will be written 2-25, 

- I  
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In general the CPVE values in Table 1 show a considerable degree 
of variation with interval. The 12 Feb 56 momentum values increase 
monotonically with increasing height interval; the other three soundings 
show no consistent increase o r  decrease with interval height. A more 
complicated analysis of the pattern of variation of CPVE with interval 
is not warranted; this depends critically on the number and importance 
of the frequency components of the original wind. This decomposition 
into frequency components is discussed later in terms of similarity of 
the harmonic numbers observed. 

Table 2 presents the maximum, minimum, and range of CPVE 
values found in Table 1, 

Y 

TABLE 2 

Maximum, Minimum, and Range of CPVE from Table 1 

Velocity 95 87 8 8.4 
Momentum 98 89 9 9,2 WINTER { 
Velocity 92 80 12 13.0 
Momentum 97 77 20 20,6 SUMMER { 

The range of CPVE for velocity is less than that for momentum, 
while the winter ranges for both are considerably less thap the summer. 
Momentum, although having a larger range, has a larger maximum CPVE 
value than velocity in both seasons. 

In winter, the maximum CPVE for velocity is found in the 0-23 and 
1-24 intervals, while the minimum CPVE for momentum is found in the 0-23, 
1-24 and 2-25 intervals, In summer the maximum CPVE for velocity and 
minimum CPVE for momentum occur in the 0-23 intervals for winter and 
the 5-28 intervals for summer; a secondary CPVE minimum for momentum 
is also found in this same 5-28 interval. CPVE maxima for momentum 
are found in intervals 7-30, , . , , , 10-33 for winter and 9-32 and 10-33 for 
summer. 

Four meaningful comparisons can be made by using the differences 
of CPVE at each level among velocity, momentum, and season. In the winter 
at the 3-26 interval and above, CPVE for momentum is larger than that fo r  
velocity, where a maximum difference of 11% is obtained in the 8-31 interval, 
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In summer CPVE for velocity is larger from 0-23 thmugh 5-28 with a 
maximum difference of 15% at 0-23; CPVE for momentum is larger from 
6-29 through 10-33 with a maximum difference at 9-32 of 13%. 

The comparison of CPVE for  velocity in each interval between 
winter and summer shows, excepting for  three intervals where the dif- 
ference is small, that larger values of CPVE occur in the winter soundixq. 
CPVE for momentum in winter is larger than that for summer in all in- 
tervals and considerably larger in a l l  except the 9-32 and 10-33 intervals. 

If a reduced number of harmonics is to be used. indications based 
on this limited sample a m  that CPVE, and hence predictability, can vary 
considerably with the interval chosen. While in practice the interval pro- 
bably would be chosen on the basis of physical importance, the information 
given here can provide guidelines for a choice among several alternatives. 
For example, velocity shows more CPVE in the intervals contafning the 
first two kilometers, while momentum CPVE increases away from intervals 
containing the first two kilometers. In terms of CPVE, indications for 
season and type of representation are  that winter will  be better than summer 
for both velocity and momentum, and in both seasons momentum will  be 
better than velocity, excluding the near surface layers. 

2.2 Rankinn Order 

The CPVE diecussed in the previous section is important for indi- 
cations about the limits of predictability in terms of season and type of 
representation.. This section deals with the ranked harmonic numbem 
associated with these CPVE values. If a reduced number of harmonics 
is to be used for prediction, some indication is needed as to the relative 
importance of each harmonic in terms of season and the velocity and 
momentum representations and how they change with the interval chosen.. 
This would provide clues to the specific harmonic numbers to be used in a 
predicting equation.. Harmonic numbers are given in Table 3 for the six 
highest ranked harmonics, in terms of percent variance explained both 
for velocity and momentum, for the eleven 24-point profiles of the 12 Feb 56 
and 8 Jun 56 soundings. 

In the winter (12 Feb 56) sounding, the harmonic numbers for 
velocity and momentum are almost identical in the first two r-. Only 
the l e t  harmonic is found in the first rank, while in second rank the 23rd 
dominates along with a few 22nd harmonics. The third and fourth ranks 
are mixed, with the 2nd and 22nd harmonics being the most frequently 
present, The fifth and sixth ranks are completely mixed. 

In the summer (8 Jun 56) sounding, the first three ranks of velocity 
and momentum are dominated by the lst, 2nd, and 23rd harmonics, with 
the 2nd harmonic replacing the lst as most important in the middle intervals 
fo r  momentum. The fourth rank is mixed but is dominated by the 21st 
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TABLE 3 

First Six Ranked Harmonic Numbers, on Basis of Percent Variance Explained 

PROFILE WINTER 12 Feb 56 SUMMER 8 Jun 56 
RANKS 

INTERVAL I II III IV V VI I I I I l I I V V V I  
(km) 

0-23 

1-24 
2-25 
3-26 
4-27 
5-28 
6-29 
7-30 
8-31 

9-32 
10-33 

0-23 
1-24 

2-25 
3-26 

4-27 
5-28 

6-29 
7-30 
8-3 1 

9-32 

10-33 

1 23 15 16 10 

1 23 15 14 9 
1 23 16 15 6 
1 23 2 22 3 

1 23 2 22 3 

1 22 23 2 3 

1 22 2 23 6 
1 22 2 15 18 
1 23 22 19 2 

1 23 3 19 22 
1 23 3 15 14 

Velocity 
4 1 
7 1 
11 1 
16 1 

15 1 
21 1 
16 1 
5 2 

5 1 
15 1 
4 1 

23 2 20 21 4 
23 2 21 20 7 
23 2 21 19 20 
23 2 21 20 4 

2 23 21 20 22 
2 23 21 22 20 

2 22 4 21 23 
1 2 2  3 4 1 9  
2 22 17 3 7 
2 23 20 21 22 
23 2 21 20 4 

Momentum 

1 23 
1 23 
1 23 

1 22 

1 22 
1 23 

1 23 
1 23 

1 23 

1 23 
1 23 

2 
22 

22 
2 

2 
22 
2 

9 
16 
2 
22 

4 3 22 
2 4 21 

2 21 5 
16 21 3 

3 21 9 
2 17 16 

4 22 16 
15 4 2 
17 2 10 

15 22 16 
2 16 15 
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23 1 2 4 3 6  

1 23 2 22 21 7 
1 23 2 22 21 7 

2 1 23 21 22 20 

2 1 23 21 22 20 
2 1 23 21 20 22 
2 2 3  1 2 0  3 4 
2 1 23 5 3 6  

1 2 3  2 1 7  7 3 

1 23 2 21 20 16 
1 23 2 19 17 20 
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harmonic. The fifth and sixth rankings are mixed, the 21st, 20th, and 22nd 
harmonics being most frequent. 

In both soundhgs, the harmonic numbers in the first four ranka are 
consistent over all intervals for each of the four situations. As the specific 
interval changes, the order of the harmonics may change slightly. The 
fifth and sixth ranks do not seem to be consistent over all intervals but are 
usually represented by harmonics which contribute little to the CPVE. This 
indicates that an appropriate choice of two extra harmonics for prediction 
would be difficult. The similarity of all 23 ranked harmonics from interval 
to interval will be discussed later. 

Overall, the harmonic numbers shown in Table 3 are quite slmflnr 
to those found in MWP-I, where the ranking order was usually the lst, 
23rd, 2nd, and 22nd harmonics. Considering velocity and momentum 
for each sounding separately, the order and importance of the harmonic 
numbers change slightly in this limited sample. A compilation of the fre- 
quency of occurrence of harmonic numbers for velocity and momentum 
with season is given in Table 4. Only the four highest frequencies of 
occurrence have been tabulated. A harmonic number could appear a max- 
imum of 11 times. 

Frequency of Occurrence of the Four Most Important Harmonic Numbers 

Harmonic Number 1 23 2 22 21 15 
5 Velocity 11 10 5 6 

Momentum 11 9 9 6 12 Feb 56 { - 
- - 

- 6 
4 

11 - Velocity 11 8 
MomeXltum 11 11 11 - - 8Jun56  { 

The actual rank order of the harmonics for prediction is not important 
unless the Fourier coefficients of each are to be weighted in some special 
way. Therefore, the three most important harmonics for this sample 
would be 1, 23, and 2, with 22 for winter and 21 for summer as fourth 
most important. 

2.3 Effect of Arbitrary Selection 

In MWP-I, certain harmonic numbers seemed to be consietently 
important in CPVE. The difference in CPVE which would result if pre- 
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selected harmonics were used rather than the actual ranked harmonics was 
studied for this report. Based on MWP-Is the first four presdected har- 
monics used were the lst, 23rd, 2nds and 22nds with the 3rd and 21st added 
for the fifth and sixth terms. The difference in CPVE by the best actual 
and by the preselected harmonics is given in Table 5, with the median and 
average over all 11 intervals. The values are given as percent of total 
variance explained, and are the amount that the CPVE by the preselected 
terms was less than that by the actually best terms. 

TABLE 5 

Difference in C V E  by Preselected and by Actually Best Harmonics, 
Given as  Percent of Total Variance Explained for 4 and 6 Harmonic Terms 

12 Feb 56 8 Jun 56 

PROFILE 
INTERVAL 

0 4  
0-33 
1-24 
2-25 
3-26 
4-27 
5-28 
6-29 
7-30 
8-3 1 
9-32 

10-33 

Median 
Average 

Velocity 
4 6 - -  

1.5 2+5 
1.9 2.4 
0.8 L3 
0.0 0.6 
0.0 0.5 
0.0 0.0 

0.0 0.4 
0.9 3.1 

0.8 2.2 
0.7 0.9 
2.2 1.2 

0.8 1.2 
0.8 1.4 

Momentum 
4 6 - -  
0.8 2.1 
0.0 0.3 
0.0 0.1 
0.2 0.2 
0.4 0.2 
0.0 0.1 
0.1 0.4 

0.2 0.4 
0.3 0.6 
0.0 0.3 
0.0 0.4 

0.1 0.3 
0.2 0.5 

Velocity 
4 6 - -  

1.8 2.9 
2.1 2.1 
3.0 1.6 
3.7 1.5 
3.3 2.7 
1.0 2.8 
1.2 1.3 
2.2 2.7 
L3 2.1 
0.4 1.9 
5.5 6.1 

2.1 2.1 
2.3 2.5 

Momentum 
4 6 

1.0 1.9 
0.0 0.6 

- -  

0.0 0.8 
0.3 0.1 
0.7 0.8 

1.1 2.5 
L3 1.7 
1.7 3.0 
0.5 1.0 
0.4 0.4 
0.5 1.0 

0.5 1.0 
0.7 1.3 
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The differences shown in Table 5 are surprisingly em& Except 
for the velocity in June, where the average difference is about 2% of the 
total variance, the average difference is less than 1% for four terms and 
about 1% for six terms for the other three stratifications, Use of prese- 
lected harmonics rather than computing a l l  harmonics and then selecting 
a reduced number for prediction may be useful if large computers are not 
available, 

2.4 Lon~Prof l les  

In this section the results for the total 0-33 km profile and the 
2-33 km profile are considered for the February and June soundings for 
both velocity and momentum, Table 6 gives -the CPVE by the hear ,  and 
the linear plus four, plus six, plus eight, and plus ten highest ranked var- 
imce-reducing harmonics. 

TABLE 6 

CPVE for Two Long Profiles, for Velocity and Momentum 

PROFILE 
INTERVAL 
(km) 

L L+4 L e  L+8 

Velocity 15 84 88 91 
Momentum 50 04 89 92 

Momentum 37 75 80 82 

12 Feb 56 { 
8 J u n 5 6  { 0-33 1 Velocity 19 80 86 90 

Velocity 30 82 86 89 ( l2 Feb 56 { Momentum 69 90 92 93 

j Velocity 20 80 88 90 
2-33 I Jun56 Momentum 48 85 89 92 

L+10 

93 
94 

93 
84 

92 
95 

92 
94 
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TABLE 7 

Ranked Harmonic Numbers for Velocity and Momentum 
(The first four profiles have a total of 33 harmonic numbers, the last four 31). 

PROFILE 
INTERVAL 

RANKS 
I II m Iv V VI 

Velocity 1 2 32 33 4 5 
Momentum 1 2 32 3 4 33 

Velocity 2 1 33 32 30 3 

12 Feb 56 { 
8Jun56 { 

0-33 

Momentum 2 33 32 1 3 28 

Velocity 1 30 2 31  4 6 
Momentum 1 2 30 29 3 6 

Velocity 2 1 31 30 28 27 
Momentum 2 31  30 3 1 28 

12 Feb 56 { 
8Jun56 { 

2-33 

The first six ranked harmonic numbers are shown in Table 7. 

In general, indications in Table 6 and 7 are similar to those found 
in the earlier discussions of the 24-point profiles. The harmonic numbers 
follow about the same pattern: the first and last two harmonics dominate the 
CPVE. For  the 0-33 k m  profile the CPVE for velocity in both February and 
June is about the same as the February momentum, while that for momentum 
in June is less. For the 2-33 km profile CPVE for velocity is about the same 
for both dates and less than for momentum, for which the CPVE is larger 
in winter than in summer. The influence of the first two kilometers is again 
shown: CPVE for momentum in the 2-33 km profile is larger than for the 
0-33 km profile but for velocity is smaller. 

For equal numbers of terms, the CPVE in these 32 and 34-point profiles 
is smaller than for the 24-point profiles: as the interval length increases 
the likelihood that the wind vector can be represented adequately by a few 
frequency components decreases. Thus, in the longer profile more frequency 
components are needed to describe mathematically the wind profile, and less 
CPVE is found in comparison with a shorter profile, which would require 
fewer components for representation. 

42 



30 SIMILARITY OF COMPLETE INTERVAL REPRESENTATIONS 

The previous sections have been devoted to descriptive material about 
the February and June soundings and their decomposition into 24-point pro- 
files. The discussion has been in terms of cumulative percent variance ex- 
plained (CPVE) by various harmonic numbers. Another important aspect 
of the general problem is whether the complete Fourier representation changes 
over various portions of a long somding. This question is discussed in detail 
in this section. 

One problem of ranking in this case is that the first four o r  six ranked 
harmonics are large and differ considerably, while the rest am small and 
differ slightly, The question still remains as to whether the slight differences 
observed are real or are due mainly to sampling fluctuations. 

Comparison of the complex Fourier coefficients for two overlapping 
intervals in the same sounding is much more complicated statistically than 
the comparison of a similar representation of two different soundings. The 
major difficulty is that overlapping values cause the comparison to be made 
between profiles which are not independent. For example, when a 0-33 Inn 
sounding is decomposed into eleven 24-point profiles, adjacent intervals 
differ only in the higher value of eachprofile, and all eleven intervals con- 
tain values for 10 through 23 km, Effectively, the problem is one of exa- 
mlninp the results of a moving average on a mathematical representation. 
Because of this moving average, the sum of the variance about x and y, and 
about the reduced zero-mean variables u and v, changes from interval to 
interval. 

The complete set of complex Fourier coefficients for each of the 
eleven 24-point profiles obtainable from the two 33-km soundings was used 
for comparison. These were also compared for only the nine upper intervals, 
which excluded the 0-23 and 1-24 km profiles. A non-parametric method 
was used to eliminate some of the statistical problems of comparison and 
as a time saving device in computation and development of new methodology. 

Each of the 23 possible harmonics in a zero-mean 24-point profile 
can be considered to be a rankable attribute in terms of the importance of 
the frequency it represent% Analogous in terms of parametrice would be 
a discrete vector perlodogram of the profile, each point being a measure 
of that component of variance, The ranking of all the harmonics in a pro- 
ffle w~ on the bash of the size of the Fourier coefficiente, which in turn 
is related to the percent variance eqlained by each harmonic. Ranking 
considers relative rather than absolute differences in size, 

One of the oldest and perbaps the berst known rank statbtics is the 
Spearman rank correlation coefficient, 
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(3.1) 

where A j  is the difference in ranks of the jth terms and N is the number of 
terms ranked. For comparison of two 24-point intervals, N is 23, and 

r S = 1 - x A j 2 / 2 0 2 4  

The probability of occurrence of any particular rs value is the ratio of the 
number of permutations of rankings giving rise to that value to the N I rank- 
ings possible. 

The Spearman rank correlation coefficient measures the agreement 
between two sets of rankings, but for  thisstudy the amount of agreement 
between eleven sets of rankings is of greater interest. One method of estab- 
lishing the degree of relationship between multiple rankings would be to com- 
pute all possible rank correlations and then average them. For eleven inter- 
vals this is the combination of eleven things taken two at a time, o r  fifty-five 
coefficients to compute. Fortunately, another statistic, developed for com- 
parison of multiple rankings, is less tedious to compute and is linearly 
related to the average of all rank correlations. The Kendall coefficient of 
concordance, W, is an index of divergence between the actual agreement 
shown in the data and the maximum o r  perfect agreement possible: 

12s W =  
k 2 N ( N 2 -  1 )  ’ 

(3.2) 

where k is the number of ranked sets, N is the number of terms ranked, and 
S is a measure of dispersion among k sets of rankings given by 

s = q j -  R j )  2 

j = l  j = l  

N /  N \ 2  
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k 
=the rank of the jth item in the mth set. The 5 Rj = Rj&. where 

avew%=oi the Spearman rank correlation coefficients, denoted rsav, has a 
range of values -1 I rsav I 1 and is related to W, with range of 0 5 W < 1, 
bY 

kW- 1 r =  sav k - 1 (3.3) 

The probability of occurrence of W for small N is found by enumerating a l l  
possible outcornea and then taking the ratio of the favorable to the total out- 
comes possible, as in the Spearman. For N > 7 the following statistic, 

12s - 2  - 
kN(N + 1) - '(N- 1) ' (3.4) 

i.e. a chi-aquare statistic with N - 1 degrees of freedom. 

The 23 harmonica in each of the 11 intervals (0-23 to 10-33) for 
velocity and momentum in both soundings were ranked on the basis of the 
size of the percent variance explained by each. Two W values were computed 
for each of the four decompositions, one for the 0-23 through 10-33 intervals 
and the other for 2-25 through 10-33 intervals. Two sets were used to deter- 
mine the effect of the first two kilometers on the overall agreement of all 
interval representations, 

The W and raav valuea, computed using equations 3.2 and 3.3, are 
given in Table 8, 

TABLE 8 

W anL rSav Values 

Intervals 0-23 through 10-33 Intervals 2-25 through 10-33 
W r sav - w r sav - 
45 .40 . 54 . 49 
51 46 .51 044 12 Feb 56 { g:zTm 

Velocity -65 . 62 . 66 . 62 
Momentum 60 . 56 0 60 56 

8Jun56 { 
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Tested by the statistic of equation 3.4, all W-values were found to significant 
at less than the 0,001' level, i, e, , the probability that the observed W values 
could occur by chance is less than 1 in 1000. 

For both velocity and momentum on the June sounding, W is higher 
than for the February sounding. Inclusion of the 0-23 -and 1-24 intervals 
seems to make little difference in the amount of agreement found, with the 
possible exception of velocity in February where the 2-23 through 10-33 
shows a larger W. 

Although values of W are not close to 1,0, showing a perfect agree- 
ment, they are significant and high enough to indicate a large amount of con- 
sistency in the relative importance of the Fourier coefficients in all inter- 
vals. 

Some of the deviation from perfect agreement arises because many 
Fourier coefficients in each interval are small and differ only slightly in 
magnitude. In the non-parametric ranking process, small differences are 
given the same weight as large differences. If these small differences 
could be established as due to sampling fluctuation, the small Fourier coef- 
ficients could be r d e d  as ties, which would increase the value of W. 

In general, these limited observations indicate that the Fourier 
representation does not change markedly with the interval chosen in a long 
profile. 

In the previous discussion, inclusion of the intervals containing the 
surface and first kilometer made no appreciable change in W. However, 
dissimilarity of the rankings for the 0-23 and 2-25 km intervals appeared 
in certain cases. As a check on the agreement between the rankings for 
the 0-23 and 2-25 intervals with the other ten intervals, Spearman rank 
correlation coefficients, denoted rs, were computed for these compari- 
sons (Table 9). For the 23 ranked harmonics, rs values of 0,35 and 0,50 
are significant at the 0.05 and 0.01 levels, respectively, for the one-tailed 
test of a positive correlation 
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In general, the rs values given in Table 9 show that the Fourier 
representation for the 2-25 km interval is better related to the other inter- 
val representations than is the 0-23 km interval representation. In most 
cases the rs values are slightly larger for the 2-25 km interval. The table 
also shows how one interval is related to another and how this relation 
changes with interval position in the longer soundings; 

Thus, a more representative description of the profile may be 
obtained if the surface and first kilometer were not used in the wind sound- 
ing to be represented. Whether the second, third, etc, kilometers should 
also be eliminated for better representation could only be determined by 
more extensive analysis, The 2-km lower limit, however, seems reason- 
able on the basis of observed wind variability, theory, and practical con- 
siderations, 

Althsugh the representations over all intervals are  related and 
similar, the physical uses of the prediction are  more basic and important, 
What heights are  critical? How does prediction reliability change in rela- 
tion to the position of critical heights within the interval used for repre- 
sentation? Should all height information be used, o r  should the interval 
of representation be shortened? These questions will have to be answered 
when the final method of prediction is developed by studying the variability 
of predicted values with changing intervals. 

4. SEQUENTXAL SM-HOUR SOUNDINGS 

In MWP-I results of complex Fourier analysis on four consecutive 
soundings at 6-hour intervals, from 09002 9 Jan 56 through 03002 the 
next day at Montgomery, were given as an example of the method. This 
example has been supplemented by analysis of the only other two series 
of consecutive soundings from the Montgomery data with duration of 24 
hours o r  longer and a maximum height, without gaps, of at least 25 lun, 
These were for consecutive 6-hour intervals from 03002 on 29 Jan 56 
through 03002 the next day and from 12002 on 1 July 57 through 18002 
on the next day. The CPVE by the linear, linear plus four, and linear 
plus six ranked harmonics is given in Table 10. 
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TABLE 10 

CPVE for Consecutive Six-Hour Soundings 

Date 

29 Jan 56 
29 Jan 56 
29 Jan 56 
29 Jan 56 
30 Jan 56 

1 Jul 57 
1 Jul 57 
2 Jul 57 
2 Jul 57 
2 Jul 57 
2 Jul 57 

Velocity Momentum 
Hour L L+4 Li6  L L+4 L* 

0300 2 92 95 47 89 91 
0900 3 80 84 50 85 90 
1500 16 69 76 64 84 88 
2 100 12 81 88 74 91 94 
0300 16 74 83 74 89 92 

1200 71 89 93 65 89 92 
1800 75 88 91 61 87 91 
0000 69 85 91 64 90 93 
0600 60 84 88 71 91 94 
1200 65 93 96 78 92 95 
1800 78 91 93 76 91 93 

Some aspects of Table 10 are a little surprising, while others are 
consistent with indications from MWP-L As usual for a fixed number of 
terms, CPVE for momentum is greater than for velocity. However, CPVE 
for velocity and momentum for the summer values are larger than those for 
winter in this report. This is the opposite of the situation in MWP-L The 
summer CPVE values of this report are smaller than those found for 9 Jan 56 
in the first report, which had a range over the sequence for the linear plus 
four terms of 88 to 94% for momentum. For the 29 Jan 56 sequence, CPVE 
for the b a r  plus four terms ranges are 69 to 92% for velocity, and 84 to 
93% for momentum, while the 1 July 57 sequence had 84 to 91% for velocity 
and 87 to 92% for momentum. 

Thus, in a sequence of 6-hour soundings, the amount of CPVE can 
vary conaiderably. Indicatione of monthly and yearly variability are present. 
Perhaps the sequence analyzed in MWP-I was unusual, with a consistent 
pattern of harmonic numbers and large CPVE. 

The ranked harmonic numbers associated with the CPVE in Table 10 
are about the sanw as those found for the 9 Jan 56 sequence in MWP-L The 
first and second most important harmonics are the 1st and 23rd. However, 
in the two new sequences, the 23rd was generally more important than the 
let, jus t  the opposite of the 9 Jan 56 sequence. The third and fourth most 
important harmonics were mixed among the 2nd, 22nd, and 21st harmonic 
numbers. In general the harmonic numbers are not so consistent in order 
and frequency of appearance as those found in MWP-L 
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One further analysis was performed on the sequential 6-hour sound- 
ings to examine how the Fourier representations vary with time. A s  a crude 
method of examining the consistency of the Fourier representation, Spear- 
man rank correlations were computed for the ranked Fourier coefficients 
of all possible pairs in each sequence. The ultimate result of these rs 
values was to be some indication of how the representation changed with 
selected time lags, which would also give some indication of best predic- 
ting times. With the short lengths of sequences available, the time lags 
would have to be limited to 6 and l2-hour lags. 

Results were highly inconclusive, and the actual rs values are  not 
presented. The 9 Jan 56 profile from MWP-I showed good agreement for 
both the 6 and 12-hour lags for all times in the sequence for velocity, 
while the 6-hour lag was good but the 12-hour poor for momentum. In 
contrast, 29 Jan 56 and 1 Jul 57 sequences have highly variable rs values. 
In general the rs values were small even for  some 6-hour lags. Persis- 
tence is being examined in more detail in another phase. 

5. MODIFICATION OF OBSERVATIONS 

Two questions about modification of the original observations were 
raised in MWP-L 
terms in the analysis, and the second was concerned with normalization 
of data through division by the intra-height standard deviations. 

The first was about the best way to remove linear 

The method used for linear trend removal was simply to compute 
the least square linear regression coefficients of x on h and y on h separ- 
ately and then to remove the linear trend lines from x and y to form xero- 
mean residuals u and v. The question was then raised as to whether a 
better method was available such as equidistant end points. This is a 
difficult question to answer on a mathematical basis. A surface could be 
removed as readily as trend lines. The answer seems only to be found by 
trial and error. If a l l  harmonics were used for prediction, the effect of 
different methods would be minimized, and elaborate and time-consuming 
comparisons would not seem to be justified at this time. 

The 4-term CPVE for the normalized monthly Cape Kennedy data 
was consistently larger than for the non-normalized daily Montgomery 
soundings in MWP-I, either because of smoothing by monthly averaging 
o r  because of normalization. No intra-level standard deviation pertaining 
soley to an individual sounding is available. Reciprocal intra-level standard 
deviations may be used as a weighting function, but which of the available 
climatological values is best for filtering o r  smoothing is not known. This 
question should be answered as a refinement to the first o r  subsequent 
predicting methods by experimenting with various intra-level standards 
deviations based on hours, days, weeks, months, o r  a year. These would 
also be a function of the time scale of the prediction desired. 
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The degree to which averaging and normalizing of wind data stabilizes 
sequential Fourier representations is of interest, To examine this question, 
comparisons were made using the complex Fourier coefficients from the 
24-point, normalized Cape Kennedy monthly averages given in MWP-I, A s  
a crude estimate of the similarity between profile representations, a num- 
ber of Spearman rank correlations along with a W (coefficient of concordance) 
value were computed. Considering the degree of agreement among a l l  12 
months, the value W = 0.685 (rsav = 0,656) was found, which is significant 
at less than the 0,001 level. This shows that a surprising amount of simi- 
larity exists between all 12 monthly Fourier representations. 

As the monthly data were averaged over a number of years, the 
twelve months can be considered to be circular for lag comparisons, The 
Spearman values were computed for twelve comparisons of one, two and 
three month lags. Examples would be for lag one Dec, - Jan, , Jan. - Feb. , . . , , , Nov. - Dec, i lag two Dec. - Feb., , , , , , Nov, -Jan, ; lag three Dec, - Mar, , . . , , , Nov, - Feb, 

The frequency of occurrence of rs values for the monthly data is 
given in Table 11. All  36 coefficients were significant at the 0.01 level. 

TABLE 11 

Frequency of Rank Correlations for Monthly Cape Kennedy Data 

LAG I 11 JII rS 

1 0.80 
0.70- 0.79 
0.60- 0.69 
0.50- 0.59 

2 
4 
4 
2 

0 
6 
4 
2 

1 
2 
7 
2 

The W and rs values for Cape Kennedy are reasonably large and 
indicate a relationship between the 12 monthly Fourier representations, 
These W and rs values are larger than those found for the Montgomery data, 
indicating that monthly representations are related and in a better fashion 
than the long Montgomery soundings in intervals or 6-hour sequences. 
This is probably due in part to the smoothing by taking averages, but some 
is probably due to normalization, 

6. CONCLUSIONS 01) 
The method of augmented Fourier polynomials has been used to 

describe the wind mathematically for different seasons, basic wind repre- 
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sentations (velocity and momentum), soundings of 34 kilometers, 24-point 
overlapping intervals within a long sounding, and sequences of 6-hour sound- 
ings. The results presented show the versatility of the method in a variety 
of situations. 

Although the conclusions are based on a limited number of samples 
and are at best only indications, most of the results of analysis are rea- 
sonably consistent over all samples and are valuable as guides for pre- 
diction. This summary will be mostly in terms of a linear plus four har- 
monic (reduced harmonic) representation, unless otherwise noted, 

The CPVE (cumulative percent variance explained) and the four 
most important harmonics of the new soundings analyzed were quite similar 
to the findings in MWP-I. The CPVE, although a little lower generally, 
was consistently in the 82-95% range. The important harmonic numbers 
were again found to be the lst,  23rd, 2nd, and 22nd. However, the new 
data indicated that for summer the 22nd harmonic should be replaced by the 
21st. The ability of four important harmonics given above plus a linear 
term to explain a large percentage of the variance was shown in the sec- 
tion on arbitrary selection, where the CPVE by the selected harmonics was 
only about 1 percent variance explained less than that given by the actual 
four most important harmonics plus the linear term. 

The momentum representation of the wind showed consistently 
larger CPVE than the velocity in both winter and summer. Seasonal com- 
parisons of CPVE are a little confused. In the two long soundings, winter 
had a larger CPVE, while in the 6-hour sequences, the summer values 
were larger than the winter for the new data, but both were smaller than 
the CPVE values for the winter sequence given in MWP-I. Probably, 
based on these results and the configuration of the winter wind profiles in 
general, winter will be better for prediction using a reduced harmonic 
repre sentation. 

The effect of profile length on CPVE was examined. Indications 
from the data are  that CPVE vary inversely with the length of the interval 
taken. This also follows logically when the frequency content of the ori- 
ginal sounding is considered, 

Ln the decomposition of a long sounding into 24-point overlapping 
intervals, the CPVE was found to vary within the 82-958 range. The 
individual importance of the harmonics also varied from interval to inter- 
val, but in general the complex Fourier coefficients showed a good agree- 
ment when considered over all intervals, showing that the interval chosen 
is not usually critical. However, indications were given that the repre- 
sentations found for the intervals including the surface and first kilometer 
did not agree well  with the other interval representations, suggesting that 
the surface and first kilometer be excluded from soundings for prediction. 

The 6-hour sequences showed considerable variation in CPVE and 

I 

52 



representation from sounding to sounding. Although the first four important 
harmonics were usually the samer they varied in the relative magnitude of 
importance within each profile. The complete sets of Fourier coefficients 
did not agree very well from sounding to sounding in a sequencer suggest- 
ing some problems in prediction may be encountered. 

The effect of averaging and normalizing on a sounding also was 
examined Comparisons with the monthly Cape Kennedy data showed that 
averaging and normalizing does have a stabilizing effect on the complex 
Fourier rep resentation. 

All this preliminary work should prove valuable for the development 
of a set of regression equations to predict wind profiles. The method of 
regression and ultimately prediction wi l l  follow. 
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APPENDIX II-A 

Long Soundings from Montgomery, Alabama 

lOOOZ 8 Jun 56 
Density 

1.202 
1.071 
0.984 
0.879 
0,797 
0.722 
0.652 
0.587 
0.528 
0.475 
0.425 
0.378 
0.333 
0.291 
0.246- 
0.211 
0.180 
0.153 
0.130 
0.110 
0.093 
0.078 
0.066 
0,056 
0.048 
0.041 
0.034 
0.029 
0.025 
0.021 
0.018 
0.016 
0.013 
0.012 

Xcomp 

0.000 
-0,436 
0.696 
2.509 
3,527 
1.658 
1.042 
2,924 
-3.708 
-7.452 
-7,458 
4.321 
-4.918 
-3,598 
-5.198 
0,000 
-1,099 
-1.706 
0,471 
-1,042 
-6,252 
-5.563 
-2.971 
-3.990 
-6.894 
-10.064 
-11.370 
- 11.820 
-11.326 
-9.830 
-7.947 
-9.456 

- 10.466 
-11.437 

Ycomp 

0.000 
-4.981 
-4.951 
-6.535 
-4.854 
-1.118 
-5.909 
-9.563 
-11,413 
-15.279 
-2 1,747 
- 16.444 
-18.353 
-22.717 
-24.454 
-23.000 
-20.971 
-13.986 
-8.988 
-5.909 
-6.474 
-2.248 
0.418 
-0.279 
-5.785 
-6.536 
-6,303 
-9.235 
-8.229 
-6.883 
-4.225 
-7,388 
-13.396 
-17.612 

03002 12 Feb 56 

Density 

1.254 
1.140 
1.011 
0,910 
0.817 
0.737 
0.665 
0.592 
0.530 
0.464 
0,405 
0,347 
0.298 
0.260 
0.225 
0.194 
0.168 
0.143 
0.121 
0.103 
0.088 
0.074 
0.063 
0.054 
0.046 
0,039 
0.033 
0.028 
0.024 
0.020 
0.017 
0.015 
0.013 
0,011 

Xcomp 

1,532 
7.518 
12.840 
17.669 
22.092 
29.670 
27,851 
31,947 
38.105 
40,189 
40.873 
45.962 
37.900 
38.184 
45.962 
25.916 
34.648 
23.783 
9.506 
8.756 
1,710 
1.307 
2.877 
-3.473 
-0.070 
4,881 
1.035 
0.345 
3.064 
2,158 
15.035 
22,825 
12.364 
12.364 

Ycomp 

1.286 
-2.736 
-2.034 
3.435 
9,378 
11,988 
19.502 
22.370 
22.000 
31.399 
36.802 
38.567 
34.126 
38.184 
38.567 
27.791 
34.648 
28.343 
14.094 
14.5 72 
4.698 
14.943 
-2.779 
-3.597 
1.999 
10,963 
3,864 
1.813 

-2.571 
-2.084 
5,472 
7,416 
4.017 
4,017 
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MATHEMATICAL WIND PROFILES 
PART III 

SUMMARY 

Serially complete 6-hour wind observations from the surface to 27 k m  
over Cape Kennedy during 1962 were used to compute 5200 serial correlationr 
of wind integrated over 7 km layers. The correlations are for four represent- 
ations of the wind, four atmospheric zones and their sum, thirteen calendar 
intervals, four observation times separately and all four combined, and four 
time lags. The correlations have been used to formulate criteria for wind 
profile prediction by the augmented Fourier polynomials, which represent 
mathematically a vertical two-dimensional wind profile. 

1. INTRODUCTION 011) 

Augmented Fourier polynomials for representing mathematically a 
vertical wind profile, and various properties of this method, are described 
in "Mathematical Wind Profiles, Part I and XI". Before such polynomials 
could be used for a wind prediction model, answers were  required to two 
questions : 

a. Which basic physical representation, speed o r  momentum, 
and in scalar or-vector form, is best for prediction? 

b. How many past soundings should be used to predict one future 
sounding ? 

To answer these questions, serial correlations were  computed for 
scalar speed, vector speed, scalar momentum, and vector momentum over 
time lags of 6, 12, 18, and 24 hours. Rather than for individual levels, 
integrated air movement over layers (zones) 7 km thick was used. 
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As basic wind data, a serially complete set of winds from Cape Kennedy 
for the year 1962 were supplied on magnetic tape by Mr. 0. E. Smith of NASA, 
George C. Marshall Space Flight Center, Huntsville, Alabama. It provided 
velocity V and direction 8 at 1 km intervals from 0 through 27 km at 6-hour 
intervals (0000, 0600, 1200, and 1800 GMT) on all 365 days. For correlation 
computation, each wind sounding is denoted as Ti where i = 1, 2, . . . , 1460, 
in sequence from 0000 GMT on 1 Jan. 1962 ( i  = 1 )  through 1800 GMT on 31 
Dec. 1962 (i  = 1460). 

To obtain the vector representation, values for each level (h) on each 
sounding (i) were transformed from polar (Vhr 8h) to Cartesian (xhs yh) 
coordinates by 

For each of 5 atmospheric zones (four of 7 levels each, one for all levels), 
four different physical representations of the wind were used: 

Scalar Speed: G = C h  Vh 

Vector Speed : 

Scalar Momentum: D = c h  qh Vh 

Here qh is the atmospheric density at height h on the ith sounding. 

The index of summation for h can be changed appropriately to define 
the different atmospheric zones. Three of the zones, 7 to 13, 14 to 20, and 
21 to 27 lun, may be considered as 7 km thick, e. g. 6.5 to 13.5 km. The 
lowermost zone, 0 to 6 km, is at most 6.5 km thick, and the fifth zone, 
0 to 27 km, is 27.5 lun thick. 

Density values for individual soundings were not included in the basic 

9. data tape and were not otherwise readily available to compute moment 
Instead, average monthly density profiles (0-27 km) from Cape Kennedy were 
examined. The difference between the maximum and minimum density at 
each height level over all months ranged from 0.6 to 5.9 per  cent of maximum 
density; the average difference for all heights was about 3.2 per cent. much 
smaller than the difference in densities'at the surface and 27 km, which differ 
by a factor of 40. Because any average monthly density profile would yield 
approximately the same result, momentum for each sounding was computed 
from the December average density profile, a typical high density profile 
(Table 1). 
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TABLE 1 

AVERAGE MONTHLY DENSITY (g/cm3) FOR DECEMBER AT CAPE KENNEDY 

From "Atlantic Missile Range Reference Atmosphere for Cape Kennedy, 
Florida (Part l)", LRIG Document 104-63. 

Zone 1 Zone 2 Zone 3 Zone 4 

'h h 'h h 'h h 'h h 

0 1.2097 7 0.5885 14 0.2504 21 0.0777 

1 1.0982 8 0.5285 15 0.2 150 22 0.0652 
2 0.9895 9 0.4736 16 0.1850 23 0.0554 
3 0.8915 10 0.4230 17 0.1576 24 0.0470 

4 0.8044 11 0.3766 18 0.1328 25 0.0398 
5 0.7251 12 0.3328 19 0.1110 26 0.0341 

6 0.6534 13 0,2902 20 0.0926 27 0.0293 

After scalar and vector speeds and momenta G, G',  D, and D' were com- 
puted over each of the five atmospheric zones of each sounding, they were divided 
into 13 equal time intervals,' representing calendar intervals, for serial correla- 
tion. Each interval contains 28 days of 112 soundings each (Table 2). In each, 
one day (four soundings) of overlap from the previous interval was included for 
continuity of serial correlations; for the initial interval, the 1st of January was 
the overlap day. Thus the initial interval is composed of 112 soundings from 
2 Jan. through 29 Jan., with the four soundings from 1 Jan. for overlap, and 
the last interval is composed of 112 soundings from 4 Dec. through 31 Dec. , 
with 3 Dec. for overlap. 
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TABLE 2 

CALENDAR INTERVALS USED FOR SERIAL CORRELATIONS 

Intervals go from the 0000 GMT observation on the begin date to the 1800 GMT 
observation on the end date; the first date includes one day of overlap. 

E nd - Interval Begin Record Numbers 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Jan 1 - 
Jan 29 - 
Feb 26 - 

Apr 23 - 
May 21- 
Jun 18 - 

MU 26- 

Jul 16 - 
Aug 13 - 

Oct 8 - 
NOV 5 - 

Sep 10 - 

Dec 3 - 

Jan 29 
Feb 26 
M a r  26 
Apr 23 
May 21 
Jun 18 
Jul 16 
Aug 13 
sep 10 
Oct 8 
Nov 5 
Dec 3 
Dec 31 

1 - 116 
113 - 228 
225 - 340 
337 - 452 
449 - 564 
561 - 676 
676 - 788 
785 - 900 
897 - 1012 
1009 - 1124 
1121 - 1236 
1233 - 1348 
1345 - 1460 

Time lags of 6, 12, 18, and 24 hours were denoted t = 1, 2, 3, 4 for 
computation of serial correlations. One further stratification for each repre- 
sentation, atmospheric zone, and calendar interval was made on the basis of 
observing times: 0000, 0600, 1200, and 1800 separately, and all times to- 
gether. This provides the serial correlation of the 0000 observation with that 
of 0600, 1200, 1800, and 0000 (next day) for time lags of 6, 12, 18, and 24 
hours. Similar relationships are found in terms of the 0600, 1200, and 1800 
observations, while all times gives the simple lag correlations irrespective 
of observing time. 

2. CORRELATION COMPUTATIONS 

All serial correlation computations used a slightly modified formula: 



where A = 1 when N = 29 and A = 4 when N = 116. 

The one-day overlap provides four additional values for  possible multi- 
plication. Therefore, the number of multiplications (N - A) for fixed N is 
the same for all four time lags. The summations in (2.1) have been appropri- 
ately indexed 80 that the same multiplicative pair  is not included in two con- 
secutive calendar intervals. This allows for simple recombining of calendar 
intervals to obtain serial correlations over longer time intervals in multiples 
of the original interval length. To accomplish the recombination if needed, 
the output includes the necessary sums, sums of squares, and cross products. 

Each soundmg was indexed as T. , where i = 1, 2, 3,. .., 1460. 
Thus, TI, TZ, TQ, and T4, (treated d overlap for this calendar interval) 
represent the 0000, 0600, 1200, 1800 GMT soundings on 1 Jan. 1962; 
Tfj, T7, and T8, represent the same sequence on 2 Jan. , and T14+x 

T1459, and T1460, the four observations on 31 Dec. 1962. T145tja 
indexlng was used on all four wind representations Gi, GI, Di , Di . 

A particular wind representation in a particular atmospheric zone 
may be denoted as x A dummy index K on x provides the appropriate 
multiplicative pairs for correlations associated with each observing time. 
The covariance is given by 

T5, 

e same 

29- F 

cov (Xi, x i+L) = 28 >, X K + ( i - 1 ) 4  X K + ( i - l ) 4 + L  
i = l + E  

(2,.2) 

29-F 29-F 

-1 28 c x K + ( i -  1)4  28 X K + ( i -  1 ) 4 + L  
i = l + E  i = l + E  

K = 1, 2, 3, 4 gives correlations for the 0000, 0600, 1200, 1800 GMT obser- 
vations, L = 1, 2, 3, 4 gives correlations for each K for time lags of 6, 
12, 18, and 24 hours; 
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E = l ,  F = O  for K + L < 4  

E = O ,  F = l  for K + L > , 5 .  

For the correlation based on the 0000 observing time, the multiplicative 
pairs f o r  the cross-product term, (VARIABLE Z in the printout, Fig. 1) 

29-F c x l+( i -  1)4 x l + ( i -  1)4  + L  
i = l + E  

for the lags L = 1, 2, 3, 4 are: 

Lag 1: C x5 x6 + x9 xl0 + e... + Xi13 Xi14 

Lag 4: C x1 x5 + x5 x9 + .... + x,,, xl13 . 

The first and last multiplicative pairs for the first calendar interval (M = 0) 
for the four observing times are given in Table 3. From this table the first  
and last pairs for other calendar intervale can be obtained by adding 112(M) 
to the subscripts of each term (M = 0, 1, 2, . . . , 12). The sequence of 
multiplicative pairs for fixed M is then found by sccessively adding 4 to 
each term in the pair, starting with the first pair. 
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TABLE 3 

FIRST AND LAST MULTIPLICATIVE PAIR IN THE CROSS-PRODUCT TERM 
FOR THE FIRST CALENDAR INTERVAL (M = 0: x1# x2s 0 s xl16) 

LaR First Pair 

0000 0600 1200 1800 

x4 ' x x5 x6 x6 9 Y 5 3  5 

"5 "8 x2 x5 3 "6 x4 '57 
x1 x5 x2 "s x3 "7 "4 "8 

1 

2 

3 

4 

x5 x7 x6 x8 53 x5 x4 x6 

Lac; Last Pair 

0000 0600 1200 1800 

112 "113 1 

2 X 113 x115 x114 x116 xlll x113 X 112 x114 

x113 x116 xl10 x113 xlll x114 x112 x115 3 

112 x116 x109 5 1 3  xl10 x114 xlll x115 4 

x115 x116 X x113 "114 x114 x115 

X 

When all observing times are used the appropriate pairs in the cross- 
product summation for M = 0 are 



The first and last pairs for other intervals are found by adding 11Z(M) to 
each term of the pair. 

3. CORRELATION SIGNIFICANCE 

The significance of serial correlations is much more difficult to 
assess than that of ordinary product-moment correlations. Except when the 
true correlation p = 0, the usual (linear) product moment rxy gives a 
biased estimate of p , and the sampling distribution of rq about p is 
skewed and difficult to evaluate directly for significance tests. 

The z 1  transformation, introduced by R. A. Fisher, is usually 
preferred for  significance testing: 

1 1 + r  
2' = 7 In - 2 1 - r  (3.1) 

The variable z1  is asymptotically normally distributed, with mean and 
variance 

c n 1 

1 + pL 11+ 8 (n - 1) 2 .  1 - p  2 ( n + 1 )  
51 = I l n l + p  + A  

4 -  0 + 176 - 2ip2  - 2iO4 + ...] 
48 (n - 1)2 2 (n - 1) (3.2) 

Very good approximations are obtained by using only the first term for the 
mean, and l/(n - 3) for the variance, as long as only one sample correla- 
tion is being tested. But valid evaluation of a complete set of correlation 
coefficients for different lags requires not only the sampling distribution of 
€$ about pt , but also the joint variation among R1, R2, .. . , €#, , 

Most of the results on significance testing of serial correlation have 
been in terms of large sample theory, for testing for serial dependence with 
R1. General distributions, derived under appropriate assumptions, depend 
upon the unknown population values of p t  and, for covariance, also on all 
possible population partial correlation coefficients. For coefficients other 
than R1, a test, based on a circular definition and other assumptions, uses 
an incomplete beta function. Most sampling distributions assume normality 
and stationarity, which may not be met in practice. Some problems can be 
avoided by assuming a theoretical form for  p t  and testing the sample results 
for goodness of fit, If an autoregressive model is desired, modified regres- 
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sion methods can be used to test, provided not too much accuracy is desired, 

The serial correlations reported here were  computed to obtain a gen- 
eral evaluation of four representations of the wind, and of how many lags were 
to be used in the autoregressive prediction model. For more elaborate test- 
ing for comparative purposes, the standard z1 transformation can probably 
be used for some significance tests and confidence interv s with reasonably 
accurate results, depending on the rigor needed. Hannan suggests that R1 
can be tested by considering (R1 + l/n) as an ordinary correlation coefficient 
from (n + 3) observations, 

I? 

Testing individual coefficients other than R requires extreme care. 

observations, but a test of R2 or higher order coefficients in an automgres- 
sive model is equivalent to determining how much serial dependence exists 
between observations separated by more than one time step, and whether the 
dependence is large enough to be important in explaining (modeling) the pro- 
cess. Such a test is based on partial correlation coefficients, which repre- 
sent the amount of dependence left for that particular lag after the effects 
(dependences) of all other lags on the process have been removed from the 
serial correlation coefficient. The lag correlation values computed for 
t = 2, 3, and 4 are not partial correlation coefficients, and should not be 
treated as such. 

A significance test of R1 is me rely a test of se r$ dependence among al l  

For direct evaluation of the lag 1 correlations, Table 4 presents 
approximate 9546 confidence intervals for the true correlation coefficient 
based on correlations obtained from eamples of 28 and 112 observations. 
These confidence intervals were computed from the e' transformation (3.1) 
by adding and subtracting two standard deviations: e' 2 0.14, for 28 and 
112 observations, respectively. Reeulfs are in excellent agreement with 
exact-confidence intervals scaled from the charts in David's monogr&ph7, 
o r  interpolated from the tables therein. 

Table 4 shows, for example, that in a sample of 28 observation pairs, 
the correlation must be greater than about 0.50 in order to be considered 
significantly different from 0. Almost all the lag 1 correlations well exceeded 
this value, and hence may be considered "Significant". But, for 28 pairs, 
correlations of 0.80 and 0.90 cannot be considered as differing, since the 
confidence interval for each includee the other. 
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TABLE 4 

95% CONFIDENCE INTERVALS FOR CORRELATION COEFFICIENTS 

BASEDON 28 AND 112 PAIRS 

r - 

0.10 
0.20 
0.30 
0.40 
0.50 

0.55 
0.60 
0.65 
0.70 
0.75 

0.80 
0.82 
0.84 
0.86 
0.88 

0.90 
0.91 
0.92 
0.93 
0.94 

0.95 
0.96 
0.97 
0.98 
0.99 

n = 2 8  n = 112 

Lower Upper Lower Upper 

-0.29 0.46 
-0.20 0.54 
-0.10 0.60 
-0.02 0.68 
0.15 0.74 

-0.04 0.24 
0.06 0.33 
0.16 0.41 
0.27 0.51 
0.39 0.60 

0.22 0.77 
0.28 0.80 
0.36 0.83 
0.44 0.85 
0. 53 0.88 

0.45 0.64 
0.50 0.68 
0.56 0.73 
0.62 0.77 
0.69 0.80 

0.60 0.91 
0.64 0.92 
0.68 0.92 
0.71 0.93 
0.75 0.94 

0.74 0.85 
0.77 0.86 
0.79 0.88 
0.82 0.89 
0.85 0.91 

0.79 0.95 
0.81 0.96 
0.83 0.96 
0.85 0.97 
0.87 0.97 

0.87 0.92 
0.88 0.93 
0.90 0.94 
0.91 0.95 
0.92 0.95 

0.89 0.98 
0.91 0.98 
0.94 0.99 
0.96 0.99 
0.98 1.00 

0.94 0.96 
0.95 0.97 
0.96 0.98 
0.97 0.98 
0.99 0.99 
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4. WSULTS 

The 5200 serial correlations, and the sums of squares and cross-pro- 
ducts from which they were derived, form a computer printout abaut six inches 
thick. One page of this output is reproduced in Figure 1, and the various en- 
tries thereon are identified in this Section. 

The first row classifies the correlation. The "M COUNT IS" gives 
the calendar interval (see Table 2). The WEXORD NOS. RANGE FROM" 
gives the range of the soundings used for the correlation in terms of each 
sounding indexed from 1 through 1460. The "LISTED VARIABLE IS" gives 
the type of wind representation: G is scalar speed, G' vector speed, D 
scalar momentum, Dr vector momentum. The last entry on the right, the 
atmospheric zone, is made by hand on the basis of the computational order; 
for a fixed M and representation, the atmospheric zones were computed 
in the order 0-6, 7-13, 14-20b 21-27, and 0-27. 

Column headings refer to the time of observation (0000, 0600, 1200, 
1800 GMT). The "TOTALff heading is used for all four observing times con- 
sidered together. 

Row headings are  the lag units, where L = 1, 2, 3, 4 refer to time 
lags of 6, 12, 18, and 24 hours, respectively. The I entry refers to the 
quantity being summed, with the first value used in the correlation and ex- 
cluding the last, while the I + 1 entry refers to the first being excluded and 
the last included. 

The first three matrices (Fig. 1) give the values used to compute 
the serial correlation coefficients in the fourth matrix : 

VARIABLE Z gives the cross-product term C xi x i + t  . 
2 2 VARIABLE T gives the sums of squares C xi 

VARIABLE S gives the sums C xi and C xi+ t .  

VARLABLE R gives the serial correlation coefficients €$ of (2.1). 

and C xi+ . 

For the column headed TOTAL, (N-A) is 112 for each lag. For the other 
four columm, (N-A) is 28 for each lag. 

In almost all cases, the correlation coefficients for 6 hour lags were 
considerably higher than for 12, 18, o r  24 hour lags. For example, cor rda-  
tions for the various lags for vector speed for the entire 27 km profile, con- 
sidering all observation times, were: 
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Calendar 
Interval: 0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  

6-hrlag: -95 .92 -93 .96 .93 .85 .94 .91 .96 .93 .97 .go -96 
12-hrlag: .87 -81 .88 -89 .81 .71 .86 -79 -90 .84 .92 .74 .88 

18-hrlag: -76 .72 -84 .77 .67 -55 -76 -70 ,82 .73 .85 .55 .80 
24-hrlag: .63 .63 ,81 .64 .54 .45 .66 .61 .73 .64 .79 -37 .72 

Correlations for lags 2, 3, and 4, corresponding to Us 18, and 24 
hours, were not evaluated rigorously. They were generally smaller than the 
6-hour lag correlations, and wen? discarded without further testing to deter- 
mine whether the differences were significant because of the evaluation dif- 
ficulties discussed in the previous Section. Further examination was restricted 
to the 6-hour lag values. 

5. COMBINED INTERVALS 

Correlations for 6-hour lags for combinations of two and more calen- 
dar  intervals were computed to demonstrate the feasibility and results of such 
computation. The one-day overlaps provided at the start of each interval 
insured that the same multiplicative pair was used in only one calendar interval, 

Values for the cmss-products, sums of squares, and sums (matrices 
Z, T, and S in Fig, 1) for  one calendar interval can be added to the corres- 
ponding values in the next interval to provide a serial correlation coefficient 
for the combined period. Such combination can be extended to a8 many inter- 
vals as desired, with (N-A) in Eq. (2.1) taken as the number of combined 
intervals multiplied by 28 o r  112; the variances and covariance are obtained 
from the sums of the corresponding values for each interval. 

Combined coefficients were computed only for the acalar speed 
representation for the entire 0-27 km zone, for all observations ('%otal"). 
Computations were for the first two, first three, etc., intervals up to the 
entire year of 13 intervals. Coefficients for 6-hour lag of scalar wind for 
the entire profile, for each interval separately and for the combined interval 
are: 
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Inte rval : 0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 2  

Separate: .95 .92 , 91 .94 .88 .90 .81 .86 .87 .92 .97 . 92 .95 

Combined: .95 .94 .93 .94 .96 .97 .91 .98 .98 .98 .98 .98 -98 
Speed: .21 19 23 17 11 9 10 9 9 9 12 15 20 

The last line gives the mean speed, in knots, for the interval, found by aver- 
aging the wind speeds in each profile over all heights. 

Correlations for combined intervals (2nd line) are  greater than the 
average of the correlations of the individual intervals (1st line) because of the 
differences in the m e w  for the intervals (3rd line), This effect can be exa- 
mined most readily by bomputing the correlation for a combination of two 
intervals, A and B, each of length N = 112. For lag 1 Correlation, the 
means and variances for the first N observations do not differ materially 
from those for  the N observations from 2 to N + 1, and the covariance 
between the first N and second N observations is substantially the same 
as that between the observations from 2 to N + 1 and from N + 2 to 
2N + 1. 

Assuming these equalities, straightforward but tedious algebra 
(Appendix A) gives the lag 1 correlation over the two intervals in terms of 
the average, T , of the correlations r A  and rB over the two intervals 
separately, and the corresponding variances Si and Si , and the difference 
A between their means: 

1, 1.+2 (Si + s;) c 

A s  long as r > 0, the second term is positive. The t h i r d  term vanishes if 
either the correlations a re  equal or  the variances are equal, and 

- (1 -7) 
2 2  = r +  

R1, AB 1 +4s / A  
(5.2) 

In this special case, the correlation for the combined sample is never less 
than the average, r , gf the correlations over A and B separately, and 
is greatest when (S/A) is smallest, i.e. when A2 >> S2 , Thus when 
the difference between the sample means is much larger than their common 
standard deviation, the correlation over the two samples will exceed the 

- 
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, 
I the average correlation. Only when the difference between the meam, A , 

E 

is zero will the combined correlation be no greater than the average. Even 
under more general conditions, without equality of variances, these tendencies 
still are present, as can be shown by evaluation of the second and third terms 
of (5.1). 

The square of the (linear) correlation coefficient represents the rela- 
tive reduction in variance of one variable when it is predicted by (linear) 
regression on the other, The increase in correlation achieved by combining 
samples with different means thus represents an increase in prediction 
accuracy, but only with respect to the unconditional variance, which is the 
combined variance over the two samplee, This is greater than the mean vari- 
ance over the two samples by one-fourth the squared difference of the two 
sample means, and hence the apparent increase in prediction accuracy is 
illusory, Samples should not be combined for correlation, o r  for regression 
pEdiction, if their means differ significantly, 

The usual t - test for equalityof means in two normal samples, each 
of size N , involves 

where the number of degrees of freedom is given by 

f = (N + 1) - 2  

Hence t2/N = A2/(S: + 6) and (5.1) becomes 

(5.3) 

For large samples, the 0.05% value of t is approximately 2. Even if the 
difference in the sample means is not quite large enough to warrant rejection 
of a hypothesis of equality, combining the samples will increase the correla- 
tion, and hence the apparent accuracy of prediction. 
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For purposes of wind profile prediction, combining samples seems 
unwarranted. The period of interest should be broken into intervals just 
large enough for valid means, variances, and covariances to be computed, 
unless no trend whatever is expected in the means. 

6. CONCLUSIONS (III) 

Tables 5 to 9 present all 6 - ~ u r  lag serial correlat-Jn coefficients 
for the five atmospheric zones. In general, the correlations were quite high, 
and all were significantly greater than zero at the 95% level. All correlations 
presented in the tables ranged from 0.58 to 0.98. 

A s  a quick msthod of assessing which representation was best, the 
correlations for the four representations were ranked on the basis of magnitude 
for each atmospheric zone and time of observation over each of the 13 calen- 
dar intervals. Vector speed consistently ranked first o r  second more times 
for all observing times and atmospheric zones, except in the 14-20 km zone. 
In this zone, vector momentum, the next highest in ranking, was higher in 
the first and second ranking for all observing times. 

The work presented.in this report was directed toward finding the 
best wind representation and number time lags to be used for prediction. 
However, many other possibilities exist for using the data. Some of these 
uses have been touched on in an exploratory manner. The most important 
are various comparisons with- atmospheric zones and observing times, the 
decay rate of the lag correlations and the behavior of the serial correlations 
with variable interval length. 

Ultimately more work must be performed on the best calendar 
interval for prediction. Some of the summer and winter calendar intervals 
might be combined into longer intervals. Correlations for many different 
combinations of interval length (in units of 28 days) can be computed from 
the basic data. 

In most cases, the correlation coefficients for vector speed are 
larger than those for vector momentum, scalar speed, o r  scalar momentum. 
The 6-hour lag correlations are consistently larger than those for the 12, 18, 
and 24 hour lags. Based on this evidence, the first prediction mDdel will be 
in terms of vector speed and the previously observed sounding. 
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APPENDIX 111-A 

1 .  
I 

i 

SERIAL CORRELATIONS FOR COMBINED INTERVALS 

Serial correlation coefficients computed for combinations of two or 
more time intervals tend to be greater than the average of the serial correla- 
tions computed for each interval separately. This increase depends primarily 
on the differences between the means for the various intervals. It can be 
examined most readily by computing the correlation for a combination of 
two intervals, A and B , (With N = 112, addition of 3 to all summation 
limits will make them correspond to those implied by Eqs, (2.1) and (2.2), 
e.g. "Lag 1" in Table 3,) 

Because R1,AB 
the numerator and denominator a re  developed separately before combination. 

2N 2N 2N 

i =  1 i =  1 i =  1 

r~ 2N 

N 

1 
4 

- -  

L 1  N + l  

2N N 

N 
N + l  1 

Adding and subtracting the means, 

J 

2N 

N 
1 N + l  J 

- 
with ZB and %+ defined similarly, provides an expression involving vari- 
ances and covariances: 
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- -  - 
= - 2 1 ( C0VA + cov B ) + (xA XA+ - "A %+ - 'A+% + jTB %+) 

= - 1 (cov + cov ) + a (ZA - ZB) (EA+ - %+) , 

2 A B 

1 1 
= - (C0VA + cov ) + - 2 B 4 'AB 'A+B+ (A.3) 

- - - - 
- xA+ - xB+ . The difference between - xA - xB and AA,+ - 

where these d' $tB erences is 

N x - x  - g x . - x  1 2 N + 1  ) A~~ - A ~ + ~ +  i N + l  
2 N + 2  2 N + 2  

On the average, this term is quite small, SO the two differences may be equated 
with negligible error,  and 

Similar development for the variances gives 
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/ .  
I 
t -  

2N 2N 

r~ 2N 1 

Because 

the difference in variances is 
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On the average, the first difference is small and the second one still smaller. 
Division by N2 makes the whole expression negligible, and the difference in 
variances may be neglected. 

Consequently, SA 2 .  = SA+ 2 and SB = Si+ and 

2 1 2  2 1 2  
= s + + = ;Z (SA + SB) + AAB 

2 
'AB A B  b (A. 9) 

Combining this result (A.9)  with that for the covariance (A.5) gives 

Ri, AB 
covA + covB + Ah 

SA 2 + SB 2 + A i B  
r s2 + rBsB 2 + 5 1 A2 AB 

- A A  - 
+ Si + A i B  s i  

(A. 10) 
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. 

because rA = wvM+/S S + * cov /S Adding and subtracting 
mean 'F = (r 

A A  A A *  
+ r )/2, and dropping the subscripts on A , gives A B 

R1, AB 
- 

= r  + 

rA (2SA 2 - SA 2 - SB) 2 + rB(2SB 2 - SA 2 2 - SB) + A (1-7) - 
2 2 2 = r +  

2(SA + Ss) + A 

This is  Eq. (5. l), which is examined farther in Section 5. 

the 

(A. 11) 
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TABLE 5 

0000 - 0600 
S c a l a r  Speed 

S c a i a r  Momentum 

Vector Speed 

Vector Momentum 

0600 - 1200 
S c d a r  Speed 

S c d a r  Momentum 

Vector Speed 

Vector Momentum 

1200 - 1800 
Scalar Speed 

S c z l a r  Momentum 

Vector Speed 

Vector Momentum 

1800 - 0000 
Sca la r  Speed 

Sca la r  Xoffientum 

Vector Speed 

Vector Ybnentum 

Ail Eours 
S c a l a r  Speed 

Sca la r  Xomentum 

Vector Speed 

Vector Momentum 

SERIAL CORRELATIONS FOR 6 Hr. Lag, 0-27 Kilometers 

INTERVAL 

o 1 2  3 4 5 6 7 0 9 1 0 1 1 1 2  

e94 *95 e 9 0  *95 -90 e95 985 -9 *93 094 -98 -93 097 
.93 .94 .a6 .94 .89 .gs .85 .85 .82 .93 .97 .93 97 
*95 095 *93 997 e93 9 9 2  a95 095 997 997 097 :91 097 
.p .94 .86 .97 -93 .94 .a7 .a6 . g i  -95 .97 .p .g0 
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TABLE 6 

oooo - 0600 
S c a l a r  Speed 

Sca la r  Momentum 

Vector Speed 

Vector Momentum 

0690 - 1200 
S c a l a r  Speed 

S c a l a r  Momentum 

Vector Speed 

Vector Momentum 

1200 - 1800 
S c a l a r  Speed 

S c a l a r  Momentum 

Vector Speed 

Vector Momentum 

1800 - 0000 
S c a l a r  Speed 

S c a l a r  Momentum 

Vector Speed 

Vector Yamenturn 

All Hours 
S c a l a r  Speed 

S c a l a r  Momentum 
Vector Speed 

Vector Momentum 

SERIAL CORRELATIONS FOR 6 Hr. Lag, 0-6 Kilometers 
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TABLE 7 SERIAL CORRELATIONS FOR 6 Hr. Lag, 7-13 Kilometers 

oom - 0600 
Scalar Speed 
Scalar Nomentum 
Vector Speed 

Vector Momentum 

0600 - 1200 
Scslar Speed 
Scalar Monientun 

Vector Speed 
Vector Momentum 

1200 - 1800 
Scalar Speed 
Scala Momentum 

Vector Speed 
Vector Momentum 

1800 - 0000 
Scslar Speed 

Scalar Nomentum 

Vector Speed 

Vector Momentum 

A l l  Eours 
Scalar Speed 

Scalar Noaentum 

Vector Speed 

Vector Nomentum 

CXZUDAR INTERVAL 

o 1 2  3 4 5 6 7 8 g i o u 1 2  . 
.94 .87 .89 .93 .81 .g .60 .88 . g l  + 4 3  4 2  .94 
.94 .86 .89 .92 .80 .w .65 .84 .w .w -9 '92 .93 

.94 .87 .89 .93 .83 .% .55 .86 .p -87 -94 -92 .94 

.95 .85 .88 .92 .83 .p .61 .79 .p .a8 .93 -92 -94 
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TABLE 8 SERIAL CORRELATXONS FOR 6 Hr. Lag, 14-20 Kilometers 

0000 - 0600 
Scalar Speed 
Scalar Nomentum 
Vector Speed 
Vector Mamentum 

0600 - 1200 
Scalar Speed 
Scalar Momentum 
Vector Sgeed 
Vector Momentum 

1200 - 1800 
Scalar Speed 
S c a a r  Komentum 
Vector Speed 
Vector Xornentum 

18G9 - 0000 
Sc.iLar Speed 
Scalar Xomntum 
Vector Speed 
Vector Momentum 

A l l  Yours 
Scalar Speed 
Scaler  Nomentum 
Vector Speed 
Vector Ymmentum 

o 1 2  3 4 5 6 7 8 g 1 0 u u  

.94 .87 .94 .93 .87 .81 .88 -88 -90 -82 .98 .89 .96 

.94 .87 .94 .93 . g i  .86 .87 .8g .% -84 .93 -91 .95 

.& e89 0 9 4  -86 -87 -95 994 -91 e99 0 %  -96 

.94 .OO .94 .93 .y3 .g1 .94 -93 094 089 -98 .Y2 -95 

.g2 .g3 -95 .95 .89 .86 .86 .89 .g2 .86 .97 .93 .96 

.93 .93 .95 .95 .g2 .8g .84 -88 .94 -89 .97 .g2 .$ 
a 9 2  093 -95 *95 =93 -90 -93 *92 -95 984 997 994 -96 
093 -93 -96 -96 -95 *91 *92 e 9 2  -96 -87 -97 993 0 9 6  
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TABLE 9 

0000 - 0600 
S c a l a r  Speed 

Sca la r  Momentum 

Vector Speed 

Vector Momentum 

0600 - 1200 
Sca la r  Speed 

Sca la r  hmentum 

Vector Speed 

Vector Momentum 

1.200 - 1800 
Sca la r  Speed 

Sca la r  Momentum 

Vector Speed 

Vector Momentum 

'1800 - 0000 
Scalar Speed 

Sca la r  Momentum 

Vector Speed 

Vector Moaentum 

All Hours 
Sca la r  Speed 

Sca la r  Momentum 

Vector Speed 

Vector Momentum 

I 

SERIAL CORRELATIONS FOR 6 Hr. Lag, 21-27 Kilometers 

t 



i 
I -  

.. 

MATHEMATICAL WIND PROFILES 
PART IV (Final Report) 

SUMMARY 

Properties of augmented complex Fourier polynomials, developed 
to represent the complete vertical profile of horizontal wind vectors, are 
summarized from three previous reports. Procedures for predicting a 
future vector profile from present and past profiles are developed in detail, 
for application to winds at Cape Kennedy, Florida. 

1. 

Description and prediction of vector wind profiles has been an unsolved 
meteorological problem of increasing importance for many years. No standard 
procedure for the mathematical description of a profile has yet emerged, des- 
pite many attacks on the problem. Forecasting of an entire profile has been 
even less successful, and most forecast procedures are for the winds at indivi- 
dual levels, sepamtely, rather than for the whole profile. 

Mathematically, a vector wind profile is a continuous function of three 
variables: height, and two horizontal components of the wind at each height. 
(The vertical component of wind is neglected because it is some two orders 
of magnitude smaller than the resultant of the two horizontal components.) 
The quest for a suitable representation of such a 3-dimensional function, whi& 
could be used in predicting the wind profile at some future time, or over a 
specified place for  which data are not immediately available, was undertaken 
under Contract NAS 8-5380 with the Marshall Space Flight Center, NASA, 
Huntsville, Alabama. 

In this fourth and final report on that contract, first the development 
and testing of a method of represen w d profiles is summarized; details 
w e r e  given in three previous mports 9 2 . t  designated hereafter as MWP-I, 
MWP-II, MWP-IJI. Most of this report is devoted to prediction schemes 
for  wind profiles, as described mathematically by augmented complex Fourier 
polynomials. 
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Such trigonometric polyndmials from the detailed studies reported 
in MWP-I and MWP-II, seem appropriate for  describing vector wind profiles. 
They are direct extensions, to complex variables, of standard Fourier poly- 
nomials, which are complex-valued functions of real variables and have been 
used in many branches of applied mathematics for more than a century. 
Apparently complex Fourier polynomials have not been used hitherto for  
geophysical problems such as vector wind profiles. 

For adequate representation of vector wind profiles, the Fourier 
polynomials of a complex argument must be augmented, as explained later. 
by terms describing any linear trends in each of the wind components. 

2. BASIC FORMULAS 

In the application of this Fourier representation, the eastward (x) 
and northward (y) components of the wind at any height h are  combined into 
a complex variable z = x + i y  . Observations on z at n + 1 equally-spaced 
heights, h = 0, 1, 2, . . . 8 n, are  used to compute 2(n + 2) complex coef- 
ficients. They permit the estimation of the wind vector at any height as the 
sum of n + 2 complex quantities: a complex constant cz the product of 
a complex coefficient doo and the height h and n products of complex 
coefficients dj and complex numbers: 

n 
\\ 

h + A d ew ( i X j h )  1 z(h) = cz +doo 
j = O  

where 1 = Zn/v and v = n + 1 . A s  explained later, do = 0 

The first two terms represent the linear trendJ which can be removed 
in any of several ways. A plane can be fitted to the vector wind profile by 
ordinary least squares o r  by some modification so that its distances from the 
two endpoints of the profile are equal. Alternatively, trend can be removed 
from each component separately. Extensive research (some reported in 
MWP-I and discussed in MWP-II) suggests that simple least squares linear 
regression on each component separately is adequate. At each level h for 
which wind data an? available, the trend lines are 

x = u + c x + a o o h  , y + b o o h  y = v + c  (2.2) 

+ iboo The linear constants cz = c + i c  and coefficients doo = 
are  estimated as X Y  
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E, c = y - b o o s  (2.3) 

$0 Y 
c = x -  x 

where n: = n(n + 2)/12 because h = 0, l ,2,. , .  ,n and hence h = n/2  = 
(v- q/2, 

The rest of the Fourier representation is in terms of the departures 
u and v from these trend lines. They am formed into a new variable 
w = u + i v  , which has a mean of zero, Ordinary Fourier representation 
has n + 1 terms, of which the first is a constant, representing the mean. 
The trend removal in effect replaces this constant term by two terms, so 
that the complete representation requires only one additional term than the 
ordinary procedure. 

The complex Fourier coefficients dj = aj + ibj  are estimated by 
the method of least squares as 

n 

b j v  = A [ lvhCOs((Xjh)-Uhsin( l jh) ]  . (2.4) 
h = O  

- 
For  j = 0 , a. = bo = 0 because u = v = 0 . The variance of w is 
given by 

2 2 
j I I 

where A 
as 

= a2 + b. . The variance of the original variable z is computed 

83 



2 
z X Y 

s 2  = s 2  + s 

n n 
- 2  

= (xh-  X )  a d  S 2  = ( y h -  y ) 2 0  2 where sx 
Y V  

h=O h =  0 

A FORTRAN IV program for computing the Fourier coefficients, and 
calculating the variances, is given in Appendix A. 

At each altitude h for which wind data are given originally, the sum 
of the n + 2 complex terms provides a computed wind which agrees precisely 
with the observed winds. At any intermediate level, the estimated wind is a 
function of all the observed winds, not just an interpolation between values 
at the two adjacent levels of observation. Hence this procedure can be used 
to estimate winds at any level in a sounding. 

The method is not restricted b the representation of wind vectors. 
It can be applied equally well to momentum, which is a vector obtained by 
multiplying the wind vector by the atmospheric density, a scalar quantity. 
The method can be applied also to the positions of a balloon, observed at 
fixed time intervals, to give a position-time representation. A suitable 
transformation, using the observed rate-of-rise of the balloon, will convert 
this into a position height representation, from which wind speeds can be 
obtained by differentiation. Although this is a very promising prospect for 
more accurate reduction of upper wind observations than techniques in current 
use, it was not developed to the point of application because it was outside 
the primary purpose of the research. 

3. VARIANCE REDUCTION 

The basic augmented complex Fourier representation of a vector wind 
profile (2.1) has a complex constant and n + 1 complex coefficients, derived 
from wind observations at n + 1 equally-spaced levels. In most cases, many 
of these coefficients a re  very small, indicating that only a few of the terms 
are strongly significant. The significance of each term is indicated by its 
contribution to the reduction in the variance of the difference between the 
estimated and actual winds. 

Linear trends account for a substantial portion of the variance in the 
basic wind observations, because of the general increase in wind speed with 
height to a level of extreme wind, usually somewhat below the tropopause, and 
a decrease of wind with height above this level. The percent reduction in vari- 
ance arising from removal of trend is 
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2 2  100 2 = 100 (1 - sw/ sz 1 

The percent of the total variance ltexplainedll by the jth Fourier term is 

. 

2 2  100 s2 = 100 Aj / sZ . I 

(3.1) 

(3.2) 

The partitioning of tbe total variance (2.5) into V parts in terms of the Fourier 
coefficients is a consequence of the Parseval identity. Orthogonality of the 
dj implies independence and allows for meaningful partitioning of the total 
variance into compoaents of variance for each term; the dj are almost 
orthogonal (MWP-I, App. B). The perwnt variance explained by each term 
is a measure of its importance in tbe Fourier representation. 

Extensive research (reported in MWP-I and MWP-II) on wind sound- 
ings at 1-km intervals between 2 and 25 km, giving data at 24 levels, showed 
that 82 to 95 percent of the total variance would be removed by the linear 
terms and only four Fourier terms, generally those for j = 1,2, 22, and 
23; in some cases other terms, notably 21, were  slightly more important 
than 22. For other soundings, with data at a greater number of levels, 
generally the flrst two and the last two terms provided the greatest reduction 
in variance. 

Thus for some purposes an adequate representation of a sounding 
can be obtained by computing all the n + 2 complex coefficients, ranging 
them according to the percent of variance represented (or explained) by each, 
and then using only the half-dozen best (highest ranking) 
representation. This approach, while not as precise as the use of all terms, 
may be needed for certain purposes, especially prediction, as discussed 
later. 

terms for the 

4. PREDICTION 

Augmented complex Fourier polynomials, which describe a complete 
wind profile by the use of coefficients computed from observations at equally- 
spaced height intervals, can be the basis of a wind prediction method. The 
various coefficients, rather than the winds themselve(s, are predicted by some 
regression procedure, then combined (2.1) to yield the predicted Winds at any 
level of interest. 

A suitable set of prediction equations is developed, conventionally 
in four steps: 



a. The components and functional form of a prediction model are  
established. 

b. The unknown parameters of the model are estimated from a 
set of known data. 

C. These estimated parameters, and the adopted function, are used 
to make independent predictions. 

d. The predicted values are compared with actual o’nes, and the 
degree of correspondence computed. 

For purposes of this discussion, the n + 2 complex coefficients 
cz, doo, and de are separated into the real and imaginary parts, giving 
2n + 4 coefficienis. These are  denoted as gks using the subscript k to 
identify the particular coefficient. Then g u  is the kth coefficient in the 
Fourier representation of the ith wind sounding in some series of soundings, 
generally at the same place in the same season. 

The general problem is to represent the coefficients gk i + 1 Of the 
i + 1st sounding as functions of the coefficients g u  of some o r  dl of the pre- 
ceding I soundings. This requires the assumption of some functional form 
for the dependence of the i + 1st coefficients on the preceding ones: 

. 

i (4.1) 

Several prediction models are possible, using different functional forms. 
The function f may be linear, quadratic, exponential o r  anything else. Thus 
simple linear regression would be 

Polynomial regression would be 
P m 

(4.2) 

j = l  a = 1  

which reduces to the linear form when m = 1 . 
In terms of the Fourier representation of a sounding, gk , i+ l  

could be assumed to be related only to the same coefficient, gki , on the 
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previous sounding, to all such preceding coefficients, to all the coefficients 
on the preceding sounding and no others, o r  any other combination, No valid 
basis could be found for the assumption that the kth coefficient on one sound- 
ing is solely a function of the corresponding coefficient on the preceding sound- 
ing. This would imply that the complete Fourier form is fixed from observa- 
tion to observEztion, Hence each coefficient was assumed to depend on all the 
coefficients of the preceding sounding. and perhaps on those of a few previous 
soundings. 

That prediction would be more accurate in terms of a momentum 
vector than a velocity vector was suggested by elementary considerations of 
the conservation of energy in the atmosphere. Physical reasoning, and 
experience, also suggested that the diurnal cycle might be important in wind 
prediction, especially in the subtropics, and that the wind 24 hour prior to 
the prediction .time might be of some use in prediction, although the latest 
available previous wind, generally 6 hours before prediction time, would 
still be the most useful. 

To test these suggestions, serial correlation coefficients were com- 
puted (MWP-TII) for one year (1962) of wind observations at 6 hour intervals 
over Cape Kennedy. Any missing data had been previously interpolated to 
complete the set of data. Correlations were  computed for integrated atmo- 
spheric zones for four basic wind representations (scalar wind, vector wind, 
scalar momentum, vector momentum) at lags of 1, 2, 3, and 4, time inter- 
vals of 6 hours each. 

Vector speed showed the highest serial correlation, and the correla- 
tion for lag 1 (6 hour) was much higher than for the other lags, including 
24 hours - which was not 86 good as the 12 hour lag. Thus the prediction 
model was developed for coefficients of the Fourier representation of vector 
wind, using the corresponding representation of the wind 6 hours earlier, 

5. FORMULATION 

The regression model for predicting the Fourier coefficients of a 
vector wind sounding from those of the preceding sounding can be developed 
most readily in matrix notation. The notation to be used is generally stand- 
ard, but it3 summarized here for convenience, Matr ices  are denoted by 
capital letters, their elements by lower case letters, The first subscript 
on an element always refers to the row, the second to the column position. 
Rows are numbered downward, columns from left to right. For example, 

of n rows and P Columns, % is in the ith row and kth n XP in matrix X 
column. 

The transpose of a matrix, denoted by the superscript T , has rows 
and columns interchanged: in XT ; the element % in the kth row and ith 
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column is element x* (ith row, kth column) of the original matrix X . 
Two matrices can be multiplied only if the first has as many columns as the 
second has rows. The product of U (A x B) and V(B x C) is W (A x C). 
The transpose of a matrix product is the reversed product of the transposes: 

(UV)T = wT = v T T  u 

Specifically, uT u i s  (B x B) while u uT is (A x A). A vector is a 
matrix with only one column; its transpose has only one row. 

The principal diagonal of a matrix is the sequence of elements qi 
The identity matrix I has all elements on the principal diagonal of unity 
and zeros elsewhere. The inverse of a matrix, denoted by a -1 superscript, 
is defined as the matrix such that 

A matrix has a Unique inverse only when it is of full rankr or non-singular, 
that is, when no row o r  column is a linear combination of any other row o r  
column. 

f +l 
The adopted linear regression model is Eq. (4.2) for gk, 

a s  a linear function of all  the 2x1 + 2 coefficients gk,i of the Four er repre- 
sentation of the previous (ith) sounding: 

for  k =  1, 2, . . . r  2n + 2 ,  and for q y  i . The 2x1 + 2  = p  equations are, 
in matrix form, Gi + = Bo +Bk Gi  o r  

%, 0 

82, 0 

e . .  

e,, 0 

+ 
'2.1 e2,p 

0 . .  0 . .  0 . .  

. 
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The awkward addition of matrices can be avoided by adding a dummy variable 
go,i E 1 to Ge calling the new vector of p + 1 elements Gi , and combin- 
ing and Bk into a P x @ +1) matrixB: 

g1,i + 1 

g2,i + 1 

... 
gp,i + 1  

B Gi . 
Polynomial matrix regression, if desired, would be 

(5.2) 

where QL2l is the principal diagonal of GT G and Qcm1 is the principal 
diagonal of (Qrm - G each formed into a p-element vector. 

In many respects, the m-degree polynomial would be preferable to 
simple linear matrix regression. Available data and estimation problems 
suggest, however, that the linear model is sufficiently complicated for the 
first attempt at a regression model. It will not give a better estimate than 
the polynomial, but with a relatively small amount of data the linear model 
will have somewhat narrower confidence intervals around its estimates than 
would the polynomial. 

6. COMPUTATION 

Estimation of the elements of the prediction matrix B (5.2) for a 
specific location, atmospheric height interval, and month o r  season requims 
a set of appropriate wind soundings. The augmented complex Fourier repre- 
sentation (2.1) must first be obtained for each ~ounding, so that it is repre- 
sented by 2n + 2 = p coefficients g1 i . .. , gp, i . For computational conven- 
ience, the first index is increased by one, 80 that the terms are g2, i . .. 
gp + 1, i and a dummy variable 81, 5 1 is introduced. 
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In applying the proposed wind vector profile forecasting procedure 
for Cape Kennedy, one year (1962) of serially-conpleted soundings at 6 hour 
intervals was available. To investigate serial correlation (MWP-III), they 
had been divided into 13 consecutive time periods of 28 days o r  112 soundings 
each. Each sounding provided wind data at 1 km intervals from the surface 
to 27 km, but to eliminate the problem of winds in the surface layer (MWP-I), 
data from only 3 to 25 km were used. Thus each sounding had wind data 
from n + 1 = 24 levels, represented by 2n + 2 = 0 = 50 coefficients preceded 
by the dummy coefficient, o r  51 in all. To provide for the continuity between 
the end of one time interval and the start of the next, each 28-day interval 
was  preceded by the four soundings of the previous one, making a total of 
112 + 4 = 116 soundings. Thus for each time period, the q + 1 = 116 repre- 
sentations, each of 51 coefficients, form a 51 x 116 element matrix. 

In this matrix, the ith column contains a one followed by all the 
coefficients of the ith sounding. Discarding the last column gives a matrix 
G , and discarding the first column gives another matrix S; each is 
(p + 1) xq J where p = 2n + 2 and n is the number of equally-spaced levels 
for which wind data were obtained, while q is one less than the total number 
of soundhgs, made at equal time intervals. The ith column of S is the same 
as the i + 1st column of G . Hence, according to the regression model, 
Si = B Gi . In terms of these two matrices, the least squares, and also 
maximum likelihood, estimate of B is 

(6.1) 
A T -1 B = ( G G  ) GST 

The form of this estimating equation differs slightly from that often used in 
multiple linear regression because, for this matrix linear regression, the 
columns, and not the rowsr of G and S represent individual observations -- 
in this case, Fourier representations of vertical wind soundings. 

The major problem in estimating B from (6.1) is in inverting the 
matrix G GT . A unique solution for B will be obtained only if the matrix 
is non-singular, and if a computer with sufficient capacity is available for 
the inversion. Most matrix inversion programs contain a singularity check 
before starting the actual inversion procedure. 

some of the coefficients in G , and thus reducing the number of rows. In 
Fourier representations of vector wind profiles, many of the coefficients 
contribute negligible reductions in the error variance (MWP-Q. Equality 
of the coefficients gki for two o r  more k and for every i may cause singu- 
larity, and the most likely cause for equality is that the coefficients are actually 
zero. Thus any program in which soundings are represented by a large 
number of coefficients - as would be the case in applying the complex Fourier 

The possibility that G GT is singular can be lessened by eliminating 
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representation to detailed wind soundings with data points every 10 or  20 
meters - should include an option for selecting only the more significant 
coefficients (MWP-I, MWP-E) for use in a prediction model. 

Matrix inversion procedures are extremely sensitive to round-off 
error. Even though computer storage can be increased markedly by addition 
of storage units axxi by programming ingenuity, any computer must have 
some upper limit to the size of matrix that can be inverted. For example, 
the IBM 7094 of the Lockheed-California Company can invert a 2000 by 
2000 matrix of 8-digit elements. For wind prediction by augmented complex 
Fourier polynomials, this limits the number of intervals in the original 
soundings to 997, equivalent to wind observations every 20 meters through 
a 20 km thickness, or every 50 meters through 50 km. But if each sounding 
is represented by only half of the available coefficients, twice as many 
levels can be evaluated in the f i r s t  place. 

7. CONCLUSION$ (IV) 

The research program summarized here and in the three previous 
reports was undertaken to develop a method for describing and forecasting 
complete vector wind profiles. Of all the methods of representation that 
w e r e  considered, Fourier polynomials of a complex variable seemed best 
suited. However, the characteristics of vector wind profiles required that 
such polynomials be augmented by linear terms. 

Most of the investigation was devoted to developing computation 
procedures for augmented complex Fourier polynomials and to studying 
their properties: prediction would be futile if the Fourier representations 
were  not stable, but changed markedly from sounding to SOulldingD or  depended 
strongly on the particular height interval over which the representation was 
made. 

After the properties were found to be generally satisfactory for des- 
cription, prediction methods and procedures were developed. Vector velocity 
was  found to have greater time consistency than scalar speed o r  scalar o r  
vector momentum, and 6 hour lag correlations were much greater than for 
longer lags. Consequently, the first prediction model was for regression 
of a vector velocity mpresentation on the corresponding representation 6 
hours earlier. 

Computer programming of the regression model is simple, but the 
estimation of the regression matrix encountered several difficulties, primarily 
connected with matrix inversion. Several successive modifications of the 
basic program did not yield a usable solution before termination of the study; 
perhaps an additional 100 man-hours would suffice to obtain a working pro- 
gram with which regression matrices could be computed. Programming 
requirements are discussed in Appendix B. 
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In summary, a method for representing the complete vector wind 
profile was developed and some of its properties ascertained. Its useful- 
ness in a prediction model could not be determined, however, because 
unexpected computer programming difficulties prevented the obtaining of 
the required matrix of regression coefficients. Hence no actual predictions 
were made for testing goodness of fit. 

Even if the regression procedure proves unsatisfactory for short- 
range prediction of vector wind profiles, the augmented complex Fourier 
polynomials, developed for such intended use, offer one potentially valuable 
application. Such a qolynomial can be used to represent the time-position 
hodograph of a rising (or falling) balloon or  other radar target, transformed 
into a position-height function, and differentiated to provide wind velocities 
without the smoothing and interpolation inherent in present methods. 
Further research and development of this application seems desirable for 
better measurement of wind. 

I 
- 1  
- 1  

I 
1 
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APPENDIX 1V-A 

1 -  
I -  

COMPLEX FOURIER ANALYSIS PROGRAM 

The complete FORTRAN IV computer program for determining and 
evaluating the coefficients of the augmented complex Fourier polynomial des- 
cribing a single vector wind profile is given in Table A-1. The first part 
of the program finds and removes the linear trend lines in the two components 
x and y , to form the new variables u and v , computes the complex 
Fourier coefficients for each term and determines the percent of total vari- 
ance that is represented (or "explained") by each complex term. Input to 
the program is a single sounding: values of x and y at n + 1 equally- 
spaced points, i.e. atmospheric heights. These values may be wind speed, 
or merely position coordinates; if wind speed, they may be multiplied by 
the corresponding density (RHO) to make momentum the input. 

are used to compute u - v profiles using only one, only two, only three, etc. 
to all n terms, selected in consecutive cumulative order starting with the 
first coefficients (I = 1) to the last (j = n). 

h the second part, which is optional, the Fourier coefficients 

In the program output format, the first line gives all quantities 
related to the trend removal in the original x and y : 

sx2: varianceof x 
SY2: varianceof y 
A l :  constant term for x (denoted as cx in 2.3) 
B1: linear coefficinet for x (denoted as %bo in 2.3) 

A2: constant term for y (denoted as c in 2.3) 

B2: 
Y 

linear coefficient for y (denoted 88 boo in 2.3) 

The second line contains headings for the original and reduced 
soundings, the Fourier coefficients, and percent variance explained. The 
index H refers to the height level, reindex to run from 0 to N ; no pro- 
vision is made for reverting to actual heights, as specified in the original 
input. The index J identifies the complex Fourier coefficients; coefficients 
for J = 0 are 0 because of trend line removal. 

X(H) , Y(H): original values of input sounding 

U(H) , V(H): residual values of sounding after trend removal 
R(J) , C(J): real and imaginary parts of Jth complex coefficient 
S(J) : fraction of reduced variance, in terms of u and v , 

represented ("explained") by Jth Fourier term: 
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: percent of total variance, in terms of x and y 
sented by Jth Fourier term: P(J) = 100 Q S(J) 
where Q = V/T and T = SX2 + SY2. 

repre- P(J) 

The next-to-last line gives a check onthe zero-mean variables u 
and v , and the reduced variance V = C A; . 

SUM U S U B H  and SUM V S U B  H are summations of u and v 
over H. The last line gives R = 100 (1 -&) which is the percent of the 
total variance represented by the linear terms. 

A sample of the program output is given in Table A-2 for the sounding 
of lOOOZ on 8 June 1956 over Montgomery, Alabama. 
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TABLE A-1 

! B I B F T C  F C U R l  
CWIND 
C LEAST SQUARES F I T  OF A FOURIER SERIES 

DIMENSION X ~ ~ ~ ~ ) ~ Y ~ ~ ~ ~ ~ ~ U ~ ~ ~ ~ ~ V V ~ ~ O G ~ ~ R ~ ~ O O ~ ~ C ~ Z O O ~ ~ A ~ Z C O ~ ~ S ~ Z O O ~  

DIMENSION P ( 2 0 0 ) ~  R H O ( 2 0 0 )  

2 FORMAT ( 7F10. 4 1 
3 FORMAT ( 1 H  7F16 .5 )  
4 FORMAT(1H 139  8F14.5)  

5 FORMAT ( 1 H 1 )  I 
7 FORMAT (1H 1 3 9 7 f 1 6 . 5 )  

1 ~ R R ~ ~ ~ ~ ) ~ C C ( ~ ~ ~ ) V U H ( ~ O O ~ V V H ( ~ O O ~  V X X ( 2 O O ~ , Y Y ( 2 0 0 )  

~ 

1 
1 FORMAT ( 7 1 3 )  

TWOPI '602831853  
7 0  R E A D ( ~ ~ ~ ) M ~ N F v L ~ O T A L , N O  READ9 NO RHO 9 MOM2 

C I F  NO RHO =U READS RHO, MOM2= 2 PROGRAM COMPUTES FOR RHO 

I AGAIN = MOM2' 
I F ( N 0  READ) 7 1 9 7 1 9 6 9  

6 9  R E A D ( 5 9 2 )  ( X X ( I ) e I = l V  LTOTAL)  
R E A D ( 5 9 2 )  ( Y Y ( ~ ) , I = l V  L T O T A L )  

7 1  I F ( N O  RHO)  7 9 9 7 9 ~ 7 3  
73 R E A D ( S r 2 )  ( R H O ( I ) , I = l r  L T O T A L )  
7 9  INDEX = 00 

LAST = M+NF - 1 
DO 7 2  K z N F v L A S T  

INDEX = INDEX + 1 
X(1NDEX)  = X X ( K )  
Y ( I N D E X 1  = Y Y ( K )  

7 2  CONTINUE 

7 8  CONTINUE 
T IME = 1. 

W R I T E ( 6 r 5 )  
L I NE=O 
SXA=O.O 
sxB=o.o 
SYA=O.O 
SYB=O 0 
SXHAtO.0 
SYHA=O.O 
N=M-1 

AN=AM-1 0 
AM=M 

DO 1 0  I = l , M  
SXA=SXA + X ( I ) * X ( I )  
A I = I  
S X B = X ( I )  + SXB 
SYA= SYA+ Y ( I ) * Y ( I )  
S Y B = Y ( I ) +  SYB 1 

S X H A = X ( I ) * ( A I - 1 o O ) + S X H A  I 
S Y H A = Y ( I ) * ( A I - l . O ) + S Y H A  

S H 2 = A N + ( 2 . O * A N + 1 . 0 ) / 6 e O - A N / 4 . 0  
S X 2 = ( S X A  - (SXB*SXB) /AM) /AM 
SY2=(SYA-  (SYB*SYB) /AM) /AM 
SXH=(SXHA (SXB*AN/Z.O)) /AM 

10 CONTINUE 
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SYH=(SYHA - (SYB*AN/2 .O) ) /AM 
T =  SX2 + SY2 
YB=SYB/AM 
XB=SXB/AM 

B l H =  SXH/SH2 
A l H =  XB - B lH*XHB 
B2H= SYH/SH2 
A2H= YB - 82H*XHB 
WRITE ( 6 , 1 0 0 )  

XHB= AN/2.0 

. !  

* I  
1 0 0  FORMAT ~ 1 H O t l l X ~ 3 H S X 2 ~ 1 3 X ~ 3 H S Y 2 , 1 3 X 2 H A 1 , 1 3 X , 2 H A ~ ~ l 3 X ~ 2 H B l ~ l 4 X ~ 2 H A 2 ~ ~ l 3 X ~  

1 2HB2) 
WRITE ( ~ , ~ ) S X ~ , S Y ~ , A ~ H , B ~ H , A ~ H , B ~ H P B ~ H  
L I N E  = L I N E  + 3 
SU=O.O 
sv=o .o  
DO 15  K=l,M 
AK = K 
U ( K )  = X ( K ) - ( A l H + B l H * ( A K - l o O ) )  
V ( K I  = Y ( K ) - ( A 2 H + B Z H * ( A K - l . O ) ~  
SU = SU+U(K)  
SV = S V + V ( K )  

DO 1 8  J Z l v M  
A J  = J 
RS = 0.0 
cs = 0.0 
DO 1 6  KZ1,M 
AK = K 

Z tAMOD(Z tTWOP1)  
S Z = S I N ( Z )  
C Z - c o s  ( 2  1 
RS = RS + ( U ( K ) * C Z  + V ( K ) * S Z )  
CS = CS + ( V ( K ) + C Z  - U ( K ) + S Z )  

1 5  CONTINUE 

Z = (TWOPI*(AJ-l.O)*(AK-loO))/AM 

1 6  CONTINUE 
R ( J )  = RS/AM 
C ( J )  = CS/AM 

1 8  CONTINUE 
SA = 0.0 
DO 19 J = l , M  
A ( J )  = R ( J ) * * 2  + C ( J ) * * 2  
SA = SA + A ( J )  

1 9  CONTINUE 
Q = SA/T 

DO 2 0  J = l t M  
S ( J )  = A ( J ) / S A  
P ( J )  * lOO.*Q* S ( J )  

WRITE ( 6 , 1 0 1 )  

- 1  
. i  

R R R  = ( l . -Q)+ lOO. 

20  CONTINUE 

101 FORMAT ( l H 0 * 3 H J / H s  8 X t 4 H X ~ ~ ~ ~ 1 0 X ~ ~ H Y ~ H ) ~ l O X ~ 4 H U ~ H ~ ~ l O X ~ 4 H V ~ H ~ ~ l O X ~  
1 4 H R ( J ) , l O X , 4 H C ( J ) r l O X , 4 H S ( J ) , 1 O X , 4 H P ( J )  ) 

L I N E  = L I N E  + 2 

I 
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21 

22 

102 

23  

24 

25 

30 

45 

45 1 

452 
1 9 3  

DO 22 J= 1,M 
IfJ-1 
W R I T E  ( b r 4 ) I r X ( J ) r Y ( . J ) , U ( J ) , V I J I . R ( J ) , C ( J ) , S ( J ) , S ( J ) , P ( J )  
LINE = LINE + 1 
IF (LINE - 54) 2 2 9 2 2 ~ 2 1  
WRITE (695) 
W R I T E  (6r101) 
LINE = 2 
CONTINUE 
W R I T E  (6,102)SUsSV,SAsRRR 
FORMAT (lHO,14HSUM U SUB H = ~F16*5,16X*14HSUM V SUB H = ,F16*5, 

1 16X94HV ,Fl6.5//12H Rt100(1-Q)= F16.5) 
LINE = LINE + 2 
IF (LINE +M -51) 24,24923 
WRITE ( 6 9 5 )  
LINE = 0 
CONTINUE 
I 1  = 0 
JPHI=O 
DO 5 0  L=l,M 
H = L  
IF (JPHI- 3) 25,45925 
JPHI=JPHI+l 
SUH = 0.0 
SVH 000 
DO 30 JflrM 
AJ = J 
2 * TWOPI*(H-~OO)*(AJ-~.O)/AM 
2~ AMOD(2,TWOPI) 
SZ = SIN(Z1 
cz = COS(2) 
SUH * SUH +RIJ)*CZ - C(J)*SZ 
SVH = SVH +C(J)*CZ + R(J)*SZ 
JJ=II+J 
UH(JJ 1 = SUH 
VH(JJ 1 = SVH 
CONTINUE 
I 1  = I 1  + M 
GO TO 50 
L3=L-4 
L2=L-3 
L1=L-2 
IF (LINE + M - 51) 452,452,451 
WRITE (6,s) 
LINE = 0 
WRITE (6,103)L3vL2,Ll 
FORMAT (1H0912HH S U B S C R I P T S V ~ X I I ~ , ~ O X I I ~ ~ ~ ~ X , ~ ~ / ~ H  J r9X,5HSU(H), 

~ ~ ~ X ~ ~ H S V ( H ) ~ ~ ~ X I S H S U ( H ) ~ ~ ~ X ~ S H S V ( H ) , ~ ~ X ~ ~ H S U ~ H ~ ~ ~ ~ X ~ ~ H S V ~ H ~ ~  
LINE = LINE + 3 
DO 48 J=l,M 
I =  J-1 
JJ=M+J 
J J J=2*M+ J 
WRITE (6,7)I,UH(J),VH(J),UH(JJ ),VH(JJ )sUH(JJJ 1 ,  VH(JJJ 1 
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47 

48 

5 0  

5 1  
5 2  
5 3  
5 4  

5 5  

5 6  

5 7  

5 8  

5 9  
80  
7 5  

7 6  

7 7  
60  

L I N E  = L I N E  + 1 
I F  ( L I N E  - 5 4 )  4 8 9 4 8 9 4 7  
WRITE ( 6 9 5 )  
W R I T E  ( 6 * 1 0 3 ) L 3 9 L 2 9 L l  

CONT I NU€ 
JPHI=O 
I 1  * 0 
GO TO 2 5  
CONTINUE 
L 3 =  M-2 
L2=  M - 1  
L l =  M 
I F ( J P H I ) 7 0 t 7 0 ~ 5 1  
I F  ( L I N E  + M - 5 1 )  5 3 9 5 3 1 5 2  
W R I T E  ( 6 9 5 )  
GO T O  ( 5 4 9 5 6 ~ 5 8 1 9 J P H I  
W R I T E  ( 6 9 1 0 3 ) L l  
DO 55 J = l t M  
I = J - 1  
W R I T E  L 6 * 7 l I , U H ( J ) 9 V H ( J )  
CONTINUE 

W R I T E  ( 6 9 1 0 3 1 L 2 9 L l  
DO 5 7  J = 1 * M  
I = J - l  
JJ=M+J  
W R I T E  ( ~ ~ ~ ) I I U H ( J ) , V H ( J ) ~ U H ( J J  ) 9 V H ( J J  1 
CONTINUE 

WRITE ( 6 9 1 0 3 ) L 3 r L 2 9 L l  
DO 5 9  J = 1 9 M  

I = J - 1  

LINE = 3 

GO TO 80  

GO TO 8 0  

JJ=M+J  
J J J = Z * M + J  
WRITE (6,7)I,UH(J),VH(J),UH(JJ ) , V H ( J J  ) ,UH(JJJ  1 9  VH(  JJJ 
CONT I NUE 
I F ( A C A 1 N - T I M E )  7 7 9 7 7 9 7 5  

T IME 2.0 

DO 7 6  KsNFvLAST 
INDEX = 0 

INDEX = INDEX + 1 
X ( I N D E X 1  = X X ( K )  * R H O ( K )  
Y(1NDEX)  = Y Y ( K )  + R H O ( K )  

GO TO 7 8  
I F ( 0 )  6 0 9 7 0 , 6 0  
CALL E X I T  
STOP 7 7 7 7  
END 

. 
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APPENDIX' IT-B 

PREDICTION EQUATIONS 

This Appendix discusses some of the procedures requimd for the 
satisfactory solution of Eq. (6.1) . 

A 
B = (G GT)-' G ST , 

A 
expressing the matrix B of regression coefficients as a function of two 
matrices, G and S . These represent, respectively, all except the last 
and all except the firs$ of a series of g + 1 vector wind soundings through 
a given height interval, at a given location, in a specified month o r  "season". 

Each sounding is represented by the coefficients of an augmented 
complex Fourier polynomial, computed by the FORTRAN IV program given 
in Appendix A. Before such computation, however, several preliminaries 
may be required. These may involve the separation of a long sequence of 
soundings, such as for several years, into appropriate %easons, and 
provision for overlap of one or  more soundings from season to season. 

The number of soundings for each season, as well as the lowest 
and highest height levels for which data are  to be used, must be specified. 
So many steps and so many variable are required for the entire computation 
that almost all letters of the alphabet are used, requiring in some place the 
use of double letters. These indicate single numbers, and not multiplication. 

Schematically, the steps to be followed are: 

A. Enter basic sounding and convert, i f  needed, to x and y . 
1. Introduce complex Fourier analysis subroutine (App. A. ) 

B. Compute coefficients for regression. 
1. Printout Fourier representation (optional). 

C. Index Fourier coefficients. 
D. Compute regression coefficients. 

1. Compute and printout standard e r ro r  of estimate of estimated regres- 
sion coefficients (optional). 

2. Compute and printout multiple regression coefficients of estimated 
regression coefficients (optional). 

E. Form, store on tape, and printout regression coefficient matrix B . A 

Some of the instructions for preparation of a program to accomplish Step A 
are : 

1. Read basic data tape and label each sounding as 
TL for L = 1, 2, ... 8 &&. 

. 
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2. 

3. 

4. 

5. 

6. 

Divide into E intervals by ZZ = (QQ - PP)/E , where PP is the 
the number of soundings to be used as overlap. Thus L = I + MM(ZZ) 
for  MM = 0, 1, ..., E - 1, and I = 1, 2, ..., ZZ + P P .  

Reindex each of the E segments on I by I = L - MM(ZZ) for each 
MM. 
Call in ZZ + PP soundings, converting if needed from 
v h #  % to X h D  yh by % = - V h s b %  and yh = - vh COS Bh 
and store on tape for all h . 
Sped@ the atmospheric height interval, compatible with the basic 
input, and reindex soundings from 

Printout basic wind data with date and time. 
h = TT, TT = 1, . e m s  WW- 1, WW to H = 0, 1, . . e )  Ne 

Step B requims the FORTRAN IV program given in Appendix A. Only 
the computed trend removal and complex Fourier coefficients are used in the 
next step, but an option should be provided for the computation and printout 
of part o r  all of the quantities in the basic program, including the date and 
time of each sounding. 

The complex Fourier program is applied to each of the q + 1 soundings 
to be used for estimating the regression coefficient matrix Be The linear 
trend and Fourier coefficients are reindexed and stomd. 

For  step B, the constant and linear terms are labled Al B1 for x 
and A2 , B2 for y . The real and imaginaryparts of the Fourier coefficients, 
from Step B, are  called R(J) and C(J) , respectively, and a m  converted to 
a single sequence as g u  and stored. 

1. Iutroduce the dummy variable gli = 1 for all i . 
2. Renumber ( ~ 4 1 ) ~  to gZi 8 

3. Exclude R(0) = C(0) = 0 and convert, for j = 1, 2. ..., N, 

(Bl)i to ggi s 

(Aai to g4i’ ( B q  to 851 

R(J) to gki for k = 2j + 4 
C(J) to gki for k = 2j + 5 .  

and C(N) is %i cOJ=quentlY, R(N) is - 1,i 
4, Form and store the matrix G* which is p X (q+ 1) 

An option should be provided for reducing the number of Fourier coefficients 
by eliminating certain rows from G* and reindexing. 

For Step D, matrices G and S , each pXq , a m  formed b eliminating 
the last and first columns, respectively, from G* . Then G G Ty @Xp) is 
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computed, inverted, and the in ersion stored and checked for validity by 
verifying that (G GT) (G GT)-' = I , the indentity matrix. Suggested steps 
are: 

1, Call in each row, in turn, of b starting with the second, for k = 2. + Identify this row vector as sk . Transpose to a column vector & 
and form the p - 1 products, one for each k 8 G % 8 which are 
@Xq)  (qX1) = (PX1). 

2. Premultiply each product by (G GT)-' to obtain 

3. For each k from 2 to p , compute the standard er ror  of estimate 
of the kth Fourier coefficient (Step D-1) and the multiple correlation 
coefficient (Step D-2) of the kth Fourier coefficient with all the coef- 
ficients of the preceding sounding as 

rn rnA 

where is the mean of the q elements gM o r  E$ o r  k 

i = 2  i =  2 

A A A 
4. Array the p - 1 vectors as the columns B, of the matrix B 

R 
which is p - 1X p , with elgments Bm , where m = k - 1 = 1, 2, 
0 . 0 ,  p -  1, and 4 = 1, 2, . e . ,  p. 

A 
This matrix B may now be used to predict Gi + 1 , the vector of Fourier 

coefficients of the i + 1st sounding (preceded by l), from Gi 
ponding vector for the ith sounding, by 

the corres- 

A 
Gi + 1 = B G i .  
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APPENDDL IV-C 

PREDICTION AND VERIFICATION 

A 
Given a suitable matrix B of regression coefficients (developed as out- 

lined in Appendix B) and a wind sounding, the general procedure proposed for 
predicting the subsequent wind sounding is to express the sounding by the coef- 
ficients of its representation as an augmented complex Fourier polynomial, 
arrange the coefficients into proper form, multiply them by the B matrix, 
and convert the predicted Fourier coefficients into wind components at the 
atmospheric levels of interest, which need not be the same as those for which 
the first sounding is given. 

Steps in procedure are: 

1. Enter the sounding (App. B, Step A) 
2. Compute the trend and Fourier coefficients (App. A) 
3. Reindex coefficients (App. B, Step C) as g1 , g2 

the vector Gi . 
4. Multiply B Gi to obtain the predicted coefficients sm for 

m = 1, 2, ..., p -  1 .  
5. Reindex the coefficients into Fourier program notation as 

. . ., gp 8 to form 

A 

s = C(1), s = C(2), 0 . 0 ,  s p -  1 = C(N)* 6 8 

60 Using R(j) and C(j) compute the predicted zero-mean wind com- 
ponents for any height H , o r  for H = 0, 1, . . ., N from 

N 
u = [R(j) cos XjH - C(j) sin X j H ]  H 

j = 1  

v H = $ [ C ( j ) m e l j H  - R ( j ) s i n X j H ]  
J =  

wheE X = 2n/(N + 1 ) .  
An optional check on the initial computations is verification that 

N N pH= c v H = o  
H = O  H = O  
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7. From each uH , vH , or  only for those of interest, find 

= v + (A2) + (B2)H . x H = u H +(Al)  + (B1)Hr YH H 

8. Convert the subscript H to the actual height indicator h 

9. Verification of the prediction, after the observed values xi 
the i + 1st sounding are obtained, may be in terms of any or  
the following: 

y ' 
of 

a. The scalar difference, xh - xi , yh - y i  ; 
b. The vector difference, 

and 100 I Xh - x i  

xi C. The percent difference, 100 
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