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NOMENCLATURE

length of cylindrical shell.

cross-sectional area of the kth ring, zth

stringer.

isotropic glate flexural stiffness,
Et3/12(1-v2).

strains.

shell elastic modulus.

elastic modulus of the kth ring, zth stringer.
torsional stiffness of the kth ring, zth
stringer.

integers.

moment of inertia of the lth stringer, kth ring
cross-sectional area about an axis passing
through the line of attachment and parallel to
the z-axis. See Figure 2.

product of inertia of the lth stringer, kth ring

cross-sectional area about the yz, xz axes
passing through the line of attachment. See
Figure 2.

. . th . th _.
moment of inertia of the ¢ stringer, k™ ring
cross-sectional area about the y, x axis passing
through the line of attachment. See Figure 2.

cross stiffening parameters for the 2th stringer,
kth ring. See Appendix I.

total number of rings.
total number of stringers.
axial wave number.

maximum number of terms used in the axial dis-
placement series.

number of circumferential full waves.
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u, v, w

Xy G0

U6, Vo), W ()

Subscripts

C

k

maximum rmumber of terms used in the circumferential
displacement series.

radius of shell middle surface.
shell thickness

. . . R+t/2
kinetic energy; 1n (R—t 2)

potential energy.

shell middle surface displacements in the x, 6,
z directions.

Bernoulli-Euler beam eigenfunctions.

axial mode functions representing displacements
in the x, 6, z directions.

stringer, kth ring centroidal
See Figure

coordinates of ch
axis referred to line of attachment.
2.

stringer, kth ring elastic
See Figure

coordinates of zth
gxis referred to line of attachment.
Kronecker delta function.

frequency parameter, (l—vz)pCszz/EC.
Poisson's ratio of shell material.
shell density.

density of kth ring, lth stringer.

angle of twist of a ring, stringer cross section
about its elastic axis.

circular frequency.

time

refers to cylinder
refers to the kth ring

refers to the zth stringer



T refers to rings.

s refers to stringers.

A comma before a subscript denotes partial differentation with respect
to that subscript; e.g., V,y denotes 3v/3y and Wik denotes 32w/3x2.
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INTRODUCTION

The vibration analysis of stiffened cylindrical shells has been and
continues to be of considerable interest to structural analysts because of
the wide spread use of this or similar type structures in air, space, and
water craft. The degree of interest and the complexity of the problem are
reflected in the number of publications in the literature devoted to this
topic. |

The investigative efforts may be divided into two broad classes:
those which consider the stiffeners to be closely spaced and which average
or '"smear'" the stiffening effects over the entire surface of the shell
thus effectively replacing the stiffened shell by an orthotropic shell;
and those which do not consider the stiffeners to be closely spaced and
do not take advantage of the simplification of averaging the stiffener
effects. References (1-15) apply the averaging technique to the analysis
of stiffened shells while the discrete approach is used in references (16-
47).

The more recent studies using the averaged stiffener approach (10-15)
have been concerned with the effect of stiffener eccentricity and have
included that effect explicitly. Of those investigations using the discrete
approach, references (16-20) are concerned with stringer stiffened shells,
references (21-40) deal with ring stiffened cylinders, and references (41-
47) have considered both ring and stringer stiffeners.

The present effort may be considered an extension of the work in
reference (46) and the theory and part of the numerical results are, in

essence, the same as that of reference (47). In this report, an analysis
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of the free vibrational characteristics of a thin uniform cylindrical shell
with arbitrary end conditions and with an arbitrary number of ring and
stringer stiffeners is developed. The stiffeners may be arbitrarily spaced
and need not be identical but are assumed to be uniform along the stiffener
axis. The analysis considers the effects of the flexure and extension of
the shell; the flexure (about two perpendicular axes), extension, and
torsion of the stiffeners, including the'possibility of nonsymmetric stif-
fener cross sections. Stiffener flexural cross stiffening is also in-
cluded in an approximate manner. The three translational shell inertia
components and all six of the stiffener inertia components are considered.
The problem is formulated by the energy method and the Rayleigh-Ritz
technique is used to obtain an approximate solution.

Numerical résults for several configurations of stiffened cylinders
are presented and compared to existing theoretical and experimental fre-
quencies. The stiffened shells considered include freely supported
stringer-stiffened and ring-stiffened cylinders, a clamped-free ring

and stringer-stiffened shell and a clamped-clamped ring stiffened shell.



METHOD OF ANALYSIS.

The method of analysis utilized is the Rayleigh-Ritz energy technique.
The general approach of the method is outlined in the following steps.

First, the expressions for the kinetic and pofential energies are
written for the cylinder, stringers, and rings. These sii expressions are
then used to give one expression for the total kinetic energy and one for
the total potential energy of the stiffened cylinder, which are then
expressed in terms of the displacement of the middle surface of the cylinder.
Next, deflection shapes are assumed in the form of a finite series with un-
determined coefficients, where each term satisfies the appropriate end
conditions. These assumed displacement series are substituted into the
energy expressions, and Hamilton's principle is used to develop a linear
eigenvalue problem in the undetermined coefficients. This eigenvalue
problem is solved, allowing the calculation of the desired natural fre-

quencies and mode shapes.

Detailed Analysis

The energy expressions are written first in terms of the strain
energy and then the strains are written in terms of the displacements of
the middle surface of the shell to give the energy expressions as functions
of the displacements. Only the strain energy due to the normal strain in
the direction of the stiffener axis and shear strain due to twisting about
the stiffener axis are considered for the stiffeners. The normal strain in-
cludes the effects due to extension of the stiffener and bending of the

stiffener about two axes. The rotatory inertia of the shell is considered



negligible; however, the rotatory inertia is included in the stiffener

kinetic energy terms.

Potential Energies

The strain displacement relations for a cylindrical shell with the
coordinates shown in Figure 1 are given by Flﬁgge (48) as

e .. =u,

-z w,
XX X XX

v, W,
_Vrg Pgg W )
6 ~ R R(R+z) T Rz (la-c)

u’
0 R+z : z z
-~ 4+ = -l 4+ &2
o "z TR Vox " (R R Yoxe

]

e

where a comma before the subscript indicates differentiation with respect

32w
).

to the subscript (w,Xe = These relationships are referred to as

X096
Flﬁgge's exact strain relations, and assume that normals to the middle
surface remain normal after straining and that the displacements are small.
The strain energy or the potential energy of the shell is found by
considering a small element in a thin shell. Since the shell is considered
thin, it is assumed that the normal stress o,, is zero throughout the
0z

element and that the out of plane shear stresses are negligible (oxz =g, =

Hooke's law for an isotropic material in a state of plane stress is

E
Sex = TvZ (G ¥ Vege)
_ E
%0 = T-v2 (Se0 * Vo (2a-c)
E

%e = Z(T*v) “xe
The increment change in strain energy per unit volume for the small element

is



dv,

vol = oxxdexx + creedee + o_, de 3

8 X0 X6
Substituting (2a-c) into (3) and integrating gives the strain energy per

unit volume as

2 2
(S e
V. = E [ + 60 + ye e + Q—_\))_ ez ] . (4)

Vol (1-v4) 2 2 XX 66 4 X0

The total energy of the shell is then the integral over the volume of the

shell

Vé = fv l'vvold(Vbl) (5)
or

t/2 2r a
_ C 2 2
Ve © 2(1-v9) {t/z fo fo [%xx * €8 * 2000
s 1oy 2 ](R+z) dxdedz (6)
2 X0

where d (Vol) =(R+z) dxdedz, and Ec is Young's modulus of the cylinder.

The strain energy of the cylinder is obtained as a function of the displace-
ment of the middle surface by substituting (la-c) into equation (6) and
integrating over the shell thickness. The potential energy for the cylin-

drical shell may then be written as

2r a v,2 v, W

6D ’0 T ’0

V.= f ! [Fu,i s w2 =+ T
o) )

RZ%+
1- T K
e 20 fugrsg + ]+ O { ==

(7)
D 2m 2
v,i + 20,0V, f | dxd® + 5 f J Rw,)zcX -2, Wy
o o
12 t 2
* g (T RIS+ Dugaw) + = (1 Mgg = Wy Vig)



Figure 1. Geometry of Discretely Stiffened Cylinder
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1- t3, 12
G {w’azce (R®T - Rt + 7p) %7 - 1% WoxeYrx
(7 cont'd)

24 |
+Hwr-y u,ew,xe}] dxde

_ R+ t/2, .
where T=1In (g—575)
Ect3
and D = 7oy

This form of the shell potential energy can be shown to be equivalent

to that developed by Miller (5) if the approximation

3
t . ¢t

R 12R3

e

T

is used in equation (7).

The potential energy expressions for the stringers and rings will be
developed with the assumption that these stiffeners are uniform along
their length and have an asymmetric cross section. Further, it is assumed
that only normal strains in the direction of the stiffener axis and shear-
ing strains due to twisting about the stiffener axis are important. It
is also assumed that the cross sectional planes do not warp.

The elastic axis is chosen as a reference line for the stiffener
since it remains undeformed in a state of pure torsion, and the deforma-
tions in this state may be described by a single variable, ¢, the angular
displacement of the cross section about the elastic axis. Since the
elastic axis is chosen as the reference line, there is no coupling of the
displacements of the elastic axis (uE, VEs wE), which describe the flex-
ural and extension in the bar, to the angular displacement (¢), which
describes the torsion. Because of this uncoupling, the displacements of

any point in a stringer (us, Ve, ws) can be expressed as
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= - ! -
Us =Yg Y VE,X Z'WE,X -

= — ! -
vV, = Vg -z ¢s (8a-c)

- 1
Wg =wg + Y ¢s

The coordinates are shown in the stringer detail of Figure 2.
The energy due to normal strain in the stringers is

L E a

- - S& 2
Vext Zzl 2 'ro IA [exx] dAsﬁLd'X ()
S2 6=0
2
where x = Ys x and the total number of stringers is L. The Young's

modulus for the th stringer (9) is Esz and 62 is its 8-coordinate.

The potential energy of the stringers in terms of the displacements
of the elastic axis and the angular displacement of the cross section may
be obtained by substituting equations (8a-c) into (9). It should be kept
in mind, however, that the final energy expression must be related to the
shell displacements at junction of the stringer and the shell. It is
somewhat simpler algebraically if these compatibility relations are intro-
duced into equations (8) before they are substituted into the energy ex-
pression (9).

The compatibility relations are quite simple if it can be assumed
that the stiffener is integral with the shell at a single, common line
(line of attachment). This assumption is more easily justified if the
stringer is welded, riveted (closely spaced), or actually integral to the
shell with the width of the junction (or the distance, perpendicular to
the stiffener axis, over which the junction may be considered integral)
is small compared to the wave length of vibration. The waves referred to
are those perpendicular to the stiffener. However, there are methods of

8
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attaching the stiffener to the shell which do not indicate a clear-cut
line of attachment. As Ojalvo and Newman (19) have pointed out, an effec-
tive line of attachment must be assumed in these cases.

Assuming that the line of attachment has been determined, the dis-
placement of this line (u,, Vs wA) are first related to the elastic axis.
This is done using the general equations (8a-c) and solving for the dis-
placements of the elastic axis.

Ug T UA T YsVax T ESY

s A,X
Vg = Vot ZS¢S (10a-c)
Wg = Wp * ys¢s

If equations (10a-c) are substituted into (8a-c), there results

Ug U0~ WVp x ~ B x * rzg - zyg) s x

s
Ve =V - Z¢S (11a-c)
Ws = ¥Wp * y¢s

Compatibility between the shell and the stringer at the line of

attachment requires

Uy = u(x, 62, T)
vy = v(x, 62, T)
(12a-d)
Wy = w(x, 0,5 T)
¢S = (1/R) w’e(x’ 62’ T)

After substituting equations (11) into (9), carrying out the inte-
gration over the cross-sectional area of the stringer, and noting the

compatibility relations, the stringer normal strain energy can be shown

to be
10



L Esl a ) _
Vext = zzl 2 fo AggUsy = gehsy WaxVoxx
- 2
ZZSQASQ oxWoxx Z2ZS8 XX ZIyzsz XXX
E afr
I w,2 S8 [ SL .o
yyss "X] & 7 Il Wex
9=92
(13,a)
SL (o S o 2 A
TR UspZse 7 Zea¥sed Undroxx - R Upzsesn
-1 v..) V, W - z-(I z_ -
yzs2’ S% xx7’axx R “yzseTsg
) Iyyszysz) w’_xxw’exx] dx
e=92
- 52 55 52
where  To) =T %50 ™ Zlyzse %50 Ysu ™ Lyysy Vs

The terms in the first integral of equation (13,a) represent the
extension, extension-flexure coupling (due to stringer eccentricity), and
the flexure in the stringer. The terms in the second integral are the
contributions of the twist in the stringer to the normal strain energy and
the coupling between torsion and flexure and extension. As will be dis-
cussed later, numerical calculations for rectangular and wide flange sec-
tion ring stiffeners with positive eccentricity indicate that the torsion
and the torsion-flexure terms have very little effect. For this reason,
the terms in the second integral of equation (13,a) will be neglected for
this analysis.

If the stringer is not attached to the shell at a single common line,
but is integral with the width of the stringer at the junction such that

it cannot be considered small, the stiffness of the shell, perpendicular

11



to the stringer axis, will be increased at the stringer location. It is
shown in Appendix I that this cross stiffening effect for the stringers may

be approximated by

a

| =

Il o~

(/R [w,2,]  dx (13,b)

6=62

VéS ESQ ICSS,Q fO

2=1

where ICS is a cross stiffening parameter for the zth stringer defined

s
in Appendix I.

The shear strain energy due to torsion of the stringers is taken in
the form

v ]f s fa [ 21 dx (14)
= W,~
tor 0=1 2R2 o Xe]e=e
Q

where (GJ)SQ is the torsional stiffness of the zth stringer. The total

strain energy of the stringers (Vé) is equal to the sum of the extensional

strain energy (V__.), the strain energy due to the shear of torsion (Vtor)

ext
and the cross stiffening strain energy (VCS)

The strain energy of the rings may be developed in a manner similar
to that used for the stringers. Using the elastic axis as a reference, the

displacement at any point in a ring is

u, = ug - z'¢

T T
2! z! x!
v, = (1+5) Vv, - —W - >—u
T R.E E R.E E,6 RE E,o (15a-)
Wp T WE * X'qu

where RE is the radius of the elastic axis. The coordinates are shown in

the ring detail of Figure 2.

The energy due to normal strain in the rings is

12



Vext = kzl > fo fArk[Ege]X=Xk dArk (RE + z') de (16)

. ' _ 1
where €ee = W (V,e

+ W) a7

A considerable simplification in the analysis will result from assum-
ing that the ring depth is small compared to the radius (z'/RE << 1, and
Rp = R). While this assumption is more restrictive than those used in the
derivation of equation (7) for the shell potential energy, the increased
accuracy gained by relaxing it seems to be greatly out of proportion to
the increase in complexity in the analysis. McElman, reference (13),
showed that, for the smeared stiffener analysis, the effects of this

assumption on the natural frequencies are very small. Introducing this

approximation into equations (15, 16, and 17) results in

u. = ug - z'¢r
_ A _x!' _
Ve =VE TR YE,e T R VE,o (18a-c)
Wy T Wg * X'q’r
K Erk 2T
= Ik 2
ext kzl 2 Io fA [Eee]x_ dArk Rd® (19)
rk Xk
1
eee = —li' (V’e + W) (20)

Using the technique described above for the stringers, the displace-

ments at any point in the ring (ur, v Wf) may be related to the dis-

-r’
placements at the line of attachment of the ring (u,, Vs WA). Thus

u =u, - z ¢

T A T
(2. x - x_ z)
_ _ Z _ E T T -
Ve T VA "R%Aa,e TRY,e " R L (2la-c)
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W, =Wyt X b (21la-c

T Cont'd)
The compatibility relations for the rings are
u, = u(xk, 8, 1)
v, =Vv(X,, 6, 1)
A k (22a-d)
Wy = WXy, 6, ) '
q)r = W’X (Xk, e, T)
Combining equations (19, 20, 21 and 22) results in
v _ Iz( Erk IZW Ark v2 - erkArk V. w
ext k=1 2 R "¢ RZ ’87 %66
2x_ A I I
rk rk xXxXrk o zzrk o
Y Vighige T TRI Wiee T RO "0
I A z_ A
xzrk Tk K 1k
2R WagWoae T 2R VeeW T2 T Wage
X_, A A X_ A
_ rk rk rk - K Tk
2 R2 ™o TR O™ 2 ¢ Wox Vg
I X A I
zzrk rk rk zzrk 2
-2 = UsgWox * 2 R WW, F R Wy (23,a)
I E 2m r
xzrk Tk rk
-2 TRZ w’xw’ee] s+ — fo [ R3 "x60
X=Xy

2A . - s = 2
TRz Zp&ek ~ Xrk®rid VoeWoxoo R3 Zrlxzrk

~ 2 ~ -
" Xyl Wroo%oxes " R3 Crdzzrk ™ Xrklxzrkd %66 rx00

ZArk

~ - P 2 ~
+ RZ (Zrerk B xrkzrk) WW, o0 * R2 (ZrkIzzrk

B erIxzrk) w’xw’xee] de}
X=Xy
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where

As in the case of the stringers, the terms in the second integral of
equation (23,a) will be neglected.

The strain energy due to flexural cross stiffening of the rings is
shown in Appendix I to be approximated by

2%

V=Iz<151r 2
cs 15 2 “rk “csrk ‘o [w3xx] Rde (23,b)

X=Xk

where Lok is the cross stiffening parameter of the kth ring defined in
Appendix I.
The shear strain energy due to torsion in the rings is
K (GJ)rk 2m

= f 2
Vtor Z 2R / [w’xe
k=1 0

] de (24)
X=Xk

where (GJ)rk is the torsional stiffness of the kth

ring. The total strain
energy of the rings (Vr) is equal to the sum of the extensional strain
energy (Vext)’ the strain energy due to torsion (Vtor) and the cross

stiffening strain energy, (VCS).

Kinetic Energies

Neglecting the rotatory inertia, the kinetic energy of the shell may
be written as

2n a

1 . . .
T. =~ jo fo o t (2 + v2 + w?) dx Rde (25)

The kinetic energy of the stringers is

s & r 02+ v2 o4 w2

Z beg | [uZ + vZ + w2] dA_, dx (26)
=1 o] Asl :

where the dot over a variable indicates the time derivative.

1
T =2
[ 2 1y

15




Combining equatidns (11, 12, and 26) will give the kinetic energy of
the stringers in terms of the displacement of the center surface of the

shell.

+v2 - (2/R) Zg, v &,e + w2 + (2/R) Ysq W &,6)

(27)

+ I + (1/R2) &%e] + 2

'2 . .
zzs4 [V’x Iyzssl Vox Wox

"L DB+ (/R W3] ax
6=92

The terms in the stringer kinetic energy involving twisting (&,ie),

twisting-translation coupling (U Q,Xe) and twisting-rotation coupling

V,. W and ﬁ,x &,Xe) have been omitted for consistency with the stringer

’X T’X6

potential energy.
The kinetic energy of the rings is
K 2m
o PR R
| [ [02 + vZ + w2] dA, Rdo (28)

_ 1
I = = J
Tk

R k:l o] A

Combining equations (21, 22, and 28) results in
X
1
Tg = Loep S
R i = rk °
- e . "y - e
+ Zxrk W W, VI (2/R) 2 VW

(29)

+ 1 x AR WZ] - (2/R) 1

“ .

xxrk [ws xzrk "8
) 2y 2

+ IZZTk [W’X + (1/R9) u, ]] . Rd6

k
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where the twisting, twisting-extension and twisting-rotation terms have

been omitted for consistency.

Displacement Functions

The displacements of the middle surface of the cylinder (u,v,w) are

assumed to be

<
1l
S~ S~ 8o

- JET .
u (umncos ng + ur sin ne)_Um (x) sin wt

n
- e . i
g (vmn51n ne - v cos no) v (x) sin wrt (30a-c)
g C&mncos ne + @&nsin ne) W (x) sin wrt

where Um x), Vﬁ x), WIn (x) are axial mode functions which are chosen to
satisfy the end conditions. These functions are extended versions of those
assumed in reference (17). Figure 3 identified a few of the terms in equa-
tion (30c) for simply-supported and clamped-free end conditions.

The unprimed coefficients (amn’ Gmn’

&mn) are associated with the sym-
metric circumferential modes, referring to those modes having normal displace-
ments (w) which are symmetric with respect to the x-z plane. Similarly, the
primed coefficients (u&n, V%n, w%n) are associated with the antisvmmetric

circumferential modes.

Axial Mode Functions

The axial mode functions Um x), Vﬁ (x), and Wm (x) should be selected
to satisfy the end conditions of the particular stiffened shell under
investigation. However, as Meirovitch (49) has indicated, the Rayleigh-Ritz
technique does not require that the assumed displacement functions satisfy
the force or moment end conditions, only those involving kinematic quanti-
ties (displacements or slope). The following sets of axial mode functions
have been successfully implemented in this analysis.
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Both ends simply supported without axial constraint (freely supported):

U, ) = vZ cos mnx/a

/2 sin mmnx/a | (31a-c)

Vo)

Y2 sin mmx/a

W, (_X)

X = 0 clamped, x = a free:

d Xm x)
Up &) = —gx—
Vm x) = Xm (x) (32a-c)
Wm x) = Xm (x)

where Xm (x) are the Bernoulli-Euler clamped-free beam eigenfunctions

Both ends clamped: (see reference 50)

U, (x) = sin mmx/a

sin mnx/a (33a-c)

Vo ®)

Wm (x) = cos (m-1)mx/a - cos (m+l)wx/a

Both ends simply supported with axial constraint:

U, (x) = V2 sin mmx/a
vV, &) = V2 sin mmx/a -~ (34a-c)

WX = vZ sin mmx/a

The following sets of axial mode functions have not been implemented

but may be useful for other end conditions.

19



Both ends free:

Um (x) = cos mmx/a
Vﬁ (x) = cos mmx/a
Wh (x) = cos mnx/a

Note that the m=0 term should be included in this case to account

for the rigid body modes.

x = 0 simply supported with axial constraint, x = g free:

Um (x) = sin (2m-1)nx/2a
Vﬁ (x) = sin (2m-1)mx/2a
W (x) = sin (Z2m-1)mx/2a

Frequency Equation

The equations of motion for free vibration may be derived from
Hamilton's principle
T2
§f (T-V)dr =0 (35)
T1

where T and V are the total kinetic and potential energy of the shell,

rings, and stringers given by

T

TC + Tr + TS
(36a-b)

V

VC+VI'+VS

Combining equations (30, 35, and 36) results in the following equations

i in u v W u' ,v' ,and w'
linear in Y’ Vmne Ymn’ Yoo’ Vmn? mn
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ZZ +D.. v +E.. w_ +G.. u' +GG.._ v!'

ijmn Ymn ijmn mn ijmn mn ijmn mn ijmn mn
- i - - -
* HlJmanm A [Nijmnumn * NNijmann * Pijnmwnm

: T ot o ! =
* lenmulr'm * TTlJmann + Uy Jnmwnm] ] 0

T " o '
]% 121 [Dmijunm * Bijnmvnm * Fijmnwmn * 1:Fijmnumn

ijmVmn * PPijmn%m " 2 [NNnmijumn * Q4 jmn"'mn

+ 0! \Y V! w! ] ] =0
ijmn mn ijmn mn ijmn mn ijmn mn
(37a-d)
N o t
1%121 [Emlj mn mnij mn 1Jmnwmn HHlJHmunm
+ MM.. V! w' - 3 Y
ijmn mn ijmn mn mnij mn mnij mn
- o X 1 Y. ‘;,v ] ] =0
ijmn mn ijmn mn ijmn mn ijmn mn
) ¥ FF_ ..V W TR
m o | mnijmn mnij mn mnij mn ijmn mn
D!. v! E!'. w' -A|T ..u v
ijmn mn ijmn mn mnij mn mnij mn
hy ] 1 t t 1 1 =
UUmnljwrrm Nljmnumn NNlJmann Pljmnwmn ] 0



» 1!
) GGmnijumn ¥ EEmnijvmn ¥ 1lemniijn ¥ Dr;mljunm

1 ' ' s 3 7
* BlJmIlVlTH’l ¥ Fljnmwrrm A [TTnmijumn * Vnmijvnm

X ..Ww__ + NN + Q. V' +R!. W ] =0
mnij mn mnij nu1 13nu1 mn 1Jnn1 nu1
(37e-1)
YY |H ..u_+DD _..v +M ..w _+E' .u'
no mnij mn mnij mn mnij mn mnij mn
1 1 ' _ - -
anijvmn ClJmI'l .~ 8 [Umnijumn * anijvrrm
+Y W P! ol 4+ R'y! o+ SP =0

mnijwmn mnij mn mnij mn 1Jmn mn
where A = (1-v?) Pe R?w?/E_ is the frequency parameter. The coefficients
in equations (37a-f)are presented in Appendix II.
Equations (37a-f) may also be written in matrix form, with the aid of

the work of Egle and Sewall (46), as

A D E G G H] N w o T T Ul GW
ol B F FF EE ID NN Q R RR V W v
Bl Bl ¢ HH MM M p' Rl s w X Y ;L
N . VR TR 1 R CL T LT ORIy Yaf ~° ©Y
ol eel mf DT B B ™ vi X! wrl g rYf| |V
u' oot M BT R ] LANTEERC T U1 B K
iy L

where the superscript T indicates the submatrix has been transposed. The
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terms in equations (37a-f) have been redefined in order to write them in
the matrix form of equation (38). The terms u, v, etc. are column vectors

whose components are

"U< 1] r&"
§<| Eéﬁl

5

and n and m are related to P by

3
1
g
|
)
1
<
=
&

(39a-b)
P-1

=]
1
—
+
1

where m* is the maximum value of m, n*¥ is the maximum value of n, and the
symbol ( )T represents the operation of integer truncation, for example

(8/3)T = 2. Likewise, the coefficients AQP’ etc. in the matrix are

DQP s
related to those in equations (37a-f) by

AQP = Aijmn

Dop = P jmn
t - Qr

Sop = Sijmn

23



where n and m are related to P by equations (39a-b), while i and j are

related to Q by

P =Q- G
(40a-b)
=1 G

An example of this calculation for P = 10, Q = 16, and m* = 4, gives

i=6,j=4,m=2,andn=3, then Ay, 5= Ag 4 5 3

The solution of equation (38) is a linear eigenvalue problem whose
size is (6m*n*) by (6m*n*). The first matrix in equation (38), which
contains A, B, C, etc., will be referred to as the stiffness matrix, and
the second matrix as the mass matrix.

Equations (37a-f and 38) will simplify if it is assumed that the
stringers are distributed symmetrically with respect to the x-z plane.
This means that for every stringer at =6, there 1s a mirror image

stringer at 6=-8 Thus, if a stringer at 6=6, has a 952 or a I

L° vZsi

that is not zero, the corresponding stringer at e=82 must be identical

with the exception that ?Sz and I must be the negative of that of

yzs2

the stringer at 6=6 Stringers located at 6=0, = must have }SQ =0,

0

Iyzsz = 0 to satisfy this symmetry. The terms in equation (38) which

couple the symmetric and antisymmetric circumferential modes (G, GG, H,
FF, EE, DD, HH, MM, and M in the stiffness matrix; and T, TT, U, RR, V,
W, UU, X, and Y in the mass matrix) are identically zero for this
stringer distribution. For example,

L/2
_ 2 . .
GGij = IVHUER zzl S, [yg, cos (me ) cos (j6,)

- Vg COs (—nez) cos (~j92)] =0
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and
L/2 ]
zzl S, [sin (ne,) cos (je,)

_ 2
Gijm = Tyrus®

+ sin (—nel) cos (—jel)] =0

For this special stringer distribution, equations (38) reduce to two
uncoupled sets of equations. The existence of "'double resonances' is
implied from the fact that these two sets of equations are not necessarily

equal. This phenomenon was discussed in reference (46).

Computer Program

Equations (38) were programmed for solution on an IBM 360/40 digital
computer. The available memory (120 K bytes) limited the maximum number
of terms m*n*) in the displacement series (30) to seven or a (42x42)
eigenvalue problem. It was soon discovered that seven terms in the dis-
placement series were insufficient for accurate results on some ring
stiffened shells. Thus, in order to increase the maximum number of terms
in the assumed displacement series, the mirror image stringer distribution
described previously was assumed. This allows the solution for the sym-
metric and antisymmetric modes to be calculated independently. The

equations governing the symmetric circumferential modes are

cn

A D E N NN T
pf 8 g -» (W Q R 7 -0 (41)
gl fl ¢ pI RrT s "

The equations for the antisymmetric circumferential modes are

identical to (41) except that the coefficients are replaced by their primed

25



counterparts described in Appendix I.

Programming of equations (41) allowed the maximum number of terms in
the displacement series to be increased to 19 or a (57x57) eigenvalue
problem. The eigenvalues and eigenvectors of (41) were calculated by the

Jacobi rotation technique described briefly in Appendix III.
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NUMERICAL RESULTS

The analysis developed in the previous section was used to calculate
the natural frequencies of several configurations of stiffened and unstiff-

ened shells for which frequencies are available in the literature.

Unstiffened Cylinders

The natural frequencies of unstiffened cylindrical shells with length-
radius ratios of 1 and 10 were calculated with equations (41) for both the
freely supported and the clamped-clamped end conditions. The freely
supported case requires only a single term in the displacement series
because each term in equations (30) is an exact solution. Seven terms in
the displacement series were used for the clamped-clamped shell. The
results agreed as closely as could be determined with the graphs of the
exact solutions given by Fosberg (51).

A comparison of the analytical and experimental values of the natural
frequencies of an unstiffened clamped-free cylinder is shown in Figure 4
and Table II. The theoretical frequencies were calculated with five of
the axial mode functions of equations (32). Convergence of the frequencies
was checked by increasing the number of terms to ten, which lowered the |
frequency (m=1, n=2) from 104.4 to 103.7 cps. The experimental values
are taken from the report by Park et al (42). The shell geometrical and
material properties are those of configuration 1 in Table I.

The fact that the discrepancy between the calculated and measured
frequencies increases as the number of circumferential waves decrease
indicates that the end conditions used in the analysis do not represent

those of the experiment. This is due either to the assumed displacement
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TABLE I SHELL CONFIGURATIONS USED

IN NUMERICAL CALCULATIONS

Configuration 12 2b B 3 »7::§C -
-3 -3 3 -3
bes Pggs P 0.7332x107° 0.732x107> 0.732x107% 4.732x107% 0
[1b sec?/in*]
' 8 8 8 8

E., B4, B, 0.3x10°  0.30x10%  o0.30x10°  0.30x10% 0
[1b/in?]

v 0.29 0.30 0.30 0.30 0.
R(in) 0.10x10°  0.7657x10  0.6x10 0.60x10 0.
t(in) 0.30x10°1  0.1826x107t 0.2x1071  o0.15x107% 0.
a(in) 0.48x10°  0.3885x10% 0.12x10°  0.24x10% 0.
A, (in2) 0.3110x10° T 0.1627x1071 0.30x1071 0.0 0.
2, (in) -0.1376 -0.2082 0.125 0.0 0
ﬁsl(in) 0.0 0.0 0.0 0.0 0
I (in*) 0.1652x10 > 0.1508x10™> 0.2563x107° 0.0 0

ZZCS 4%

Lysy (i) 0.3895x107> 0.3744x10™> 0.2563x10™> 0.0 0

T

I;s,(i0) 0.0 0.0 0.0 0.0 0.
(G1) , (1b in?) 0.306x10°  0.1131x10° 0.2087x10% 0.0 0.
A (in?) 0.6251x107T 0.0 0.0 0.450x10"1 0
Z, (in) -0.1219 0.0 0.0 0.1955 0.
X, (in) 0.0 0.0 0.0 0.0 0.
I (in") 0.3253x10 7> 0.0 0.0 0.5274x107° 0
xxcrk

i (in*) 0.4945x107> 0.0 0.0 0.54x10™% 0

zzcrk

-
I, o (0% 0.0 0.0 0.0 0.0 0.
4 0.0 0.0 0.1981x10% 0

(GJ)rk (1b in®) 0.5146x10

.30x10

.451x10"

.5978x10"

.54x10°

.2009x10

5C

.732x1072

8

0

0
1
0

0
3

4

0
4

9 Reference (42),
b Reference (17},
€ Reference (39),

Model 1S.

28
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TABLE II

THEORETICAL AND EXPERIMENTAL FREQUENCIES OF AN
OF AN UNSTIFFENED CLAMPED-FREE CYLINDER

m=1 m= 2
n
Theory a Exper.b Theory Exper.
87.2
2 104.4° and
95.1
3 55.6 51.5
168.5
4 52.0 50.4 177.9 and
170.2
5 70.9 132.8
128.8
6 101.4 and
130.1
7 139.1 138.8 154.2 153.6
8 182.6 182.2 191.2 191.3

aConfiguration 1, Table I.
bReference (42), Model 1.

“Units are cycles/second.
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functions not satisfying the free end conditions exactly or to the shell

end not being rigidly clamped in the experiments. Since it is not necessary
for the assumed displacements to satisfy force or moment end conditions

- (see reference 49) and since increasing the number of terms in the aﬁalysis
affected the frequency at n=2 very slightly, it is concluded that the shell
end was not absolutely fixed in the experiments.

Figure § and Table III show the theoretical and experimental frequen-
cies of an unstiffened freely-supported cylindrical shell. The shell
geometry and material properties are listed under configuration 4 in Table
I. The cause of the discrepancy, which is as large as 28% at n=5, m=1,
is, as was noted in reference (39), not known. However, the present theory
agrees very well with the analysis of reference (39); hence it is concluded
that an unaccounted-for factor in the experiments, perhaps an initial
stress due to the welded seam in the shell, is responsible for the

differences.

Stringer Stiffened Cylinders

Table IV compares some of the frequencies of a freely supported
cylinder with four internal stringers computed with the present analysis
(m*=1, n*=6) to those computed with the'analysis of referencé (46) and to
a smeared analysis in reference (15). The material properties and geom-
etry are listed under configuration 2 in Table I. The very slight dif-
ferences in the frequencies of the present analysis (column a) and the
complete analysis of reference (46) (column b) are due to the use of
Flugge's shell theory and the inclusion of flexure and rotatory inertia
of the stringers about the z-axis. The smeared analysis of Sewall and

Naumann (15) shows very good agreement for this particular case.
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TABLE III

THEORETICAL AND EXPERIMENTAL FREQUENCIES OF AN UNSTIFFENED FREELY-SUPPORTED CYLINDER

¢¢

m=1 2 m=4
N i
Theory 2 Exper. Theory Exper. Theory Exper. Theory | Exper.

2 633.5¢

3 326.7 370

4 202.3 255 696. 745

5 159.9 205 483. 545 960.6

6 168.0 200 370. 420 724.0 790

7 206.0 220 325. 345 580.8

8 261.0 265 329. 360 506.1 768.3 820
10 403.4 395 429. 435 506.6 649.9
12 581.1 560 594. 580 632.3 625 706.4
14 791.8 760 801. 780 824.7 805 867.6 850

aConfiguration 4, Table I.
bReference (39), Model 1.

“Units are cycles/second.



TABLE 1V

NATURAL FREQUENCIES OF A FREELY SUPPORTED CYLINDRICAL

SHELL2 WITH FOUR INTERNAL STRINGERS
|
M=1 b c
N Sym Antisym Sym Antisym Sym Antisym |
1 775.2f 775.2 775.2 775.2 1142.0 1124.0
2 318.0 314.5 318.1 314.6 360.2 361.5
3 158.4 158.4 158.8 158.8. 169.4 168.3
4 99.3 102.6 100.5 104.0 102.8 108.2
5 90.7 90.7 92.9 92.9 94.7 95.0
6 105.7 111.3 108.3 114.2 | 109.4 116.5

aConfiguration 2, Table TI.

bPresent Analysis.

CAnalysis of reference 46, Donnell theory and in-surface inertias.

dAnalysis of reference 46, deleting in-surface inertias.

?Analysis in reference 15, includes Novoshilov shell theory and in-
surface inertias.

fUnits are cps.
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Figure 6 shows the variation of the minimum frequency of a stringer
stiffened cylinder with the number of stringers. For the calculations, the
total stringer area (L Asﬂ) and the ''total" torsional stiffness (L GJsg)
were held constant. This was done to compare the results of a discrete
stiffener analysis to a smeared analysis which will give the same frequen-
cies regardless of the number of stringers if (L ASZ) and (L GJsz) are
constant. The sfringers were taken to be identical and equally spaced
around the circumference of the shell. The material and geometrical
properties for the case with twelve stringers is listed under config-
uration 3 in Table I.

The analysis used for the calculations in Figure 6 is that of refer-
ence (46) with the in-surface inertias deleted. Thus, as can be seen
in Table IV, the frequencies will be somewhat higher than those of a more
exact analysis; but this is immaterial in comparing the effects of the
numbef of stringers on the frequency.

The minimum frequency for each case shown in Figure 6 occurred for
n=7 or 8 depending on the number of stringers. Both the symmetric and
antisymmetric frequencies were calculated but only the smaller of the
two was plotted.

It is interesting that there is a local maximum in the frequency for
twelve stringers. This indicates that if a few stringers are to be used,
there is a small advantage to choosing the proper number of stringers.
However, at the present, the author does not know of a systematic pro-

cedure for determining this optimum number other than trial and error.
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Ring Stiffened Shells

The natural frequencies for a cylinder with thirteen equally spaced
rings is shown in Figure 7 and Table V. Frequencies were calculated for
two cases, one with the ring cross section symmetric about the shell middle
surfacé (irk = 0) and the other with the rings external to the shell.
These two cases correspond to models 5 and 6 in reference (39) and the
material and geometrical properties are listed under configurations 4 and
5 in Table I. The results of the present analysis are compared to the
analysis and experiments of reference (39), both of which showed very
little difference between the external and symmetric rings.

In Figure 7, the frequencies labeled radial are the lowest frequencies
associated with predominately radial motion in the shell. Likewise, axial
and torsional correspond to the lowest frequencies associated with large
u and v displacement components. Not shown are the other radial frequen-
cies, many of which fall between the lowest radial and the lowest axial
frequencies. For the higher values of n, many of the radial frequencies
are very nearly the same as the lowest frequency. For example, for n=10,
the twelve lowest frequencies lie between 2700 and 3100 cps for the
external ring case.

The minimum (m=1) frequencies of this ring stiffened shell computed
with the present analysis were compared to the frequencies calculated
with the analysis of reference (46). The differences were found to be
very slight, the maximum being on the order of 0.1%. These differences
are due to the more exact shell theory and the inclusion of flexure and
rotatory inertia of the rings about the z axis in the present analysis.

The lowest frequencies calculated with the present analysis also
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TABLE V

THEORETICAL FREQUENCIES OF A FREELY-SUPPORTED CYLINDER

WITH THIRTEEN EQUALLY SPACED RINGS

1

Lowest Axial

Lowest Torsional

T

Lowest Radial

i

!

EN éExt. Ringsa ; Sym. Ringsb Ext. Rings 5 Sym. Rings E Ext. Rings Sym. Rings:
% ? m | Theory % m | Theory m | Theory m | Theory ? m | Theory m | Theory|
§0 | 1 | 1926.4° 1 | 2542.1 1| 1651.0 1 | 1649.7 % 27 « 2969.5 33 3953.4‘
32 1 | 5461.3 1 ¢ 4625.7 11 12,347 1 ]12,362 % 1 ? 518.3 1 490.7
4 11 | 10,447 1 | 8190.5 74 20,131 ¢ 1 | 22,477 | 1| 1287.5 1 | 1225.7}"
;
6 {1 | 14,989 1 111,612 11 | 29,807 | 1 | 33,295 1| 2276.7 1 | 2556.1
1011 ¢ 21,159 1 17,522 13 | 50,395 13 | 50,491 1 | 2694.8 1 | 2995.6
1411 | 27,329 1} 22,590 51 77,870 15 | 64,397 1 | 2506.8 1} 2601.4

aConfiguration 4, Table I.

bConfiguration 5, Table I.

“Units are cycles/second.




compare very well with the theory of reference (39) for the symmetric
rings. However, the present analysis predicts a very definite effect due
to the eccentricity of the rings. The frequencies for the external rings
‘are higher than those for the symmetric rings for n<4 and the opposite is
true for n>4.

In order to achieve agreement between the two theories for the sym-
metric rings, it was necessary, because of computer size limitations, to
take advantage of the longitudinal symmetry in this problem. It may be
shown that if the shell ring configuration is symmetric about the x = a/2
plane, then the odd axial modes (m = 1, 3, 5, ...) uncouple from the even
axial modes (m = 2, 4, 6, ...). This allows the frequencies in each case
to be calculated independently, thereby doubling the maximum number of
terms in the displacement series for the same computer storage.

For the calculations in Figure 7, m* = 19 and p* = 1, but since only
the odd terms m = 1, 3, 5, ...) were used in the displacement series, the
highest value of m is 38. Also shown are the lowest frequencies for a
seven term series which is obviously inadequate to describe the motion
for large values of n. The following shows the lowest radial frequencies
(cps) for n = 4 calculated with three progressively larger displacement

series for the symmetric ring case.

Range of m Frequency
1 - 7 1758.1
1 - 19 odd only 1758.1
1 - 37 odd only 1225.7
Theory of ref. (39) 1180.

This illustrates very well one of the pitfalls of an assumed modes method
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such as Rayleigh-Ritz. The frequency for m = 1-7 appears to be converged
when it is actually 50% high.

Figures 8 - 11 show the nommalized radial displacement modes as a
function of x/a, the axial coordinate. The rings are located at x/a = k/12,
k=0, ..., 12. The eigenvectors, from which these plots are derived,
indicate that for n = 2, there is little coupling between the predominant
term in the displacement series and the remaining terms; while for n = 10,
there is strong coupling between several terms in the series. The mode
associated with the lowest frequency for n = 10, Figure 11, has the three
largest terms

w(x) = sin (rx/a) + 0.473 sin (23rx/a) - .466 sin (25nx/a)
the remainder of the coefficients being less that 2% of the largest. The
interesting point about this eigenfunction is that even though it consists
almost entirely of the lst, 23rd and 25th axial modes of the unstiffened
shell, they are combined in such a way that none of the predominant terms
is recognizable. If this modal function was being determined experi-
mentally, it could easily be mistaken for the n = 10, m = 12 mode.

In order to check the validity of neglecting the torsional, torsional-
flexural, and torsional-extensional contributions to the normal strain
energy, several of the terms which have been omitted from equations (23)
were added to the analysis and the frequencies of the ring stiffened shell
were recalculated. The added terms, which are the only non zero terms in
the second integral of equation (23) for rings whose cross sections are

symmetric about the z-axis, are
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= =)
where rrk Izzrk Zrk

irk = ik
for symmetric ring cross sections, These terms produced a change in the
lowest natural frequency for N=6, 10 of less than 0.4%. The changes in
the three lowest frequencies were all less than 1%.

A few calculations of the frequencies of a clamped-clamped ring stif-
fened shell were carried out for comparison with the experiments in refer-
ence (7). The results are shown in Table VI. In the experiments the
rings on the ends of the shell were clamped, and even if the clamping was
not rigid, one would expect the frequencies to be higher than the freely
supported case. At the present, it is not known why the calculated fre-
quencies for the freely supported end conditions are higher than the

experiments,

Ring and Stringer Stiffened Shell

The natural frequencies and normal modes for a clamped-free cylindri-
cal shell with three internal rings and sixteen internal stringers were
calculated with the present analysis. The rings are equally spaced and
located at x/a = 1/3, 2/3, 1 and the stringers are equally spaced around
the circumference. The material and geometrical properties are listed
in Table I under configuration 1.

The axial mode functions used were those of equations (32). The
following tabulation shows the lowest natural frequency (cps) for three

different ranges of m.
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TABLE VI

NATURAL FREQUENCIES OF A CYLINDER WITH SEVEN EXTERNAL RINGS

M=1
N a b c d
3 616° 503 494 378-441
4 650 580,600
5 861 809 760

a Clamped-clamped 1-13 terms.
b Freely supported 1-13 terms.

c Freely supported 1-19 odd terms.

d Experiment, taken from reference (7).

e Units are cycles/second.
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Range of m _ n=3 n=8
1-3 144.0 : 483.3
1-10 135.2 264.3
1-19 130.3 263.5

The range m = 1-10 gives values reasonably close to those for m = 1-19
and was judged sufficient for further calculations.

Figure 12 and Table VII show a comparison of natural frequencies cal-
culated with the present analysis to the experimental values given by
Park et al (42). The calculated values are those associated with the sym-
metric circumferential modes and the coupling between the circumferential
modes was ignored (only a single term was used in the circumferential modal
series). Note that the order of increasing frequency (for constant n) is
not necessarily the same as increasing axial mode number, m. The axial
mode number associated with each frequency is determined as in reference
(46) by the m value associated with the predominant term in the eigenvector.

The validity of neglecting the circumferential modal coupling was
checked by reducing the nunber of axial modes and including several cir-
cumferential modes. Two cases were run, one with the ranges m = 1-Z7,
n = 1-4 and the other with m = 1-3, n = 6-10. In the first case, there
was no effect of including the extra circumferential terms, which is in
agreement with a conclusion reached in reference (46), that is, the
coupling between two circumferential modes, j and n, is zero if j + n
is less than the number of equally spaced stringers. In the second case,
there was coupling between n = 6 and 10 and n = 7 and 9 but it was not
appreciable and would have very little effect on the frequencies.

The cause of the discrepancy between the theory and experiment in
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Free Cylindrical Shell with Three Rings and Sixteen
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TABLE VII

THEORETICAL AND EXPERIMENTAL FREQUENCIES OF A CLAMPED FREE
CYLINDER WITH THREE RINGS AND SIXTEEN STRINGERS _

N First Frequency ~ Second Frequency |  Third Frequency '
m Theorya Exper.b m Theory | Exper. | m | Theory | Exper.
1|1 | 243.9°
80.2
2 (1] 105.8 and 2 433.9
88.2
3 11} 135.2 107.5 2 274.1 | 246.2 | 3 | 568.2 491.8
397.0
4 1 | 216.9 184.6 2 285.9 | 251.5 | 3 | 447.1 and
430.4
5 |1 302.5 2 333.2 | 304.6 | 3 | 445.9
6 | 2 | 315.0 1 353.8 J 4 [ 414.0
7 |4 | 286.0 1 340.2 2 | 394.0
8 |4 | 264.3 1 310.6 2 | 361.3
9 |4 | 300.9 1 332.7 6 | 367.7
10 | 4 | 334.4 1 357.4 6 | 380.2
11 |4 | 378.1 5 395.8 6 | 409.2
S ISR IR NN SO R———

aConfiguration 1, Table I.
bReference (42), Model 1S.

CUnits are cycles/second.

50



Figure 12 is not known at the present time. It is possibly due to the
neglect of an axial mode other than m = 1-19 or the assumption of the
small ring depth to radius ratio used in equations (18, 19, and 20). The
end conditions, both those used in the experiments and the analysis, could
be partially responsible for the error in the lowest frequencies (as was
concluded to be the cause of discrepancy in Figure 4) but would not affect
the higher frequencies.

Figures (13-15) show a few of the radial deflection normal mode func-
tions associated with the frequencies in Figure 12. As was noted in the
discussion of the modes of the thirteen ring-stiffened shell, the eigen-
vectors, from which Figures (13-15) are derived, indicate that for n = 2
there is little coupling between the predominant term in the displacement
series and the remaining terms, while for the higher n values, there is
strong coupling between the largest term (the value of m given in the
figure) and several other terms in the series. The mode shapes also
show a pronounced increase in shell motion (compared to the rings) at

the high values of n.
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Figure 13, Theoretical Axial Modes of a Clamped-Free Cylinder with
Three Rings and Sixteen Stringers (N=2)
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CONCLUDING REMARKS

A theoretical analysis for the free vibration of ring and stringer
stiffened shells, with stiffeners treated as discrete elements has been
developed and implemented for digital computer solution. The analysis
is capable of handling arbitrary end conditions and arbitrary distri-
butions of stiffeners., Comparison of numericél results with experiments
and other analyses show good agreement for stringer stiffened shells and
reasonable agreement for ring stiffened shelis.

The Rayleigh-Ritz technique for calculating the natural frequencies
of discretely stiffened cylinders produces acceptable results. However,
use of the solutions for the unstiffened shell as the assumed displace-
ments yields an unusually large and unwieldy eigenvalue problem whose
convergence may be erratic or, at least, unusual., It is the author's
suggestion that further study be directed tcward developing displacement
functions which allow for inter-stiffener deformation with the expecta-
tion of reducing the numerical problem for the same accuracy.

The question of the effect of ring eccentricity is nct, in the
author's opinion, resolved. The work cf Hu, Gomerly, and Lindhclm
indicates there is very little effect in the frequencies due to ring
eccentricity. The present analysis and the analyses of Sewail and
. wann, and Mikulas and McElman indicate there is a definite effect.
Perhaps experiments with integral or welded ring-sheli construzticzn and
designed to exaggerate the eccentricity effect wculd settle the I:sue,
It should also be noted that the experiments cof Hu, Gormerly and
Lindholm only indirectly verified the existence of the seccnd minimu.

in the frequency vs. n curve (they reported mumerous frequenciss which
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could not be identified in this region which is consistent with the
theoretical results).

The contributions of the more exact shell theory and the flexure
and rotatory inertia of the stiffeners about the z-axis show very little
effect on the frequencies on the configurations of stiffened shells
considered in this report. Likewise, the contributions of extension due
to torsion and the torsion-extension, torsion-~flexure coupling in the
rings is insignificant., Unless geometrics considerably different that
those considered here are used, these minor refinements only increase the
camplexity of the analysis with negligible increase in accuracy in the

results,
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APPENDIX 1

In this appendix, an approximate method for calculating the cross-

stiffening energy of the discrete rings and stiffeners is developed.

If

the stiffener is not attached at a single line, as in the case of the

integral stiffener shown in Figure (AI-1), both the flexural and exten-

sional stiffness of the shell, perpendicular to the stiffener axis, will

be increased. This increase is a local effect and should be treated as

such in an analysis of discrete stiffeners.

Huffington (52) detailed an approximate technique for including the

flexural cross stiffening in a smeared stiffener analysis. The following

analysis is based in part on Huffington's work and will consider only

flexural cross-stiffening. It is assumed that, for the purpose of deter-

mining the cross-stiffening energy, the shell-stiffener is in a state of

pure bending and the shell and stiffener are of the same material.

_—h(x)

”,—‘1;>y<f

R

1N

—b —

FIGURE AI-1. Geometry of Integral Ring-Shell Combination.
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Consider the integral ring stiffener shown in Figure (AI-1).
Following Huffington, the ring-shell combination is replaced by a non-
uniform shell of thickness, h(x), whose resistance to bending is equi-
valent to the actual ring and shell. The flexural strain energy of this

non-uniform section is

2r b )
V=1/2 {D_ w,2 + D, +D
/fo fo < ¥ v (D + D)) w

XX ’xXx w’yy

(AI-1)
+ D w,2} dx Rde
y vy

The two terms with the coefficient Dy in this equation represent the energy
due to stiffening along the ring axis. The two remaining terms are the

cross-stiffening energies, and if pure bending perpendicular to the stif-

fener axis is assumed (w’yy = -v w’xx)’ equation (AI-1) may be written as
1_\)2 Z’IT b 5
Vg = 5 fo fo D, w,2 dx Rde (AI-2)

Both D and w,  are functions of x in the interval 0 S xS$b., Itis

assumed that the integral

b
f D ,w,2 d&x=bD_w

2 -
W2y W2 (AI-3)

where ﬁx is an equivalent flexural rigidity, calculated to yield the correct

strain energy for the pure bending case, and can be shown to be

EDb (AI-4)

ﬁk - , b dx
12(1—\) ) IO m

and &’xx is taken equal to the curvature of the shell at the line of

attachment of the ring to the shell.
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Equation (AI-2) is the flexural energy of the ring and shell combined.
The energy of the shell has been included in equation (7) and shouid be
subtracted from the cross stiffening energy. Thus, the energy due to

flexural cross-stiffening of the ring is

2m
_ 2 -
Vop = V2ZE_ I [ [2Z]  Rds (AI-5)
o X=X
k
where
_b b L 43 i}
lsr =17 B Ix t (AI-6)
o h3(x)

In a similar manner, the cross-stiffening energy of a stringer may

be shown to be

a
- b L 2 _
css = W/ZE T [ (i/R%) [w, 24 i dx (AI-7)
© 3
where
. Cc c _ 43 -
Icss T 17 c 4 t (AL-8)
9y
o h3(y)

In equation (AI-8) c is the width of the stringer at the shell-stringer

junction and y is the circumferential distance (R9).
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APPENDIX IT

Matrix Elements in Rayleigh-Ritz

Vibration Analysis : .

This appendix contains detailed expressions for the unprimed coeffi-

cients in equations (37a-f) and the matrix elements of equation (38).

. . . , , . _
The primed coefficients, Aijmnf Bijmn} etc., may be calculated by inter

changing sin ( ) and cos ( ) and be replacing ) with Yoo and Iyzsz

with 'Iyzsz in the expressions for the unprimed coefficients. For
example,
K -
NNijmn - 6jn kgl Mrrk VUi X,
L -
* Ioyg, L. MgYe, (cos ne, sin jo,)

mi&=1
The terms that are bracketed and subscripted X» s an example
[UmUi] indicate that the expression is evaluated at the location Xy -

X b
k
The terms like IU U.? IV'V. etc., are a short notation for an integral;
m i m i

for example
1 2
Iyy. =3 f U, (U, (x)dx
m i o
1 @
Lyryy =3/ VpCOViG)dx
m i o

The following definitions have been used to shorten the expressions

for the coefficients:
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p A

_ S% s4&
Msz - pcﬂRt
M. = °ridrk
Tk pcat
_u2
s - (A-vE)E A,
S E nRt
(ol
2
S = (1-v )ErkArk
Tk Ecat

_a2
T - 1-v )(GJ)sz
s ECﬂR3t

u2
LAy,
Tk ECaRZt

The term G'n is the Kronecker delta and is equal to zero except for j=n.

The unprimed coefficients are as follows:

. .4 K S,I
2 1-v, TRj? Tk zzrk
Ao =6, | RET. oy + (35 1 o) UU.]
ijmn jn [ U%Ui 2 t UmUi R% k=1 Krk m-i
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APPENDIX III

The initial calculations of the eigenvalues and eigenvectors of
equation (41) were carried out with digital computer subroutines
supplied by NASA Langley Research Center. Because of the relatively
large size of the eigenvalue problem, the subroutines (EIGEN and JACOBI)
required 30 minutes or more for the solution of a typical (57 X 57)
size problem. This does not include generation of the mass and
stiffness matrices (10 minutes) or compile time (10 minutes). It was
felt that this excessive time warranted a brief study of the techniques
available for the solution of eigenvalue problems with the objective
of decreasing the time needed for the calculations.
The first step in solving the linear symmetric eigenvalue problem
[K] {x} = w? [M]»{x} (AIII-1)
is to transform it to the standard form
[A] {x} = X {x} (AIII-2)
Two methods for accomplishing this were considered the first (called
transformation 1) involves finding the eigenvalues and eigenvectors of
[M] by solving
M] {u} = A {u} (AIII-3)
thus allowing [M] to be expressed as

T (ATII-4)

[M] = [U] [D4] [U]
where the columns of [U] are the eigenvectors of (AIII-3) and [~D{] is a
diagonal matriX of the eigenvalues of [M]. It has been assumed that the

eigenvectors have been normalized such that

Wity =1
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If [M] is positive definite, [~D] may be written as

™D = [™D'] [TD'd (AIII-5)
where the elements of [~D'] are the positive square roots of the corres-
ponding elements in [~D.]. Using equations (AIII-4,5), equation (AIII-1)

may be transformed into

[A] {v} = w2 {v} (AIII-6)
where  [A] = [~D')"} 1Tk [y ot
) = <] [U]T tx} (AIII-7)

The eigenvalues of (AIII-6) are the eigenvalues of (AIII-1) and the
eigenvectors of (AIII-1) may be determined from the eigenvectors of
(AIII-6) and equation (AIII-7).

Note that to solve equation (AIII-1) with this transformation, it is
necessary to do two eigenvalue calculations and the accuracy of the result
is dependent on the accuracy to which the eigenvectors of [M] are
calculated.

Another method (transformation 2) of transforming equation (AIII-1)
into the standard form utilizes triangular matrices. If the matrix [M]
can be expressed as

M) = (L] [’ (ATLI-8)
where {L] is a lower triangular matrix,

then (AIII-1) may be transformed into (AIII-6) with

(A = (L1 K (e ht
and
i = Lt (AITI-9)
Calculation of [L] and [L]_1 is relatively simple. It may be shown
that
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where Qij and 2;; are the elements of [L] and [L]_l, respectively.

The advantage of transformation 2 over transformation 1 lies in
not having to calculate the eigenvalues and eigenvectors of [M], which
is the most time consuming step of transformation 1.

It should be noted that both of these transformations may be used

to reduce (AIII-1) to

[A] {a} = 5 {q} (AITI-10)
by simply interchanging [K] and [M] in the transformation. This form
is not obtainable if rigid body modes (w=0) are possible solutions
to the problem. It is desirable because the eigenvalue subroutines
considered here calculated the largest eigenvalue with the highest
degree of accuracy. Thus, if the problem is in the form (AIII-10)
this corresponds to the lowest natural frequency.

Two techniques for solving the standard eigenvalue problem were

considered. The Householder-Givens method, which is reported to be a
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very fast technique, worked very well for problems of size (10 X 10) but
failed for a large matrix (60 X 60) and was abandoned. The other method
is the well-known Jacobi method, an iteration technique which reduces
the matrix [A], equation (AIII-2) to a diagonal matrix by a series of
plane rotations, each one of which reduces one of the off-diagonal ele-
ments in the matrix to zero. In each step, the largest off diagonal
element is annihilated and the process is repeated until the largest off
diagonal element is less that the product of the smallest eigenvalue
and a preassigned small number (called an indicator). The value of the
indicator determines the accuracy of the eigenvalues and eigenvectors.
Several variations of transformation 2 and the Jacobi method were
used to calculate the eigenvalues and eigenvectors of a (60 X 60) problem
of the type generated by the analysis described in this report. The
results were compared to those of the subroutines EIGEN and JACOBI
(which uses transformation 1 and the Jacobi method with an indicator of
.75 X 10'8), which required 34 minutes to do the calculation. The
combination which was fastest while still maintaining acceptable accuracy
was transformation 2, form (AIII-10) and an indicator of 0.75 X 10‘10
The time for this calculation was 11 minutes and the lowest frequency was
correct to 8 significant figures, the highest frequency was correct to
2 significant figures, the eigenvectors of the lowest frequency were
correct to 4 significant figures in the largest components. The eigen-
vectors of the highest frequencies were not correct. Decreasing the
indicator increased the computation time and the accuracy. For an
indicator of 0.75 X 10_2, the computation time was 15 minutes and the

accuracies were as follows,
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Number of correct
significant figures

Lowest frequency 8
Highest frequency 3
Predominant terms in eigenvector of lowest frequency 6
Smaller terms in eigenvectors of lowest frequency 2
Predominant terms in eigenvectors of highest frequency 2

Smaller terms in eigenvectors of highest frequency -

It was concluded that using transformation 2 to reduce the original
equation to the form (AIII-10) and the Jacobi method with an indicator
of 0,75 X lO_2 was sufficiently accurate and reduced the computation time
by a factor of 2 compared to using transformation 1, the Jacobi method
and an indicator of 0.75 X 10°°,

It should be noted that the results presented in the body of this
report were calculated with double precision versions of two IBM supplied
subroutines (EIGEN and NROOT) which utilize transformation 1, the
Jacobi method, and an indicator of 1075,

Further details on the two transformations described here are given

in reference (53). In that reference, the decomposition (AIII-8) is

called the Cholesky decomposition.
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