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ABSTRACT 

The design of model reference adaptive control systems i s  investi- 

gated in t h i s  report. Several reasons for considering the model reference 

adaptive philosophy when designing control systems and several character- 

i s t i c s  of a "good" model reference adaptive algorithm are diecussed. 

Adrtptive cllgorithms are derived for  l inear  systems from two approaches. 

The first three algorithms are based on the steepest descent or gradient 

minimization of positive definite integral  performance indices. The f i r s t  

algorithm attempts t o  minimize on-line a weighted integral square plant- 

model error  index while the second algorithm attempts t o  effect  a tradeoff 

between the  system error and the perturbation control effort  by minimizing 

an index that  ref lec ts  the relat ive cost of each. An estimate of the 

optimum step size for gradient adaptation is  incorporated into the th i rd  

cclgorithm by t:reating adoptation as a discrete pTocess rather than as a 

continuous process. The fourth algorithm is  derived from a s t ab i l i t y  

azgument that  follows from Lyapunovts Second Method. These algorithms are 

a2plied t o  two second order examples i n  order t o  gain insight into such 

properties as convergence rate,  s tabi l i ty ,  error-nulling capability, and 

error-perturbation control tradeoff. 

The model r e f e r e n ~ e  adaptive control design techniq~e i s  successfully 

applied t o  a large flexible launch vehicle of the Saturn V class. The 

adaptive controller operates on only the measured outputs of the pitch and 

pitch-rate gyros and nowhere i s  it necessary t o  isolate  the e las t i c  bending 

response from the r ig id  body response. Simulation studies show that  the 

adaptive controller reduces significantly the sensi t ivi ty of the booster t o  

variations i n  the  natural frequency of the f i r s t  e las t i c  bending mode. 



1.1 Introduction 

A8 modern control systems becane more complex and sophisticated 

it beccmaa necesssrv that they be designed with a built- in f l ex ib i l i ty  

that provides the capsbiltty of autcrpsticslly compensating for  parmeter 

and environmental variations that may occur during operation. These 

w l a t l o n a ,  which mqy be deterministic, stochastic, or to ta l ly  

unpwdictabls, arise fran incomplete or inaccurate modeling of the 

p ~ s i c a J .  process end inadequate knowledge of the host i le  environment i n  
A 

which the process operates. Ilu, &turn V booster i l lus t ra tes  both of these 

cases as the frequencies of the elsatir:  bending modes are not total* pre- 

Cictablc and the booster must f l y  thro& an unknawn wind profile. Accord- 

ingly, a great deal of ef for t  has been devoted t o  the study of self-adaptive 

self-optimizing, and learning control systems i n  the past few years. 

1 Aseltine et a1 and strcrner2 have compiled extensive bibliog- 

raphies of early con-bributions t o  the f i e l d  of adaptive control and have 

attempted t o  classify these techniques into several categories. Xuwever, 

even t c  date there does n ~ t  seem t o  be a uni'versally accepted definit ion 

of a,n adaptive control system. For the purpose of !;his report the follow- 

ing definit ion w i l l  be coneidered applic8,ble: 

A n  adaptive control system is a system which is capable of 

mqpitoring its performance re la t ive  t o  some well-defined 

c r i t e r ion  and adjusting certain control parameters i n  a 

systemstic manner such as t o  approach optimum performance 

with respect t o  the chosen criterion. 



definltlon of an adaptive control system Indicates that adap ta t l a  

I6 a three-step process: I) i ~ n t l f i c s t l o n ,  2) decision, arid 3) 

inrplementatlon. !best thraa steps a m  not slws repuable but are 

6 1 ~ 1  present i n  saw! form. 

Ima ldentlficatlon process Involves obtalnizg a description of the 

plant. Several ldentiflcatlon schemes have been developed for  determining 

the impulse response, pole-zero pattern and differential equation which 

3 c ~ t e r l z e  a plant . Alternately, :he systen identification problem 

can be treated fran an Index of perfomance (IP) point of view. An I P  

bas been Mined  ee "a functional rekrtlonship involving system cWacter-  
\ 

l r t i c r  In  such a mmer that the optimum operating characteristics may 

be determined fran The advantage of the I P  is .that it encampaeses 

Into a single number a quality measure fo r  the performrnce of the system. 

One well-known I P  is integcsl squerc error. Definition of a satisfactory 

IP is an axt rather than a science snd no adaptive system can be expected 

t o  perform better than its I P  dictates. 

The decision process is closely related t o  that of identification 

as the information provided by the l a t t e r  is used i n  making any decision 

regarding system performace with respect t o  the optimum as defined by. 

the IP. If performance is not adequate, a systematic program of parameter 

sdjustment must be undertaken such as t o  improve this performance. In 

most cases %his parame$er adjwbment is not a one-step owration but of 

en i terat ive nature such that the opt~mum is reached gradu&lly. 

'Ihe final stage, that  of inrpLemnta,tion, consists of the actual pro- 

cesrr of modifying the system perameters euch as t o  bring the system 

"closer" the optimum conditionrr . !Phis is most often accomplished b$ 



adjusting same type! of gain, e i ther  i n  a f e e d b k  loop or i n  a series 

campermator, or genemting etl auxiliary control signal. 

Adagtive systems csn be classif ied aa 1) parcuneter adaptive or 

2) signal-synthesis adaptive. In a parameter adaptive system, a para- 

meter of the controller, such as a feedback gain, is adjusted so as t o  

compensate f o r  unsatisfactory perfonamce. Signal-synthesis adaptation 

is achieved by generating an auxiliary control signal which when combined 

w i t h  the vimulr control signal w i l l  provide improved performance. 

One method of parameter adaptation which has received special 

attention is the  parameter perturbation apprarch as described by McGrath 

6 ezi& ~ i d e o u t ~  and Evcleigh . If the  IP is assumed t o  be a function of k ' 

adaptive pazatneters, it mey be considered as a hypersurface above a k 

dimension hyperplane. !Phe object is t o  f ind  values fo r  the k parameters 

that minimizes the IP. perturbing the adaptive param~ters sinusoidally, 

the paxt-1 derivatives of the IP with respect t o  the various atiaptive 

parameters can be determined by correlation methods. When each adaptive 

m e t e r  is adjusted at a r a t e  direct ly proportional t o  its corresponding 
a IP partial derivetive, i.e., A Pi a-- , adaptation proceeds i n  the 
a *i 

proper direction towards the minimum. This is essentially a search of the 

surface along the psth of steepest descent. While t h i s  method is applicable 

t o  a wide class  of systems, the choice of the I P  is c r i t i c a l  as it should 

have no re le t ive  extrema at which the gmdient is identically zero but an 

absolute minimum does not occur. One inherent disad'vantage of t h i s  method 

is the degradation i n  system performagce that arises from continually 

perturbing the system. 



A second type of parameter adaptive system that has become quite 

popular is the model reference adaptive control system. This type of 

7 system has been studied from several points of view by Osborn et al, 

8 9 Doned8on and Uondes , Shackcloth , Rwkrlo, snd Dresslerl' among others. 

The p e r f ~ c e  criterion for this type of system is chosen as a function 

of the error between the system arid sane appropriate model. In re- 

ferences 7 and 8 adaptat;ion again proceeds according to -the method of 

steepest descent. The techniques of Shackcloth, Pasks and Dressler, 

while not; requiring the generation of the partial derivatives necessary 

for the steepest descent methods, do not appear to be applicable to as 

large a class of systems as is the steepest descent or gradient m?thods. 

m e  merits and pitfdls of several of the most prominent model-reference 

adaptive techniques= exasnined in detail in Appendix A. It is to this 

type of system that the remainder of this report is devoted. 

Signal-synthesig adaptation is accomplished by generating en 

auxiliary control signal which should improve system performance. Systems 

of this nature incorporate the use of future prediction, based on past 

operating history, to synthesize a control signal which optimizes system 

perform~tnce one iatezivrJI at a time. In a signal-synthesis system de- 

veloped by Groupe and Cassir12, extrapolation techniques are ueed for 

identification and error-predictions at discrete t h e  intervals. The 

system employs rectanguhr &claptation pulses of finite duration to minimize 

a coet-functional of predicted square errors. 

1.2 Organization of Report 

Chapter 11 treats model reference adaptive control system design 

from two distinct viewpoints. First the c@~ce&te of the M.I.T. rule ~f 



7 Osborn et aJ are considered with some modifications. Secondly, a 

Qyapunov s t a b i l i t y  apprcech is investigated. The design algori+2uns 

that are derived are applied t o  two second order examples i n  order t o  

obtain a feel f o r  t he i r  applicability. SeveraJ. conclusions regarding the 

properties of these a&orithms are discussed. 

In Chapter I11 the m o d e l  reference technique is successfully 

applied t o  the pitch control of a h r g e  f lexible  launch vehicle. Be- 

cause of vehicle flexure, the pitch and pitch-rate gyros measure local 

flexure i n  addition t o  r ig id  body motion. If the e l a s t i c  bending modes 

axe overly excited, the vehicle w i l l  break up. Thus, the control of 

such a vehicle is of great current interest .  The necessity of aa 

adaptive controller wises from the  inprecise knowledge of the frequencies 

of these e l a s t i c  bending modes. Several schemes have been proposed fo r  

attacking this problem. S m h  and ~ a v i s l ~  have proposed the use of a 

notch filter with an adjustable center frequency and -el4 has suggested 

the use of redundant gyros t o  t r y  t o  cancel the  local bending from the 

measurements. ~ e z e r l ~  e t  al have applied the M. 1.9. ru le  t o  the  flexible 

booster problem but i n  so doing have assumed that the normalized bending 

is measurable. Of these schemes, only the notch f i l ter  has had much 

engineering success and even this  method depends on the bending frequencies 

being higher than the speed of response of the closed loop system. For 

the  present study only first order bending and no slosh modes are included 

i n  the booster model. The outputs of the pitch and pitch-rate gyros are 

assumed t o  be the only available measurements. The system is subjected 

t o  noise i n  the f o m  of a wind-gust profile. 



2.1 Introduction 

This chapter begins with a discussion of the characteristics of 

a "good" model reference adaptive control system and the reasons for 

considering the model reference technique when designing control systems. 

The design of model reference adaptive control systems will be treated 

from two distinct viewpoints. One adaptive algorithm will be derived 

f rom a Iya,punov stability argument while several others will be derived 

from the steepest descent or gradient minimization of positive-definite 

integral indices. Examples are included to illustrate the application 

of the various algorithms. 

2.2 Description of Model Reference Adaptive Control Systems 

This study treats only the class of dynamical systems that can be 

described by linear ordinary differential equations. The state-spece 

representation of such systems is employed throughout; an excellent 

21 
reference on this subdect is found in DeRusso et al. 

The mdel reference adaptive control system as considered in this 

study is represented sclmnatica1l.y in Figure 2-1. In what follows the 

characteristics of the adaptive control system can be describ2d by the 

f ollowi.ng linear differential equation: 



FIGURE 2-1 



where x ( t )  = n - dimensional state vector of the adaptive ee control system. 

u ( t )  = m - dimensional input vector t o  the adaptive 
-P control system. 

%( t )  = r - dimensional output vector of the adaptive 
control system. 

$(t)  = n x n s ta te  matrix. 

~ ~ ( t )  = n x m control matrix, and 

~ ( t )  = r x n output (masurement) matrix. 

It is assumed that an arbi trary number of plant parameters, elements of 

A ( t )  snd B ( t ) ,  vary i n  851 unknown mmer but such thst the structure 
P P 

of the matrices remains the same. 

In class ica l  feedback theory performance c r i t e r i a  are specified 

i n  such terms as rise time, overshoot, bandwidth, and s tabi l i ty .  For 

the work that follows it shall be assumed that these c r i t e r i a  can be 

formulated i n  terms of a vector l inear different ial  equation that yields 

the desired input-output relations. This set of d i f ferent ia l  equations 

w i l l  be referred t o  as the system reference model and can be considered 

as an implicit characterization of the performance criterion. This 

reference model is described by the follawing: 



where x ( t )  = n - dimensioml s t a t e  vector of the model -m 

u ( t )  = m - dimensionel input vector t o  the model -m 

xm(t)  = r - dimension81 output vector of t h e  model 

~ ~ ( t )  = n x n state mrtrix 

~ ~ ( t )  = n x m amtrol matrix 

~ ( t )  = r x n o u t p u t m t r i x  

It is assumed tha t  the order of the adaptive control system and the re- 

ference model are equal. I f  t h i s  is  not the case, the nodel can be 

augmented such tha t  the additional s ta tes  have l i t t l e  effects  on the 

behavior of the model. 

Adaptation can be implemented i n  e i ther  of two ways - the sys temtic  

adjustment of the elements of A P ( t )  and/or B P ( t )  or the sys temtic  

synthesis of u = u + A u. 'Phe l a t t e r  approach is used with the 
-P "m 0 

gradient minimization concept while the former is more amenable t o  the 

wpunov s t a b i l i t y  approach. The actual applicabili ty of these two methods 

of implementation t o  r ea l i s t i c  systems w i l l  be discussed h t e r  i n  t h i s  

2.3 General Design Philosophy 
b 

Before proceeding with the development of the adaptive algorithns 
P 

it is informative t o  briefly consider two questione relat ive t o  model 

; ref crence abaptive control systems: 1)  when and :?hy are  such systems 

necessary and 2) w h a t  are the characterist ics of a "good1' adaptive 

algorithm'l F i r s t ,  as control systems become more advanced end sophis- 

t ica ted  it becunes extremely d i f f icul t  t o  derive an accurate m,thema,tical 

model of the plant while at the same t i m e  the  performance requirements 

inrposed on the plant become more demanding. Tuel 16, ~ o ~ g h e r t $ ~ ,  



R i u i g a 1 8 ,  and ~ s s s i d ~ ~ ~  have applied the concepts of optimal control 

t o  t h i s  problem. The basic concept is t o  define a variable which re- 

presents the sens i t iv i ty  of the plest  trajectory t o  changes i n  plant 

parameters. !I!hese sensitivity variables are  then treated as additional 

s t a t e  variables and ere included i n  the cost index that is  t o  be 

minimized. 'Phis technique optimizes, with respect t o  the chosen per- 

formance index, the tradeoff between state response, control effort ,  

and tradectory dispersion. As a resul t ,  i ts best performance may be 

poorer than t rue  optimal performance but its range of acceptable per- 

formance is extended. Hawever, with a precomputed control l a w  it is 

always possible, even if highly unlikely, fo r  the plant parameters t o  

vary t o  such an extent as t o  cause instabiri ty.  On the  other hand, a 

model reference adaptive control system can always be designed t o  per- 

form "optimallyn at nominal conditions by choosing the  nominal plant 

as the reference model. In  addition, adaptation should reduce any 

trajectory dispersions resulting from both off-nominal parameter values, 

regardless of the  magnitude of these p a m e t e r  varia+tans, and external 

disturbances encountered during operation. Figure 2-2 best swnmarizes 

the  level  of performance and ra.nge of acceptable performance tha t  can be 

obtained from 1 )  optimal control systems designed without sensi t ivi ty 

considerations, 2) opttmal controk systems de~igned with sensit i v i  iy 

considerations, and 3) model reference adaptive control systems. In  

conclusion, there are three principle reasons fo r  considering the model 

reference technique: 1)  no degradation i n  nominal performance, 2) 

enhascement of s tabi l i ty ,  and 3) reduction i n  ef fec ts  of external dis- 

turbances. 



1 PERFORMANCE 

FIGURE 2-2 



If there is t o  be no degradr~tion i n  performance fo r  nominal pwa- 

meter values, it is necessary that no adaptation occur for  zero e-:ror. 

!Chis implies, not too unexpectedly, that any adaptation algorithm must 

be functionrlly dependent on the system error such that f (2)  = 0 fo r  

e = 0 . Since one of the reasons fo r  implementing a model reference - 0 

adaptive controller is t o  enhance s tabi l i ty ,  it is important thal; the 

plant response converge rapidly t o  the "optimal" and that tlie overall 

system be stable. Fran a purely pract ical  ;onsideration, any model 

reference adapal;ive controller should not be too complex t o  implement 

or  i ts value becoxrss ques-tiionable. Thus there are at least four 

important characterist ics of a "good" model ref erenco adaptive algorithm: 

1) no adaptation f o r  zero error, 2) rapid convergence t o  the "vgtimalil, 

3) s t ab i l i t y  of the t o t s 1  system, end 4) simplicity of implementation. 

It w i l l  be seen later that these characteristics are not always to ta l ly  

independent. 

2.4 Continuous Gradient Adeptat ion 

One popular cr i ter ion f o r  the design of adaptive control systems 

has been the  minimization of the in tegra l -sqwe error  of the system - 
model configuration. This is the cr i ter ion tha t  was successfully applied 

by 0sborn7 e t  a1 and led t o  the well-known Ye I.T. rule for  model reference 

adaptive control system design. This section presents some ramifications 

of the M e  I.T. rule as applied t o  vector l inear  systems. 



Consider the system - aodel configuration described by Equa;tions 

2.2-1 - 2.2-4 ssld define 

In what follows, time dependence of a l l  q u s n t ~  les w i l l  not be explici t ly  

s tated i n  order t o  simplify the notation, but w i l l  be assumed unless 

noted otherwise. Choosing 

i n  which Q is a non-nestive defini te  symmetric mtrjx as aa Fnaex 

of performance, a reasonable cr i ter ion fo r  successful aihptation is the 

minimization of J. If the  control signal is postulated as u = u - K %  , 
-P - 

this minimizakion reduces CYo the Letcmination of a value of K. such that 

J is minimized. This minimuin occurs whey1 

f o r  a l l  k Treating J as a hypersurface i n  - K space, 
A 

where - K respresents the non-identically zero element of K i n  vector 

form, an on-line search is performed along the surface 5.n a steepest- 
h 

descent fashion. I n  other words, - K is adjusted i n  the direction of 
A 

the gradient of J with respect t o  - K . Thus 



Fram Equstion 2.4-3 it is seen that 

which results in  

Since 

(a .  4-6) 

A 
Differentiating Eqyation 2.2-1 with respect t o  ki results in  



which aimplif iee Equation 2.4-10 t o  

Thus ki = pi $ Q O E~ 

where is the  :alution of the d i f ferent ia l  equation giver by Equation 

2.4-il. A close examination of Equstion 2 .b-11 indicates tha t  it is a 
A 

function of A and B - both unknuwn. Thus hi is  adapted according 
P P 

t o  an approximation of the t rue path of steepest descent, namely 

where 
n 
Z 
m i  is the solution of 

and pi is a convergence factor. The effects  of the choice of pi on 

system performance w i l l  be discussed lster i n  t h i s  chapter. It is noted 

that th i s  adaptation rule  satisfies one of the c r i t e r i a  fo r  a "good" 

adaptive algorithm, narwly that no adaptation occurs fo r  zero error. 

However, the implementatim of this  algorithm necessitates the generation 
A of the vectors which might involve some rather involved f i l t e r ing  

fo r  high order system. The convergence property w i l l  be discussed later 

f n  the chapter. 

In the problem formulation of section 2.4.1 the adaptive 

cr i te r ion  was selected 86 the minimization of only a weighted integra;i 

s qwe  error  and no attempt was llrrde t o  l i n i t  %he magnitude of the par*t;w- 

-tion control term, A . u . In this pert, the control w i l l  be postubted 



as u = $ - K e and a term reflecting the magnitude of the perturbation 
-P m 

control, 6 - u = - K .I e , w i l l  be included i n  the performance index. In 

other words, the  cr i te r ion  fo r  successful adaptation w i l l  be the selection 

of K t o  minimize 

i n  which Q and R are non-nngative defini te  symmetric matrices. Again 
A 

lrSting the  vector o k represent the non-zero terms of the feedback matrix 

K and proceeding i n  a mamer similar t o  that i n  section 2.4.1, an 

adaptation rule of the form 

A A 
can be derived i n  which ki = K ( j,k) and -i z is the vector solution t o  

This result is derived i n  Appendix C. It is again seen that no adaptation 

occurs f o r  zero system error  but that th is  algorithm is somewhat more 

involved i n  terms of implementation. The convergence properties of th i s  

algorithm w i l l  be discussed later i n  %hie report. 

2.5 Discrete Gradient Adaptation 

One of the desired properties of a "good" model reference adaptive 

slgorithm is rapid convergence of the plant trajectory t o  that  of the 

model. For the continuous gradient adaptation rules of the previoue 

section, the speed of convergence is a function of the pi's. However, 

there does not appear t o  be any reasonable approach fo r  analytically 



determining the "optimum" values of the  pi s f o r  continuous adaptation. 

However, if the  adaptive parmeters are adjusted only a t  discrete  instants  

of time instead of continuously, an analyt ical  development f o r  the  

20 "o~timum" choice of the  pi's i s  possible. Pearson has recencly t reated 

the model reference adaption problem i n  a similar nBnner but with a some- 

w h a t  d i f ferent  motivation. 

Consider once again the plant-model configuration of Equations 2.2-1 

- 2.2-4 with 

where ~ ( i )  is a constant mtrix f o r  iT < t 5 ( i + l )  T . The basic 

concept is t o  monitor the  system during ?,he t i m e  in terval  i T  < t 5 ( i + l ) ~  

and determine that value of ~ ( i ) +  t h r ~ t  would have resulted i n  the smallest 

value of 

should , ~ ( i )  have been adjusted i n  the  direct ion of the  gradient of Ji. 

In  other words what value of ~ ( i )  would h v e  produced the  smallest value 

A 
been used instead of - k ( i )  where 

It has been previously shown that 



where z is the solution to  -3 

However, 

A A A 
where A .I) k = - k* - k x * represents the state trajectory that would - '  9 A 

Wve resulted from I t*, @ ( / I  A 11 z, represents terns reflectitlg 

second and higher order effects, and 

Fram this, 

t o  terns of first order. Choosing 



The value of fi tha t  would resul t  i n  a minimum of J ~ ( P )  can be found 

d by set t ing J ~ ( B )  = 0 or 

from which 

Thus t o  first order terms, the value of 

A A 1 - GT - G 
k(i)* = k ( i )  - 5 - - G 

.I 

would have resulted i n  the  smallest value of Ji should a gradient type 

of seerch be util ized. Unfortunately, the optimum value of ~ ( i )  is 

dependent upon A and B , both of which may be unknown. Thus again 
P P 

A 
en approximation must be made and is substituted throughout for  

being derived from 

While it can no longer be said that the optimum value of p( i )  is obtained, 

experience has shown tha t  t h i s  approximation is fairly good. 



A question naturally wises as to the proper choice of T. From 

experience it has been found that T should be chosen approxirmtely 

equal to the settling time of the system. Right away this limits the 

usefulness of the algorithm as it is difficult to apply it in situations 

where plant instability may occur. However, for some classes of systems 

it has been found to reduce significantly the instability problem often 

associated with gradient forms of adaptation. Again this is at the ex- 

pense of additional complexity in implementation as the appropriate value 

of @ must be calculated on-line at each adjustment time. 

2.6 mpunov Adaptation 

One G? the major difficulties encountered in model reference adap- 

tive control systen~ design has been the determination of the stability 

properties of the resulting system. Recent work by sh@cloth9 and 

PaxksL0 has uncovered an interesting new approach to the design of such 

systems by incorporating ~punov' s Second Method21 into the design 

technique. 

Considering once again the plant-model configuration of Equations 

2.2-1 - 2.2-4 with Am and Bm restricted to be time-invariant matrices 

and maintaining u = , the differential equstion for E = x - x 
-P - -m -p 

becomes 



with A = [aij(t)] B = [ b i j ( t ) l  

Choose as a wpunov function the quadradic form 

i n  which Q is a symmetric positive definite matrix t o  be determined 

later, " i d  > 0 , and Bij > 0 . The total  time derivative of Ekpation 

T T 
But P .. 4 . 2 ~ ~  1 (g ($zP) 

in which Q = [sl 9, * * *  Sn] , -n 

and 



However, if Am is the system nrrtrix of a stable model, there exis ts  

a unique positive defini te  symmetric metrix Q which i s  the solution 

i n  which P is a l so  a symmetric positive definite matrix. With th is  

choice of Q i n  Equation 2.6-3, V is a positive definite quadradic 
# 

form while V is a negative definite quadradic form. This guarantees 

tbt the adaptive system is stable and should operate i n  the neighbor- 
21 hood of the origin i n  -space . 

Equations 2.6-6 and 2.6-7 provide a ru le  fo r  adapting the individual 

elements of A and B . Unless the t i m e - w i n g  nature of A and B 
P P P P 

is known, which is not usually the case if adaptation is necessary, the 

successful implementation of these rules is limited t o  time-invariant 

or  slowly-time-varying plants. In many l inear  systems the individual 

elements of the state md control matrices are not accessible and control 

m u s t  be implemented by a feedback structure. When t h i s  is true, the only 

adjustable parameters are the feedback gains and not the individual state 

matrix elements. For example, the closed-loop representation of a time- 

invaxiast scalar  control problem w i t h  u = m - x takes the form - -P 



Bor this c u e  it is seen that 

which will generally result in inconsistent values of k q?on application 
J 

of Equation 2.6-6. Even for systems in which b contains only one 
-P 

non- zero element, 
b ~ l  

f 0 , the implementation of the resulting unique 
k, ; j = 1,2,..., n may not explicitly guarantee stability just as 

J 

constraining some of khe aid = 0, i # , may not lead to the satis- 
faction of the conditions for stability. Thus for systems in which the 

structure allow8 access only to a set of feedback gains, the adaptation 

i rules of Eqwtions 2.6-6 and 2.6-7 are not directly applicable. 

One f'urther limita'tion of this algorithm is the necessity of 

measuring all of the states of the system which might be an unrealistic 

requirement for certain classes of systems. However, for those systems 

for which this adaptation rule is applicable, it is deserving of prime 

consideration as little on-line computation is necessary and stability. 

is insured. 

2.7 Illustrative Ehmples 

To illustrate the application of the adaptive algorithms derived 

in sections 2.4, 2.5, and 2.6, two simple second order examples are 

considered. The results obtained for the mrious algorithms are cornwed 

in terms of time-response and integral-sqwe error. 



2.7.1 ESEample 1 

Illre p u t  f o r  this example is described by the vector differ- 

e n t i a  equation 

and the model is described by 

With no adapta,tion, th is  plant is stable but w i l l  exhibit a steady-state 
4 

error  fo r  urn = 1.0 . 

2 . 7.1-a mpunov Adapht ion 

From Equation 2.6-6 the Qrapunov adaptation rule for  this  
. 

exmple is '1 
1. 

where Q is the positive definite symmetric matrix solution of 



Thus 

and 

Simulations of pleat responses arising from this adaptation algorithm 

are shown for various values of gl = a2, in Figure 2-3. 

2.7.1-b - Continuous Gradient Adaptation 

For u = u - x , the minimization of 
P m - 9  

by the continuous gradient method yields the adaptation rules, Equation 

with 

the forms of the appropriate filters for zl and $ . Simulation 

responses are shown in Figure 2-4 for various valws of B . 
.... the steepest Choosing the perturbation control A u = - 5 5 , 

descent minimization o'i 
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results in the adaptation rule, Equstion 2.4-16, 

where g end z+ ere synthesized from filters described b) 

Simulation responses w e  sham as a fluxtion of in Figure 2-5 for 

R = 0 and in Figure 2-6 for R = 1. 

2.7.1- c Discrete Gradient 

Applying the discrete adaptation rule to the index 

results in the adaptation rule 

with 
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and the a are the outputs of f i l t e r s  characterized by 

Simulation responses axe shown fo r  several values of T i n  Figure 2-7. 

The in tegra l - sqwe error  f o r  these four cases is tabulated i n  

The plant fo r  t h i s  example is described by the different ial  

equation 

and its related model by 

Once again the  plant is s table but w i l l  exhibit a steady-state error  for  

u = u = 1.0. However, unlike i n  Example 1, it is not possible t o  to ta l ly  
P m 

n u l l  t h i s  steady-state error with a feedback controller as is discussed i n  

Appendix D. Error nulling can be achieved only if  it is possible t o  
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B. Discrete Gradient 

- 



T A. Continuous Gradient - b u = - K x - -P 

T B. Continuous Gradient - A u = - - K - e 



independently adjust the  state mat.rix elements a pu' mdape2* 

2.7.2-a Lye,punov Adaptation 

If the individual elements of the plant s t a t e  m t r i x  are 

independently acceeeible, the l@apunov adaptation algorithm of Eq. 2.6-6 

can be applied and gives 

2.39 0.91 
where Q = 

is the  solution of 

Simulation of plant responses arising f romth is  adaptatidn rule are s h o p  

i n  Figure 2-8 fo r  n r i o u s  values of au = CXQl = CZe2 = CZ 

2.7.2-b Continuous Gradient Adaptation 

In those situations i n  which the s t a t e  matrix elements are  not 

independently accessible it may be convenient t o  postulate a feedback 
T structure for  the perturbation control signal. For A u = - K x , - -P 

the on-line minimization of 
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gives ti* adaptation rule, Eq. 2.4-l2, 

with and & synthesized from filter8 characterized by 

Simulation responses were obtained for  two cases: 1)  adaptation of K1 

only and 2) adaptation of both K 1  and K:, . Since the responses of 

these two cases were similar i n  nature, only those for  case l a r e  shown 

i n  Figure 2-9 f o r  various values of p1 . 
Postulating the perturbation control signal as  A u = - T 

K e - - 
and the performance index as 

gives the  adaptation rule, Eq. 2.4-16, 

with 3 and derived from the appropriate f i l t e r s .  Simulation 

responses were obtained fo r  R = 0 and R = 1 for  several values of f3 . 
Since these responses were relat ively insensitive t o  the value of R, only 

those f o r  R = 0 axe shwa i n  Pigwe 2-10. 

2.7.2-c Discrete Adaptation 

The discrete adaptation rule  of Eqs. 2.5-15 and 2.5-16 was applied 

t o  the perfomna;nce index 
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for, the cases i n  which 1 )  only Kl was adjusted and 2) both K and 

K2 were adjusted. Since the  simulation responses for  the two cases were 

once w a i n  similar i n  nature, onLy those fo r  the second case are shown 

i n  Fig. 2-11 fo r  various sues of T . 

2.8 Convergence Rate, Stabi l i ty ,  and Error liulli* 

The interaction of the rate of convergence and s t ab i l i t y  plays an 

important role i n  the  design of model reference adaptive control systems. 

Although only lineax plants have been cansidered in  th i s  study, the 

addition of an adaptive control loop resul+s in  a non-linear system. 

In what follows, a .model reference control system w i l l  be considered 

s table i f  the plant output converges t o  that value which sa t i s f i es  the 

design criterion. 

The convergence rate of the rnpunov adaptation rule  is  seen from 

the  two examples of the previous section t o  be dependent on the value of 

the  a terms While B i m i l a r  dependenoe has been fwhd on the pij terms. 
i j  

Since Chis s&,pi;stion rule  is derived ftoxn a a tab i l i ty  consideration, 
- - 

system staebi3.fiY is guaranteed aa long as Che necessary assumptions remain 

=lid. When t h i s  is not the  case, further investigation, i n  a l l  probability 

of a simulation nature, may be necessaxy t o  determine the  range of con- 

vergence factors fo r  which s t a b i l i t y  can be expected. Figures 2-3 and 

2-8 i l l u s t r a t e  %he degree of convergence tha t  can be achieved by t h i s  

adaptat ion rule. 
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The e f fec t  of the  convergence fac tor  o r  etep s i ze  on the  gradiefit 

. adaptation ru les  can best be i l l u s t r a t e d  by referring t o  Figilre 2-12. 

Figure 2-12a shows a typica l  response pat tern f o r  a conservatively low- 

ga in  system i n  which many steps are required but the  opt!.mum is f i n a l l y  

achieved. Attempting t o  increase the rate of convergence by increasing 

the gain can produce the response pattern of Figure 2-12b i n  which 

i n s t a b i l i t y  is a def in i te  possibi l i ty .  Figure 2-12c shows a compromise 

between low-gain and high-gain operation and i l l u s t r a t e s  the trade-off 

between the rate of convergence and s t a b i l i t y .  While Figure 2-12 is  based 

on discrete  adagtation, a s i m i l a r  e f f ec t  can be expected fo r  continuous 

ada,ptation. In  Figure 2-4 and Table 2-2 it is seen tha t  f o r  f3 = 1 the  

plant t r a j ec to ry  of Example 1 is slowly converging t o  the  model trajectory,  

f o r  @ = 3 fair convergence has been achieved, and f o r  f3 7 5 the  response 

i~ diverging from the  opt i rm.  Thus it is  seen that  the  value of can 

be a c r i t i c a l  fac tor  i n  the design of model reference adaptive control 

syatems by the  continuous gradient ru le  of Eq. 2.4-12. 

One charac ter i s t ic  of the  adaptation ru le  of Eq. 2.4-16 is t h a t  

plant-model e r ro r  n u l l i t y  is never possible as the perturbation control 

s igna l  is a. function of t h i s  error .  However, t h i s  should not be too 

alarming s ince it is not, i n  general, possible t o  n u l l  t h i s  e r ror  f o r  

forced l inea r  systems as is shown i n  Appendix D. One c lass  of systems 

f o r  which t h i s  e r ror  can be nulled is tha t  f o r  which the  plant  and model 

represent t h e  scalar  nth order l inear  d i f f e ren t i a l  equation i n  vector 

notation. Ebcample 1 is a member of t h i s  class and it is eas i ly  seen 

that the  plant model e r ror  can be nulled f o r  d u = xpl + 0.148 xp, 
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Figures 2-4 and 2-7 indicate that nu l l i ty  is approached fo r  appropriate 

values of f3 and T while Figures 2-5 and 2-6 i l l u s t r s t e  the residual 
t T 

error  fo r  A u = - - K *a e . The trade-off between s t a t e  error and 

perturbation control e f fo r t  fo r  the l a t t e r  case is also i l lus t ra ted  i n  

Figures 2-5 and 2-6 and i n  Table 2-2b. It is seen that increasing R 

from zero t o  one i n  the  perfomance index of Equation 2.7-9 reduces the 

amount of perturbation control e f fo r t  but at the same time the state error  

increases. Thw it appears that the inclusion of the perturbation control 

weighting term i n  the perfonarnce index serves the purpose which was 

intended. 

It is not possible t o  null  the  plant-model error fo r  Example 2 i f  

a feedback controller is postulated. In fact,  the steady-state r a t i o  

2 = - 2.4 regardlees of the perturbation control A u . From this  
"P2 
relat ion it is determined that the sues of x = 3.26 and x = - 1.36 

p l  P2 
minimize the index J = (12% d t  i n  the steady-state. The vaiues of 

4 

T 
X 
p l  

and x achieved by gradient adaptation with A u = - K e are 
P2 - -  

very close t o  these optimum velues. Unlike the foregoing, the continuous 

T gradient rule fo r  4 u = - K x and the discrete gradient rule  give - -P 
oscil latory results.  One possible reason fo r  th is  was originally thought 

t o  be the decision t o  adjust two gains a d  the resulting non-uniqueness 

of a value of .I k t o  minimize the criterion. However, later simulations 

f o r  the adjufitment of a single gain, i.e., d u = - k x , showed l i t t l e  
1 p l  

T improvement. Hence, it is felt  that the adaptive rules fo r  4 u = - K x - -P 
are mor? sensit ive t o  the convergence factor 8 than am sinilar rules 

T f o r  A U = - K ~  - I  



2.9 Conclusions 

Several adaptation algorithms have been developed and applied to 

simple examplzs in this chapter. From these and other examples the 

following conclusions b v e  been &sawn: 

1) The Qapunov adaptation rule should receive prime consideration 

for use wi%h those eystems in which the necessary &ate and control matrix - 
elements are independently accessible and in which all the a'l;ates are 

available since it is the simplestto implement and stability is 

guaranteed, 

2) For those sy~tems in which adaptation is necessary but for 

which nulling the plant-model error either is not, of prime importance 

or is not possible, the continuous gradient adaptation rule for 

u = - K e is recommended, in spite of the additional implementation 6, - 
complexi;y, as it has been found to be less sensitive to the value of 

the convergence factor B . 
3) In those situations in which the plant is known to be stabl~ 

and in which continuous monitoring of the process is possible but 

continuous adaptation is not necessary, the discrete adaptation rule, 

despite its complexity, merits consider~tion. 

4) Regardless of which adaptation rule is finally chosen for 

a pa,rticule;r situation, the importance of a detailed simula,+,ion study 

in the desdgn procedure cannot be overly stressed. 



CASE STUDY 

3.1 Utroduction 

The pitch control of e large f lexible  launch vehicle of the Saturn V 

class  hss been chosen t o  denonstrate the applicatior- of the model reference 

design philosophy t o  a system of current engineering significance. A 

l inear  perturbation model of %he Saturn V is developed and a nominal con- 

t r o l  l a w  is specified. An adaptive control loop based on the continuous 

gradient arthod is designed t o  accommodate fo r  any degradatiion i n  per- 

f o r m c e  ar is ing from variations i n  the system parameters. The overall 

system is tested by a d ig i t a l  computer simulation of the time-varying 

model. This model is excited by a worst case design wind which i s  so 

constructed as t o  excite any ins tab i l i t i e s  that are inherent i n  the system. 

22 3.2 Overview of the  Problem 

A s  launch vehicles become p~ogre8sively h r g e r  and more complex it 

likewise becomes progressively more d i f f i cu l t  t o  develop precise mathe- 

matical models of these vehicles. With the  current length t o  diameter ratio of 

better  than ten t o  one, a launch vehicle of the Saturn V class cannot be 

considered r ig id  but must be treated as a free-free beam with a controllable 

torque applied at one end. Thie control torque is exerted by ggiballinp 

the four outer engines of the  booster vehicle. As a consequence of t h i s  

engine gimballing, the e l a s t i c  bending modes of the flexible vehicle are 

excited. If these bending modes are not controlled the s tructural  integri ty 

of the vehicle may be =cesded lad  the  vehicle destroyed. 



Until uw h r g e  "shake tables" have been constructed t o  dynamically 

test the vehicles. Such test ing has produced bendlag profiles from which 

such characteristics as mode shapes and mode natural frequencies mag be 

detezmined. The bremendous s ize of the Saturn V-Apollo configuration 

shown i n  Figure 3.1 makes t h i s  procedure just  margimlly possible and 

the  next generation of bunch vehicles w i l l  probably render it useless. 

Also the current trend is t o  employ the same basic launch vehicle fo r  

t h e  boost phase of several different misa i~ns  and it is  not feasible t o  

shake t e s t  every configuration. Thus the bending characteristics, most 

notably the mtural frequency of each mode, may not be known accurately 

enough for  successful control of the vehicle. This is one reason fo r  

considering a model reference adaptive control loop. 

The control of a Launch vehicle is further complicated by the 

inherent aerodynamic ins tabi l i ty  of the r ig id  body mode. This arises 

from the center of pressure being forward of the center of gravity, a 

condition tbt is  encountered fo r  a l l  but a few seconds of the f l i gh t  

as is s h m  by Figure 3.2. The aerodyzwqic forces tend t o  rotate  the 

vehicle and thus continuous gimballing of the engines i s  necessary t o  

kee? the vehicle in nominal orientation. 

One further ef fec t  that is not considered i n  t h i s  development is 

f u e l  sloahbne; which occurs as fue l  is expended from the ta;nks. For 

completeness, Figure 3.3 shows the frequency spectrum of the Saturn V- 

Apollo configuration during the boost phase. The spread i n  the frequencies 

of the various modes resul ts  from the  time-wrying nature of the problem. 



FIG. 3 - I VEHICAL CONFIGURATION 

105.2 0 + 

(H.mm- 

39.72 • 

0 

-. QIMBAL 

m o o . . - -  
B 
'b ;' 

*=?L* C %@* 

# 
b 

B 
Il--.--- 

- - QIMBAL 
STAT1 ON 
(maim) 



TIME FROM LAUNCH (sac)  

FIG. , a  . C* '3 CENTERS OF PRESSURE 
AND ORAVlTY 



FRE QUEN CV (hertz) 

FIRST SECOND THIRD FOURTH 
'''ID BENDING BENDLNG BE NOIN G BENDING 
BODY MODE MODE MODE MODE 

ENGINE GIMBAL 
SLOSH MODES REACTION NATURAL 

I , " ' .  ZERO FREQUENCY 

4 ,  I 
1 2  3 
I I I I I I 

m m m m w 

FREQUENCY (hertz) 

8 

I 1 1 

FIG. 3-3 BOOSTER FREQUENCY 

SPECTRUM 

w w w w 

0 I 2 3 4 3 
1 



In  smnary, the  control  problem under consideration consists of 

the  control of a time-varying aerociynmically unstable vehicle i n  which 

the measured pi tch and pi tch ra tes  a r e  the superpositiorl of r ig id  body 

motil~n and e l a s t i c  bending motion, the  l a t t e r  often characterized by 

inaccuratie parameter values. 

Equations of Motion 

The first  s tep  i n  the development of a model reference adaptive 

control  system f o r  '.,he Saturn V is the derivation of the  linearized 

perturbation equations f o r  the  vehicle. F i r s t  the r ig id  body equations 

are derived f o r  the  pitch plane under the  assumption of a f l a t  earth. 

The or ientat lon of the  missile i n  the pitch plane i s  shown i n  

Figure 3-4. Three s e t s  of axes a r e  necessary t o  describe the motion 

of the  vehicle i n  t h i s  plane. The first coordinate system has i t s  origin 

at  the  launch point with i t s  X and Y axes aligned with the loca l  hori- 

zontal  and loca l  ve r t i ca l  respectively. This i s  the  i a e r t i a l  coordinate 

system. The X - Y coordinate system is defined re la t ive  t o  the  n 

reference t ra jec tory  as fo l l a r s :  the Xn ax is  is directed tangential  

t o  t h e  nominal t ra jectory and the Yn axis  is  perpendicular t o  it i n  

the  pitch plane. The degree of freedom along the Xn axis  is eliminated 

by allowing the coord:'.ra+te system t o  accelerate w i t h  the vehicle center 

of gravi:;~ i n  the  Xn direction. The th i rd  s e t  of axes moves with the 

or igin at the  vehicle center of gravity. I n  t h i s  body-fixed coordinate 

system the x axis  l i e s  along the  center l i n e  of the vehicle with the  

y ax i s  perpendicular t o  it. 
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The forces act ing on the  vehicle can be decomposed i n  the X and 
n 

Y direct ions  as follows : n 

Fx = (F + R'  cos p - Dj cosf - N s i n q  
n 

- R'  s i n  B s i n q  - m g cos *Fc 

Fy = (F + R -0s p - D) s in?  + N c o s y  
n 

+ R I  s i n  p c o s q  - m g  sin$c (3.3-2) 

SirniI.ax1.y the torques can be summed about the center of gravity t o  give 

with l C p = x  - x  and R = Xcg - xP . The angle PC is the pitch 
CQ CP CQ 

command angle and is determined by the missio~.  prof i le .  

The velocity of the  vehicle with respect t o  the X - Y coordinate n n 

system is  

fram which the  acceleration of the  vehicle is  
- - d i  e -  

a = V c o s Y i + V c o s ~ ~  - V s i n r q i  

* 
+ ; s i n v  3 + v s i n u . 8  + v c o s f v  j (303-5) 

d i  - - - - a - 
However, - = cu x i, a = m x j, and rn = - PC k. With these expressions, d t  d t  

Equation 3.3-5 reduces t o  

- 
a = [i cos - v  sin^ + +  v s i n  e $1 c i 

+ s i n  + V c o s f - 4  - v cos 9 %  j 
C ' I  - 

Not in@; tha t  



and 
a .  a 

d 
4 

y C -- d 
dt ( Y  = (V sinYC) = v sin f + v cos f Y  , n 

Equation 3 . 3-6 further reduces to 
- 
a = [iq+ n sin v;~] T +[;- n v cos 'Y ic] i (3-3-8) 

- - 
From Newton's UIJ, F = m a, the final equations of motion of the 

vehicle in terms of the X - Y coordinate system reduces to 
m [ie+ V sin I ic] = (F + R' cos B - D) 

n 

- N sinq- R' sin B sinp - m g cosFC (3.3-9) 

and 

m [i'- v cos tic] = (F * R' cos B - D) sin 
n 

+ N C O S ~ ~ +  R~ sin B COSY - m g sin )LC (3.3-10) 

These equations can be linearized by making the usual snlall angle approx- 

imations that sin $ 25 x and cos $ 3 1. Hence 

. . R' 
4 

Y =  
N (F+R' - D)q + - +  - p  + V Fc - g sin yc (3.3-12) 

n m rn m 

Since the degree of freedom along the Xnaxis has been eliminated, 

Equation 3.3-11 need not be considered further. 

Launch vehicles are usually programmed to fly a "gravity turn" 

trajectory which is characterized by 

g sin Fc 
v 



!.n which case the  last two terns  of Equation 3.3-12 cmcel.  

The rero&mamic force, N, of Equation 3.3-12 is proportional t o  

the angle of a t tack  and is given by 

Substi tuting Equation 3.3-14 in to  Eqwtion 3.3-L2, allawing fo r  a "gravity 

turn" t ra jec tory  and l e t t i n g  T = F + R' gives 

.. . T-D N ' Y =  ( Q  + ;;;- a +  - n R' e m 

Making s i m i l a r  small angle approximations on Equation 3.3-3 gives 

the pi tch angle equation 

One f i n a l  equation r e h t i n g  pitch angle and angle of at tack may be 

obtained from Fi.gure 3.3-4 by again making small angle approximations. 

This r e k t i o n  is 

Equations 3.3-15, 3.3-16 and 3,3-17 completely describe the l inearized 

r i g i d  body motion of the Saturn V about i ts  nominal trajectory.  

The form of t h e  equations describing the e l a s t i c  bending ef fec ts  i s  

that of a l inear  o s c i l h t o r  driven by a forcing function proportional t o  

the gimbal angle B . These equations are writ ten i n  terms of normalized 



coordinates such that the d e f o m t i o n  at ar. s ta t ion  along the vehicle 

is given by tho value of the  noma1 coordinate multiplied by the mode 

shape coefficient  f o r  tha t  stat ion.  This equation is 

3.4 Wind Disturbance 

The only external  bisturbance acting on the above model of the  

booster i n  f l i g h t  is wind. 'Phe wind a l t e r s  the apparent angle of at tack 

by an amount aw . This can be related t o  the  vehicle velocity and the 

wind velocity by examining Figure 3-5 which is a detailed version of 

Figure 3-4 f o r  a! = = 0.  Considering only horizontal winds, it i s  

seen tha t  

- - 
aw 

- 
v - vw sir. p 

C 

where Vw is the vind velocity. Using nomine1 vrlves of V and $' 
EL wind angle of a t tack  prof i le  can be constructed from the synthetic 

design wind speed prof i le  shown i n  Figure 3 -6. This design wind has 

wind magnitudes t k i t  exceed those of 9576 of the measured winds i n  the  

May-November reporting period at Cape Kennedy, Florida. 24 In  addition 

a gust was added i n  the region of expected murimurn dynamic pressure. 

lhis gust w i l l  tend t o  exci te  any unstable mode of the  vehicle. The 

resul t ing wind induced angle of a t t a c ~  is shown i n  Figure 3-7 and is the 

external disturbance t h a t  is used on a l l  time-varying simulsJ;ions of 

the booster. 



FIG. 3-5 WIND ANGLE OF ATTACK 







3 5 The Control I a w  

The design of a line- control l a w  f o r  s i l ex ib le  launch vehicle 

is cosylicated by the  f ac t  tha t  position and rate gyros measure loca l  

p i tch  and p; t c h  rate which are a superposition of r i g i d  body motion 

and e l a s t i c  bending motion. The outputs of these gJros can be re- 

presented by 

I t 

i n  which Yi (XD) and Yi kRO ) represent the  mode shapes of the re- 

spect t.ve stations. 

While about a decade of frequency separate the r ig id  body mode and 

the  f i rs t  bending mode, several  of the  slosh moiles a re  centered around 

the r ig id  body frequency. Althsugh consideration of the slosh modes i s  

18 beyond the scope of the oresent work, Ril l ings has suggested t h a t  these 

modes be accounted f o r  by r e s t r i c ~ i n g  the cutoff frequency of any ser ies  

compensating f i l t e r  t o  be above one hert- .  With t h i s  r e s t r i c t ion  it is  

f e l t  t ha t  any add i t ioml  phase s h i f t  would not a f fec t  the  s t a b i l i t y  of 

the  slosh modes. 

The con%.iol l a w  f o r  the  work tha t  follows w i l i  be analogous t o  

that determined by Ril l ings i n  h i s  analog sens i t iv i ty  desi*n treatment 

of the booster problem. This control l a w  consists  of a constant gain 

feedback c o n t r d l e r  and a series compensating f i l ter .  The f i l ter  i s  



described by 

i n  which €3 is the gimbal angle t ~ n d  PC the cont.rol in?ut which is 

synthesized from the measured signals or 
b 

Rill ings found tha t  t h i s  control l a w  resulted i n  "optimal" performance of 

the  booster with one bending mode f o r  nominal parameter values. However, 

when the r,atural frequency of the bending mode was decreased t o  8% of 

nominal, the  bobster became unstable. The model reference technique 

w i l l  be employed ir. an attempt t o  a l l ev ia t e  t h i s  condition of in s t ab i l i ty  

t h a t  a r i ses  with variat ion ir the m t u r a i  frequency of the  bending mode. 

3 . 6 State  Equations of the Booster 

Equations 3.3-15 - 3.3-23 completely describe the l inearized 

perturbation model of the Saturn booster. Equations 3.3-15 and 3.3-17 

can be combined t c  give 

These equations can be represented i n  s t a t e  variable form by defining 

the s t a t e  equation 

and the output equation 



where - x is a state vector,  PC the  s ca l a r  control  s ignal ,  A the  vehicle 

state matrix, - b the  c o r ~ t r o l l e r  vector, - u the  disturbance vector, 2 the  

o u t p ~ + -  vector, and C t h e  output measurement matrix. These are given 



I n  order t o  r e s t r i c t  t h e  problem t o  manageable s i z e  while re ta in ing 

a meaningful p k n t  descript ion only the  f irst  e la , s t i c  bending mode has 

been included. A t a b l e  of t he  time-varying values of the  above matrix 

elements is included i n  Appendix E* 

3.7 Model Reference Design 

18 
Ri l l ings  found that h i s  optimal gains were s o  sens i t ive  t ha t  

i n s t a b i l i t y  occurred f o r  var ia t ions  of less than 20$ from the  nominal 

value of t h e  na tu ra l  frequency of t he  first e l a s t i c  bending mode f o r  

t he  Saturn V. The necess i ty  of accommodating f o r  such parameter 

s e n s i t i v i t y  is  t h e  motivation f o r  considering a model reference adaptive 

11 cont ro l  loop, here inaf te r  re fe r red  t o  as the  o ~ t e r - l o o p ~ - ~  i n  addit ion 

t o  t h e  "inner-loop" which is  based on Ri l l ings  ' optimal gains. 

The first question tkt must be considered i s  which of the  design 

algorithms of Chapter I1 is  the  most appropriate f o r  applicat ion t o  the  

booster.  The Lyqpunov design algorithm can be eliminated from consideration 

on two accoimts: f i r s t ,  t h e  seven states of t he  assumed booster model 

are not  a l l  measurable and secondly, t he  elements of the  p lant  s t a t e  

matrix are not  independently accessible as a feedback control  l a w  has 

been specif ied.  One cha rac t e r i s t i c  of the  d i sc re te  gradient  adaptation 

rule is t h a t  no adaptat ion occurs during the  monitoring in te rva l .  Thus 



i f  a condition causing i n s t a b i l i t y  arises during t h i s  t i m e  in terval ,  t he  

booster might destroy itself before a gain adjustment could be made. 

Since s t a b i l i t y  of t h e  booster con t ro l  system is  a major consideration, 

t he  d i sc re t e  gradient  algorithm was a l s o  eliminated leaving the  choice 

t o  one of t h e  two continuous gradient ru les .  The simulations of Chapter 

I1 indicabe t h a t  t h e  continuous gradient  r u l e  f o r  t he  case i n  which the  

perturbat ion con t ro l  s igna l  i s  a l i n e a r  function of the  plant  model e r ro r  

is t h e  less s e x i t i v e  t o  t h e  value of the  convergence fac tor  p; hence, 

t h i s  approach was selected.  However, as w i l l  be seen later, when some 

engineering r e s t r i c t i o n s  are considered, t he  two continuous gradient 

r u l e s  become almost iden t ica l .  

In  wlmt follows, the  reference model of the  booster, not t o  be 
t 

confused wi th  t he  l inear ized  perturbat ion model of the  b o ~ s t e r  upon 

which t h i s  e n t i r e  ana lys i s  is  based, w i l l  be described by Equations 3.6-2 

through 3.6-10 f o r  nominal values of t he  matrix parameter or  

i n  which t h e  a s t e r i s k  denotes t h e  nominal value. The ac tua l  plant  can 

be described i n  a s i m i l a r  manner by 



fn  which some of the  elements of A, namely the natural  frequency of the 
n 

f i r s t  bending mode, a r e  not prc:cisely known and PC represents the  

perturbation control  signal.  Defining the error  vector as 

the  perturbation control  s ignal  is  postulated as 

Selecting as a performance index 

the  adaptation rule ,  Equation 2.4-16, is  

i n  which g and z2, a re  synthesized from f i l t e r s  described by 

A block diagram of t h i s  adaptive control  system is shown i n  Figure 

3-8. To evaluate the  performance of t h i s  system, the seven-state time 

varying model of the  Saturn V was simulated on an I.B.M. 360150 d i g i t a l  

computer. This simulation consists  of integrating a system of 32 

d i f f e r e n t i a l  equations - seven fo r  the  plant, seven fo r  the  model, seven 
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f o r  each of the  two f i l t e r s ,  two f o r  the  adaptive gains Kal and Ke 

and two f o r  the value cf the  cr i ter ion.  Three different  cases were 

considered. 

Everything, including the f i l t e r s ,  was considered t o  be tinle-varying 

i n  the  first case and it was fur ther  assumed t h a t  the  same wind excited 

t h e  plant and the reference rodel. Simulations were made f o r  R = 1 

end f o r  values of B1 = B2 = B i n  the range 100 t o  5000. It l f i  knowpi 

t h a t  the ~nadapt~ed  booster is  unstable f o r  (II = 0.8 and it i s  

seen t h a t  t l  3 reBponse of the booster with adaptation becomes more 

acceptable as the value of @ i s  increased. For f3 = 100, the  value - 
140 

of J = zpTZp d t  i s  25.963 and the maximum value of 9 = 0.597 
s 

meters while f o r  B = 5000, Js = 11.398 and 'I1 = 0.168 meters. 

For @ i n  the  range LOO0 t o  5000, the  adaptive gains Kal and Kd 

converge respectively t o  values i n  the neighborhood of -0.l25 and -0.385; 

t h e  major difference being Lh%t  convergence is achieved at  about 3.20 

seconds f o r  B = 1000 while convergence is achieved abo~lt 10 seconds 

e a r l i e r  f o r  = 5000. This does not mean that 100 seconds i s  needed f o r  

mnvergence since very l i t t l e  adaptation ocdurs before the e l a s t i c  bend- 

ing response becones prominent at about 100 seconds. A sinulation of the 

model is shown i n  Figures 3-9 and 3-10 and a simulation of the adaptive 

control  system f o r  @ = 5C30 i n  Figures 3-11 and 3-12. While a few cycles 

of high frequency bending occur i n  the  neighborhood of 100 seconds in to  

t h e  f l i g h t ,  t h i s  osc i l la t ion  quickly damps out once the  adaptive loop 

has sensed t h i s  unstable condition. This is a major improvement over the  

i n s t a b i l i t y  tha t  occurs when no adaptation is considered. 
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Since an important consideration i n  t he  design of model reference 

con l~ro l le r s  is the  complexity of the  f i n a l  system, it would be desirable 

t o  el iminate t he  necessi ty of time-varying f i l ters .  With t h i s  i n  mind 

a second set of simulations was made with t h e  f i l ters  of Equation 3.7-9 

designed at t = 80 seconds, a time found t o  be representa tqw of t h e  

booster during the  c r i t i c a l  period of maximlan dynamic pressure. The 

simulations with these  time-invariant fi l ters were found t o  d i f f e r  

very l i t t l e  from those f o r  which the  f i l ters  were time-varying. For 

example, t h e  simulation f o r  f3 = 5000 yielaed a value of Jg: = 11.422 

versus J, = 11.398 f o r  t he  corresponding f u l l y  t ime-varying s imu la t  ion. 

As a r e s u l t  of t h i s  s e t  of simulations it is  f e l t  t h a t  acceptable per- 

formance can be obtained with the  use of time-invariant f i l t e r s .  

It was assumed i n  t h e  first two cases t h a t  the  same wind excited 

both the  p lan t  and t h e  model. Since it is  very d i f f i c ~ i t  t o  measure the  

a c t u a l  wind encountered i n  f l i g h t ,  t h e  foregoing may not he a va l id  

assumption. Witb this  i n  mind a t h i r d  set of simulations was studied 

i.n which it was assumed t h a t  the  reference model. pe r fec t ly  followed the  

reference t r a j ec to ry .  In otheza words, it was assumed t h a t  the  reference 

model encountered no external  disturbances i n  which case the  output zrn 
is iden t i ca l ly  zero and the  e r ro r  s igna l  becomes t h e  negative of t he  

p h t  output. Simulations based on t h i s  e r r o r  def in i t ion  and t i m e -  

invar iant  gradient  f i l ters  indicate  t h a t  acceptable performance is  achieved. 

The simulations f o r  5 = (I?", y = 0.9 y*, and y = 0.8 are shown 

i n  Figures 3-13 through 3-18 f o r  = 5000. These simulations are conl- 

pared with those f o r  1)  the "optimal" i raer- loop alone, and 2)  she 

18 
desensi t ized inner-loop designed by Ri l l ings  i n  Table 3-1 and Figure 3-19. 
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Discussion of Results 

The difference i n  performance of the system with and without 

adaptation demonstrates the  effectiveness of the mock1 reference 

adaptive design philosophy. With the experience gained from many computer 

s i m u ~ t i o n s  it i.s possible t o  make some remarks about the resu l t s  obtained. 

Probably the most noticeable character is t ic  of the  model reference 

simulations is  the  presence of several cycl-es of high frequency e l a s t i c  

bending osc i l la t ion  f o r  off-nominal values ~f the nati-lral frequency. 
, 

The peak magnitude of t h i s  bending at  the gimbal plane is 0.2 meters 

which corresponds t o  1.6 meters at the foremost s ta t ion  of the  vehicle. 

It is felt ,  t h a t  such osc i l la t ion  w i l l  be inherent i n  any model reference 

design which operates on only the outputs of the pitch and pi tch r a t e  

gyros as t h e  adaptive controller  must sense the i n s t a b i l i t y  of the  bending 

mode from these signals which contain both bending and r ig id  body 

information before adaptation can proceed. It is seen tha t  the  osci l la t ions  
t 

out quickly once adaptation begins. 

It is f e l t  t h a t  the  significant reduction i n  the  value of the 

c r i t e r ion  J f o r  the  case i n  which the  reference model was assumed t o  s 

follow the nominal t ra jec tory  is due t o  the reduction of the m a x i m u m  

p i t ch  angle from about 1 .5  degrees f o r  the desensitized gains of Ril l ings 
18 

t o  about 0.5 degrees f o r  the model reference design. This reduction i n  

t h e  m a x i m u m  pi tch angle is not unexpected as %he major information content 

of the  gyro outputs is rela ted t o  pi tch and pitch ra te .  

From an engineering viewpoint, the complexity of the  adaptive controller  

is great ly  reduced by the  finding t h a t  tirrs-inmriant gradient f i l t e r s  a re  



adequate f o r  successful  performance. However, there  s t i l l  remains sor~le 

question as t o  whether o r  not t he  adaptive systen "buys" enough 

improvement i n  performance from an engineering viewpoint as t o  off s e t  .';he 

add i t iona l  complexity. 

I n  t h e  first series of simulations i n  which the  same wind was ~ssuriled 

t o  exc i te  both t he  reference model and the  plant ,  it was obsxved t h a t  

the adaptive gains,  Kal and K,;! , converged t o  values i n  the  neighbor- 

hood of -0.125 and -0.385 respectively.  Taking in to  cor.sideratioc t he  

"inner-l~iap" gains of K1 = - 0.8 and K2 = - 0.8 , the  overa l l  control  

l a w  becomes PC = 0.125 Yml +0.385y,  + o . 6 7 5 y p l + 0 . 5 1 5 ~  It 
~2 

is in t e r e s t i ng  t o  note t h a t  the resu l t ing  plant  gains of -0.675 and -0.515 

occupy t h e  same region i n  gain space ss those found by both Ri l l ings  
18 

and Cassidy19 i n  t h e i r  optimal s e n s i t i v i t y  analyses. Thus it would 

appear t h a t  t he  model reference algorithm under invest igat ion converges 

t o  a s ing le  set of gains independent of the  value of the  convergence 

f a c t o r  @ and t h a t  these  gains are i n  hgreement with tiiose found by 

otp,er design techniques. 



CHAPTER IV 

SUMMARY AND RECOMMENDATIONS 

4.1 Summary 

The debign of model reference adaptivz control systems has been 

investigated in this report. Several reasons for considering the model 

reference adaptive philosophy when designing control. systems and several 

characteristics of a "good" model reference adaptive algorithm are dis- 

cussed. Adaptive algorj-thms are derived for lintar systems frol], two 

approaches. The first three algorithms are Lased oil the steepest- 

descent or gradient minimization of positive definite integral per- 

formance indices. The first algorithm attempts to minimize on-li~e 

a weighted integral square plant-model error index while the second 

algorithm attempts to efiect a trade-off between the system error and 

the perturbation control effort by minimizing an index that reflects 

the relative cost of each. An estimate of the optimum step size for 

gradient adaptaticu is inc~rporated into the third algorithm by treating 

adaptation as a discrete process rather than as a continuous process. 

The fourth algorithm is derived from a stability argument that follows 

from Lyapunov's Second Method. These algorithms are applied to two 

second order examples in order to gain insight into such properties as 

convergence rate, stability, error-nulling capability, and error- 

perturbation control effort tradeoff. 

The model reference adaptive control design technique was success- 

fully applied to a large flexible launch vehicle of the Saturn V class. 



The continuous gradient adaptation algorithm i n  which the  perturbation 

con t ro l  s igna l  is postulated ~ . d  a l inea r  function of t he  plant-model 

er rc-  wa.s chosen f o r  applicat ion.  This adaptive system operates on 

only the  measured outputs of t he  p i t ch  a d  p i t ch  rate gyros an6 nowhere 

is  it necessary t o  i s o l a t e  t h e  e l a s t i c  bending response from the  r i g i d  

body reoponse. Simulation s tud ies  show t h a t  t h i s  system reduces 

s ign i f i can t ly  t he  s e n s i t i v i t y  of the  booster t o  var ia t ions  i n  the  na tura l  

frequency of the  first e l a s t i c  bending mode. Subsequent simulations 

indicate  t h a t  acceptable performance can be achieved w i t h  t ine-invariant  

gradient  f i l t e r s ,  designed f o r  an appropriate f l i g h t  time, t h u s  removing 

t h e  necessi ty of implementing time-varying f i l t e r s  i n  the  control ler .  

The encouraging r e s d t s  obtained i n  t h i s  study suggest t h a t  the  philosophy 

3f model reference adaptive control  s~rstern design merits fu r ther  inves t i -  

gat ion with reference t o  app l i cab i l i t y  t o  l a rge  f l ex ib l e  larmch vehicles. 

4.2 Recommendations f o r  Future Work , 

There are several  p o s s i b i l i t i e s  f o r  fu r the r  invest igat ion in to  the  

theory of model reference auaptive control  svstem design. 

It was a s ~ m e d  i n  t h i s  study t h a t  t h e  plant  and reference model 

were the same order. It would be of p r a c t i c a l  i n t e r e s t  t o  inves t igate  

tile conditions under which a plant  can t rack  a lower order model. For 

example, a nineteenth order of the  Saturn V i s  obtained upon considering 

four  e l a s t i c  bending modes, th ree  s losh  modes, and a second order f i l t e r  

i r ~  addi t ion t o  the  ri-gid body mode. Hence, it might be expedient t o  con- 

6 ider  a reference modei wi- .h fewer states i n  order t o  reduce the  complexity 

of t h e  gradient  f i l ters .  



I n  many launch missions it is  desirable t o  l i m i t  t he  lateral d r i f t  

of the vehicle.  Unfortunately, under ce r t a in  condit!.ons a d r i f t  minimum 

cont ro l  system can cause excessive s t r u c t u r a l  loading of the  vehicle. 

Thus it is of ten  necessary t o  switch from a d r i f t  minimum control  system 

t o  a load r e l i e f  control  system during the  period of high djdamic pressure. 

It is fe l t  that the  d i sc re te  gradient adaptation ru l e  wou1.l a f ford  su f f i c i en t  

time t o  obtain a good indicat ion of vehicle performance and t h a t  gain 

adjustments could be made at the  prober t i n e  t o  provide load r e l i e f .  

It -would be in tereot ing t o  attempt t o  determine whether o r  not 

the re  is any cor re la t ion  between the  values t o  which the  adaptive gains 

converge f o r  9. given performance c r i t e r i o n  and those t h a t  are obtained 

from optimal con t ro l  theory f o r  a similar index. 

This study has been l imited t o  l i nea r  p lants .  While the  concept 

of minimizing a posi t ive  def in i te  i n t eg ra l  performance index by the  

gradient  method can be d i r e c t l y  extended t o  non-linear systems, the  design 

of t h e  necessary gradient  f i l t e r s  becomes less w e l l  defihed.. The design 

of such f i l ters merits fu r the r  study. 
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Appendix A 

Survey of Model Reference Adaptive Contro?. 

The philosophy and merits of model reference adaptive control  wac 

discussed i n  Chapter 2 of t h i s  report.  Design algorithms based on 

Qrapunov's Second Method and the minimization of an integral  performance 

index by the gradient method were developed and ~ ~ , p l . i e d  t o  representative 

problems. F . r  the purpose of completeness, several additional,  exist ing 

adaptation ru les  a re  discussed i n  t h i s  Appendix. 

1. Dynamics of a First-Order Model Reference Adaptive System 1,233 

I n  order t o  gain some insight in to  the performance of higher-order 

model reference adaptive systems, consider the  f i r s t  order plant 

which is t o  follow the  model 

x = g ( t )  m 

The s t ruc tu ra l  diagram of t h i s  plant-model combinat.ion and four possible 

variat ions of an adaptive system a r e  shown i n  Figure A-1. 

From Figure A-1 it is seen tha t  three adjustable parameters K1, K 
g ' 

and Kf have been incorporated in to  the  system. Tk;.e general l a w  of 

var ia t ion of these parameters i s  assumed t o  be of the  form 



where Koi, Si, and Kei a re  constant coefficients,  ei is  an er ror  

computed from some well-defined rule ,  and the plus sign is associated 

with K and Kf while the  minus sign is associated with K1 . 
Q 

Consider first the  case i n  which Kui = 0. If the ei a r e  defined 

el 
= (g - x )  sgn x 

e = (g - x )  sgn x 
f 

the dynamical equatiorls f o r  the  various conf iguratdons of Figure A-1 can 

be writ ten.  For example, upon setting $B and KJi equal t o  one, the 

equations f o r  t h e  system of Figure A-lc a re  

T x + (b  + K1) x = Kg g(3) 

K1 
= 1 - K~~ (g - X)  sgn x 

K = 1 + ~  ( g - x ) ~ g n g  
g el3 

Two modes of operation are of interest ;  namely g ( t )  = 0 and. 

g ( t )  = go > 0 .  Upon defining y = T 4 ,  the x-y phase-plane t ra jectory 

equation for  Equation A-1.5 becomes 

For g = 0 ,  equation A-1.6 reduces t o  

2 y = - (b + 1 )  X-Kel x s g n x  



which is  p lo t ted  i n  Figure A-2 f o r  the  four  cases 1 )  b = 0, 2 )  b > 0, 

3)  - 1< b < 0 , and 4) b < - 1 . The points  of equilibrium of t h i s  

system are those f o r  which y = 0 . For t r a j e c t o r i e s  1, 2, and 3, t he  

o r i g i n  of phase space is  of s t ab l e  equilibrium. For b < - 1 , the  

condition y = 0 can be sa"'-lsfied by three values of x. However, only 

f o r  points  O1 and O2 is y of proper s ign t o  re tu rn  t h e  system t o  

equilibrium. Since at these points  of s t ab l e  equilibriur~l x # 0 f o r  

y = 0 , t h e  introduction of adaptation has ma& an unstable system 

(b < - 1 )  s t ab l e  at the  expense of a steady-state e r ro r .  For 

g = go> 0 , defining the  variables 6 = go - x and yl = T 6 

y i e l d s  & - yl phase t r a j ec to ry  equations f o r  equation A-1.5 of the  

The phase-space p l o t  of these  equations i s  shown i n  Figure A-3 f o r  the  

various ranges of b. The s t ab l e  equilibrium points  are 01, 02, 0 and 
3 

O 4  respect ively  which again implies s t a b i l i t y  f o r  any value of b. 

However, f o r  b # 0, there  is always a steady-state e r ro r ,  the  magnitude 

of which i s  dependent on b. 

S imi l ia r  analyses can be ca r r ied  out f o r  the  remaining configurations 

of Figure A-1 and f o r  e r r o r  def in i t ions  d i f f e r ing  from those of Equation 

A-1.4.  Since it i s  indicated i n  Reference 1 that the  bes t  r e s u l t s  can be 

expected from the  con=*iguration of Figure A-lc and t h e  e r ro r  def in i t ions  

of Equation A-1.4, a t t en t ion  has been and w i l l  continue t o  be focused only 

on t h i s  system. 



The e f f e c t  of i n t eg ra l  adaptat ion can be examined by adjus t ing only 

and s e t t i n g  Kel = 0. The dynamical equation A-1.5 f o r  g = 9 re-  

duces t o  

where 

z = /  x sgn x d t  

and r e s u l t s  i n  a x-z phase-plane representat ion of Equation A-1.9 i n  

which 

dz T x sgn x 

I n  t h e  phase p lo t  of Equation A-1 .11 ,  Figure A-4, it i s  seen t h a t  t k e  

value of z w i l l  t end t o  increase f o r  any i n i t i a l  value of x ; 

consequently f o r  free motion, K1 w i l l  increase continuously. For 

g = go>  0, Equation A-1.5 becomes 

upon defining E = go - x and z = $ ~ s g n x  d t .  The 6 -  phase 

t , ra jec tor ies  of Equation A-1.12 have 

d €  
The i soc l ines  (curves of e q ~ a l  - ) are hyperbolas with a singular  dz 

c ornrnon asymptote E - - go and two asymptotes p a r + l l e l  t o  the  - ax is  

as is seen i n  Figure A-5. Sinm f cr & > g o a l l  motion i s  toward the  

boundary & = go , system s t a b i l i t y  may be determined by examining only 

t h e  < go region. This is bes t  accomplished by considering the  6 -z* 



plane i n  which z* = z - b / ~ ~ ~  and 

It is now seen t h a t  t h e  zero isocl ine ,  .* = - '+j , passes 

through the  second and four th  quadrants f o r  any b and that the  t r a j ec to ry  

w i l l  always t w i s t  toward the  equilibrium state E = 0 or x = g. Thus 

when K1 i s  adjusted so le ly  on the  bas i s  of an i n t eg ra l  l a w ,  a s t ab l e  

system with zero steady-state e r ro r  is obtained f o r  any value of b. 

However, i n  free motion, t he  i n t eg ra l  accumulates causing K1 t o  be 

s e t  incorrect ly .  This condition can be remedied by using an e r r o r  

algorithm t h a t  takes  i n t o  consideration any dead-band of the  system. 

A s i m i l i w  analys is  shows that. including the  term Kel # 0 i n  

t he  adaptat ion of K1 
r e s u l t s  i r  improved s t a b i l i t y  a i ~ d  an improved 

t r a n s i e n t  response. When the  adaptation of E i s  considered, it is 
Q 

found t h a t  t h e  inclusion of t h e  i n t eg ra l  term i n  the  adaptst ion l a w  

reduces system a t a b i l i t y ,  impairs t he  t rans ien t  response, but does re- 

s u l t  i n  a zero steady-state e r ror .  

While the r e s u l t s  of t h i s  sect ion a r e  only va l id  f o r  f i r s t -o rde r  

l i n e a r  systems, the  analys is  provided by the  phase-plane technique should 

o f f e r  valuable ins igh t  in to  the  s t a b i l i t y  and steady-state e r r o r  d i f f i -  

c u l t i e s  t h a t  might be =petted i n  higher-order model reference systems 

and a l s o  i n t o  t h e  reasoning behind the  choice of adaptive a.!.gorithrns. 



2. M.I.T. Rule 

The or iginal  model reference adaptive control design algorithm was 

4 developed by Osburn and Whitaker f o r  single input-single output, l inear ,  

time-invlariant systems. The algorithm is  based on the on-line minimize;- 

t i o n  of an integral-square error  performance index. T f  the  response 

e r r o r  is fiefined a B  the difference between the  system output and the  o t t -  

put of an appropriate modal of the  system, E = x - x the performance 
P rn ' 

index is given by 

The ..%-ciation of P I  with the  change i n  a system control parameter K has 

the general character is t ic  shown i n  Figure A-6. The desired psrameter 

m l u e  corresponds t o  the minimum of 'chis PI vs K curve or the  point 

where the slope of the  curve is  zero, 

When the operating value of K d i f fe r s  from tha t  f o r  which the 

optimality condition of Equatior, A-2,2 is sa t i s f ied ,  a well-defined 

technique f o r  adjusting t h e  value of K is required. Defining 

a 
= - aK P.I. , the design objective is t o  drive ( E Q ) ~  towards zero. 

Choosing 6 K a ( E Q ) ~  , the adaptation ru le  becomes 

which is readi ly  observed t o  be nothing other than adaptation based on 

the gradient of the performance index. Interchanging the order of 

d i f fe rent ia t ion  and integration reduces Equation A-2.3 t o  



2 E  an Noting that xm is independent of K, - = a K a K . The implementation 
3x  

-of Equation A-2.4 requires the synthesis of z = 3 This can be 
3 K  

accomplished by either of two methods: straight-forward partial, differ- 

entiation of th.e differential equation for x or by block diagram 
Y 

manipulation. For example, consider the system of Figure A-7 where 

x ( 8 )  
P .  with G - 

q(s) 

xm( 6 ) 
Since ~(s) is unknown, ~ ~ ( s )  =Tm is substituted for ~(s) based 

on the assumption that G,(s) .CS ~ ( s )  for an appropriate model. Thus 

9 is synthesized. represents the transfer f~mtion from which z = aK 

One disadvantage of the M.I.T. Rule is that it can lead to an overall 

system that is unstable. As an example of this consider the system shown 

in Figure A-9 in which the adaptive parameter is Kc. The differential 

equation for. the error E is 



and the adaptive equation basecl on the M, 1.T. Rule is 
- 

If r(t) = R U (t) and the adaptive loop is closed with the system in 
-1 

steady-state, E = (K - K K ) R and v C 

Differentiating Equation A-2.6 and substituking Equation A-2.8 for Kc 

results in the third-order differential eqwtion 

From the Routh Hurwitz criterion, Equation A-2.9 nas a pole in the R.H.P. 

whenever 

which can result in the instability of Equation A-2.9. 

In conclusion, the M, I.T. Rule can be easily implemented for linear 

time-invariant systems to yield good ahptation provided care is taken 

to determine the regions of stability. 

3 . Donaison s Algorithm 
The minimization of a quadradic function of the system error and 

its derivatives by a steepest-descent method is the basis of an adaptation 

algorithm derived by ~onalaon'. Although the algorithm can be applieF to 



all single input-single output, time-invariant, linear systems, an 

appreciation for the development can best be obtained by considering the 

system of Figure A-8. The dynamic equation for the plant is 

with al = gl + kl while for the model 

Three assumptions are basic to the derivation: 

1) gl varies sluwly compared to the basic time-constants 

of the system, 

2) gl varies slowly compared to the rate at which kl 

is adjusted, and 

3) kl is adjusted at tl rate that is rapid when compared 

to the rate at which a,ny function of E and its 

derivatives changes due to changes in r. 

... 
With s= al - g , it is readily apparent that any function .. * I  

f(~, E, E ) is implicitly a function of 6. T ~ u s  f ( ~ ,  E, E ) can be 

thought of as a surface in the Euclidian space of f and 8;  because 
e *  

of assumption 3, f(~, E, E ) can be treated solely as a function of 8 .  
The adjustment of 6 is made so as to describe an instantaneous steepest- 

* *  
descent trajectory along the surface of 'E, E, E ) in the f - 8 
space; the path of steepest-descent being the one for which the maximum 

decrease in f( 6 )  results at every step. 'his is accomplished by 

choosing A 8 proportional, to the negative of the gradient of f; 8 )  or 



s ince A 8 = A 4, A3-3 becomes 

A t  Chis point  it becomes evident thst the implementation of Equation A-3.4 

requires am e x p l i c i t  knarledge of al and thus gl while the objective 

is to develop an algorithm which does not require the knowledge of gl . 
Consequently, an a l te rna t ive  approach is  necessary. 

Vow treat al as fixed, g as variable, and adjust  g such t h a t  

8 approaches zero. This requires that 

If 8 is assumed t o  be small as compared t o  , 8 i s  changed by adding 

4 t o  g . Since the objective is  not t o  change g but al , the  

same change can be obtaineci by subtracting A g from cl . This l i n e  

of reasoning r e s u l t s  i n  an adaptive algorithm of the f srm 

which is  a ;ood approximation t o  Equation A-3.4 as long as 6' is  small. 

As an example, consider 

,. 



a xm The adaptation mle, wLth z = - a~ P with a s s ~ n p t i o n  2, beccnnes 
a i  

Upon d i f fe rent ia t ing  Equation A-3.2 with respect t o  g and then inter-  

changing the  order of dif ferent ia t ion,  it is found tha t  z s a t i s f i e s  

the  l inear ,  nonhomogeneous d i f f e ren t i a l  equstion 

which is of the  same form as that describing the model. The adaptation 

r u l e  Equation A-3.9 is eas i ly  implemented once Equation A-3.10 is  solved 
# 

and E, E, asd E are measured. 

As long as t h e  three assumptions remain val id  and kl is close 

t o  i t s  optimal value, t h i s  technique should provide correct adaptation. 

When kl is not close t o  i ts  optimal value, no such statement can be 

made without an extensive s t a b i l i t y  analysis.  The basic idea described 

here can be readi ly  extended t o  general l inear  physical processes with a 

s ingle  input and output. To be noted, however, is  the necessity of 

measuring E and a l l  i t s  derivativesunless the function t o  be minimized 

i s  independent of these derivatives. Also it appears that the model 

must be of order at least as great  as the highest derivative found i n  



4. Dressler ' s Algorithm 

The adaptive design techniques described thus far require a certain 

for the M . I . T .  amount of on-line computation in the synthesis of - 
8 K  

a rule and z = - 6 for the Donalson algori-thm. 3.M. Dressler has 
a E 

developed a technique tb,at reduces significantly the amount of on-line 

computation necessary. This technique is applicable to systems described 

by linear differential equations of the for-il 

which are subjected to a performance criterion that can be formulated 

in terms of the response of the time-invariant linear differential 

equation 

The basic philosophy of Dressier's develop~nent is to first obtain 

an explicit functional dependence of the perf onnance error, e(t) = Yp(t) 

- Y,(~)Y on the adaptive parameters and then to determine conditions 

0 
relating the incremental error, A e(t ) = e(t + A t ) - e(t ) , and su~ccessful 
adaptation. It is assumed that A t is positive and sufficiently small 

that any change i.a A e(t) is due only to the adjustment of the adaptive 

parameters a d  not to variations in the plant parameters, inp~t or model 

response. It is further assumed that (t ) and A m differ by only a 

"smallt' amount and simi-ly for B (t ) and Bm . The significance of 
P 



these  assumptions i s  apparent upon considering the development of the  

adaptation r u l e  which is  b r i e f ly  presented as follows. 

The solution t o  Equation A-4.2 i s  

t 

with 3 rn ( t )  = e x p km t] . Assuming tha t  

= B m + J B ~  ( t )  

6 it can be shown that 

i n  which 0 ( 6 2 ,  represents those terms containing second and higher 

orders of 6'. From the  def ini t ion of e ( t ) ,  Equations A-4.3 - A-h.5, and 

2  
neglecting 0( 6 ) based on the assumptions, 



The design 3bJective is taken as 

Subst i tu t ing Equation A-4. 6 i n t o  Eqmt ion A-4. 7 and rearrarginq r e ~ u l t s  

where h ( t )  contains only terms t h a t  are not af fected by adaptat ion 

f o r  t f >  t and 

w i t h  ai ( t  ) and bi j ( t )  representing respectively the  elements of 

6 A g ( t )  and &B ( t )  . For Equation A-4. - t o  hold, it is  necessary 
S 

that h ( t )  e ( t )  + a l e ( t )  e ( t )  5 0. It i s  c l ea r  t h a t  b e l ( t ) e ( t )  5 0 

where u; and '( are posit i l* constants. By choosing the adaptive 
i j  
T - ga ins  u = u '  C bmi (4 t ) and 

i j  i j  - - i j = ?/:.cT 1J - $ . ( A t )  - m i  w g e  

e n o m ,  t he  term Ale ( t )  e ( t )  can be made t o  dominate h ( t ) .  Hence, 



the adE;rtation equations are taken to be 

It can be seen from Equation A-4.11 that the only an-line computation 

that must be performed in the implementation of this ~lgorithm is the 

calcula,ticn of the model state - -m x (t). Because of the nature of model 

reference adaptive control systems, this 16 the minimum amount of 

computation that can be expected. This is probably the main advantage 

of the algorithm. 

As is true with all the design techniques discussed thus far, the 

adaptation rules of Equation A-4.3.1 provide effective adaptation as long 

as the basic assumptions remain valid. Huwever, the effect of the 

adaptive gains Dn system stability and rate of adaptation must be examined 

in detail for the particular system under consideration. For example, 

in the system of Figure A-9 Dressler's adaptation rule for Kc is 

for which a Routh-Hurwitz analysis indicates instability for 

This is an exceilent example of the trade-off between stability and rate 

of adaptation that is of critical iaportance in the overall design procedure. 

One possible disadvantage of Dressler's rule is the structure that requires 

the adaptation of the individual elements of 6 A& (t) and 8 B (t) , 
S 



sane of which :night not be accessible in a physical multi-variable system 

in which control is implemented by means of a feedback structure. 

5. Igmpunov Design 

The necessity of an extensive stability analysis in conejunction 

with the implementation of any of the three design techniques examined 

thus far has been repeatedly emphasized. It has been post~leted~'~ that 

this stability analysis can be circumvented by designing the adaptive 

system by a Wapunov approach. The general philosophy is to determine 

a positive-definite quadradic function of the system error, its derivatives 

a d  any ahptive elements which has a total time derivative which can be 

made negative-definite by properly choosing the adaptation rule. This 

guarantees system stability. 

For e~ampls,~ consider the system of Figure A-9 and the positive- 

definite quadradic function 

with x = K - Kv Kc . The total time derivative of Zq. A-5.1 is 

which reduces to 

upon choosing 



The negative-semi-definiteness of Equation A-5.3 insures the  s t a b i i i t y  

9 ,  of t he  system , however, the re  may e x i s t  a steady-state e r r o r  as .' ', 
K = B e R  a n d i s ?  andent of the  system er ror .  lyapunov functions 

C 

s l i g h t l y  d i f fe ren t  of Equation A-5.1 can be found t h a t  y ie ld  

a n  adaptat ion r u l e  antees asymptotic s t a b i l i t y  of the  system. 

8 
A more general  model reference s y ~ t e m  i s  shown i n  Fig. A-10. 

The d i r f e r e n t i a i  equation f o r  the plant  is  

and t h a t  of the  model is 

Defining E = x - x 
PI 

yo = K - Kv Kc, and yi = a - (ail + Kv hi); m i 

i = 1, 2, . , the  d i f f e r e n t i a l  equation f o r  E becomes 

Choosing 



as a l$apunov function where H is the  Hermite matrix of the  homogeneous 

part of Eg. A-5.5 and - e = [El El . . . ] *, the  t o t a l  time der ivat ive  of 

Z being defined as al D ~ - ~  
n 3 

n-3 E + ... E + a  D . If 

Yo 
- - - B Z R  

o n 

If a l l  of t h e  Bi are posi t ive  and H is posi t ive  def in i te ,  i . e . ?  the  

model is  s t ab l e ,  V is  posi t ive  de f in i t e  and V i s  negative semi-definite 

r e su l t i ng  i n  a s t ab l e  systen?. Wthermore ,  if  K i s  posi t ive  and var ies  v 

slowly ( i f  at a l l )  and the  ail vary slowly, Equation A-5.9 reduces t o  

This uapunov design technique can be extended t o  systems i n  which 

t h e  plant is of higher order than the model and t o  p lants  containing 

numercttor zeroes. The basic shortcoming c f  t h i s  technique i s  the  necess i ty  
. . 

of measuring not  only the  system output but a l l  of i t s  derivat ives,  often 



not ava i lab le  i n  a physical system. It is important t o  note the  deriva- 

t i o n  of A-5.11 is based on the  slow var ia t ion of t hc  pla;nt parameters 

K,,, a ll , . and t h a t  s t a b i l i t y  is only guaranteed when these 

assumptions are val id .  However, it is reasonable t o  asslme t h a t  t h i s  

wapunov approach w i l l  be dependable even i f  these assumptions a r e  not, 

s t r i c t l y  s a t i s f i e d .  

5. S t a b i l i t y  of Model- Reference Adaptive Control Systems 

Probably the  s ing le  most i m p ~ r t a n t  aspect of model. reference adaptive 

con t ro l  is  whether o r  not t he  physical p lant  output converges t o  t h a t  of 

the  model and the rate at  which t h i s  convergence takes place. This Is 

i d e n t i c a l  t o  detemining tbe conditions f o r  the  s t a b i l i t y  of the  d i f fe r -  

e n t i a l  equation f o r  t h e  system er ror .  This d i f f e r e n t i a l  equation i s  

general* non-linear and time-dependent and any s t a b i l i t y  analys is  pre- 

sen t s  a r a the r  formidable problem. Previously i n  t h i s  appendix, the  

Ruutb-Huxwitz c r i t e r i o n  has been applied f o r  determining conditions f o r  

s t a b i l i t y .  Hmever, t h i s  method i s  applicable t o  only the  simplest of 

s ing l e  input-single output adaptive systems and w i l l  not be pursued 

f u r t h e r  . 
6 

~ o n a l s o n ~  and Dressler have applied the  Second Method of wapunov 9 

t o  the detern~ination of s t a b i l i t y  conditions f o r  model reference adaptive 

systems. To i l l u s t r a t e  t h e  applicat ion of t h i s  method, consider the  first 

6 
order process described by the  d i f f e r e n t i a l  equation. 

x , t )  = [- a (t) - f (t)] x ( t i  + u ( t )  
P P 



and its associated model described by 

P A n 
x m (t) = - P x m (t) + u(t) ; f . 0 

Equation A-6.1 can be rewritten as 

A 
by def ini~ g f (t) = f - a(t ) - ?(t) and the adaptation rule based on 

Dressler Is algorithm is 

1 
&(t) = u x (t) e(t); u1 > o m A-6.4 

The coupling between the control system, Equation A-6.3, and the adaptation 

mechisr;, A q u  tion A-6.4, can be described by the two-dimensional state 

vector 

- = [I::;] A-6. 5 

# 
N 

Recalling the assumption that f ( x )  0 ,  the state differential equation 

The equilibrium state - @ = - 0 re~uiulres e(t) = 0 and f(t) = 0 or 
* 4 

a(t) + f(t) = f . The stability of this equilibrium point cari be investigated 
by considering as a Qyapmov function 

I o -u x (t) 1 m - - +  
1 

- - 
I x (t) - f 

0 

f e  



The t o t a l  t i m e  ierivative of Equation A-6.7 

/'a 

is 3egative-definite only f o r  f > f . Thub the equi l ib~~ium point - f3 = - 0 
A 

is  s t a b l e  f o r  f > f and as long as t h i s  condition is  sa t i s f ied ,  the 

adaptive mechax~ism of Equation A- 6.1; w i l l  tend t o  nul l  any er. T.or betwe~n 

the plant and the model. However, as I$apunov1s Second Method yields 

only a suff ic ient  condition fo r  s t ab i l i ty ,  nothing def in i te  can be said 
A 

about s ta ,b i l i ty  f o r  f < f . 
The major problem i n  applying t~apunov's  Second Method t o  high 

order systems i s  the  lack of any well-defined methods f o r  constructing 

su i tab le  riyapunov functions. This problem is compounded i n  the study 

of model reference systems as the s t a t e  vector thac must be considered 

is  of order equal t o  the sum of the  plant s t a t e s  and the adaptive elements. 

However, t h i s  method seems t o  be the  only presently available technique,in 

theory at least, .to determine the regions of s t a b i l i t y  f o r  such systems. 

7. summary 

Sel'eral methods f o r  the design of model reference adaptivc control 

systems have been reviewed with the a i m  of providing insight i n t o  the 

philosophy of each. The advantages and disadvantages of each method 

have been discussed b r i e f lv  as has the type of system t o  which each is  

applicable. It is  important t o  reiterate c.me again the  imnortance of 

a thorough s t a b i l i t y  analysis or simulation study i n  the design 

procedure. 



FIG. A-  l o  

b J 

A.L. * 
I 

I t 

g ct3 I I 
K t  

T S +  b 
* 

& 

- 

X 

Kfb 
b 

d 



F I G .  A - I c  

F IG .  A - I d  

r b 

I T 

A.L. 

I 

go) I 
Kg  TS+ b 

X 

K f b  
' 



F I G .  A =  l e  

F I G .  A - 2  

X g ( t )  

F I G .  A m 3  

I - 
TS+ b 

C -- 
i K I - K t  b 

I 

* .-- 
1 

9 

I A.L. 

i 



FIG.  A - 4  

FIG. A - 5 





F I G .  A - 8  

t I 
s e + g , s  + 90 

*@ 
I 

FIG. A - 9  

* . 
I 

P L A N T  

R 

i 

, K  b2s% b,S 
1 & 

MODEL 

4 

I 

K l S  

, b#+ b , ~  
d PLANT 

A 

B' . - 
S 

A 

* 
A 

A.L. 

& 

4 

MODEL 

Xm 
A 

I 
s2+ ii s + g2 





I, N. Krutova and V. Yu Rutkovskii, "Dynamics of First-Order Model- 

Reference Adaptive Systems, " Automtika and Telemekhanika, Vol. 2 5, 

No. 2 (1964). 

I. N o  Krutova and V. Yu Rutkovskii, "Influence of In tegra l s  i n  the  

Coef f l.cien-1; Read justmerit Laws on t h e  Dynamics of Model-Reference 

Adaptive Systems," Automatika i Telemekhanika, Vol. 25, No. 4 (1964). 

I. N. Krutova and V. Yu Rutkovskii, "Investigation of the  Dynamics 

of a Model-Reference Adaptive System f o r  a Plant with Nonlinear 

Character is t ics  and Variable Parameters," Automtika i Telernekhanika, 

Vol. ", No. 6 (1964). 

P. V. Osborn, H o  P. Whitaker, and A. Kezer, "New Developments i n  the  

Design of Model-Reference Adaptive Control Systems, " Ins t i t u t e  of 

Aeronautical Sciences, Paper No. 61-39, IAS 29th Annual Meeting, 

Januaq 1961. 

Dm Do Donalson and C. T. Leondes, "A Mcdel Referenced Parameter 

Tracking Technique f o r  Adapt-J*:* Control Systems," IEEE Trans. on 

Applications an2 Industry, Vol. 82, September 1963, pp. 241-262. 

R. Mv Dressler , "An Approach t o  Model-Referenced Adaptive Control 

Systems, " IEEE Trans, on Automatic Control, Vol. AC-12, No. 1, 

Febra:ry 1967, pp. 75-80. 

P. C. Parlcs, "l$apunov Redesign of Mode!. Reference Adaptive Control 

Systems," IEEE Trans. on Autox,tic Control, Vol. AC-11, No. 3, 

Ju ly  1966, pp. 363-367. 

B. Shackcloth, "&sign of Model Reference Control Systems Using a 

Liyapunov Synthesis Technique," Proc. IEE, Vol. 114, No. 2, 

February 1967, pp. 299-302. 

Po M. DeRusso, R. J. Roy, and C. 11. Close, S ta te  Variables f o r  

Engineers, John Wiley and Sons, Inc., New York. 



Appendix B 

. a • 
Proof t h a t  z = = 5 i 

ak, 

3 '  
n 5 

a 
n 

2 = - - x  
d k, dk, a t  - 

But f o r  l i nea r  systems of t he  form 

i n  which ~ ( t ) ,  ~ ( t ) ,  ~ ( t )  and - u ( t )  are coutinuous functions, 



From t h i s ,  

A 
f o r  ki - K (k,j) and 

a 
NOW since x ( t ) ,  - x( t ) ,  3 a 

a t  - - t ) ,  and .- - - - a t  

are continuous , 



Appendix C 

Derivation of Equation 23 4-16 

- 
Plant : x = A x + B u  

-P P -P P -P 

0 

Model: x = A x + B u  m m -m m -m 

Err or : = x - x  - -m -p 

e = - ym - yp 

I Control: u = u + 
-P -m A :  

Index : T 
J = & J r ? q e +  2 b u  - R d u  - I dt 

I The minimization of J with respect to - u by the method of 
i 

steepest descent requires the determination of the gradient of J with 
A 

respect to k , the vector representation of the elements of K that 

can be adjusted. With this in mind, it is seen that 



This e~cpression can be simplified by observing tLat 

f o r  

and that 

n 
ki 

= K ( 3 ,  k j .  Thus 

Differentiat ing the d i f f e ren t i a l  equation describing the plant par t ia l ly  
n 

witch respect t o  ki r e su l t s  i n  

Thus the idea l  aiaptation ru le  f o r  minimizing t h i s  cost index by the  path 

of steepest descent is 



A 
f o r  k i = K  (3,  k ) .  However, -i z i s a f u n c t i o n o f  A and B both P P' 

of which may be unknown. Thus, an approximation is made and the  adaptat ion 

ru l e  i s  assumed t o  be 

A 
with zi the so lu t ion  bf 



Appendix D 

Two Obser-vations on the Convergence cf Linear 
Model Reference Trajectories 

The in ten t  of t h i s  appendix is  t o  i l l u s t r a t e  two interest ing and 

important observations concerning the convergence of plant t ra jec tor ies  

t o  those of an associated model fo r  general l inear ,  time-invarient systems. 

Consider f irst  the plant described by the d i f fe rerk ia l  equation 

# 
x = A  x + b u  
-P P-P - P 

which is t o  be designed t o  track the model described by 

Assuming that u = u + u , it is  seen t h a t  the  d i f f e ren t i a l  equation 
P m 

f o r  the erz:or, e = x  - x  is - -;,i -p' 

# 

If the error is nulled and i s  t o  remain nulled, e = e = 0 or - - -  

Equation D-4 yields  n equations fo r  A u which are not generally con- 

s i r t en t .  Thus it is not, i n  general, possible t o  t o t a l l y  n u l l  the  e r ror  

between plant  and model f o r  a l inear  system. Ekemination of Equation D-4 

indicates two possible conditions f o r  which the e r ror  can be nulled: 

1) when the plant  and model state matrices are i n  phase-variable form 

and 2)  when a stabse regulator problem i s  considered. 



T C c ~ s i d e r  now the case f o r  which A u = - K x . Under steady-sta%e - -P 
conditions, 

From t h i s  it is seen t h a t  fo r  urn = 1 . C  

wnere I = I 2l 22 • q-l l! &i+l ... a I . Thus the r a t i o  xi : x j  
4 -n 
A 

is independent of the feedback gain matrix and dependent only on the 
T 

plant parameters A and b . A similar resu l t  is cbtained f o r  A u = - K e . 
P - - - 

For the plant  considered i n  EScample 2, 

X 
1 

which resu l t s  i n  j ~ -  = -2.4. Since 
2 

and b = - 



This expression is minimized f o r  

Or x2pss = - 1.36 and xlpSs = 3.26. Hence, these valuss of x IP and 

x would r e s u l t  i n  minimum in t eg ra l  square i f  the  observation time i s  
2~ 

r e l a t i v e l y  long. It is in te res t ing  t o  note t h a t  the  continuous gradient 

T adapta t ion r u l e  with 4 u = -K - - e achieves values of x and x t h a t  
l p  2~ 

are very c lose  t o  these  optimum values. 



Appendix E 

&thematical Description of t h e  Saturn V Booster 

E.1 def in i t ion  of Symbols 

Cross-sectional reference area 

Drag coeff ic ient  

Drag force  

P i tch  plane moment of i n e r t i a  about t he  vehicle 
center  of gravi ty  

Distance from vehicle center  of g rav i ty  t o  gimbal 
point ,  i.e., XCG - Xp 

Distance from vehicle center  of g rav i ty  t o  center of 
pressure, i . e . , 'CG 'CP 

Tc ta l  mass of vehicle 

Generalized mas; of ith bending mode 

Aerodynamic force  

Aerodynamic force  coeff ic ient ,  i .e . ,  N' = Cm Ag 

Dynamic pressure 

Thrust of control  engines 

Tota l  t h rus t  of en@ nes 

Velocity of vehl-cle 

Ve1oci.i;~ r eh t  ive  t o  vind 

Velocity of wind 

Sta t i cn  of center of g rav i ty  

S ta t ion  of center  of pressure 

S ta t ion  of gimbal 



x~ Stat ion of position gyro 

XAo Stat ion of r a t e  gyro 

x ~ ( x )  Noml ieed  displacemenf; of the ith bending mode 
at s t a t ion  X 

Y: (x) Normalized slope at s ta t ion  X due t o  the  ith bending 

Y Direction normal, t o  reference 

a! Angle of %,tack 

a03 
Angle of a t tack due t o  wind 

@ Total  engine deflection 

f i  DBmping r a t i o  of ith bending mode 

? i Generalized displacement of ith bending mods 

J( A t  t i tude ang1.e 

ui 
Nat~ml frequency of ith bending mode 

E . 2  Mathematical Model 

The t im-varying model of the Saturn V used i n  t h i s  study can be 

represented by Eqs. 3.6-2 thraugh 3.6-10. The values of the  time-varying 

elements of the  A and C matrices were calculated at intervals  of four 

seconds and a r e  tabulated on the following pages. Linear interpolation 

was used t o  determine values of the  coefficients f o r  times other than those 

l i s t e d .  
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