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INTRODUCTION 

The  vibration  analysis  of  stiffened  cylindrical  shells  has  been  and 

continues  to  be  of  considerable  interest  to  structural  analysts  because  of 

the  wide  spread  use  of  this  or  similar  type  structures  in  air,  space,  and 

water  craft.  The  degree  of  interest  and  the  complexity  of  the  problem  are 

reflected  in  the  number  of  publications  in  the  literature  devoted  to  this 

topic. 

The  investigative  efforts  may  be  divided  into two broad  classes: 

those  which  consider  the  stiffeners  to be closely  spaced  and  which  average 

or  "smear"  the  stiffening  effects  over  the  entire  surface  of  the  shell 

thus  effectively  replacing  the  stiffened  shell  by an orthotropic  shell; 

and  those  which do not  consider  the  stiffeners  to be closely  spaced  and 

do  not  take  advantage  of  the  simplification  of  averaging  the  stiffener 

effects.  References  (1-15)  apply  the  averaging  technique  to  the  analysis 

of  stiffened  shells  while  the  discrete  approach  is  used  in  references (16- 

47). 

The  more  recent  studies  using  the  averaged  stiffener  approach  (10-15) 

have  been  concerned  with  the  effect  of  stiffener  eccentricity  and  have 

included  that  effect  explicitly.  Of  those  investigations  using  the  discrete 

approach,  references  (16-20)  are  concerned  with  stringer  stiffened  shells, 

references  (21-40)  deal  with  ring  stiffened  cylinders,  and  references  (41- 

47)  have  considered  both  ring  and  stringer  stiffeners. 

The  present  effort  may  be  considered an extension  of  the  work  in 

reference  (46)  and  the  theory  and  part  of  the  numerical  results  are,  in 

essence,  the  same  as  that  of  reference (47). In  this  report,  an  analysis 
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of  the  free  vibrational  characteristics of a thin  uniform  cylindrical  shell 

with  arbitrary  end  conditions  and  with an arbitrary  number  of  ring  and 

stringer  stiffeners  is  developed.  The  stiffeners  may  be  arbitrarily  spaced 

and  need  not  be  identical  but  are  assumed  to  be  uniform  along  the  stiffener 

axis.  The  analysis  considers  the.  effects  of  the  flexure  and  extension  of 

the  shell;  the  flexure  (about  two  perpendicular  axes),  extension,  and 

torsion  of  the  stiffeners,  including  the  possibility  of  nonsymmetric  stif- 

fener  cross  sections.  Stiffener  flexural  cross  stiffening  is  also  in- 

cluded  in an approximate  manner.  The  three  translational  shell  inertia 

components  and  all six of  the  stiffener  inertia  components  are  considered. 

The  problem  is  formulated  by  the  energy  method  and  the  Rayleigh-Ritz 

technique  is  used  to  obtain an approximate  solution. 

Numerical  results  for  several  configurations  of  stiffened  cylinders 

are  presented  and  compared  to  existing  theoretical  and  experimental fre- 

quencies.  The  stiffened  shells  considered  include  freely  supported 

stringer-stiffened  and  ring-stiffened  cylinders, a clamped-free  ring 

and  stringer-stiffened  shell  and a clamped-clamped  ring  stiffened  shell. 
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" D D  OF ANALYSIS 

The  method of analysis  utilized  is  the  Rayleigh-Ritz  energy  technique. 

The  general  approach  of  the  method  is  outlined  in  the  following  steps. 

First,  the  expressions  for  the  kinetic  and  potential  energies  are 

written  for  the  cylinder,  stringers,  and  rings.  These six expressions  are 

then  used  to  give  one  expression  for  the  total  kinetic  energy  and  one  for 

the  total  potential  energy  of  the  stiffened  cylinder,  which  are  then 

expressed  in  terms  of  the  displacement  of  the  middle  surface  of  the  cylinder. 

Next,  deflection  shapes  are  assumed  in  the  form of a finite  series  with un- 

determined  coefficients,  where  each  term  satisfies  the  appropriate  end 

conditions.  These  assumed  displacement  series  are  substituted  into  the 

energy  expressions,  and  Hamilton's  principle  is  used  to  develop a linear 

eigenvalue  problem  in  the  undetermined  coefficients.  This  eigenvalue 

problem  is  solved,  allowing  the  calculation of the  desired  natural  fre- 

quencies  and  mode  shapes. 

Detailed  Analysis 

The  energy  expressions  are  written  first  in  terms  of  the  strain 

energy  and  then  the  strains  are  written  in  terms  of  the  displacements  of 

the  middle  surface  of  the  shell  to  give  the  energy  expressions  as  functions 

of  the  displacements.  Only  the  strain  energy  due  to  the  normal  strain  in 

the  direction of.the stiffener  axis  and  shear  strain  due  to  twisting  about 

the  stiffener  axis  are  considered  for  the  stiffeners.  The  normal  strain  in- 

cludes  the  effects  due  to  extension of the  stiffener  and  bending of the 

stiffener  about  two  axes. The rotatory  inertia  of  the  shell  is  considered 
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negl ig ib le ;  however, t he   ro t a to ry   i ne r t i a  is inc luded   in   the   s t i f fener  

kinetic  energy  terms. 

Potential   Energies 

The s t ra in   d i sp lacement   re la t ions   for  a cy l ind r i ca l   she l l   w i th   t he  

coordinates shown in  Figure 1 are  given by Flugge (48) as  

en - u , ~  - z w - 
'xx 

- v, e zw'ee W 
eee R R(R+~) R+Z 

"- + -  

where  a comma before   the   subscr ip t   ind ica tes   d i f fe ren t ia t ion   wi th  

to   the   subscr ip t  ( w , ~ ~  = =). These re la t ionships   a re   re fe r red  a 2w 

( l a -  c) 

respect  

t o   a s  

Flugge 's   exact   s t ra in   re la t ions,  and assume t h a t  normals t o   t h e  middle 
.. 

surface remain  normal a f t e r   s t r a i n i n g  and that  the  displacements  are  small .  

The s t r a i n  energy  or   the  potent ia l   energy  of   the  shel l  is found by 

considering a small  element i n  a t h in   she l l .   S ince   t he   she l l  is considered 

th in ,  it is  assumed tha t   t he  normal s t r e s s  u z z  is zero  throughout  the 

element and t h a t  the out  of  plane  shear  stresses  are  negligible (uxz = u = 0 ) .  

Hooke's law fo r   an   i so t rop ic   ma te r i a l   i n  a s t a t e  of plane stress is 
B Z  

E 
= l" (en + ve 8 8  ) 

E 
o =  ee  (eee + 

(2a- c) 



I-" 

dVvol = u,de, + ueedeee + axe dexe (3) 

Substituting  (2a-c)  into (3) and  integrating  gives the strain  energy  per 

unit  volume  as 

- E lek e 2 " + ve 
vvol - -(1"3 7 + 2 m e e  e + -  

4 xe 

The  total  energy of the  shell is then  the  integral  over  the  volume of the 

shell 

Vc = V.Vold(Vol) 
',To 1 

or 

+ -  e' ] (R+z)  dxdedz 2 xe (6 )  

where d (Vol)  =(R+z) dxdedz,  and  Ec  is Young's modulus  of  the  cylinder. 

The  strain  energy  of  the  cylinder  is  obtained  as a function  of  t.he  displace- 

ment of the  middle  surface  by  substituting  (la-c)  into  equation (6) and 

integrating  over  the  shell thichess. The  potential  energy  for  the  cylin- 

drical  shell  may  then  be  written  as 



Figure 1. Geometry of Discretely  Stiffened  Cylinder 
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where T = l n (  R + t/2 R" 
Ect 

and 
= '12(1") 

This  form  of  the  shell  potential  energy  can  be  shown  to  be  equivalent 

to  that  developed  by  Miller (5) if  the  approximation 

is  used  in  equation (7). 

The potential  energy  expressions  for  the  stringers  and  rings  will  be 

developed  with  the  assumption  that  these  stiffeners  are  uniform  along 

their  length  and  have an asymmetric  cross  section.  Further, it is  assumed 

that  only  normal  strains  in  the  direction  of  the  stiffener  axis  and  shear- 

ing  strains  due  to  twisting  about  the  stiffener  axis  are  important.  It 

is  also  assumed  that  the  cross  sectional  planes  do  not  warp. 

The  elastic  axis  is  chosen  as a reference  line  for  the  stiffener 

since  it  remains  undeformed  in a state  of  pure  torsion,  and  the  deforma- 

tions  in  this  state  may  be  described  by a single  variable, 4 ,  the  angular 

displacement  of  the  cross  section  about  the  elastic  axis.  Since  the 

elastic  axis  is  chosen  as  the  reference  line,  there  is  no  coupling  of  the 

displacements  of  the  elastic  axis (u,, vE, w,), which  describe  the  flex- 

ural  and  extension  in  the  bar,  to  the  angular  displacement ($), which 

describes  the  torsion.  Because of this  uncoupling,  the  displacements  of 

any point  in a stringer  (us,  vs, w ) can  be  expressed  as 
S 

7 



u = UE - Y'VE ,x - z'w 
S E ,x 

v = VE - z'l$s 

w = WE + y ' $ s  

S 

S 

The  coordinates  are  shown  in  the  stringer  detail  of  Figure 2 .  

(8a-c) 

The  energy  due  to  normal  strain  in  the  stringers  is 

where  en = u and  the  total  number  of  stringers  is L. The  Young's 

modulus  for  the kth stringer (9) is EsR and 8 is  its 8 -coordinate. 
s ,x 

R 
The  potential  energy  of  the  stringers  in  terms  of  the  displacements 

of  the  elastic  axis  and  the  angular  displacement of the  cross  section  may 

be  obtained  by  substituting  equations  (sa-c)  into (9). It  should  be  kept 

in  mind,  however,  that  the  final  energy  expression  must  be  related  to  the 

shell  displacements  at  junction  of  the  stringer  and  the  shell.  It  is 

somewhat  simpler  algebraically  if  these  compatibility  relations  are  intro- 

duced  into  equations (8) before  they  are  substituted  into  the  energy ex- 

pression ( 9 ) .  

The  compatibility  relations  are  quite  simple  if  it  can  be  assumed 

that  the  stiffener  is  integral  with  the  shell  at a single,  common  line 

(line  of  attachment).  This  assumption  is  more  easily  justified  if  the 

stringer  is  welded,  riveted  (closely  spaced),  or  actually  integral  to  the 

shell  with  the  width  of  the  junction  (or  the  distance,  perpendicular  to 

the  stiffener  axis,  over  which  the  junction  may  be  considered  integral) 

is  small  compared to the  wave  length of vibration.  The  waves  referred  to 

are  those  perpendicular  to  the  stiffener,  However,  there  are  methods  of 

8 
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X t 
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Figure 2. Geometric Detail of Eccentric  Stiffeners 
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attaching  the  stiffener  to  the  shell  which  do  not  indicate a clear-cut 

line  of  attachment.  As  Ojalvo and Newman  (19)  have  pointed  out, an effec- 

tive  line  of  attachment  must  be  assumed  in  these  cases. 

Assuming  that  the  line  of  attachment  has  been  determined,  the  dis- 

placement of this  line (u,, vA, wA)  are  first  related  to  the  elastic  axis. 

This  is  done  using  the  general  equations  (8a-c)  and  solving for  the  dis- 

placements of the  elastic  axis. 

UE = "A - ?sVA,x - i w  s A,x 

- VE - vA - ts$s  

,. 
"E = wA " YS$S 

If equations  (loa-c)  are  substituted  into  (sa-c) , there  results 

us = "A - yvA,x - zw + Cy;, - A 

A ,x  zys) 4s ,x 

(loa-c) 

(lla-c) vs = VA - z$s 

= "A + y@s S 

Compatibility  between  the  shell  and  the  stringer  at  the  line of 

attachment  requires 

uA = u(x, ' 2 ,  '1 

(12a-d) 

After  substituting  equations  (11)  into ( 9 ) ,  carrying  out  the  inte- 

gration  over  the  cross-sectional  area of the  stringer,  and  noting  the 

compatibility  relations,  the  stringer  normal  strain  energy  can  be  shown 

to be 

10 



- Iyysa~sd w~xxw~f3xx 
8=8 

R 

where rsR - - 2 2  - 
Izzsa SR 21yzsR Z ^ S t  %a 

The  terms  in  the  first  integral  of 

+ I  ^ 2  

equation  (13  ,a)  represent  the 

yysa YSR 

extension,  extension-flexure  coupling  (due  to  stringer  eccentricity),  and 

the  flexure  in  the  stringer.  The  terms  in  the  second  integral  are  the 

contributions  of  the  twist  in  the  stringer  to  the  normal  strain  energy  and 

the  coupling  between  torsion  and  flexure  and  extension. As will  be  dis- 

cussed  later,  numerical  calculations  for  rectangular  and  wide  flange  sec- 

tion  ring  stiffeners  with  positive  eccentricity  indicate  that  the  torsion 

and  the  torsion-flexure  terms  have  very  little  effect.  For  this  reason, 

the  terms  in  the  second  integral of equation  (13,a)  will  be  neglected  for 

this  analysis. 

If  the  stringer is not  attached  to  the  shell  at a single  common  line, 

but  is  integral  with  the  width  of  the  stringer  at  the  junction  such  that 

it  cannot  be  considered  small,  the  stiffness  of  the  shell,  perpendicular 



t o  the s t r inge r   ax i s ,  w i l l  be  increased a t  the   s t r inger   loca t ion .  I t  is 

shown i n  Appendix I t h a t   t h i s   c r o s s   s t i f f e n i n g  effect f o r   t h e   s t r i n g e r s  may 

be  approximated  by 

L . .  a 

where IcssR is a cross   s t i f fening  parameter   for   the R~~ s t r inger   def ined  

i n  Appendix I.  

The shear   s t ra in   energy due to   to rs ion   of   the   s t r ingers  is t aken   i n  

the form 

x, 
where (GJ) sa  is the   t o r s iona l   s t i f fnes s  of the kth s t r i n g e r .  The t o t a l  

s t r a i n  energy  of  the  str ingers (V ) is equal   to   the sum of the  extensional 

s t r a i n  energy (Vex*), the  s t ra in   energy due to   the  shear   of   tors ion (Vtor) 

and the   c ross   s t i f fen ing   s t ra in   energy  CV,,) 

S 

The s t r a i n  energy  of  the  rings may be  developed i n  a manner s imilar  

t o   t h a t  used f o r   t h e   s t r i n g e r s .  Using t h e   e l a s t i c   a x i s   a s  a reference,   the 

displacement a t  any poin t   in  a r ing  is 

u = UE - z'(lr  r 

v = ( 1 + - ) v  - -  2 '  Z '  
W - -  x' 11 

r RE E RE E,e  RE E,8 (15a-c) 

w = WE + x'(lr r 

where is the  radius of t h e   e l a s t i c   a x i s .  The coordinates  are shown i n  

the   r i ng   de t a i l   o f  Figure 2 .  

The energy  due t o  normal s t r a i n   i n   t h e   r i n g s  is 

1 2  



A considerable  simplification  in  the  analysis  will  result  from  assum- 

ing  that  the  ring  depth  is  small  compared  to  the  radius ("'/RE << 1, and 

RE = R). While  this  assumption  is  more  restrictive  than  those  used  in  the 

derivation  of  equation (7) for  the  shell  potential  energy,  the  increased 

accuracy  gained  by  relaxing  it  seems  to  be  greatly  out  of  proportion  to 

the  increase  in  complexity  in  the  analysis.  McElman,  reference (13), 

showed  that,  for  the  smeared  stiffener  analysis,  the  effects  of  this 

assumption  on  the  natural  frequencies  are  very  small.  Introducing  this 

approximation  into  equations  (15, 16, and  17)  results  in 

u = UE - Z'$lr r 
Z' X' v = v  " W r E R E,e R E y e  
" U 

w = w + XI+ r E  r 

(Ma-c) 

€ 8 8  

Using 

- - 1 
R 

the  technique  described  above  for  the  stringers,  the  displace- 

- (V,e + W) (20) 

ments  at any point in the  ring  (ur, v wr) may  be  related  to  the  dis- 

placements  at  the  line  of  attachment of the  ring (uA, vA, wA). Thus 
r' 

ur = UA - z +r 

Z X (ir x - 2 z) 
v = v  - - w  - "u + r 
r A R A,e R A,e R +r,e (21a-c) 

13 



wr = w* + x 0, 

The compa t ib i l i t y   r e l a t ions   fo r  the r ings  are 

(21a-c 
Cont l d) 

(22a-d) 

9, = w 'X (xk, ' 9  '1 

Combining equations  (19, 20 ,  2 1  and 22) r e s u l t s   i n  

'rkArk 
'ext 2 R 2  v'ew'ee 

R2 v'8''88 + 7 '88 R3 uPee 

k=l  
- 

- 2XrkArk 'xxrk w2 ' zzrk 

+ 2 -  'xzrk Ark 'rkArk 

+ -  

R3 
u'eew'88 + 2 -v, w - 2 R 8  F.2 w'88 

- 2  'rkArk + -  

- 2-  'zzrk 'rkArk 'zzrk w2 

R2 
WYX V'0  

R2 Uy88w'x ' 2  R R 'X (23 ,a> w w,x + ~ 

2 
- %k'xxrk) wyB0w9xee "(2 R3 r k  I zzrk - %krxzrkIU  eew9xee 

- x  ^rk'xzrk) w~~'yxee 1 x'xk del 
14 



where 

As in  the  case of the  stringers,  the  terms  in  the  second  integral of 

equation  (23,a)  will  be  neglected. 

The  strain  energy 

shown  in  Appendix I to 

due  to  flexural  cross  stiffening  of  the  rings  is 

be  approximated  by 

2Tr 

where  Icsrk  is  the  cross  stiffening  parameter  of  the kth ring  defined  in 

Appendix I. 

The  shear  strain  energy  due  to  torsion  in  the  rings  is 

where (GJ)rk  is  the  torsional  stiffness  of  the kth ring.  The  total  strain 

energy  of  the  rings (V,) is  equal  to  the sum of the  extensional  strain 

energy  (Vext),  the  strain  energy  due  to  torsion (Vtor) and  the  cross 

stiffening  strain  energy, (Vcs). 

Kinetic  Energies 

Neglecting  the  rotatory  inertia,  the  kinetic  energy  of  the  shell  may 

be  written  as 

The  kinetic  energy  of  the  stringers  is 

where  the  dot  over a variable  indicates  the  time  derivative. 

15 



Combining  equations  (11, 12, and  26)  will  give  the  kinetic  energy of 

the  stringers in terms of the  displacement  of  the  center  surface of the 

shell. 

1 L a 
Ts - z - . .  . .  

'x  'x 

+ I  
YYsR [GP, + ( 1 / ~ 2 >  ;:el] 

e =e 
R 

The  terms  in  the  stringer  kinetic  energy  involving  twisting (&,io) , 
twisting-translation  coupling (6 i ,  ) and twisting-rotation  coupling xe 

G,xe and i,xe) have  been  omitted  for  consistency  with  the  stringer 

potential  energy. 

The  kinetic  energy of the  rings  is 

I.: 1 I: 

2Tr 

' 'rk R 2 k z l  r (28) 
T = -  I I [u: + G2 + dArk  Rde 

*rk 

Combining  equations  (21, 22, and 28) results i n  

+ 'zzrk [w,; + (1/R2) 6,823 ] X'Xk Rde 

16 

(29) 



where  the  twisting,  twisting-extension  and  twisting-rotation  terms  have 

been  omitted  for  consistency. 

Displacement  Functions 

The  displacements  of  the  middle  surface  of  the  cylinder  (u,v,w)  are 

assumed  to  be 

u = 1 1 (imcos ne + iksin ne) um (x) sin UT 

m n  

(30a-  c) 

w = 1 1 (fimcos ne + W' sin ne) Wm (x) sin UT 
m n  mn 

where  Um (x), Vm (x), Wm  (x)  are  axial  mode  functions  which  are  chosen  to 

satisfy  the  end  conditions.  These  functions  are  extended  versions  of  those 

assumed  in  reference (17). Figure 3 identified a few  of  the  terms in equa- 

tion  (30c)  for  simply-supported  and  clamped-free  end  conditions. 

The  unprimed  coefficients (Gm, vmn) im) are  associated  with  the sym- 

metric  circumferential  modes,  referring  to  those  modes  having  normal  displace- 

ments  (w)  which  are  symmetric  with  respect to the x-z plane.  Similarly,  the 

primed  coefficients (uk, vh,  wk) are  associated  with  the  antisymmetric 

circumferential  modes. 

Axial  Mode  Functions 
"" 

The  axial  mode  functions  Um (x), Vm (x), and  Wm  (x)  should  be  selected 

to  satisfy  the  end  conditions  of  the  particular  stiffened  shell  under 

investigation.  However,  as  Meirovitch (49) has  indicated,  the  Rayleigh-Ritz 

technique  does  not  require  that  the  assumed  displacement  functions  satisfy 

the  force  or  moment  end  conditions,  only  those  involving  kinematic  quanti- 

ties  (displacements  or  slope).  The  following  sets  of  axial  mode  functions 

have  been  successfully  implemented  in  this  analysis. 

1 7  



n = O  n =  I 

n = 2  
NUMBER OF CIRCUMFERENTIAL FULL- WAVES ( n )  

m = l  

SIMPLY 

m = l  

SUPPORTED 

CLAMPED-  FREE 

AXIAL WAVE NUMBER (m) 

Figure 3. Circumferential  and  Longitudinal  Radial  Node  Shapes (w) 
of a  Cylinder 
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Both  ends  simply  supported "" without ~ axial  constraint  (freely  supported): 

Urn (x) = Jz cos  mnx/a 

Vm (x) = Jz sin  mnx/a 

Wm (x) = Jz sin mnx/a 

x = 0 clamped, x = a free: 

(31a-c) 

(32a-c) 

d xm (x) 
(x) = d x 

vm (x) = xm (x) 

wm (x) = xm (x) 
where  Xm (x)  are  the  Bernoulli-Euler  clamped-free  beam  eigeqfunctions 

Both  ends  clamped:  (see  reference 50) 

Urn (x) = sin m.rrx/a 

Vm  (x) = sin  m.rrx/a 

Wm (x) = cos  (m-l)nx/a - cos (m+l)nx/a 

Both  ends  simply  supported  with  axial  constraint: - 
urn (x) = LT sin  mnx/a 

vm (x) = sin m.rrx/a 

w (x) = sin  mrx/a m 

(33a  -c) 

(34a-c) 

The  following  sets  of  axial  mode  functions  have  not  been  implemented 

but  may  be  useful for  other  end  conditions. 

19 



Both ends free: 

Um (x) = cos m.rrx/a 

Vm (x) = cos m.rrx/a 

Wm (x) = cos m.rrx/a 

Note tha t   t he  m=O term should  be  included in   th i s   case   to   account  

fo r   t he   r i g id  body modes, 

x = 0 simply  supported  with  axial  constraint, x = a free: 

Urn (x) = sin  (2m-l)~x/2a 

Vm (x) = s in   (2m-l )~x/2a  

Wm (x) = s i n  (2m-1) nx/2a 

Freauencv  Eauation 

The equations of  motion f o r  free v ibra t ion  may be  derived from 

Hamilton’s  principle 

6 T2 (T - V) d.r = 0 
T l  

(35) 

where T and V a re .   the   to ta l   k ine t ic  and potential  energy of t h e   s h e l l ,  

r ings ,  and s t r ingers   given by 

T = T   + T r + T s  C 

v = v c + v  r + v  
S 

(36a-b) 

Combining equations  (30, 35, and 36) resul ts   in   the  fol lowing  equat ions 

20 
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+ Bljmvm ' + Fijm$A - A [ jimn + Vmni jcmn 

(37e-f) 

I C  
m n  

+ Ymijimn + Pkij6k + RLijcA + S ! .  lJm-mn] w' ] = 0 

where A = (1-v2)  p R2u2/EC  is  the  frequency  parameter.  The  coefficients 

in  equations  (37a-f)are  presented  in  Appendix 11. 
C 

Equations  (37a-f)  may  also  be  written  in  matrix  form,  with  the  aid of 

the  work  of  Egle  and  Sewall (46) ,  as 

1 

A D E G G G H  

DT B F FF EE  DD 

E T F T C  H H M "  

GT F F ~  mT A' D' E' 

G G ~  E E ~  mT ~1~ B' F '  

HT D D ~  M~ ~1~ F ' ~  c 1. 

- i  

X N N P  T ? T U  

N N T Q  R RR 

= 0 (38) 

where  the  superscript T indicates  the  submatrix  has  been  transposed.  The 
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terms in equations (37a-f) have  been  redefined in order to  write  them  in 

the  matrix  form of equation  (38) . The  terms E, 3, etc.  are  column  vectors 
whose  components  are 

"p = 

v = v  P m n  

and n and m are  related  to P by . 

m = P - (-) m* P - 1  
m T 

(39a-b) 

where  m*  is  the m a x i m u m  value  of m y  n*  is  the m a x i m u m  value  of n, and the 

symbol ( )T represents  the  operation of integer  truncation,  for  example 

(8/3)T = 2. Likewise,  the  coefficients Asp, DQp, etc.  in  the  matrix  are 

related  to  those  in  equations  (37a-f) by 

A ~ P  = Aijmn 

D =  QP Dijmn 
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where n and m are r e l a t e d   t o  P by equations (39a-b) , while i and j are 

r e l a t e d   t o  Q by 

(40a-b) 

An example  of t h i s   c a l c u l a t i o n   f o r  P = 10, Q = 16,  and m* = 4, gives 

i = 6 ,  j = 4, m = 2 ,  and  n = 3,  then A = A  10,16 6,4,2,3 '  

The so lu t ion  of  equation  (38) is a l inear  eigenvalue problem whose 

size is  (6m*n*)  by (6m*n*). The first matr ix   in   equat ion (38) , which 

contains A ,  B ,  C ,  e tc. ,  w i l l  be   re fe r red   to   as   the   s t i f fness   mat r ix ,  and 

the  second  matrix  as  the mass matrix. 

Equations  (37a-f and 38) w i l l  s implify i f  it is  assumed tha t   t he  

s t r ingers   are   dis t r ibuted  symmetr ical ly   with  respect   to   the  x-z   plane.  

This means tha t   fo r   eve ry   s t r i nge r   a t  e=eR there  is a mirror image 

s t r i n g e r   a t  e=-e  Thus, if a s t r i n g e r   a t  e=eR has a Ysa  
t h a t  is not  zero,   the  corresponding  stringer  at  e=e must  be iden t i ca l  

with  the  exception  that Tsa and IyzsL must  be the  negative of that   of  

t h e   s t r i n g e r   a t  e=eR.  S t r ingers   loca ted   a t  e=O, TT must  have 7 = 0 ,  

= 0 t o   s a t i s f y   t h i s  symmetry. The terms in   equat ion  (38)  which 

R '  Or a IYZsR 

R 

SR 

IYZSL 

couple  the  symmetric and antisymmetric  circumferential modes ( G ,  G G ,  H, 

FF, EE, DD, HH, MM, and M i n   t h e   s t i f f n e s s   m a t r i x ;  and T ,  'IT, U ,  RR, V, 

W ,  UU, X ,  and Y i n   t h e  m a s s  mat r ix)   a re   ident ica l ly   zero   for   th i s  

s t r inge r   d i s t r ibu t ion .  For  example, 

- YsR cos (-ne,)  cos ( - j e t ) ]  = 0 
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and 

+ s i n  (-nee)  cos (- j e  ) ] = 0 R 

For th i s   spec ia l   s t r i nge r   d i s t r ibu t ion ,   equa t ions  (38) reduce t o  two 

uncoupled sets of  equations. The existence  of  "double  resonances" is 

implied from the fact tha t   t hese  two sets of equations  are  not  necessarily 

equal.  This phenomenon  was discussed  in  reference  (46).  

Computer Program 

Equations (38) were programmed f o r   s o l u t i o n  on an IBM 360/40 d i g i t a l  

computer. The ava i lab le  memory (120 K bytes)  l imited  the m a x i m u m  number 

of  terms m*n*) in  the  displacement series (30) t o  seven or a (42x42) 

eigenvalue  problem. I t  was soon  discovered  that  seven  terms  in  the  dis- 

placement s e r i e s  were insuf f ic ien t   for   accura te   resu l t s  on some r ing  

s t i f f ened   she l l s .  Thus, in   o rder   to   increase   the  m a x i m u m  number of  terms 

i n   t h e  assumed displacement  series,   the  mirror image s t r i n g e r   d i s t r i b u t i o n  

described  previously was assumed. This  al lows  the  solution  for  the SF- 

metric and antisymmetric modes t o  be calculated  independently. The 

equations  governing  the symmetric circumferential  modes a re  

The equations f o r  the  antisymmetric  circumferential modes a r e  

i d e n t i c a l   t o  (41) except   that   the   coeff ic ients   are   replaced by t h e i r  primed 

25 

I 



counterparts  described  in  Appendix I. 

Programming  of equations (41) allowed  the m a x i m u m  number of terms  in 

the  displacement  series  to  be increased to 19 or a (57x57) eigenvalue 

problem. The eigenvalues  and  eigenvectors of (41) were  calculated by the 

Jacobi  rotation  technique  described briefly in  Appendix 111. 
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NUMERICAL RESULTS 

The  analysis  developed in the  previous  section  was  used  to  calculate 

the  natural  frequencies  of  several  configurations  of  stiffened  and  unstiff- 

ened  shells  for  which  frequencies  are  available  in  the  literature. 

Unstiffened  Cylinders 

The  natural  frequencies  of  unstiffened  cylindrical  shells  with  length- 

radius  ratios  of 1 and  10  were  calculated  with  equations  (41)  for  both  the 

freely  supported  and  the  clamped-clamped  end  conditions.  The  freely 

supported  case  requires  only a single  term  in  the  displacement  series 

because  each  term  in  equations  (30)  is  an  exact  solution.  Seven  terms  in 

the  displacement  series  were  used  for  the  clamped-clamped  shell.  The 

results  agreed  as  closely  as  could be determined  with  the  graphs of the 

exact  solutions  given  by  Fosberg (51) .  

A comparison  of  the  analytical  and  experimental  values  of  the  natural 

frequencies  of  an  unstiffened  clamped-free  cylinder  is  shown  in  Figure 4 

and  Table 11. The  theoretical  frequencies  were  calculated  with  five  of 

the  axial  mode  functions  of  equations  (32).  Convergence  of  the  frequencies 

was  checked  by  increasing  the  number  of  terms  to  ten,  which  lowered  the 

frequency  (m=l,  n=2)  from  104.4  to  103.7 cps, The  experimental  values 

are  taken  from  the  report  by  Park  et  a1 (42). The  shell  geometrical  and 

material  properties  are  those  of  configuration 1 in  Table I. 

The  fact  that  the  discrepancy  between  the  calculated  and  measured 

frequencies  increases  as  the  number  of  circumferential  waves  decrease 

indicates  that  the  end  conditions  used  in  the  analysis do not  represent 

those of the  experiment.  This  is  due  either  to  the  assumed  displacement 
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TABLE I SHELL CONFIGURATIONS USED I N  NUMERICAL  CALCULATIONS 

Configuration la Zb 3 ~ ~ . ~ ~~~~ 4c ~ ~. ~- 5= . 
. . , ~  

'c7 'sk9 'rk 
[ l b  sec2/in4] 

Ec Erk7 E s ~  
[ lb/in2] 
V 

R (in) 
t (in) 
a (in) 
Ask (in2> 

Y ,  (in) 

IzzcsR ( in4 

Iyzsam4) 

Z (in) SR 

I (in4) 
W s a  

( G J )  SR ( l b   i n 2 )  

Ark (in2) 
- 
z (in) 

x ( in )  
r k  

r k  
- 

'xxcrk  ( in4) 

I z z c r k  ( in4) 

'xzcrk (in4) 

0. 30x108 0.  3Ox1O8 0. 3Ox1O8 0. 3Ox1O8 0. 3Ox1O8 

0.29 0.30  0.30 0.30 0.30 
0. 1 0 ~ 1 0 ~  0 . 7 6 5 7 ~ 1 0   0 . 6 ~ 1 0  0 . 6 0 ~ 1 0  0 . 6 0 ~ 1 0  
0. 30x10-1 0.  1826x10-1 0.  2x10-1 0 . 1 5 ~ 1 0 - 1  0.15~10-~ 
0 .48x102 0 .3885x102 0 .12x102 0 . 2 4 ~ 1 0 ~  0 . 2 4 ~ 1 0 ~  
0 . 3 1 1 0 ~ 1 0 - ~   0 . 1 6 2 7 ~ 1 0 - ~  0.  30x10-1 0.0 0.0 

-0.1376 -0.2082 0.125 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 

0 . 1 6 5 2 ~ 1 0 - ~  0.1508~10-~ 0 . 2 5 6 3 ~ 1 0 - ~  0.0  0.0 

0 . 3 8 9 5 ~ 1 0 - ~  0.  3 7 4 4 ~ 1 0 - ~   0 . 2 5 6 3 ~ 1 0 - ~  0.0 0.0 

0.0 0.0 0.0 0.0  0.0 

0 . 3 0 6 ~ 1 0 ~  O.1131X1O2 0 . 2 0 8 7 ~ 1 0 ~  0.0 0.0 

0 . 6 2 5 l ~ l O - ~  0.0 0.0 0 . 4 5 0 ~ 1 0 - ~   0 . 4 5 1 ~ 1 0 - ~  

-0.1219 0.0 0.0 0.1955 0 .0  

0.0 0.0 0.0 0.0 0.0 

0 . 3 2 5 3 ~ 1 U - ~  0.0 0.0 0 . 5 2 7 4 ~ 1 0 - ~  0 5 9 7 8 ~ 1 0 - ~  

0 . 4 9 4 5 ~ 1 0 - ~  0.0 0.0 0 . 5 4 ~ 1 0 - ~  0.  5 4 ~ 1 0 - ~  

0.0 0.0 0.0 0.0 0.0 

(GJ)rk ( lb  in2) 0 . 5 1 4 6 ~ 1 0 ~  0.0 0.0 0 . 1 9 8 1 ~ 1 0 ~  0.2009x104 

3 Reference (42), Model 1s. 
Reference (17) 4 o p e n   p r o f i l e   s t r i n g e r s .  
Reference (39),  Models 5 and 6 .  
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TABLE I1 

a 

bReference (42) , Model 1. 

h i t s  are  cycles/second. 

Configuration 1, Table I. 
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functions  not  satisfying  the  free  end  conditions  exactly  or  to  the  shell 

end  not  being  rigidly  clamped  in  the  experiments.  Since  it is not  necessary 

for  the  assumed  displacements  to  satisfy  force  or  moment  end  conditions 

(see  reference 49) and  since  increasing  the  number of terms  in  the  analysis 

affected  the  frequency  at n=2 very  slightly,  it  is  concluded  that  the  shell 

end  was  not  absolutely  fixed  in  the  experiments. 

Figure 5 and  Table 111 show  the  theoretical and experimental  frequen- 

cies  of an unstiffened  freely-supported  cylindrical  shell.  The  shell 

geometry  and  material  properties  are  listed  under  configuration 4 in  Table 

I. The  cause  of  the  discrepancy,  which is as  large  as 28% at n=5,  m=l, 

is,  as  was  noted  in  reference (39) ,  not hown. However,  the  present  theory 

agrees  very  well  with  the  analysis of reference (39); hence  it is concluded 

that an unaccounted-for  factor  in  the  experiments,  perhaps  an  initial 

stress  due  to  the  welded  seam  in  the  shell,  is  responsible f o r  the 

differences. 

Stringer ~ Stiffened  Cylinders 

Table IV compares  some  of  the  frequencies  of a freely  supported 

cylinder  with  four  internal  stringers  computed  with  the  present  analysis 

(m*=1, n*=6) to  those  computed  with  the  analysis  of  reference (46) and  to 

a smeared  analysis  in  reference  (15).  The  material  properties  and  geom- 

etry  are  listed  under  configuration 2 in  Table I. The  very  slight dif- 

ferences  in  the  frequencies  of  the  present  analysis  (column a)  and  the 

complete  analysis  of  reference (46) (column  b)  are  due  to  the  use  of 

Flugge's  shell  theory  and  the  inclusion  of  flexure  and  rotatory  inertia 

of  the  stringers  about  the z-axis. The  smeared  analysis  of  Sewall  and 

Naumann  (15)  shows  very good agreement  for  this  particular  case. 
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NUMBER OF  CIRCUMFERENTIAL FULL- WAVES ( n )  

Figure 5. Theoretical  and  Experimental  Frequencies of an Unstiffened 
Freely-Supported  Cylindrical  Shell 
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TABLE I11 

w w 

THEORETIC4L AND EXPERIMENTAL  FREQUENCIES OF AN UNSTIFFENED  FREELY-SUPPORTED CYLINDER 
18 

m = l  m = 2  m = 4  
N 

Theory a VI '' Theory  Exper. ri Theory Exper. Theory Exper. 
I 

2 

3 

633.5' 

I 
370 1 326.7 

1 

4 

545 483.0 205 159.9 5 

745 255 i 696.1 202.3 
I, 

j 
960.6 

6 

580.8  345 325.1 220 206.0 7 

790 724.0 420 370.5 
200 , 168.0 

I 

8 820 768.3 506.1 360 329.2 265 261.0 

10 649.9  506.6 435 429.2 395 403.4 

1 2  706.4 625 632.3 580 594.9 560 581.1 

14 850 867.6 805  824.7 780 801.8 760 791.8 
a 

bReference  (39), Model 1. 

%nits are cycles/second. 

Configuration  4,  Table I .  



I 
M = l  

I- 

N T 
TABLE IV 

NATURAL FREQUENCIE5  OF A FREELY SUPPORTED CYLINDRICAL 
SHELLa  WITH FOUR INTERNAL STRINGERS - 
b 

sym 

775. Zf 

318.0 

158.4 

99.3 

90.7 

105.7 

Antisym 

775.2 

314.5 

158.4 

102.6 

90.7 

111.3 

C 

775.2 

318.1 

158.8 

100.5 

92.9 

108.3 

Antisym 

775.2 

314.6 

158.8 

104.0 

92.9 

114.2 

" - 

" ?" 

" 

d 

Sym 

1142.0 

360.2 

169.4 

102.8 

94.7 

109.4 
~- 

Antisym 

1124.0 

361.5 

168.3 

108.2 

95.0 

116.5 
.- ~ 

I I- 

a 

bpresent  Analysis. 

Configuration 2, Table I. 

C Analysis  of  reference 46, Donne11 theory  and  in-surface  inertias. 

dAnalysis  of  reference 46, deleting  in-surface  inertias. 
e Analysis  in  reference 15, includes  Novoshilov  shell  theory  and  in- 
surface  inertias. 

- .. 
e 

".. Smeareq - " 

774.4 

315.4 

158.3 

101.0 

90.8 

108.6 
" __ 

*Units  are cps. 
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Figure 6 shows  the  variation  of  the  minimum  frequency  of a stringer 

stiffened  cylinder  with  the  number  of  stringers.  For  the  calculations,  the 

total  stringer  area (L As,) and  the  "total"  torsional  stiffness (L USE) 

were  held  constant.  This  was  done  to  compare  the  results  of a discrete 

stiffener  analysis  to a smeared  analysis  which  will  give  the  same  frequen- 

cies  regardless  of  the  number  of  stringers  if (L As,) and (L USE) are 

constant.  The  stringers  were  taken  to  be  identical  and  equally  spaced 

around  the  circumference  of  the  shell.  The  material  and  geometrical 

properties  for  the  case  with  twelve  stringers  is  listed  under  config- 

uration 3 in  Table I. 

The  analysis  used  for  the  calculations  in  Figure 6 is  that  of  refer- 

ence (46) with  the  in-surface  inertias  deleted.  Thus,  as  can  be  seen 

in Table IV, the  frequencies  will  be  somewhat  higher  than  those  of a more 

exact  analysis;  but  this  is  immaterial  in  comparing  the  effects  of  the 

number  of  stringers  on  the  frequency. 

The  minimum  frequency  for  each  case  shown  in  Figure 6 occurred  for 

n=7 or 8 depending  on  the  number  of  stringers.  Both  the  symmetric  and 

antisymmetric  frequencies  were  calculated  but  only  the  smaller  of  the 

two  was  plotted. 

It is  interesting  that  there  is a local  maximum  in  the  frequency  for 

twelve  stringers.  This  indicates  that  if a few stringers  are  to be used, 

there  is a small  advantage  to  choosing  the  proper  number  of  stringers. 

However,  at  the  present,  the  author  does  not h o w  of a systematic  pro- 

cedure  for  determining  this  optimum  number  other  than  trial  and  error. 
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Figure 6. Minimum Frequency  of a Cylindrical   Shell  as a Function  of 
the  Number of Str ingers   with  the  Total   Str inger  Area and 
Torsional  Stiffness  Constant 

36 



r-- -- 

Ring  Stiffened  Shells 

The  natural  frequencies  for a cylinder  with  thirteen  equally  spaced 

rings  is  shown in Figure 7 and  Table V. Frequencies  were  calculated  for 

two cases,  one  with  the  ring  cross  section  symmetric  about  the  shell  middle 

surface (irk = 0) and  the  other  with  the  rings  external  to  the  shell. 

These two cases  correspond  to  models 5 and 6 in  reference (39) and  the 

material  and  geometrical  properties  are  listed  under  configurations 4 and 

5 in  Table I. The  results  of  the  present  analysis  are  compared  to  the 

analysis  and  experiments  of  reference  (39),  both  of  which  showed  very 

little  difference  between  the  external  and  symmetric  rings. 

In  Figure 7, the  frequencies  labeled  radial  are  the  lowest  frequencies 

associated  with  predominately  radial  motion  in  the  shell.  Likewise,  axial 

and  torsional  correspond  to  the  lowest  frequencies  associated  with  large 

u and v displacement  components.  Not  shown  are  the  other  radial  frequen- 

cies,  many  of  which  fall  between  the  lowest  radial  and  the  lowest  axial 

frequencies.  For  the  higher  values  of n, many  of  the  radial  frequencies 

are  very  nearly  the  same  as  the  lowest  frequency.  For  example,  for  n=10, 

the  twelve  lowest  frequencies  lie  between 2700 and  3100  cps  for  the 

external  ring  case. 

The  minimum  (m=l)  frequencies  of  this  ring  stiffened  shell  computed 

with  the  present  analysis  were  compared  to  the  frequencies  calculated 

with  the  analysis  of  reference (46). The  differences  were  found  to  be 

very  slight,  the  maximum  being on the  order  of 0.1%. These  differences 

are  due  to  the  more  exact  shell  theory  and  the  inclusion  of  flexure  and 

rotatory  inertia  of  the  rings  about  the z axis  in  the  present  analysis. 

The  lowest  frequencies  calculated  with  the  present  analysis  also 
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Figure 7. Theoretical and Experimental Frequencies of a Freely-Supported 
Cylindrical Shell with Thirteen Equally Spaced Rings 
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TABLE V 

THEORETICAL  FREQUENCIES OF A FREELY-SUPPORTED  CYLINDER 
WITH THIRTEEN EQUALLY SPACED RINGS 

I 1 11 
I 

i Lowest  Axial I Lowest  Torsional  Lowest Radial 
~ 

i I ! ! 

iN iExt.  Ringsa Sym. Ringsb 1 k t .  Rings Sym. Rings  Ext.  Rings 

3953.4 33 1649.7 27 2969.5 1651.0 i 1 1 I 2542.1 1 1 1926.4' . 1 10 

Theory' m ' Theory m I Theory / m Theory i .; m I Theory 1 m Theory i m 

Sym. Rings, 

12 1 5461.3 1 4625.7 ! 1 1 12,347 i 1 I 12,362 1 [ 518.3 

1 17,522 ' 13 21,159 1 10 

2556.1 1 2276.7 1 33,295 29,807 1 1 1 j 11,612 1 11 14,989 1 6 

1225.7 1 1287.5 1 22,477 1 8190.5 7 . 20,131 1 10,447 1 4 

490.7 1 

50,395 1 13 50,491 1 2694.8 1 2995.6 

14 1 27,329 1 

a 

2601.4 1 2506.8 1 64,397 1 5  77,870 5 22,590 

Configuration 4, Table I. 

bConfiguration 5, Table  I. 

%nits  are  cycles/second. 
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compare  very  well  with  the  theory of reference (39) for  the  symmetric 

rings.  However,  the  present  analysis  predicts a very  definite  effect  due 

to  the  eccentricity of the  rings.  The  frequencies  for  the  external  rings 

are  higher  than  those  for  the  symmetric  rings  for n<4 and  the  opposite  is 

true  for n>4. 

In order  to  achieve  agreement  between  the  two  theories  for  the sym- 

metric  rings,  it  was  necessary,  because  of  computer  size  limitations,  to 

take  advantage  of  the  longitudinal  symmetry  in  this  problem.  It  may  be 

shown  that  if  the  shell  ring  configuration  is  symmetric  about  the x = a/2 

plane,  then  the  odd  axial  nodes (m = 1, 3, 5, ...) uncouple  from  the  even 
axial  modes  (m = 2 ,  4, 6, ...). This  allows  the  frequencies  in  each  case 
to be  calculated  independently,  thereby  doubling  the  maximum  number  of 

terms  in  the  displacement  series  for  the  same  computer  storage. 

For  the  calculations in Figure 7, m* = 19  and n* = 1, but  since  only 

the  odd  terms m = 1, 3, 5, ...) were  used  in  the  displacement  series,  the 
highest  value  of m is  38. Also shown  are  the  lowest  frequencies  for a 

seven  term  series  which  is  obviously  inadequate  to  describe  the  motion 

for  large  values  of n. The  following  shows  the  lowest  radial  frequencies 

(cps)  for n = 4 calculated  with  three  progressively  larger  displacement 

series  for  the  symmetric  ring  case. 

Range  of m Frequency 

1 - 7  1 x 8  1 

1 - 19 odd  only  1758.1 

1 - 37 odd  only  1225 I 7 

Theory of ref. (39) 1180. 

This  illustrates  very  well  one  of  the  pitfalls of an assumed  modes  method 
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such  as  Rayleigh-Ftitz.  The  frequency  for m = 1-7 appears  to  be  converged 

when  it  is  actually 50% high. 

Figures 8 - 11' show  the  normalized  radial  displacement  modes  as a 

function of x/a,  the  axial  coordinate.  The  rings  are  located  at  x/a = k/12, 

k = 0, ~. . , 12. The eigenvectors,  from  which  these  plots  are  derived, 

indicate  that  for n = 2,  there  is  little  coupling  between  the  predominant 

tern  in  the  displacement  series  and  the  remaining  terms;  while  for n = 10, 

there  is  strong  coupling  between  several  terms in the  series.  The  mode 

associated  with  the  lowest  frequency  for n = 10,  Figure  11,  has  the  three 

largest  terms 

w(x) = sin (..x/a) + 0.473  sin  (23,~x/a) - .466 sin  (25nx/a] 

the  remainder  of  the  coefficients  being  less  that 2% of  the  largest.  The 

interesting  point  about  this  eigenfunction is that  even  though  it  consists 

almost  entirely  of  the  lst,  23rd  and  25th  axial  modes of the  unstiffened 

shell,  they  are  combined in such a way  that  none  of  the  predominant  terms 

is  recognizable.  If this modal  function  was  being  determined  experi- 

mentally, it could  easily  be  mlstaken  for  the n = 10, m = 12 mode, 

In  order  to  check  the  validity of neglecting  the  torsional,  torsional- 

flexural,  and  torsional-extensional  contributions  to  the  normal  strain 

energy,  several of the  terns  which  have  been  omitted  from  equations (23) 

were  added  to  the  analysis  and  the  frequencies of the  ring  stiffened  shell 

were  recalculated.  The  added  terms,  wh.ich  are  the  only  non  zero  terms  in 

the  second  integral of equation  (23)  for  rings  whose  cross  sections  are 

symmetric  about  the  z-axis,  are 



l .O* 

0.3. 

490.7 CPS 1.0 

-1.0 I 

I \  / 
-1.0 I V  

1923. CPS \ / 

-1.04 

Figure 8. Theoretical  Axial  Modes of a  Freely-Supported  Cylinder with 
Thirteen  Equally  Spaced  Symmetric Rings (N=2) 
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Figure  10.  Theoretical  Axial  Modes of a Freely-Supported  Cylindel-  with 
Thirteen Equally Spaced  Symmetric Rings (N=10) 
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Figure 11. Theoretical  Axial  Modes of a  Freely-Supported  Cylinder  with 
Thirteen Equally Spaced Externa l  Rings (N-10) 
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z = z  rk   rk  

fo r  symmetric ring  cross  sections. These terms produced a change in  the 

lowest  natural  frequency  for N=6, 10 of less  than 0.4%. The changes i n  

the  three  lowest  frequencies were a l l  less than 1%. 

A few calculations of the  frequencies  of a clamped-clamped ring st if-  

fened  shell were carried  out  for comparison with  the experiments i n  refer- 

ence (7). The resul ts   are  shown in  Table V I ,  In  the  experiments  the 

rings on the ends of  the  shell were clamped, and even if  the clamping was 

not  r igid,  one  would expect  the  frequencies t o  be higher  than  the  freely 

supported  case. A t  the  present, it is  not known why the  calculated  fre- 

quencies  for  the  freely  supported end conditions  are  higher  than  the 

experiments 

Ring  and Stringer  Stiffened  Shell 

The natural  frequencies and normal modes for  a clamped-free cylindri-  

cal   shell   with  three  internal  r ings and sixteen  internal  str ingers were 

calculated  with  the  present  analysis. The rings  are  equally spaced and 

located a t  x/a = 113, 2/3, 1 and the  stringers  are  equally spaced  around 

the  circumference. The material and geometrical  properties  are  listed 

i n  Table I under configuration 1. 

The axial  mode functions used were those of equations (32). The 

following  tabulation shows the  lowest  natural frequency  (cps] for  three 

different ranges  of m. 
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TABLE VI 

NATURAL ~ I FREQUENCIES ~. ~~ ~~ OF A CYLINDER WITH SEVEN EXTERNAL RINGS 

M=l 

a Clamped-clamped 1-13 terms. 

b Freely  supported 1-13 terms. 

c Freely  supported 1-19 odd  terms. 

d  Experiment,  taken from reference (7). 

e  Units  are  cycles/second. 
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Range of m  n=3 n=8 

1 - 3  144.0 483.3 

1 - 10 135.2  264.3 

1 - 19 130.3  263.5 

The  range  m = 1-10 gives  values  reasonably  close  to  those  for m = 1-19 

and  was  judged  sufficient  for  further  calculations. 

Figure  12  and  Table V I 1  show a comparison of natural  frequencies  cal- 

culated  with  the  present  analysis  to  the  experimental  values  given  by 

Park  et  a1  (42).  The  calculated  values  are  those  associated  with  the sym- 

metric  circumferential  modes  and  the  coupling  between  the  circumferential 

modes  was  ignored  (only a single  term  was  used  in  the  circumferential  modal 

series).  Note  that  the  order  of  increasing  frequency  (for  constant n) is 

not  necessarily  the  same  as  increasing  axial  mode  number,  m.  The  axial 

mode  number  associated  with  each  frequency  is  determined  as  in  reference 

(46) by  the m  value  associated  with  the  predominant  term  in  the  eigenvector. 

The  validity  of  neglecting  the  circumferential  modal  coupling  was 

checked  by  reducing  the  nunber  of  axial  modes  and  including  several  cir- 

cumferential  modes.  Two  cases  were  run,  one  with  the  ranges  m = 1-2, 

n = 1-4 and  the  other  with m = 1-3, n = 6-10. In  the  first  case,  there 

was  no  effect of including  the  extra  Circumferential  terms,  which is in 

agreement  with a conclusion  reached  in  reference  (46),  that  is,  the 

coupling  between  two  circumferential  modes, j and n, is zero  if j f n 

is  less  than  the  nunber  of  equally  spaced  stringers.  In  the  second  case, 

there  was  coupling  between n = 6 and  10  and n = 7 and 9 but  it  was  not 

appreciable  and  would  have  very  little  effect on the  frequencies. 

The  cause  of  the  discrepancy  between  the  theory and experiment  in 
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NUMBER OF CIRCUMFERENTIAL  FULL-WAVES (n 1 

Figure 12. Theoretical and Experimental  Frequencies of a  Clamped- 
Free  Cylindrical  Shell  with  Three  Rings  and  Sixteen 
Stringers 
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TABLE  VI1 

THEORETICAL AND EXPERIMENTAL FREQUENCIES OF A CLAMPED  FREE 
CYLINDER WITH THREE RINGS AJb SIXTEEN  STRINGERS 

. . - . . . I ~ . ~ 

~ . ~ 
"- 

I 
- 

~ ~ 

Theory 
. . . . . . - 

"_ ~. .~ 

. . .  .~~ 

568.2 
- .  .. . ~.~ 

447.1 

- 

445.9 
~~ - ~. 

414.0 
- . ._ " . 

394.0 
. .~ . -  , -  . 

361.3 

367.7 
" .  

380.2 
- ~ 

409.2 
- ; -~  

- .  
.- . . "2 I S  

rd Frequency 

I '  

I 

a Configuration 1, Table I. 

bReference (42) , Model 1s. 

%nits are  cycles/second. 
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Figure 1 2  is not known at   the   present  time. I t  is  possibly due to   the 

neglect  of  an axial mode other  than m = 1-19  or  the assumption of the 

small  ring  depth  to  radius  ratio used i n  equations (18, 19,  and 20). The 

end conditions,  both  those used i n   t h e  experiments and the  analysis,  could 

be partially  responsible  for  the  error  in  the  lowest  frequencies  (as was 

concluded to  be the  cause  of  discrepancy  in  Figure 4) but would not affect 

the  higher  frequencies. 

Figures (13-15) show a few of the  radial   deflection normal mode func- 

tions  associated  with  the  frequencies  in  Figure 1 2 .  A s  was noted in  the 

discussion of the modes of the  thirteen  ring-stiffened  shell,  the  eigen- 

vectors, from which Figures (13-15) are  derived,  indicate  that  for n = 2 

there is l i t t l e  coupling between the predominant  term in  the displacement 

series and the remaining terms, while  for  the  higher n values,  there is 

strong  coupling between the  largest term (the  value of m given in   the 

figure) and several  other terms in  the series. The  mode shapes a l so  

show a pronounced increase  in  shell motion (compared t o  the  rings) a t  

the  high  values of n. 
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Figure 13. Theoretical Axial Modes of a  Clamped-Free  Cylinder with 
Three  Rings and Sixteen  Stringers (N=2) 
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Figure 14. Theoretical  Axial  Modes of a  Clamped-Free  Cylinder  with 
Three  Rings and Sixteen  Stringers (N=9) 
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Figure 15. Theoretical Axial Modes of a Clamped-Free  Cylinder  with 
Three  Rings  and  Sixteen  Stringers ( N = l l )  
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CONCLUDING RFMARKS 

A theoretical  analysis  for  the  free  vibration  of  ring  and  stringer 

stiffened  shells,  with  stiffeners  treated as discrete  elements  has  been 

developed  and  implemented  for  digital  computer  solution.  The analysis 

is  capable of handling  arbitrary  end  conditions  and  arbitrary  distri- 

butions  of  stiffeners.  Comparison of numerical  results  with  experiments 

and  other  analyses  show  good  agreement  for  stringer  stiffened  shells  and 

reasonable  agreement  for  ring  stiffened  shells. 

The  Rayleigh-Ritz  technique  for  calculating  the  natural  faequencies 

( o f  discretely  stiffened  cylinders  produces  acceptable  results,  However, 

use  of  the  solutions  for  the  unstiffened  shell  as  the  assumed  displace- 

ments  yields  an  unusually  large  and  unwieldy  eigenvalue  problem  whose 

convergence  may  be  erratic or ,  at  least,  unusual.  It Fs the  aathorvs 

suggestion  that  further  study be directed  toward  developing  displacement 

functions  which  allow  for  inter-stiffener  deformation  wi+h  the mpecta- 

tion  of  reducing  the  numerical  problem f o r  the  same aczu-racy, 

The  question  of  the  effect  of  ring  eccentricity is nct, <n the 

authorvs  opinion,  resolved.  The  work of Hu,  Gamerly-,  and Lindhch 

indicates  there  is  very  little  effect in the  frequencies  due t . 2  rkg 

eccentricity.  The  present  analysis  and  the  analyses of Sewall Lmd 

i. .. L ~ E X I ,  and  Mikulas  and  McElman  indicate  there is a defkite effect. 

Perhaps  experiments  with  integral o r  welded  ring-shell ccnstmzt';.;n and 

designed  to  exaggerate  the  eccentricity  effect wwld settle  the  .;,;S.ue,, 

It  should  also  be  noted  that  the  experiments  of H u 9  GoLmerIy and 

Lindholm  only  indirectly  verified  the  existence of the  second  min,hL,.;1 

in the  frequency  vs. n curve  (they  reported  numerous  frequencies:  nhlch 
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could  not  be  identified in this  region  which  is  consistent  with  the 

theoretical  results). 

The  contributions of the  more  exact  shell  theory  and  the  flexure 

and  rotatory  inertia  of  the  stiffeners  about  the z-axis  show  very  little 

effect  on  the  frequencies  on  the  configurations  of  stiffened  shells 

com'idered  in  this  report.  Likewise,  the  contributions of extensfan  due 

to  torsion  and  the  torsion-extension,  torsion-flexure  coupling  in  the 

rings  is  insignificant.  Unless  geometries  cons'rderably  different  that 

those  considered  here  are  used,  these  minor  refinements  only-  increase  the 

complexity  of  the  analysis  with  negligible  increase  in  accuracy  in  the 

results . 
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APPENDIX I 

In  this  appendix, an approximate  method  for  calculating  the  cross- 

stiffening  energy  of  the  discrete  rings  and  stiffeners  is  developed.  If 

the  stiffener  is  not  attached  at a single  line,  as  in  the  case  of  the 

integral  stiffener  shown  in  Figure ( A I - l ) ,  both  the  flexural  and  exten- 

sional  stiffness  of  the  shell,  perpendicular  to  the  stiffener axis, will 

be  increased.  This  increase  is a local  effect  and  should  be  treated  as 

such  in  an  analysis  of  discrete  stiffeners. 

kffington (52) detailed  an  approximate  technique  for  including  the 

flexural  cross  stiffening  in a smeared  stiffener  analysis.  The  following 

analysis  is  based  in  part on  Huffington’s  work  and  will  consider  only 

flexural  cross-stiffening.  It  is  assumed  that,  for  the  purpose  of  deter- 

mining  the  cross-stiffening  energy,  the  shell-stiffener  is  in a state  of 

pure  bending  and  the  shell and stiffener  are of the  same  material. 

k b  -4 

FIGURE  AI-1.  Geometry  of  Integral  Ring-Shell  Combination. 
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Consider  the  integral  ring  stiffener  sham  in  Figure (AI-1). 

Following  Huffington,  the  ring-shell  combination is replaced by a non- 
! 

I uniform shel l   of   thichess ,   h(x)  , whose resistance  to bending is  equi- 

valent t o  the actual  ring and shel l .  The f lexural   s t ra in  energy of t h i s  

non-uniform section is  

Z.rr b 
V = 1 / 2  1 I ID, w,& + v (DX + D ) w , ~  

0 0  Y 'W 
(AI - 1) 

+ D w , ~  1 dx Rde 
Y W  

The two terms with  the  coefficient D in  this  equation  represent  the energy 

due to   s t i f fen ing  along  the  ring  axis. The two remaining  terms are  the 

cross-stiffening  energies, and i f  pure bending perpendicular t o  t h e   s t i f -  

fener  axis is assumed (w, = - v  w , ~ ) ,  equation (AI-1) may be written  as 

Y 

w 
1 - w 2  

J J 
- " DX w,& dx Rde 

2.rr b 
- 

%s 
0 0  

(AI - 2) 

Both DX and w , ~  are  functions of x in  the  interval 0 x b. I t  is 

assumed that  the  integral  

b 
I DX WYXx dx = b DX i,& (AI - 3) 
0 

where DX is an equivalent  flexural  rigidity,  calculated  to  yield  the  correct 

s t r a in  energy for  the  pure bending case, and can be shown to  be 

and ita is taken  equal to  the  curvature of the   she l l   a t   the   l ine  of 

attachment  of  the  ring  to  the  shell. 

(AI - 4) 
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Equation (AI-2) is the  f lexural energy  of  the  ring and she l l  combined. 

The energy  of the   she l l  has been included i n  equation (7) and should be 

subtracted from the  cross  stiffening  energy. Thus, the energy due t o  

flexural  cross-stiffening  of  the  ring is 

(AI - 5) 

where 
b b (A I  - 6) 

o h3(x) 

In a similar manner, the  cross-stiffening energy of a s t r inger  may 

be  shown t o  be 

where 

(AI - 7) 

(AI - 8) 

In  equation (AI-8) c i s  the  width  of  the  stringer a t  the  shell-stringer 

junction and y is the   c i rmferent ia l   d i s tance  (Re). 
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APPENDIX I1 

Matrix Elements i n  Ravleigh-Ritz 

Vibration  Analysis - .I 

This appendix contains  detailed  expressions  for  the unprimed coeffi- 

cients  in  equations  (37a-f) and the  matrix  elements of equation (38) . 
The primed coefficients,  Aljm, B! Ijm, e tc . ,  may be calculated by inter-  

changing s i n  ( ) and cos ( ) and  be replacing ysa with -? and I y z s a  
SR 

with  -Iyzsa  in  the  expressions  for  the unprimed coefficients. For 

example, 
K 

The terns  that  are  bracketed and subscripted  xk,  as an example 

[UmUiIx , indicate  that  the  expression is evaluated a t  the  location xk. 

The terms like  Iu , e tc . ,   a re  a short   notation  for an integral ;  

for  example 

k 
IV'V. m i   m l  

1 a 
Iumui = - a 1 0 Um(X)Ui(X)dx 

IV'V! = - 1 v ~ ( x ) v ~ ( x ) d x  
l a  

m i  a 
0 

The following  definitions have  been used to  shorten  the  expressions 

fo r  the coefficients : 

65 



The term 6 is the Kronecker del ta  and is equal t o  zero  except  for  j=n. 
j n  

The unprimed coefficients  are  as  follows: 

+ 4 ‘f ’rk’zzrk 
R k=l Ark 

2 L 
+ R Ivl,ll 1 s s ~ l z z s x :  

m i R = l  (sin e R  s i n  j e  ) R 
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I 
" 

K 

k=l + [ 'rk { f + 

j 4  
. _  

2 . 2  

,=l + % R Icsse IW m i  w ) 

(cos ne cos je,)  + jnTs7 (sin ne s in  je,)  II II 1 

2 

Eijmn = 6 j n  { vRIW ul - - m i  w;ui 
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t u  2 1 - v  t 2 
Fijmn In 1 2  1WmVi = 6 .  j - -  + (-) - I 2 4 w;v; 

M . .  = R2 

{''I [ 
2 . 2  

1J mn a = l  Asa. m l  

(sin ne R cos je a ) - T SR j n  (cos neR s i n  je,) Iwlwl 
m l  

2 L 
DDijmn = R Iwvl.l '1- Ssalyzsa (s in  neR s i n  j e  R ) m 1 R = 1  

2 L 
FFi jmn 

- - -R Iu,vl.l 1 SsaYsR (sin ne s i n  je,)  
m 1 a.=l a 
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2 L 
GGijmn = R I ~ , ~ ,  1 s ~ ~ Y , ~  (cos ne cos je 

m i a=l a a 

K - - { k=l 
+ 1 Mrk (1 + - - j 2  'zzrk) 

R' Ark Nijmn 6jn 3Jmui1 
Xk 

L 
+ I U  u 1 Msk(cos nea cos j e k )  m i k=l 

L 
- Iwlu 1 MskSsk (cos nek cos je , )  

m i a = l  

K - 
Qi jmn - ' j n  { 'VmVi + k=l 1 Mrk [vmvi] 

Xk 

(COS nea s in  j e  + !I z I (s in  ne s i n  je ) R sa Wr,,Vi k a 
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L 
T . .  - 1 Ms, (sin nea cos je,) 
1Jm - 'Umui a=l 

L 
1 MSais, (sin  neR  cos  je,) - 

'ijmn - - I W I U  m i a = l  
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+ + (cos ne cos j e  rVlw,  I zsR 
S 

R m i  I 

- I W  W. [ 3 ( Ask 
IyySR + IZZSR )(cos neR s i n  j e  ) 

m l  R 

(sin ne cos je , )  R 
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APPENDIX  I11 

The  initial  calculations  of  the  eigenvalues  and  eigenvectors of 

equation (41) were  carried  out  with  digital  computer  subroutines 

supplied  by  NASA  Langley  Research  Center.  Because  of  the  relatively 

large  size  of  the  eigenvalue  problem,  the  subroutines  (EIGEN  and  JACOBI) 

required  30  minutes  or  more  for  the  solution  of a typical (57 X 57) 

size  problem.  This  does  not  include  generation  of  the  mass  and 

stiffness  matrices  (10  minutes)  or  compile  time  (10  minutes).  It  was 

felt  that  this  excessive  time  warranted a brief  study  of  the  techniques 

available  for  the  solution  of  eigenvalue  problems  with  the  objective 

of decreasing  the  time  needed  for  the  calculations. 

The  first  step  in  solving  the  linear  symmetric  eigenvalue  problem 

[K] {X) = u2 [M]*J{x~  (AIII-1) 

is  to  transform  it  to  the  standard form 

[A] {x) = X {x) (AIII-2) 

Two methods  for  accomplishing  this  were  considered  the  first  (called 

transformation  1)  involves  finding  the  eigenvalues  and  eigenvectors  of 

[MI by  solving 

[MI {u) = A {u) (AIII-3) 

thus  allowing [MI to  be  expressed  as 

(AI I 1-4) 

where  the  columns  of [U] are  the  eigenvectors  of  (AIII-3)  and [‘Dd is a 

diagonal  matrix  of  the  eigenvalues of [MI. It has  been  assumed  that  the 

eigenvectors  have  been  normalized  such  that 

[UIT[U] = 1 
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If [MI  is  positive  definite, [‘D.] may  be  written  as 

may  be  transformed  into 

[A] {VI = LO* {VI 

where [A] = [‘Dl,] -’ [VIT [K] [VI [-D k] -’ 
(VI = [‘D’,] [VI Ex) T 

(AIII-6) 

(AIII-7) 

The  eigenvalues  of  (AI I 1-6) are  the  eigenvalues  of  (AI11 -1) and  the 

eigenvectors  of  (AIII-1)  may  be  determined  from  the  eigenvectors  of 

(AI I I - 6) and  equation  (AI I I - 7) . 
Note  that  to  solve  equation  (AIII-1)  with  this  transformation,  it  is 

necessary  to  do  two  eigenvalue  calculations  and  the  accuracy  of  the  result 

is  dependent  on  the  accuracy  to  which  the  eigenvectors  of  [MI  are 

calculated. 

Another  method  (transformation 2)  of  transforming  equation  (AIII-1) 

into  the  standard  form  utilizes  triangular  matrices.  If  the  matrix  [MI 

can  be  expressed  as 

where  [L]  is a lower  triangular  matrix, 

then  (AIII-1)  may  be  transformed  into  (AIII-6)  with 

[AI = [LI -l [KI  ([LI 1 -1 T 

and 

(AIII-8) 

{VI = [L]l {XI (AI I 1-9) 

Calculation  of  [L]  and [L] -’ is  relatively  simple.  It  may  be  shown 
that 
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and 

where kij and  are  the  elements  of [L] and  [L] -I, respectively. 

The  advantage of transfornation 2 over  transformation 1 lies  in 

not  having  to  calculate  the  eigenvalues  and  eigenvectors of [MI, which 

is  the  most  time  consuming  step  of  transformation 1. 

It  should  be  noted  that  both  of  these  transformations  may  be  used 

to  reduce  (AIII-1)  to 

1 [AI  {q) = 7 {q}  (AIII-10) 

by  simply  interchanging [K] and [MI in  the  transformation.  This  form 

is  not  obtainable  if  rigid  body  modes (w=O) are  possible  solutions 

to the  problem. It is  desirable  because  the  eigenvalue  subroutines 

considered  here  calculated  the  largest  eigenvalue  with  the  highest 

degree  of  accuracy.  Thus,  if  the  problem  is  in  the  form  (AIII-10) 

this  corresponds  to  the  lowest  natural  frequency. 

Two  techniques  for  solving  the  standard  eigenvalue  problem  were 

considered.  The  Householder-Givens  method,  which  is  reported to be a 
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very  fast  technique,  worked  very  well  for  problems  of  size  (10 X 10)  but 

failed for a large  matrix (60 X 60) and  was  abandoned.  The  other  method 

is  the  well-known  Jacobi  method, an iteration  techniqde  which  reduces 

the  matrix [A], equation (AIII-2) to a diagonal  matrix  by a series  of 

plane  rotations,  each  one  of  which  reduces  one  of  the  off-diagonal  ele- 

ments  in  the  matrix  to  zero.  In  each  step,  the  largest  off  diagonal 

element  is  annihilated  and  the  process  is  repeated  until  the  largest  off 

diagonal  element  is  less  that  the  product  of  the  smallest  eigenvalue 

and a preassigned  small  number  (called an indicator).  The  value  of  the 

indicator  determines  the  accuracy  of  the  eigenvalues  and  eigenvectors. 

Several  variations  of  transfornation 2 and  the  Jacobi  method  were 

used  to  calculate  the  eigenvalues  and  eigenvectors  of a (60 X 60) problem 

of  the  type  generated  by  the  analysis  described  in  this  report,  The 

results  were  compared  to  those  of  the  subroutines EIGEN and JACOB1 

(which  uses  transformation 1 and  the  Jacobi  method  with an indicator  of 

.75 X which  required 34 minutes  to  do  the  calculation.  The 

combination  which  was  fastest  while  still  maintaining  acceptable  accuracy 

was  transformation 2, form (AIII-10) and an indicator  of  0.75 X lo-'" 

The  time  for  this  calculation  was 11 minutes  and  the  lowest  frequency  was 

correct  to 8 significant  figures,  the  highest  frequency  was  correct  to 

2 significant  figures,  the  eigenvectors  of  the  lowest  frequency  were 

correct  to 4 significant  figures  in  the  largest  components.  The  eigen- 

vectors  of  the  highest  frequencies  were  not  correct.  Decreasing  the 

indicator  increased  the  computation  time  and  the  accuracy.  For an 

indicator Of 0.75 x lo-', the  computation  time  was 15 minutes  and  the 

accuracies  were  as  follows. 
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Number  of  correct 
significant  figures 

Lowest  frequency 8 

Highest  frequency 3 

Predominant  terms  in  eigenvector  of  lowest  frequency 6 

Smaller  terms  in  eigenvectors  of  lowest  frequency 2 

Predominant  terms  in  eigenvectors  of  highest  frequency 2 

Smaller  terns  in  eigenvectors  of  highest  frequency - 

It  was  concluded  that  using  transformation 2 to  reduce  the  original 

equation  to  the  form  (AIII-10)  and  the  Jacobi  method  with  an  indicator 

of 0.75 X lo-’ was  sufficiently  accurate  and  reduced  the  computation  time 
by a factor  of 2 compared to using  transformation 1, the  Jacobi  method 

and  an  indicator of 0.75 X 

It should  be  noted  that  the  results  presented  in  the  body  of  this 

report  were  calculated  with  double  precision  versions  of two IBM supplied 

subroutines (EIGEN and NRCOT) which  utilize  transformation 1, the 

Jacobi  method,  and  an  indicator of 10-6a  

Further  details  on  the two transformations  described  here  are  given 

in  reference (53). In  that  reference,  the  decomposition  (AIII-8)  is 

called  the  Cholesky  decomposition. 
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