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ABSTRACT

The design of model reference adeptive control systems is investi-

gated in this report. Several reasons for considering the model reference

adeptive philosophy when designing control systems and several character-
istics of a "good" model reference adaptive algorithm are discussed.
Adaptive algorithms are derived for linear systems from two approaches.
The first three slgorithms are based on the steepest descent or gradient
minimization of positive definite integral performance indices. The first
algorithm attempts to minimize on-line a weignted integral square plant-
model error index while the second algorithm attempts to effect a tradeoff
between the system error and the perturbation control effort by minimizing
an index that reflects the relative cost of each. An estimate of the
optimum step size for gradient adaptation is incorporated into the third
algorithm by treating adoptation as a discrete process rather than as a
continuous process. The fourth algorithm is derived from a stability
argument that follows from Lyapunov's Second Method. These algorithms are
applied to two second order examples in order to gain insight into such
properties as convergence rate, stability, error-nulling capability, and
error-perturbation control tradeoff.

The model reference adaptive control design technique is successfully
applied to a large flexible launch vehicle of the Saturn V class. The
adaptive controller operatés on only the measured outputs of the pitch and
pitch-rate gyros and nowhere is it necessary to isolate the elastic'bending
response from the rigid body response. Simulation studies show that the
adaptive controller reduces significantly the sensitivity of the booster to

variations in the natural frequency of the first elastic bending mode.

ix.
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CHAPTER 1
INTRODUCTION

l.1 Introduction

As modern control systems become more complex and sophisticated
it becomes necessarr that they be designed with a built-in flexibility
that provides the capability of automatically compensating for parameter
and environmentel variations that may occur during operation. These
variations, which may be deterministic, stochastic, or totally
unpredictable, arise from incomplete or inaccurate modeling of the
physical process and inadequate knowledge of the hostile enviromment in
which the pfgcess operates. The Saturn V booster illustrates both of these
cases as the frequencies of the eluatic bgnding modes are not totally pre-
dictable and the booster must fly throuéh an unknown wind profile. Accord-
ingly, a great deal of effort has been devoted to the study of self-adaptive

self-optimizing, and learning control systems in the past few years.

Aseltine et all and Strcmer2 have compiled extensive bibliog-
raphies of early contributions to the field of adaptive control and have
attempted to classify these techniques into several categories. However,
even tc date there does nct seem to be a universally accepted definitién
of an adaptive control system. For the purpose of fhis report the follow-
ing definition will be considered appliceble:

An adaptive control system is a system which is capable of

monitoring its performance relative to some well-defined

criterion and adjusting certain control perameters in a

systematic menner such as to approach optimum performance
with respect to the chosen criterion.
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This definition of an adaptive control system indicates that adaptation
is a three-step process: 1) identification, 2) decision, and 3)

implementation. These three steps are not always separable but are
always présent in some form.

The identification process involves obtaining a description of the
plant. Several identification schemes have been developed for determining
the impulse response, pole-zero pattern and differential equation which
characterize a plant3. Alternately, -he system identification problem
can be treated from an index of performance (IP) point of view. An IP
has been defined as ."a functional relationship involving system character-
istics in such a manner th;.t the optimum operating characteristics may
be determined froum i’c".u The advantage of the IP is that it encompesses

into a single number a quality measure for the performance of the system.

One well-known IP is integral square error. Definition of a satisfactory
IP is an art rather than a science and no adeptive system can be expected
to perform better than its IP dictates.

The decision process is closely related to that of identification
as the information provided by the latter is used in making any decision
regarding system performance with respect to the optimum as defined by
the IP. If performance is not adequate, & systematic program of parameter
adjustment must be undertaken such as to improve this performance. 1In
most cases this parameter adjustment is not & one-step operation but of

an iterative nature such that the optimum is reached graduslly.

The final stage, that of implementation, consiste of the actual pro-
cese of modifying the system parameters such &s to bring the system

"eloser" to the optimum conditions. This is most often accomplished by



adjusting some type of gain, either in a feedback loop or in a series

compensator, or generating an auxiliary control signal.

Adsptive systems can be clagsified as 1) perameter adaptive or
2) signal-synthesis adaptive. In a parameter adaptive system, a para-
meter of the controller, such as a feedback gain, is adjusted so as to
compensate for unsatisfactory perrormance. Signal-synthesis adaptation
is achieved by generating an suxiliary control signal which when combined

with the primarv control signal will provide improved performance.

One method of parameter adaptation which has received special
attention is the parameter perturbation approech as described by McGrath

and Rideout’ and Eveleigh®

. If the IP is assumed to be a function of k *
adaptive parameters, it may be considered as a hypersurface above a k
dimension hyperplane. The obJect is to find values for the k parameters
that minimizes the IP. By perturbing the adaptive paramesters sinusoidally,
the partial derivatives of the IP with respect to the various adaptive
parameters can be determined by correlation methods. When each adaptive

parameter is adjusted at a rate directly proportional to its corresponding
aIP

oF, ’
proper direction towards the minimum. This is essentially a search of the

partial derivative, i.e., 4 P, o= adaptation proceeds in the
surface along the path of steepest descent. While this method is applica.ble
to a wide class of systems, the choice of the IP is critical as it should
have no relative extrema. at which the gradient is identically zero but an
absolute minimum does not occur. One inherent disadvantage of this method
is the degradation in system performance that arises from continually

perturbing the system.
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A second type of parameter adaptive system that has become quite
popular is the model reference adaptive control system. This type of
system has been studied from several points of view by Osborn7 et al,-
Donalson and Leondese, Shackclothg, Parkalo, and Dresslerll among others.
The performance criterion for this type of system is chosen as a function
of the error between the system and some appropriate model. In re-
ferences 7 and 8 adaptation again proceeds according to the method of
steepest descent. The techniques of Shackcloth, Parks and Dressler,
while not requiring the generation of the partial derivatives necessary
for the steepest descent methods, dc not appear to be applicable to as
large a class of systems as is the steepest descent or gradient maothods.
The merits and pitfalls of several of the most prominent model-reference

adaptive techniques are examined in detail in Appendix A. It is to this

type of system that the remainder of this report is devoted.

Signel-gynthesic adaptation is accomplished by generating sn
auxiliary control signal which should improve system performance. Systems
of this nature incorporate the use of future prediction, based on past
operating history, to synthesize a control signal which optimizes system
performance one interval at a time. In a signal-synthesisz system de-
veloped by Groupe and Cassirla, extrapolation techniques are used for -

identification and error-predictions at discrete time intervals. The

system employs rectangular adaptation pulses of finite duration to minimize

a cost-functional of predicted square errors.

1.2 Orgenization of Report

Chepter II treats model reference adaptive control system design

from two distinct viewpoints. First the concerts of the M.I.T. rule of
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Osborn7 et al are considered with some modifications. Secondly, a

Lyapunov stability approach is investigated. The design algorithms
that are derived are applied to two second order examples in order to
obtain a feel for their applicability. Several conclusions regarding the

properties of these algorithms are discussed.

In Chapter III the model reference technique is successfully
applied to the pitch control of & large flexible launch vehicle. Be-
cause of vehicle flexure, the pitch and pitch-rate gyros measure local
flexure in addition to rigid body motion. If the elastic bending modes
are overly excited, ihe vehicle will break up. Thus, the control of
such a vehicle is of great current interest. The necessity of an
adaptive controller arises from the inprecise knowledge of the frequencies
of these elastic bending modes. Several schemes have been proposed for
attacking this problem. Smyth and Davisl3 have proposed the use of a
notch filter with an adjustable center frequency and Leelu has suggested
the use of redundant gyros to try to cancel the local bending from the
measurements. Kiezer15 et al have applied the M.I.T. rule to the flexible
booster problem but in so doing have assumed that the normalized bending
is measurable. Of these schemes, only the notch filter has had much
engineering success and even this method depends on the bending frequencies
being higher than the speed of response of the closed loop system. For
the present study only first order bending and no slosh modes are included
in the booster model. The outputs of the pitch and pitch-rate gyros are
assumed to be the only aveilable meassurements. The system is subjected

to noise in the form of a wind-gust profile.

g B A LAY
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CHAPTER II
DEVELOFPMENT OF ADAPTATION RULES

2.1 Introduction

This chapter begins with a discussion of the characteristics of
a "good" model reference adaptive control system and the reasons for
considering the model reference technique when designing control systems.
The design of model reference adaptive control systems will be treated
from two distinct viewpoints. One adaptive algorithm will be derived
from a Lyapunov stability argument while several others will be derived
from the steepest descent or gradient minimization of positive-definite
integral indices. Examples are included to illustrate the application

of the various algorithms.

2.2 Description of Model Reference Adaptive Control Systems

This study treats only the class of dynamical systems that can be
described by linear ordinary differential equations. The state-space
representation of such systems is employed throughout; an excellent

E

' ”
reference on this subject is found in DeRusso 21 et al.

The model reference adaptive control system as considered in this
study is represented sci.ematically in Figure 2~1l. In what follows the
characteristics of the adaptive control system can be describz2d by the

following linear differential equation:

2(6) = 4 (6) 5, () + B,(8) m(t) (2.2-1)

¥, (t) = o(t) x(t) | (2.2-2)
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vwhere x (t) = n - dimensional state vector of the adaptive
—P control system.

u (t) = m - dimensional input vector to the adaptive
P control system.

xr(t) = r - dimensional output vector of the adaptive

control system.

Ap(t) = n x n state matrix.

v ]
P
)
~r
i

n x m control matrix, and

Q
~—~
ct
~r
"

r X n output (measurement) matrix.

It is assumed that an arbitrary number of plant parameters, elements of
Ap(t) and gp(t), vary in an unknown manner but such that the structure

of the matrices remains the same.

In classical feedback theory performance criteria are specified
in such terms as rise time, overshoot, bandwidth, and stability. For
the work that follows it shall be assumed that these criteria can be
formulated in terﬁﬁ of a vector linear differential equation that yields
the desired input-output relations. This set of differential equations
will be referred to as the system reference model and can be considered
a8 an implicit characterization of the performence criterion. This

reference model is described by the following:

x,(8) = A () x () + B (+) u (¢) (2.2-3)
Yp(t) = c(e) x (¢) (2.2-4)

M i
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where §m(t) = n - dimensional state vector of the model
Em(t) = m ~ dimensional input vector to the model
Zh(t) = r - dimensional output vector of the model
Am(t) = n x n state matrix
Bm(t) = n x m cantrol matrix
¢(t) = r x n output matrix

It is assumed that the order of the adeptive control system and the re-
ference model are equal. If this is not the case, the model can be
augmented such that the additional states have little effects on the

behavior of the model.

Adaptation can be implemented in either of two ways - the systematic
adjustment of the elements of Ap(t) and/or Bp(t) or the systematic
synthesis of u, = not 4 u. The latter approach is used with the
gradient minimization concept while the former is more amenable to the
Iyapunov stability approach. The actual applicability of these two methods
of implementation to realistic systems will be discussed later in this

chapter.

2.3 General Design Philosophy

Before proceeding with the development of the adaptive algorithms
it is informative to briefly consider two questions relative to model
reference adaptive control systems: 1) when and why are such systems
necessery and 2) what are the characteristics of a "good" adaptive
algorithm? First, as control systems become more advanced and sophis-
ticated it becomes extremely difficult to derive an accurate mathematical
model of the plant while at the same time the performence requirements

impdsed on the plant become more demanding. Tuel 16, Doughertyl7, :
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3111138818, and Cassidylg heve applied the concepts of optimal control
to this problem. The basic concept is to define a variable which re-
presents the sengitivity of the plant trajectory to changes in plant
parameters. These sensitivity variables are then treated as additicnal
state variables and are included in the cost index that is to be
minimized. This technique optimizes, with respect to the chosen per-
formance index, the tradeoff between state response, control effort,
and trajectory dispersion. As a result, its best performance may be
poorer than true optimal performance but its range of acceptable per=-
formance is extended. However, with a precomputed control law it is
always possible, even if highly unlikely, for the plant parameters to
vary to such an extent as to cause instability. On the other hand, a
model reference adaptive control system can always be designed to per-
form "optimally" at nominal conditions by choosing the nominal plant

as the reference model. In addition, adaptation sﬁould reduce any
trajectory dispersions resulting from both off-nominal parameter values,
regardless of the magnitude of these parameter varia*ions, and external
disturbances encountered during operation. Figure 2-2 best summarizes
the level of performance and range of acceptable performance that can be
obtained from 1) optimal control systems designed without semsitivity.
considerations, 2) optimal control systems designed with sensitiviuy
considerations, and 3) model reference adeptive control systems. In
conclusion, there are three principle reasons for considering the model
reference technique: 1) no degradation in nominal performance, 2)
enhancement of stability, and 3) reduction in effects of external dis~-

turbances.
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If there is to be no degradution in performance for nominal para-
meter values, it is necessary that no adaptation occur for zero e.ror.
This implies, not too unexpectedly, that any adaptation algorithm must
be functionally dependent on the system error such that f(e) = 0 for
e =0 . Since one of the reasons for implementing a model reference
adaptive controller is to enhance stability, it is Important that the
plant response converge rapidly to the "optimal" and that the overall
system be stable. From & purely practical consideration, any model
reference adaptive coniroller should not be too complex to implement
or its wvalue becomes questionable. Thus there are at least four
importent characteristics of a "good" model reference sdaptive algorithm:
1) no adaptation for zero error, 2) rapid convergence to the "optimal",
3) stebility of the totsl system, end 4) simplicity of implementation.
It will be seen later that these characteristics are not always totally

independent.

2.4 Continuous Gradient Adeptation

One popular criterion for the design of adaptive control systems
has been the minimization of the integral-square error of the system =
model configuration. This is the criterion that was successfully applied

U et al and led to the well-known M.I.T. rule for model reference

by Osborn
adaptive control system design. This section presents some ramifications

of the M,I.T. rule as applied to vector linear systems.
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2.4.1 O u =K ¥,

Consider the system - model configuration described by Equations
202-1 - 202-1‘ &nd define

é ol SE (2.4~1)
& = Y, -¥,= CE (2.4-2)

In vhat follows, time dependence of all quanti les will not be explicitly
stated in order to simplify the notation, but will be assumed unless

noted otherwise. Choosing

J =f ef Qe at (2.k4-3)

in vhich Q 1is a non~negative definite symmetric matrix as an index

of performance, a reasonable criterion for successful adaptation is the
minimization of J. If the control signal is pestulated as E_p =4 - K _zp »
this minimization reduces to the cetermination of & value of K  such that

J 1is minimized. This minimum occurs vwhen

2 5.0 (2.h-k)
A
for all k‘i 3 ki 3 * 0. Treating J as a hypersurfece in X space,

where K respresents the non-identically zero element of K in vector

form, an on-line search is performed along the surface in a steepest-
A

descent fashion. In other words, X 1s adjusted in the direction of

A
the gradient of J with respect to X . Thus

>
<y

a - 24 (2.4=5)

4k
i A
aki
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1k
’ ’
A
J
or k, a- (<23 (2.4-6)
dk,
From Equation 2.4=3 it is seen that
_@4..“2/9?@-?-9_@ » (2.4=7)
ok ok
i i
vhich results in
' 4
A
k, = =P _e_TQ-%g (2.4=8)
i i
Since
i f— O
gm0
oky
3 ) d
— E = - -_T x = - —T- C.J-(- =
dk ok, ¥ Ak P
i i i
- C 2 X ==02z (2.4=9)
A =p -1 '
Ak,
A
Differentiating Equation 2.2-1 with respect to ki results in
—a-;:=A k) x +B (~-KCz, - lk) (2.4-10)
3 BT L BT R A e S
i i
A | | th
where k, = K(J,k) and 1, is & vector with its J element equal
. B : . o -
to one and all other elements zero. Appendix B shows that —%— X, =2
| , | , | Y- ;

i
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which simplifies Equation 2.4=10 to
2y = Az - B (k cz + Yip !'-J) (2.b4-11)
A P '

where Zy is the rolution of the differential equaticn given by Equation
2.4=11. A close examination of Equation 2.4-11 indicates that it is a

A
function of Ap and Bp = both unknown. Thus ki is adapted according

to an approximation of the true path of steepest descent, namely '

A A N
k, =B, e QCgz (2.4-13)
A
where 2 1 is the solution of
A A
z; =A 2, - B Yp l,j (2.4=1k)

and 51 is a convergence factor. The effects of the choice of ﬂi on
system performance will be discussed later in this chapter. It is noted
that this adaptation rule satisfies one of the criteria for a "good"
‘adaptive algorithm, namely that no adaptation occurs for zero error.

However, the implementation of this algorithm necessitates the generation

of the f\z_i vectors which might involve some rather involved filtering
for high order system. The convergence property will be discussed later
in the chapter.

2-’4’.2 A_\_l = = KE

In the problem formulation of section 2.4.1 the adaptive
criterion was selected as the minimization of only a weighted integral
squere error and no attempt was made to limit the magnitude of the pertur-

bation control term, 4 u . In this part, the control will be postulated
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as P‘-p =u, - K e and a term reflecting the magnitude of the perturbation

control, 4 u ==-Ke , will be included in the performance index. In

SR

other words, the criterion for successful adaptation will be the selection
of K to minimize

J=f[_e:‘ng+ AB_TR Ag_] at (2.4=15)
in vhich Q@ and R are non-negative definite symmetric matrices. Again
A

leting the vector k represent the non-zero terms of the feedback matrix
K and proceeding in a manner similar to that in section 2.4.1, an

adeptation rule of the form

A
ki=ai[ST(Q-a-KTRK)CE/_‘i__TKTRekiJ] (2.4=16)

A A
can be derived in vhich k, =K (3,k) and z; 1s the vector solution to

A r
=A 2, +B (KCz2 -e }_J) (2.4-17)

This result is derived' in Appendix C. It is again seen that no adaptation

occurs for zero system error but that this algorithm is somewhat more

involved in terms of implementation. The convergence properties of this

algorithm will be discussed later in this report.

2.5 Discrete Gradient Adaptation

One of the desired properties of a "good" model reference adaptive
algorithm is rapid convergence of the plant trajectory to that of the
model. For the continuous gradiegt edaptation rules of the previous
section, the speed of convergence is & function of the Bi's. However,

there does not appear to be any reasonsble approach for analytically




17

determining the "optimum" values of the B;'s for continuous adaptation.
However, if the adaptive parumeters are adjusted only at discrete instants
of time instead of continuously, an analytical development for the
"optimum" choice of the Bi's is possible. Pea.rsongo has recently treated
the model reference adaption problem in a similar menner but with a some-

what different motivation.

Consider once again the plant-model configuration of Equations 2.2«1
- 2.2=4 with

v, = ¥, = K1) ¥ (2.5-1)

where K(i) 1is a constant matrix for iT < t < (i+l) T . The basic
concept is to monitor the system during “he time interval iT< t< (i+1)T
and determine that velue of K(i)¥* thet would have resulted in the smallest
value of
J, = e Qe at (2.5-2)

iT

should ' K(i) have been adjusted in the direction of the gradient of Ji.
In other words what value of B(i) would have produced the smallest value

of Ji had

A A
k(i)* = k(1) - (1) g(d) (2.5-3)

A
been used instead of k(i) where
2J |
6 (i) = —= (2.5-14)
P o%
J

It has been previously shown that
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29y P .

—t=- 2 e Qcz, dt (2.5-5)

ok 4 1T ?
where 2z 3 is the solution to

zy=hyzy- B (KCzpy 1) (2.5-6)
However,

N A o)
x*=x +DA Kk + ‘%NAI;:M ) (2.5-7)

A
where Ak = k¥ -k, %, * represents the state trajectory that would
A 2
have resulted from k¥ v (”A x Il ) represents terms reflecting

second and higher order effects, and

D =[.?-l£e s o o] (2'5-8)
From this,
€= x -3
‘ A
E* = x-x%- £ -D ok (2.5-9)

to termg of first order. Choosing

A
8 k(1)

- 6, &l1) (2.5-10)

Eae" = eTq e+2p(1) €Tana(s)

+p(1)% g1)T o' @ D &) (2.5-11)
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(i+1)T
ana 5,8) = [ [éTQ§+2B£TQDG
iJ

+ 6° gT D' QD G ] dt (2.5-12)

The value of £ that would result in a minimum of J,{B) can be found

by setting -5%- 3,(8) =0 or

(1+1)T
f [egTQDg+2ngDTQDg]dt

iT

0 (2.5-13)

from which

Thus to first order terms, the value of

GT G

1 S 2
2 (I+1)T
gT[ f Dt G D dt] G

iT

would have resulted in the smallest value of J i

of search be utilized. Unfortunately, the optimum value of B(i) is

E(1)* = k(1) -

a (2.5-15)

should a gradient type

dependent upon AP and ]3p » both of which may be unknown. Thus again
A
an spproximation must be made and 2z 1 is substituted throughout for

A
2y 5 Iy being derived from

] A
Z,= Az -B

m —i m ykp !‘-,j (2.5-16)

While it can no longer be said that the optimum value of PB(i) is obtained,

experience has shown that this approximation is fairly good.

. o R b S al




20

A question naturally arises as to the proper choice of T. From
experience it has been found that T should be cliosen spproximately
equal to the settling time of the system. Right away this limits the
usefulness of the algorithm as it is difficult to epply it in situations
where plant instability may occur. However, for some classes of systems
it has been found to reduce significantly the instability problem often
associated with gradient forms of adaptation. Again this is at the ex-
pense of additionsl complexity in implementation as the appropriate value

of P must be calculated on-line at each adjustment time.

2.6 ILyapunov Adaptation

One of the major difficulties encountered in model reference adap~

tive control system design has been the determination of the steability
9

properties of the resulting system. Recent work by Shegckcloth” and

Parkslo has uncovered an interesting new approach to the design of such

systems by incorporating ILyepunov's Second Method.el into the design

technique.
Considering once again the plant-model configuration of Equations

2.,2-1 = 2,2-4 with A.m and Bm restricted to be time-invariant matrices

and mainteining Ep =a the differential equation for g =X - EP

b ¢
ecomes § _ Am § + [AM - Ap(t):] ..’Ep + [Bm - Bp(t)] u (2.6-1)
or ’

§.=Am £ *‘A?.‘.p*BEm (2.6-2)




P
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2l

with A= [aid(t)] and B = [biJ(t)]

Choose as a Lyapunov function the quadradic form

n
v-€%a £+ )
i=1 J

n n

m
X 2 1 2
@, %13 * z Z By bid
RS i=1 j=1
(2.6-3)‘\

in which Q 1is a symmetric positive definite matrix to be determined

later, o, > 0, and si,j > 0 . The total time derivative of Equation |

J
2.6=3 is

T T T
v= £ [QAm+Am Q]§+2_E QAx, +

n m
T 1
2_6_ @QBu +2 z z -B-;__ bi.j bi,j +
=1 Jj=] J
l [ 4
2 z a-;; a.ij a.ij (2-6")"‘)
i=
n
Bt gTaAx = » (ETg) (g'x)
i=
(2.6-5)
n
aa  €%eBu = » (£7g) (B w)
i=1
in which Q= —-9'192 gn] ’ AT =[9‘-l’ 8y oo g_.n] 3
T -
a.nd B = L_Bl’ 22 see En] L] If
. T .
= - . -6
8, @ 4 £ Y *3p (2.6-6)
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and ; =-B,€ETq u (2.6-7)
13 13 = 34 %Yym .
° T i
v =¢ [Q A+ A Q] § (2.6-8)

However, if Am is the system matrix of a stable model, there exists
& unique positive definite symmetric matrix Q@ which is the solution

of
AT Q+ Q AT _p : (2.6=9)

in which P 1is also a symmetric positive definite matrix. With this

choice of @ in Equation 2.6-3, V 1is a positive definite quadradic
o

form while V 1s a negative definite quadradic form. This guarantees

that the adaptive system is stable and should operate in the neighbor-

hood of the origin in § -spa.ceal .

Equations 2.6-6 and 2.6~7 provide a rule for adapting the individual
elements of AP and Bp. Unless the time-varying nature of Ap and Bp
is known, which is not usually the case if adaptation is necessary, the
successful implementation of these rules is limited to time~invariant
or slowly-time-varying plants. In many linear systems the individual
elements of the state and control matrices are not accessible and control
must be implemented by a feedback structure. When this is true, the only
adjustable parameters are the feedback gains and not the individual state
matrix elements. For example, the closed-loop representation of & time-

invariant scalar control problem with u=m - L(T _J_C_p tekes the form

x, = [Ap-gpf]_;gp+p_pm | (2.6-10)
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and
[ 4
x = A x +tb (.26-11)
For this case it is seen that
0 o
= b k o D=
8y, py X3 (2.6-12)

[ 4
which will generally result in inconeistent values of kJ

of Equation 2.6=6. Even for systems in which Ep contains only one

upon application

non-zero element, bpl # O , the implementation of the resulting unique
kJ 3 J= 124065, n .may not explicitly guarantee stablility Jjust as

constraining some of the ;ij =0, 1¢# £ , may not lead to the satis-
faction of the conditions for stability. Thus for systems in which the
structure allows access only to a set of feedback gains, the adaptation

rules of Equations 2.6=6 and 2.6-T are not directly applicaﬁle.

One further limitation of this algorithm is the necessity of
measuring all of the states of the system which might be an unrealistic
requirement for certain classes of systems. However, for those systems
for which this adaptaéion rule is applicable, it is deserving of prime
considerstion as little on-line computation is necessary and stability.

is insured.

2.7 Illustrative Examples

To illustrate the application of the adaptive algorithms derived
in sections 2.4, 2.5, and 2.6, two simple second order examples are
considered. The results obtained for the various algorithms are compared

in terms of time-response and integral=-square error.




2.7.1 Example 1

=

The plant for this example is described by the vector differ-

ential equation
. 0.0
x -

P ] 2.k
and the model is described by

0.0

x
IR PR 1

With no adaptation, this plant is stable but will exhibit a steady=-state

4

error for um = 1.0 .

.0 . :

1 X+ 001 4 (2.7-1) ;
-1.5 P 1.0 p |
|

1.0 0.0 |

x + u (2.7=2) ‘z

-1.352 | 7" 10 | " |

2.7.1-a Lyapunov Adaptation

From Equation 2.6-6 the Lyapunov adaptation rule for this

example 1is T
o T~
o1 = %y (Gp @ + gy &) x ) (2.7-3)
L
eon = % (p & * 9p ) X,
where Q 1s the positive definite symmetric matrix solution of
ATQ+QhA =-1I (2.7-K)
m m *
or
1.371 0.354
Q= 1
0.354  0.631 (2.7-5)
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Thus &p1 = %y (0.5 e, + 0.707 e2) xpl (2.726)
[
and 8pp = Op (0.5 e, + 0.707 ee) xp2

Simulations of plant responses arising from this adaptation algorithm

are shown for various values of Gy, = Opp in Figure 2-3.

2.7.1=-b Continuous Gradient Ada.gtation

For L §T Xy the minimization of

J=f_§T§_ at (2.7-7)

by the continuous gradient method yields the adaptation rules, Equation

2.4-12,
o T
,= Be z (2.7-8)
’ = B eT Z
L= P2 3
With [ 000 lco 0.0
A z, = . Zo o= X, 3 1=1,2
1 -1k -1.352 3 | 20 pi

the forms of the appropriate filters for Zy and 2z - Simulation

responses are shown in Figure 2-4 for various values of B .

Choosing the perturbation control Au = - 5’1‘ e , the steepest

descent minimization ox

J =f(gT_e_ +R &) at (2.7=9)
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results in the adaptation rule, Equation 2.4-16,

> T Vi T
k; =p q¢" |I+RKK |z, ~-Re"Ke; ) ;5 1=1,2 (2.7-10)

wvhere 2z and 2, are synthesized from filters described by

> 0.0 1.0 . 0.0
-2 41k -1.352 1.0
(2.7=11)

Simulation responses are shown as a function of B in Figure 2-5 for

R=0 and in Figure 2-6 for R = 1.

2.7.1-c Discrete Gradient

Applying the discrete adaptation rule to the index

(1+2.)T
J; = f g_Tg dt ' (2.7-12)
iT
results in the adaptation rule
Kigg = K-8 & (2.7-13)
with
(i+1)T
T =-2 e |2,z |at (2.7-1%)
21 - - =1’ =2 *
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T
G G
1 =i =i
ﬁi = 'é' <2°7'15)
(i+1)7T
T Tr
G [ f l:-z-l’ 52] [-“-1’ i"e] dt] ]
iT
and the z, are the outputs of filters characterized by
. 0.0 1.0 0.0
2, = z, = x ., 1=12
-1 -] Pi’ s
-l.’-l-lll- -10352 1.0 (2.7'16)

Simulation responses'are shown for several values of T in Figure 2-7.

The integral-square error for these four cases is tabulated in

Tables 2-1 and 2-2.

2.7.2 Examgle 2
The plant for this example is described by the differential

egquation

. 0.4 1.6 1.0
= X+ u (2.7-17)

-201 ,'"-b‘ l.O

w

+ u (2.7-18)
-1.6 -1.9 1.0
Once agein the plant is stable but will exhibit a steady-state error for
up =u = 1.0. However, unlike in Example 1, it is not possible to totally

null this steady-state error with a feedback controller as is discussed in

Appendix D. Zrror nulling can be achieved only if it is possible to

i
;
?
i
i
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A.

B.

Lyapunov

Discrete Gradient

o« !

10
_ T
Jg = f ee dt
o J
8
0.0 0.7926
1.0 0.5947
3.0 0.3241
5.0 0.2022
10.0 0.0964
20.0 0.0417
T Jg
10.0 0.7926
2.0 0.251k4
1.0 0.1834
TABLF 2-1

33
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A. Continuous Gradient - Au=-K x
P Jg g Jg
0.0 0.7926 2.75 0.3009
1.0 0.5186 3.00 0.2932
5.0 0.3423 3.25 0.2888
10.0 0.7606 3.50 0.2878
20.0 1.2050 b 375 0.2899
B. Continuous Gradient - Au = - _l_(_T e
R=0 R=1
P JS J au P JS T Au
0.0 0.7926 0.0 0.0 0.7926 0.0
10.0 0.4571 0.4563 10.0 0.5593 0.1794
30.0 0.3259 ' 0.9099 50.0 0.5060 0.2340
50.0 0.2721 1.0910 100.GC 0.5057 0.2282 ‘
100.0 0.2090 1.3290 200.0 0.5032 0.2274

TABLE

2-2
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independently adjust the state matrix elements apla, ‘pel’ and apee.

2.7.2=a Lyapunov Adaptation

If the individual elements of the plant state matrix are
independently accessible, the Lyapunov adaptation algorithm of Eq. 2.6-6

can be applied and gives

o o

pi2 = O (&g ay; * ey a) xp

o
|

21 - %y, (&) a5 + &, ay,) X0 (2.7-19)

epp = O (&) 9 + & ap) X,

2.39 0.91
0.91 0.79

where Q

is the solution of
ATQ+QA=-I (2.7-20)
m m * /

Simulation of plant responses arising from this adaptation rule are shown

in Figure 2-8 for various values of Oy =0y =0Qpp = Q.

2.7.2-b Continuous Gradient Adaptation

In those situations in which the state matrix elements are not

independently accessible it may be convenient to postulate a feedback

structure for the perturbation control signal. For A u = - 5? Xy

the on-line minimization of
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gives the adaptation rule, Eq. 2.4-12,

¢ T

K, =By & 2, i=1,2 (2.7-22)
with Z4 and 2 synthesized from filters characterized by

. 0.4 1.1 J..O-'i

Z = z, - x (2.7-23)

1ol -19 1 1.oJ pi

Simulation responses were obtained for two cases: 1) adaptation of K 1
only and 2) adaptation of both X, and K, . Since the responses of
these two cases were similar in nature, only those for case 1 are shown
in Figure 2-9 for various values of Bl .

Pogtulating the perturbation control signal as Au-- _IET e

and the performance index as

J = f(ng +R & d)at (2.7-24)
gives the adaptation rule, Eq. 2.4-16,

K = B, e+ RKX) gi-RET!Se

" i=1,2 (2.7-25)

i ;

with end 2z, derived from the appropriaste filters. Simulation

Z )
responses were obtained for R=0 and R =1 for several values of £ .
Since these responses were relatively insensitive to the value of R, only

those for R = O are showa in Figure 2-10.

2.7.2-c Discrete Adaptation

The discrete adaptetion rule of Egs. 2.5-15 and 2.5-16 was applied

to the performance index
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Jy= ee dt (2.7-26)

for the cases in which 1) only K, vas adjusted and 2) both K ; and
K2 were adjusted. Since the simulation responses for the two cases were
oﬁce again similar in nature, only those for the second case are shown

in Fig. 2=-11 for various values of T .

2.8 Convergence Rate, Stability, and Error hulling

The interaction of the rate of convergerice and stability plays an
important role in the design of model reference adaptive control systems.
Although only lineai plants have been considered in this study, the
addition of an adaptive control ioop results in a non-linear system.

In what follows, a model reference control system will be considered
stable if the plant output converges to that value which satisfies the

design criterion.

The convergence rate of the Iyapunov adaptation rule is seen from
the two examples of the previous section to be dependent on the value of
the “13
Since this sdapiation rule is derived from a Btability consideration,

terms while Bimilar dependence has been found on the Bij terms.

system stability is guaranteed as long &8 the necessary assumptiOnéﬂfemain
valid. When this is not the case, further investigation, in all probability
of a simulation nature, mey be necessary to determine the range of con-
vergence factors for which stability can be expected. Figures 2-3 and

2-8 illustrate the degree of convergence that can be achleved by this

adaptation rule.
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The effect of the convergence factor or step size on the gradient
adaptation rules can best be illustrated by referring to Figure 2-12.
Figure 2-12a shows a typical response pattern for a conservatively low-
gain system in which many steps are required but the optimum is finally
achieved. Attempting to increase the rate of convergence by increasing
the gain can produce the response pattern of Figure 2-12b in which
instability is a definite possibility. Figure 2-12c shows a compromise
between low-gain and high-gain operation and illustrates the trade-off
between the rate of convergence and stability. While Figure 2-12 is based
on discrete adaptation, a similar effect can be expected for continuous
adaptation. In Figure 2-4 and Table 2-2 it is seen that for B = 1 the

plant trajectory of Example 1l is slowly converging to the model trajectory,

for B = 3 fair convergence has been achieved, and for £ » 5 +the response

is diverging from the optimum. Thus it is seen that the value of P can
be a critical factor in the design of model reference adaptive control

gystems by the continuous gradient rule of Eq. 2.L4-12.

One characteristic of the adaptation rule of Eq. 2.4=16 is that
plant-model error nullity is never possible as the perturbation control
signal is & function of this error. However, this should not be too
alarming since it is not, in general, possible té null this error for
forced linear systems as is shown in Appendix D. One class of systems
for which this error can be nulled is that for which the plant and model
represent the ccalar th order linear differential equation in vector

notation. Example 1 is a member of this class and it is easily seen

that the plant model error cen be nulled for A u = Xyt 0.148 x e
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Figures 2-4 and 2-T indicate that nullity is approached for appropriste
values of P and T while Figures 2-5 and 2-6 illustrate the residual
error for Au = - _lg‘r_g_ » The trade-off between state error and
perturbation control effort for the latter case is also illustrated in
Figures 2-5 and 2-6 and in Tsble 2-2b. It is seen that increasing R
from zero to one in the performence index of Equation 2.7-9 reduces the
amount of perturbation control effort but at the same time the state error
increases. Thus 1t appears that the inclusion of the perturbation control

weighting term in the performance index serves the purpose which was

intended.

It is not possible to null the plant-model error for Example 2 if

a feedback controller is postulated. In fact, the steady-state ratio

X
;{P}- = = 2.4 regardless of the perturbation control A u . From this

P2

relation it is determined that the values of xpl = 3,26 and x o2

minimize the index J = f_e_T_e_ dt 1in the steady-state. The values of

= = 1.36

X and xp2 achieved by gradient adaptation with Au-=- _1_(_T_§_ are

Pl
very close to these optimum velues. Unlike the foregoing, the continuous
gradient rule for 4 u = - _l_{_T 3:_1) and the discrete gradient rule give
oscillatory results. One possible reason for this was originally thought
to be the decision to adjust two gains and the resulting non-uniqueness |
of a value of k to minimize the critérion. However, iater simulstions
for the adjustment of a single galn, i.e., A U= = kl xpl » showed little
improvement. Hence, it is felt that the adaptive rules for Au = - l(_T %
are mor: sensitive to the convergence factor £ +than are gimilar rules

forAu=-§Tg



k5

2.9 Conclusions

Several adaptation algorithms have been developed and applied to
‘ simple examples in this chapter. From these and other examples the

following conclusions have been drawn:

1) The Lyapunov adaptation rule should receive prime consideration
for use with those systems in which the necessary state and control matrix
elements are independently accessible and in which all the states are
available since it is the simplestto implement and stability is
guaranteed.

2) For those systems in which adaptation is necessary but for
which nulling the plant-model error either is not of prime importance
or is not possible, the continuous gradient adaptation rule for
Au=-Ke ie recommended, in spite of the additional implementation
complexity, as it has been found to be less sensitive to the value of
the convergence factor B .

3) In those situations in which the plant is known to be stable
and in which continuous monitoring of the process is possible but
continuous adeptation is not necessary, the discrete adaptation rule,
despite its complexity, merits consideration.

4) Regardless of which adaptation rule is finally chosen for
a particular situation, the importance of a detailed simulation study

in the desdgn procedure cannot be overly stressed.




CHAPTER 1III

CASE STUDY

3.1 Introduction

The pitch control of a large flexible launch vehicle of the Saturn V
class has been chosen to demonstrate the application of the model reference
design philosophy to & system of current engineering significance. A
linear perturbation model of the Saturn V is developed and a nominal con-
trol law is specified. An adaptive control loop based on the continuous
gradient method is designed to accommodate for any degradation in per-
formence arising from variations in the system parameters. The overall
system is tested by a digital computer simulation of the time-verying
model. This model i1s excited by & worst case design wind which is so

constructed as to excite any instabilities that are inherent in the system.

3.2 Overview of the Problem =

As launch vehicles become progressively larger and more complex it
likewlse becomes progressively more difficult to develop precise mathe~
matical models of these vehicles. With the current length to diameter ratio of
better than ten to one, a launch vehicle of the Saturn V class cannot be
consldered rigid but must be treated as o free-free beam with e controllable
torque applied at one end. This control torque is exerted By gimballin~
the four outer engines of the booster vehicle. As a consequence of this
engine gimballing, the elastlic bending modes of the flexible vehicle are
excited. If these bending modes are not controlled the structural integrity

of the vehicle may be exceeded and the vehicle destroyed.
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Until now large "shake tables" have been constructed to dynamically
test the vehicles. Such testing has produced bending profiles from which
such characteristics as mode shapes and mode natural frequencies may be
detexrmined. The tremendous size of the Saturn V-Apollo configuration
shown in Figure 3.1 makes this procedure just marginally possible and
the next generation of launch vehicles will probably render it useless.
Also the current trend is to employ the same basic launch vehicle for
the boost phase of several different missions and it is not feasihle to
shake test every configuration. Thus the bending characteristics, most
notably the natural frequency of each mode, may not be known accurately
enough for successful control of the vehicle. This is one reason for

considering a model reference adaptive control loop.

The control of a launch vehicle is further complicated by the
inherent aserodynamic instability of the rigid body mode. This arises
from the center of pressure being forward of the center of gravity, a
condition that is encountered for all but a few seconds of the flight
as is shown by Figure 3.2. The aerodynamic fcrces tend to rotate the
vehicle and thus continuous gimballing of the engines is necessary to

keer the vehicle in nominal orientation.

One further effect that is not considered in this development is
fuel sloshing whiéh occurs as fuel is expended from the tanks. For
cgmpleﬁeness, Figure 3.3 shows the frequency spectrum of the Saturn V-
.Apollo configuration during the boost phase. The spread in the frequencies

of the various modes results from the time-vurying nature of the problem.
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In summary, the control problem under consideration consists of
the control of a time-varying aerodynamically unstable vehicle in which
the measured pitch and pitch rates are the superposition of rigid body
motiun and elastic bending motion, the latter often characterized by
inaccurate parameter wvalues. |

3.3 Equations of Motion -2’ 27

The first step in the development of a model reference adaptive
control system for Lhe Saturn V is the derivation of the linearized
perturbation equations for the vehicle. ¥First the rigid body equations

are derived for the pitch plane under the assumption of a flat earth.

The orientation of the missile in the pitch plane is shown in
Figure 3-k4. Three sets of axes are necessary to describe the motion
of the vehicle in this plane. The first coordinate system has its origin
at the launch point with its X and Y axes aligned with the local hori-
zontal and local vertical respectiveliy. This is the inertial coordinate
system. The Xrl- Yn. coordinate system is defined relative to the
reference trajectory as follows: the Xn axis is directed tangential

to the nominal trajectory and the Yh axis is perpendicular to it in

the pitch plane. The degree of freedom along the Xn axis 1is eliminated

by allowing the coordinate system tu accelerate with the vehicle center
of graviiy in the Xn direction. The third set of axes moves with the
origin at the vehicle center of gravity. In this body-fixed coordinate
system the x axis lies along the center line of the vehicle with the

y axis perpendicular to it.

M g
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The forces acting on the vehicle can be decomposed in the X n and

Yn directions as follows:

Fxn= (F+R cosp - D) cos@ - N sin¢

-R' sin B sin(P - m g cos ¥, (3.3-1)
FYn= (F + R' ~0s B - D) sin? + N cos?

+R' sin B cos? -meg sin¢c (3.3-2)

Similarly the torques can be summed about the center of gravity to give
— - - ' -
1@ = -nf-r L, s (3.3-3)

with Icp = xcg - xcp and jcg = xcg - xB . The angle ;c is the pitch

command angle and is determined by the missior profile.

The velocity of the vehicle with respect to the Xn- Yncoordinate

systen is
V=VecosYi+Vsein¥ j (3.3-4)

from which the acceleration of the vehicle is

E=VcosYI+Vcos‘(-g‘—i- -VsinY ¥

e

. - . L
+Vein¥ J+ Vein¥ 3 +VeosV Y (3.3-5)
i = _ 7 a4 = .= - o=
However, i owxi, it " wx j, and w= - 'ﬁc k. With these expressions,

Equation 3.3-5 reduces to

;=[VcosY -VsinYV+Vsin92,c] i

+ Ef sin Y + V cos Y"} - V cos G‘X«C-J J. (3.3-6)
NQting that oo P o ) .
X=-%¥ (X)=-%E(Vcos()=Vcos'r-VsinYY‘
n n

(3.3-7)

S bR
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and

d

(X ] > d ™y ¢
Yn.-. - (yn)=.- R(vSinY') =Vein ¥ +VecosYY |,

BEquation 3.3-6 further reduces to

Z=[x+Vs1n Y”p]i-f[Y-Vcos ‘ric 3 (3.3-8)

From Newton's law, F = m a., the final equations of motion of the

vehicle in terms of the X - Y coordinate system reduces to
[ .
1
m[Xn+ V sin \”Lc] =(F+R cos B -0D) cosép
1
- N sin (p - R sin B sin(P - mg cos %c (3.3-9)

and

m[Y-VcosY?] (F + R' cosB-D)sinq/

+ N cosCP+ R' sin B cosq}- m g sin )Lc (3.3-10)

These equations can be linearized by making the usual snall angle approx-

imations that sin X 2= x and cos Z % 1. Hence

o’

_ F+R' -D N o ,
xn_ = - D- g cos F.- Ve %c (3.3-11)

v= EE2 =@+ L+ a+vE -estm¥ (3312

Since the degree of freedom along the Xn axis has been eliminated,

Equation 3.3-11 need not be considered further.

Iaunch vehicles are usuelly programmed to fly a "gravity turn"

trajectory which is characterized by

V.= —— (3.3-13)
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in which case the last two terms of Equation 3.3=12 cgncel.
The aerodynamic force, N, of Equation 3.3-12 1s proportional to
the angle of attack and is given by
N=N o (3.3-14)

Substituting Equation 3.3-14 into Equation 3.3-12, allowing for a "gravity

turn" trajectory and letting T = F + R' gives

2 T=Dy (@ N' R
Y= T)q o a+ P (3.3-15)

Making similar small angle approximations on Equation 3.3-3 gives

the pitch angle equation

(X

N' (c R'
é = - (—T—B) a - (—-I—-ﬁ) B (3.3-16)

One final equation relating pitch angle and angle of attack may be
obtained from Figure 3.3-4 by again making small angle approximations.

This relation is

a-a=¢- % (3.3-17)

Equations 3.3=15, 3.3=16 and 3.3-17 completely describe the linearized

rigid body motion of the Saturn V about its nominal trajectory.

The form of the equations describing the elastic bending effects is
that of a linear oscillator driven by a forcing function proportional to

the gimbal angle B . These equations are written in terms of normalized

e,

i 5 B SRR i . S T g N A

isor s AR SRy A} A
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coordinates such that the deformation at any station along the vehicle
is given by the value of the normal coordinate multiplied by the mode
shape coefficient for that station. This equation is

e . R'Y, (X.)
2. 11X
My *2f oghy toh, -

g (3.3-18)

mny

3.4 wWind Disturbance

The only external disturbance acting on the above model of the
booster in flight is wind. The wind alters the apparent angle of attack
by an amount o, - This can be related to the vehicle velocity and the

wind velocity by examining Figure 3-5 which is a detailed version of

Figure 3-4 for « (F = 0. Considering only horizontal winds, it is

seen that }D
V.. cos]

a = — s — | (3.4-1)
V-V osin F

c

where Vw is the wind velocity. Using nominel velues of V and #”C
& wind angle of attack profile can be constructed from the synthetic
design wind speed profile shown in Figure 3-6. This design wind has
wind magnitudes that exceed those of 95% of the measured winds in the
May-November reporting period at Cape Kennedy, Flozc*ida..z,+ In addition
a, gust was added in the region of expected maximum dynamic pressure.
This gust will tend to excite any unsteble mode of the vehicle. The
resulting wind induced angle of attack is shown in Figure 3-7 and is the
externsl disturbance that is used on all time-varying simule.ions of

the booster.
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3.5 The Control law

The degign of a linear control law for a r'lexible launch vehicle
is complicated by the fact that position and rate gyros measure local
pritch and pitch rate which are a superposition of rigid body motion
and elastic bending motion. The outputs of these gyros can be re-

presented by

‘PD= 4}+ z Yi' <xD) M, (3.5-1)

i

éRG"' 4)+ Z Yig Xpg) ;i 1 (3.5-2)
i

[
in vhich ¥, (XD) and Yi'(xR g ) represent the mode shapes of the re-

spective stations.

While about a decade of frequency separate the rigid body mode and
the first bending mode, several of the slosh modes are centered around
the rigid body frequency. Although consideration of the slosh modes is
beyond the scope of the vnresernt work, Rillingsl8 has suggested that these
modes be accounted for by restricuing the cutoff frequency of any series
compensating filter to be above one hert~. With this restriction it is
felt that any additional phase shift would not affect the stability of.

the slogb modes.

The control law for the work that follows will be analogous to
that determined by Rlllings in his analog sensitivity des.xgn treatment
of the bouster problem. This control law consists of a constant gain

feedback controller and a series compensating filter. The filter is

s Bl SR
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described by

el = 2 (3.5-3)
c s + 10 s + 50
in which B8 is the gimbal angle and Bc the control input which is
synthesized from the measured signals or
= 0, + 0. (2, 5w
Bc 8¢D 0.8 C(RG (3.5-4)

Rillings found that this control lew resulted in "optimal" performance of
the booster with one bending mode for nominel parameter values. However,
wvhen the ratural frequency of the bending mode was decreased to 80% ct
nominal, the booster became unstable. The model reference technique
will be employed in an attempt to alleviate this condition of instability

that arises with variation ir the naturai frequency of the bending mode.

3.6 State Equations of the Booster

Equations 3.3~15 - 3.3-23 completely describe the linearized
perturbation model of the Saturn booster. Equations 3.3-15 and 3.3-17

~can be combined tc give

[ 4 L4 .
1
¢ T=D ) N \'A

R y .
- = B+ (5 o +a) (3.6-1)

These equations can be represented in state variable form by defining

the state equation

=Ax+d B, +u (3.6-2)

IXe

and the output equation

y=C6x (3.6-3)



where x 1is a state vector, Bc the scalar control signal, A the vehicle

state matrix, b the controller vector, u the disturbance vector, ¥y the

outpvt vector, and C the output measurement matrix.

by
- * . e T
£=L¢’¢’a’nl’nl’ﬁ’a
1 T
b = [§ o 0 0 0 G =50
0 1 0 0
[]
NI%G
0 0 - — 0
5 i,
I-D_ Y N+Y
'(mv V) 1 "(;n‘vv) 0
A= 0 0 0 0
2
0 0 0 -u.)l
0 0 0 0
0 0 0 0]
L

1
0O 1 O 0 Yl(XRG) 0

These are given

(3.6-4)
(3.6-5)
0 o 0
R
0 - "IéG 0
0 B 0
my
1 0 0
R'Y, (Xg)
-2510)1 ) 1 B Q
my
0 0 1
0 -50 -10
(3.6-6)
(3.6-7)
(3.6-8)
67
(3.6-9)
0

i b Ak s ot
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BC = [0.8 0.8:] z = - ET I (3.6-10)

In order to restrict the problem to manageable size while retaining
a meaningful plant description only the first elastic bending mode has
been included. A table of the time-varying values of the above matrix

elements is included in Appendix E.

3.7 Model Reference Design

Rillingsl8 found that his optimal gains were so sensitive that
instability occurred for variations of less than 20% from the nominal
value of the natural frequency of the first elastic bending mode for
the Saturn V. The necessity of accommodating for such parameter
sensitivity is the motivation for considering a model reference adaptive
control loop, hereinafter referred to as the "outer-loop'; in addition

to the "inner-loop" which is based on Rillings ' optimal gains.

The first question that must be considered is which of the design
algorithms of Chapter II is the most appropriate for application to the
booster. The Lyapunov design algorithm can be eliminated from considefation
on two accounts:' first, the seven states of the assumed booster model
are not all measurable and secondly, the elements of the plant state
matrix are not independently accessible as a feedback control law has
been specified. One characteristic of the discrete gradient adaptation

rule is that no adaptation occurs during the monitoring interval. Thus

il B B R RS L



6l

if a condition causing instability arises during this time interval, the
booster might destroy itself before a gain adjustment could be made.
Since stability of the booster coatrol system is a major consideration,
the discrete gradient algorithm was alsoc eliminated leaving the choice

to one of the two continuous gradient rules. The simulations of Chapter
II indicac.e that the continuous gradient rule for the case in which the
perturbation control signal is a linear function of the plant model error
is the less sensitive to the value of the convergence factor B; hence,
this approach was selected. However, as will be seen later, when some
engineering restrictions are considered, the two continuous gradient

rules become almost identical.

In what follows, the reference model of the booster, not to be

confused with the linearized perturbation model of the booster upon

which this entire analysis is based, will be described by Equations 3.6=2

through 3.6-10 for nominal values of the matrix parameter or

x- [ -pKfe]x, vy, (3.7-1)
y. = Cx (3.7-2)

in which the asterisk denotes the nominal value. The actual plant can

be described in a similar manner by

. m A )
X [A-g_}g C]x *hBB, (3.7-3

. 7k
Y, = Cx (3.7-1)
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in vwhich some of the elements of A, namely the natural frequency of the

A
first bending mode, are not precisely known and Bc represents the

perturbation control signal. Defining the error vector as

& =¥, - ¥,

the perturbation control signal is postulated as

e, =k e

A
Po = -k e - kp &

al

Selecting as a performance index
A
J = [(ng+ Rfsce) dt

the adaptation rule, Equation 2..4-16, is

[}
aw— T T . 2 ~
Kai—ﬁi[g (I+§aR_I§a)C_§i-g_aRei_|, i=1, ¢

and Z.-

in which z Zp

are synthesized from filters described by

)
= * - - - M i =
2; [A b K ] z2; -b (Ea. Cezy ei) ;3 1=1,2

(3.7-5)

(3.7-6)

(3.7-7)

(3.7-8)

(3.7-9)

A block diagram of this adaptive control system is shown in Figure

3-8. To evaluate the performance of this system, the seven-state time

varying model of the Saturn V was simulated on an I.B.M. 360/50 digital

computer. This simulation consists of integrating a system of 32

differential equations - seven for the plant, seven for the model, seven
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for each of the two filters, two for the adaptive gains Kal and Ka2
and two for the value cf the criterion. Three different cases were

considered.

Everything, including the filters, was considered to be time-varying
in the first case and it was further assumed that the same wind excited
the plant and the reference rodel. Simulations were made for R = 1
and for values of Bl = 62 = B 1in the range 100 to 5000. It i= Xxnown
that the unadapted booster is unstable for w = 0.8 ai* and it is
seen that t! 2 response of the booster with adaptation becomes more
acceptable as the value of £ 1is increased. For P = 100, the value

140
T
of J = 0{' ¥, 1, dt is 25,963 and the maximum value of )71 = 0.597
o

meters while for B = 5000, J, = 11.398 and Wzl nax 0.168 meters.

For B in the range 1000 to 5000, the adaptive gains Ké and K

1 a2
converge respectively to values in the neighborhood of =-0.125 and ~0.385;
the major difference being that convergence is achieved at about 120
seconds for P = 1000 while convergence is achieved about 10 seconds
earlier for P = 5000. This does not mean that 100 seconds is needed for
convergence since very little adaptation occurs before the elastic bend-
ing response becomes prominent at about 100 seconds. A sirmlation of the
model is shown in Figures 3-9 and 3-10 and a simulation of the adaptive
control system for B = 5000 in Figures 3-11 and 3-12. While a few cycles
of high frequency bending occur in the neighborhood of 100 seconds into
the flight, this oscillation quickly damps out once the adaptive loop

has sensed this unstable condition. This is a major improvement over the

instability that occurs when no adaptation is considered.

e RN B 0 e ey e, N
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Since an important consideration in the design of model reference
controllers is the complexity of the final system, it would be desirable
to eliminate the necessity of time-varying filters. With this in mind
a second set of simulations was made with the filters of Equation 3.7-9
designed at t = 80 seconds, & time found to be representative of the
booster during the critical period of maximum dynamic pressure. The
simulations with these time=invariant filters were found to differ
very little from those for which the filters were time-varying. For
example, the simulation for B = 5000 yielaed a value of Js = 11.422
versus Js = 11.398 for the corresponding fully time-varying simulation.
As a result of this set of simulations it is felt that acceptable per-

formance can be obtained with the use of time-invariant filters.

It was assumed in the first two cases that the same wind excited
both the plant and the model. Since it is very difficult to measure the
actual wind encountered in flight, the foregoing may not he a valid
assumption. Witk this in mind a third set of simulations was studied
in which it was assumed that the reference model perfectly followed the
reference trajectory. In other words, it was assumed that the reference
model encountered no external disturbances in which case the output I
is identically zero and the error signal becomes the negative of the
plant output. Simulations based on this error definition and time-
invariant gradient filters indicate that acceptable performance is achieved.
The simulations for w = ajfy w = 0.9 aif, and w = 0.8 ai* are shown
in Figures 3-13 through 3-18 for P = 5000. These simulations are com-
pared with those for 1) the "optimal" irmer-loop alone, and 2) the

desensitized inner-loop designed by Rillingsl8 in Table 3-1 arnd Figure 3-19.
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OPTIMAL INNER LOOP
¢ max max 1 max JS
»*
®) = 1.14° 6.11° 0.109m 11.22
w, = 0.9 wl* 1.11° 6.10° 0.133m 11.16
¥*
W, = 0.8 Wy UNSTABLE | UNSTABLE | UNSTABLE 68613
DESENSITIZED INNER LOOP
¢ max o max 1l max Js
w, = cnl* 2,21° 6.52° 0.120m | 35.40
@, = 0.9 wl* 2.18° 6.51° 0.148m | 35.18
*
w, = 0.8 w 2,13° 6.19° 0.189m | 34.88
MODEL REFERENCE
¢ max @ max 1 max Js
w, = cul* 0.574° 5.85° 0.108m 245
*
w, = 0.9 a 0.551° 5.84° 0.134m 2.59
*
w = 0.8 w 0.520° 5.83° 0.191m 2.72
TABLE 3-1
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3.8 Discussion of Results

The difference in performance of the system with and without
adaptation demonstrates the effectiveness of the model reference
adaptive design philosophy. With the experience gained from many computer

simulations it is possible to make some remarks about the results obtained.

Probably the most noticeable characteristic of the model reference
similations is the presence of several cycles of high frequency elastic
bending'oscillation for off-nominal values of the natural frequency.

The peak magnitude of this bending at the gimbal plane is 0.2 meters

which corresponds to 1.6 meters at the foremost station of the vehicle.

It is felt, that such oscillation will be inherent in any model reference
design which operates on only the outputs of the pitch and pitch rate

gyvros as the adaptive controller must sense the instability of the bending
mode from these signals which contain both bending and rigid body
information before adaptation can proceed. It is seen that the oscillations

damp out quickly once adaptation begins.

It is felt that the significant reduction in the value of the
criterion JS for the case in which the reference model was assumed to
follow the nominal trajectory is due to the reduction of the maximum
pitch angle from about 1.5 degrees for the desensitized gains of Rillings18
to about 0.5 degrees for the model reference design. This reduction in

the maximum pitch angle is not unexpected as the major information content

of the gyro outputs is related to pitch and pitch rate.

From an engineering viewpoint, the complexity of the adaptive controller

is greatly reduced by the finding that tirs-invariant gradient filters are
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adequate for successful performence. However, there still remains some
question as to whether or not the adaptive system "buys" enough
improvement in performance from an engineering viewpoint ag to offset “:he

additional complexity.

In the first series of simulations in which the same wind was assumed
to excite both the reference model and the plant, it was obs.rved that
the adaptive gains, Kal and Ka2 , converged to values in the neighbor-
hood of =0.125 and =~0.385 respectively. Taking into corsideration the
"immer-lcop" gains of K, == 0.8 and Ky, = - 0.8 , the overall control
law becomes Bc = 0,125 Yop ¥ 0.385 Yo * 0.675 ybl + 0.515 y?E . It
is interesting to note that the resulting plant gains of -0.675 and ~0.515

occupy the same region in gain space as those found by both RJ‘.llingsl8

and Cassidyl9

in their optimal sensitivity analyses. Thus it would
appear that the model reference algorithm under investigation converges
to a single set of gains independent of the value of the convergence

factor P and that these gains are in asgreement with those found by

otrer design techniques.
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CHAPTER IV

SUMMARY AND RECOMMENDATIONS

4.1 Summary

The design of model reference adaptive control systems has been
investigated in this report. Several reasons for considering the model
reference adaptive philosophy when designing control systems and several
characteristics of a "good" model reference adaptive algorithm are dis-
cussed. Adaptive algorithms are derived for linzar systems frou two
approaches. The first three algorithms are based on the steepest-
descent or gradient minimization of positive definite integral per-
formance indices. The first algorithm attempts to minimize on-line
a weighted integral square plant-model error index while the second
algorithm attempts to efrect a trade-off between the system error and
the perturbation control effort by minimizing an index that ref'lects
the relative cost of each. An estimate of the optimum étep size for
gradient adaptaticn is inccrporsted into the third algorithm by treating
adaptation as a discrete process rather than as a céntinuous process.
The fourth algorithm is derived from a stability argument that follows
from Lyapunov's Second Method. These algorithms are applied to two
second order examples in order to gain insight into such properties as
convergence rate, stability, error-nulling capability, and error-

perturbation control effort tradeoff.

The model reference adaptive control design technique was succecs-

fully applied to a large flexible launch vehicle of the Saturn V class.

e MR ot B SN L S
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The continuous gradient adaptation algorithm in which the perturbation
control signal is postulated es a linear function of the plant-model
errc~ was chosen for application. This adaptive system operates on

only the measured outpute of the pitch and pitch rate gyros ancé nowhere
is it necessary to isolate the elastic bending response from the rigid
body response. Simulation studies show that this system reduces
significantly the sensitivity of the booster to variations in the natural
frequency of the first elastic bending mode. Subsequent simulations
indicate that acceptable performance can be achieved with time-invariant
gradient filters, designed for an appropriate flight time, thus removing
the necessity of implementing time-varying filters in the controller.

The encouraging results obtained in this study suggest that the philosophy
of model reference adaptive control svstem design merits further investi-

gation with reference to applicability to large flexible lsunch vehicles.

4.2 Recommendations for Future Work ,

There are several possibilities for further investigation into the

theory of model reference adaptive control syvstem design.

It was as.umed in this study that the plant and reference model
were the same order. It would be of practical interest to investigate
the conditions under which a plant can track a lower order model. For
example, a nineteenth order of the Saturn V is obtained upon considering
four elastic bending modes, three slosh modes, and a second order filter
in addition to the rigid body mode. Hence, it might be expedient to con-
sider a reference model wi.h fewer states in order to reduce the complexity

of the gradient filters.
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In many launch missions it is desirable to limit the lateral drift
of the vehicle. Unfortunately, under certain conditions a drift minimum
control system can cause excessive structural loading of the vehicle.
Thus it is often necessary to switch from a drift minimum control system
to a load relief control system during the period of high d,.amic pressure.
It is felt that the discrete gradient adaptation rule wouvli afford sufficient
time to obtain a good indication of vehicle performance and that gain

ad justments could be made at the proper time to provide load relief.

It would be interesting to attempt to determine whether or not
there is any correlation between the values to which the adaptive gains
converge for n given performance criterion and those that are obtained

from optimal control theory for a similar index.

This study has been limited to linear plants. While the concept
of minimizing a positive definite integral performance index by the
gradient method can be directly extended to non-linear systems, the design
of the necessary gradient filters becomes less well defined. The design

of such filters merits further study.
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Appendix A

Survey of Model Reference Adaptive Control

The philosophy and merits of model reference adaptive control was
discussed in Chapter 2 of this report. Design algorithms based on
Lyapunov's Second Method and the minimization of an integral performance
index by the gradient method were developed and a,_.plied to representative
problems. F.r the purpose of completeness, several additional, existing

adaptation rules are discussed in this Appendix.

1. Dynamics of a First-Order Model Reference Adaptive Systeml’2’3

In order to gain some insight into the performance of higher-order

model reference adaptive systems, consider the first order plant

Tx + (b+ Kpg) % = &(t) A-1.1

which is to follow the model

X = z(t) A-1.2

The structural diagram of this plant-model combination and four possible

variations of an adaptive system are shown in Figure A-l.

From Figure A-1 it is seen that three adjustable parameters Kl, Kg,

and Kf

variation of these parameters is assumed to be of the form

have been incorporated into the system. Tre general law of

K, = K, +K, fei dt + K e A-1.3
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where Koi’ hui’ and Kei are constant coefficients, ey is an error

computed from some well-defined rule, and the plus sign is associated

with Ké and K, while the minus sign is associated with K

f
Consider first the case in which Kui = 0.
as e, = (g - x) sgn x
e, = (g - x) sgn g
[
e = (g ~ x) sgn x

If the e

i

l .

are defined

A-1.%4

the dymamical equatious for the various configurations of Figure A-1l can

be written. For example, upon setting KFB and Koi equal to one, the

equations for the system of Figure A-lc are

T x + (b + Ki) X = Ké g(t)

K, = 1-K, (g - x) sgn x

K

l+K - X) 8gn
. e (g ) sen g

A-1.5

Two modes of operation are of interest; namely g(t) = 0 and

g(t) = go.> 0. Upon defining y =T i, the x-y phase-plane trajectory

equation for Equation A-1l.5 becomes

y=g,-(b+1)x+xk, g (g

+ KX (go - X) sgn x

For g = 0, equation A-1l.6 reduces to

2
y= = (b+1) x-K , X sgnx

o x)

A-1.6

A-1.7

AR 5 9 S b1 3, 4 o B b e
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which is plotted in Figure A-2 for the four cases 1) b =0, 2) b > O,
3) -1< b< 0, and 4) b< - 1. The points of equilibrium of this
system are those for which y = 0 . For trajectories 1, 2, and 3, the
origin of phase space is of stable equilibrium. For b < - 1, the
condition y = O can be sa" isfied by three values of x. However, only
for points Ol and O2 is y of proper sign to return the system to
equilibrium. Since at these points of stable equilibrium x # O for

y = O , the introduction of adaptation has made an unstable systen

(b € - 1) stable at the expense of a steady-state error. For

g = go> 0 , defining the variables £ = g, = X and vy, = T F

yields &€ - ¥y phase trajectory equations for equation A-1.5 of the

form
yi= -€E+v (g, -€E)-K 8, &-K, (g, -E)E; C< g
A-1.8
y, = -5+b(8o-é)-Keggo E+K,, (g, -& ) 5 &~g

The phase-space plot of these equations is shown in Figure A-3 for the

17 02, O3 and

Oh respectively which again implies stability for any value of b.

various ranges of b. The stable equilibrium points are O

However, for b % O, there is always a steady-state error, the magnitude

of which is dependent on b.

Similiar analyses can be carried out for the remaining configurations
of Figure A-1l and for error definitions differing from those of Equation
A-1.4, gince it is indicated in Reference 1 that the best results can be
expected from the configuration of Figure A-lc and the error definitions
of Equation A-l.4, attention has been and will continue to be focused only

on this system.

[ P
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The effect of integral adaptation can be examined by adjusting only

Kl and setting Kel = 0. The dynamical equation A-1.5 for g =0 re-
duces to
[ ]
Tx+(b+l)x+Kulxz=O A-1.9
where '
z =fx sgn x dt A-1.10

and results in a x-z phase-plane representation of Equation A-1.9 in

which
(b+1) x + K . xz -
= - ul A-1.11
z
T x sgn X

In the phase plot of Equation A-1.1l, Figure A-4, it is seen that the
value of 2z will tend to increase for any initial value of x ;
consequently for free motion, Kl will increase continuously. For
g = g0‘> O, Equation A-1.5 becomes

Tx+bx= &+K Xz A-1,12

ul

upon defining &= 8, = ¥ and z = fE sgn x dt. The €& -z phase

trajectories of Equation A-l.12 have

a_ €-vlg-t) +X, (g-¢&) =z Aol 13
az T & sgn (g-€)

d
The isoclines (curves of equal Eé? ) are hyperbolas with a singular
common asymptote € = g, and two asymptotes parallel to the £ - axis
a5 is seen in Figure A-5. Since for & > g, all motion is toward the

boundary £ = 8, » system stability may be determined by examining only

the £« g, region. This is best accomplished by considering the & -z¥



)

plane in which z¥

]

zZ - b/Kul and

~ K, (g -€) z¥
af _ ag_ ErKa g
az* -~ dz A-1.1k

T £ sen (g -&)

It is now seen that the zero isocline, 2% = - 'K"rg;ZT?T » passes
ul'>o

through the second and fourth quadrants for any b and that the trajectory

will always twist toward the equilibrium state £ =0 or x = g. Thus

wvhen K. 1is adjusted solely on the basis of an integral law, a stable

1
system with zero steady-state error is obtained for any value of b.
However, in free motion, the integral accumulates causing Kl to be

set incorrectly. This condition can be remedied by using an error

algorithm that takes into consideration any dead-band of the system.

A similiar analysis shows that including the term K_, £0 in

the adaptation of K, results ir improved stability end an improved

1
transient response. When the adaptation of Ké is considered, it is
found that the inclusion of the integral term in the adaptation law

reduces system stability, impairs the transient response, but does re-

sult in a zero steady-state error.

While the results of this section are only valid for first-order
linear systems, the analysis provided by the phase-plane technique should
offer valuable insight into the stability and steady-state error diffi-
culties that might be expected in higher-order model reference systems

and also into the reasoning behind the choice of adaptive algorithms.
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2. M.I.T. Rule

The original model reference adaptive control design algorithm was
developed by Osburn and Whitakeru for single input-single output, linear,
time-invariant systems. The algorithm is based on the on-line minimize-
tion of an integral-square error performance index. If the response
error is defined as the difference between the system output and the out-

put of an appropriste model of the system, E = xp - X the performance

PI =f Fdt = f(xp - xm)2 dt A-2.1

The ve:iation of PI with the change in a system control parameter K has

index is given by

the general chavacteristic shown in Figure A-6. The desired parameter
value corresponds to the minimum of this PI wvs K curve or the point
where the slope of the curve is zero,

2 - 2 | 3 =
3% PI--aK E at =0 A-2.2

When the operating value of X differs from that for which the
optimality condition of Equation A-2.2 is satisfied, a well-defined
technique for adjusting the value of K 1is required. Defining
2
(EQ)K = 3K
Choosing A& K « (EQ)K , the adaptation rule becomes

P.I. , the design objective is to drive (EQ,)K towards zero.

K =-po5 (EQ) A-2.3

which is readily observed to be nothing other than adaptation based on
the gradient of the performance index. Interchanging the order of

differentiation and integration reduces Equation A-Z.3 to
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[ 4
- 2E _ JE
K==-2p E 5K - p E 3K A-2. 4
2E %
Noting that X is independent of K, 3K = WE + The implementation
Ix
.of Equation A-2.4 requires the synthesis of z = T{R » This can be

accomplished by either of two methods: straight-forward pertial differ-
entiation of the differential equation for xp or by block diagram

manipulation. For example, consider the system of Figure A-T where

Ke

(]
]

8 2
J‘es = e, §x
CS‘xp = % e, Sk
x_(8)
with ¢ = =—B——
a(s)
xm(s)

Since G(s) is unknown, (,m(s) = 5T is substituted for G(s) based

on the assumption that Gm(s) <~ G(s) for an appropriate model. Thus

z(s - % A-2.5
ee 8 Gl

X
represents the transfer fuiaction from which 2z = Q—KB is synthesized.

One disadvantage of the M.I.T. Rule is that it can lead to an overall
system that is unstable. As an example of this consider the system shown
in Figure A-9 in which the adaptive parameter is Kc. The differential

equation for the error E is

b, E+b E+E = (K-Kch)r(t) A-2.6
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and the adaptive equation basec. on the M.I.T. Rule is

L ]
LY
=

Kc =-BE 3

A-2.7

]

c

If r(t) =R U_l(t) and the adaptive loop is closed with the system in

steady-state, E = (K - KVKC) R and

2FE _ _
2K, N KVR = - K, Xm
or
[ /
Kc = B E Kv xm = B E X A-2.8

Differentiating Equation A-2.5 and substituiing Equation A-2.8 for K,

results in the third-order differential equation

e o ° /

'b2 E + bl F+ E+BR Kv X, E=0 A-2.9

From the Routh Hurwitz criterion, Equation A-2.9 nas a pole in the R.H.P.

whenever
1 bl
K’V B R xm)~ E; A-2.10

which can result in the instability of Equation A-2.9.

In conclugion, the M,I.T. Rule can be easily implemented for linear
time-invariant systems to yield good adaptation provided care is taken

to determine the regions of stability.

3. Donaison's Algorithm

The minimization of & quadradic function of the system error and

its derivetives by & steepest-descent method is the basis of an adaptation

algorithm derived by DonalsonS. Although the slgorithm can be applied to
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ell single input-single output, time-invariant, linear systems, an
appreciation for the development can best be obtained by considering the

system of Figure A-8. The dynamic equation for the plant is

.0 ]
X + 8a. X + X = Tr -3,
p- ¥ T &% A-3.1
with 8, = &) + kl while for the model
X, + g xm + & xm =T A-3.2

Three assumptions are basic to the derivation:

1) 8, varies slowly compared to the basic time-constants
of the system,

2) g, varies slowly compared to the rate at which k,;
is adjusted, and

3) k, 1s adjusted at a rate that is rapid when compared
to the rate at which any function of E and its
derivatives changes due to changes in r.

with &= 8, - g , it is readily apparent that any function
f(E, E.}, ‘E. ) 4is implicitly a function of &. Taus £(E, E‘}, :n'.") can be
thought of as a surface in the Euclidian space of f and S ; because
of assumption 3, f(E, E:., E ) can be treated solely as a function of &’ .
The adjustment of 8 is made so as to describe an instantaneous steepest-
descent trajectory along the surface of ! E, _‘é, :T:}’ ) in the f - J‘
space; the path of steepest~-descent being the one for which the maximum
decrease in f£( S ) results at every step. This is accomplished by

choosing A 8 proportional to the negative of the gradient of {1 ' &) or

o . A=3.
) 53 3.3

B A M TR o e
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Since A § = A a,, A3-3 becomes

Ae a - = A-3.4

At this point it becomes evident that the implementation of Equetion A=3..4
requires an explicit knowledge of 8y and thus 81 while the obJjective
is to develop an algorithm which does not require the knowledge of g -

Consequently, an alternative approech is necessary.

Now treat a, as fixed, é' as variable, and adjust é such that

é‘ approaches zero. This requires that

'
QU
H

A g a - A-3.5

®y

o

If 8 is assumed to be small as compared to é ’ 5 is changed by adding

A & to g . Since the objective is not to change g but a, , the
same change can be obtained by subtracting A é from &y - This line
of reasoning results in an adaptive algorithm of the form
pa, o 2L A-3.6
9¢g
or
a, = 2—_{-' A-3.7
8

which is a oo20d approximation to Equation A-3.4 as long as g is small.

As an example, consider

.V 2

£(E, é, E) = (§OE+§lﬁ+§2E) A-3.8

o] ]
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2X
The adaptation rule, with 2z =

- arl with asswnption 2, becomes
8

w'
R
o
]

- - [ ] - ] - ®
xe = - (g, E+g E+g E) (g, 2+g z+ & z)

Upon differentieting Equation A-3.2 with respect to g and then inter-
changing the order of differentiation, it is found that 2z satisfies

the linear, nonhomogeneous differential equation

z+ gz + 8 2 =" X A=-3-10

which is of the same form as that describing the model. The adaptation
rule Equation A-3.9 is easily implemented once Equation A-3.10 is solved

[ 4 [ X 4

and E, E, and E are measured.

As long as the three assumptions remain valid and k., is close

1
to its optimal value, this technique should provide correct adaptation.

When k, i1is not close to its optimal value, no such statement can be

1
made without an extensive stability analysis. The basic idea described
here can be readily extended to general linear physical processes with a
single input and output. To be noted, however, is the necessity of
measuring E and all its derivativesunless the function to be minimizéd
is independent of these derivatives. Also it appears that the model

must be of order at least as great as the highest derivative found in

L4
f(E, B, ...).
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4. Dressler's Algorithm

The adaptive design techniques described thus far require a certain

amount of on-line computation in the synthesis of -g-}% for the M.I.T.
oX

rule and 2z = -m for the Donalson algorithm. R.M. Dres:sler6 has
o8

developed a technique that reduces significantly the amount of on-line
computation necessary. This technique is applicable to systems described

by linear differential equations of the foia

¢
= A (t + B (¢t -4,
EP p()_}fp P()B A=kl
T
= C
yp - ')EP

which are subjected to a performance criterion that can he formulated
in terms of the response of the time-invariant linear differential

equation

A-k.2

The basic philosophy of Dressler's development is to first obtain
an explicit functional dependence of the performance error, e(t) = yp(t)
- ym(t), on the adeptive parameters and then to determine conditions |
relating the incremental error, Ae(t) = e(t + A t) - e(t), and successful
adaptation. It is assumed that At is positive and sufficiently small
that any change in Ae(t) is due only to the adjustment of the adaptive
parameters and not to variations in the plant parameters, input or model
response. It ie further assumed that Ap(t) and Am differ by only a

"small" amount and similarly for Bp(t) and B . The significance of
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these assumptions is apparent upon considering the development of the
adaptation rule which is briefly presented as follows.

The solution to Equation A-4.2 is
t

x (t) = @m(t-to) x (%) +f @m (.-T) B u(T) a? A-4.3

t
o

with §m(t) = exX P Exm t] . Assuming that

MOEF R INON | Ak

1t

B,(t) = B + 5136. (+)

it can be shown6 that

t
x (8 =B (t)x, (6 + [ B-) B w(T) a e
t

o)

+

t
5 tf $ (1) [Bgm w(?) +A5<fr>{§m<t -5,) x, (%)

+

. .
f ?fm ("t'f) By & (})d;] at + 0 (82) A-k.5
tg 2 -

in which O (82) represents those terms containing second and higher
orders of '5 From the definition of e(t), Equetions A-4.3 - A-4.5, and

neglecting O(§ 2) based on the assumptions,

t
er) = FE, () g+ & [ B M)
t

(83, (D2 (D) 54, (D, ()] 2T abe
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The design objective is taken as
4 e(t) elec) <« 0 A-4.7

Substituting Equation A-4.6 into Equation A-4.7 and rearranging results

in
4 e(t) = n(t) + 4. e(t) A-4-8

where h(t) contains only terms that are not affected by adaptation

for t'> t and

A | e(t)

n n

Z S B (a0) dy ()

i=l  j=1
n r

xmj(t)+ Z z ct fm (At)b (t)u(t) A-4.9
i=l j=1

with aij(t) and bij(t) representing respectively the elements of
gAg(t) and ng (t) . For Equation A-4. ~ to hold, it is necessary
that h(t) e(t) + Ale(t) e(t) € 0. It is clear that Ael(t)e(t) ~

if

éij = - uij gT ?mi (At) xmj(t) e(t) (A-4.10

b= =Yy &8 B (88) uy() es)

where uij and Y ;j are positive constents. By choosing the adaptive

. R ! Sy Y - v+ T
gains u;y = Uy [ O (At) and i3 = Vij [ ;—Emi (A t) large

enough, the term Ale(t) e(t) can be made to dominate h(t). Hence,
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the adeptation equations are taken to be

8y4 = = Uy X4 (t) e(t) A=4.11

b, . = SY, u () elt)

1J J

It can be seen from Equation A-4.1l that the only on-line computation
that must be performed in the implementation of this algorithm is the
calculation of the model state =~ X, (t). Because of the nature of model
reference adaptive control systems, this is the minimum amount of
computation that can be expected. This is probably the main advantage

of the algorithm.

As is true with all the design techniques discussed thus far, the
adaptation rules of Equation A-k.l1l provide effective adaptation as long
as the basic assumptions remain valid. However, the effect of the
adaptive gains on system stebility and rate of adaptation must be examined
in detail for the particular system under consideration. For example,
in the system of Figure A-9 Dressler's adaptation rule for KE is
.
K, = wRE A-k.13

for which a Routh-Hurwitz analysis indicates instability for

U D ——— A-4.1L4

This is an excellent example of the trade-off between stability and rate
of adaptation that is of critical importance in the overall design procedure.
One possible disadvantage of Dressler's rule is the structure that requires

the adaptation of the individual elements of § A, (t) and 835 (t) ,

)
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some of which might not be accessible in a physical multi-variable system

[ in which control is implemented by means of a feedback structure.

g 5. Lyapunov Design

[ The necessity of an extensive stability analysis in conjunction
with the implementation of any of the three design techniques examined

[ thus far has been repeatedly emphasized. It has been postulated7’8 that

" this stability analysis can be circumvented by designing the adaptive

system by a Lyapunov approach. The general philosophy is to determine

a positive-definite quadradic function of the system error, its derivatives

and any adaptive elements which has a total time derivative which can be

made negative-definite by properly choosing the adaptation rule. This

guarantees system stability.

For example,7 consider the system of Figure A-9 and the positive-

definite quadradic function

_ 1 2 1 ‘2 2
V= o e + +— e +1i X A-5.1
2 2
- with x =K = Kv Kc . The total time derivative of &g. A-5.1 is
o) b
™ _ _1.2‘2 b . .
', V-2 (g=y e +2( 1y Jypyonm A-5.2
2 b22
which reduces to
o b
2 2
V=-2(-5-l-) A-5.3
2
¢ 4 bleR
F upon choosing X = = Kv Kc = - 5 .
’ A b
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The negative-semi-definiteness of Equation A-5.3 insures the stabiiity
9

of the system”; however, there may exist a steady-state error as

4 [
Kc =BeR and is ’ ‘andent of the system error. Lyapunov functions
slightly different of Equation A-5.1 can be found that yield
an adaptation rule .antees asymptotic stability of the system.

A more general model reference system8 is shown in Fig. A-10.

The differential equation for the plant is

n n-l
D + (all + K, hl) D + ...+ (anl + K, hn) X,
= K K R A-5.L4
v'e
and that of the model is
P+a DPt4 ... +a b x =KR A-5.5
1 n m ‘

Defining E = Xn ~ xp’ y

i=1,2, ... n, the differential equation for E becomes

o= K=K K,8nd y; =a; - (e +K h);

n n-1 -l _ n-1
D"+ a;, D + eee + a, E = N R Yy D xp e

-y, X A-5.6

Choosing s
A-5.7
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as a Lyapunov function where H 1is the Hermite matrix of the homogeneous

[ 4
part of Eq. A-5.5and e = [E, E, ... ] T, the total time derivative of

Eq. A-5.7 is

o
_ 2 . n-1
v=-2 z°+22 (Ry -y, D X, = e = Yy xp)
[ s
Y., v Y., V..
B B
0 n
n-1 n=-3
Zn being defined as a; D E + a3 D E+ ... If
Yo = - BO Zn R
o n-1
Yy Bl Zz_ D xp A-5.9
yn - BnZn P )
’ 2
Vv = -2 Zn A-5.10

If all of the B, are positive and H 1is positive definite, i.e., the

i

»

model is stable, V 1is positive definite and V 1is negative semi-definite

resulting in a stable system. Furthermore, if KV is positive and varies

slowly (if at all) and the a;,

o
KC = BO Zn R

vary slowly, Equation A-5.9 reduces to

A-Slll

This Iyapunov design technique cen be extended to systems in which

the plant is of higher order than the model and to plants containing
numerator zeroes. The basic shortcoming cf this technique is the necessity

of measuring not only the system output but all of its derivatives, often



not available in a physical system. It is important to note the deriva-
tion of A-5.11 is based on the slow variation of the plent parameters
Kv, By s oo and that stability is only guaranteed when these
assumptions are valid. However, it is reasonable to assume that this

Lyapunov approach will be derendable even if these assumptions are not

strictly satisfied.

6. Stability of Model Reference Adaptive Control Systems

Probebly the single most important aspect of model reference adaptive
control is whether or not the physical plant output converges to that of
the model and the rate at which this convergence takes place. This is
identical to determining the conditions for the stability of the differ-
ential equation for the system error. This differential equation is
generally non-linear and time-dependent and any stability analysis pre-
sents a rather formidable problem. Previously in this appendix, the
Routh-Hurwitz criterion has been applied for determining conditions for
stability. However, this method is applicable to only the simplest of
single input-single output adaptive systems and will not be pursued
further.

p) 9

Donalson” and Dressler6 have applied the Second Method of Lyapunov
to the determination of stability conditions for model reference adaptive
systems. To illustrate the application of this method, consider the first

order proce386 described by the differential equation.

X (6) = [ a(t) -7 (t)] x (£) + u(t) A-6.1
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and its assoclated model described by

’ A A
xm(t) == f xm(t) +u(t) ; £ &S0 A-6.2

Equation A-6.1 can be rewritten as

x (t) = [} ? + f(ti] xp(t) + u(v) A-6.3

A ~
by definirg f(t) = f - a(t) - f£{t) and the adaptation rule based on

Dressler's algorithm is
a(t) =u' x (t) e(t); u' >0 A-6.Y4

The coupling between the control system, Equation A-6.3, and the adaptation
mechanism, sguetion A-5.4, can be described by the two-dimensional state
vector

£(t)
B = A-6.5
e(t)

Recalling the assumption that 1§(x)-g:0, the state differential equation

becomes

0 -u x (t) 0 ‘
m A-6.6

I e
H
+

A B
x (¢) =-7¢ f e

The equilibrium state p = O requires e(t) =0 and f£(t) =0 or
~ A
a(t) + £(t) = £ . The stability of this equilibrium point carn be investigated

by considering as & Lyapunov function

V= u e2 + f2 A-6.7
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The total time 3lerivative of Equation A-6.7

. , o A
V= ~2u e (f -7) A-6.8
I3
is negative-definite only for £ > f . Thus the equilibrium point =0

A
is stable for f > f =and as long as this condition is satisfied, the

adaptive mechanism of Equation A-6.L will tend to null any error betwe-u
the plent and the model. However, as Lyapunov's Second Method yields
only a sufficient condition for stability, nothing definite can be said

A
about stability for f£f< f .

The major problem in applying ILyapunov's Second Method to high
order systems is the lack of any well-defined methods for constructing
suitable Lyapunov functions. This problem is compounded in the study
of model reference systems as the state vector thac must be considered
is of order equal to the sum of the plant states and the adaptive elements.
However, this method seems to be the only presently available technique,in

theory at least, to determine the regions of stability for such systems.

Te Summary

Several methods for the design of model reference adaptive control
systems have been reviewed with the aim of providing insight into the
philosophy of each. The advantages and disadvantages of each method
have been discussed briefly as has the type of system to which each is
applicable. It is important to reiterate c.ace again the immortance of
a thorough stability analysis or simulation study in the ~. design

procedure.

e,
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Appendix B
] a 0
Proof that 2, = A= X
dk
i
zy = Ta X B-1
Ak,
’ Q2
2, = T =& X B-2
a3t 50 T
1
’ O
= Sv X B-3
ok, 9k,
-2 -2 92 5. 2 2. B-5
Ak, % ok, ak, ¢

But for linear systems of the form

x(t) = A(t) x(t) + B(¢) {y_(t) - k(%) gt)} B-6

in which A(t), B(t), K(t) and u{t) are coutinuous functions,

t .
56) = Qo) s+ [ P e, B<»t>{ y’_('Z’)-K(T’)z("L‘)}*d"?
t

'

@) B-7
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From this,

t
2 2 xe)-- a0 [ P, ) BT) x,(T) 1y of
t

i
o)
- B(T) xj(’r) 1 B-9
2 QL 2 2
Now since x(t), =% x(t), —=— %(t), and .2 %
since Xt 3% 58, © 5% 5 x(t)
are continuous,
2 J 9 ¢
—_ = x(t) = = == x(t) B-10
aﬁi ot = .913 {)l'{\i -
or
.Z:i = 79' _;E B-11

Q
~
e

R T [Er——
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Derivation of Equation 2.

Appendix C

Lh-16

o
Plant: x = A x + B
-P P -p P -p
= ¢
[}
Model: X = A + B
-m m =m m —m
In = © %,
Error: §: = X, - X
e = ym - yp
e = C €&
Control: u = u + 4 u
u, = w - K e
Index: J =

%:“la[é? Qe+ ‘ALET R J0u :l dt

The minimization of J with respect to A u by the method of

120

C-3

C-k

steepest descent requires the determination of the gradient of J with

A

respect to k , the vector representation of the elements of K

can be adjusted. With this in mind, it is seen that

an[eQ__
o ky

p QA u
+4u R ~—p
E)k

dat

that
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This expression can be simplified by observing tlLat

oe X ax
— =- —2=-C ==-C z; C-17
:’ki aki aki
and that
o4 u
3k,
A [
for k, = K (j, k). Thus
23 _ [ )" [Q+ KTRK]C_z_i-_qT KR 1, ekj\ at C-9
2 kg J _J(
Differentiating the differential equation describing the plant partially
A
with respect to k i results in
d ! 2 [
— X =A X + B K Cz, -e_ 1
-p P 5, =p p -1 'k -J]
3k 2k
v i
or
= |A_ + B_K -B 1l.e 7-10
=l [p P C] 217 % =5 % ot

Thus the ideal acaptation rule for minimizing this cost index by the path

of steepest descent is

T .
1= By e [Q+KTRK]C31

WD

T _T
-e KR1je c-11



A
for k, = K (Jj, k). However, z, 1s a function of Ap and Bp, both

i i
of which may be unknown. Thus, an approximation is made and the adaptation

rule is assumed to be

W;
"—\

A
[Q+1{1RK]C_51
¢ -

- el KRlJ e, Cc-12

A
with Ei the solution of

A
i=[Am+Bch:‘gi-Bm_:gjek c-13
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Appendix D

Two Observations on the Convergence c¢f Linear
Model Reference Trajectories

The intent of this appendix is to illustrate two interesting and
important observations concerning the convergence of plant tra jectories

to those of an associated model for general linear, time-invarient systems.
Consider first the plant described by the differertial equation

=A x +D 1
=P P -p —'uP D-

which is to be designed to track the model described by

= A X +bu D-2
=m m=m = "m

Assuming that up =u, + A u, it is seen that the differential equation
for the erior, e = X - Ep’ is

[4

e= A e+ [}%1- A;] x, -b 4u D-3

4

If the error is nulled and is to remain nulled, e=e =0 or

A - A X =b &u=0 D=k

m P} =p - -

Equation D-4 yields n equations for 4 u which are not generally con-
sirtent. Thus it is not, in general, possible to totally null the error
between plant and model for e linear system. Exemination of Equation D-4
indicates two possible conditions for which the error can be nulled:

1) when the plant and model state matrices are in phase~veriable form

and 2) when a stable regulator problem is considered.
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D-5

D-6

4
. X

Ccusider now the case for which Au = -'ET 5@. Under steady-state
conditions,
° _ T
x = |A_-bK x +b u =0
=P P == - - mn
From this it is seen that for u. = 1.C
x, A -bK A |
=< - _2__;:;;f i . 24
%5 A -bK| A_|
P - = «j p .j
wnere IApli=|-a-'-l§2 o8y 1 bay "'En' . Thus the ratio x,

ie independent of the feedback gain matrix and dependent only on the

plant parameters Ap and b . A similar result is chtained for A u

For the plant considered in Example 2,

O.bh 1.6 1.0
A = and b =
Pol-2.1 -hok | 1.0
*1
which results in ;c; = =2.,4. Since Xipes = 3°0 8nd Xy o= - 2.0,
2
2 2
B = e, +te, = (3.0 - xlpss) + (-2.0 - x2pss)
. 2 2
E2 = (3.0 + 2.4 x2pss) + (2.0 - xzpss)
2
F o= 676 %y 0, 0+ 18uk xy 4 13.0

J

=-.IST

2

e .
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This expression is minimized for

aFF

ax—e <+ 13.52 XEPSS + 18,4 =0 D-8
pss

or  Xopgg T T 1.36 and X1pss © 3.26. Hence, these values of X0 and
Xyp Would result in minimum integral square if the observation time is

relatively long. It is interesting to note that the continuous gradient
adaptation rule with 4 u = -I_ng achieves values of x]_p and x213 that

are very close to these optimum values.

A i A R e



Appendix E

E.l Definition of Symbols

< < ©H© = =

24

cG

Lo e e

Cross-sectional reference ares,
Drag coefficient
Drag force

Pitch plane moment of inertia about the
center of gravity

Distance from vehicle center of gravity

pOint, ioeo, XCG - Xﬁ

Distance from vehicle center of gravity
pressure, i.e., X B - X

CG Ccp
Total mass of vehicle
Generalized mass of ith bending mode
Aerodynamic force
Aerodynamic force coefficient, i.e., N'
Dynamic pressure
Thrust of control engines
Total thrust of engines
Velocity of wvehicle
Velocity relative to wind
Velocity of wird
Staticn of center of gravity

Station of center of pressure

Station of gimbal

Mathematical Description of the Saturn V Booster

= C

vehicle

to gimbal

to center of

Aq

120
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X Station of position gyro
XRG Station of rate gyro

Yi(X) Normalized displacemeni ot the ith bending mode
at station X

Yi(X) Normalized slope at station X due to the i°" bending

mode, i.e., _%§ Yi(x)

Y Direction normal to reference

o} Angle of a.tack

aw Angle of attack due to wind

B Total engine deflection

1A Demping ratio of 1*® bending mode
7(1 Generalized displacement of ith bending mode
Q Attitude angle

Wy Natu—al frequency of ith bending mode

E.2 Mathematical Model

The time-varying model of the Saturn V used in this study can be
represented by Eqs. 3.6-2 through 3.6-10. The values of the time-varying
elements of the A and C matrices were calculated at intervals of four
seconds and are tabulated on the following pages. Linear interpolationl
was used to determine values of the coefficients for times other than those

listed.



TIME
(SEC)

0.00
4.00
8.00
12.00
16.00
20.00
24.00
28.00
32.00
36.G60
40.00
44.00
48.00
52.00
56.00
60.00
64.00
68,00
72.00
76.00
80.00
84.00
88.00
92.060
96.00
100.00
104,00
108.00
112.00
116.00
120.00
124.00
128.00
132.00
136.00
140.00

THRUST
(N)

3.38509F
3.38626F
3.38989%
3.39620E
3.40534F
3.41742E
3.43254E
3.450T1E
3.4T186E
3.49584F
3.52241F
3.55119F
3.5R8171F
3.61339E
3.64560F
3.6T763E
3.70882E
3.73853E
3.76622E
3.79139¢E
3.81348¢
3.83214E
3.84723F
3.85877T¢E
3.86746E
3.P27389E
3.87795%
3.88201E
3.88411¢t
3.88621F
3.88724F
3.88828F
3.28T1F
3.88927F
3.88950F
3.8%973F

07
07
07
o7
07
07
o7
o7
07
o7
o7
o7
o7
07
o7
07
07
07
07
o7
07
07
07
ov
07
o7
o7
o7
or
01
07
o7
o7t
07
07
07

DRAG
(N

3.53040€E
4.09890E
5.97T750¢€
9.35160E
1.33627E
1.78357E
2.24660€
2.5946TE
2.82588E
2.84786F
3.16057E
3.83726E
5.021T0E
T.73218E
1.14050E
1.71583E
2.02296E
2.06992E
1.91976F
1. T6683E
1.61020E
1.44991€
1.24739¢
1.02566E
8.28414¢€
6.70182F
5.43185E
4.16:8TE
3.26879¢E
2,3757GE
1.83636E
1.29702E
3.87330€
6.T7640E
5.08205F
3,3R770F

04
04
04
04
05
05
0S
05
05
05
05
05
05
0s
06
06
06
06
06
06
06
06
06
06
05
0%
05
05
05
05
05
05
04
04
04
NG

VELOCITY
(M/SEC)

0.00000E-01

1.02900€E
2.15800€
3.39400E
4.74200E
6.21300E
7.81700€
9.56900€E
1.14890E
1.35970E
1.59150¢
1.84610E
2.12520E
2.42930¢
2.75840E
3.11270E
3.49260E
3.90520E
4.35880¢E
4.85710E
5.40220¢€
5.99450E
6.63670E
7.33130¢E
8.07950E
8.88270E
9.77135E
1.06600¢E
1.16715¢E
1.26830E
1.38300E
1.49770¢E
1.62800E
1.75830¢E
1.90690E
2.05550¢E

01
01
01
01
01
01
01
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
03
03
03
03
03
03
03
03
03

Q

(N/M )

0.00000E~-

6.25000¢
2.73500¢&
6.69800E
1.28890E
2.16840€E
3.34370E
4.84720¢&
6.7D0820E
8.94460E
1. 15600¢E
1.45280E
1. 77990t
2.12750€
2.48160E
2.82650E
3.14300E
3.41980E
3.64170E
3.76990E
3.76130¢
3.58840E
3.26150E
2.83000E
2.42770€
2.05580E
1.74090E
1.42600€
1.17617E
9.26339¢E
7.50129E
S. 7T3920E
4.59475E
3.45030E
2.T6475E
2.07920€

01
01
02
02
03
03
03
03
03
03
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
04
03
03
03
03
03
03
03

CNALPHA

4.60000E
4.60000E
4.60000E
4.60000E
4.61009E
4.62000E
4.63000E
4.68000E
4.69000E
4.7T0000E
4.76C00E
4.80000€E
4.900COE
5.06000E
5.38000C
5.T0000E
5.62000E
5.38000E
5.08000E
4.50000F
4.40000E
4.82000¢€
4.-.30000E
4.29000E
4.28000¢
4.26000E
4.19000¢E
4.12000E
4.064000€F
3.9€600Cc
3.93000F
3.90000E
3.93000E
3.96000E
4.13000¢
4.30000¢

00
0o
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
Do
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

g8ct



TIME
( SEC)

0.00
4.00
3.00
12.00
16.00
20.00
24.00
28.00
32.00
36.00
40.00
44.00
48.00
52.00
56.00
60.00
64.00
68.00
72.00
76.00
80.00
84.00
88.00
92.00
96.00
100.00
104.00
108.00
112.00
116.00
120.00
124.00
128.00
132.00
136.00
140.00

MASS
(KG)

2.7T6205E
2. T70854€
2.65511F
2.60150F
256799
2.49447F
2. 46095F
?2.38743F
> 2392F
. -=040E
2.22688E
2.17337¢
2.11985F
2.06633F
2.01282€
1.95930F
1.90578F
1.85227¢
1.79875E
1. T4523F
1.69172€
1.63820E
1.58468E
1e93117E
1.4T7765E
1.42413€
1.37061F
1.31710F
1.26358E
1.21006F
1.15655€
1.10303E
1.N69351F
9.95996F
N,472480F
R ARGHAT

06
06
06
76
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
06
05
05
05

XCG
(M)

2.73900¢E
2.73900¢
2.74000E
2.T74200E
2.74400E
2.74800E
2.75200E
2.75700E
2.T76400E
2.77200€
2.78100E
2.79100€
2.80300€
2.81700E
2.83200¢
2.84800E
2.836700E
2.88800E
2.91100E
2.93800€
2.96600¢F
2.997C0E
3.03200€
3.07100€
3.11500€
3.16300€E
3.21900F
3.27500¢E
3.34400E
3.41300F
3.49950E
3.58600€
3.69500¢
3.80400E
3.94600¢
4.08400F

01l
0l
o1
o1
01
01
01
01
01
01
01l
01
01
01
01
01
01
0?
o1
01
01
01
01
01
o1
01
01
01
01
01
01
01
01
o1
01
01

Xce
iM)

3.62103E
3.61097E
3.60091E
3.58080E
3.56068E
3.55062E
3.53051E
3.51039E
3.48021¢
3.42992¢E
3.38969E
3.32934E
3.21869€
3.01753¢E
2.72583E
2.79624E
3.07788E
3.50033€
3.7T8197E
4.02337E
£.16419E
4.33518E
4.45588E
4.51623E
4.52629E
4.53635E
4.55143E
4.56652E
4.56149E
4.55646E
4,57155€
4.58664E
4.66208E
6.73752¢
4.91354E
5.08956E

ol
01
01
ol
0l
01
01
o1
01
o1
ol
01
o1
o1
01
01
01
01
01
01
01
01
01
o1
01
01
01
01
ol
01
01
01
o1
o1
01
01

LCP
(M)

-8.82031€ 00
-8.T1973E 00
-8.60915E 00
-8.38797€ 00
-8.166T9E 00
-8.02621€ 00
-7.78505E 00
-7.53387¢ 00
-7.16212E 00
-6.57921E 00
-6.08687E 00
-5.38336E 00
-4.15694E 00
-2.00526E 00

1.06169E 00

5.17593E-01
-2.10876E 00
-6.12329€ 00
-8.70966E 00
-1.08537E 01
-1.19819€ 01
-1.33818€ 0i
-1.42388E 01
-1.44523E 01
-1.41129€ 01
-1.37335€ 01
-1.33243E 01
-1.29152€ 01
-1.21749€ 01
-1.14346F 01
-1.07205€ 01
-1.00064E 01
-9.67078E 00
-9.33516E 00
-9.69537E 00
-1.00556E 01

I XX

(KG-M )

8.50078E
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B.462T71E
8.44119¢
8.41937E
8.39623E
B8.37146E
8.34599¢E
8.31848E
8.28952¢
8.25766F
8.22359E
8.18694F
8.14624E
8.104%0E
8.05866E
8.00737E
Te95254E
T.89264&4E
7.82626E
T.75421F
T67645E
71.58893E
T.49251E
7.38585F
7.26793E
7.130&40E
6.99287¢
6.82292E
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6.44063E
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12.00
16.00
20.06
24.00
28.00
32.00
36.00
40.00
44.00
48.00
52.00
56.00
60.00
64.00
68.00
72.00
16.00
80.00
84.00
88.00
92.00
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100.09
104.00
108.00
112.00
116.00
120.00
124.00
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136.00
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4.57627€-03
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1.14311F-02
1.6251F-02
2.15078€E-02
2.64925E-02
3.220649€-02
3.62459E-02
3.51612€~-02
2.11236E-02

-1.38871€-02

-8.21618€E-03
3.69351E-02
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2.03047E-01
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1.85940€E-01
1.57643€E-01
1.31395€-01
1.08228F-01
8.61555E~02
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3.89616F~-02
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1.78008E-02
1.64635€-02
1.43081F-02
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-1.30489E 00
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-2.54732E 00

%

A(3,6)

-3.92183E 01
-9.71936E-01
-4.733052-01
-3.07714E-D1
-2.2564T71E-01
-1.76404E-01
-1.43915E-01
-1.20837E-01
-1.03582E-01
-9.01960E-02
-7.95108E-02
~-7.08068E-02
-6.36027E-02
-5.75869E-02
~5.25287E-02
~4.826414E-02
~4.45763E-0D2
~4.13469E-02
-3.84289E-02
~3.57815E-02
-3.33820E-02
~3.12185E-02
~2.9264TE-02
-2.75001E-02
~2.59155E-02
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-1.77667E-02
-1.73135E-02
-1.70297E-02
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60.00
64.00
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84.00
88.00
92.00
96.00
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104.00
108.00
112.00
116.00
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124.00
128.00
132.00
136.00
140.00

A(S5.4)

-3.89433E
-3.924)9F
-3.95337E
—4.N1126F
-64.04555E
~-4,07920E
-4.,1017T0E
-4.13153¢
-4.,16228F
-4,19477F
—4.22249¢F
~4.25358F
-4£.,30866F
-4.33510E
-4,36078E
-4,38572E
-4.,41072E
-4.43580E
-4.,46681F
-4,49289F
-4.51988E
~-4.54526E
-4.56902¢
-4.59368E
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~-4,66921E
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~4,T1542E
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-1.24809€-01
-1.25287€E-01
-1.25752€-01
-1.26205E-01
-1.26669E-01
-1.27209€E-01
-1.27737€-01
-1.28089£-01
-1.28554E-01
-1.29031E-01
~1.29534E-01
-1.29961€E-01
-1.30439€-01
-1.30841E-01
-1.31281€-01
-1.31683€-01
-1.32073E-01
-1.32450£-01
-1.32827E-01
-1.33204€-01
-1.33668E-01
-1.34058E-01
-1.34460F-01
-1. 34837E'01
-1.35189¢-01
-1.35553E-01
-1.35968E-01
-1.36370F-01
-1.36848€E-01
-1.37338E-01
-1.37815€-01
-1.38481€E-01
-1.39097E-01
-1.39989E-01
-1.41120€-01
-1.42503€E-01

A(S,6)

1.99244E
2.00990E
2.02669E
2.04929E
2.07314E
2.08774E
2.11242E
2.1362T7€
2.16306E
2.18875E
2.21923E
2.24808E
2.278171E
230702E
2.34065E
2.37979¢
2.41442¢
2.44845F
2.47T996E
2.51663E
2.54610E
2.58204¢
2.61315E
2.65393E
2.69548E
2.73145E
2.78995¢E
2.84057E
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2.99606E
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3.19662¢E
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3.74430¢t
4.02145¢E
4e340T6E
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02
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1.50000E~-02
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1.50000E-02
1.50000E~-02
1.50000€E~-02
1.50000E~-02
1.50000€-02
1.50000E-02
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1.50000E-02
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1.50600E-02
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1.50000E-02
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1.50000E-02
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1.00000€E-03
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7.00000€-03
7.00000E-03
7.00000E-03
7.00000E-03
7.00000E-D3
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7.00000E-03
7.00000E-33
7.00000E-03
7.00000E-03
7.00000E-03
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7.00000£-03
7.GO000E-03
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7.00000€E-~-03
7.00000E-03
7.00000€E-~03
7.00000E-03
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7.00000E-23
7.00CTOE~-D3
7.000C0€E-D3
7.00G00E~-03
7.00006¢~-03
7.00000E~03
7.000G0c~-03
7.00000E-23
7.00000£E-03
7.00000E-03
7.00000E-03
7.00000E-923
7.00000E-23
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