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FOREWORD	 i
i,

The work described in this report was conducted by the Infrared and Optical

Sensor Laboratory (M. R. Holter, Head) of Willow Run Laboratories, a unit of The

University of Michigan's Institute of Science and Technology. D. S. Lowe was the

Principal Investigator. The work reported here is consonant with and fulfills part

i of the objectives of a comparative multispectral remote-sensing program of the

Infrared and Optical Sensor Laboratory. The goal of the program is to develop

methods of improving and extending current remote-sensing capabilities by studying

f the spectral characteristics of surface features, of objects being sought. Improve-

ments are being sought in the kinds and quantities of data obtainable and in the

quality, speed, and economy of the image-interpretation process. The present study

is very closely related to and dependent upon other studies completed by Willow

Run Laboratories under contract to the U. S. Geological Survey (Contract No. 14=

80-0001-10053) and under contract to the National Aeronautics and Space Administra-

tion (Contract No. NAS8-21000). Previous related reports issued by the Infrared

and Optical Sensor Laboratory are listed on the following pages.
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ABSTRACT

The literature of lunar science has been surveyed, Those aspects of the survey

	

relevant to experiments involving optical-mechanical radiometers and scanners' 	 s
used in lunar orbit are reported. An account of the current theories of the nature

of the lunar surface is given. Accounts are also given of,.previous work related to

the photometric function, color, and apparent tempp-diure, and the various anoma-^ •--
lies in these areas. The work supporting Ih-,>*,iiossibility of identifying surface rockw.r

	

r ^p..^	
ton the basis of their infrarp-d`peflectance spectra is descrj) r.4- ire all apmrCITx.^"

No conciusyons can be drawn other than tha^rCiieinterpretation of the existing
experimep affdata leads to many ambiguitpMa. Thus any experiments which might

rr ov,.4 more information would be y;d̂ ome.
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A SURVEY OF LUNAR GEOLOGY
10 Januory1966 Through 10 Jun& 1966

1
INTRODUCTION

The original work statement on this contract required the contractor to "... make an

engineering feasibility study of a lunar orbiting scanning radiometer leading to the definition of

feasible infrared experiments...." Later the work statement was altered to require emphasis

on technological problems and earth-orbiting experiments.

Early in the study under the original work statement, it became apparent that while a num-

ber of experiments and equipments had been proposed, the uncertainty and disagreement on the

nature and history of the lunar surface is such that it was far from clear which experiment or

experimental parameters would be of greatest value. It was therefore decided to carry out a

survey of the scientific literature relating to the moon in order to uncover the ways in which

radiometry from orbit might elucidate matters and further to determine what equipment specifi-

cations would be of greatest and most general value.

The state of lunar science at the close of the study has become even more uncertain than

it was at the start. For example, whereas most deductions from earth-based observations

indicated, or at least w@Tr consistent with, the theory that the surface of the moon is a dust

layer of unknown thickness, the results of the early photographs telemetered back from the

lunar lenders indicate a somewhat cohesive soil-like surface. It is clear that much remains

to be done. While contact exploration and high-resolution photography will undoubtedly play a

leading role, any other techniques which can shed light on this intriguing and presently para-

doxical subject will also play a role; among these optical-mechanical radiometry will surely

have an important place.

2
A "PROBABLE' LUNAR SURFACE MODEL

After more than three and one-half centuries of observation and compilation of pertinent

data, it is still impossible to state definitive and final conclusions as to the character of lunar

surface detail. Much of the confusing and conflicti ►.g interpretation arises from the fact that

all evidence for the physical nature of the surface has been obtained indirectly, through infer-

ences drawn from the characteristics of reflected and emitted radiation. With the exception

of the highly localized glimpses provided by Rangers VII, VIII, and IX and Surveyor I, all con-

clusions regarding the lunar surface are drawn from earth-based telescopic observations where-



in the best resolution corresponds to about 750 m photographically and 200 m visually [1]. In

general, the average characteristics of large areas of lunar terrain have then been compared

with the behavior of laboratory-sized samples of various terrestrial materials.

Despite the obvious difficulties and many dissenting opinions, it is possible to reach what

might be termed a "most probable" lunar surface model. It should be noted, however, that

perhaps no single facet of such an average model enjoys universal acceptance. Essentially,

every aspect of surface detail has been explained by a variety of often conflicting theories.

Nevertheless, most authors tend to accept (with their own minor modifications) a great many

of the more conservative inferences leading to a probable surface model. Recent data indicate

that certain of these inferences may be superfluous in the explanation of observed phenomena.

However, the inertia of centuries of observation and debate acts effectively to dampen any

rapid change in the evolving model.

The essential characteristics observed in the emitted and reflected rpdiation which bear

upon our interpretation of the physical nature of the lunar surface may be summarized as

follows.

(1) The lunar albedo varies from place to place sufficiently to produce the readily dis-

cernible distinction between the highlands and the maria, but it is quite uniform relative to

differences in reflectivity of terrestrial rocks. The small and nearly uniform albedo suggests

the effect of an infall of a dark or subsequently darkened cosmic dust, possibly mixed with

local debris from crater formation. The depth of such a layer and reasons for even a slight

albedo variation are largely hypothetical, depending upon estimated infail rates and various

transport theories.

(2) The overall color differences are negligibly small, the lunar surface being everywhere

a dark grayish brown. Lunar surface materials occupy a small region of the color-brightness

agram essentially devoid of any known terrestrial materials. This again suggests a rather

uniform infail of cosmic material, perhaps regionally affected by a mixture of local material.

(3) The polarization of light reflected from the lunar surface has been found to agree with

few exceptions to that of a dark, absorbing powder similar to a fine volcanic ash or an opaque

dust. Although there is some variation in the degree of polarization (inversely with albedo)

over the lunar surface, the otherwise marked similarity indicates a common dust covering.

(4) The visible reflectance function (i.e., the variation in brightness with phase) of the

entire lunar disk, as well as every element of the surfac3, is extremely steep near full moon;

there is no limb darkening. In an attempt to account for this peculiar photometric behavior,

hypothetical complex and highly vesicular struc ,..tres, replete with innumerable pits and inter-



connected cavities, have been devised. Laboratory studies indicate that some of tine more com-

plex models do, in fact, closely approximate the lunar reflectance curve. However, recent

data indicate that such elaborate and improbable models may be unnecessary, as a great many

(perhaps nearly all) terrestrial materials exhibit similar properties when viewed under appro-

priate conditions closely approximating those of the full-moon situation. Nevertheless. the

more generally accepted probable model must be said to include a highly visculated surface of

complex microstructure, creating innumerable interconnected cavities and consisting predomi-

nantly of voids. Rationalizing this fact with the well-supported blanket of dust has been accom-

plished only through the "fairy-castle" structures of Hapke [2].

(5) Infrared and microwave measurements of apparent surface and subsurface temperature

variations during an eclipse as well as a normal lunation indicate a thermal conductivity far below

that of any known solid substance. Analysts of these data have concluded that the surface is

covered by a layer of loosely compacted dust or rock powder in which conduction can be

effected only through minute point contacts.

(6) Radar echoes indicate that the surface is essentially smooth to gently undulating, with

gradients no larger than 1 in 10 to 1 in 20 in an area of a few centimeters to a meter. Current

measurements at 3.6 cm indicate that only about 14% of the surface is covered by objects of a

size on the order of the wavelength.

Thus a probable lunar surface model is essentially smooth (certainly smooth compared to

the curvature of the lunar globe) and monotonously drab and desolate. The microrelief may

possibly (although not necessarily) exhibit considerable structure on the scale of a millimeter

or less. The one appa: ently essential feature, indicated by nearly every characteristic examined,

is the presence of an all-covering layer of dust, possibly in varying thickness and at various

angles of repose. This material is presumed to originate from cosmic infall mixed with local

debris, varying from large-block rubble to rock flour.

The overwhelming evidence of a lunar dust layer is unique in the widespread support offered

by measurements from different disciplines. In no other case do the data so consistently indi-

cate a particular characteristic. It is ironic that all high-resolution observations available to

date (Luna 9, Rangers VII, VIII, and IX, and Surveyor I) can be interpreted to indicate the

absence of a dust layer. In fact, Kuiper [3, 4] concluded from his interpretation of Ranger data

that the maria consist mainly of large-scale lava flows which are not covered by dust. However,

Gold interpreted the same data (specifically Ranger VII photographs) to "have clearly strengthened

the case for dust as the main constituent of the lunar lowlands by not showing any rock forma-

tions" [5, p. 71. Jaffe views the same photographs as indicating an overlay of "dust or other

'	 3



granular material . .. at least 5 meters thick ... and perhaps considerably thicker" [6, pp.
6129-6138]. Surveyor I indicated the surface of its site in Oceanus Procellarum to be covered

by a finely granulated, somewhat cohesive soil-like material, but not dust [7].

3
THE ALREDO AND COLOR OF THE LUNAR SURFACE

The relative brightness of lunar surface features is given in terms of their normal albedo,

or the ratio of their brightness to that of a perfectly reflecting Lambertian surface, both sur-

faces being illuminated and viewed normally. The lunar albedo is uniformly low, averaging

about 0.09, while varying from place to place from a minimum of 0.05 for the darkest maria

and certain dark craters to a maximum of about 0.18 for the brightest parts of the crater

Aristarchus (see table I for values of albedo of various representative features). Thus the

ratio of the intensity of the brightest and darkest lunar details is just over 3, while, or. the

average, the bright mountainous areas are no more than 1.8 times as bright as the darker maria.

This variation, while readily discernible, is quite small compared to the differences in reflec-

tivity of terrestrial rocks which can vary by a factor of 50 or more.

The nearly uniform lunar albedo has been used by Kopal [9] to argue the presence of a

blanket of cosmic dust, mixed with local debris from crater formation. However, other authors

feel that such a dust cover would necessarily wipe out all traces of difference and contend that

the effect of dust originating outside the moon is minor [10].

TABLE 1. ALBEDO OF VARIOUS LUNAR FEATURES [8]

Representative Object	 Albedo

Floor of Grimaldi and Riccioli 0.061
Floor of crater Boscovich 0.067
Floor of Julius Caesar and Endymion 0.074
Floor of Pitatus and Marius 0.081
Floor of Taruntius, Plinius, Flamsteed, Theophilus, and Mercator 0.088
Floor of Hansen, Archimedes, and Mersenius 0.095
Floor of Ptolemaeus, Manilius, and Guericke 0.102
Environs of Aristillus 0.109
Wall of Arago, Landsberg, Bullialdus, and the neighborhood of Kepler 0.115
Wall of Picard, Timocharis, the rays of Copernicus 0.122
Wall of Macrobius, Kant, Bessel, Misting, and Flamsteed 0.129
Wall of Lagrange, La Hire, and Theatetus 0.135
Wall of Feon Jun., Ariadaeus, Behaim, and Bode B 0.142
Wall of Euclides, Ukert, and Hortensius 0.149
Wall of Godin, Copernicus, and Bode 0.156
Wall of Proclus, Bode A, and Hipparchus C 0.163
Wall of Mersenius, and Misting A 0.169
Interior of Aristarchus 0.176
Central mountain of Aristarchus 0.183
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A comparison of lunar albedo values with those of known terrestrial materials shows the

latter to be, in general, much higher. The notable exceptions, volcanic slag (with a mean

albedo of 0 . 06) and the fusion crust of meteorites (0.05), were called upon by Sytinskaya to

support the meteor-slag theory, in which the slaggy surface of the mania is predominantly

ultrabasic while the continents are basic -basic. Albedo differences are felt to result from

meteoric bombardment. Sytinskaya [11] explains the dark color of other bodies such as

Mercury in an analogous manner.

In terrestrial materials, the albedo has a pronounced effect upon polarization; the maxi-

mum of the positive polarization ( P max ) is inversely related to albedo. The moon is unique,

compared to most terrestrial materials, combining a low P
max 

with a low albedo ( see fig. 1).
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FIGURE 1. POLARIZATION-BRIGHTNESS DIAGRAM FOR LUNAR AND
TERRESTRIAL MATERIALS (2)

There are innnmerable areas of different brightness on the lunar surface, and in some

cases their relative orientation (such as overlapping) has been used to establish relative ages

for the various features. For example, the bright rays associated with certain craters extend

outward from the crater rim, overriding neighboring features, suggestive of a huge splash of

material from the crater site. All gradations may be observed in the brightness of the rays

associated with different craters. Copernicus, Aristilles, and Theophilus illustrated this effect

with the rays of Copernicus extending more than 300 mi outward from the rim in bright arcs

and loops across the dark maria, the rays of Aristilles are plainly visible but less bright, and

those of Theophilus are extremely dim. Rayless craters, or those with faint rays, occurring

^^	 5

y„r
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in a system of brighter rays are invariably superimposed on it. In all cases, the brighter rays

appear to be associated wit). more recent events, indicating that a darkening process is causing

a fading of the brighter lunar features [12].

The treatment which exposed lunar material has received is very different from that of

terrestrial rocks, providing several reasons for this apparent darkening with age. Hapke and

Van Horn [13] note that repeated shocking by impact and prolonged exposure to high-energy

cosmic radiation will result in a highly disordered lattice of higher opacity. Wehner [14]

reports that repeated ion bombardment (as by the hydrogen ions of the solar wind) darkens

insulators with rough surfaces. The infall of a cosmic material of very low albedo (similar

to the dark zodiacal cloud suggested by Kopal [9]) could produce the observed effect.

Whatever the underlying causes, there is considerable circumstantial evidence that exposure

to the lunar environment results in a gradual darkening of the surface material and that sub-

surface material is initially brighter. Contrary to this conclusion, the average albedo of

ejected material, photographed near the footpads of Surveyor I, was nearly 30% lower than that

of the undisturbed surface [7]. The landing site, in a dark part of Oceanus Procellarum, is

described as "bland" with an albedo (estimated from earth-based observation) of about 0.052

[7]. The area does not appear to be overlain by any of the various bright ray systems. The

reasons for the underlying (hence protected) material to appear significantly darker than the

undisturbed surface are not clear.

The very small difference in color exhibited by various regions of the lunar surface also

indicates the uniformity of its outer covering. Sharanov [15] has studied lunar color differences

based upon a color excess D defined as the difference between the color index of a given object

and that of the sun. Table II gives values of albedo and color excess determined for various

lunar features and terrestrial materials. Color-excess values for lunar features largely fall

around 0.35 with extremes no greater than 10.06, a rather uniform and dull brownish gray.*

The color dispersion across the maria and dark features is somewhat larger than in the brighter

highlands, but Sharanov states that "a careful and repeated study under great magnification ...

did not reveal a single, even small, object whose color appreciably differed from that of the

background" (15, p. 388]. Data similar to those in table II have been used to construct color-

brightness diagrams for lunar and terrestrial materials [17] such as the one shown in figure 2.

Any attempt to identify lunar materials by their observed position on the color-brightness

diagram assumes that materials of similar mineralogical and petrographic composition in the

*With this color-excess system, proposed by King [16], D = 0 describes a gray substance,
bluish colors yield negative values, and yellow, brown, and reddish materials will be positive
r 15, P. 388].
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TABLE II. ALBEDO AND COLOR EXCESS OF VARIOUS LUNAR
FEATURES AND TERRESTRIAL MATERIALS [15]

Type of Object
or Material Albedo Color Excess (D)

Average Extreme Average Extreme

Moon, mania, and floors
of dark cirques 0.065 0.05 0.08 +0.339 +0.29 +0.40

Moon, Pali 0.091 0.09 0.10 +0.349 +0.31 +0.37

'	 Moon, continents, and
floors of craters with
normal coloring 0.105 0.08 0.12 +0.347 +0.31 +0.38

Bright rays and craters
with bright floors 0.140 0.10 0.18 +0.352 +0.31 +0.39

All parts of moon together 0.090 0.05 0.18 +0.344 +0.29 +0.40
Volcanic slag, scorias 0.060 0.02 0.14 +0.11 -0.13 +1.28
Volcanic tuff 0.193 0.06 0.43 +0.29 -0.15 +1.10
Pumice 0.354 0.13 0.55 +0.43 +0.05 +0.81
Dunite, peridotite 0.104 0.06 0.16 -0.01 -0.17 +0.25
Gabbro, norite 0.155 0.08 0.21 -0.04 -0.17 +0.12

Basalt 0.133 0.06 0.28 -0.05 -0.31 +0.15
Diabase 0.151 0.11 0.19 -0.02 -0.19 +0.13
Andesite 0.139 0.08 0.31 -0.02 -0.12 +0.10

Granite 0.244 0.04 0.70 +0.39 -0.09 +1.23
Metamorphic rocks 0.281 0.08 0.78 +0.26 -0.25 +0.99
Clays and schists 0.251 0.12 0.50 +0.33 -0.24 +1.53

Sand 0.240 0.10 0.40 +0.49 +0.06 +1.22
Sandstone 0.222 0.06 0.54 +0.66 +0.03 +1.54

Limonite, ortstein 0.131 0.05 0.35 +0.69 0.00 +1.24

Limestone, marl 0.325 0.06 0.8u T0.38 -0.13 +1.52
Stone meteorites 0.183 0.04 0.48 +0.10 -0.16 +0.36
Fusion crust of meteorites 0.052 0.02 0.17 +0.11 -0.10 +0.38

lunar and terrestrial environments will exhibit similar properties. The validity of such an

assumption is doubtful, considering the vast differences in the two environments. A small

amount of "foreign" contaminating material, or minor changes caused by radiation or ion

bombardment, may well mask otherwise recognizable features.

The large field of view over which telescopic measurements are averaged also tends to

mask or obscure local color -brightness variations. These large areal observations are then

compared with similar properties deduced from the measurement of laboratory - sized ter-

restrial samples. As is frequently the case in earth-based lunar investigation, we can only

observe that, on the average, lunar materials occupy a portion of the color - brightness diagram

which is essentially devoid of terrestrial materials.

Recent reports by Sharanov [ 18] and Sytinskaya [19] indicat,^ that various porous and loose

substances emitted by active terrestrial volcanoes generally correspond to the lunar albedo
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and color. They note that a similarity in color is obtained for pyroclastic materials of the

slag and lapilli type, but not for lava. Slag is said to be somewhat redder, pumice the same

color, and lapilli, sand, and ash more brown, gray, or black, than the moon. They propose

that by proper combination volcanic products can be shown to duplicate lunar observations. 	 -

Whether the lunar albedo and color effects arise from nonterrestrial material, from ob-

servational limitations, or from environmental effects is unknown.

4
THE LUNAR PHOTOMETRIC FUNCTION

The characteristic manner in which the lunar surface reflects insolation has presented a

Gordian knot for more than three centuries. In 1632, Galileo [20] noted that at full moon lunar

brightness is approximately uniform over the entire disk, i.e., there is no limb darkening. If

the surface behaved as a diffuse reflector, the full moon would, of necessity, appear brighter

near the center and progressively dimmer near the limb. In the early 18th century, Bouguer

[21] attempted to explain this lunar reflectance phenomenon through shadows cast by very steep

mountains. Thus observers have long sought, rather unsuccessfully, to establish a meaningful

relation between photometric observations and lunar surface structure.

Measurements of the integral brightness of the lunar disk as a function of phase angle have

been performed by many observers [e.g., 22-251. In 1916, Russell [26] surveyed the data of

previous observers, deduced mean values, and determined a phase-angle variation of integral

brightness. Rougier [27], in 1933, obtained a similar phase brightness function through precise,

independent measurements. Curves plotted by both Russell and Rougier are presented in

figure 3. The undefined peak near zero for phase angles less than 1.5 0 is caused by eclipsing

of the moon by the earth. Because of the very steep rise near occulation, extrapolation is

extremely difficult. However, what is classically termed a full moon presents twice the illumi-

nated area of quadrature but eleven times the integral brightness. As noted recently by

Gehrels et al. [28], the reflectivity may as much as double as the phase angle changes from 50

to 00.

Many workers have considered the differing brightness of various lunar surface details.

Barabashev in 1922 [29] first expressed the photometric homogeneity of the entire disk: not

only does the moon reflect in such a way that the integral brightness reaches a sharp maximum

at or near full moon, but also the apparent brightness of every detail shows a similar peak

regardless of location on the disk or the type of terrain. This expression of lunar photometric

behavior has been confirmed and refined through the extensive measurements by Markov [30],

Opik [31], Bennett [32], and van Diggelen [33].
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Fedoretz [34] has provided the most extensive catalog of lunar photometric data available

to date. His measurements indicate that in some cases the maximum brightness is displaced

away from zero phase angle toward that corresponding to solar zenith for the given surface

detail (e.g., the craters Tycho and Copernicus). Fedoretz also determined that the bright rays

and certain bright craters differ from the more general reflectance function by exhibiting an

even more pronounced peak near zero phase. This observation has been recently confirmed

by the photoelectric measurements of Wildey and Pohn [35].

Many theoretical attempts have been made to predict the moon's photometric behavior.

Most models have suggested a surface covered by cracks [29], rocks or domes [38], cups or

craters [32, 33], volcanic foam [37], or steep-walled cavities [38]. Theories have in general

tended toward a terrestrially familiar structure of well-known materials such as sands, rocks,

and volcanic products. The failure of most models to satisfactorily duplicate the lunar reflec-

tion law may result in part from the peculiar environmental conditions imposed on lunar surface

materials. However, recent evidence (discussed more fully below) indicates that it is more

likely the result of instrumental limitations in evaluating the experimental models. Extensive

laboratory investigations on a large variety of terrestrial materials and structural forms

have been reported [13, 33, 39-43].

While Orlova [39] was able to obtain a reflectance maximum in the direction of the incident

beam for certain volcanic tuffs, she found the moon to exhibit a very much greater elongation
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toward the source. Van Diggelen found that the agglomerated volcanic ash, strongly suggested

by polarization studies, did not conform to his lunar observations. He concluded that he sur-

face compares most favorably with a highly complex structure of very porous material, and

he obtained good agreement with the reflectance of a layer of lichens.

Hapke and Van Horn studied more than 200 surfaces, including a variety of rocks and

minerals in both solid and powdered form, glass beads, metallic and nomm. etallic whiskers,

vegetation, such as grasses, lichens, and mosses, and artificial surfaces such as wires anti

sponges. Their experiments revealed that, in general, the reflectance law of a surface is

determined oy its albedo, the scattering characteristics of individual objects, and the ^:iructure

in which ti%ese objects are arranged. They concluded that the upper layer of the lunar surface

must be ".. , extremely porous and open with interconnected cavities and a void volume of the

order of 90 percent. The scattering objects comprising the surface must absorb more than

about 70 percent of the light incident on them and must be opaque, with fairly rough surfaces"

[13, p. 4566]. Because of the need for interconnected cavities and the sharp backscatter peak,

they exclude rocks, even those covered by cracks and pits, scoriaceous rock foams, slags, and

glassy or other transparent or translucent objects. All materials found to scatter light like

the moon are said to have a porous dendritic or reticulated structure. Materials found capable

of forming the required structure include vegetation, whiskers, sponges, and finely divided

powders. Experimental curves obtained by Hapke and Van Horn for various substances are

shown in figures 4 and 5, along with the normalized scattering functions of a Lambertian surface

and the lunar surface.

Prior to the work of Hapke and Van Horn (and the subsequent publication of fig. 5c), a

serious criticism of the lunar dust model, strongly suggested by measurements from many

different disciplines, was that the photometric behavior of loose powders could not be recon-

ciled with that observed from the lunar surface. It was postulated that only a rigid and highly

porous model having steep walls and sharp irregularities could satisfactorily match the lunar

reflectance curve. However, as discovered by Hapke (13, p. 4563]:

If a dielectric, such as a piece of rock, is puivarized to a large average
particle size, and the powder is poured or sifted onto a plate, the resulting
macrostructure is not particularly complex; viewed under a microscope,
the surface resembles a pile of gravel. But if the particles are smaller
than a certain critical size, and if they are deposited in such a way as to
insure that they fall individually and impact the surface at a low velocity
... then the grains will build up fantastically complicated structures .. .
under a stereoscopic microscope, porous hills are seen, out of which grow
towers : -id branches, many of them interconnected with lacy bridges.
T,.ese "fairy-castle" structures are fully as complex as the lichen and are
certainly capable of sharply backscattering light.
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Hapke found that a subsequent exposure to ultraviolet radiation decreased the albedo (of

powdered AgCI) and further sharpened the backscatter peak.

The ability to build complex, intricate structures is thought to be a property of all finely

divided solids. Hapke concludes that it is "likely" that the structures responsible for the

steep lunar backscatter are built i ► .'_o a form similar to his fairy castles over geologic times

by the action of micrometeorite impacts and Gold's electrostatic transport mechanism [441.

The required low albedo could be derived from environmental effects such as high-energy

cosmic radiation.

Enhanced backscatter from such a surface is explained by attenuation inherent in multiple

reflections among the various interstices. Incident radiation is said to be reflected directly

back (along the line of incidence) with little attenuation, while that reflected in any other

direction is partially blocked and absorbed. Hapke was able to treat the reflection process

from such a surface mathematically and derived a theoretical expression said to predict

accurately the observed lunar photometric behavior.

The dendritic growth of Hapke's fairy castles and their near-lunar photometric function

have been accepted as the solution by a great many workers, anxious for a "dusty" moon to ac-

count for other observed phenomena. However, as noted by Sharanov [18], it is necessary to

consider the vast area of lunar terrain which contributes to an average brightness observation.

As this area becomes larger, a greater degree of surface irregularity can contribute to an elon-

gated reflection diagram. This will not be true in the case of the relatively minute laboratory
specimens normally used for comparison. Sharanov suggests that terrestrial landscapes

appear to be comparable in degree of elongation when viewed from sufficiently great distances,

and states: "There is no need whatever to jump to conclusions about the existence on the moon

Of coverings resembling moss, grass, shrubbery, etc." (18, p. 7471.

Adequate measurements of comparable photometric behavior are available to indicate that

the complex situation postulated by Hapke and Gold, while possibly sufficient, is probably un-

necessary. For example, Dobar [41] describes several simulated lunar materials exhibiting a

comparable photometric function produced by exposing molten silica, basalt, and granite

specimens to a vacuum. During upwelling, some of these materials have been observed to

produce a color phenomenon similar to that reported by Greenacre during the 1963 Aristarchus

events. Typical photometric curves appear in figure 6.

The lack of a known cohesive macrorough specimen satisfactorily duplicating the lunar

reflectance curve is not sufficient proof that such does not exist, nor is it sufficient proof of

the dust layer hypothesis. As noted by Sharanov and later by Halajian r421, the limitation may

k.	 14
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well result from instrument limitations rather than from a lack of suitable terrestrial materials.

Photometers (used by Hapke and others) typically examine spots no larger than 1/2 in. in

diameter, while lunar measurements involve surfaces several orders of magnitude larger.

Large-scale irregularities, universally rejected as unacceptable, may well duplicate the

characteristic lunar backscatter if properly observed. In an attempt to verify this hypothesis,

Halajian used a "large photometer" capable of investigating macroroughness over a 3-in.

viewing area to examine various "specimens, other than fine dust, which reproduce the lunation

curve as successfully as the metallic oxide powers of Hapke" [42, p. 674 1. Specimens included

a volcanic ash (strongly indicated by polarization measurements, but rejected by van Diggelen);

porous slag (suggested by the albedo and color studies of various Russian observers but

rejected by Hapke); block meteoritic specimens, dendrites, sponges, and sea coral. Halajian's

data show that all these specimens exhibit a sharp backscatter, in some cases even exceeding

the lunar surface. The photometer was calibrated by measuring Hapke fairy-castle powder as

a reference. Curves obtained for particularly interesting materials are shown in figure 7,
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compared to the standard lunation curve of Fedoretz [341 and AgCI in fairy-castle packing.

Note the remarkably similar behavior of agglomerates, large blocks, and fine dust when viewed

over a sufficiently large area. The volcanic-ash specimen is significant because of its inhomo-

geneity and its similarity to Surveyor I photographs of the surface of Oceanus Procellarum.

Halajian concludes [42, p. 682]:

. .. the surface complexity needed to backscatter light like the moon is
not peculiar to fine dust, but could be equally reproduced by a macro-
rough surface when measured by a large photometer. The volcanic ash
and the furnace slag rejected by van Diggelen and Hapke, respectively,
are examples of such surfaces.

The differences in consistency, depth, scale of roughness, bearing
strength and chemical composition between the good models indicate that
any direct inference regarding these properties of the outermost layer of
the moon on the basis of its photometry alone is premature and unjustified.

Nevertheless, in an otherwise excellent deduction of potential lunar surface characteristics

from currently available data, Halajian rejects all solid rocks, packed soils, and much of the

rock froth, slag, and cohesive material. These are said to be incompatible with the low bulk

densities suggested by the photometric behavior of highly porous materials or fairy-castle

packing of fine powders. In light of the above quotation and photometric data from cohesive

porous materials, the reasons for this rejection are not clear.

It should be noted that, with the removal of this low-bulk density (high-porosity) require-

ment, a model of somewhat agglomerated, loosely packed soil, interspersed with varying sizes

and amounts of bare rock, seems capable of satisfying the requirements of other measured

parameters such as backscatter, polarization, albedo, color, and thermal variations. Such an

interpretation, strengthened immeasurably by Surveyor I photographs, suggests a quite familiar

barren and rock-strewn terrestrial field, perhaps differing only by a somewhat lower compac-

tion and the exposure to a more severe radiation and particle bombardment.

Recent measurements on a wide variety of materials by Oetking [43] seem to fully confirm

Halajian's suggestion that the problem of lunar reflection has resulted from instrument limita-

tions rather than some peculiar composition or complex structure. Oetking's experiments

indicate, contrary to the results of other investigators, that nearly all ordinary surfaces exhibit

a pronounced rise in reflectivity near zero phase angle. He feels that this effect has been

undetected because the instruments admitted light from too great a spread in phase angle (in

the full-moon situation, all reflection is confined to a 1/2 0 spread). In Oetking's instrument,

the spread of light rays reaching the detector is held to less than 3/40 , while the detector can

be adjusted to within 1 0 of zero phase. Reflectance data for various samples are compared to

an ideal Lambertian surface and to the observed lunar surface in figures 8 and 9.
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Figure 8 consists of raw data illustrating the behavior of a heavily smoked MgO surface.

Deviations from the ideal Lambertian surface at large angles of incidence confirm earlier

measurements; however, in this case there is an appreciable difference at small angles as well.

The curve of figure 8a is obtained by viewing normal to the surface as the angle of incidence

is varied. Curves B I through B6 of figure 8b are similar results, obtained for viewing; angles

increased in loo increments to 500 from normal. Curves A I through A4 were obtained by

fixing the source and detector separation at angles of 1 0 , 2.50 , 100 , and 200 , respectively, as

the sample was rotated. For the situation corresponding to figure 8a and the B curves of

figure 8b, a Lambertian surface would have given a horizontal response (shown on fig. 8a only).

Figure 8b shows that the maximum brightness always occurs near zero phase.

For the curves of figure 9, raw data have been multiplied by cos i to make them directly

comparable to the lunar case. Figures 9a through 9f illustrate reflectance curves for different

types of basic rocks in various stages of crushing, and suggest that the sharp backscatter peak

is essentially independent of both particle size and albedo. In fact, the cut slab agrees best

with the lunar surface; the remaining curves merely illustrate the diversity of textures and

materials which exhibit a sharp backscatter peak ;sear zero phase. Note in particular the

remarkable similarity of the data of Pele's hair to the lunar curve (fig. 91)•

These data have shown, surprisingly that the reflectivity of most terrestrial materials is

characterized by a similar angular dependence, marked by a pronounced backscatter peak,

and that a great many of these closely approximate the lunar reflectance curve. Hapke has

confirmed Oetking's observations after appropriate modifications to his own instrument. He

states, "I have become persuaded of the reality of the phenomenon ... the brightness surge

was readily observed on most surfaces" (45, p. 2515).

Myriad combinations and mixtures of particle size, depth, porosity, compaction, composi-

tion, albedo, shape, structure, and orientation can be called upon to account for local differ-

ences such as bright rays, certain craters, the maria, etc. Thus the work of Halajian and

Oetking has removed much of the mystery surrounding the "peculiar" photometric behavior

involving the full-moon brightness peak and absence of limb darkening. Simultaneously, it has

added immeasurably to the confusion as to the composition and detailed structure of lunar

surface materials. The photometric function alone can yield very little significant information

concerning these important parameters. In particular, it should be noted that the universally

accepted requirement of a highly porous (low-bulk density) surface layer must now be recon-

sidered.
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LUNAR THERMAL MEASUREMENTS

At optical frequencies and into the near infrared (to perhaps 3 to 4 11), lunar radiation is

dominated by reflected solar illumination. At longer wavelengths, through the infrared and mi-

crowave portions of the specirum, thermal emission predominates. As may be inferred from

the uniformly low albedo, the energy content of emitted radiation appreciably exceeds that of

the reflected portion. Measurements of the magnitude and variation of lunar emission are in-

dicative not only of surface and subsurface temperatures but also of certain characteristics of

lunar materials.

5.1. SURFACE TEMPERATURES IN THE INFRARED

The earliest measurement of lunar temperature was made by Lord Rosse in 1868 [461.

Using opposing thermopiles and a galvanometer, he measured the total light of the entire disk

compared to that transmitted through a glass plate and deduced an effective full-moon tempera-

ture of 3970K. Rosse also determined a phase-angle relationship for total thermal radiation

that agrees substantially with those of later investigators. Subsequent observations were made

by Langley in 1884 [471 and Very in 1898 [481.

Few additional measurements were reported until the extensive work of Pettit and Nicholson

in 1930 [491. They measured the total heat radiation between the cutoff wavelengths of a glass

window and a rock-salt window (about 5 to 20 A), establishing a maximum observed temperature

of 4070K (at the center of full moon) and a minimum of 120 0K (center of the dark hemisphere).

They also plotted the variation in observed temperature of the subsolar point with phase, finding

that, although it reached a maximum of 407 0K at full moon, it was only 358 0 K at quarter phase

(see fig. 10). The temperature of a Lambertian surface which would give the same total radia-

tion was found to be 3910K.

Sinton (50, 511 used a narrowband filter at 8.8 µ to determine a midnight temperature of

122 t 31 K, in close agreement with that of Pettit and Nicholson (120 t 5 0 K). He also determined

a non-Lambertian variation in heat emitted by the subsolar point as a function of phase which

closely parallelled, although slightly lower, that formerly determi 1 (see fig. 10). Sinton ob-

tained a mean spherically emitting surface temperature of 389 0 K (1.75 cal-cm-2- min- i).

Despite the close agreement in the antisolar-point temperatures reported by Pettit and

Nicholson and by Sinton (as a result of quite different measurement techniques), it has been

pointed out by Saari [521 that the former is probably in error. The existence of an atmospheric

window beyond 16 µ discovered by Adel in 1959 [531 was unknown to Pettit and Nicholson and

this radiation was not included in their calculations. Saari suggests a correction downward to

about 1080 K, based upon the atmospheric emission data of Bolle [541.
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Recent measurements by Murray and Wildey [55] and by Shorthill and Saari [561 substanti-
ate Saari's contention that the midnight temperature may be well below the previously accepted
1200 K. Data from these measurements are shown in figure 11, from which Sa2rt obtained,

through extrapolation, antisolar - point temperatures of approximately 106 o K [55] and 990 K [56).

He suggests that these values be combined with his modified value for the Pettit and Nicholson

data to yield an average midnight temperature of 104 0K. Evidence of an even lower minimum

lunar temperature is obtained from the fact that, while the measurements of Murray and Wildey

were low-frequency noise limited to a minimum detectable temperature of 105 o K, they indicate
that actual nighttime temperatures feA below this value [ 55, p. 7441.
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FIGURE 11. DARK-SIDE THERMAL SCANS OF MOON 1521

In 1964, Low [571 measured an upper limit for the minimum nighttime temperature of less

than 1000K in the 7.5- to 13.5-1A band. In 1965, he reported scans across the cold limb in the

17.5- to 22-ti window [58]. These latter data, taken at various places over the disk, indicated a

mean temperature of 900 K, but included individual nighttime values from less Char. 700 K to

greater than 1500K.

Thus, as an improving technology allows more sensitive and precise measurements, the

upper limit of minimum lunar nighttime temperatures is continually decreased. Further im-

-provement, particularly in spatial resolution, will almost certainly yield still lower values.

Previous earth -based observations have utilized relatively coarse resolution [e.g., Murray and

Wildey, 26 aresec (-48 km); Shorthili and Saari, 8 aresec (-15 km); Low (1964), 1; arsec (-28

km); Low (1965), 18 aresec (-34 km)]. Temperature measurements averaged over such large

zurface areas can obviously include a wide range of structural and compositional effects, such

as emi.sivity -wavelength variations or unique angular-emission behavior. Such circumstances

are often postulated to explain anomalous behavior but at present are purely speculative.

For example, the two curves of figure Ila differ appreciably in both individual data points

and general shape. Thi. is not too surprising since the corresponding scans covered similar,

but not identical, ar*as (see fig. 11b), using different spectral bandwidths ( 10 to 12 µ and 8 to

14 u) and different spatial resolutions (15 km and 32 km). Despite basic observational differ-

ences, the two measurements agree around 4 to 5 days after sunset, where the scans crossed
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a common area; this fact strongly favors structural or compositional effects as a cause of vari-

ations at different positions around the disk.

It should be explicitly noted that such temperature measurements are not, strictly speaking,

lunation measurements since they do not involve the observation of a given position on the lunar

disk as a function of phase angle. Rather, they are the result of nearly simultaneous measure-

ments obtained througn drift curves or (as in this case) right ascension scans across the lunar

disk at a given phase. (They are referred to later in this report as lunation measurements to

distinguish them from eclipse measurements.) Such an observation must inherently include the

effect of any local variations or an unknown angular-emission behavior.

5.2. MICROWAVE MEASUREMENTS OF SUBSURFACE TEMPERATURES

Data obtained in optical frequency observations are governed entirely by surface phenomena

such as the reflection of solar illumination. Infrared observations, on the other hand, while

measuring surface temperatures (or those at very shallow depths), are directly dependent upon

the physical and thermal characteristics of subsurface material. However, the determination

of surface parameters alone leaves an appreciable ambiguity as to the nature of subsurface
characteristics affecting the measurement.

Surfaces such as the outermost 'ayer of the moon which are opaque at optical frequencies,

and perhaps only very slightly transparent in the infrared, become considerably more trans-

parent to microwave radiation. Thus, long;-wavelength observations can potentially yield an in-

sight into subsurface phenomena to a depth of at least a wavelength and possibly to several
wavelengths [59].

Of the many limitations in the measu , --meet of microwave radiation from the moon, one of

the foremost has been attainable resolution. Because of the long wavelengths involved, measure-

ments result in a weighted average over several thousand square kilometers, in many cases the

complete disk.

The first observation of lunar thermal radiation at microwave frequencies consisted of a

single measurement, at 1.25 cm, by Dicke and Beringer in 1946 [60]. The first extensive mea-

surements were made by Piddington and Minnett [611, also at 1.25 cm, in 1949. Using an antenna

beLmwidth which averaged over most of the disk, they found the brightness temperature to vary

almost sinusoidally as a function of phase angle along the equator. Assuming a uniform emis-

sivity of 0.9, they determined a mean brightness temperature of 249 t 13 0K, with a first-har-
monic amplitude (variation throughout the ;aonth) of 52 01. The sinusoidal variation thus corre-

sponds to temperature extremes a few centimeters below the surface of 197 0 K and 301 0 K com-
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pared to the currently accepted surface temperature extremes of about 90 0 K and 4W'PL This

variation was found to tag the lunar phase angle by 450.

Many measurements mhave since been made,, scattered irregularly through the nth re,w:^vc 

window, from wavelengths of 1.2 mm to near 1 m. Table III sumnutrines t1u •xc + (tata, e4j),	 1	 1

_ from various partial tabulations or individual reports.

TABLE M. MICROWAVE TEMPERATURE MPAStlbdk:Arll.Mb'S

Antplitucih, Pirasi.
investigator Wavelength Mean Temp. of Varba tilun Lag IX II #- U0.

1. Low 0.12 222 65 FIN 47

2. Low and Davidson 0.12 229

3. Fedoseyev 0.12 219 121 16 1'.tM Q

4. Admenftsky 0.15 250 100 i}b

5. Sinton OA5 228 108

6. Gary et al. 0.33 106 1965 59

7. lraslyakt:tv and
Salomonovich 0.4 226 86 27 1963 63

8. Salomonovich 0.8 197 32 40 1458 50, 64

9. Salomonovich and
Lescvsky 0.8 211 40 30 1962 63

10. Gibson 0.86 180 30 39 1958 50, 64

-

11. Piddington and

Minnett 1.25 249 52 45 1949 50, 61

12. Zelinskaya 1.63 224 36 - 64

13. Greb enkamper 2.2 200 15 - 64

14. Troitskii and
Zelinskaya 3.2 170 <12 -- 1955 5D

15. KaschenkD et al. 3.2 223 17 45 1961 63

16. Mayer et al. 3.2 195 12 +44 1861 63

17. Cook et al. 3.45 221 - 1961 66

18. Akab ane 10 315 36 45 1955 50,64

19. Mezger and Strosol 20.6 256 145 1959 50

20. Westerhout 21 1170 ## -- 64

21. i3enisse and LaRoux 33 189 111 - - 64

22. Seeger et al. 75 18;1 „ ,	 X18 --a ? 50

93. Seeger 75 18# 0 -- 54
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Many analysts of these data have sought to establish a trend, to infer the depth of penetra-

tion of the thermal wave, and to determine mean values and limits for an invariant subsurface

temperature. The resulting interpretations vary as appreciably as do the individual data points.

For example, Krotikov and Troitskii [63, 671 have plotted certain of the available measurements

(the darkened circles of fig. 12a) and deduced a thermal gradient increasing with depth below

the lunar surface. They interpret this gradient to indicate a radioactive heat flux 4 to 6 times

that previously predicted for a chondritic lunar material [62, p. 41.

In order to compare the data used by Krotikov and Troltskii to infer a thermal gradient with

other available data, a more complete set of measurements is plotted in figure 12a (including

the Krottkov and Troitskii data). It is obvious that the increase with depth apparent in the lim-

ited data they considered is lost .in the scatter if all available measurements are included. Since

no trend is apparent from the data of figure 12, all mean brightness temperatures have simply

been averaged to yield the dotted line at 224 0K. This value seems as likely as any other to cor-

rectly represent an invariant subsurface temperature. It is interesting to note that Troitskii

has reported elsewhere a constant -500C (2230 K) at a depth of 0.5 m [681 and that Kopal arrives

at the same value from the data of Denisse and LaRoux [9, 691. He expects the penetration to

reach "barely half a yard below the surface" [70, p. xvil.

To gain some insight into the depth of penetration of the diurnal heat wave, the amplitude

of variation given for measurements of figui 1 2a has been plotted in figure 12b. The dashed

curve has no statistical significance beyond indicating a general trend. Although the data also

exhibit considerable scatter, variations appear to become negligible at a wavelength slightly

less than 1 m (although not necessarily at depths of less than 1 m). While it has been postulated

that microwave radiation arises from depths as great as several wavelengths, contributions

from all lesser depths are included in a given measurement; these contributions cause, in part,

the observed amplitude variation. Thus an average depth on the order of one wavelength and a

diurnal heat wave penetration on the order of 1/2 to 1 m seem realistic.

Russell [711 has analyzed a homogeneous semi-infinite solid with specified periodic boundary

temperatures derived from the infrared lunation measurements of Sinton [50] (unfortunately,

these include his midnight temperature of 1200 10. He determined a constant temperature of

2290 K at a depth of 20 cm, equivalent to the average value of surface temperature over one

period.

On the earth, a diurnal heat wave more than an order of magnitude smaller in amplitude

and acting over a period only 1/30 as long penetrates to approximately the same depth [72, p.

31, 741. Thus, whatever the exact nature of lunar surface and subsurface materials, it is clear
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1;'2that their thermal inertia, or resistance to temperature change, (Kpc) 	 , is very high.	 Here

Ir, p, and c are the thermal conductivity, density, and specific heat of the material. In most

early analyses of the moon, these have been assumed to be independent of both temperature

and depth.

From infrared lunation measuremc	 involving a midnight temperature of 120 0 K, Sinton

[50] calculated (Kpc) -1/2 = 435 cm2 -deg-::	 1 /2 , compared to a value of about 20 for most ter-

restrial rocks. It should be noted however, that this calculation is extremely sensitive to mini- -
[

mum lunar temperatures which, due to rrcent measurements, are continually being revised

downward. As will be seen later, the currently accepted value of 90 0K indicates an even higher

thermal inertia (lower thermal conductivity) near 1200 cm2-deg-sec112.

Most investigators have interpreted labaratory measurements of the thermal conductivity

and thermal inertia of terrestrial materials to indicate a lunar dust layer, extending at least to

depths of significance to the microwave measurements. The various aspects of this interpreta-

tion are discussed more fully in the next section.

5.3. TEMPERATURE VARIATIONS DURING AN ECLIPSE

The diurnal thermal wave resulting from the periodic day-night insulation a,.companying

the moon's orbital motion is characterized by a period of just over 29 1/2 days, the synodic

month. A similar thermal wave crosses the lunar disk, in the time span of an hour rather than

days, during an eclipse.

Measurements of the rapid fall in lunar temperatures during an eclipse have been observed

in both the infrared and very high frequency microwave regions of the spectrum. In the latter,

it should be noted that variations are detected to wavelengths of only a millimeter or so, indicat-

ing that the eclipse-induced thermal wave barely penetrates the outermost surface layer. i

(Specifically, Piddington and Minnett [61] and Gibson [73] report no detectable change at wave-

lengths of 1.25 em and 8.6 mm, respectively.)

Infrared measurements of the fall in temperature during an eclipse made by Pettit and

Nicholson [49] in 1927 were used by Eps-*_ein [74] to deduce that the lunar surface was composed

of a material whose thermal properties were similar to pumice. He assumed that the surface

loses heat according to Le fourth power of its initial (rather than actual) temperature and

erroneously deduced a value of (Kpc) 1/2 = 120. Wesselink [75] studied a more accurate non-

linear situation, using actual temperatures, and obtained a value of (Kpc) -1/2 = 920, which he

felt to be consistent with dust at low pressures.
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Jaeger [76], Jaeger and Harper [771, and Lettau [78] independently confirmed Wesselink's

calculations and established a value of (Kpc) -1/2 on the order of 1000, based upon the data of

Pettit and Nicholson and of Pettit [791 for the 1939 eclipse. Similar values were obtained by

.Yaeger [801 from microwave observations of Piddington and Minnett [611. All observers again

attributed the high value to a layer of dust. Curve I of figure 13 represents the theoretical

temperature variation for such a homogeneous surface layer having (Kpc) -1/2 = 1030. The

dots show Pettit's observation for the 1939 eclipse. The greatest disagreement occurs in the

umbral phase, where observations indicate a lower temperature at the beginning of totality and

a more gradual drop L-1hereafter. As noted by Jaeger and Harper, this discrepancy will not be

removed by changes in the value of (Kpc) -1/2 for a homogeneous material, which merely shifts

the entire umbral portion (or the new-moon phase for a lunation) of the curve vertically (see

fig. 14).
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In an attempt to resolve the difficulty experienced during the umbral phase, Jaeger and

Harper suggested that the thermal inertia may vary with either temperature or depth. Being

unable to reproduce the experimental data with what they considered "likely" temperature vari-

ations, they concentrated upon a variation with depth. Curves li, III, TV, and 'V of figure 13 are

their curves for a two-layer model consisting of a thin dust layer with (Kpc) -1/2 = 1030 over

a more conductive substrate. The curves represent gases fora substrate (Kpc) -1/2 of 140,

100, 70, and 30 covered by a dust layer 0.24, 0.17, 0.12, and 0.05 cm thick, as shown on the



f	 -

figure. Curve M gives the meat fit to Pettit's experimental data; the substrate corresponds to

the value for terrestrial pumice or gravel. Curve VI illustrates the behavior of bare rock with

(Kpc)-ll2 = 20.

Jaeger interpreted the data to preclude the possibility of a lunar surface characterized by

an extensive coverage )f bare rock. He noted, however, that the spatial averaging involved in

the observed temperat , 'res could allow a small portion (possibly 5%) of bare rock with the re-

mainder being dust. Fremlin [811 extended this argument and has suggested that rather than an

inhomogeneity with depth, a surface mixture of bare rock and dust could give an "almost exact"

fit with Pettit's observations. His model consists of bare rock of (Kpc) -112 = 20 covering 4.8%

of the surface and a dust of (Kpc) -1/2 = 2700 covering the remainder. As he noted, the percent-

ages and thermal inertias are quite arbitrary, being only one of probably several combinations

which could be fitted to a given observation.

Murray and Wildey [551 have averaged data from their right ascension scans across the

darkened disk (one of which is shown in fig. 11) and compared the average cooling curve to the

homogeneous model of Jaeger (see fig. 15). While there is substantial disagreement, especially

near the terminator, the general shape and cooling rate for the theoretical lunation cooling

curves more closely approximate experimental data than do those for the eclipse cooling case.

However, Murray and Wildey conclude that "... none of the curves fits at all well .. a homo-

geneous layer of porous dust of centimeters to meters thickness is clearly ruled out" [55, p. 7471.

As an alternative model, they suggest a horizontal conductivity variation and conclude that a

significant amount of porous dust can exist only if it is mixed with bare consolidated rocks.

FIGURE 15. CALCULATED AND OBSERVED LUNA-
TW GDDLING CURVES. The observations have been
averaged and pld l (e) as a fimetion of time since
passage of terminator. Also shown are calculated luna-
tion cooling curves for an arbitrarily thick surface
layer of (Epo)1/2 of 840, 504, and $0. The calculations
are after Jseg+er f#OJ but are considerably more precise
thanthose to his paper. An albedo of 20% was assumed.
The thermal prs mrfts were assunwd to be independent

of teMperiture in Jaeger's analysis. {55)

..r^.^arorc+a^
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Saari and Shorthill [82] obtained cooling curves for the craters Aristarchus, Copernicus,

and Kepler and their environs during the eclipse of September 1960. Cooling curves for

Aristarchus and its environs are shown in figure 16, where experimental data are compared to

the theoretical curves of Jaeger for both a single-layer, homogeneous model and a two-layer

model. ;Nhile there is considerable scatter in the data (shaded areas), the agreement is eon-

siderably better with a two-layer model. (The fact that the crater cooled more slowly will be

discussed later.)

The failure of all models to accurately represent more than one, or at best a few, isolated

observations has stimulated a search by many investigators for an improved model. One of the

lesser modifications (but resulting in a substantial improvement) is the one-layer calculation

of Krottkov and Shchuko [83], similar to that of Jaeger but employing a more accurate, comput-

erized iterative procedure and a different value of the solar constant. They used the more

generally accepted value of 0.033 cal-cm -2-sec-1 rather than the 0.0258 used by Jaeger. Their

cooling curves are compared to Jaeger's in figure 17. It is evident that the slope of the new-

moon (or umbral, in the case of an eclipse) portion is not improved and the total temperature

drop at sunrise is only very slightly affected. However, a criticism of Jaeger's analysis ; his

failure to correctly represent the initial descent and sharp break at the beginning of total dark- -

ness, is substantially removed. Since this was a prime stimulus in his consideration of the two-

layer model as opposed to his earlier homogeneous one-layer model, the result is significant.

-	 Krotikov and Troitskii [67] have attempted to reconcile infrared and microwave measure-

ments of brightness temperature and temperature variations with a one-layer model having a s

mean value of (Kpc) -1/2 s 350 t 70. Since their analysis is frequently referenced by other

workers in discussions of various observations, it should be noted that it is based upon several

questionable assumptions. First: the range 300 < (Kpc) -112 < 400 is established as consistent

with an antisolar-paint temperature of 125 0Y_ Temperatures in this range were reported by

Pettit and Nicholson [49] and by Sinton [51], but are no longer generally accepted. In section 5.1

it was noted that recent measurements indicate a reduction in this figure by as much as 255.

The curves of figure 16 indicate an antisolar-point temperature of <100°K, which is consistent

only with values of (Kpc)-1/2 greater than 1000.

Their next assumption is that the average radio brightness temperature is consistent with

this range of (Kpc) -1 . While this is true, the scatter associated with currently available data

on this parameter (see fig. 12a) make the average value subject to a rather large error, greatly

affecting the associated (Kpe) -1 	Minsky [63] points out that a 5% error in measured temper-

attire could change the deduced (Kpc)	 - by 3001 He states: "the value of (Kpc) -1/2 = 350 t

20% as given by Krotikov and Trottskii is based upon a dubious infrared measurement, an abso-
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lute radio brightness temperature for which small errors greatly affect the conclusions and an

extrapolation procedure that gives ambiguous results" [63). Regardless of the details of the

various arguments and interpretations of often conflicting and ambiguous data, it is unlikely that

such a low value of (KPc) -1/2 will be widely accepted.

Gibson [84) has proposed a complex three-layer model based upon observations at 8.6 mm.

The upper layer, about 1/2 cm of a material resembling sand, overlays several centimeters of

a material of high electric conductivity. Below these Is a layer resembling rock to an undeter-

mined depth. However, based upon observations at 4 mm, Kislyakov [85) proposes a mono-

layer model.

Thus, there is a surplus of temperature-independent mods designed for the most part to

account for a single set of observations, often to the exclusion of other, equally reliable obser-

vations. The assumption of temperature-independent thermal properties Is common to all

models discussed so far. Bath Wesselink and .1"ger realized the limitations impostA by this
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assumption but were unable to satisfactorily include a temperature dependence in their calcula-
tions. Lucks et al. [86] considered this problem in 1951, and measured both K and c as a func-

tion of temperature for fused quartz and various metals and plastics. Later, Muncey [871 con-

cluded that both K and c could exhibit a temperature dependence such that (Kpc) -1/2 would be
near 300 at 300OX Tyler and Copeland [88) developed a homogeneous model including such

temperatures in 1962, and recently Linsky [631 has studied this possibility extensively. Linsky
developed eight models, six having temperature-dependent parameters as well as allowing for
a radiative component of heat transfer. The radiative component had previously been neglccted,

but he points out that measurements by Bernett et al. [891, Buettner x901, and Wechsler and

Glaser [91] indicate that this contribution is significant.

Dobar [411 concludes from his measurement of obsidian and pumice that K is also pressure

dependent for solid rocks. Further, preliminary experiments by Wechsler [921 indicate that
there is a gravity dependence which tends to reduce conductivity through an increase in eontact

resistance.

The failure of all models to accurately predict lunar thermal behavior and the possible de-
pendence of thermal parameters on many variables suggest that a vastly more complex model

is required. It is reasonable to assume that considerable inhomogeneity (both horizontal and

vertical) exists, and that resolution limitations preclude an accurate evaluation through earth-
based observations.

5.4. THERMAL ANOMALIES
Observation of the cooling of the lunar surface during an eclipse has indicated the existence

of highly anomalous areas. During the eclipse of 12-13 March 19W, Shorthill et al. [931 verified
tlse generally rapid cooling rate of the lunar surface, but discovered that the rayed craters
Aristarchus, Copernicus, and Tycho were characterized by marked thermal anomalies. For

example, a scan across Tycho during totality revea'sed temperatures as much as W ON above

the background of its environs. to all three cases, the anamoly was apparently confined to the
crater area.

Sinton [941 observed Tycho in a 1.5-/n band at 8.8 it daring the total eclipse of 5 September

IM. Using a resolution of 87.9 (-0 km at the center of the disk), he observed "for the most
part" with drift curves across the lunar disk, two of which are reproduced in figure 18a. The

internal crater temperature was foss to be 838QK and appeared to remain constant during
totality. He makes no comment as to the geographical extent of the anomaly.

Sinton notes that of 17 craters examined at that time only Proclus failed to exhibit an an om-

a okisiy high temperature. Observations by Saari and Shorthill [821 during the same eclipse,
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FIGURE 19. ETHERMO AND THERMAL SCANS OF TYM. AREA. (a) Two scans acrms Tydw Illustrat-
ing the raW temperature decay of tnoft of the motor's surface and the relative constancy of Tychofs tempera-
tures during the erlipoe 1941. (b) firms isthe region of Tycho during eclipse -f 5 September 19$0, 10:54
UT. Small circle fedicetes site of rescitU element used; larger circle ire sire of that used by Vinton

for scan in (a) ltq.
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however, list Proclus ad a definite thermal anomaly. They also observed Tycho essentially,
simultaneously with Sinton's observations (1034 UT and 1029 UT, respectively). The radiation
detected in their observations was restricted to the infrared beyond 2 ju by a KRS-5 window and
germanium filter. Their resolution was considerably better than that of Sinton, being 8 sec
(-15 km). Saari and Shorthill quote a 31 0K differential between the 2430K grater and the 2120K
environs and indicate that the anomaly extends beyond the crater rite. Isotherms of the Tycho
region are shown in figure 18b. Note in particular that the 2UOK measured by Sinton at 8.8 u
is in almost exact agreement with these isotherms, considering his lower resolution.

Saari and Shorthill [95] again scanned the chord through Tycho during the total eclipse of
19 December 1964, this time utilizing a Ge:Hg detector at liquid-neon temperatures in the 10-
to 12=µ band. The angular resolution for this observation was 10 sec (-19 kin the lunar
surface). These data showed Tycho to be 226 0K while the environs were only 17801C, a 480K
differential. The signal from this scan is shown in figure 18c, correlated with position along
the chord. The three peaks in the signal from Tychn are possibly caused by the rims and cen-
tral peak. The strong signal near Tycho is thought to emanate from the crater Heinsius A.

In addition to these eclipse observations, certain of the right ascension scan s into the lunar
nighttime by Murray and Wiidey [5510-- , inched the crater Tycho. Au example of the signal
received during such a scan is shown in figure 18d, where an anomaly in and around the crater
is clearly indicated. Murray and Wildey state that it is definitely of larger geographic eat-ant
than the crater proper and exhibits considerable structure. Because of their near 56-km reso-
lution, the apparent peak brightness temperature observed (1380K in the scan shown here)
represents only a lower limit. Unlike the eclipse observations, which of necessity measure the
cooling behavior after no more than 3 hr of total darkness, scans across the darkened disk dur-
ing a normal lunation may involve periods of up to 14 days darkness near the limb. In this
case, thermal properties of a much deeper layer of material can influence this measured surface
temperature. A "thorough search" of the Tycho region by Murray and Wildey, 10 to 12 days into
the lunar night, detected no anomalous temperature whatever.

The eclipse observation of Saari and Shorthill [82] in 1960 ineWed only the five rayed
craters, Aristarchus, Copernicus, Kepler, Proclus, and Tycho. However, tiering their 1964
observations, they were able to map the entire disk, localizing nearly 1000 thermal anomalies
or "hot spots" [97). These include not only the AApected major rayed craters, but also other
non-rayed craters, a rifle Myginus Rille), brignt areas such as near Linn-e, and extended areas

in certain maria such as Mare Humorum (see fig. 18c and 19). They state that the anomalies
are not distributed randomly over the surface (there is a concentration in Mare Tranquillitatis)

[981•
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FIGURE 19. INFRARED SIGNAL DURING ECLIPSE COOLING SHOWING THERMAL ANOMALIES 195)

Listings of various anomalous areas tabula•A by different observers can be found in the

references given here. however, as an example of the extent and number of such areas, fig-

ure 20 shows 55 anomalies located in just the equatorial region of the visible disk between 5ON

and 5oS latitude. Various reasons advanced to account for this anomalous cooling behavior in-

clude lower emissivity, enhanced thermal conductivity, a thinner insulating surface layer, a

heterogeneous mixture of dust and bare rock, surface roughness, and subsurface heating.

Errors in lunar temperature measurements resulting from emissivity variations have been

discussed by Burns and Lyon [100, 101, 1021. They state that errors in calculations bused upon

energy maxima as a function of wavelength can be as large as 6501{, while those for temperature

differences in radiometric techniques can be on the order of 1001. They conclude that the tem-

perature changes reported by Shorthill and Saari could be caused entirely or in part by emis-

sivity variations associated with compositional changes in surface material. Saari and Shorthill

[82] consider this possibility but conclude it to be unlikely because of the large changes in

emissivity required (on the order of 1.0 to 0.6 or less).

They also consider the favorite hypothesis of the volcanists, that of subsurface heating,

and conclude that such an assumption requires a higher daytime temperature, whereas their

observations indicate that anomalous cooling is in general associated with areas of cooler day-

time temperatures. This evaluation of the case for subsurface heating as a cause of thermal

anomalies has been referd by Bastian [103] in his argument that het spots result from sur-

face roughness and by Murray and Wildey [55] in their deduction of an enhanced thermal con-

ducttvtty. Unfortunately, while both of these conditions can reasonably be expected to contribute

to anomalous thermal behavior, the argument of Saari and Shorthill does not seem to support

them. On the contrary, in the absence of conductivity ef fects, the thermal inversion appears
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to require (rather than preclude) either a rather large emissivity variation (considered unlikely

by most observers) or subsurface heating. While the many unknowns such as spectral emissivity,

surface and subsurface conductivity, and homogeneity preclude any definite conclusion to favor

of subsurface heating, they also prevent its omission as a possibility.

The behavior of thermal anomalies as a function of time in darkness is a significant factor

in the evaluation of possible causes. The limited duration of an eclipse, however, prevents an

observation of cooling rates beyond an initial 3 to 4 hr. Such observations have detected a very

rapid temperature drop during the penumbral phase, closely approximating that associated with

an infinite thermal inertia. The temperature inversion between an anomalous feature and its

environs occurs very early in this initial drop, and the consequent temperature differential

appears to increase steadily until the beginning of totality. Both the anomalous feature and its

environs exhibit an essentially constant temperature throughout totality (e.g., see the cooling

curves for Aristarchus, fig. 16).

To investigate anomalous thermal behavior beyond this initial period requires observation

of the darkened disk during a normal lunation. However, apparently because of the convenience

of the higher temperatures involved, most observations of thermal anomalies have been made

during an eclipse. As far as is known, no extensive studies of anomalous behavior at various

phases of a lunation have been made.

Shorthill and Saari [56] reported a few scans across the darkened face of the 22-day-old

moon, in which thermal anomalies were detected as far as 4 or 5 days into the lunar nighttime.

Specifically, an anomalous differential of 200 K to 250K was found to be associated with the

crater fie La Rue. No additional report concerning the behavior of this anomaly at other phases

or of the detection of any anomalous behavior farther into the lunar nighttime is known at this

time.

Murray and Wildey [55] report a thorough search of the Tycho area at a prase 10 to 12

days into the lunar night. During these final days of darkness, they were unable to detect any

temperature differential associated with this feature, known to be highly anomalous during the

early hours of cooling. Further, the data of figure 18d, obtained when Tycho was approximately
32 hr beyond the terminattr, indicate a temperature differential of 200K (estimated from the
figure). Eclipse data previously discussed show substantially larger differentials daring totality.

Thus, pending a more thorough examination of the thermal behavior of known anomalous

features as a function of time in darkness, preliminary data suggest a continued, although ex-
tremely slow, decrease in temperature to that of the environs. Such behavior, if verified,

would constitute a strong argument against any appreciable subsurface-heating effect. This
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aspect of the anomalous cooling phenomenon seems significant and appears to have been largely

ignored. Systematic investigations of thermal anomalies should be made throughout a lunation.

Assuming for the moment the disappearance of thermal anomalies with their advance beyonu 	 -

the terminator and the improbability of emissivity changes sufficient to account for the observed

differences in temperature, we are left with surface roughness [103] and higher thermal conduc-

tivity as the most likely causes of anomalous cooling.

Murray and Wildey [55] infer the presence of more conductive materials, either in a heter-

ogeneous surface mixture of dust and bare rock or overlain with a significantly thinner dust

layer no more than a few millimeters thick. Sinton [94] came to a similar conclusion regarding

his observations of Tycho. Through a comparison with the theoretical curves of Jaeger for both

homogeneous and two-layer models, as well as a heterogeneous model of bare rock in dust, he

deduced a layer of dust, 0.3 mm thick, on top of rock within the crater and a surface of thick	 =
I

	

	
dust for the environs. By assuming the thin dust layer to be the result of a cosmic infall at the

same rate assumed by Whipple [1041 for the earth, Sinton determined a maximum age of 107

years for Tycho.

Saari and Shorthiil [02] point out that, because of a numerical error, this value should be

reduced to 106 years. They have also considered a thin dust layer to account for their cooling

data and calculate its thickness as only 0.075 mm within the crater. (The difference results

primarily from a lower measured initial temperature.) Using this thickness and Whipple's

estimate of cosmic infall, they arrive at an age of 0.27 x 10 6 years or only 1/4 that deduced by

Sinton. Using an infall an order-of-magnitude higher, as estimated by Dubin and McCracken

[105], they reduced the estimated age still further to only 0.027 x 10 6 years.

In summary, while anomalous thermal behavior is a well-established fact for many areas

of the lunar disk, the interpretation of the data is subject to the same disagreement alw iack of

unanimity as is associated with other : s measurements. Subsurface heating remains a possi-

ble, but unlikely, cause pending addition;;'- lunation measurements. Compositional emissivity

changes alone do not appear sufficient to cause the large differentials observed. Variable

thermal conductivity resulting from heterogeneous insulating properties appears to be the most

plausible explanation at the present time.

6
RADAR OWWAT1ONS OF THE MOON

Through the visible and into the near-infrared portions of the spectrum, lunar radiation is

predominantly the result of the reflection of solar illumination. At wavelengths longer than a few

microns (depending upon lunar temperatures), self-emission begins to dominate. Because of the
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effect of the moon's temperature and terrestrial atmospheric absorption, t his self-emitted r:-

diation is pre.-ent in detectabl.2 amounts to a wavelength on the order of a meter. The charaetcr

isties of the lunar surface as observed in tl • ese spectral ranges have been disc. .•d i, the prf--

ceding sections.

In order to study the behavior, at longer wavelengths, it is necessary to illuminate the lunar-

surface artiticially. Hawever, it was only to satisfy the military needs of World War Ii that

transmitter power and antenna cap.,1 6i1iiie.3 were devPloped to the extent required to investigate

the moon. In 1948, DeWitt and Stodoi p '10r; ;and days later, Ba y [1071; first detected r tar

echoes from the moon using a wvvelereth u, ape,,-, •amately 2.5 nt.

Since these iuitia' obs•: r:: tiers numerous e.,perimevlal and theoretical studies of the char-

acteri:4 tics of ; •adar reflection from various surfaces have been performed. The result of these

efforts has shown that. in general, radar returns are governed by certain equipment parameters

such as wavelength. ana pal: itzr<r•,n and by the surface pr_ ,pe0ies of roughness, electrical con-

duct.vit y , and pern:t:tivity, as well as by the angle of incidence.

Radar return. in units of flux density received, may be described in terms of a 4urface re-

election coelt;ctent p and a directivity factor- t;, or in terms of all 	 scattering cross

section a proportional to the product of these two.

A smooth, perfectly condit -tai; sphere of radius significantly larger than the wavelength

will reflect all incident energy ;o = 1) raotr epic ally (g = 1). Despite a growing "lunar hypothesis

syndrome," we can be fairly certain the moon does not represent a perfect conductor and that

the reflection coefficient will vary over the surface, ueing, oil 	 average, substantic,ily less

than 1. Based upon the measured dielectric const2nt for dr) terrestrial rocks and powders and

the low lunar albedu, jbans [132) e• timates p to be oil 	 order of 0.1.

In the case of directr •. • ity (gain), isotropic reflection can occur only if the surface irregular-

ities are smaller than about 1 i8 wavelen trth. Such a degree of smoothness gives rise to specular

reflection wherein only properly oriented (normal) surfaces call to the observed re-

turn. In the terrestL ial radar-moon situation, only the first few Fresnel zones at the front of

the sphere would be effective ill 	 power to the receiver, producing a central bright

area and distinct limb darkening. As will be • 'iscussed later, a similar , situation is in tact

observed.

In early considerations of lunar directivity, most analysts were prone to extrapolate from

behavior observed at optical frequencies. Based upon optical measurements made during a

lunation. Kerr and Shain [108) proposed a Lommel-Seeliger brightness distribution across the

disk and deduced a value for g of 5.7, corresponding to irregular ties having an average size
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much greater than the wavelength. They postulate that the absence t)1 !imh darkening in such a

distribution resulted from ach-mitageous reflection from mountain slopes near the hinh. Gricg

et al. [1091 considered the distribution to be Lantberlian (because of smaller surface irregular-

ities, oil 	 order of a wavelength in size) and obtained g -- 2.7; such a nnidel would exhibit

come radar limb darkening. Winter [110 , using the complex scattering law deduced by Pettit

and Nicholson [491 from their infrared data, calculated a value for g of 2.5.

A reflection coefficient p for lunar materials call 	 calculated from measurements of the

dielectric constant of similar terrestrial materials if a known compf)sition is assumed. How-

ever, in the absence of an accurate knowledge of lunar composition and structure, radar returns

yield only the product pg from which an effective scattering cross section, a Mpg, area), can

be defined. This quantity then describes the ability of an illuminated area to reflect in a given

direction.

A relatively poor resolution capability often causes radar returns to result f.om ail

over the entire lunar disk or at best over several thousand square kilometers. As a result, the

radar receiver cannot discriminate among the cross sections of individual scattering elements

(ai ) but rather averages tite contribution of many elements into a "differential" scattering cross

section per unit surface area (a0 ). 12 is	 variation of this quaiaity with wavelengti, u; polari-

zation, normally expressed as a lunctio;, u. the angle of incidence, which provides a clue to

lunar surface composition and structure.

Theoretical considerations of the variation in cross section have been reported by Spetner

and Katz [1111 in which they predict an inverse relation of the form or - 0 0 . A range of a from

-6 to -2 was pr?dieted for both isotropic scatterers and facet-like specular reflectors. Katz

11121 has recently discussed this concept in terms of currently available data from terrestrial

reflectivity experiments. He averaged the available data from what he termed "apparently

similar surfaces" at a given angle of incidence and concluded that the variation of the exponent

o with depression angle was characteristic of a particular surface. Pesultant data illustrating

the effects of wavelength, polarization, a nd angle of incidence on the radar return from common

terrestrial materials are shown in figure 21. Note in particular the curve of figure 21c for

the return from rough-sea clutter. While most surfaces exhibit the predicted negative exponent

throughout the measurement range, in 'his case the-e is a crossover to positive values above a

depression angle of 73 0 (17o from vertical). Katz states that at the larger (near-norm. * t de-

pression angles, the return is due to specular reflection dependent upon the slope of wave facets,

while at low depression angles (near grazing), it is due to diffuse scattering from smaller re-

flecturs, resulting in a sin s` d law. Fi gure 21d illustrates experimental lunar radar data for two
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FIGURE 21. RADAR CROSS SECTION VS. WAVELENGTH FOR TERRESTRIAL AND LUN4R SURFACES.
11121 (a) Wavelength dependence of concrete surface. (b) Comparison of wavelength dependen^.e of asphalt
and grass surfaces. (c) Wavelength dependence of sea clutter. This figure covers the microwave region
from 0.81i to % cm and applies to rough-sca conditions. (d) Wavelength dependence of the moon's surface

spectral bands. The significant feature is the crossover to positive a at 72.5°, similar to the

sea-clutter case. The lower extreme values are attributed to an averaging process over large

areas of the lunar surface; but the general shape and relation to sea clutter yield an insight into

processes governing lunar radar reflection, and from this the nature of the surface structure.

For example, the experimental and theoretical data of figure 22 indicate that the scattering

cross section of a smooth sea is high near vertical incidence but falls off rapidly with angle.

The retur n from a geometrically similar surface (smooth desert) exhibits a sn
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FIGURE 22. hADAR CROSS SECTION VS. ANC :E OF INCID1'.NCE 111a)

near vertical i ,ut a very similar behavior with angle of incidence. In contrast, the return from

a surface of considerably rougher geometry (forest) exhibits the reduced vertical reflection but

remains essentially constant with angle, producing a significantly larger return near grazing.

Yaplee et al. [1171 report that the specular-like reflection observed near the center of the lunar

disk at 10 cm is similar to that which the, , observed frc„n a dry, sand} • desert at normal

incidence.

In the discussion of surface roughness contributing to the lunar radar return, two basic-

models have been proposed. The firsi, based upon geometric optics, describes the surface in

terms of plain flat facets (or possibly surface curvatures large in comparison with the wave-

length [1181). Echoes are returned only from those facets which are properly oriented (perpen-

dicular to the line of sight). Both the orientation and size of these facets are then described

stat t,ztically by a probability law [111, 118-1211. In the alternative approach the lunar surface

is normal; described in terms of a Gaussian autocorrelation function of height vs. horizontal

distance. This model represents the surface as gently undulating with height-deviating from

the mean sphere according to a Gaussian dist ributfott 1121- 1281.

Both theoretical models appear to essentially ignore the effect of polarization and n f pene-

tration into the surface. However, these effects can be significant (cf. polarization effect in

figs. 21a and 211)) and warrant inclusion. It is quite possible that the models attempt to repre-

sent subsurface phenomena in terms of surface features, re , ailting in, at best, difficult

interpretation.

Another major problem in fitting lunar iata to theoretical roughness models arises from

librational motions of the moon, wherein the primary contribution to received echo power, that

from the subterrestrial area, may result from relatively smooth or mountainous regions. If

the noon remained fixed with respect to the observer, the received echo power, because of the

combined effect of many scattering irregularities, would remain constant. However, a latitudinal

libration (caused by the oclination between the lunar equator and its orbit), a longitudinal libra-

tion (caused by its elliptical orbit and rotational v-locities), and a diurnal libration (caused by
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earth rotation) combine to alter the radar path lengths of various scatterers and consequently

their phase-sensitize summation. As a result, the echo amplitude fluctuates (fades) with time.

The initial echo detections of DeWitt and Stodnla [1061 and of Kerr and Shain (1081 were seen to

fade from pulse to pulse. The latter nbserverE !'a t e that the rate was almost exactly that to be

expected tram the total libration it the moon behaved as a unifni-mly bright reflector.

The 10matinnal rotation will also result fit Doppler shift (f') in the return from strips

parallel to the apparent rotation axis. The resulting distribution of echo power thrn)ighout the

trequency range tl^ (i.e., the power spectrum) is related to the distribution of individual scat-

t(rers over the lunar disk. Further, the moon is a radar target of considerable depth 111.6

msec) and will theretore distort short pulses thrrn.gti interference between the returns tram

various scatterers. Hence the distribution of scattering centers over the lunar surface call

studied from the variation ui echo intensity with time, y(r), or with frequency, y(f).

Browne et al. ', 1291 and later Evans [1301 s t udied the radio-frequency power spectrum in

terms of a pulse-to-pulso autncorrelatinn tuncticn:, y(f0, r). The fall in correlation of the am-

plitudes of successive pairs o) , ulses is • ompared tc that anticipated from Lummcl-See:iger and

Lambert scatteenig b, figure 2."-i. Because of the obviously slower fading, Evans fitted a Gaussian

exponential 'o his experimental data (also shown in fig. 23a). He further computed the associated

power speet;-um of such all 	 function (compared to other scattering modes in

fig. 23b) and concluded from the relaf;vPly small Doppler broadening that the major scattering
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centers contribut i ng to the rctu-n at 2.5 .n wavelength tie within a central area with a radio,

about 1 1 that of the moon. This area, only 0.7 cosec deep, is 'oordered by a pr -jounced dark

limb, described by Evans (based upon the limb darkening of a Lambert, cos 0 law) as a cos t" 0

scattering. A similar relation (sin 11 U) was proposed by Katz to describe the scattering behavior

of a rough sea sur face. Evans deduced m 30 for his power spectra.

In contrast to Evan's study of the distribution of scatterers through the frequency function

y(f), Trexler [1311 studied the time function y( ) with short (12-µsec • ) lwlsPs. He concluded that

50 %, of the echo power was returned within the first 50 µsec from a region only 210 n,i in diam-

eter, about 1/10 the rAius of the moon (see fig. 24). Hey and Hughes (133' compared the echo

intensity of 10-cm waves with inclinati , a-, of the lunar sur face to line of sight and concluded that

50 n of the returned power cant(- from regions inclined less than 5 0 . This is said to he l.: re-

suit of a 2 --rad phase change through a lineal distance on the order of 1 m corresponding to a

surface gradient of about 1 in 20.

MME (µsec)

FIGURE 24. DIs'rRIRUTIO\ OF FXERGY IN RADAR EC.'O Vs. TIME. Observed by Trexler (1:;1) using
12-usee transmitter pulses. More than 50' 7c of :hr ,•cho power is returned withir, the first 50 ysec. 11:321,

Evans (1321 concluded from these experiments that lunar returns are vrincipally frum a

specular reflection near th- center of the disk and that the surface is not densely covered by

objects from 10 cm to 2.5 m. However, both Leadebrard (131' and PeltvniJll (135' have been

able to detect two types of scattering from the lunar surface. The fir ,; f is the shar ply decaying

leading-edge echo discussed above and the second is a weaker compment seen to aecay linearly

and to extend to the limn f-ee fig. 25). While the former is primarily specular, the latter
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FIGURE 25. DISTRIBUTION OF ECHO POWER VS. ANGLE OF INCIDENCE FOR LUNAR SURFACE. Ob-
served by Pettengill 11351; plotted is a function of the log of the cosine of T he angle of incide:ice 0. For O

500 , the intensity of the echoes follows a law lying between we Lambert and the Lommel-seeliger scat-
tering laws. This law is similar to that observed by Pettit and Nicholson 1491 at infrared wavelengths. 11321

appears to be nearly Lambertian, indic2ting that the surface is at least sparsely r,overed with

irregularities on the order of a wavelength or more in size (70 cm in ref. 135). By comparing

the relative magnitude of the two scattering components, Pettengill postulates that about 10 "I'D

of the surface is rough at this wavelength.

Senior and Siegel [136] have tabulated the value of pg given by various observers, from

which Evans [132] concludes pg = 7.6 t 2.1 x 10 -2 . The value of g = 2.7 was calculated by Grieg

et al. [1091 for Lambertian scattering, which, according to Pettengill [1351, constitutes about
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10 0 of the return. Evans [132) postulates, therefore, a value g 1.3 t 0.1 from which p - 0.06,

correslxmding to a dielectric constant of 2.72. The dielectric constant of dry, sandy soil (•-2.5)

is in close agreement, but that of silicate materials (-5) would require a bulk density of no more

than 40 o and indicate a porous, fragmented texture for the lunar surface 1132, p. 4701.

In summary, tile• scattering behavior of the lunar surface indicates a strong specular com-

ponent wh rein 50 'b of the echo power is returned from regions inclined less than 5o from per-

pendicular to the line of sight and confined to a central region of about 1,10 of the moon's

radius. While most of the surface must be smooth and gently undulating with a gradient on the

order of 1 in 20 [1331 to 1 in 10 [1321, it is probably sparsely populated with objects on the order

of several centimeters to a few meters in size. Beyond a central region of about one-half of

the moon's radius, these irregularities give rise to a detectable echo, functionally between

Lambertian and Lommel-Seeliger.

This summary is apparently in excellent agreement with the photographs returned by

Surveyor I of its landing site in Oceanus Procellarum, a site which bears a close resemblance

to a barren, rock-strewn I rrestrial landscape. Prior to direct. high-resolution observation

by the Ranger and Surveyor probes, Evans [1371 had concluccd that the radar measurements of

reflection coefficient indicate a surface covered by a thin layer of fine dust. However, Cudaback

[1381 used the same evidence to postulate a surface of cotton candy-like rock filaments rather

than dust. These differences arise, in part, from tine fact that radar measurements yield the

product pg rather than p directly. Only after inferring a value for directivity call 	 evaluate

the reflection coefficient, which itself is dependent upon many variables such as composition,

roughness, dielectric constant, ana density. It is then necess try to infer certain facts about the

first three to arrive at a low density, which may then be postulated as due to fine powders, fila-

ments, vesiculation. etc.

Gold [51 notes that the remarkable smoothness deduced from measurements at wavelengths

of at least a few centimeters compared to the roughness suggested at shorter wavelengths indi-

cates a surface other than rock at a depth of "at least a few meters." His conclusion is based

upon a presumed difficulty in generating and maintaining a rock surface of this smoothness in

the presence of meteoritic bombardment.

However, the fact that certain rayed craters have been " .nd to exhibit all 	 radar

return, as well as all cooling behavior, has been cited in favor of a rough, dense sur-

face similar to bare rock. For example, by a combined range-Doppler drift analysis, Pettengill

(d, 139, 1401 has been able to observe an anomalously high radar return from the interior of the

crater Tycho. This crater has already been discussed as an outstanding thermally anomalous

area, which is further suggestive of bare rock or a very thin dust covering. However, as noted
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by Shnrthill and Saari [981, several other rayed craters, such as Eratosthenes and Posidonius,

xhibit an enhanced radar return but no detectable anomalous cooling behavior. Further, the

tact that radar reflectivity contours show no simple correlation to eclipse-measured thermal

data complicates the interpretation of both observations.

It must be concluded that, while radar measurements yield significant information concern-

ing the nature of both surface and subsurface properties, there remains a considerable ambiguity

in the interpretation of the details of both material and distrihution. A major problem in this

area is the 1, rk of high-resolution coverage, which necessitates a sophisticated data analysis

procedure to relate radar returns to specific surface features.

Moore ct al. [1411 have proposed a lunar orbiting radar package consisting of a 0.4-GHz

scatterometer, an 8-Gl'.z altimeter-scatterometer, and an 8-GHz imager which would eliminate

the resolution limitation currently complicating the interpretation of earth-based data. They

propose a resolution capability of 15 nn for the imager and 1.6 to 15 km for the altimeter-

scatterometer equipment. The imagery is expected to yield contours of dielectric constant and/

or conductivity, using multiple polarization as well as map fracture systems, veneers, and

possible subsurface structures. It is noted that radar imagery of terrestrial mountains has

been able to detect and delineate fracture systems and folds which were not previously distin-

;uished in aerial photographs or mapped in field surveys. The altimeter-scatterometer data

are expected to give gross and fine structure features, measure slopes and roughness, and

determine depth of penetration of multifrequency signals. The latter will aid in evaluating pos-

sible layering, subsurface features, permittivity, and conductivity. A multipolarization capa-

bility is also proposed to evaluate the possibility of depth-of-penetration analysis through non-

uniform Brewster angle effects on vertically and horizontally polarized waves.

As noted in Mcore's proposal, the major problem is not in the design of suitable radar

equipment, but rather in the interpretation of the resulting data. We have currently only a

general idea M the variation of radar return data with material composition, angle of incide.-ce,

polarization, and wavelength. Most airborne radar data have resulted from equipment aeveloh-

ment programs which did not involve close parametric control or extensive ground-truth data.

The Ohio State data [113, and fig. 21a and 211)], while closely controlled, illustrate differences

observed from laboratory-sized samples over areas of only a fraction of a square meter. An

extensive study of radar return with respect to physical and chemical properties of the target

material is needed, along with the development of display and interpretation techniques for

multifrequency multipolarization data. The study presently underway at Kansas State University

[1411 will attempt to solve these problems and to deduce profiles and measure roughness char-

acteristics, dielectric properties, layer thicknesses, etc., from radar measurements, as well

as to develop means of display and interpretation of the data for geoscientific applications.
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Appendix
REMOTE STUDY OF MINERALS BY SPECTRAL ANALYSIS IN THE INFRARED

Coblentz ! 1421 ill 	 became one ut thU first workers to study minerals by infrared spec-

troscopy. Working ill 1- to 8-µ region, b y determined that minerals exhibit characteristic

absorption and retlection spectra. Iii 1938, Matossi and Brimder 11431 studied the spectral re-

flectance of silicates, and later Pfu r d [1441 utilized the diagnostic capabilities of 6- to 12-p

spectra ill identification of gents. A recent bibliography by McCarthy [1451 lists many refer-

enres to inirared spectral measurements. However, spectral reflectance studies have been pri-

marily devoted t-) the study of glass and glass structures while emission measurements have

large lv inet)lved heat transfer problems ill ceramics. Only a limited effort

has been devoted to understanding the effect of composition, particle size. and structure upon

the spectra of geological materials.

In 1953, Hunt and'I'urner (1461 reported preliminary spectroscopic studies of the constituents

of rocks. Frederickson and Ginsburg [1471 and Bell et al. [1481 have reported field measure-

ments of spectral emission frtmi terrain. The latter workers observed a distinct de parture

from blackbody behavior ill 	 emission spectra of gypsum and silica sands (fig. 26). As noted

by Burns and Ly on (1011, the quartz reststrahleu of 9.08 1• is less pronounced than that seem in

reflectance spectra. They suggest that this is the result of emission internal to the spectrom-

eter, the ambient temperature of the sample (about 40 00 and ill 	 spectral resolution
-1of about 25 cm	 (0.25 µ), but add "... qualitative identification of sand-sized particles by re-

mote infrared spectral measurements is possible ... quartz and gypsum are clearly distin-

guishable from each other by the 0.49 micron wavelength shift of emission minimum" [101,

p. 37721.

Gypsum Sand
I	 White Sands.

x	 a r0.49 I, New Mexico

w	 IIZ
w	 ,
Z	 Silica Sand

0	 Cocoa Beach,
D	 Florida

0'
2 4 6 8 10 12 14 16 18 20

WAVELENGTH (µ)

FIGURE 26. EMISSION CURVES FOR SANDS.
As observed by Bell et al. 11.181• 11011
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Using the results of these studies, Lyon [1491 has proposed the use of infrared absorption,

reflection, and emission spectra in the compositional analvsis of geological assemblages. He

has examined the absorption and reflection behavior of over 300 minerals and rocks in the 2-

to 25-µ wavelength region. These materials range from acidic tf) ultrabasic, including various

meteoritic specimens (fie. 27). Although the spectra of various -amples are quite similar,

certain characteristic differences are apparent, such as a shift in absorption maximum from

around 1070 cm -I for the acid rocks to 990 cm -I f ,-)r basic rocks (fig. 27a). A similar peak

shift of about 160 cm -I occurs between the reflectance spectra of tektite and a chondritic mete-

orite sample (fig. 27b). In both cases, these shifts were found to depend upon the bulk composi-

tion of the specimen but not its crystallinity, being exhibited by glassy, crystalline, fine-grained,

and coarse-grained samples. Lyon concludes that the data demonstrate the feasibility of com-

positiunal analysis through reflection and absorption techniques.

In a remote analysis of the lunar surface, only emission spectra from materials in their

natural (i.e., unprepared) state will be available. Lyon postulates that these emission spectra

can be compared to those determined from a compilation of absorption and reflection data for

various minerals. For a geological assemblage, the location of particular maxima and minima

are expected to depend upon bulk composition, while the presence of specific minerals should

be indicated by the more detailed tine structure of the spectral curve.

Because of experimental difficulties in a direct measurement of emission spectra, Burns

(1511 has discussed their derivation from reflectance measurements through the application of

Kirchhoff's law to opaque, polished materials in thermal equilibrium. Hnwever, recent studies

by Burns and Lyon (1521 indicate that such a derivation may not apply to integrated measure-

ments from a surface of very fine grained or powdery material. While the general shape of the

spectral curve is maintained, deviations from graybody emission have been observed to decrease

as particle size is reduced. Compositional differences are readily discernible for particle

sizes oil 	 order of 100 µ (in certain cases even X10 µ). However, as the particle size is

further reduced, the surface approaches a graybody and spectral structure is obliterated.

Van Tassel and Simon [1531 have pointed out that the application of this form of Kirchhoff's

law is critically dependent upon material opacity (i.e., zero transmission). They propose the

measurement of emission spectra of powders directly, rather than prediction from reflectance

measurements, because of the inadequate knowledge of the nature and possible transparency of

lunar surface materials. In measurements of two basic ranges of particle size (designated

"flour" and "sand"), they also observed the dependence of identifying spectral characteristics

upon particle size. Flour-sized samples (0.8 to 1.6 k) of olivine and quartz exhibited very little

unique band structure and closely approximated the emission of a graybody. Sand-sized particles
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(50 to 200 1.), however, produced distinctly recognizable -pectral band patterns. Van Tassel

and Sinnnt conclude that it the actual size distrihution of lunar surface particles corresponds to

their "best estimate" (i.e., the flour samples) no diagnostic emission spectra can be obtained,

but they add that the presence of a larger average particle size would make such compositional

analysis feasible. They propose all 	 n of the spectral band structure in the emission

from lunar surface materials as a potential means of determining particle size.

Hovis and Callahan (1541 have reported spectral reflectance measurements of terrestrial

ma t erials in the 0.5- to 22-µ region. Their examination of various samples, in both solid and

granulated form, confirmed the general observation that spectral contrast (beyond 8 lt) decreases

as the particle size is reduced. However, they were able to detect considerable structure, par-

ticularly near wavclengths of 10 and 20 µ, for certain materials in particle sizes as low as

38 1.. They also observed a cnmpositional shift of the fundamental Si-O vibration near 10 A.

The significant result of ihis study is their observation that at shorter wavelen tlns (below about

8 1.) the effect of particle size is reversed. Both the overall magnitude of reflectance and unique

spectral detail are enhanced as particle size is reduced. Hovis (155, 1561 has also demonstrated

this effect in other studies and suggests that the pronounced change in reflectivity, particularly

between 1 and 3 µ, may allow the determination of particle size. He further postulates that the

observed enhancement of reflection features suggests the possibility of a more productive exam-

ination of lunar surface material by reflected than by emitted radiation.

As Hovis and Callahan (1541 point out, the po ssibility of rumme compositional analysis is

certainly confirmed, but the situation is highly complex. The area' resolution of an orbiting

spectrometer will likely include a variety of materials and particle sizes, and their tot..l radia-

tion will be integrated into a composite spectral curve. Various spectral shifts and diagnostic

hand structure may become confused or washed out entirely. At best, the data analysis and in-

terpretation probl: ms are immense.

While most spectral measurements have been made in the wavelength region below 25 g,

Aronson and Mc Linden (157) have extended this range to 200 µ for certain silicate materials.

Because of the relative ease of reflectance measurements, they also invoke Kirchhoff's law fnr

opaque materials to establish the applicability of reflectance spectra in this long-wavelength

region. The effect of particle-size reduction upon diagnostic spectral detail was investigatcd

with surfaces of fayalite powder filtered from a suspension of approximately 1-p particles. By

appropriate adjustment of spectroscopic variables to compensate for an overall reduction in re-

flectance and consequent signal-to-noise difficulties, they observe that "spectral detail remain"

for this medium. It should be noted that their surface, while deposited from individually small
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particles, was not smooth to this degree. Irregularities are quite apparent, creating a surlace

macrostructure described as hillocks of an estimated height of 10 ft.

Spectral scans of certain lunar features in the 16- to 24 - µ atmospheric window have been

recorded by Hunt and Salisbury [1581. An area in the central highlands, Serenitatis, Copernicus,

and Tycho were observed with all 	 resnlutiom of approximately go 480 km and a spectral

resolution of better than 0.9 µ. It is postulated that differences in mineral composition cause

the discrepancies observed in the spectral emission from certain of the features. For example,

at 19 µ the emission from Serenitatis is stronger than that from Copernicus, while at 23.5 µ

the relative. intensities are reversed (see fig. 26). hunt and Salisbury state: that the observed

effect cann(,t re -ult from differences in surlace roughness. chan t -e s in :rtnmspheric absorption,

or temperature differences within a sampled area. Although the nature of the pnssible compo-

sitional anomaly is not understood, its detection adds siginlicaot weight to the argument for re-

mnte spectral analysis, particularly it they averaging effect c)l the large field of view (nearly

4 > 10 4 km 2 ) attainable in this c arth-based ohservatiun is considered.

Highlands	 ................
Serenitatis
Copernicus -- --
Tvchu	 — — —

Night-Sky
Emission

th
ch

/

f

E

rl
\•	 ^I	 / 	 tl v

f^/ 1

24	 23	 22	 21	 20	 19	 1 i	 1.

WAVELENGTH fir)

FIGURE: 38. EMISSION SPECTRA OF LUNAR SURFACE FEATURES. Amplifier
gain Nns 1.5 betucen 1, and 21 v and 2.3 between '1 and 21 v. 11581

58



Finally, the data returned by Surveyor 1 (7j sugµ • st the feasihiltty of compositional analysis.

The suriace layer, at least near the landing site in Oceanus Procellarum, appears to be com-

posed of a distinctly granular material as (-pposed to dust or powder. Thl- wide size range in-

cludes a large number of blocks more than a meter across, scattered patches of ruhhle of

smaller blocks, and finer grained material apparentl y of a basic grain size helow the resolution

limit of 0.5 mm. Significant enneentratinns of large blocks and finer rubble were detected, in-

cluding areas strewn with very coarse, closely spaced blocks. It is concluded that "the mean

grain size of surface material, averaged by particle mass, is probably oil 	 order of about I

mm" (7, p. 321. While a basic grain size below 0.5 mm can be expected to predominate, the

distinct granularity, apparent absence of dust or powdery material, and irregular distribution

of large-block rubble sh,luld exhibit diagnostic spectral characteristics.

A more severe problem will probably arise from the simultaneous observation of various

materials of different composition, particle size, and structure. The inherent confusion in

spectral detail could preclude a meaningful geological analysis fnr certain lunar areas. How-

ever, for areas of a more uniform nature (at least a few resolution : lements in extent), the po-

tential of spectral techniques for a valid analysis appears to outweigh the inherent difficulties.

The phenomena and associated spectral regirns of special interest include: the significant

reflectance variation with particle size and complex compositional band structure between 1

and 3 k: the shift of absorption maxima, Si-O vibrations, and general rest stra hit- n features near

10 µ: and the enhanced reflectinn and consequent departure from a gravbody emission exhibited

by many matt: °ils, even at reduced particle sizes, between about 19 and 25 µ.
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