Technical Memorandum 33-361

Asteroid Belt Meteoroid Hazard Study

D. J. Alderson
M. Neustadt

Approved by:

JET PROPULSUU: LABORATORY LIBRAPY

JUL 121958

CALFORNIA INSTIUTE OF TERHOLOLY

TECHNICAL MEMORANDUM 33-361

Copyright (C) 1968
 Jet Propulsion Laboratory
 California Institute of Technology

Prepared Under Contract No. NAS 7-100
National Aeronautics \& Space Administration

Contents

I. Introduction 1
II. Discussion 1
III. Use of This Report by the Designer 4
A. Computer inputs 4

1. Asteroid data 4
2. Damage parameters 5
3. Spacecraft mission orbit parameters 5
4. Spacecraft structure parameters 5
B. Computer Outputs 5
5. Coefficients 5
6. Parameters 5
Appendix A. Comparison of Asteroid Belt Models 7
Appendix B. Mathematical Model for Determination of Probability of Successfully Traversing Asteroid Belt 12
Appendix C. Implementation 28
Appendix D. The Value of β 40
Appendix E. Analytic Model Output 42
Appendix F. Example Cases Calculated 47
Appendix G. Computer Program 54
Nomenclature 84
References 92
Tables
F-1. Four example cases 47
F-2. Mission orbit elements 47
F-3. Values of α_{j} and n_{j} 49
F-4. Expecfed numbers of destructive meteoroids $/ \mathrm{m}^{2}{ }^{\prime} f_{j}^{*}$, and non-dimensional optimum-shielding thickness τ_{j}^{+}, for Cases $1,11,1 I$, and IV 50
F-5. Computed values of $C_{A^{\prime}} C_{A^{\prime}}^{\prime} C_{A^{\prime}}^{\prime \prime} C_{A^{\prime}}^{\prime \prime \prime} C_{B^{\prime}} C_{B^{\prime}}^{\prime} C_{B^{\prime}}^{\prime \prime}$ and $C_{B}^{\prime \prime \prime}$ for Cases I, II, III and IV 52

Contents (contd)

Figures

A-1. Asteroid belt model of Volkoff 7
A-2. Asteroid belt model of Friedlander and Vickers 8
A-3. Asteroid belt model of Friedlander and Vickers shown as a torus 8
A-4. Asteroid belt model of Chestek 9
A-5. Asteroid belt model of Narin 9
A-6. Asteroid belt model used in this report 10
B-1. Geometry of outward drawn unit vector $\mathbf{n}(\alpha, T)$ and unit vector \mathbf{Z} originating at surface element α of the spacecraft 13
B-2. Geometry 14
B-3. Plot of f vs p_{0} 20
B-4. Ecliptic plane, solar distance, latitude and longitude of spacecraft 21
B-5. Perspective view of spacecraft and ecliptic plane 21
B-6. The two possible orbital planes of meteoroids with inclination i, where i> $>\lambda$, which can impact the spacecraft 22
B-7. The two meteoroid orbits in plane No. 1, with semi-major axis a and eccentricity e, which pass through the spacecraft 22
B-8. The two meteoroid orbits in plane No. 2, with semi-major axis a and eccentricity e, which pass through the spacecraft 23
C-1. Sun-centered coordinate system 28
C-2. Spacecraft coordinates r, λ, Λ in sun-centered coordinate system 28
C-3. Space-fixed coordinate system 29
C-4. Spacecraft-fixed coordinates 30
C-5. Unit vectors in Plane A 30
C-6. Plane A contains \mathbf{X}, and is in plane of paper and perpendicular to ecliptic; Plane B is perpendicular to X 31
C-7. Plane B with vectors $\mathbf{e}_{1}, \mathbf{e}_{X}, \mathbf{X}$ and \mathbf{V}_{r} directed out of the paper 31
$\mathrm{C}-8$. Plot showing $\omega+\eta$ measured from ascending node to spacecraft in the orbit plane and in the direction of spacecraft motion 31
C-9. Relations on celestial sphere and spherical triangle 31
C-10. Circular arrangement of spherical triangle for application of the Napier rule 32
C-11. Asteroid and meteoroid orbits 33
C-12. Density distribution over M, ω, Ω 34
C-13. Spherical space coordinates taken as rectangular coordinates 34
C-14. Plot of $\frac{d \rho_{k}^{*}(\lambda)}{d \lambda}$ and "smeared out" $\frac{d \rho_{k}^{*}(\lambda)}{d \lambda}$ 36

Contents (contd)

Figures (contd)

C-15. "Extended body" including "main body" and "wings' 37
C-16. Plot of $r\left(\mathbf{X}_{k}^{\prime}\right)$ vs $r(\mathbf{X})$ and $\lambda\left(\mathbf{X}_{k}^{\prime}\right)$ vs $\lambda(\mathbf{X})$ 38
F-1. 500 -day and 900 -day missions to Jupiter 47
F-2. Convex polyhedral spacecraft shape 48
F-3. $\pi_{i}^{*}(T)$ vs T for Cases I and II $(3 \beta=1.9)$ 49
F-4. $\pi_{I}^{*}(T)$ vs T for Cases III and IV ($3 \beta=3.0$) 49
F-5. Non-dimensional optimum shielding $\tau_{j}^{+}=\frac{t_{j}^{+}}{t}$ and number of damaging meteoroids $/ \mathrm{m}^{2}, f_{j}^{*}$, for Case I 51
F-6. l vs W_{s} for $P(0)=P_{I}(S)=0.99$ for Cases 1 and $I I$ with uniform shielding and with optimum shielding 53
G-1. ASTEFF flow chart 55

Abstract

There is considerable interest in outer planet missions and in the hazard posed by the asteroid belt. Trajectories in the ecliptic plane, through the asteroid belt, require more shielding mass for protection against meteoroids, whereas trajectories out of the ecliptic plane require more propulsion mass. This report gives the System Designer a method for minimizing the shielding mass for a given probability of no meteoroid penetrations of the spacecraft shield. A model of the asteroid belt is developed based on 1500 numbered asteroids. The meteoroid particle flux is $$
F=\alpha_{c} m^{-\beta}
$$ where $$
\begin{aligned} F & =\text { particles of mass } m \text { or greater, } \text { meters }^{-2} \text { second }{ }^{-1}\left(\mathrm{~m}^{-2} \mathrm{~s}^{-1}\right) \\ \alpha_{\mathrm{e}} & =\text { constant } \\ \beta & =\text { constant } \end{aligned}
$$

The best estimate of β obtained is $\beta=\frac{1.9}{3}=0.63$
A mathematical model is given for the probability, $P(\mathrm{~S})$, of successfully traversing the asteroid belt, or the probability $P(0)$, of zero penetrations of the spacecraft shield. The spacecraft is represented by a 26 -sided convex polyhedron. The spacecraft trajectory is assumed to be in the form of an elliptical orbit. The meteoroid capability of penetrating the spacecraft shield is included as a function of meteoroid size, density and relative velocity; and shield thickness, density and hardness. The probability, $P(0)$, is calculated as a function of spacecraft size, surface area, shield thickness and shield mass.

Two cases are considered: A, uniform shielding over the entire surface of the spacecraft; and B , optimum shielding so as to maximize $P(0)$ for a given spacecraft shape, size and shielding mass. Calculations are made for a 500 - and a 900 -day mission spacecraft orbit, for $3 \beta=1.9$ and $3 \beta=3.0$. A computer program is provided for the designer to use, permitting the parametric variation of the spacecraft mission trajectory, the asteroid belt model, the spacecraft shape, size and shielding material. This enables the designer to maximize $P(0)$ and to minimize the shielding mass.

Asteroid Belt Meteoroid Hazard Study

I. Introduction

Considerable interest has developed in recent months in outer planet missions and in the hazard posed by the asteroid belt. In studies relative to this, the System Engineer must compare spacecraft missions which fly out of the ecliptic plane, and thus avoid the asteroid belt, with spacecraft missions which fly in the ecliptic plane and pass through the asteroid belt. Flights out of the ecliptic plane require more propulsion mass, whereas flights in the ecliptic plane and through the asteroid belt require more shielding mass. This study is a theoretical approach to the problem, but it shows the practicing engineer all of the parameters involved in the shielding problem and how they interact.

This report provides the System Designer with a means for making calculations of spacecraft shielding mass for various trajectories, either in or out of the ecliptic plane, for a given probability of successfully traversing the asteroid belt, i.e., no meteoroid penetrations of the spacecraft shield.

II. Discussion

In this study, the spacecraft mission trajectory is assumed to be an elliptical orbit, with position and velocity known as a function of time. The meteoroid particle flux is the generally accepted relation

$$
\begin{equation*}
F=\alpha_{c} m^{-\beta} \tag{1}
\end{equation*}
$$

where

```
\(F=\) particles, of mass \(m\) or greater, meters \(^{-2}\) second \({ }^{-1}\)
    ( \(\mathrm{m}^{-2} \mathrm{~s}^{-1}\) )
\(\alpha_{c}=\) constant
\(\beta=\) constant
```

A detailed discussion of various asteroid belt models is given in Appendix A. The Volkoff model is in the ecliptic plane only, from 2 to 4 AU . The asteroid density is the same throughout the belt, and the asteroid velocity is the heliocentric orbital velocity at the mean solar distance of the particles.

The Friedlander and Vickers model is in the form of a doughnut, extending to ± 10 deg ecliptic latitude; inside the doughnut, the asteroid density is constant. The Chestek model is also in the form of a doughnut with constant density inside. For a spacecraft trajectory in the ecliptic plane, Chestek calculates the meteoroid velocity relative to the spacecraft. The Narin model is based on the position of 1563 numbered asteroids as of an April 19, 1973 date. Narin gets a strong clustering of asteroids at certain radii and a gradual fading away with ecliptic latitude and wish distance from the center of the belt. The asterod belt nodel used in the present report is derived from 1000 numbered asteroids. Each numbered asteroid is replaced by a swarm of meteoroids with a mass distribution given by Eq. (1).

All the meteoroids in the swarm have the same semi-major axis, eccentricity and inclination to the ecliptic as the parent asteroid. However, the longitudes of ascending node, arguments of perihelion, and mean anomalies of the meteoroids are uniformly distributed over the entire range of possible values, from 0 to 2π. This is considered reasonable because of the non-dependence of the asteroid distribution on ecliptic longitude. The meteoroids are assumed to result, in part, from the collision and grinding of the asteroids, and are therefore assumed to have a distribution, in ecliptic latitude and solar distance, similar to that of the asteroids. The model of the asteroid belt used in this report is an improvement over the previous models which have been described in the literature because of its much more detailed and realistic combination of meteoroid space, velocity and mass distributions.

Most of the values of β given in the literature are very close to $\beta=2 / 3$. However, one possible value of β given in the literature is $\beta=1.0$. This report presents calculations for two values of β : a best estimate value of $1.9 / 3 \approx 0.63$, and a conservative value of 1.0.

A mathematical model is presented in Appendix B for determining the probability of successfully traversing the asteroid belt, or more specifically, the probability of zero meteoroid penetrations of the spacecraft shield. The spacecraft surface is assumed to be that of a convex polyhedron. The probability of zero penetrations $P(0)$, or probability of success $P_{I}(\mathrm{~S})$, is given by Eqs. (B-47 and -53) of Appendix B, or

$$
\begin{equation*}
P(0)=P_{I}(S)=\exp \left\{-\int_{T_{0}}^{T_{f}}\left[\sum_{j} F_{j}(T) A_{j}\right] d T\right\} \tag{2}
\end{equation*}
$$

where
$F_{j}(T)=$ the effective meteoroid flux on the j th face of the polyhedral spacecraft (destructive impacts $\mathrm{m}^{-2} \mathrm{~s}^{-1}$)
$A_{j}=$ the area of the j th face of the polyhedral spacecraft (m ${ }^{2}$)
$T=$ time
$T_{0}=$ time at which the spacecraft mission starts
$T_{f}=$ time at which the spacecraft mission ends

The penetration depth of a high velocity meteoroid in the spacecraft shielding material is given by

$$
\begin{equation*}
p_{1}=k_{1} d_{p} \ln \left(1+\frac{\rho_{t} V_{p}^{2}}{k_{2} h_{t}}\right) \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
p_{1}= & \text { meteoroid penetration depth, } \mathrm{cm} \\
k_{1}, k_{2}= & \text { constants } \\
\rho_{t}= & \text { target (spacecraft shielding) density, (} \mathrm{g} / \mathrm{cm}^{3} \text {) } \\
h_{t}= & \text { target (spacecraft shielding) Brinell hardness, } \\
& \text { (kg-wt } \left./ \mathrm{mm}^{2}\right) \\
d_{p}= & \text { projectile (meteoroid) diameter, } \mathrm{cm} \\
V_{p}= & \text { projectile (meteoroid) relative velocity compo- } \\
& \text { nent normal to the surface of the target, } \mathrm{km} / \mathrm{s}
\end{aligned}
$$

The meteoroid space and velocity distributions were obtained by means of a computer using the orbital elements of 1500 numbered asteroids.

Asteroidal meteoroids with masses in the range 1 to $10^{-4} \mathrm{~g}$ are of primary interest to this study, since they are large enough to puncture spacecraft structures and numerous enough to be hazardous. The radius R of the smallest meteoroid which can penetrate a shield of thickness t_{j}, on the j th face of the polyhedral spacecraft, is given by Eq. (B-60) of Appendix B, or

$$
\begin{equation*}
R=\frac{t_{j}}{C_{1} \ln \left(1+C_{2} D^{2}\right)} \tag{4}
\end{equation*}
$$

where, from Eqs. (B-34 and -35) of Appendix B,

$$
\begin{aligned}
C_{1}= & 3 k_{1} \approx(1.8 \pm 0.6)\left(\frac{\rho_{p}}{\rho_{t}}\right)^{2 / 3} \\
C_{2} & =\frac{\rho_{t}}{k_{2} h_{t}} \approx \frac{\rho_{t}\left(\frac{\rho_{p}}{\rho_{t}}\right)^{2 / 3}}{(4 \pm 2) h_{t}} \\
\rho_{g}= & \underset{ }{(\mathrm{projectile}}\left(\mathrm{g} / \mathrm{cm}^{3}\right)
\end{aligned}
$$

Also

$$
\begin{aligned}
D & =-\mathbf{n}_{j} \cdot \mathbf{W}^{\prime} \\
& =-\mathbf{n}_{j} \cdot(\mathbf{U}-\mathbf{V}) \cdot m^{-1}(T)
\end{aligned}
$$

from Eqs. (B-50 and -57) of Appendix B, where
$D=$ component of meteoroid relative velocity normal to spacecraft,
$\mathbf{n}_{j}=$ outwardly drawn unit vector normal to the j th face of a polyhedral spacecraft, in spacecraft-fixed coordinates
$\mathbf{W}^{\prime}=(\mathbb{U}-\mathbb{V}) m^{-1}(T)=$ velocity of meteoroid relative to the spacecraft in spacecraftfixed coordinates
$\mathbf{U}=$ velocity of meteoroid
$\mathbf{V}=$ velocity of spacecraft
$m^{-1}(T)=$ rotation matrix which converts a vector to spacecraft-fixed coordinates from space-fixed coordinates
Example:

$$
\mathbf{n}(\alpha)=\mathbf{n}(\alpha, T) m^{-1}(T)
$$

$\mathbf{n}(\alpha)=$ outwardly drawn unit vector normal to spacecraft surface element α, in spacecraft-fixed coordinates
$\mathrm{n}(\alpha, T)=$ outwardly drawn unit vector normal to spacecraft surface element α, at time T, in spacefixed coordinates

The mass M_{0} of the smallest meteoroid, of radius R, which can penetrate the shield of thickness t_{j} is given by

$$
\begin{equation*}
M_{0}=\frac{4}{3} \pi R^{3} \rho^{\prime} \tag{5}
\end{equation*}
$$

where $\rho^{\prime}=$ meteoroid density.

The flux $F_{j}(T)$, in Eq. (2) above, is given in Eq. (B-66) of Appendix B, and is a function of the spacecraft trajectory (position and velocity of the spacecraft as a function of time), meteoroid density distribution, meteoroid relative velocity, self-shadowing effect of a non-convex spacecraft, meteoroid damage function, and spacecraft orientation and surface position as a function of time.

The implementation of the above theoretical approach is given in Appendix C. Three coordinate systems are used: 1) a sun-centered coordinate system, 2) a space-fixed
coordinate system with origin at the spacecraft, and 3) a spacecraft-fixed coordinate system. The spacecraft orientation matrix is derived. This is a rotation matrix which converts a vector from spacecraft-fixed coordinates to space-fixed coordinates; for example $\mathbf{n}(\alpha, T)=\mathbf{n}(\alpha) \cdot m(T)$. The spacecraft trajectory is developed in terms of the spacecraft mission orbit elements. Expressions are derived giving the velocity of the meteoroids passing through the spacecraft position. The meteoroid density distribution is represented mathematically.

The output of the analytic model, the probability of zero penetrations of the spacecraft shield by meteoroids $P(0)$, or the probability that asteroidal meteoroids do not cause mission failure $P_{I}(S)$, is given by

$$
\begin{align*}
& P(0)=P_{I}(S)=\exp \left(-C l^{2} t^{-3 \beta}\right) \tag{6}\\
& P(0)=P_{I}(S)=\exp \left[-C^{\prime} A_{s}^{(1+3 \beta)} W_{s}^{-s \beta}\right] \tag{7}\\
& P(0)=P_{I}(S)=\exp \left[-C^{\prime \prime} l^{2(1+3 \beta)} W_{s}^{-3 \beta}\right] \tag{8}\\
& P(0)=P_{I}(S)=\exp \left(-C^{\prime \prime \prime} A_{s} t^{-3 \beta}\right) \tag{9}
\end{align*}
$$

from Eqs. (E-37 through -40) of Appendix E, where C, C^{\prime}, $C^{\prime \prime}$, and $C^{\prime \prime \prime}$ are constants calculated by the computer, l is the length of an edge of a convex polyhedron, (Fig. F-2, Appendix F), representing the spacecraft surface, and t, A_{s}, and W_{s} are the average thickness, total area, and total mass, of the spacecraft shielding. Two cases are considered: Case A, where the shielding is of uniform thickness over the entire surface of the spacecraft, and Case B, where the shielding is distributed over the faces of a convex polyhedral spacecraft in an optimum manner, so as to maximize the probability of success, for a given spacecraft shape, size l, and shielding mass, W_{s}.

In Appendix F, the results of the calculations of four example cases are given: Case I is for a 500 -day mission spacecraft orbit and $3 \beta=1.9$; Case II is for a 900 -day mission and $3 \beta=1.9$; Case III is for a 500 -day mission and $3 \beta=3.0$; and Case IV is for a 900 -day mission and $3 \beta=3.0$. The spacecraft mission orbit elements, a (semimajor axis), e (eccentricity), i (inclination of the orbit from the ecliptic plane), and ω (argument of perihelion) were used for the 500 - and 900 -day mission orbits. Only four orbital elements were needed in the computer program because the asteroid model does not depend on the ecliptic longitude or on the time. The inclination of the 500 - and 900 -day orbits are about 2 and 4 deg , respectively. The
spacecraft was represented by a convex polyhedron with 26 faces, called a rhombicuboctahedron, with l the length of an edge of this body. The meteoroids were assumed to be pure iron ($\rho^{\prime}=7.9 \mathrm{~g} / \mathrm{cm}^{3}$), and the spacecraft shielding material was assumed to be aluminum ($\rho_{s}=2.7 \mathrm{~g} / \mathrm{cm}^{3}$). The expected number of damaging meteoroids $/ \mathrm{m}^{2}$, and a non-dimensional optimum shielding thickness on each of the 26 faces, were calculated for Cases I, II, III, and IV. The optimum shield thickness and the average shield thickness were also calculated. Figure F-6 is a plot of l versus W_{s}, for $P(0)=0.99$, for Cases I and II with uniform shielding and with optimum shielding, for $3 \beta=1.9$. For $\beta=1.0$ the shielding masses become extremely large, making the asteroid belt essentially impenetrable. Thus, use of the proper value of β is very important.

For either optimum or uniform shielding, the computer program can be used to generate curves of

for a particular spacecraft trajectory, meteoroid density and shielding material. Plots can also be made of

The computer program is given in Appendix G together with a description of the program, a simple flow diagram, a description of the input data cards and output, a listing of the program, and a sample problem for the computer user to run.

III. Use of This Report by the Designer

The designer, in using this report, must provide certain inputs to the computer.

A. Computer Inputs

1. Asteroid data. The asteroid data, for the $k=1$ to 1500 asteroids, consist of w_{k}, i_{k}, e_{k} and a_{k},

where

$$
w_{k}=\frac{1}{f}=\text { statistical weight of the } k \text { th asteroid }
$$

$f=$ probability of discovery of the asteroid (given in Fig. B-3)
$i_{k}=$ inclination of the orbit of the k th asteroid to the ecliptic
$e_{k}=$ eccentricity of the orbit of the k th asteroid
$a_{k}=$ semi-major axis of the orbit of the k th asteroid

If desired, one can use a subset of these asteroids instead of all 1500 . This data is supplied with the computer program, and is listed with it in Appendix G.
2. Damage parameters. The parameters $C_{1}, C_{2}, \rho_{s}, h_{s}$, $\rho^{\prime}, 3 \beta, \varepsilon_{r}$ and ε_{λ}, where C_{1} and C_{2} are constants, and
$\rho_{s}=$ density of spacecraft shielding material, taken as uniform in composition, $\mathrm{g} / \mathrm{cm}^{3}$
$h_{s}=$ Brinell hardness of the shield material, $\mathrm{kg} / \mathrm{mm}^{2}$
$\rho^{\prime}=$ meteoroid density, $\mathrm{g} / \mathrm{cm}^{3}$
$3 \beta=1.9=$ a constant relating to the meteoroid mass distribution law
$\varepsilon_{r}=\varepsilon_{\lambda}=0.02=$ averaging parameters used in the meteoroid space distributions to avoid singularities
3. Spacecraft mission orbit parameters. The spacecraft mission orbit parameters are $a, e, i, \omega, T_{P}, T_{0}, \Delta T$, and N_{T}
where

$$
\begin{aligned}
a= & \text { semi-major axis of spacecraft orbit, AU } \\
e= & \text { eccentricity of spacecraft orbit } \\
i= & \text { inclination of spacecraft orbit, deg } \\
\omega= & \text { argument of perihelion of spacecraft orbit, deg } \\
T_{P}= & \text { time of perihelion passage of spacecraft in its orbit }, \\
& \text { days } \\
T_{0}= & \text { time at which spacecraft mission starts, days } \\
\Delta T= & \text { interval between time steps, days } \\
N_{T}= & \text { number of steps into which the mission is divided }
\end{aligned}
$$

4. Spacecraft structure parameters. The spacecraft structure parameters are $N_{F}, \mathbf{n}_{j}, \alpha_{j}, \alpha_{s}, l^{*}, t^{*}, A_{j}^{*}, \tau_{j}^{*}, \mathbf{N}_{j}^{\prime}$
where
$N_{F}=$ number of faces of polyhedral spacecraft
$\mathbf{n}_{j}=$ outwardly drawn unit vector normal to the j th face of a polyhedral spacecraft, in spacecraft fixed coordinates
$\alpha_{j}=\frac{A_{j}^{*}}{l^{* 2}}=$ area of j th face of standard spacecraft in m^{2}
$\alpha_{s}=\sum_{j=1}^{N_{F}} \alpha_{j}$
$l^{*}=1 \mathrm{~m}=$ length associated with standard spacecraft
$t^{*}=1 \mathrm{~cm}=$ average shield thickness of standard spacecraft
$A_{j}^{*}=$ area of the j th face of the standard spacecraft, m^{2}
$\tau_{j}^{*}=1=$ ratio of shield thickness on j th face to average shield thickness, for standard spacecraft
$\mathbf{N}_{j}^{\prime}=$ a vector indicating the orientation of the j th face of a polyhedral spacecraft $=c \mathbf{n}_{j}$
$c=$ any constant greater than zero

B. Computer Outputs

Following are the computer outputs.

1. Coefficients. The coefficients are $C_{A}, C_{A}^{\prime}, C_{A}^{\prime \prime}, C_{A}^{\prime \prime \prime}$ for the uniform shielding case and $C_{B}, C_{B}^{\prime}, C_{B}^{\prime \prime}, C_{B}^{\prime \prime \prime}$ for the optimum shielding case.

From Eqs. (6-9), one can plot
(1) $l \mathrm{vs} t$
(2) A_{s} vs W_{s}
(3) lvs W_{s}
(4) $t \vee \operatorname{vs} A_{s}$
for constant $P(0)$
(where t is average shield thickness) for the uniform shielding case and for the optimum shielding case.
2. Parameters. The parameters are $\tau_{j}^{\dagger}, \sigma\left[\mathbf{X}\left(T_{i}\right)\right]$, $n_{\sigma}\left[\mathbf{X}\left(T_{i}\right)\right], F_{j}^{*}\left(T_{i}\right), \pi_{I}^{*}\left(T_{i}\right), f_{j}^{*},\left(A_{j}^{*}\right)\left(f_{j}^{*}\right), v_{i}^{*}, P_{I}^{*}(S), r\left(T_{i}\right)$, $\lambda\left(T_{i}\right), \eta\left(T_{i}\right), V_{1}\left(T_{i}\right), V_{2}\left(T_{i}\right), V_{3}\left(T_{i}\right)$.
where

$$
\begin{aligned}
\tau_{j}^{+}= & \text {non-dimensional optimum pat- } \\
& \text { tern of shielding thickness on } \\
& j \text { th face } \\
t_{j}^{*}= & \text { optimum thickness on } j \text { th face } \\
& \text { of standard spacecraft, in cm } \\
t_{j}^{+}= & \text {optimum thickness on } j \text { th } \\
& \text { face }=(t)\left(\tau_{j}^{+}\right), \text {in cm } \\
\sigma\left[\mathbf{X}\left(T_{i}\right)\right]= & \text { meteoroids (with mass } \left.\supseteq m_{0}\right) \\
& \text { per }(\text { AU })^{3} \text { at the spacecraft } \\
& \text { position } \mathbf{X}, \text { at time } T_{i} \\
n_{\sigma}\left[\mathbf{X}\left(T_{i}\right)\right]= & \text { number of meteoroid swarms } \\
& \text { contributing to model at } \\
& \text { spacecraft position } \mathbf{X}, \text { at } \\
& \text { time } T_{i}
\end{aligned}
$$

$F_{j}^{*}\left(T_{i}\right)=$ penetrating meteoroid flux on the j th face of the standard polyhedral spacecraft (meteoroids $\mathrm{m}^{-2} \mathrm{~s}^{-1}$) at time T_{i}
$\pi_{I}^{*}\left(T_{i}\right)=$ rate of change of spacecraft state at time T_{i}, caused by meteoroids; spacecraft failure rate
$f_{j}^{*}=$ expected number of penetrating hits $/ \mathrm{m}^{2}$ on the j th face of the standard spacecraft; integrated flux for standard spacecraft
$\left(A_{j}^{*}\right)\left(f_{j}^{*}\right)=$ expected number of penetrating hits on the surface face of the standard spacecraft

$$
v_{I}^{*}=\int_{T_{0}}^{T_{t}} \pi_{I}^{*}(T) d T
$$

$P_{d}^{*}(\mathrm{~S})=P(0)$ for standard spacecraft.
$\lambda\left(T_{i}\right)=$ ecliptic latitude of the spacecraft at time \boldsymbol{T}_{i}
$r\left(T_{i}\right)=$ radial distance of spacecraft from the sun at time T_{i}
$\eta\left(T_{i}\right)=$ true anomaly of spacecraft at time T_{i}

$$
\begin{aligned}
V_{1}\left(T_{i}\right), V_{2}\left(T_{i}\right), V_{3}\left(T_{i}\right)= & \text { components of spacecraft } \\
& \text { velocity in space-fixed } \\
& \text { coordinates at time } T_{i}
\end{aligned}
$$

The uniform shielding mass is calculated from $W_{s}=\rho_{s} A_{s} t$. One can thus plot

for constant $\rho^{\prime}, \rho_{s}, h_{s}$, for a particular spacecraft mission trajectory and for the assumed model of the asteroid belt.

The system designer can also obtain the optimum distribution of shielding t_{j}^{\dagger}. From $C_{B}^{\prime \prime}, l$ and $P(0)$, he can calculate W_{s} from Eq. (8). From $W_{s}, \rho_{s}, \alpha_{s}$ and l, he can calculate t from

$$
t=\frac{W_{s}}{\rho_{s} \alpha_{s} l^{2}}
$$

From t and τ_{j}^{+}he can calculate $t_{j}^{+}=\left(\tau_{j}^{+}\right) t$, where t_{j}^{+}is the optimum shielding thickness on the j th face of the convex polyhedron.

In conclusion, this report provides the System Engineer with a computer program for the parametric variation of all of the parameters involved in the problem of maximizing the probability, $P(0)$, of zero meteoroid penetrations of the spacecraft shield, and minimizing the meteoroid shield mass. The parameters which can be varied include the spacecraft mission trajectory, details of the asteroid belt model, density of the meteoroids, and spacecraft shape, size and shielding material. The time variation of the probability of zero penetrations $P(0)$ can also be obtained as the asteroid belt is crossed.

Appendix A

Comparison of Asteroid Belt Models

An asteroid belt model consists of a space distribution, a velocity distribution and a mass distribution. The following is a comparison of a number of different models of the asteroid belt. The Volkoff model (Ref. 1) is a simple one. It is defined only in the ecliptic plane. The particle concentration, consisting of asteroidal and cometary matter, is estimated to be 100 times the interplanetary particle concentration. The model extends from 2 AU to 4 AU solar distance. The particle flux is equal to

$$
\begin{equation*}
F=\alpha_{c} m^{-\beta} \tag{A-1}
\end{equation*}
$$

where

$$
\begin{aligned}
F & =\text { particles } \mathrm{m}^{-2} \mathrm{~s}^{-1} \text { of mass } m \text { or greater } \\
\alpha_{c} & =\text { constant } \\
\beta & =\text { constant }
\end{aligned}
$$

The velocity of the particles is that corresponding to a direct heliocentric circular orbital velocity at the mean solar distance of the particles. The particle flow direction is considered to be isotropic. The average particle density is $0.75 \mathrm{~g} / \mathrm{cm}^{3}$. Figure A-1 shows the Volkoff asteroid belt model. The horizontal line is the edge view of the ecliptic plane, and gives distance from the sun in AU. The ordinate is the ecliptic latitude in degrees. The positions of the earth, Mars and Jupiter are plotted, by the method of Narin (Ref. 2), on a fictitious plane normal to the ecliptic
plane. This fictitious plane passes through the sun and the planet, or object of interest. The plane rotates (in longitude) around the sun with, for example, Mars, and the oval shown in Fig. A-I is the path traced by Mars on this plane as Mars circles the sun. The oval shows the variation of ecliptic latitude and solar distance, and omits properties involved with solar longitude. The Volkoff asteroid belt model is designed to provide a conservative estimate of the asteroidal meteoroid hazard in connection with his basically cometary-meteoroid-oriented general meteoroid hazard analysis.

Figure A-2 shows the Friedlander and Vickers asteroid belt model (Ref. 3). Two models are presented: one is a rectangle in the coordinate system used here and the other an oval. The part below the ecliptic plane is not shown. The rectangular model was presented in the preliminary draft of Ref. 3, and the egg-shaped model in the final draft of the report. The egg-shaped model is an oblate toroid, shown in Fig. A-3, and would be an ellipse in Narin's coordinate system, with ecliptic latitude and solar distance used as polar coordinates. However, we are plotting these as rectangular coordinates, and maximum ecliptic latitude at A in Fig. A-3 appears at A^{\prime} in Fig. A-2. In the rectangular model of Fig. A-2, it is assumed that the asteroid density is uniform and constant, and the total asteroid mass is contained in a toroidal "box" extending from 2 AU to 3.5 AU in distance from the sun and from -10 to +10 deg in ecliptic latitude. The oblate toroid

Fig. A-1. Asteroid belt model of Volkoff

Fig. A-2. Asteroid belt model of Friedlander and Vickers

Fig. A-3. Asteroid belt model of Friedlander and Vickers shown as a torus
has similar boundaries extending to a maximum of 0.6 AU from the ecliptic, as shown in Figs. A-2 and A-3, but is slightly more realistic, having rounded corners. The asteroid particles are assumed to have an average density approximately the same as that of the stony meteorites, i.e., $3 \mathrm{~g} / \mathrm{cm}^{3}$, and an average velocity of $20 \mathrm{~km} / \mathrm{s}$. This model is more realistic than the Volkoff model since it attempts to produce a three-dimensional meteoroid distribution, rather than one confined to the ecliptic plane only. Figure A-4 shows the Chestek asteroid belt model (Ref. 4). His model, like the Friedlander and Vickers model, is toroidal in shape, is symmetric about the ecliptic plane, is not dependent on ecliptic longitude, and has constant density inside the asteroid belt and zero density outside. Chestek has two toroidal models, each centered at
2.9 AU. The smaller one has a radius of 0.6 AU while the larger has a radius of 0.75 AU . The smaller one has the larger density, since they each include the same asteroid mass. Chestek assumed the spacecraft flight path to be in the ecliptic plane and calculated the velocity of the meteoroids relative to the spacecraft. This was done for various meteoroid orbits in the ecliptic plane (different semimajor axes and eccentricities), and he obtained relative velocities between 6 and $22 \mathrm{~km} / \mathrm{s}$. This is much better than the single relative velocity obtainable from the previous models. He also considered particles in orbits inclined as much as 20 deg to the ecliptic and concluded that less than a hemisphere of spacecraft shielding is required. His cumulative mass distribution, Eq. (A-1), is the same as that of Volkoff, and he uses

$$
\beta=\frac{2.5 \pm 0.5}{3}=0.83 \pm 0.17
$$

Figure A-5 shows a slightly modified form of Narin's asteroid belt model (Refs. 5 and 6). This model is solely concerned with the space distribution of the known asteroids and contains no velocity distribution or mass distribution. Narin took the orbital elements for 1563 numbered asteroids and, using a computer, generated various graphs and statistics relating to asteroid position. He showed that the distribution of asteroids is essentially independent of

Fig. A-4. Asteroid belt model of Chestek

Fig. A-5. Asteroid belt model of Narin
ecliptic longitude. Because of the way in which he constructed his model, it is not independent of the time. The version based on the date April 19, 1973 is the one shown in Fig. A-5. His distribution is not perfectly symmetric about the ecliptic, but has an average ecliptic latitude of -0.10 deg . He found the mean solar distance of the asteroids to be 2.83 AU . His method was to divide the space in the asteroid belt into cells extending through 2 deg of ecliptic latitude and 0.1 AU of solar distance. Narin's figures used ecliptic latitude and solar distance as angular and radial polar coordinates, as mentioned above, whereas they are presented in Fig. A-5 as rectangular coordinates. The number of asteroids in a cell, plus the number in the corresponding cell south of the ecliptic, is shown by the number of dots at the appropriate location in Fig. A-5. Note that the figure illustrates a model, symmetric about
the ecliptic, formed by averaging Narin's northern and southern distributions. Figure A-5 is much more realistic than Figs. A-1 through A-4, which have a constant density inside the asteroid belt and zero density outside. There is a very strong clustering in certain areas and a gradual fading away with latitude and with distance from the center of the belt. This space distribution is by far the best available and gives the most revealing picture of what the asteroid belt is like.

Figure A-6 is a sketch of the asteroid belt model used in this report. The numbers on the curves are the expected number of asteroids/(AU) ${ }^{3}$ with absolute magnitude less than 13.6 at each location. This absolute magnitude corresponds to an asteroid radius of 4.3 km . The meteoroids are assumed to result, in part, from the same sources as

Fig. A-6. Asteroid belt model used in this report
the asteroids, and in part from the collision and consequent grinding of the asteroids, and are therefore assumed to have a distribution, in ecliptic latitude and solar distance, similar to that of the asteroids. Thus, as explained in Section III of Appendix B of this report, the meteoroid space distribution is derived from the numbered asteroid space distribution. Each numbered asteroid is replaced by a swarm of meteoroids with a mass distribution given by Eq. (A-1). All the meteoroids in the swarm have the same semimajor axis, eccentricity and inclination to the ecliptic
as their parent asteroid. However, the longitudes of ascending node, arguments of perihelion, and mean anomalies of the meteoroids are uniformly distributed over the entire range of possible values. This is considered to be reasonable because of the non-dependence of the asteroid distribution on ecliptic longitude. This leads to the density distribution shown in Fig. A-6 for the meteoroids as well as the asteroids, with a scale factor for the mass dependence. This model also includes a meteoroid velocity distribution as explained in Appendix B, Section III.

Appendix B

Mathematical Model for Determination of Probability of Successfully Traversing Asteroid Belt

The following is a derivation of an expression for the probability that a spacecraft will successfully traverse the asteroid belt. This is a necessary preliminary to the writing of a computer program for calculating this probability of success.

The analysis begins with utmost generality and proceeds to greater explicitness. An overall probability of success $P(S)$ is obtained, which is the probability that the spacecraft successfully traverses the asteroid belt. Other information is also generated which is of value in determining: 1) the time variation of the meteoroid hazard as the asteroid belt is crossed, and 2) the pattern of shielding to protect the spacecraft in an optimum manner against meteoroid damage.

I. Spacecraft State and Change of State

A spacecraft state is defined as one of the many possible conditions of the spacecraft. If the spacecraft is hit by a meteoroid, damage to one or more essential items may occur and thus cause a change in the state of the spacecraft. Other causes of change of spacecraft state might be random component failures, radiation effects, etc.

The possible states of the spacecraft form a continuum \underline{S} if one assumes a continuous distribution of spacecraft states. Now, if \underline{R} is a portion of \underline{S}, the probability that the spacecraft will be in one of the states in \underline{R} at time T is

$$
\begin{equation*}
\int_{\underline{\underline{x}}} P(s, T) d s \tag{B-1}
\end{equation*}
$$

where $P(s, T)$ is a probability density function over \underline{S}, and $P(s, T) d s$ is the probability the spacecraft is in the interval between state s and state $s+d s$. Such integrals reduce to a summation $P\left(s_{1}, T\right)+P\left(s_{2}, T\right)+P\left(s_{3}, T\right)+\cdots$, when the states involved are discrete. Since the spacecraft must be in some state at time T, one can write

$$
\begin{equation*}
\int_{\underline{\mathrm{s}}} P(s, T) d s=1 \tag{B-2}
\end{equation*}
$$

Assume the spacecraft to be in state s at time T. Let the probability that it changes to state s^{\prime} during the next infini-
tesimal time interval $d T$ be defined by $\pi\left(s, s^{\prime}, T\right) d T$. Here $\pi\left(s, s^{\prime}, T\right)$ is the rate of change of spacecraft state, from state s to state s^{\prime} at time T and is here called the total transition rate. Now one can write

$$
\begin{align*}
d P(s, T)= & \int_{\underline{s}}\left[P\left(s^{\prime}, T\right) \pi\left(s^{\prime}, s, T\right) d T\right] d s^{\prime} \\
& -P(s, T) \int_{\underline{\underline{s}}}\left[\pi\left(s, s^{\prime}, T\right) d T\right] d s^{\prime} \tag{B-3}
\end{align*}
$$

The first integrand $P\left(s^{\prime}, T\right)_{\pi}\left(s^{\prime}, s, T\right) d T$ is the probability that the spacecraft is in state s^{\prime}, at time T, multiplied by the probability that it will change from state s^{\prime} to state s during the next time interval $d T$.
The integral

$$
\int_{\underline{\underline{s}}}\left[P\left(s^{\prime}, T\right) \pi\left(s^{\prime}, s, T\right) d T\right] d s^{\prime}
$$

is the increase in $P(s, T)$. The second term $\pi\left(s, s^{\prime}, T\right) d T$ is the probability that a spacecraft in state s will change to state s^{\prime}. The integral

$$
\int_{\underline{s}}\left[\pi\left(s, s^{\prime}, T\right) d T\right] d s^{\prime}
$$

is the total probability that the spacecraft will fall out of state s. The product

$$
P(s, T) \int_{\underline{\mathrm{s}}}\left[\pi\left(s, s^{\prime}, T\right) d T\right] d s^{\prime}
$$

is the probability that the spacecraft is in state s, at time T, multiplied by the probability that the spacecraft changes from state s to state s^{\prime} during the next time interval $d T$. Equation ($\mathrm{B}-3$) is thus the increase in $P(s, T)$ minus the decrease in $P(s, T)$, or the net change in $P(s, T)$ represented by $d P(s, T)$. Now, $d T$ can be factored out since the integrals are over s^{\prime}, so one gets

$$
\begin{align*}
\frac{d P(s, T)}{d T}= & \int_{\underline{s}}\left[P\left(s^{\prime}, T\right) \pi\left(s^{\prime}, s, T\right)\right] d s^{\prime} \\
& -P(s, T) \int_{\underline{\underline{s}}}\left[\pi\left(s, s^{\prime}, T\right)\right] d s^{\prime} \tag{B-4}
\end{align*}
$$

which is the rate of change of spacecraft state. This equation could be solved if there were a finite number of states, and if one knew the π functions, by straight forward computer techniques as a set of initial value ordinary differential equations.

The term $\pi\left(s, s^{\prime}, T\right) d T$ can be represented by a sum of components, $\pi\left(s, s^{\prime}, T\right) d T=\Sigma_{i} \pi_{i}\left(s, s^{\prime}, T\right) d T$ or, cancelling $d T$ on each side of the equation, one gets

$$
\begin{equation*}
\pi\left(s, s^{\prime}, T\right)=\sum \pi_{i}\left(s, s^{\prime}, T\right) \tag{B-5}
\end{equation*}
$$

where $\pi_{i}\left(s, s^{\prime}, T\right)$ is the rate of change of spacecraft state, from state s to state s^{\prime}, at time T, caused by the i th source and is here called the $i t h$ transition rate. For example, if s represents success and s^{\prime} represents failure, then $\pi_{i}\left(s, s^{\prime}, T\right) d T$ is the probability that the i th source causes the spacecraft to change from success at time T to failure at time $T+d T$.

Let the I th transition rate, $\pi_{i}\left(s, s^{\prime}, T\right)$, be due to impact by a certain class of meteoroids which form a set \underline{M}. Other classes contribute linearly to the total transition rate $\pi\left(s, s^{\prime}, T\right)$. Let μ be one of this class, or a meteoroid type which is an element of \underline{M}. Let meteoroids of type μ possess a set of structural properties $\underline{S t^{\prime}}(\mu)$. Typical meteoroid structural properties are shape, size and composition.

Let \mathbf{X} be the three-dimensional vector giving the position of a particular point in space. Let \mathbf{U} be the threedimensional vector giving the velocity of a meteoroid. Let $d^{3} \mathbf{X}$ be an element of volume of space and $d^{3} \mathbf{U}$ an element of volume of velocity phase space. Let

$$
\psi(\mu, \mathbf{X}, \mathbb{U}, T) d \mu d^{3} \mathbf{X} d^{3} \mathbf{U}
$$

be the differential probability that a meteoroid of type μ will pass through location \mathbf{X} with velocity \mathbf{U} at time T, with tolerances $d_{\mu}, d^{3} \mathbf{X}, d^{3} \mathrm{U}$, and $d T$ in meteoroid type, position, velocity and time. Here $d^{3} \mathbf{X}$ may be thought of as $d^{2} \mathbf{X} \cdot \mathbf{U} d T$. Let the surface of the spacecraft be composed of elements of area which form a set \underline{A}. Let $A(\alpha)$ be an area density function, where α is an element of \underline{A}, so that

$$
\begin{equation*}
\int_{\underline{4}} A(\alpha) d \alpha=A_{s} \tag{B-6}
\end{equation*}
$$

where A_{s} is the surface area of the spacecraft.

Let \underline{B} be a subset of \underline{A}. The total area of the surface elements in \underline{B} is

$$
\int_{\underline{B}} A(\alpha) d \alpha
$$

Now, at element α, the spacecraft possesses a set of structural properties $\underline{S t}(\alpha)$. Typical spacecraft structural properties are configuration, thickness and composition. At time T, let the outwardly drawn three-dimensional unit vector, normal to the spacecraft surface at α, be $\mathbf{n}(\alpha, T)$. Let the spacecraft shadowing function $S_{h}(\alpha, \mathbf{Z}, T)$ be defined as the probability that the line drawn from the spacecraft surface element α in the direction \mathbf{Z}, at time T, will penetrate a part of the spacecraft. In Fig. B-1, $\mathbf{n}(\alpha, T) \cdot \mathbf{Z}>0$, whereas $\mathbf{n}(\alpha, T) \cdot \mathbf{Z}_{2}<0$. Thus,
if

$$
\begin{equation*}
\mathbf{n}(\alpha, T) \cdot \mathbf{Z}<0, \quad \mathrm{~S}_{h}(\alpha, \mathbf{Z}, T)=1 \tag{B-7}
\end{equation*}
$$

and the line drawn from the element α in the direction \mathbf{Z} penetrates the spacecraft.

Let $\delta\left(s, s^{\prime}, \alpha, \mu, \mathbf{W}, T\right)$ be the probability that the spacecraft in state s at time T will change to state s^{\prime} when hit on surface element α by a meteoroid of type μ moving at a relative velocity \mathbf{W} with respect to the spacecraft, as shown in Fig. B-2. Since the spacecraft must reach some state after being hit by a meteoroid

$$
\begin{equation*}
\int_{\underline{S}} \delta\left(s, s^{\prime}, \alpha, \mu, \mathbf{W}, T\right) d s^{\prime}=1 \tag{B-8}
\end{equation*}
$$

Fig. B-1. Geometry of outward drawn unit vector $n(\alpha, T)$ and unit vector Z originating af surface element α of the spacecraft

Fig. B-2. Geometry

Let the position and velocity of the spacecraft at time T be $\mathbf{X}(T)$ and $\mathbf{V}(T)$, respectively. Then

$$
\mathbf{U}=\mathbf{V}+\mathbf{W}
$$

and

$$
\begin{equation*}
\mathbf{W}=\mathbf{U}-\mathbf{V} \tag{B-9}
\end{equation*}
$$

as shown in Fig. B-2.

The probability that the spacecraft changes from state s to s^{\prime}, between time T and time $T+d T$, caused by a certain set of meteoroids \underline{M}, is given by

$$
\begin{align*}
\pi_{I}\left(s, s^{\prime}, T\right) d T= & \int_{\underline{L}} \int_{\underline{M}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta\left(s, s^{\prime}, \alpha, \mu, \mathbf{W}, T\right) \\
& \cdot\left[1-S_{h}(\alpha,-\mathbf{w}, T)\right] \\
& \cdot \psi[\mu, \mathbf{X}(T), \mathbf{U}, T] d_{\mu} d^{3} \mathbf{X} d^{3} \mathbf{U} \tag{B-10}
\end{align*}
$$

Here $\psi(\mu, \mathbf{X}, \mathbf{U}, T) d \mu d^{3} \mathbf{X} d^{3} \mathbf{U}$ is the differential probability that the meteoroid of type μ, in the set of meteoroids \underline{M}, passes through point \mathbf{X}, with velocity \mathbf{U}, at time T, with tolerances $d \mu, d^{3} \mathbf{X}$ and $d^{3} \mathbf{U}$. The quantity [$1-S_{h}(\alpha, \mathbf{Z}, T)$] is the probability that the meteoroid does not hit the spacecraft structure before it reaches point \mathbf{X}, and $\delta\left(s, s^{\prime}, \alpha, \mu, \mathbf{W}, T\right)$ is the probability the spacecraft goes from state s to s^{\prime} when hit on surface α by a meteoroid of type μ, moving at relative velocity \mathbf{W} at time T. Here \mathbf{Z} is a unit vector, originating at α, as shown in Fig. B-1, whereas

$$
\mathbf{w}=\frac{\mathbf{W}}{|\mathbf{W}|} \text { is a unit vector directed at } \alpha . \text { Thus, }
$$

$$
\mathbf{Z}=-\frac{\mathbf{W}}{|\mathbf{W}|}=-\mathbf{w}
$$

Now, let the volume element $d^{3} \mathbf{X}$ be replaced by the cylindrical volume element shown in Fig. B-2, namely, $|\mathbf{n}(\alpha, T) \cdot \mathbf{W}| d T A(\alpha) d \alpha$ where $|\mathbf{n}(\alpha, T) \cdot \mathbf{W}| d T$ is the altitude of the cylinder and $A(\alpha) d \alpha$ is the base of the cylinder, or area element of the spacecraft. Thus, Eq. (B-10) becomes

$$
\begin{aligned}
\pi_{I}\left(s, s^{\prime}, T\right) d T= & \int_{\underline{I}} \int_{\underline{M}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta\left(s, s^{\prime}, \alpha, \mu, \mathbf{W}, T\right)\left[\mathbf{1}-\mathbf{S}_{h}(\alpha,-\mathbf{w}, T)\right] \\
& |\mathbf{n}(\alpha, T) \cdot \mathbf{W}| d T \cdot \mathbf{A}(\alpha) d \alpha \cdot \psi[\mu, \mathbf{X}(T), \mathbf{U}, T] d^{3} \mathbf{U} d \mu
\end{aligned}
$$

and after cancelling out $d T$ on each side and rearranging,

$$
\begin{equation*}
\pi_{I}\left(s, s^{\prime}, T\right)=\int_{\underline{A}} \int_{\underline{M}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta\left(s, s^{\prime}, \alpha, \mu, \mathbf{W}, T\right)\left[\mathbf{1}-S_{h}(\alpha,-\mathbf{w}, T)\right] \cdot|\mathbf{n}(\alpha, T) \cdot \mathbf{W}| \mathbf{A}(\alpha) \cdot \psi[\mu, \mathbf{X}(T), \mathbf{U}, T] d^{3} \mathbf{U} d \mu d \alpha \tag{B-11}
\end{equation*}
$$

Equation (B-11) gives the meteoroid induced transition rate in terms of the meteoroid distribution function ψ, spacecraft surface area distribution $A(\alpha) d \alpha$, spacecraft surface normal $\mathbf{n}(\alpha, T)$, spacecraft shadowing function S_{h}, and spacecraft damage function δ.

Great simplification is introduced by adopting the nearly universally made approximation that the spacecraft has only two states: successful (so far), and failed, S and F_{a}, respectively, and also assuming that a failed spacecraft never recovers. The set of states is thus $\underline{S}=\left\{\mathrm{S}, F_{a}\right\}$
and

$$
\pi\left(F_{a}, S, T\right)=\pi_{i}\left(F_{a}, S, T\right)=0
$$

From Eq. (B-2),

$$
P\left(F_{a}, T\right)+P(S, T)=1
$$

or

$$
P\left(F_{u}, T\right)=1-P(S, T)
$$

so that the spacecraft status can be described by a single function $P_{s}(T)=P(S, T)$, the probability of spacecraft success through time T. Furthermore, there is only one transition with which non-zero probabilities, or rates, are associated, namely, from S to F_{a} so simpler expressions can be used for the transition rates and probabilities, (now failure rates and probabilities). Thus, one gets

$$
\begin{gathered}
\pi\left(s, s^{\prime}, T\right)=\pi(T)=\pi\left(S, F_{a}, T\right) \\
\pi_{i}\left(s, s^{\prime}, T\right)=\pi_{i}(T)=\pi_{i}\left(S, F_{a}, T\right)
\end{gathered}
$$

and

$$
\begin{equation*}
\delta\left(s, s^{\prime}, \alpha, \mu, \mathbf{W}, T\right)=\delta\left(\mathbf{S}, F_{a}, \alpha, \mu, \mathbf{W}, T\right)=\delta(\alpha, \mu, \mathbf{W}, T) \tag{B-12}
\end{equation*}
$$

Thus, if, in Eq. (B-4) one sets $s=S$, and $s^{\prime}=F_{a}$,

$$
\begin{gathered}
\pi\left(s^{\prime}, s, T\right)=\pi\left(F_{a}, S, T\right)=0 \\
\pi\left(s, s^{\prime}, T\right)=\pi\left(S, F_{a}, T\right)=\pi(T)
\end{gathered}
$$

and Eq. (B-4) becomes

$$
\frac{d P(s, T)}{d T}=-P(s, T) \int_{\underline{\mathrm{s}}} \pi(T) d S^{\prime}
$$

or

$$
\frac{d P(s, T)}{P(s, T)}=-\int_{\underline{\underline{E}}}[\pi(T) d T] d \mathrm{~S}^{\prime}=-\pi(T) d T
$$

where the integral falls out since there is only one failure state. Thus, one gets

$$
\log _{e} \frac{P_{s}(T)}{P_{s}\left(T^{\prime}\right)}=-\int_{T^{\prime}}^{T} \pi(T) d T
$$

and

$$
\frac{P_{s}(T)}{P_{s}\left(T^{\prime}\right)}=\exp \left(-\int_{r^{\prime}}^{T} \pi(T) d T\right)
$$

or

$$
\begin{equation*}
P_{s}(T)=P_{s}\left(T^{\prime}\right) \exp \left(-\int_{T^{\prime}}^{T} \pi(T) d T\right) \tag{B-13}
\end{equation*}
$$

where T and T^{\prime} are any two times.
We have thus simplified the situation considerably by reducing the spacecraft possibilities to two states, a successful state and a failed state, leading to Eq. (B-13) for $P_{s}(T)$ which is the probability of being in the successful state at time T. We do not have to do a similar thing for the failed state, since the probability of failure at time T is just one minus the probability of success at time T.

A. Time Dependences

Simplifications can be achieved by assuming that certain functions do not depend on the time. If no attempt is made to allow for individual meteoroid showers in the asteroid belt, the meteoroid distribution function can be simplified:

$$
\begin{equation*}
\psi(\mu, \mathbf{X}, \mathbf{U}, T)=\psi(\mu, \mathbf{X}, \mathbf{U}) \tag{B-14}
\end{equation*}
$$

If no major changes in configuration take place during the course of the mission, such as extending fragile instruments on booms, or maneuvering large antennas, further simplifications are possible. In this case, the outwardly drawn unit vector, $\mathbf{n}(\alpha, T)$, normal to the spacecraft surface at α, at time T, can be expressed in the form

$$
\begin{equation*}
\mathbf{n}(\alpha, T)=\mathbf{n}(\alpha) \bigcirc m(T) \tag{B-15}
\end{equation*}
$$

where $M(T)$ is a rotation matrix specifying the orientation of the spacecraft relative to space fixed coordinates at time $T . M(T)$ is given explicitly in Appendix C, Section II.

Thus, $m(T)$ operates to convert a vector from spacecraft fixed coordinates to space fixed coordinates at time T. Similarly, one can write

$$
\begin{equation*}
\mathbf{n}(\alpha)=\mathbf{n}(\alpha, T) m^{-1}(T) \tag{B-16}
\end{equation*}
$$

Thus, $m^{-1}(T)$ operates to convert a vector from space fixed coordinates to spacecraft fixed coordinates at time T.

One can thus express the shielding and failure function time dependences more explicitly as follows:

$$
\begin{align*}
S_{h}(\alpha, \mathbf{Z}, T) & =\mathrm{S}_{h}\left[\alpha, \mathbf{Z} m^{-1}(T)\right] \tag{B-17}\\
\delta(\alpha, \mu, \mathbf{W}, T) & =\delta\left[\alpha, \mu, \mathbf{W} m^{-1}(T)\right] \tag{B-18}
\end{align*}
$$

Here \mathbf{Z} and \mathbf{W} are relative to space fixed coordinates, whereas $\mathbf{Z} m^{-1}(T)$ and $\mathbf{W} m^{-1}(T)$ are relative to spacecraft fixed coordinates.

B. Convex Spacecraft

If the spacecraft can be approximated with sufficient accuracy as being convex, the shadowing function assumes a very simple form:

$$
\begin{equation*}
S_{k}(\alpha, \mathbf{Z})=H[-\mathbf{n}(\alpha) \cdot \mathbf{Z}] \tag{B-19}
\end{equation*}
$$

where $H(x)$ is the Heaviside unit step function

$$
H(x)=\left\{\begin{array}{l}
0 \text { for } x<0 \tag{B-20}\\
\frac{1}{2} \text { for } x=0 \\
1 \text { for } x>0
\end{array}\right.
$$

Thus, since $\mathbf{n}(\alpha)$ is an outwardly drawn unit vector normal to the spacecraft surface, and an impacting meteoroid must be coming from outside the spacecraft, $\mathbf{n}(\alpha) \cdot \mathbf{Z}$ will be positive and $x=-\mathbf{n}(\alpha) \cdot \mathbf{Z}$ will be negative, so that $H(x)=0$ and $S_{h}(\alpha, \mathbf{Z})=0$. If \mathbf{Z} is such that a line drawn from area element α intercepts the spacecraft, then $\mathbf{n}(\alpha) \cdot \mathbf{Z}<0$ and $-\mathbf{n}(\alpha) \cdot \mathbf{Z}>0$ and $H(x)=1=S_{h}(\alpha, \mathbf{Z})$.

From Eqs. (B-11 and -15) one has:

$$
\begin{equation*}
Q_{0}=\left[1-S_{h}(\alpha,-\mathbf{w}, T)\right] \cdot|\mathbf{n}(\alpha, T) \cdot \mathbf{W}|=\left[1-S_{h}(\alpha,-\mathbf{w}, T)\right]|\mathbf{n}(\alpha) O M(T) \cdot \mathbf{W}| \tag{B-21}
\end{equation*}
$$

By use of Eq. (B-17),

$$
\begin{equation*}
Q_{0}=\left[\mathbf{1}-S_{h}\left\{\alpha,-\mathbf{w} M^{-1}(T)\right\}\right] \cdot|\mathbf{n}(\alpha) M(T) \cdot \mathbf{W}| \tag{B-22}
\end{equation*}
$$

Using Eq. (B-19),
$Q_{0}=\left(\mathbf{1}-H\left\{[-\mathbf{n}(\alpha)] \cdot\left[-\mathbf{w} m^{-1}(\mathbf{T})\right]\right\}\right) \cdot|\mathbf{n}(\alpha) m(\mathbf{T}) \cdot \mathbf{W}|$
or

$$
\begin{equation*}
Q_{0}=\left\langle\mathbf{1}-H\left\{\mathbf{n}(\alpha) \cdot\left[\mathbf{w} m^{-1}(T)\right]\right\}\right) \cdot|\mathbf{n}(\alpha) m(T) \cdot \mathbf{W}| \tag{B-24}
\end{equation*}
$$

Now, from Eq. (B-20)

$$
H(-x)=1-H(x)
$$

For example:

$$
\begin{aligned}
H(-7) & =1-H(7) & 0 & =1-1=0 \\
H(0) & =1-H(0) & 0.5 & =1-0.5=0.5 \\
H(+7) & =1-H(-7) & 1 & =1-0=1
\end{aligned}
$$

Thus, Eq. (B-24) can be written

$$
\begin{equation*}
Q_{0}=H\left[-\mathbf{n}(\alpha) \cdot \mathbf{w} m^{-1}(T)\right] \cdot|\mathbf{n}(\alpha) m(T) \cdot \mathbf{W}| \tag{B-25}
\end{equation*}
$$

Now

$$
\begin{equation*}
\left.[\mathbf{n}(\alpha) m(T)] \cdot \mathbf{W}=\mathbf{n}(\alpha) \cdot \mathbf{W} m^{-1}(T)\right] \tag{B-26}
\end{equation*}
$$

where $\mathbf{n}(\alpha)$ is in the spacecraft fixed coordinate system and \mathbf{W} is in the space-fixed coordinate system. The rotation $M(T)$ acts on $\mathbf{n}(\alpha)$ rotating it into the space-fixed coordinate system, after which it is projected on W. Similarly the $m^{-1}(T\rangle$ rotation acts on \mathbf{W} rotating it into the spacecraft fixed coordinate system after which it is projected on $\mathbf{n}(\alpha)$. Thus, Eq. (B-25) becomes

$$
\begin{equation*}
Q_{0}=H\left[-\mathbf{n}(\alpha) \cdot \mathbf{w} m^{-\mathbf{1}}(\boldsymbol{T})\right] \cdot\left|\mathbf{n}(\alpha) \cdot \mathbf{W} 0 m^{-1}(\boldsymbol{T})\right| \tag{B-27}
\end{equation*}
$$

or

$$
\begin{equation*}
Q_{0}=H\left[-\mathbf{n}(\alpha) \cdot \mathbf{w} m^{-1}(T)\right] \cdot\left|-\mathbf{n}(\alpha) \cdot \mathbf{W} m^{-1}(T)\right| \tag{B-28}
\end{equation*}
$$

Now, if one plots $H(x)$ versus (x), from Eq. (B-20) one gets

Also, a plot of $|x|$ versus x looks like

The product $H(x)|x|$ looks like

Thus,

$$
H(x)|x|=\max \{0, x\}
$$

and for

$$
\begin{array}{ll}
x<0, & \max \{0, x\}=0 \\
x=0, & \max (0,0)=0 \\
x>0, & \max (0, x)=x
\end{array}
$$

Consequently, Eq. (B-28) becomes

$$
\begin{equation*}
Q=\max \left\{0,-\mathbf{n}(\alpha) \cdot \mathbf{w} m^{-1}(T)\right\} \tag{B-29}
\end{equation*}
$$

Thus, Eq. (B-21) becomes

$$
\begin{align*}
& {\left[1-S_{b}(\alpha,-\mathbf{w}, T)\right] \cdot|\mathbf{n}(\alpha, T) \cdot \mathbf{W}| }= \\
& \max \left\{0,-\mathbf{n}(\alpha) \cdot \mathbf{w} M^{-1}(T)\right\} \tag{B-30}
\end{align*}
$$

C. Convex and Polyhedral Spacecraft

A highly useful procedure is to approximate the surface of the spacecraft by a suitably chosen polyhedron, which can be convex or otherwise. In this case \underline{A} becomes a finite set, so the integral over \underline{A} in Eq. (B-11) becomes a sum over the faces of the polyhedron. The j th face of the polyhedral spacecraft surface has area A_{j} and outwardly drawn normal unit vector \mathbf{n}_{j}. Thus, the integral in Eq. (B-6) reduces to a sum:

$$
A_{s}=\sum_{j} A_{j}
$$

II. Spacecraft Damage Function Due to Meteoroids

The meteoroid penetration criterion used here is essentially the same as that used by Volkoff (Ref. I) and is the best available for uniform spacecraft walls. The structural properties $\underline{S} t(\alpha)$ of the spacecraft surface at element α, and $\underline{S t} t^{\prime}(\mu)$ of the meteoroids of type μ are as follows: The spacecraft surface is assumed to be composed of a single layer of material $M(\alpha)$ of thickness $t(\alpha)$ at element α. For polyhedral spacecraft the material is M_{j} and the thickness t_{j} at the j th face. A meteoroid of type μ is assumed to be a sphere of material $M^{\prime}(\mu)$, mass $m(\mu)$ and radius $r(\mu)$. Material M has density $\rho(M)$ and Brinell hardness $h(M)$.

From Refs. 7 and 8, the penetration depth p_{1} of a highvelocity projectile in a semi-infinite target is given by

$$
\begin{equation*}
p_{1}=k_{1} d_{p} \log _{e}\left(1+\frac{\rho_{t} V_{p}^{v}}{k_{2} h_{t}}\right) \tag{B-31}
\end{equation*}
$$

where k_{1} and k_{2} are constants which depend on the projectile and target materials, d_{p} is projectile diameter, V_{p} is projectile velocity normal to surface, ρ_{t} is target density and h_{t} is target Brinell hardness.

Here

$$
\begin{aligned}
& k_{1} \approx(0.6 \pm 0.2) K^{2 / 3} \\
& k_{2} \approx(4 \pm 2) K^{-2 / 3}
\end{aligned}
$$

where

$$
\begin{aligned}
K & =\frac{\rho_{p}}{\rho_{t}} \\
\rho_{y} & =\text { projectile density }
\end{aligned}
$$

More accurate values of k_{1} and k_{2} must be obtained for each pair of materials (projectile and target) by experiment. t_{c}, the thickness of a plate required to stop a given projectile, is generally taken as 1.5 times the depth of the crater produced by such a projectile in a semi-infinite target.

Let the projectile be a meteoroid of type μ and let the target be element α of the spacecraft surface. Thus, $d_{p}=$ $2 r(\mu), \rho_{p}=\rho\left[M^{\prime}(\mu)\right], \rho_{t}=\rho[M(\alpha)]$, and $h_{t}=h[M(\alpha)]$. From this,

$$
\begin{equation*}
K=\frac{\rho\left[M^{\prime}(\mu)\right]}{\rho[M(\alpha)]} \tag{B-32}
\end{equation*}
$$

The relative velocity with respect to space-fixed coordinates is \mathbf{W}, and with respect to spacecraft-fixed coordinates it is $\mathbf{W} m^{-1}(T)$. The normal component of the relative velocity is therefore

$$
V_{p}=\mathbf{n}(\alpha) \cdot \mathbf{W} m^{-1}(T)
$$

Thus, Eq. (B-31) becomes

$$
\begin{equation*}
t_{c}=C_{1} r(\mu) \log _{e}\left\{1+C_{2}\left[\mathbf{n}(\alpha) \cdot \mathbf{W} \not m^{-1}(T)\right]^{2}\right\} \tag{B-33}
\end{equation*}
$$

where

$$
\begin{align*}
& C_{1}=C_{1}\left[M(\alpha), M^{\prime}(\mu)\right], \text { or, more particularly, } \\
& C_{1}=2(1.5) k_{1}=3 k_{1} \approx(1.8 \pm 0.6) K^{2 / 3} \tag{B-34}
\end{align*}
$$

and

$$
C_{2}=C_{2}\left[M(\alpha), M^{\prime}(\mu)\right], \text { or more particularly }
$$

$C_{2}=\frac{\rho_{t}}{k_{2} h_{t}}=\frac{\rho[M(\alpha)]}{k_{2} h[M(\alpha)]} \approx \frac{K^{2 / 3} \rho[M(\alpha)]}{(4 \pm 2) h[M(\alpha)]}$
The spacecraft damage function $\delta\left[\alpha, \mu, \mathbf{W} \prod^{-1}(T)\right]$ from Eq. (B-18) is the probability that the meteoroid shield is penetrated, and is given by

$$
H\left[t_{c}-t(\alpha)\right]
$$

where H is the step function mentioned earlier

$$
H(x)=\left\{\begin{array}{ccc}
0 & \text { for } & x<0 \\
1 / 2 & \text { for } & x=0 \\
1 & \text { for } & x>0
\end{array}\right.
$$

and $t(\alpha)$ is the thickness of the meteoroid shield at element α. Thus, one can write

$$
\begin{align*}
& \delta\left[\alpha, \mu, \mathbf{W} m^{-1}(T)\right]= \\
& \quad H\left[C_{1} r(\mu) \log _{e}\left\{1+C_{2}\left[\mathbf{n}(\alpha) \cdot \mathbf{W} m^{-1}(T)\right]^{2}\right\}-t(\alpha)\right] \tag{B-36}
\end{align*}
$$

III. Meteoroid Distribution Function

Let the source of the I th transition rate be the asteroid belt. Reference 9 states that "the average sized meteorites are usually stones, but extremely large meteorites are usually irons. At a mass of 100 kg the stones outnumber the irons in the ratio $20: 1$. At a mass of $10^{10} \mathrm{~kg}$ the irons outnumber the stones by 10:1. Stones and irons occur in equal numbers at a mass of about $10^{6} \mathrm{~kg}$." This refers to conditions at the earth's orbit, where secondary stone meteoroids are dominant in the smaller size ranges. The conservative assumption is made in this report that the asteroidal meteoroids are all iron. With this assumption, it is convenient to identify the meteoroid parameter μ with the mass $m(\mu)$, dropping the μ, or replacing it by m, wherever it appears. When this is done, the mass m, representing the set of meteoroid types M, varies from 0 to ∞. There is now a single meteoroid density

$$
\begin{equation*}
\rho\left[M^{\prime}(\mu)\right]=\rho\left(M^{\prime}\right)=\rho^{\prime}=7.9 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}} \tag{B-37}
\end{equation*}
$$

A reasonable, simplifying, approximation is that the meteoroid mass and velocity distributions are independent, namely (recalling that the time-dependence of ψ has been removed above [Eq. B-14]):

$$
\begin{equation*}
\psi(m, \mathbf{X}, \mathbf{U}) d m d^{3} \mathbf{X} d^{3} \mathbf{U}=\zeta(m, \mathbf{X}) d m \cdot d^{3} \mathbf{X} \cdot \xi(\mathbf{U}, \mathbf{X}) d^{3} \mathbf{U} \tag{B-38}
\end{equation*}
$$

where $\psi(m, \mathbf{X}, \mathbf{U}) d m d^{3} \mathbf{X} d^{3} \mathbf{U}$ is the probability that an asteroidal meteoroid of mass m will pass through position \mathbf{X} with velocity \mathbf{U} at time T, with tolerances $d m, d^{3} \mathbf{X}$ and $d^{3} \mathbf{U}$ in meteoroid mass, position and velocity.
$\xi(\mathbf{U}, \mathbf{X}) d^{3} \mathbf{X} d^{3} \mathbf{U}$ is the probability that an asteroidal meteoroid of mass $\geq m_{0}$ will pass through position \mathbf{X} with velocity \mathbf{U} at time T, with tolerances $d^{3} \mathbf{X}$ and $d^{3} \mathbf{U}$ in meteoroid position and velocity. The reference mass m_{0} will be discussed below.

Now define:

$$
\begin{equation*}
\sigma(\mathbf{X})=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \tilde{\xi}(\mathbf{U}, \mathbf{X}) \boldsymbol{d}^{3} \mathbf{U} \tag{B-39}
\end{equation*}
$$

$\sigma(\mathbf{X})$ is a standard meteoroid space-density distribution. That is, for a certain reference mass $m_{0}, \sigma(\mathbf{X}) d^{3} \mathbf{X}$ is the probability that an asteroidal meteoroid of mass $\geq m_{0}$ will pass through position \mathbf{X} at time T, with tolerance $d^{3} \mathbf{X}$ in position or, in other words, the number of asteroidal meteoroids of mass $\geqslant m_{0}$ per unit volume at position X. This reference mass m_{0} is chosen as that of a typical iron asteroid of absolute magnitude $G_{0}=13.6$, for reasons discussed later. Such an asteroid would have mass $m_{0}=2.56 \times 10^{18} \mathrm{~g}$ and radius $r_{0}=4.3 \mathrm{~km}$.
$\zeta(m, \mathbf{X}) \sigma(\mathbf{X}) d m d^{3} \mathbf{X}$ is the probability that an asteroidal meteoroid of mass m will pass through position \mathbf{X} at time T, with tolerances $d m$ and $d^{s} \mathbf{X}$ in meteoroid mass and position. From the relation of this and the previous definition,

$$
\begin{equation*}
\int_{m_{0}}^{\infty} \zeta(m, \mathbf{X}) d m=1 \tag{B-40}
\end{equation*}
$$

There seems to be general agreement that the mass distribution is a power law, as in Eq. (A-1), and also that the exponent in this power law is constant throughout the asteroid belt (Ref. 10). Thus, one can choose

$$
\begin{equation*}
\zeta(m, \mathbf{X})=\zeta(m) \tag{B-41}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{m}^{\infty} \zeta\left(m^{\prime}\right) d m^{\prime}=\left(\frac{m}{m_{0}}\right)^{-\beta} \tag{B-42}
\end{equation*}
$$

so that

$$
\begin{equation*}
\zeta(m)=\frac{\beta}{m_{0}}\left(\frac{m}{m_{0}}\right)^{-\beta-1} \tag{B-4.3}
\end{equation*}
$$

The total number of asteroidal meteoroids of mass $\geqslant m$ for this model is

$$
\begin{equation*}
\Phi=\alpha_{c}^{\prime \prime} m^{-\beta}=\left(\frac{m}{m_{0}}\right)^{-\beta} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \sigma(\mathbf{X}) d^{3} \mathbf{X} \tag{B-44}
\end{equation*}
$$

From Eqs. (A-1 and B-38),

$$
F=\alpha_{c}^{\prime} \int_{m}^{\infty} \zeta\left(m^{\prime}\right) d m^{\prime}=\alpha_{c} m^{-\beta} \text { meteoroids } \mathrm{m}^{-2} \mathrm{~s}^{-1}
$$

of mass m or greater, where $\alpha_{c}=$ a constant.
Now, instead of an infinite upper limit on m^{\prime}, assume a finite upper limit M. Then the above equation becomes

$$
\begin{aligned}
F^{\prime} & =\alpha_{c}^{\prime} \int_{m}^{M} \zeta\left(m^{\prime}\right) d m^{\prime}=\alpha_{c}\left(m^{-\beta}-M^{-\beta}\right) \\
& =\alpha_{c} m^{-\beta}\left[1-\left(\frac{m}{M}\right)^{\beta}\right]
\end{aligned}
$$

or

$$
F^{\prime}=\alpha_{c} m^{-\beta}\left[1-\left(\frac{\frac{4}{3} \pi r^{3} \rho^{\prime}}{\frac{4}{3} \pi R^{3} \rho^{\prime}}\right)^{\beta}\right]=\alpha_{c} m^{-\beta}-\alpha_{c} m^{-\beta}\left(\frac{r}{R}\right)^{3 \beta}
$$

and

$$
F^{\prime}=F-F\left(\frac{r}{R}\right)^{3 \beta}
$$

Thus,

$$
\frac{F-F^{\prime}}{F}=\left(\frac{r}{R}\right)^{3 \beta}
$$

Now for $3 \beta \cong 2, r=1 \mathrm{~cm}$ and $R \cong 100 \mathrm{~km}=10^{7} \mathrm{~cm}$

$$
\frac{F-F^{\prime}}{F}=\left(\frac{1}{10^{7}}\right)^{2}=\frac{1}{10^{14}}=10^{-14}
$$

Thus, a realistic upper limit, $R=100 \mathrm{~km}$, and

$$
M=\frac{4}{3} \pi R^{3} \rho^{\prime}
$$

and an infinite upper limit on mass M produces for all practical purposes, the same flux of meteoroids F.

Fig. B-3. Plot of $\boldsymbol{f} \mathbf{v s} \boldsymbol{p}_{0}$

The meteoroid velocity-space distribution $\xi(\mathbf{U}, \mathbf{X})$ was obtained through the use of the orbital elements and absolute magnitudes of the 1659 numbered asteroids of Ref. 11. Similar data are given in Ref. 12. Each asteroid was assigned a weight equal to the reciprocal of the estimated probability of discovery of an asteroid of similar orbit and magnitude (Ref. 13), thus correcting statistically for observational bias.

For example, if there is only a 0.5 probability of discovering asteroids of type k, there should be twice as many asteroids of this type as have been discovered, and the weighting factor is $w_{k}=1 / 0.5=2$. For most of the asteroids $w_{k} \cong 1$. The parameter f is defined as $f=1 / w_{k}$, where w_{k} is the statistical weight and f is the probability of discovery of the asteroid. Thus, one has $w_{k}=1 / f$. Figure B-3 is a plot of f versus p_{0} and was obtained from Figs. 16 and 17 of Ref. 13. Here p_{0} is the mean opposition magnitude, and is equal to

$$
p_{0}=G_{k}+5 \log _{10}\left[a_{k}\left(a_{k}-1\right)\right]
$$

where $G_{k}=$ absolute magnitude of the k th asteroid and
$a_{k}=$ semi-major axis of orbit of k th asteroid. The dashed curve was used in the computer program. The following equation represents the dashed curve

$$
f= \begin{cases}\frac{1}{2}\left\{1+\left[\tanh \left(p_{0}-15.6\right)^{2}\right]^{1 / 2}\right\} & \text { for } p_{0} \leq 15.6 \\ \frac{1}{2}\left[1-\tanh \left(p_{0}-15.6\right)\right] & \text { for } p_{0} \geq 15.6\end{cases}
$$

The 14 Trojan asteroids were removed from consideration because the statistics of their orbits are very different from those of the rest of the asteroid belt (owing to the major influence of Jupiter). The reference asteroid of mass m_{0}, is the minimum size asteroid considered, and corresponds to an absolute magnitude of $G_{0}=13.6$. All asteroids with absolute magnitudes greater than $G_{0}=13.6$ were omitted, since smaller asteroids often had such low probabilities of discovery that the weighting method became unreasonable. Hidalgo was also omitted, because owing to its unique orbit, the probability of discovery equation given in Fig. B-3 above could not reasonably be extended to it. As a result of these restrictions, only

1500 asteroids were finally used. The k th asteroid in this group has statistical weight w_{k}, absolute magnitude G_{k}, semi-major axis a_{k}, eccentricity e_{k}, and inclination i_{k}. In the model used here, each of the 1500 asteroids is replaced by an appropriately weighted "swarm" of meteoroids. The k th meteoroid swarm, which replaces the k th asteroid, contains $w_{k}\left(m / m_{0}\right)^{-\beta}$ meteoroids of mass greater than m.

The k th meteoroid swarm has a space density $\sigma_{k}(\mathbf{X})$, and the overall meteoroid space density is the sum of these.

$$
\begin{equation*}
\sigma(\mathbf{X})=\sum_{k} \sigma_{k}(\mathbf{X}), \tag{B-45}
\end{equation*}
$$

thus replacing the integrals of Eq. (B-39) by a sum. The meteoroids in each swarm all have the same semi-major axis, eccentricity, and inclination to the ecliptic as their "parent" asteroid, but their longitudes of ascending node, arguments of perihelion and mean anomalies were all uniformly and independently distributed in the interval 0 to 2π. This appears to be reasonable on the following grounds: If a particular asteroid were fragmented into many pieces, these pieces would continue to move in the same orbit with the same a, e and i but would be gradually spread, more or less uniformly, around the orbit due to external perturbing forces from Jupiter, Mars and other asteroids or meteoroids. The "swarm" model thus gives a better meteoroid density distribution than has been used in the past. These assumptions produce an explicit form for $\sigma_{k}(\mathbf{X})$ which is given in Appendix C, Section V of this report. The integration over velocity in Eq. (B-10) is also reduced to a sum. The k th meteoroid swarm contributes four velocities for those positions, \mathbf{X} where $\sigma_{k}(\mathbf{X}) \neq 0$. This is shown as follows: Figure B-4 shows the ecliptic plane, spacecraft, solar distance, ecliptic latitude and longitude of the spacecraft. Figure B-5 is a perspective view of the spacecraft and ecliptic plane. Meteoroids in orbits with inclinations less than the latitude of the spacecraft cannot impact the spacecraft. If the meteoroid inclination i is greater than or equal to the spacecraft latitude the meteoroid can impact the spacecraft. Figure B-6 shows the spacecraft and the two possible orbital planes of meteoroids, Plane No. 1 and Plane No. 2, which can impact the spacecraft, each plane having the same inclination where $i>\lambda$. If i were equal to λ, the two planes would merge into a single plane. Figure B-7 shows the two meteoroid orbits in Plane No. 1, with semi-major axis a and eccentricity e which pass through the spacecraft. Figure B-8 shows the same thing for Plane No. 2. There are thus two possible planes (Planes No. 1 and No. 2) with inclination i, and two meteoroid orbits in each plane, with semi-major axis a and eccentricity e, for a total of four meteoroid

Fig. B-4. Ecliptic plane, solar distance, latitude and longiłude of spacecraft

Fig. B-5. Perspective view of spacecraft and ecliptic plane
orbits, with the same a, e, i, which can impact the spacecraft. In Fig. B-7 the spacecraft position is at $m=1$, which in Fig. B-8, is at $m=2$. When the angle θ, in Figs. B-7 and -8 (the argument of the latitude), is greater than $\pi / 2$, m is taken as 1 , and when it is less than $\pi / 2$, is taken as 2 .

$\lambda=$ LATITUDE OF SPACECRAFT
Fig. B-6. The two possible orbital planes of meteoroids with inclination \boldsymbol{i}, where $\boldsymbol{i}>\lambda$, which can impact the spacecraft

Fig. B-7. The two meteoroid orbits in plane No. 1, with semi-major axis a and eccentricity e, which pass through the spacecraft

Fig. B-8. The two meteoroid orbits in plane No. 2, with semi-major axis a and eccentricity e, which pass through the spacecraft

When the meteoroid is moving in toward the sun, prior to impacting the spacecraft, l is taken as 1 , whereas if it is moving outwards from the sun, l is taken as 2 . The k th meteoroid swarm contributes four velocities: $\mathbf{U}_{k}^{(1,1)}(\mathbf{X})$, $\mathbf{U}_{k}^{(1,2)}(\mathbf{X}), \quad \mathbf{U}_{k}^{(2,1)}(\mathbf{X})$ and $\mathbf{U}_{k}^{(2,2)}(\mathbf{X})$, or $\mathbf{U}_{k}^{(l, m)}(\mathbf{X})$ for those positions \mathbf{X} where $\sigma_{k}(\mathbf{X}) \neq 0$. These four components of each meteoroid swarm at each location are present in equal quantities.

IV. Probability of Spacecraft Successfully Traversing the Asteroid Belt

Next, the probability of success $P_{s}(T)$, over the whole mission, is determined. Only meteoroids are considered, and all other factors contributing to spacecraft failure are ignored. The mission time interval is from time T_{0} at the beginning, to time T_{f} at the end of the mission. The overall probability of success of the mission $P(S)$ is then the probability that the spacecraft is in the success state S at time
T_{f}. Thus, in Eq. (B-13), $T=T_{f}, T^{\prime}=T_{0}$,
and

$$
\begin{equation*}
P(S)=P_{s}\left(T_{f}\right)=P_{s}\left(T_{0}\right) \exp \left(-\int_{T_{0}}^{T_{f}} \pi(T) d T\right) \tag{B-46}
\end{equation*}
$$

Thus, $\pi(T)$ must be evaluated. Since only spacecraft failure caused by meteoroid impact is considered, then

$$
\pi(T)=\pi_{I}(T), \quad P(S)=P_{I}(S)
$$

and

$$
\begin{equation*}
P(S)=P_{s}\left(T_{f}\right)=P_{s}\left(T_{0}\right) \exp \left(-\int_{T_{0}}^{T_{f}} \pi_{I}(T) d T\right) \tag{B-47}
\end{equation*}
$$

Equations (B-11 and -12) combine to produce the general meteoroid induced failure rate equation:

$$
\begin{equation*}
\pi_{l}(T)=\int_{\underline{\underline{1}}} \int_{\underline{\underline{S}}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(\alpha, \mu, \mathbf{W}, T)\left[1-S_{h}(\alpha,-\mathbf{w}, T)\right] \cdot|\mathbf{n}(\alpha, T) \cdot \mathbf{W}| A(\alpha) \cdot \psi[\mu, \mathbf{X}(T), \mathbf{U}, T] d^{3} \mathbf{U} d_{\mu} d_{\alpha} \tag{B-48}
\end{equation*}
$$

For spacecraft with reasonably constant configurations, Eqs. (B-15 and -18) can be combined with Eq. (B-48) to yield

$$
\begin{equation*}
\pi_{I}(T)=\int_{\underline{A}} \int_{\underline{\underline{M}}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta\left(\alpha, \mu, \mathbf{W}^{\prime}\right)\left[\mathbf{I}-\mathrm{S}_{h}\left(\alpha,-\mathbf{w}^{\prime}\right)\right]|\mathbf{n}(\alpha) \cdot \mathbf{W}| A(\alpha) \cdot \psi[\mu, \mathbf{X}(T), \mathbf{U}, T] d^{3} \mathbf{U} d \mu d \alpha \tag{B-49}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{w}^{\prime}=\mathbf{W} m^{-1}(\boldsymbol{T})=[\mathbf{U}+\mathbf{V}(T)] m^{-1}(\boldsymbol{T}) \\
& \mathbf{w}^{\prime}=\mathbf{w} m^{-1}(\boldsymbol{T})=\frac{\mathbf{W}^{\prime}}{\left|\mathbf{W}^{\prime}\right|} \tag{B-50}
\end{align*}
$$

Note that \mathbf{W} is in space fixed coordinates while \mathbf{W}^{\prime} and \mathbf{w}^{\prime} are in spacecraft fixed coordinates. Eq. (B-30) may be written

$$
\begin{equation*}
\left[1-S_{h}\left(\alpha,-\mathbf{w}^{\prime}\right)\right]\left|\mathbf{n} \cdot \mathbf{W}^{\prime}\right|=\max \left\{0,-\mathbf{n} \cdot \mathbf{W}^{\prime}\right\} \tag{B-51}
\end{equation*}
$$

For a general convex spacecraft, Eq. (B-49) becomes by use of Eq. (B-51)

$$
\begin{equation*}
\pi_{I}(T)=\iint_{\Omega^{\prime}} \int_{\underline{\underline{H}}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta\left(\mathbf{n}, \mu, \mathbf{W}^{\prime}\right) \max \left\{0,-\mathbf{n} \cdot \mathbf{W}^{\prime}\right\} A(\boldsymbol{n}) \cdot \psi[\mu, \mathbf{X}(\boldsymbol{T}), \mathbf{U}, \boldsymbol{T}] d^{s} \mathbf{U} d_{\mu} d^{2} \mathbf{n} \tag{B-52}
\end{equation*}
$$

where it has been convenient to identify the spacecraft surface parameter α with the outwardly drawn normal unit vector $\mathbf{n}(\alpha)$ of the corresponding surface element, dropping the α, or replacing it by \mathbf{n}, wherever it appears. In this case \underline{A} becomes Ω^{\prime}, the surface of the unit sphere, and d_{α} becomes $d^{2} \mathbf{n}$.

For a general polyhedral spacecraft, Eq. (B-49) may be written

$$
\begin{equation*}
\pi_{I}(T)=\sum_{j}\left[F_{j}(T)\right] A_{j} \tag{B-53}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{j}(T)=\int_{\underline{\underline{I}}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta_{j}\left(\mu, \mathbf{W}^{\prime}\right)\left[1-\mathbf{S}_{h}\left(j,-\mathbf{w}^{\prime}\right)\right]\left|\mathbf{n}_{j} \cdot \mathbf{W}^{\prime}\right| \cdot \psi[\mu, \mathbf{X}(T), \mathbf{U}, T] d^{3} \mathbf{U} d \mu \tag{B-54}
\end{equation*}
$$

Equation (B-53) thus gives $\pi_{I}(T)$ as a sum, over the faces of the polyhedral surface, of the flux of destructive meteoroids incident on the j th face, at time T, multiplied by the area of the j th face. The flux F_{j} is given in Eq. (B-54). Note that α in Eq. (B-49) is replaced by j in Eq. (B-54). For a spacecraft which is both convex and polyhedral, as will be assumed hereafter, Eq. (B-54) becomes

$$
\begin{equation*}
F_{j}(T)=\int_{\underline{\underline{x}}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta_{j}\left(\mu, \mathbf{W}^{\prime}\right) \max \left\{0,-\mathbf{n}_{i} \cdot \mathbf{W}^{\prime}\right\} \psi[\mu, \mathbf{X}(\boldsymbol{T}), \mathbf{U}, \boldsymbol{T}] d^{3} \mathbf{U} d \mu \tag{B-55}
\end{equation*}
$$

If one inserts the damage function of Eq. (B-36) into Eq. (B-55) one gets

$$
\begin{equation*}
F_{j}(T)=\int_{\underline{\underline{L}}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H\left[C_{1} r(\mu) \ln \left(1+C_{2} D^{2}\right)-t_{j}\right] \max \{0, D\} \psi[\mu, \mathbf{X}(T), \mathbf{U}, T] d^{3} \mathbb{U} d \mu \tag{B-56}
\end{equation*}
$$

where

$$
\begin{align*}
D & =-\mathbf{n}_{j} \cdot W^{\prime} \\
C_{1} & =C_{1}\left(M_{j}, M^{\prime}\right) \tag{B-57}\\
C_{2} & =C_{2}\left(M_{j}, M^{\prime}\right)
\end{align*}
$$

The inclusion of the meteoroid distribution model is most conveniently done in two steps. First, utilizing Eqs. (B-14, -38 , and -39), and replacing μ with m, Eq. (B-56) becomes

$$
\begin{equation*}
F_{j}(T)=\int_{0}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H\left[C_{1} r \ln \left(1+C_{2} D^{2}\right)-t_{j}\right] \max \{0, D\} \zeta(m) \xi[\mathbf{U}, \mathbf{X}(T)] d^{3} \mathbf{U} d m \tag{B-58}
\end{equation*}
$$

where r is found from

$$
\begin{equation*}
m=\frac{4}{3} \pi r^{3} \rho^{\prime} \tag{B-59}
\end{equation*}
$$

Also, one can write

$$
\int_{0}^{\infty} H\left[C_{1} r \ln \left(1+C_{2} D^{2}\right)-t_{j}\right] \zeta(m) d m=\int_{0}^{M_{0}} 0 d m+\int_{M_{0}}^{\infty} \zeta(m) d m
$$

since

$$
\begin{array}{ll}
H(x)=0 & x<0 \\
H(x)=1 & x>0
\end{array}
$$

and at meteoroid size $r=R$, the shield is penetrated, or

$$
C_{1} R \ln \left(1+C_{2} D^{2}\right)-t_{j}=0
$$

or

$$
\begin{equation*}
R=\frac{t_{j}}{C_{1} \ln \left(1+C_{2} D^{2}\right)} \tag{B-60}
\end{equation*}
$$

so that

$$
H\left[C_{1} r \ln \left(1+C_{2} D^{2}\right)-t_{j}\right]=\left\{\begin{array}{l}
1 \text { for } m>M_{0} \\
0 \text { for } m<M_{0}
\end{array}\right.
$$

where

$$
M_{0}=\frac{4}{3} \pi R^{3} \rho^{\prime}
$$

so that

$$
\begin{equation*}
\int_{0}^{\infty} H\left[C_{1} r \ln \left(1+C_{2} D^{2}\right)-t_{j}\right] \zeta(m) d m=\int_{4 / 3 \pi R^{3} \rho^{\prime}}^{\infty} \zeta(m) d m \tag{B-61}
\end{equation*}
$$

Now, from Eqs. (B-40 and -44)

$$
\int_{M_{0}}^{\infty} \zeta(m) d m=\left(\frac{M_{0}}{m_{0}}\right)^{-\beta}=\left(\frac{R}{r_{0}}\right)^{-3 \beta}
$$

Thus, Eq. (B-58) becomes

$$
\begin{equation*}
F_{j}(T)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\frac{R}{r_{0}}\right)^{-3 \beta} \max \{0, D\} \xi[\mathbf{U}, \mathbf{X}(T)] d^{3} \mathrm{U} \tag{B-62}
\end{equation*}
$$

Second, since the k th swarm has four meteoroid orbits with the same a_{k}, e_{k} and i_{k} which can impact the spacecraft, and each of these four components is present in equal quantity, Eq. (B-39) becomes

$$
\begin{equation*}
\frac{1}{4} \sigma_{k}[\mathbf{X}(T)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \xi\left(\mathbf{U}_{k}, \mathbf{X}\right) d^{3} \mathbf{U} \tag{B-63}
\end{equation*}
$$

From Eq. (B-60)

$$
\begin{equation*}
\left(\frac{R}{r_{0}}\right)^{-3 \beta}=\left(\frac{r_{0}}{R}\right)^{3 \beta}=\left[\frac{r_{0}}{t_{j}} C_{1} \ln \left(1+C_{2} D^{2}\right)\right]^{3 \beta}=\left(\frac{C_{1} r_{0}}{t_{j}}\right)^{3 \beta}\left[\ln \left(1+C_{2} D^{2}\right)\right]^{3 \beta} \tag{B-64}
\end{equation*}
$$

Now, one can write

$$
\begin{equation*}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\mathbf{U}, \mathbf{X}) \xi(\mathbf{U}, \mathbf{X}) d^{3} \mathbf{U}=\sum_{k=1}^{i=1} \sum_{l, m=1}^{2} f\left[\mathbf{U}_{k}^{(l, m)}(\mathbf{X}), \mathbf{X}\right] \cdot \frac{1}{4} \sigma_{k}(\mathbf{X}) \tag{B-65}
\end{equation*}
$$

Thus, Eq. (B-62) becomes

$$
\begin{equation*}
F_{j}(T)=\left(\frac{C_{1} r_{0}}{t_{j}}\right)^{3 \beta} \sum_{k} \sum_{l, m}\left(\ln \left\{1+C_{2}\left[D_{k}^{(l, m)}\right]^{2}\right\}\right)^{3 \beta} \max \left\{0, D_{k}^{(l, m)}\right\} \frac{1}{4} \sigma_{k}[\mathbf{X}(T)] \tag{B-66}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{k}^{(l, m)}=-\mathbf{n}_{j} \cdot\left\{\mathbf{U}_{k}^{(l, m)}[\mathbf{X}(\boldsymbol{T})]-\mathbf{V}(\boldsymbol{T})\right\} m^{-1}(\boldsymbol{T}) \tag{B-67}
\end{equation*}
$$

where \mathbf{n}_{j} is in spacecraft-fixed coordinates and $\mathbf{U}_{k}^{(l, n)}[\mathbf{X}(T)]$ and $\mathbf{V}(T)$ are in space-fixed coordinates. This may also be written as

$$
\begin{equation*}
D_{k}^{(l, m)}=-\mathbf{n}_{j} m(T) \cdot\left\{\mathbf{U}_{k}^{(l, m)}[\mathbf{X}(T)]-\mathbf{V}(T)\right\} \tag{B-68}
\end{equation*}
$$

where $\mathbf{n}_{j} M(T)$ is now in space fixed coordinates as shown in Eq. (B-15).

In Eq. (B-56) the summations are over k, a number related to the numbered asteroids, and k ranges from 1 to 1500 , as well as over l and m, which each can take on values of 1 and 2 and refer to the four different velocity streams for each meteoroid swarm. There are a total of k swarms.

Equation (B-66) gives $F_{j}(T)$, the expected number of destructive hits per unit area per unit time at the spacecraft position at time T. Inputs required are $\mathbf{X}(T)$ and $\mathbf{V}(T)$, the position and velocity of the spacecraft as a function of time. These are not explicitly analyzed in this derivation, and are assumed to be two known functions of the
time. Eqs. (B-66 to -68) include the asteroid belt model represented by $\sigma_{k}[\mathbf{X}(T)], \mathbf{U}_{k}^{(l, m)}[\mathbf{X}(T)]$; the spacecraft position and velocity represented by $\mathbf{X}(T)$ and $V(T)$; the shadowing effect of the spacecraft represented by $\max \left\{0, D_{k}^{(l, m)}\right\}$; the meteoroid damage function, represented by $\left(C_{1} r_{0} / t_{j}\right)$ and the logarithmic term; the spacecraft surface position represented by \mathbf{n}_{j}; and the orientation of the spacecraft at time T, relative to some system of space coordinates, represented by the matrix $M(T)$.

From $F_{j}(T)$ in Eq. (B-66) and areas A_{j}, one obtains $\pi_{I}(T)$ in Eq. (B-53), and the probability of successfully traversing the asteroid belt $P(S)$ from Eq. (B-47).

Appendix C

Implementation

1. Coordinate Systems

A. Sun-Centered Coordinate System

The sun-centered coordinate system, shown in Fig. C-1, is the standard ecliptic coordinate system. Here e is a three-dimensional unit vector. The basis vectors are:
\mathbf{e}_{N} is in the direction of the earth's angular momentum vector, i.e., it points to the ecliptic north.
\mathbf{e}_{ρ} is in the direction of the vernal equinox, φ in the ecliptic.
$\mathbf{e}_{-}=\mathbf{e}_{N} \times \mathbf{e}_{\odot}$ and thus lies in the ecliptic.

These three unit vectors are the basis for the suncentered coordinate system. For any spacecraft position \mathbf{X} in Fig. C-2, the solar distance is

$$
\begin{equation*}
r=r(\mathbf{X})=|\mathbf{X}|=(\mathbf{X} \cdot \mathbf{X})^{1 / 2} \tag{C-1}
\end{equation*}
$$

the unit vector in the direction \mathbf{X} is

$$
\begin{equation*}
\mathbf{e}_{X}=\frac{\mathbf{X}}{r} \tag{C-2}
\end{equation*}
$$

and

$$
\cos \left(\frac{\pi}{2}-\lambda\right)=\mathbf{e}_{X} \cdot \mathbf{e}_{N}=\sin \lambda
$$

so that the ecliptic latitude λ is given by

$$
\begin{equation*}
\lambda=\lambda(\mathbf{X})=\sin ^{-1}\left(\mathbf{e}_{X} \cdot \mathbf{e}_{N}\right) \tag{C-3}
\end{equation*}
$$

Fig. C-1. Sun-centered coordinate system

From Fig. C-2, one can represent the spacecraft position \mathbf{X} by

$$
\begin{equation*}
\mathbf{X}=X_{N} \mathbf{e}_{N},+X_{\varphi} \mathbf{e}_{\varphi}+X_{-} \mathbf{e}_{-} \tag{C-4}
\end{equation*}
$$

where X_{N}, X_{\odot} and X - are the components of \mathbf{X} on $\mathbf{e}_{x}, \mathbf{e}_{\odot}$ and \mathbf{e}_{-}, respectively. Thus, from Fig. C-2,

$$
\mathbf{Y}+X_{N} \mathbf{e}_{N}=\mathbf{X}
$$

and

$$
\mathbf{Y}=\mathbf{X}-X_{N} \mathbf{e}_{N}
$$

Now,

$$
\mathbf{X}=X \mathbf{e}_{X}, \quad X_{N}=\left(X \mathbf{e}_{X}\right) \cdot \mathbf{e}_{N}=X \mathbf{e}_{X} \cdot \mathbf{e}_{N}
$$

so that

$$
\mathbf{e}_{Y}=\frac{\mathbf{Y}}{|\mathbf{Y}|}=\frac{X \mathbf{e}_{X}-\left(X \mathbf{e}_{X} \cdot \mathbf{e}_{N}\right) \mathbf{e}_{N}}{\left|X \mathbf{e}_{X}-\left(X \mathbf{e}_{X} \cdot \mathbf{e}_{N}\right) \mathbf{e}_{N}\right|}=\frac{\mathbf{e}_{X}-\left(\mathbf{e}_{X} \cdot \mathbf{e}_{N}\right) \mathbf{e}_{N}}{\left|\mathbf{e}_{X}-\left(\mathbf{e}_{X} \cdot \mathbf{e}_{N}\right) \mathbf{e}_{N}\right|}
$$

Thus, the ecliptic longitude Λ is given by

$$
\begin{align*}
& \cos \Lambda=\mathbf{e}_{Y} \cdot \mathbf{e}_{\Gamma p} \\
& \sin \Lambda=\cos \left(\frac{\pi}{2}-\Lambda\right)=\mathbf{e}_{Y} \cdot \mathbf{e}_{-} \tag{C-5}
\end{align*}
$$

Fig. C-2. Spacecraft coordinates r, λ, Λ in sun-centered coordinate system
and

$$
\tan \Lambda=\frac{\mathbf{e}_{Y} \cdot \mathbf{e}_{-}}{\mathbf{e}_{Y} \cdot \mathbf{e}_{\Upsilon}}
$$

Here

$$
\begin{aligned}
& r=|\mathbf{X}|>0 \\
& -\frac{\pi}{2} \leq \lambda \leq \frac{\pi}{2} \\
& 0 \leq \Lambda \leq 2 \pi
\end{aligned}
$$

B. Space-Fixed Coordinate System

Figure C-3 shows the basis vectors in the space-fixed coordinate system, with origin at the spacecraft at position \mathbf{X}. The position of the sun is indicated. Here $\mathbf{e}_{1}, \mathbf{e}_{2}$, and \mathbf{e}_{3} are functions of \mathbf{X}, and are given by the expressions
$\mathbf{e}_{1}=\mathbf{e}_{1}(\mathbf{X})=\mathbf{e}_{x}$ and is in the direction of \mathbf{X} $\mathbf{e}_{2}=\mathbf{e}_{2}(\mathbf{X})=\frac{\mathbf{e}_{N} \times \mathbf{e}_{X}}{\left|\mathbf{e}_{N} \times \mathbf{e}_{X}\right|}$ and is in the direction of $\Lambda(\mathbf{X})$ $\mathbf{e}_{3}=\mathbf{e}_{3}(\mathbf{X})=\mathbf{e}_{1} \times \mathbf{e}_{2}$ and is in the direction of $\lambda(\mathbf{X})$

In this coordinate system the components of the meteoroid velocity vector \mathbf{U} are U_{1}, U_{2} and U_{3}, and the components of the spacecraft velocity vector V are V_{1}, V_{2}, and V_{3}, or

$$
\left.\begin{array}{l}
\mathbf{U}=U_{1} \mathbf{e}_{1}+U_{2} \mathbf{e}_{2}+U_{3} \mathbf{e}_{3} \tag{C-7}\\
\mathbf{V}=V_{1} \mathbf{e}_{1}+V_{2} \mathbf{e}_{2}+V_{3} \mathbf{e}_{3}
\end{array}\right\}
$$

Fig. C-3. Space-fixed coordinate system

C. Spacecraft-Fixed Coordinate System

The spacecraft-fixed coordinate system has origin at $\mathbf{X}(T)$ at time T. Its basis vectors are the orthogonal unit vectors $\mathbf{e}_{1}^{\prime}(T), \mathbf{e}_{2}^{\prime}(T)$ and $\mathbf{e}_{3}^{\prime}(T)$ shown in Fig. C-4.

Here

$$
\begin{align*}
& \mathbf{e}_{1}^{\prime}=\mathbf{e}_{1}^{\prime}(T)=\mathbf{e}_{2}=\frac{\mathbf{e}_{N} \times \mathbf{e}_{X}}{\left|\mathbf{e}_{N} \times \mathbf{e}_{x}\right|} \\
& \mathbf{e}_{2}^{\prime}=\mathbf{e}_{2}^{\prime}(T)=\mathbf{e}_{Y}=\mathbf{e}_{1}^{\prime} \times \mathbf{e}_{3}^{\prime} \tag{C-8}\\
& \mathbf{e}_{3}^{\prime}=\mathbf{e}_{3}^{\prime}(T)=\mathbf{e}_{N}
\end{align*}
$$

II. Spacecraft Orientation Matrix

The spacecraft orientation matrix $M(T)$ at time T, is a rotation matrix which converts a vector from spacecraftfixed coordinates to space-fixed coordinates, as shown in Eq. (B-15).

Here $m(T)$ is given by $m_{i j}(T)=\mathbf{e}_{i}^{\prime}(T) \cdot \mathbf{e}_{j}[\mathbf{X}(T)]$, or

$$
m(T)=\left\{\begin{array}{lll}
\mathbf{e}_{1}^{\prime}(T) \cdot \mathbf{e}_{1}[\mathbf{X}(T)] & \mathbf{e}_{1}^{\prime}(T) \cdot \mathbf{e}_{2}[\mathbf{X}(T)] & \mathbf{e}_{1}^{\prime}(T) \cdot \mathbf{e}_{3}[\mathbf{X}(T)] \tag{C-9}\\
\mathbf{e}_{2}^{\prime}(T) \cdot \mathbf{e}_{1}[\mathbf{X}(T)] & \mathbf{e}_{2}^{\prime}(T) \cdot \mathbf{e}_{2}[\mathbf{X}(T)] & \mathbf{e}_{2}^{\prime}(T) \cdot \mathbf{e}_{3}[\mathbf{X}(T)] \\
\mathbf{e}_{3}^{\prime}(T) \cdot \mathbf{e}_{1}[\mathbf{X}(T)] & \mathbf{e}_{3}^{\prime}(T) \cdot \mathbf{e}_{2}[\mathbf{X}(T)] & \mathbf{e}_{3}^{\prime}(T) \cdot \mathbf{e}_{3}[\mathbf{X}(T)]
\end{array}\right\}
$$

Now \mathbf{e}_{1}, and \mathbf{e}_{3} in Fig. C-3 are both in Plane A. Also, \mathbf{e}_{2}^{\prime} and \mathbf{e}_{3}^{\prime} in Fig. C-4 are in Plane A. This is shown in Fig. C-5. From Fig. C-4 one can see that \mathbf{e}_{1} makes an angle λ with \mathbf{e}_{2}^{\prime}. Thus, one can write

$$
\begin{aligned}
& \mathbf{e}_{1}=\mathbf{e}_{2}^{\prime} \cos \lambda+\mathbf{e}_{3}^{\prime} \sin \lambda \\
& \mathbf{e}_{2}=\mathbf{e}_{1}^{\prime} \\
& \mathbf{e}_{3}=-\mathbf{e}_{2}^{\prime} \sin \lambda+\mathbf{e}_{3}^{\prime} \cos \lambda
\end{aligned}
$$

Fig. C-4. Spacecraft-fixed coordinates

Fig. C-5. Unit vectors in Plane A

Thus, Eq. (C-9) becomes

$$
m(T)=\left\{\begin{array}{ccc}
0 & 1 & 0 \tag{C-10}\\
\cos \lambda[\mathbf{X}(T)] & 0 & -\sin \lambda[\mathbf{X}(T)] \\
\sin \lambda[\mathbf{X}(T)] & 0 & \cos \lambda[\mathbf{X}(T)]
\end{array}\right\}
$$

III. Spacecraft Position and Velocity

The parameters of an elliptic orbit about the sun are:
a semi-major axis
e eccentricity
i inclination to the ecliptic
Ω longitude of the ascending node
ω argument of perihelion
η true anomaly
E eccentric anomaly
M mean anomaly
μ_{s} mean motion where $\mu_{s}=\left(\frac{\Gamma M_{\odot}}{a^{3}}\right)^{1 / 2}$
(from p. 342 of Ref. 14)
T_{P} time of perihelion passage
$p \quad$ semi-latus rectum, where $p=a\left(1-e^{2}\right)$

Here Γ is the Newton constant of gravitation and M_{\odot} is the mass of the sun. One can find M for a given value of T from

$$
\begin{equation*}
M(T)=\mu\left(T-T_{P}\right) \quad(\text { from p. } 335 \text { of Ref. 14) } \tag{C-11}
\end{equation*}
$$

With this value of M, one can find $E(T)$ from

$$
\begin{equation*}
M(T)=E(T)-e \sin E(T) \tag{C-12}
\end{equation*}
$$

(from p. 335 of Ref. 14).
With this value of E one can get $\eta(T)$ from

$$
\begin{equation*}
\eta(T)=2 \tan ^{-1}\left[\left(\frac{1+e}{1-e}\right)^{1 / 2} \tan \frac{1}{2} E(T)\right] \tag{C-13}
\end{equation*}
$$

(from p. 341 of Ref. 14).
The solar distance of the spacecraft is

$$
\begin{equation*}
r[\mathbf{X}(T)]=\frac{p}{1+e \cos \eta(T)} \tag{C-14}
\end{equation*}
$$

(from p. 336 of Ref. 14).
The spacecraft velocity vector \mathbf{V} may be represented by

$$
\begin{equation*}
\mathbf{V}=\mathbf{V}_{r}+\mathbf{V}_{a} \tag{C-15}
\end{equation*}
$$

where V_{τ} is the radial velocity, or component of \mathbf{V} along the radius r, and V_{a} is the azimuthal velocity, or component of \mathbf{V} perpendicular to the radius r. The vectors \mathbf{V}_{r} and \mathbf{V}_{a} are shown in Fig. C-6. Figure C-6 shows Plane A, containing X, in the plane of the paper, and perpendicular to the ecliptic. Plane B is perpendicular to X. Figure C-7 shows Plane B, in the plane of the paper, with vectors \mathbf{e}_{1}, $\mathbf{e}_{x}, \mathbf{X}$ and \mathbf{V}_{r} directed out of the paper. Vector \mathbf{V}_{a} is in Plane B, which also contains \mathbf{e}_{2} and \mathbf{e}_{3}, and is at angle α from \mathbf{e}_{2}. This is also shown in Fig. C-3. The components of V in Eq. (C-7) are thus,

$$
\begin{align*}
& V_{1}=V_{r} \\
& V_{2}=V_{a} \cos \alpha \tag{C-16}\\
& V_{3}=\dot{V}_{a} \sin \alpha
\end{align*}
$$

Fig. C-6. Plane A contains X, and is in plane of paper and perpendicular to ecliptic;

Plane B is perpendicular to X

Fig. C-7. Plane \mathbf{B} with vectors $\mathbf{e}_{1,} \mathbf{e}_{\mathrm{X}}, \mathbf{X}$ and \mathbf{V}_{r} directed out of the paper
where

$$
V_{r}=V_{r}(T), \quad V_{a}=V_{a}(T), \quad \alpha=\alpha(T)
$$

Figure C-8 shows $\eta+\omega$ is measured from the ascending node to the spacecraft in the direction of orbital motion.

Figure C-9 gives the relations on the celestial sphere. Since \mathbf{V} is at an angle α with the ecliptic, as shown in Fig. C-7, the upper angle in the spherical triangle, in Fig. C-9 is $(\pi / 2)-\alpha$.

Now, from the law of sines, for spherical triangles, from Fig. C-9, one has

$$
\begin{equation*}
\frac{\sin \lambda}{\sin i}=\frac{\sin (\eta+\omega)}{\sin \frac{\pi}{2}}=\frac{\sin (\Lambda-\Omega)}{\cos \alpha} \tag{C-17}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\sin \lambda=\sin i \sin (\eta+\omega) \tag{C-18}
\end{equation*}
$$

Fig. C-8. Plot showing $\omega+\eta$ measured from ascending node to spacecraft in the orbit plane and in the direction of spacecraft motion

Fig. C-9. Relations on celestial sphere and spherical triangle

The ecliptic latitude of the spacecraft at time T is thus given by

$$
\begin{equation*}
\lambda[\mathbf{X}(T)]=\sin ^{-1}[\sin i \sin \{\eta(T)+\omega\}] \tag{C-19}
\end{equation*}
$$

From Ref. 15, Napier's Rule for right spherical triangles: "Take the five parts, excluding the right angle, and consider them to be in a circular arrangement (as shown in

Fig. C-10. Circular arrangement of spherical triangle for application of the Napier rule

Fig. C-10). Attach a Co to the two angles and the hypotenuse, meaning 'Complement of A,' etc. Then, the sine of the middle part equals the product of the tangents of the adjacent parts." Thus, one has

$$
\begin{equation*}
\sin a=\tan b \tan (C o-B) \tag{C-20}
\end{equation*}
$$

or

$$
\sin \alpha=\tan \lambda \tan \left[\frac{\pi}{2}-(\eta+\omega)\right]
$$

and

$$
\sin \alpha=\tan \lambda \cot (\eta+\omega)
$$

or

$$
\begin{equation*}
\sin \alpha=\frac{\tan \lambda}{\tan (\eta+\omega)} \tag{C-21}
\end{equation*}
$$

Similarly,

$$
\sin (\Lambda-\Omega)=\tan \lambda \tan \left(\frac{\pi}{2}-i\right)=\tan \lambda \cot i
$$

or

$$
\begin{equation*}
\sin (\Lambda-\Omega)=\frac{\tan \lambda}{\tan i} \tag{C-22}
\end{equation*}
$$

By use of elementary trigonometry and Eqs. (C-18 and -22) one gets

$$
\begin{equation*}
\sin (\Lambda-\Omega)=\frac{\cos i \sin (\eta+\omega)}{\left[1-\sin ^{2} i \sin ^{2}(\eta+\omega)\right]^{1 / 2}} \tag{C-23}
\end{equation*}
$$

From Eq. (C-17), one can write

$$
\cos \alpha=\frac{\sin (\Lambda-\Omega) \sin i}{\sin \lambda}=\frac{\frac{\tan \lambda}{\tan i}(\sin i)}{\sin \lambda}=\frac{\frac{\left(\frac{\sin \lambda}{\cos \lambda}\right)}{\left(\frac{\sin i}{\cos i}\right)} \sin i}{\sin \lambda}
$$

or

$$
\begin{equation*}
\cos \alpha=\frac{\cos i}{\cos \lambda} \tag{C-24}
\end{equation*}
$$

The azimuthal velocity $V_{a}=\left|\mathbf{V}_{a}\right|$ is given by

$$
\begin{equation*}
V_{a}=V \cos \theta^{\prime}=\frac{V(K p)^{1 / 2}}{r V}=\frac{(K p)^{1 / 2}}{r} \tag{C-25}
\end{equation*}
$$

from Ref. 14, p. 342, and

$$
\begin{equation*}
\left|\mathbf{V}_{a}\right|=\frac{1}{r}(p)^{1 / 2}\left(\Gamma M_{\odot}\right)^{1 / 2} \tag{C-26}
\end{equation*}
$$

where θ^{\prime} is the angle between \mathbf{V}_{a} and $\mathbf{V}, \mathbf{V}=|\mathbf{V}|$, and $K=\Gamma M_{\odot}$

The radial velocity $V_{r}=\left|\mathbf{V}_{r}\right|$ is given by

$$
V_{r}=V \sin \theta^{\prime}=\left(V^{2}-V_{a}^{2}\right)^{1 / 2}
$$

and

$$
V=\left(\frac{2 K}{r}-\frac{K}{a}\right)^{1 / 2}
$$

from Ref. 14, p. 339.

Thus, using Eq. (C-25) and $p=a-a e^{2}$, one has

$$
\begin{align*}
& V_{r}=\left(\frac{2 K}{r}-\frac{K}{a}-\frac{K p}{r^{2}}\right)^{1 / 2}=\left(\frac{2 K}{r}-\frac{K}{a}-\frac{K\left(a-a e^{2}\right)}{r^{2}}\right)^{1 / 2} \\
& V_{r}=\left(\frac{2 K a r}{a r^{2}}-\frac{K r^{2}}{a r^{2}}-\frac{K a^{2}}{a r^{2}}+\frac{K a^{2} e^{2}}{a r^{2}}\right)^{1 / 2} \\
& V_{r}=\frac{(K)^{1 / 2}}{r}\left(\frac{2 a r-r^{2}-a^{2}+a^{2} e^{2}}{a}\right)^{1 / 2} \\
& V_{r}=\frac{1}{r}\left(\frac{a^{2} e^{2}-(a-r)^{2}}{a}\right)^{1 / 2}\left(\Gamma M_{\odot}\right)^{1 / 2} \tag{C-27}
\end{align*}
$$

IV. Meteoroid Velocity

The velocity $\mathbf{U}(\mathbf{X})$ is the meteoroid velocity. The k th meteoroid stream has velocity

$$
\begin{equation*}
\mathbf{U}_{k}^{(l, m)}(\mathbf{X})=\sum_{i=1}^{3} \mathbf{U}_{k, i}^{(l, m)}(\mathbf{X}) \mathbf{e}_{i} \tag{C-28}
\end{equation*}
$$

and in terms of radial and azimuthal components it has the form

$$
\begin{equation*}
\mathbf{U}_{k}^{(l, m)}(\mathbf{X})=\mathbf{U}_{k, r}^{(l, m)}(\mathbf{X})+\mathbf{U}_{k, a}^{(l, m)}(\mathbf{X}) \tag{C-29}
\end{equation*}
$$

The indices $l=2$ is positive (out from the sun along r); $l=1$ is negative (in toward the sun along r); $m=2$ is positive (toward the North from the ecliptic plane); and $m=1$ is negative (toward the South from the ecliptic plane).

The radial component is
$U_{k, r}^{(l, m)}(\mathbf{X})=(2 l-3) \frac{1}{r(\mathbf{X})}\left(\frac{a_{k}^{2} e_{k}^{2}-\left[a_{k}-r(\mathbf{X})\right]^{2}}{a_{k}}\right)^{1 / 2}\left(\Gamma M_{\odot}\right)^{1 / 2}$
and the azimuthal component is

$$
\begin{equation*}
U_{k, a}^{(l, m)}(\mathbf{X})=\frac{1}{r(\mathbf{X})}\left(p_{k}\right)^{1 / 2}\left(\Gamma M_{\odot}\right)^{1 / 2} \tag{C-31}
\end{equation*}
$$

The angle α, Eq. (C-24), for the k th meteoroid stream passing through the spacecraft position is

$$
\begin{equation*}
\alpha_{k}^{(l, m)}(\mathbf{X})=(2 m-3) \cos ^{-1}\left[\frac{\cos i_{k}}{\cos \lambda(\mathbf{X})}\right] \tag{C-32}
\end{equation*}
$$

Thus, one can write

$$
\begin{align*}
& U_{k, 1}^{(l, m)}(\mathbf{X})=U_{k, r}^{(l, m)}(\mathbf{X}) \\
& U_{k, 2}^{(l, m)}(\mathbf{X})=U_{k, a}^{(l, m)}(\mathbf{X}) \cos \left[\alpha_{k}^{(l, m)}(\mathbf{X})\right] \\
& U_{k, 3}^{(l, m)}(\mathbf{X})=U_{k, a}^{(l, m)}(\mathbf{X}) \sin \left[\alpha_{k}^{(l, m)}(\mathbf{X})\right] \tag{C-33}
\end{align*}
$$

There are meteoroids with all possible sign combinations. Each sign is equally likely.

The meteoroid velocity, $U_{k}^{(l, m)}(\mathbf{X})$, of the k th stream is defined only for $|\lambda(\mathbf{X})| \leq i_{k}$ and $\left|a_{k}-r(\mathbf{X})\right| \leq a_{k} e_{k}$.

Fig. C-11. Asteroid and meteoroid orbits

V. Meteoroid Density Distribution

From the averaging over the longitude of ascending node Ω, it is clear that the meteoroid density distribution $\sigma_{k}(\mathbf{X})$ is independent of $\Lambda(\mathbf{X})$. There has also been averaging over the mean anomaly M and the argument of perihelion ω. With this averaging over Ω, M and ω, the density distribution is spread over a finite volume of space as shown in Fig. C-11b.

A. Distribution Over Orbital Parameters

The distribution with respect to M, ω, Ω, each being taken from 0 to 2π, may be represented by a cube of edge 2π as shown in Fig. C-12, in $M-\omega-\Omega$ space, of volume $V o l_{1}$.

The density, by assumption, is independent of asteroid belt longitude. The meteoroid density in the cube is thus a constant. Since the integral of the density over the $M-\omega-\Omega$ space is w_{k}, the probability of finding the meteoroid, the density itself must be $w_{k} /(2 \pi)^{3}$ in the cube, and

$$
\iiint \frac{w}{(2 \pi)^{3}} d M d \omega d \Omega=\frac{w}{(2 \pi)^{3}}(2 \pi)^{3}=w
$$

B. Distribution Over Spherical Space Coordinates

The spherical coordinates (r, λ, Λ) are represented in rectangular coordinates in Fig. C-13. The regime is a rectangular solid in (r, λ, Λ) space of volume Vol_{2}. There is a

Fig. C-12. Density distribution over M, ω, Ω

$a_{k}\left(1-e_{k}\right) \longrightarrow a_{k}\left(1+e_{k}\right)$

Fig. C-13. Spherical space coordinates taken as rectangular coordinates
non-uniform meteoroid distribution in this space. Here

$$
\sigma_{k}(\mathbf{X})=\sigma_{k}[r(\mathbf{X}), \lambda(\mathbf{X}), \Lambda(\mathbf{X})]=\sigma_{k}(r, \lambda, \Lambda) r^{2} \cos \lambda
$$

and

$$
\begin{equation*}
\iiint \sigma_{k}(\mathbf{X}) d^{3} \mathbf{X}=\iiint \sigma_{k}(r, \lambda, \Lambda) d r(r d \lambda)(r \cos \lambda d \Lambda) \tag{C-34}
\end{equation*}
$$

Now, one has

$$
\begin{equation*}
d M d \omega d \Omega=4|J| d r d \lambda d \Lambda \tag{C-35}
\end{equation*}
$$

and

$$
\begin{align*}
\iint_{V o l_{1}} \int_{V_{k}} \frac{w_{k}}{(2 \pi)^{3}} d M d \omega d \Omega & =\iiint_{V o l_{2}} \frac{w_{k}}{(2 \pi)^{3}} 4|J| d r d \lambda d \Lambda \\
& =\iiint_{V o l_{2}} \sigma_{k}(r, \lambda, \Lambda) r^{2} \cos \lambda d r d \lambda d \Lambda \\
& =\iiint \sigma_{k}(\mathbf{X}) d^{3} \mathbf{X} \tag{C-36}
\end{align*}
$$

The mapping here is not 1 to 1 but 4 to 1 , owing to the four meteoroid streams at the spacecraft position-thus, the factor of 4 . Here J is the Jacobian

$$
J=\left|\begin{array}{lll}
\frac{\partial M}{\partial r} & \frac{\partial M}{\partial \lambda} & \frac{\partial M}{\partial \Lambda} \tag{C-37}\\
\frac{\partial \omega}{\partial r} & \frac{\partial \omega}{\partial \lambda} & \frac{\partial \omega}{\partial \Lambda} \\
\frac{\partial \Omega}{\partial r} & \frac{\partial \Omega}{\partial \lambda} & \frac{\partial \Omega}{\partial \Lambda}
\end{array}\right|
$$

The meteoroid density in r, λ, Λ space is given by

$$
\begin{equation*}
\boldsymbol{\sigma}_{k}(r, \lambda, \Lambda)=\frac{4 w_{k}}{(2 \pi)^{3}}|J| \frac{1}{r^{2} \cos \lambda} \tag{C-38}
\end{equation*}
$$

Now

$$
\begin{equation*}
M=E-e_{k} \sin E \tag{C-39}
\end{equation*}
$$

from Ref. 14, p. 335, and

$$
\begin{equation*}
E=\cos ^{-1}\left(\frac{a_{k}-r}{a_{k} e_{k}}\right), \text { and }, \cos E=\frac{a_{k}-r}{a_{k} e_{k}} \tag{C-40}
\end{equation*}
$$

from Ref. 14, p. 333. Thus,

$$
\frac{\partial E}{\partial r}=\frac{\frac{1}{a_{k} e_{k}}}{\left[1-\left(\frac{a_{k}-r}{a_{k} e_{k}}\right)^{2}\right]^{1 / 2}}=\frac{1}{\left[a_{k}^{2} e_{k}^{e}-\left(a_{k}-r\right)^{2}\right]^{1 / 2}}
$$

and

$$
\begin{aligned}
\frac{\partial M}{\partial r} & =\frac{\partial E}{\partial r}\left(1-e_{k} \cos E\right) \\
& =\frac{1}{\left[a_{k}^{2} e_{k}^{2}-\left(a_{k}-r\right)^{2}\right]^{1 / 2}}\left[1-\left(\frac{a_{k}-r}{a_{k}}\right)\right]
\end{aligned}
$$

or

$$
\begin{equation*}
\frac{\partial M}{\partial r}=\frac{r}{a_{k}\left[a_{k}^{2} e_{k}^{2}-\left(a_{k}-r\right)^{2}\right]^{1 / 2}} \tag{C-41}
\end{equation*}
$$

Also, from Eq. (C-39)

$$
\begin{align*}
& \frac{\partial M}{\partial \lambda}=0 \tag{C-42}\\
& \frac{\partial M}{\partial \Lambda}=0 \tag{C-43}
\end{align*}
$$

Now, from Eq. (C-18),

$$
\sin (\eta+\omega)=\frac{\sin \lambda}{\sin i_{k}}
$$

so that

$$
\omega=\sin ^{-1}\left(\frac{\sin \lambda}{\sin i_{k}}\right)-\eta
$$

and

$$
\eta=\cos ^{-1}\left(\frac{p_{k}-r}{r e_{k}}\right)
$$

from Ref. 14, p. 34, and

$$
\begin{align*}
\frac{\partial \omega}{\partial r}=-\frac{\partial \eta}{\partial r} & =\frac{\left[\frac{r e_{k}(-1)-\left(p_{k}-r\right) e_{k}}{r^{2} e_{k}^{2}}\right]}{\left[1-\left(\frac{p_{k}-r}{r e_{k}}\right)^{2}\right]^{1 / 2}} \\
& =\frac{-\frac{p_{k}}{r}}{\left[r^{2} e_{k}^{2}-\left(p_{k}-r\right)^{2}\right]^{1 / 2}} \tag{C-44}
\end{align*}
$$

Also,

$$
\begin{equation*}
\frac{\partial \omega}{\partial \lambda}=\frac{\left(\frac{\cos \lambda}{\sin i_{k}}\right)}{\left[1-\left(\frac{\sin \lambda}{\sin i_{k}}\right)^{2}\right]^{1 / 2}}=\frac{\cos \lambda}{\left(\sin ^{2} i_{k}-\sin ^{2} \lambda\right)^{1 / 2}} \tag{C-45}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \omega}{\partial \Lambda}=0 \tag{C-46}
\end{equation*}
$$

From Eq. (C-22) one gets

$$
\sin (\Lambda-\Omega)=\frac{\tan \lambda}{\tan i_{k}}
$$

so that

$$
\Omega=\Lambda-\sin ^{-1}\left(\frac{\tan \lambda}{\tan i_{k}}\right)
$$

Thus,

$$
\begin{equation*}
\frac{\partial \Omega}{\partial r}=0 \tag{C-47}
\end{equation*}
$$

$$
\begin{gather*}
\frac{\partial \Omega}{\partial \lambda}=\frac{-\frac{\sec ^{2} \lambda}{\tan i_{k}}}{\left[1-\left(\frac{\tan \lambda}{\tan i_{k}}\right)^{2}\right]^{1 / 2}}=\frac{-\sec ^{2} \lambda}{\left(\tan ^{2} i_{k}-\tan ^{2} \lambda\right)^{1 / 2}} \tag{C-48}\\
\frac{\partial \Omega}{\partial \Lambda}=1 \tag{C-49}
\end{gather*}
$$

Consequently, Eq. (C-37) becomes

$$
J=\left|\begin{array}{ccc}
\frac{r / a_{k}}{\left[a_{k}^{2} e_{k}^{2}-\left(a_{k}-r\right)^{2}\right]^{1 / 2}} & 0 & 0 \tag{C-50}\\
\frac{-p_{k} / r}{\left[r^{2} e_{k}^{2}-\left(p_{k}-r\right)^{2}\right]^{1 / 2}} & \frac{\cos \lambda}{\left(\sin ^{2} i_{k}-\sin ^{2} \lambda\right)^{1 / 2}} & 0 \\
0 & \frac{-\sec ^{2} \lambda}{\left(\tan ^{2} i_{k}-\tan ^{2} \lambda\right)^{1 / 2}} & -1
\end{array}\right|=\left\{\frac{r / a_{k}}{\left[a_{k}^{2} e_{k}^{2}-\left(a_{k}-r\right)^{2}\right]^{1 / 2}}\right\}\left[\frac{\cos \lambda}{\left(\sin ^{2} i_{k}-\sin ^{2} \lambda\right)^{1 / 2}}\right]
$$

Now, if one defines σ_{k}^{*} and ρ_{k}^{*} as follows,

$$
\begin{equation*}
\sigma_{\neq}^{*}(r)=E_{k}(r)-e_{k} \sin E_{k}(r), E_{k}(r)=\cos ^{-1}\left(\frac{a_{k}-r}{a_{k} e_{k}}\right) \tag{C-51}
\end{equation*}
$$

which is similar in form to M above in Eq. (C-39), and

$$
\begin{equation*}
\rho_{k}^{*}(\lambda)=\sin ^{-1}\left(\frac{\sin \lambda}{\sin i_{k}}\right) \tag{C-52}
\end{equation*}
$$

which is equal to $\omega+\eta$ above, then

$$
\begin{equation*}
\frac{d \sigma_{k}^{*}(r)}{d r}=\frac{r}{a_{k}\left[a_{k}^{2} e_{k}^{2}-\left(a_{k}-r\right)^{2}\right]^{1 / 2}} \tag{C-53}
\end{equation*}
$$

and
which is valid from

$$
a_{k}\left(1-e_{k}\right) \text { to } a_{k}\left(1+e_{k}\right)
$$

$$
\begin{equation*}
\frac{d \rho_{k}^{*}(\lambda)}{d \lambda}=\frac{\cos \lambda}{\left(\sin ^{2} i_{k}-\sin ^{2} \lambda\right)^{1 / 2}} \tag{C-54}
\end{equation*}
$$

which is valid from $-\boldsymbol{i}_{k}$ to $+\boldsymbol{i}_{k}$.

Thus, Eq. (C-38) above becomes

$$
\begin{equation*}
\sigma_{k}(r, \lambda, \Lambda)=\frac{4 w_{k} \frac{d \sigma_{k}^{*}(r)}{d r} \frac{d \rho_{k}^{*}(\lambda)}{d \lambda}}{(2 \pi)^{3} r^{2} \cos \lambda}=\frac{4 w_{k}}{(2 \pi)^{3} r^{2} \cos \lambda}\left\{\frac{r}{a_{k}\left[a_{k}^{2} e_{k}^{2}-\left(a_{k}-r\right)^{2}\right]^{1 / 2}}\right\}\left[\frac{\cos \lambda}{\left(\sin ^{2} i_{k}-\sin ^{2} \lambda\right)^{1 / 2}}\right] \tag{C-55}
\end{equation*}
$$

Thus, the meteoroid density $\sigma_{k}(r, \lambda, \Lambda)=\sigma_{k}(\mathbf{X})$ becomes infinite at $r=a_{k}\left(1 \pm e_{k}\right)$ and $\lambda= \pm i_{k}$. The problem of these singularities is handled by using smeared out versions of

$$
\frac{d_{\rho_{k}^{*}}(\lambda)}{d \lambda}
$$

as shown in Fig. C-14, and similarly for $\frac{d \sigma_{k}^{*}(r)}{d r}$.

One can write

$$
\begin{equation*}
\frac{d \rho_{k}^{*}(\lambda)}{d \lambda}=\frac{\Delta \rho_{k}^{*}(\lambda)}{\Delta \lambda}=\frac{\rho_{k}^{*}\left(\lambda+\varepsilon_{\lambda}\right)-\rho_{k}^{*}\left(\lambda-\varepsilon_{\lambda}\right)}{2 \varepsilon_{\lambda}} \tag{C-56}
\end{equation*}
$$

Fig. C-14. Plot of $\frac{\boldsymbol{d} \rho_{k}^{*}(\lambda)}{\boldsymbol{d} \lambda}$ and "smeared out" $\frac{\boldsymbol{d} \rho_{k}^{*}(\lambda)}{\boldsymbol{d} \lambda}$

The definitions of $\sigma_{k}^{*}(r)$ and $\rho_{k}^{*}(\lambda)$ are extended outside of their normal ranges as follows:

$$
\boldsymbol{\sigma}_{k}^{*}(r)=E_{k}(r)-e_{k} \sin E_{k}(r)
$$

$$
\begin{gather*}
E_{k}(r)= \begin{cases}\pi & \text { for } r \geq a_{k}\left(1+e_{k}\right) \\
\cos ^{-1}\left(\frac{a_{k}-r}{a_{k} e_{k}}\right) & \text { for } a_{k}\left(1-e_{k}\right) \leqslant r \leqslant a_{k}\left(1+e_{k}\right) \\
0 & \text { for } r \leq a_{k}\left(1-e_{k}\right)\end{cases} \\
\frac{d \sigma_{k}^{*}(r)}{d r}=\frac{\frac{r}{a_{k}}}{\left[a_{k}^{2} e_{k}^{2}-\left(a_{k}-r\right)^{2}\right]^{1 / 2}} H\left[a_{k}^{2} e_{k}^{2}-\left(a_{k}-r\right)^{2}\right] \quad(\mathrm{C}-57) \tag{C-57}
\end{gather*}
$$

and

$$
\rho_{k}^{*}(\lambda)= \begin{cases}+\frac{\pi}{2} & \text { for } \lambda \supseteq+i_{k} \\ \sin ^{-1}\left(\frac{\sin \lambda}{\sin i_{k}}\right) & \text { for }-i_{k} \leq \lambda \leq+i_{k} \\ -\frac{\pi}{2} & \text { for } \lambda \leq-i_{k}\end{cases}
$$

and

$$
\begin{equation*}
\frac{d \rho_{k}^{*}(\lambda)}{d \lambda}=\frac{\cos \lambda}{\left(\sin ^{2} i_{k}-\sin ^{2} \lambda\right)^{1 / 2}} H\left(\sin ^{2} i_{k}-\sin ^{2} \lambda\right) \tag{C-58}
\end{equation*}
$$

SWMWM "WINGS" OF SPATIAL DISTRIBUTION OF k^{\prime} th METEOROID SWARM

रुाएय
"MAIN BODY" OF SPATIAL DISTRIBUTION OF k^{\prime} th METEOROID SWARM

NOTE: $i_{k}+\epsilon_{\lambda}$ IS ASSUMED $\leqq \pi / 2$
Fig. C-15. "Exłended body" including "main body" and "wings"

The "extended body" is shown in Fig. C-15. A "smearedout" value of σ_{k}, called $\left.<\sigma_{k}\right\rangle$, equal to σ_{k} averaged over the volume $r^{2} \cos \lambda d r d \lambda d \Lambda$ was obtained as follows:

$$
\begin{align*}
& <\sigma_{k}>(r, \lambda, \Lambda)=\frac{\int_{r\left(1-\varepsilon_{r}\right)}^{r\left(1+\varepsilon_{r}\right)} \int_{\lambda-\varepsilon_{\lambda}}^{\lambda+\varepsilon_{\lambda}} \int_{\Lambda-\varepsilon_{\Lambda}}^{\Lambda+\varepsilon_{\Lambda}} \sigma_{k}\left(r^{\prime}, \lambda^{\prime}, \Lambda^{\prime}\right) r^{\prime 2} \cos \lambda^{\prime} d r^{\prime} d \lambda^{\prime} d \Lambda^{\prime}}{\int_{r\left(1-\varepsilon_{r}\right)}^{r\left(1+\varepsilon_{r}\right)} \int_{\lambda-\varepsilon_{\lambda}}^{\lambda+\varepsilon_{\lambda}} \int_{\Lambda-\varepsilon_{\Lambda}}^{\Lambda+\varepsilon_{\Lambda}} r^{\prime 2} \cos \lambda^{\prime} d r^{\prime} d \lambda^{\prime} d \Lambda^{\prime}} \tag{C-59}\\
& <\sigma_{k}>=\frac{\int_{r\left(1-\varepsilon_{r}\right)}^{r\left(1+\varepsilon_{r}\right)} \int_{\lambda-\varepsilon_{\lambda}}^{\lambda+\varepsilon_{\lambda}} \int_{\Lambda-\varepsilon_{\Lambda}}^{\Lambda+\varepsilon_{\Lambda}} \frac{w_{k}}{2 \pi^{3}} \frac{d \rho_{k}^{*}\left(\lambda^{\prime}\right)}{d \lambda^{\prime}} \frac{d \sigma_{k}^{*}\left(r^{\prime}\right)}{d r^{\prime}} \frac{r^{\prime 2} \cos \lambda^{\prime}}{r^{\prime 2} \cos \lambda^{\prime}} d r^{\prime} d \lambda^{\prime} d \Lambda^{\prime}}{\int_{r\left(1-\varepsilon_{r}\right)}^{r\left(1+\varepsilon_{r}\right)} r^{\prime 2} d r^{\prime} \int_{\lambda-\varepsilon_{\lambda}}^{\lambda+\varepsilon_{\lambda}} \cos \lambda^{\prime} d \lambda^{\prime} \int_{\Lambda-\varepsilon_{\Lambda}}^{\Lambda+\varepsilon_{\Lambda}} d \Lambda^{\prime}} \\
& <\sigma_{k}>=\frac{\frac{w_{k}}{2 \pi^{3}} \int_{r\left(1-\varepsilon_{r}\right)}^{r\left(1+\varepsilon_{r}\right)} \frac{d \sigma_{k}^{*}\left(r^{\prime}\right)}{d r^{\prime}} d r^{\prime} \int_{\lambda-\varepsilon_{\lambda}}^{\lambda+\varepsilon_{\lambda}} \frac{d \rho_{k}^{*}\left(\lambda^{\prime}\right)}{d \lambda^{\prime}} d \lambda^{\prime} \int_{\Lambda-\varepsilon_{\Lambda}}^{\Lambda+\varepsilon_{\Lambda}} d \Lambda^{\prime}}{\left.\left.\right|_{r\left(1-\varepsilon_{r}\right)} ^{r\left(1+\varepsilon_{r}\right)} \frac{1}{3} r^{\prime 3}\right|_{\lambda-\varepsilon_{\lambda}} ^{\lambda+\varepsilon_{\lambda}} \sin \lambda^{\prime} \int_{\Lambda-\varepsilon_{\Lambda}}^{\Lambda+\varepsilon_{\Lambda}} \mathrm{d} \Lambda^{\prime}} \\
& <\sigma_{k}>=\frac{w_{k}}{2 \pi^{3}} \cdot \frac{\left[\sigma_{k}^{*}\left(r\left(1+\varepsilon_{r}\right)\right)-\sigma_{k}^{*}\left(r\left(1-\varepsilon_{r}\right)\right)\right]\left[\rho_{k}^{*}\left(\lambda+\varepsilon_{\lambda}\right)-\rho_{k}^{*}\left(\lambda-\varepsilon_{\lambda}\right)\right]}{r^{3} \frac{1}{3}\left[\left(1+\varepsilon_{r}\right)^{3}-\left(1-\varepsilon_{r}\right)^{3}\right]\left[\sin \left(\lambda+\varepsilon_{\lambda}\right)-\sin \left(\lambda-\varepsilon_{\lambda}\right)\right]} \tag{C-60}
\end{align*}
$$

Now,

$$
\frac{1}{3}\left[\left(1+\varepsilon_{r}\right)^{3}-\left(1-\varepsilon_{r}\right)^{3}\right]=\frac{1}{3}\left[\left(1+3 \varepsilon_{r}+3 \varepsilon_{r}^{2}+\varepsilon_{r}^{3}\right)-\left(1-3 \varepsilon_{r}+3 \varepsilon_{r}^{2}-\varepsilon_{r}^{3}\right)\right]=\frac{2}{3}\left(3 \varepsilon_{r}+\varepsilon_{r}^{3}\right)=\frac{2}{3} \varepsilon_{r}\left(3+\varepsilon_{r}^{2}\right),
$$

and

$$
\sin \left(\lambda+\varepsilon_{\lambda}\right)-\sin \left(\lambda-\varepsilon_{\lambda}\right)=\left(\sin \lambda \cos \varepsilon_{\lambda}+\cos \lambda \sin \varepsilon_{\lambda}\right)-\left(\sin \lambda \cos \varepsilon_{\lambda}-\cos \lambda \sin \varepsilon_{\lambda}\right)=2 \cos \lambda \sin \varepsilon_{\lambda}
$$

Thus, one has

$$
\begin{equation*}
<\sigma_{k}>(r, \lambda, \Lambda)=\frac{3 w_{k}}{(2 \pi r)^{3}} \frac{\left[\sigma_{k}^{*}\left(r\left(1+\varepsilon_{r}\right)\right)-\sigma_{k}^{*}\left(r\left(\mathbf{l}-\varepsilon_{r}\right)\right)\right]\left[\rho_{k}^{*}\left(\lambda+\varepsilon_{\lambda}\right)-\rho_{k}^{*}\left(\lambda-\varepsilon_{\lambda}\right)\right]}{\cos \lambda \varepsilon_{r}\left(3+\varepsilon_{r}^{2}\right) \sin \varepsilon_{\lambda}} \tag{C-61}
\end{equation*}
$$

Now $\sigma_{k}(\mathbf{X}) \neq 0$ within the "main body," defined by $|\lambda| \leq i_{k}$, and $\left|r / a_{k}-1\right| \leq e_{k}$, but $\sigma_{k}=0$ outside the "main body" (see Fig. C-15). Similarly one has $\left.<\sigma_{k}\right\rangle \neq 0$ within the "extended body," (the "main body" and the "wings"), defined by $|\lambda| \leq i_{k}+\varepsilon_{\lambda}$, and

$$
\left(1-e_{k}\right)\left(1-\varepsilon_{r}\right) \leq \frac{r}{a_{k}} \leq\left(1+e_{k}\right)\left(1+\varepsilon_{r}\right)
$$

or

$$
\left|\frac{r}{a_{k}}-\left(1+e_{k} \varepsilon_{r}\right)\right| \leq e_{k}+\varepsilon_{r}
$$

and $\left\langle\sigma_{k}\right\rangle=0$ outside the extended body.
If $\sigma_{k}(\mathbf{X})$ were used, $\mathbf{U}_{k}^{(l, m)}(\mathbf{X})$ would only have to be defined where $\sigma_{k}(\mathbf{X}) \neq 0$, that is, in the "main body." For the use of $\left.<\sigma_{k}\right\rangle(\mathbf{X})$, however, it is necessary to extend the definitions of $\mathbf{U}_{k}^{(l, m)}(\mathbf{X})$ to the entire region where $\left\langle\sigma_{k}\right\rangle(\mathbf{X}) \neq 0$, that is, the extended body. To achieve this, $\mathbf{U}_{k}^{(l, m)}(\mathbf{X})$ is replaced everywhere by $\mathbf{U}_{k}^{(l, m)}\left(\mathbf{X}_{k}^{\prime}\right)$

Fig. C-16. Plot of $r\left(X_{k}^{\prime}\right)$ vs $r(X)$ and $\lambda\left(X_{k}^{\prime}\right)$ vs $\lambda(X)$
where

$$
\begin{align*}
& r\left(\mathbf{X}_{k}^{\prime}\right)=\left\{\begin{array}{lrl}
a_{k}\left(1+e_{k}\right) & r(\mathbf{X}) \geq a_{k}\left(1+e_{k}\right) \\
r(\mathbf{X}) & \text { for } & a_{k}\left(1-e_{k}\right) \leq r(\mathbf{X}) \leq a_{k}\left(1+e_{k}\right) \\
a_{k}\left(1-e_{k}\right) & r(\mathbf{X}) \leq a_{k}\left(1-e_{k}\right)
\end{array}\right. \tag{C-62}\\
& \lambda\left(\mathbf{X}_{k}^{\prime}\right)= \begin{cases}+i_{k} & \lambda(\mathbf{X}) \supseteq+i_{k} \\
\lambda(\mathbf{X}) & \text { for }\end{cases} \\
& -i_{k} \leq \lambda(\mathbf{X}) \leq+i_{k}, \text { and } \Lambda\left(\mathbf{X}_{k}^{\prime}\right)=\Lambda(\mathbf{X}) . \\
& -i_{k}
\end{align*}
$$

The quantities $r\left(\mathbf{X}^{\prime}\right)$ and $\lambda\left(\mathbf{X}^{\prime}\right)$ are plotted in Fig. C-16.
The quantities $r\left(\mathbf{X}_{k}^{\prime}\right), \lambda\left(\mathbf{X}_{k}^{\prime}\right)$ and $\Lambda\left(\mathbf{X}_{k}^{\prime}\right)$ may be represented as follows:

$$
\begin{align*}
& r\left(\mathbf{X}_{k}^{\prime}\right)=\max \left[a_{k}\left(1-e_{k}\right), \quad \min \left\{a_{k}\left(1+e_{k}\right), \quad r(\mathbf{X})\right\}\right] \\
& \lambda\left(\mathbf{X}_{k}^{\prime}\right)=\max \left[-i_{k}, \quad \min \left\{+i_{k}, \lambda(\mathbf{X})\right\}\right] \tag{C-63}\\
& \Lambda\left(\mathbf{X}_{k}^{\prime}\right)=\Lambda(\mathbf{X})
\end{align*}
$$

Figure C-16 shows that in the main body

$$
\begin{aligned}
& r\left(\mathbf{X}_{k}^{\prime}\right)=r(\mathbf{X}) \\
& \lambda\left(\mathbf{X}_{k}^{\prime}\right)=\lambda\left(\mathbf{X}_{k}\right) .
\end{aligned}
$$

Thus, in the "wings" the velocity pattern is taken as that at the nearest boundary.

In the computer program

$$
\varepsilon_{r}=\varepsilon_{\lambda}=0.02
$$

Appendix D

The Value of β

There are many values of β in the literature but those that apply to the asteroid belt meteoroids are almost all clustered closely around $\beta=2 / 3$. Consider the following four functions:
(1) The cumulative mass distribution function $N_{1}(m)=$ the number of meteoroids of mass greater than m
(2) $N_{2}(r)=$ the number of meteoroids of radius greater than r
(3) $N_{1}^{\prime}(m)=\frac{d N_{1}(m)}{d m}=$ the mass frequency distribution function
(4). $N_{2}^{\prime}(r)=\frac{d N_{2}(r)}{d r}=$ the radius frequency distribution function

$$
\begin{aligned}
& \text { If } N_{1} \propto m^{-\beta} \text {, then } N_{2} \propto 1^{-3 \beta}\left(\text { since } m \propto r^{s}\right) \\
& N_{1}^{\prime} \propto m^{-(\beta+1)} \text { and } N_{2}^{\prime} \propto r^{-(3 \beta+1)} .
\end{aligned}
$$

Piotrowski (Ref. 16) gave $d N_{2} \propto r^{-3} d r$, or $N_{2}^{\prime}=\left(d N_{2} / d r\right)$ $\propto r^{-3}$, and $3 \beta+1=3$, therefore

$$
\beta=\frac{3-1}{3}=\frac{2}{3} .
$$

In the computer program in this report, the value $3 \beta=1.9$ is used. This value, $3 \beta=1.9$ comes from Anders (Ref. 10). Anders states that the value of β does not depend on position in the asteroid belt. ${ }^{1}$

Another approach indicating $3 \beta=1.9$ is as follows:
Let $N_{3}(G, a)$ be the number of asteroids with absolute magnitude less than or equal to G and semi-major axis greater than or equal to a. Let

$$
\begin{equation*}
N_{z}^{\prime}(G, a)=\frac{\partial N_{3}(G, a)}{\partial a} \tag{D-1}
\end{equation*}
$$

Kuiper (Ref. 13) takes

$$
\begin{equation*}
\log _{10} N_{3}^{\prime}(G, a)=C(a)+b(a) G, \tag{D-2}
\end{equation*}
$$

[^0]where C and b are functions of a. Anders (Ref. 10) states that b is a constant. Let $N_{4}\left(p_{0}\right)$ be the number of asteroids with mean opposition magnitude $\leq p_{0}$ and semi-major axis $>1 \mathrm{AU}$. Let a be in AU. Only asteroids with $a>1 \mathrm{AU}$ are considered because p_{0} (Eq. D-3) becomes singular for $a=1$. (Note: in the present report the asteroid belt model contains no meteoroids with $a \leq 1 \mathrm{AU}$) Kuiper, Ref. 13, p. 318, gives $p_{0}=$ mean asteroid magnitude at opposition for $a \geqslant 1 \mathrm{AU}$ as
\[

$$
\begin{equation*}
p_{0}=G+5 \log _{10} a(a-1) \tag{D-3}
\end{equation*}
$$

\]

or

$$
\begin{equation*}
G=G\left(p_{0}, a\right)=p_{0}-5 \log _{10} a(a-1) \tag{D-4}
\end{equation*}
$$

From Eqs. (D-2 and -4) and Anders (Ref. 10) one can write

$$
\log _{10} N_{3}^{\prime}\left[G\left(p_{0}, a\right), a\right]=C(a)+b G
$$

so that

$$
\begin{equation*}
N_{s}^{\prime}\left[G\left(p_{0}, a\right), a\right]=10^{\sigma(a)+b G} \tag{D-5}
\end{equation*}
$$

or

$$
\begin{equation*}
N_{3}^{\prime}\left[G\left(p_{0}, a\right) a\right]=10^{c(a)+b\left[p_{0}-5 \log _{10} a(a-1)\right]} \tag{D-6}
\end{equation*}
$$

Now, define $N_{4}\left(p_{0}\right)$ as

$$
\begin{aligned}
N_{4}\left(p_{0}\right) & =\int_{1}^{\infty} N_{3}^{\prime}\left[G\left(p_{0}, a\right), a\right] d a \\
& =\int_{1}^{\infty} 10^{c(a)+b\left[p_{0}-5 \log _{10} a(a-1)\right]} d a
\end{aligned}
$$

so that

$$
\begin{equation*}
N_{4}\left(p_{0}\right)=\left[\int_{1}^{\infty} 10^{c(a)-5 b \log \operatorname{lig}_{0} a(a-1)} d a\right] 10^{b p_{0}} \tag{D-7}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\log _{10}\left[N_{4}\left(p_{0}\right)\right]=d+b p_{0} \tag{D-8}
\end{equation*}
$$

where

$$
\begin{equation*}
d=\log \int_{1}^{\infty} 10^{c(a)-5 b \log _{10} a(a-1)} d a \tag{D-9}
\end{equation*}
$$

Define $N_{3}(G)$ to be the total number of meteoroids with absolute magnitude $\leq G$. Thus,

$$
\begin{align*}
N_{3}(G) & =\int_{0}^{\infty} N_{3}^{\prime}(G, a) d a=\int_{0}^{\infty} 10^{C(a)+b G} d a \\
& =\left[\int_{0}^{\infty} 10^{C(a)} d a\right] 10^{b G} \tag{D-10}
\end{align*}
$$

Thus, Eq. (D-10) can be written

$$
\log _{20} N_{3}(G)=d^{*}+b G
$$

where

$$
\begin{equation*}
d^{*}=\log \int_{0}^{\infty} 10^{c(a)} d a \tag{D-11}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{3}(G)=10^{d^{*}+b G} \tag{D-12}
\end{equation*}
$$

Kiang, Ref. 17, gives

$$
\begin{equation*}
\log _{10} N_{4}\left(p_{0}\right)=-2.63+0.375 p_{0} \tag{D-13}
\end{equation*}
$$

Thus, comparing Eqs. (D-8 and -13), one gets

$$
\begin{equation*}
b=0.375 \tag{D-14}
\end{equation*}
$$

Ref. 18, p. 153 gives

$$
\begin{equation*}
\log _{10} r=2.95-\frac{1}{2} \log _{10}(0.16)-0.2 G=3.35-\frac{1}{5} G \tag{D-15}
\end{equation*}
$$

where r is the radius of the asteroid in km . Now in this report, the minimum asteroid absolute magnitude con-
sidered (for the reference asteroid of mass m_{0}, and radius r_{0}) is $G_{0}=13.6$. With this value of G_{0}, Eq. (D-15) gives

$$
\log _{10} r_{0}=3.35-\frac{1}{5}(13.6)=3.35-2.72=0.63
$$

so that

$$
\begin{equation*}
r_{0}=4.3 \mathrm{~km} \tag{D-16}
\end{equation*}
$$

From Eq. (D-15) one can write

$$
\begin{equation*}
G=G(r)=16.75-5 \log _{10} r \tag{D-17}
\end{equation*}
$$

Now, from Eqs. (D-12) and (D-17)

$$
N_{2}(r)=N_{3}[G(r)]=10^{d^{*}+b G(r)}=10^{d^{*}+b(16.75-5 \log 10 r)}
$$

or

$$
\begin{equation*}
N_{2}(r)=\left(10^{d^{*}+16.75 b}\right)\left[10^{10^{10}\left(r_{10}-5 b\right)}\right]=10^{d^{*}+16.75 b} r^{-5 b} \tag{D-18}
\end{equation*}
$$

But

$$
N_{2}(r) \propto r^{-s \beta}
$$

so that

$$
3 \beta=5 b
$$

and using Eq. (D-14)

$$
\begin{equation*}
3 \beta=5(0.375)=1.875 \tag{D-19}
\end{equation*}
$$

in agreement with previous results of

$$
3 \beta=1.9
$$

Hartmann, Ref. 19, from an analysis of lunar cratering, states that β is approximately 0.7 to 0.8 . The Hartmann value is an example of the extremes in the scattering of β values about $\beta=2 / 3$.

Appendix E

Analytic Model Output

A computer was used to carry out the calculations. The reason the computer was needed was because the arithmetic calculations involved in evaluating $P_{I}(S)$ were too extensive to be done without a computer. However, from a single computer run one can obtain information on a whole family of related spacecraft, rather than on only a single spacecraft. These spacecraft must have the same trajectories, $\mathbf{X}(T)$ and $V(T)$, the same attitude $m(T)$ as a function of time, and the same set of outwardly drawn unit vectors \mathbf{n}_{j}, normal to the polyhedral spacecraft surface. For the j th surface the area is A_{j} and the spacecraft surface thickness t_{j}, where j ranges from 1 to N_{F}.

An analytic expression is derived below for $P_{I}(\mathrm{~S})$ which applies to all of the spacecraft in such a family. The computer supplies the values of certain coefficients which appear in this analytic expression. One first selects one of the spacecraft in this family as the "standard" or reference spacecraft. All of the properties of the reference are designated by an asterisk, for example, the total area is $A_{s}{ }^{*}$. The parameters $\alpha_{j}^{\prime}, \tau_{j}^{\prime}$ and α_{s}^{\prime} are defined as follows:

$$
\begin{align*}
\alpha_{j}^{\prime} & =\frac{A_{j}}{A_{j}^{*}} \tag{E-1}\\
\tau_{j}^{\prime} & =\frac{t_{j}}{t_{j}^{* *}} \tag{E-2}\\
\alpha_{s}^{\prime} & =\frac{A_{s}}{A_{s}^{*}} \tag{E-3}
\end{align*}
$$

From Eq. (B-66) one sees that

$$
F_{j} \propto t_{j}^{-3 \beta}
$$

and

$$
F_{j}(T) t_{j}^{3 \beta}=F_{j}^{*}(T)\left(t_{j}^{*}\right)^{3 \beta},
$$

so that

$$
\begin{equation*}
F_{j}(T)=F_{j}^{*}(T)\left(\frac{t_{j}^{*}}{t_{j}}\right)^{3 \beta}=F_{j}^{*}(T)\left(\frac{t_{j}}{t_{j}^{*}}\right)^{-3 \beta} \tag{E-4}
\end{equation*}
$$

and from Eq. (E-2),

$$
\begin{equation*}
F_{j}(T)=F_{j}^{*}(T)\left(\tau_{j}^{\prime}\right)^{-3 \beta} . \tag{E-5}
\end{equation*}
$$

One can define

$$
\begin{equation*}
f_{j}=\int_{T_{0}}^{T_{f}} F_{j}(T) d T \quad \text { and } \quad f_{j}^{*}=\int_{T_{0}}^{T_{f}} F_{j}^{*}(T) d T \tag{E-6}
\end{equation*}
$$

as the effective meteoroid flux integral, or meteoroids $/ \mathrm{m}^{2}$. Thus, from Eqs. (E-5 and -6)

$$
f_{j}=f_{j}^{\prime}\left(\tau_{j}^{\prime}\right)^{-3 \beta}
$$

and from Eqs. (B-47 and -53), if $P_{s}\left(T_{0}\right)=1$

$$
P_{I}(\mathrm{~S})=\exp \left(-\int_{T_{0}}^{T_{f}} \pi_{I}(T) d T\right)=\exp \left(-\int_{T_{0}}^{T_{f}} \Sigma_{j}\left[F_{j}(T)\right] A_{j} d T\right)
$$

or

$$
P_{I}(S)=\exp \left(-\sum_{j} A_{j} \int_{r_{0}}^{T_{f}} F_{j}(T) d T\right)
$$

and, from Eq. (E-6)

$$
\begin{equation*}
P_{I}(S)=\exp \left(-\sum_{j} A_{j} f_{j}\right) \tag{E-8}
\end{equation*}
$$

Now, from $A_{j}=A_{j}^{*} \alpha_{j}^{\prime}$, and Eq. (E-7), one can write

$$
\begin{equation*}
P_{I}(S)=\exp \left[-\sum_{j=1}^{N_{F}} A_{j}^{*} f_{j}^{*} \alpha_{j}^{\prime}\left(\tau_{j}^{\prime}\right)^{-3 \beta}\right] . \tag{E-9}
\end{equation*}
$$

What the computer calculates is f_{j}^{*} using Eqs. (E-6 and B-66), with * denoting the standard spacecraft, and with $F_{j}^{*}(T), f_{j}^{*}(T)$ and t_{j}^{*} in place of $F_{j}(T), f_{j}(T)$ and t_{j}. One particularly simple form for the A_{j} terms in the family is obtained by assuming that the spacecraft are all of
the same shape but have different sizes. Let l be a typical length parameter associated with this shape. From Eqs. (E-1 and -3) one can write

$$
\begin{equation*}
\alpha_{j}^{\prime}=\alpha_{s}^{\prime}=\left(\frac{l}{l^{*}}\right)^{2} \tag{E-10}
\end{equation*}
$$

Now, define

$$
\begin{align*}
& \alpha_{j}=\frac{A_{j}}{l^{2}}=\frac{A_{j}^{*}}{l^{* 2}}=\alpha_{j}^{*} \tag{E-11}\\
& \alpha_{s}=\frac{A_{s}}{l^{2}}=\frac{A_{s}^{*}}{l^{*}}=\sum_{j=1}^{N_{r}} \alpha_{j}^{*}=\alpha_{s}^{*} \tag{E-12}
\end{align*}
$$

Now, from Eqs. (E-1 and -9) one gets

$$
P_{I}(S)=\exp \left[-\sum_{j=1}^{N_{r}} A_{j}^{*} f_{j}^{*} \frac{A_{j}}{A_{j}^{*}}\left(\tau_{j}^{\prime}\right)^{-3 \beta}\right]
$$

and from Eq. (E-11) $A_{j}=\alpha_{j}{ }^{2}$, so that

$$
\begin{equation*}
P_{I}(S)=\exp \left[-l^{2} \sum_{j=1}^{N_{F}} \alpha_{j} f_{j}^{*}\left(\tau_{j}^{\prime}\right)^{-3 \beta}\right] \tag{E-13}
\end{equation*}
$$

It is assumed that all of the spacecraft shielding has the same density, or

$$
\begin{equation*}
\rho_{j}=\rho_{s} \tag{E-14}
\end{equation*}
$$

The mass W_{j} of the shielding on the j th face is given by

$$
\begin{equation*}
W_{j}=\rho_{s} A_{j} t_{j} \tag{E-15}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{j}^{*}=\rho_{s} A_{j}^{*} t_{j}^{*} . \tag{E-16}
\end{equation*}
$$

The total mass W_{s} of shielding on the spacecraft is given by

$$
\begin{align*}
& W_{s}=\sum_{j=1}^{N} W_{j} \tag{E-17}\\
& W_{s}^{*}=\sum_{j=1}^{N} W_{j}^{*} \tag{E-18}
\end{align*}
$$

One now defines t, the average thickness of the spacecraft surface by

$$
\begin{equation*}
t=\frac{W_{s}}{\rho_{\varepsilon} A_{s}} \tag{E-19}
\end{equation*}
$$

and

$$
\begin{equation*}
t^{*}=\frac{W_{s}^{*}}{\rho_{s} A_{s}^{*}} \tag{E-20}
\end{equation*}
$$

Now, define

$$
\begin{array}{lll}
\tau_{j}=\frac{t_{j}}{t}, & \text { or } & t_{j}=\tau_{j} t \\
\tau_{j}^{*}=\frac{t_{j}^{*}}{t^{*}}, & \text { or } & t_{j}^{*}=\tau_{j}^{*} t^{*} \tag{E-22}
\end{array}
$$

and Eq. (E-2) can then be written as

$$
\begin{equation*}
\tau_{j}^{\prime}=\frac{t_{j}}{t_{j}^{*}}=\frac{\tau_{j} t}{\tau_{j}^{*} t^{*}} . \tag{E-23}
\end{equation*}
$$

If one now substitutes Eq. (E-23) into Eq. (E-13) one gets

$$
P_{I}(S)=\exp \left\{-l^{2} \sum_{j=1}^{N_{F}}\left[\alpha_{j} f_{j}^{*} \tau_{j}^{-3 \beta} t^{-3 \beta}\left(t_{j}^{*} t^{*}\right)^{3 \beta}\right]\right\}
$$

or

$$
\begin{equation*}
P_{I}(S)=\exp \left\{-l^{2} t^{-3 \beta} \sum_{j=1}^{N_{F}}\left[f_{j}^{*}\left(\tau_{j}^{*} t^{*}\right)^{3 \beta}\right]\left(\alpha_{j} \tau_{j}^{-3 \beta}\right)\right\} \tag{E-24}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{I}(S)=\exp \left(-C l^{2} t^{-3 \beta}\right) \tag{E-25}
\end{equation*}
$$

where

$$
\begin{equation*}
C=\sum_{j=1}^{N_{F}} C_{j} \alpha_{j} \tau_{j}^{-3 \beta} \tag{E-26}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{j}=f_{j}^{*}\left(\tau_{j}^{*} t^{*}\right)^{3 \beta} \tag{E-27}
\end{equation*}
$$

One can express $P_{I}(S)$ in terms of A_{s} and W_{s} instead of l and t as follows: Eq. (E-25) becomes, by use of Eq. (E-19)
and $l^{2}=A_{s} / \alpha_{s}$,

$$
\begin{align*}
& P_{I}(\mathrm{~S})=\exp \left[-C\left(\frac{A_{s}}{\alpha_{s}}\right) W_{s}^{-3 \beta} \rho_{s}^{3 \beta} A_{s}^{3 \beta}\right]=\exp \left[-\left(\frac{C \rho_{s}^{3 \beta}}{\alpha_{s}}\right) A_{s}^{1+3 \beta} W_{s}^{-3 \beta}\right] \\
& P_{I}(\mathrm{~S})=\exp \left(-C^{\prime} A_{s}^{1+3 \beta} W_{s}^{-s \beta}\right) \tag{E-28}
\end{align*}
$$

where

$$
\begin{equation*}
C^{\prime}=C \frac{\rho_{s}^{3 \beta}}{\alpha_{s}}=\frac{\rho_{s}^{3 \beta}}{\alpha_{s}} \sum_{j=1}^{N_{F}}\left[f_{j}^{*}\left(\tau_{j}^{*} t^{*}\right)^{3 \beta}\right]\left(\alpha_{j} \tau_{j}^{-3 \beta}\right) \tag{E-29}
\end{equation*}
$$

from Eq. (E-24). Now, using Eq. (E-20),

$$
\begin{gathered}
\rho_{s}=\frac{W_{s}^{*}}{A_{s}^{*} t^{*}}, \\
C^{\prime}=\frac{1}{\alpha_{s}} \frac{\left(W_{s}^{*}\right)^{3 \beta}}{\left(A_{s}^{*}\right)^{3 \beta}\left(t^{*}\right)^{3 \beta}} \sum_{j=1}^{N_{F}} f_{j}^{*} \tau_{j}^{* 3 \beta} t^{* 3 \beta} \alpha_{j} \tau_{j}^{-3 \beta}
\end{gathered}
$$

or

$$
\begin{equation*}
C^{\prime}=\sum_{j=1}^{N_{F}} \frac{f_{j}^{*}}{\alpha_{s}}\left(\frac{\tau_{j}^{*} W_{s}^{*}}{A_{s}^{*}}\right)^{3 \beta} \alpha_{j} \tau_{j}^{-3 \beta} \tag{E-30}
\end{equation*}
$$

and

$$
\begin{equation*}
C^{\prime}=\sum_{j=1}^{N_{F}} C_{j}^{\prime} \alpha_{j} \tau_{j}^{-3 \beta} \tag{E-31}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{j}^{\prime}=\frac{f_{j}^{*}}{\alpha_{s}}\left(\frac{\tau_{j}^{*} W_{s}^{*}}{A_{s}^{*}}\right)^{3 \beta} \tag{E-32}
\end{equation*}
$$

One can also express $P_{I}(S)$ in terms of l and W_{s} as follows: From Eq. (E-12),

$$
A_{s}=\alpha_{s} l^{2}
$$

so that Eq. (E-28) can be written

$$
P_{I}(S)=\exp \left[-C^{\prime} \alpha_{s}^{1+3 \beta} l^{2(1+3 \beta)} W_{s}^{-3 \beta}\right]
$$

or

$$
\begin{equation*}
P_{I}(S)=\exp \left[-C^{\prime \prime} l^{2(1+3 \beta)} W_{s}^{-3 \beta}\right] \tag{E-33}
\end{equation*}
$$

where

$$
C^{\prime \prime}=C^{\prime} \alpha_{s}^{1+3 \beta}
$$

and from Eq. (E-29)

$$
\begin{equation*}
C^{\prime \prime}=\left(\frac{C \rho_{s}^{3 \beta}}{\alpha_{s}}\right) \alpha_{s}^{1+3 \beta}=C\left(\alpha_{s} \rho_{s}\right)^{3 \beta} \tag{E-34}
\end{equation*}
$$

In addition $P_{I}(S)$ can be expressed in terms of A_{s} and t as follows:
from Eq. (E-12)

$$
l^{2}=\frac{A_{s}}{\alpha_{s}}
$$

and Eq. (E-25) can be written

$$
P_{I}(S)=\exp \left(-C \frac{A_{s}}{\alpha_{s}} t^{-3 \beta}\right)
$$

or

$$
\begin{equation*}
P_{I}(S)=\exp \left(-C^{\prime \prime \prime} A_{s} t^{-3 \beta}\right) \tag{E-35}
\end{equation*}
$$

where

$$
\begin{equation*}
C^{\prime \prime \prime}=\frac{C}{\alpha_{s}}=C^{\prime} \rho_{s}^{-3 \beta} \tag{E-36}
\end{equation*}
$$

from Eq. (E-29). Thus $P_{I}(S)$ can be written, from Eqs. (E-25, -28, -33, and -35)

$$
\begin{align*}
& P_{I}(S)=\exp \left(-C l^{2} t^{-3 \beta}\right) \tag{E-37}\\
& P_{I}(S)=\exp \left(-C^{\prime \prime \prime} A_{s} t^{-3 \beta}\right) \tag{E-38}\\
& P_{I}(S)=\exp \left[-C^{\prime} A_{s}^{(1+3 \beta)} W_{s}^{-3 \beta}\right] \tag{E-39}\\
& P_{I}(S)=\exp \left[-C^{\prime \prime} l^{2(1+3 \beta)} W_{s}^{-3 \beta}\right] \tag{E-40}
\end{align*}
$$

where $C, C^{\prime}, C^{\prime \prime}, C^{\prime \prime \prime}$ are defined in Eqs. (E-26, -29, -34, and -36).

Two special forms of $P_{I}(S)$ are derived as follows:
Case A : In this case the shielding is assumed to be of uniform thickness over the entire surface of the spacecraft. Thus, $t_{j}=t$ and τ_{j}, from Eq. (E-21) is

$$
\begin{equation*}
\tau_{j}=\frac{t_{j}}{t}=\frac{t}{t}=1 \tag{E-41}
\end{equation*}
$$

Thus, Eq. (E-26) becomes

$$
\begin{equation*}
C=C_{A}=\sum_{j=1}^{N_{p}} C_{j} \alpha_{j} \tag{E-42}
\end{equation*}
$$

and Eq. (E-25) is therefore

$$
\begin{equation*}
P_{I}(S)=\exp \left(-C_{A} l^{2} t^{-3 \beta}\right) \tag{E-43}
\end{equation*}
$$

Similarly, Eqs. (E-28 and -29) become

$$
\begin{equation*}
P_{I}(S)=\exp \left(-C_{A}^{\prime} A_{s}^{1+3 \beta} W_{s}^{-3 \beta}\right) \tag{E-44}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{A}^{\prime}=C_{A} \frac{\left(\rho_{s}\right)^{3 \beta}}{\alpha_{s}} \tag{E-45}
\end{equation*}
$$

Also, Eq. (E-40) becomes

$$
\begin{equation*}
P_{I}(S)=\exp \left[-C_{A}^{\prime \prime} l^{2(1+3 \beta)} W_{s}^{-s \beta}\right] \tag{E-46}
\end{equation*}
$$

and from Eq. (E-34)

$$
\begin{equation*}
C_{A}^{\prime \prime}=C_{A}\left(\alpha_{s} \rho_{s}\right)^{3 \beta} \tag{E-47}
\end{equation*}
$$

Eq. (E-35) becomes

$$
\begin{equation*}
P_{I}(\mathrm{~S})=\exp \left(-C_{A}^{\prime \prime \prime} A_{s} t^{-3 \beta}\right) \tag{E-48}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{A}^{\prime \prime \prime}=\frac{C_{A}}{\alpha_{s}} \tag{E-49}
\end{equation*}
$$

Case B: The shielding is distributed over the faces of the spacecraft so as to maximize $P_{I}(S)$, for a fixed l and W_{s}. Maximizing $P_{I}(\mathrm{~S})$ in these circumstances is equivalent to minimizing

$$
\begin{equation*}
C=\sum_{j=1}^{N_{p}} C_{j} \alpha_{j} \tau_{j}^{-3 \beta} \tag{E-50}
\end{equation*}
$$

from Eq. (E-26), subject to the constraint $W_{s}=\sum_{j=1}^{N_{F}} W_{j}$
or
$W_{s}=\rho_{s} A_{s} t=\sum_{j=1}^{N_{p}} \rho_{s} A_{j} t_{j}=\rho_{s} \sum_{j=1}^{N_{p}}\left(\alpha_{j} l^{2}\right)\left(\tau_{j} t\right)=$ constant
or

$$
\begin{equation*}
\alpha_{s}=\frac{A_{s}}{l^{2}}=\sum_{j=1}^{Y} \alpha_{j} \tau_{j}=\text { constant } \tag{E-51}
\end{equation*}
$$

Now, using Lagrange's "Method of Multipliers" for constrained maxima and minima, Ref. 20, p. 163, if q is the Lagrange multiplier,

$$
\frac{\partial C}{\partial \tau_{j}}-q \frac{\partial \alpha_{s}}{\partial \tau_{j}}=0
$$

and

$$
\begin{equation*}
-3 \beta \tau_{j}^{-3 \beta-1} C_{j} \alpha_{j}-q \alpha_{j}=0 \tag{E-52}
\end{equation*}
$$

If Eqs. (E-52 and -53) are solved for

$$
\begin{equation*}
q, \tau_{1}, \tau_{2}, \tau_{3}, \cdots, \tau_{N_{F}} \tag{E-53}
\end{equation*}
$$

these values of τ_{j} in Eq. (E-53) are the optimum pattern of τ_{j}, or the best pattern of shielding for a given meteoroid flux and a fixed l and W_{s}. Thus, from Eq. (E-52)

$$
\frac{-3 \beta C_{j}}{\tau_{j}^{(1++\beta)}}=q
$$

$$
\begin{equation*}
\tau_{j}=\left(\frac{-3 \beta C_{j}}{q}\right)^{\frac{1}{1+3 \beta}}=Q C_{j}^{\frac{1}{1-3 \beta}} \tag{E-54}
\end{equation*}
$$

where

$$
\begin{equation*}
Q=\left(\frac{-3 \beta}{q}\right)^{\frac{1}{1+3 \beta}} \tag{E-55}
\end{equation*}
$$

Now, combining Eqs. (E-5l and -54) one gets

$$
\alpha_{s}=\sum_{j=1}^{N_{F}} \alpha_{j} \tau_{j}=\sum_{j=1}^{N_{F}} \alpha_{j} Q C_{j}{ }^{\frac{1}{1+3 \beta}}
$$

so that

$$
\begin{equation*}
Q=\frac{\alpha_{s}}{\sum_{i=1}^{N_{F}} \alpha_{i} C_{i}^{\frac{1}{1+3 \beta}}} \tag{E-56}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{j}=\tau_{j}^{+}=\frac{\alpha_{s} C_{j}^{\frac{1}{1+3 \beta}}}{\sum_{i=1}^{N_{N}} \alpha_{i} C_{i}^{\frac{1}{1+3 \beta}}}=\left(\frac{t_{j}}{t}\right)^{+} \tag{E-57}
\end{equation*}
$$

Here τ_{j}^{+}is the optimal pattern of thicknesses τ_{j}. If one combines Eqs. (E-50 and -57) one gets

$$
C_{B}=\sum_{j=1}^{N_{F}} C_{j} \alpha_{j} \tau_{j}^{-3 \beta}=\sum_{j=1}^{N_{F}} C_{j} \alpha_{j}\left(\frac{\sum_{i=1}^{N_{F}} \alpha_{i} C_{i}^{\frac{1}{1+3 \beta}}}{\alpha_{s} C_{j}^{\frac{1}{1+3 \beta}}}\right)^{3 \beta}
$$

or

$$
C_{B}=\sum_{i=1}^{N_{F}}\left(\alpha_{i} C_{i}^{\frac{1}{1+3 \beta}}\right)^{3 \beta} \alpha_{s}^{-3 \beta} \sum_{j=1}^{N_{F}} \alpha_{j} C_{j}\left(1-\frac{3 \beta}{1+3 \beta}\right)
$$

and

$$
\begin{array}{rlr}
C_{B} & =\sum_{j=1}^{N_{F}}\left(\alpha_{j} C_{j}^{\frac{1}{1+3 \beta}}\right)^{1+3 \beta} & \alpha_{s}^{-3 \beta} \\
C_{B}^{\prime} & =C_{B} \frac{\rho_{s}^{33}}{\alpha_{s}} & \text { from Eq. (E-29) } \tag{E-58}\\
C_{B}^{\prime \prime} & =C_{B}\left(\alpha_{s} \rho_{s}\right)^{3 \beta} & \text { from Eq. (E-34) } \\
C_{B}^{\prime \prime \prime} & =\frac{C_{B}}{\alpha_{s}} & \text { from Eq. (E-36) }
\end{array}
$$

The optimum distribution of shielding is that which gives maximum probability of success for a given weight of shielding and a given spacecraft size.

Appendix F

Example Cases Calculated

Example cases were calculated for typical short and long duration missions to Jupiter. The mission orbits were taken from actual matched conic trajectory data. The flight times were 512 and 904 days, but these have been rounded off here to 500 and 900 days, respectively, as shown in Fig. F-1. The perihelion, of the two mission orbits shown, actually would not be oriented in the same direction. However, since the longitude is of no interest here, they have been rotated to fit on the paper and to better show their relationship. The calculations were made for $3 \beta=1.9$ and $3 \beta=3.0$. Four cases were run as shown in Table F-1.

Table F-1. Four example cases

3β value	500-day mission spacecraft orbit	900 -day mission spacecraft orbit
1.9	Case I	Case II
3.0	Case III	Case IV

Case I is for $3 \beta=1.9$ and the 500 -day spacecraft mission orbit; Case II for $3 \beta=1.9$ and the 900 -day mission orbit, etc. The mission orbit elements used, a, e, i, and ω, are shown in Table F-2.

Table F-2. Mission orbit elements

Orbital elements	500-day mission orbit: May $18,1974^{2}$ October 12, 1975 ${ }^{\text {b }}$	900-day mission orbit: May 30, $1974^{\text {a }}$ November 19, $1976{ }^{\text {b }}$
a	4.5731 AU	3.0135 AU
e	0.77887	0.66562
i	2.1304 deg	4.3296 deg
ω	177.92 deg	170.09 deg

${ }^{\text {a }}$ Launch date
${ }^{\text {b }}$ Arrival date

Fig. F-1. 500-day and 900-day missions to Jupiter

These four orbital parameters were the only ones needed in the computer program because the asteroid model does not depend on the ecliptic longitude or on the time. The inclination of these orbits is about 2 to 4 deg , as shown in the table.

Figure F-2a shows the shape of the family of spacecraft used, namely, a rhombicuboctahedron. In this family, l is the length of an edge. There are $N_{F}=26$ faces. Figure $\mathrm{F}-2 \mathrm{~b}$ is numbered from $j=1$ to $j=26$, the upper number being for the northern face and the lower number being for the southern face. Table F-3 gives values of α_{j} and \mathbf{n}_{j} for the various faces shown in Fig. \mathbf{F}-2b. The directions of $\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}$ and \mathbf{e}_{3}^{\prime} are shown on Fig. $\mathrm{F}-2 \mathrm{~b}$, and \mathbf{e}_{3}^{\prime} is in the direction of \mathbf{e}_{x}. For the reference, or standard spacecraft, $l^{*}=1 \mathrm{~m}, t^{*}=1 \mathrm{~cm}, t_{j}^{*}=1$ and $\tau_{j}^{*}=1$. For this shape

$$
\begin{aligned}
\alpha_{s} & =\sum_{j=1}^{26} \alpha_{j}=18+2(3)^{1 / 2}=21.464, \quad \text { and } \\
A_{s}^{*} & =21.464 \mathrm{~m}^{2}
\end{aligned}
$$

The spacecraft shielding material is assumed to be aluminum, so that $\rho_{s}=2.7 \mathrm{~g} / \mathrm{cm}^{3}$. With this value of ρ_{s}, the reference spacecraft mass, W_{s}^{*}, in the uniform shielding case is,

$$
\begin{aligned}
W_{s}^{*} & =t^{*} \rho_{s} l^{* 2} \alpha_{s}=(1 \mathrm{~cm})\left(2.7 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}\right)(100 \mathrm{~cm})^{2} \\
& =575,000 \mathrm{~g}=575 \mathrm{~kg}
\end{aligned}
$$

(a)

(b)

Fig. F-2. Convex polyhedral spacecraft shape

The constants k_{1}, k_{2} and h_{t} in Eq. (B-31) are taken from Ref. 7, p. 429 for an iron projectile impacting a 2024 aluminum target and are $k_{1}=0.672, k_{2}=0.765$, $h_{t}=120 \mathrm{~kg} / \mathrm{mm}^{2}$.

From Eq. (B-34) one gets

$$
C_{1}=3 k_{1}=2.016
$$

$$
C_{2}=\frac{\rho_{t}}{k_{2} h_{t}}=\frac{2.7 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}}{0.765\left(120 \frac{\mathrm{~kg}}{\mathrm{~mm}^{2}}\right)\left(10^{3} \frac{\mathrm{~g}}{\mathrm{~kg}}\right)\left(10^{2} \frac{\mathrm{~mm}^{2}}{\mathrm{~cm}^{2}}\right)\left(980 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}}\right)\left(\frac{\mathrm{m}^{2}}{10^{4} \mathrm{~cm}^{2}}\right)\left(\frac{\mathrm{km}^{2}}{10^{6} \mathrm{~m}^{2}}\right)}
$$

or

$$
C_{2}=\frac{2.7}{0.765(1.20)(0.980)} \frac{\mathrm{s}^{2}}{\mathrm{~km}^{2}}=3.00 \frac{\mathrm{~s}^{2}}{\mathrm{~km}^{2}}
$$

The computer input includes the following:
(I) The spacecraft trajectory, $\mathbf{X}(T), \mathbf{V}(T)$ which is given in terms of a, e, i, ω presented above.
(2) The spacecraft attitude represented by the rotation matrix $M(T)$ given in Eq. (C-10).
(3) The spacecraft shielding material characteristics and the asteroid material characteristics, represented by C_{1}, C_{2} and ρ_{s}.
(4) The spacecraft size and geometry represented by l, $\alpha_{j}, \mathbf{n}_{j}$.
(5) The asteroid belt model parameters, for the 1500 asteroids used, namely

$$
w_{k}, a_{k}, e_{k}, i_{k,} \rho^{\prime}, \beta, \varepsilon_{r}=\varepsilon_{\lambda}=0.02
$$

(Note: G_{k} is used to obtain w_{k}.)

Table F-3. Values of α_{j} and \mathbf{n}_{j}

j	α_{j}	$\mathrm{n}_{\text {j }}$
1	1	$(-1,0,0)$
2	1	$(1,0,0)$
3	1	(0, -1, 0)
4	1	(0, 1, 0)
5	1	(0, 0, -1)
6	1	$(0,0,1)$
7	1	$0.707(-1,-1,0)$
8	1	$0.707(-1, \quad 1, \quad 0)$
9	1	$0.707(1,-1,0)$
10	1	$0.707(1,1,0)$
11	1	$0.707(-1, \quad 0,-1)$
12	1	$0.707(-1,00.1)$
13	1	$0.707(1,0,-1)$
14	1	$0.707(1,0,1)$
15	1	$0.707(0,-1,-1)$
16	1	$0.707(0,-1,1)$
17	1	$0.707(0,1,-1)$
18	1	$0.707(0,1,1)$
19	$\frac{1}{4}(3)^{3 / 2}$	$0.577(-1,-1,-1)$
20	$\frac{1}{4}(3)^{1 / 2}$	$0.577(-1,-1,1)$
21	$\frac{1}{4}(3)^{1 / 2}$	$0.577(-1, \quad 1,-1)$
22	$\frac{1}{4}(3)^{1 / 2}$	$0.577(-1,1, \quad 1)$
23	$\frac{1}{4}(3)^{1 / 2}$	$0.577(1,-1,-1)$
24	$\frac{1}{4}(3)^{1 / 2}$	$0.577(1,-1,1)$
25	$\frac{1}{4}(3)^{1 / 2}$	$0.577(1,1,-1)$
26	$\frac{1}{4}(3)^{1 / 2}$	0.577 (1, 1, 1)
a	$=18$	1.464

(6) The times $T_{0}=$ initial time, $T_{f}=$ final time at end of mission, $T_{P}=$ time of perihelion passage, $\Delta T=$ interval between time steps, and $N_{T}=$ number of steps into which the mission is divided. ${ }^{2}$

The computer does the following: It takes a collection of points in time $T_{i}=T_{0}+i \Delta T$, where i ranges from 0 to N_{T}. For time T_{i} it computes and outputs $F_{j}^{*}\left(T_{i}\right)$ for $j=1$ to 26 , using Eq. (B-66) and others. From $F_{j}^{*}\left(T_{i}\right)$ it computes and outputs $\pi_{r}^{*}\left(T_{i}\right)$, essentially from Eq. (B-53) as follows:

$$
\begin{aligned}
\pi_{I}^{*}\left(T_{i}\right) & =\sum_{j=1}^{26} F_{j}^{*}\left(T_{i}\right) A_{j}^{*}=\sum_{j=1}^{26} \alpha_{j} l^{* 2} F_{j}^{*}\left(T_{i}\right) \\
& =l^{* 2} \sum_{j=1}^{26} \alpha_{j} F_{j}^{*}\left(T_{i}\right)
\end{aligned}
$$

[^1]Figures F-3 and -4 give $\pi_{I}^{*}(T)$ versus T for the 500 - and 900 -day missions and $3 \beta=1.9$ and $3 \beta=3.0$.

Fig. F-3. $\pi_{i}^{*}(T)$ vs T for Cases I and II (3 $\left.\beta=1.9\right)$

Fig. F-4. $\pi_{I}^{*} \mathbf{(T)}$ vs \mathbf{T} for Cases III and IV (3 $\beta=\mathbf{3 . 0}$)

The computer calculates only starred (*) quantities. An equation with a^{*} applies to the reference or standard spacecraft while an equation without a* applies to any spacecraft in the family. The reference or standard spacecraft is also a member of the family. The computer next calculates f_{j}^{*} from Eq. (E-6) and v_{i}^{*} from

$$
v_{I}^{*}=\int_{T_{0}}^{T_{f}} \pi_{I}^{*}(T) d T
$$

The computer calculates the integrals approximately by use of the trapezoidal rule:

$$
\int_{T_{0}}^{T_{f}} f(T) d T \cong \sum_{i=0}^{N_{F}} f\left(T_{i}\right) \Delta T-\frac{1}{2}\left[f\left(T_{0}\right)+f\left(T_{N_{T}}\right)\right] \Delta T
$$

The values of all the output quantities are punched on cards as well as printed. This enables the user to perform any desired additional computer analysis on the data. The total expected number of destructive impacts on the j th
face of the spacecraft is

$$
A_{j} f_{j}=\left(\alpha_{j} l^{2}\right)\left(\frac{t_{j}^{*}}{t_{j}}\right)^{3 \beta}\left(f_{j}^{*}\right)=\left(\frac{l^{2}}{t^{3 \beta}}\right)\left(\frac{\alpha_{j}}{\tau_{j}^{3 \beta}}\right)\left(\tau_{j}^{* 3 \beta}\right)\left(t^{* 3 \beta}\right)\left(f_{j}^{*}\right)
$$

using $t_{j}=\boldsymbol{t}_{\tau_{j}}$.
The computer calculates $F_{j}^{*}\left(T_{i}\right), \pi_{I}^{*}\left(T_{i}\right), f_{j}^{*}, v_{I}^{*}$ and τ_{j}^{+}. The expected number of destructive meteoroids per $\mathrm{m}^{2}, f_{j}^{*}$, and non-dimensional optimum shielding thicknesses, τ_{j}^{+}, for Cases I, II, III and IV are listed in Table F-4, and is shown in Fig. F-5 for Case I. From the data in Table F-4, plots similar to that given in Fig. F-5 can be drawn. The direction of motion of the spacecraft, shown in the same figure, results in large values of f_{j}^{*} on the front faces: $j=17,18,21,22,25$, and 26 and small values of f_{j}^{*} on the rear faces: $j=15,16,19,20,23$ and 24 . The required thicknesses

$$
\tau_{j}^{+}=\frac{t_{j}^{+}}{t}
$$

Table F-4. Expected numbers of destructive meteoroids $/ \mathbf{m}^{2}, \boldsymbol{f}_{j}^{*}$, and non-dimensional optimum~shielding thicknesses τ_{j}^{+}, for Cases I, II, III, and IV

${ }^{j}$	Case 1		Case 11		Case III		Case IV	
	$\begin{gathered} f_{j}^{*} \times 10^{9} \\ {\left[\mathrm{~m}^{-2}\right]} \end{gathered}$	$\boldsymbol{\tau}_{j}^{+}$	$\begin{gathered} f_{j}^{*} \times 10^{9} \\ {\left[\mathrm{~m}^{-2}\right]} \end{gathered}$	$\boldsymbol{\tau}_{\boldsymbol{j}}^{+}$	$\begin{gathered} \boldsymbol{f}_{j}^{*} \\ \left.\operatorname{lm}^{-2}\right] \end{gathered}$	τ_{j}^{+}	$\begin{gathered} \boldsymbol{f}_{j}^{*} \\ {\left[\mathrm{~m}^{-2}\right]} \end{gathered}$	$\boldsymbol{\tau}_{j}^{+}$
1	4.40	1.129	4.90	1.289	0.0622	1.148	0.0720	1.272
2	0.00453	0.1054	0.001496	0.0791	0.000070	0.210	0.000018	0.1602
3	0	0	0	0	0	0	0	0
4	69.7	2.93	45.3	2.78	1.893	2.70	1.153	2.55
5	1.093	0.699	1.348	0.826	0.01629	0.822	0.0205	0.930
6	0.695	0.598	0.779	0.684	0.01008	0.729	0.01127	0.800
7	0	0	0.001781	0.0840	0	0	9.6×10^{-6}	0.1369
8	53.8	2.68	38.4	2.62	1.381	2.49	0.934	2.42
9	0	0	0	0	0	0	0	0
10	27.6	2.13	15.01	1.897	0.615	2.04	0.305	1.825
11	3.40	1.033	3.93	1.195	0.0491	1.082	0.0604	1.218
12	2.60	0.941	2.88	1.074	0.0357	1.000	0.0426	1.116
13	0.0990	0.305	0.0948	0.331	0.001462	0.450	0.001449	0.479
14	0.0638	0.262	0.0516	0.268	0.000953	0.404	0.000759	0.408
15	0.000188	0.0352	0.001040	0.0698	2.3×10^{-6}	0.0900	0.000015	0.1530
16	0.000056	0.0232	0.000300	0.0455	6×10^{-7}	0.0641	3.1×10^{-6}	0.1034
17	41.6	2.45	27.6	2.34	1.016	2.31	0.637	2.19
18	38.9	2.39	24.6	2.25	0.937	2.26	0.551	2.12
19	0.000055	0.0230	0.00253	0.0949	5×10^{-7}	0.0598	0.000021	0.1661
20	0.000006	0.01067	0.00456	0.1162	3×10^{-8}	0.0309	0.000034	0.1880
21	40.0	2.42	29.0	2.38	0.966	2.28	0.668	2.22
22	37.9	2.37	26.5	2.31	0.903	2.24	0.597	2.16
23	0.000241	0.0383	0.000668	0.0599	2.9×10^{-6}	0.0953	9.1×10^{-6}	0.1351
24	0.000089	0.0272	0.000196	0.0393	1.1×10^{-6}	0.0740	2.1×10^{-8}	0.0931
25	20.6	1.924	11.86	1.749	0.435	1.868	0.233	1.707
26	18.9	1.867	10.00	1.649	0.391	1.818	0.1884	1.619

FROM $C_{B}{ }^{\prime \prime}, l$ AND W_{s} ONE CAN CALCULATE $P_{I}(S)$ FROM Eq. (F-I) ALSO $t=W_{s} / \rho_{s} l^{2} \alpha_{s}$, SO THAT $t_{j}{ }^{+}=\left(t_{j}{ }^{+}\right) t$

Fig. F-5. Non-dimensional optimum shielding $\tau_{j}^{+}=\frac{t_{j}^{+}}{f}$ and number of damaging meteoroids $/ \mathrm{m}^{2}, \boldsymbol{f}_{j}^{*}$, for Case I
(where t_{j}^{+}is the thickness on the j th face and t is the average thickness of the spacecraft surface) are larger on the front faces than on the rear faces. The computed values of $C_{A}, C_{A}^{\prime}, C_{A}^{\prime \prime}, C_{A}^{\prime \prime \prime}, C_{B}, C_{B}^{\prime}, C_{B}^{\prime \prime}$, and $C_{B}^{\prime \prime \prime}$ are listed in Table F-5 for Cases I, II, III and IV. The equation for $P_{1}(S)$ in terms of l and W_{s}, namely

$$
\begin{equation*}
P_{I}(\mathrm{~S})=\exp \left[-C^{\prime \prime} l^{2(1+3 \beta)} W_{s}^{-3 \beta}\right] \tag{F-1}
\end{equation*}
$$

is plotted in Fig. F-6 for $P_{I}(\mathrm{~S})=0.99$ and $3 \beta=1.9$ and 3.0, for Cases I, II, III and IV for uniform shielding and for optimum shielding.

From $C_{B}^{\prime \prime}, l$ and W_{s} one can calculate $P_{I}(S)$, from Eq. (F-1).

Table F-5. Computed values of $C_{A}, C_{A}^{\prime}, C_{A}^{\prime \prime}, C_{A}^{\prime \prime \prime}, C_{B}, C_{B}^{\prime}$, $\mathrm{C}_{B}^{\prime \prime}$ and $\mathrm{C}_{B}^{\prime \prime \prime}$ for Cases I, II, III and IV

Constant	$3 \beta=1.9$		$\mathbf{3} \beta=3.0$	
	500-day mission	900-day mission	500-day mission	900-day mission
	Case 1	Case II	Case III	Case.IV
$\mathrm{C}_{\text {A }}$	2.9476×10^{-7}	1.9828×10^{-7}	7.1850	4.5204
C_{A}^{\prime}	7.2003×10^{-6}	4.8435×10^{-6}	6.5888×10^{3}	4.1453×10^{3}
$\mathrm{C}_{1}^{\prime \prime}$	5.2398×10^{-2}	3.5247×10^{-2}	1.3985×10^{9}	8.7985×10^{8}
$\mathrm{Ca}_{1}^{\prime \prime \prime}$	1.3733×10^{-8}	9.2377×10^{-9}	0.33475	0.21060
C_{B}	6.6404×10^{-8}	5.0315×10^{-8}	0.76736	0.58934
C_{B}^{\prime}	1.6221×10^{-6}	1.2291×10^{-6}	7.0369×10^{2}	5.4043×10^{2}
$\mathrm{C}_{B}^{\prime \prime}$	1.1804×10^{-2}	8.9442×10^{-3}	1.4936×10^{8}	1.1471×10^{8}
$\mathrm{C}_{8}^{\prime \prime \prime}$	3.0937×10^{-9}	2.3442×10^{-9}	0.035751	0.027457

Also

$$
t=\frac{W_{s}}{\rho_{s} l^{2} \alpha_{s}} \quad \text { so that } t_{j}^{+}=\left(\tau_{j}^{+}\right) t
$$

The equation is thus

$$
\begin{array}{ll}
0.99=\exp \left(-C^{\prime \prime} l^{5.8} W_{s}^{-1.9}\right), & \text { for } 3 \beta=1.9 \\
0.99=\exp \left(-C^{\prime \prime} l^{8} W_{s}^{-3}\right), & \text { for } 3 \beta=3.0
\end{array}
$$

For $3 \beta=3.0$, in Cases III and IV, the $C_{A}^{\prime \prime}$ and $C_{B}^{\prime \prime}$ values are much larger than the corresponding values for $3 \beta=1.9$ in Cases I and II and lead to much larger shielding masses W_{s}. For example, for Case III (500-day mission, $3 \beta=3.0$), with $P_{I}(S)=0.99$ and $l=1 \mathrm{~m}$, with optimum shielding $C_{B}^{\prime \prime}=1.4936 \times 10^{8}$
and

$$
0.99=\exp \left(C_{B}^{\prime \prime} l^{8} W_{s}^{-3}\right)=\exp \left(-C_{B}^{\prime \prime} W_{s}^{-3}\right)
$$

so that

$$
W_{s}=5297 \mathrm{~kg}
$$

Thus, $3 \beta=3.0$ or $\beta=1.0$ gives very large shielding masses, making the asteroid belt nearly impenetrable. Therefore, the shielding mass is extremely sensitive to β and use of the proper value of β is very important. As indicated earlier, the authors' best estimate is

$$
\beta=\frac{1.9}{3}=0.633
$$

Fig. F-6. l vs W_{s} for $P(0)=P_{I}(S)=0.99$ for Cases I and II with uniform shielding and with optimum shielding

Appendix G

Computer Program

I. Description of Computer Program Including Simple Flow Diagram

The program is called ASTEFF (Asteroid Belt Effects Program) and is written in FORTRAN IV. The flow chart is shown in Fig. G-1. The asteroid belt data is read first. A sequence of cases can be run with one pass on the computer. Each case is represented by an appropriate collection of input data. Properties which do not change from one case to another do not have to be repeated in the input. Each case has a label card, a parametric card and an orbit card and may or may not have a collection of structure cards. In each case one takes a set of user supplied points in time and runs through them in sequence. At each time point the following items are computed and printed: spacecraft location $\mathbf{X}(T)$, velocity $\mathbf{V}(T)$, meteoroid space density σ, flux of hazardous meteoroids on the j th face of the reference spacecraft $F_{j}^{*}(T)$, and the failure rate, due to meteoroids, of the reference spacecraft $\pi_{I}^{*}(T)$. The following items are then computed and printed for the reference spacecraft: the integrated flux (T), the f_{j}^{*}
\$EXECUTE IBJOB
\$IBJOB

number of destructive impacts on the j th face $A_{j}^{*} f_{j}^{*}$, the dimensionless ratio τ_{j}^{+}related to the optimum thickness, the failure rate integral ν_{P}^{*} the probability of success $P_{I}^{*}(\mathrm{~S})$, and the eight coefficients discussed in Appendix E: $C_{A}, C_{A}^{\prime}, C_{A}^{\prime \prime}, C_{A}^{\prime \prime \prime}, C_{B}, C_{p}^{\prime}, C_{B}^{\prime \prime}$, and $C_{B}^{\prime \prime \prime}$.

II. Description of Input Data Cards and Output

The description below refers to the use of the ASTEFF program on the JPL 7040-7090 Direct Couple Operating System, but the program should run on any large computer system equipped with a FORTRAN IV compiler with at most, very minor modifications.

Section III of this Appendix G presents a listing of the FORTRAN IV ASTEFF Decks and the Asteroid Deck Cards.

A. Card Deck

The card deck presented to the machine is as follows:
\$JOB Card

\$JOB Card
\$EXECUTE IBJOB
\$IBJOB
\$IBLDR DJAA . .
. 3
\$DKEND DJAA .
\$IBLDR DJAB . .
\$DKEND DJAB . .
. +
\$IBLDR DJAZ . .
\$DKEND DJAZ . .

[^2]

Fig. G-1. ASTEFF flow chart
\$DATA
Asteroid quantity card
$\left[\left(N_{A S T}+2\right) / 3\right]$ asteroid data cards
First case data block
Second case data block

Last case data block
EOF card

\$DATA

Asteroid quantity card
$\left[\left(N_{A S T}+2\right) / 3\right]$ asteroid data cards
First case data block
Second case data block

Last case data block
EOF card

B. Asteroid Quantity Card Format

The format for the asteroid quantity card is as follows:

$N_{A S T}$ is the number of asteroids for which data is to be read from the asteroid data cards following.

C. Asteroid Data Card Format

The format for the nth asteroid data card is as follows:

FORMAT $[3(F 4.2,2 F 6.5, F 7.5,2 X)]$
w_{k} is, as the reciprocal of a probability, dimensionless
i_{k} is in rad
e_{k} is dimensionless
a_{k} is in AU

D. Case Block Structure

A case block has the following structure:
Case data block:
Label card:
Parameter card: $C_{1}, C_{2}, \rho_{s}, h_{s}, \rho^{\prime}, 3 \beta, \varepsilon_{r}, \varepsilon_{\lambda}$
Orbit card: $a, e, i, \omega, T_{P}, T_{0}, \Delta T, N_{T}, N_{F}$
$\left[\left(N_{F}+1\right) / 2\right]$ structure cards: $\mathbf{n}_{j}, \alpha_{j}$

The formats for the label card, parameter card, orbit card and structure cards are given below.

E. Label Card Format

The format for the label card is as follows:

FORMAT (12A6, 2I4)

The label is any message; it is used to identify a case, and is reproduced in both forms of output. The $N_{A 1}$ th through $N_{A 2}$ th asteroid data sets are used in each case. If $N_{A 1}$ is left blank or given as $\leq 0,>N_{A S T}$, or $>N_{A 2}$, it is taken as $=1$. If $N_{A 2}$ is left blank or given as ≤ 0 or $>N_{A S T}$, it is taken as $=N_{A S T} . N_{A}$ is the number of asteroid data sets used, $N_{A}=N_{A 2}-N_{A 1}+1$. It is printed out, but not input or punched.

F. Parameter Card Format

The format for the parameter card is as follows:

FORMAT (8E10.5)

C_{1} is dimensionless	$C_{1}>0$
C_{2} is in $(\mathrm{km} / \mathrm{s})^{-2}$	$C_{2}>0$
ρ_{s} is in $\mathrm{g} / \mathrm{cm}^{3}$	$\rho_{s}>0$
h_{s} is in $\mathrm{kg} / \mathrm{mm}^{2}$	$h_{s}>0$
ρ^{\prime} is in $\mathrm{g} / \mathrm{cm}^{3}$	$\rho^{\prime}>0$
3β is dimensionless	$3 \beta>0$
ε_{r} is dimensionless	$\varepsilon_{\tau}>0$
ε_{λ} is dimensionless	$\varepsilon_{\lambda}>0$

If C_{1} and/or C_{2} is left blank (or given as ≤ 0), it will be computed approximately from ρ_{s}, h_{s}, and ρ^{\prime}, using Eqs. (B-32, -34, -37, and E-14).

If ρ_{s} is left blank (or given as ≤ 0), it is taken as $2.7 \mathrm{~g} / \mathrm{cm}^{3}$ and h_{s} is taken as 120 kg -wt $/ \mathrm{mm}^{2}$. This is also done if C_{2} and h_{s} are left blank (or given as ≤ 0). If ρ_{s}, ρ^{\prime} and either C_{1} or C_{2} are left blank (or given as ≤ 0), C_{1} and C_{2} are taken as 2.016 and $3.00(\mathrm{~km} / \mathrm{s})^{-2}$, the experimental values for iron projectiles hitting aluminum targets.

If $\rho^{\prime}, 3 \beta, \varepsilon_{r}$, and/or ε_{λ} are left blank (or given as ≤ 0), they will be taken as $7.9 \mathrm{~g} / \mathrm{cm}^{3}, 1.9,0.02$, and 0.02 , respectively.

G. Mission Orbit Card

The format for the spacecraft mission orbit card is as follows:

FORMAT (7E10.5, 215)

a is in AU	$a>0$
e is dimensionless	$0 \leq e<1$
i is in deg	$0 \leq i \leq 180 \mathrm{deg}$
ω is in deg	$-180 \mathrm{deg} \leq \omega \leq 360 \mathrm{deg}$
T_{P} is in days	
T_{0} is in days	
ΔT is in days	$N_{T} \geq 0$
N_{T} is dimensionless	

Leaving a quantity blank is equivalent to giving it a value of zero.
$N_{T}+1$ times are considered by the program: $T_{i}=T_{0}+i \Delta T, i=0, \cdots, N_{T}$. If ΔT is zero, N_{T} is automatically taken as zero, and vice versa. If $N_{T}<0$, it is taken as $=0$.

If $N_{F}<0$, it is taken as $=0$. If $N_{F}=0$, no structure cards are read, and the values of N_{F}, n_{j}, and α_{j} are retained from the previous case: Thus, N_{F} must not be ≤ 0 for the first case; if it is, cases will be rejected by the program until it encounters one with $N_{F}>0$.

H. $\boldsymbol{n}^{\text {th }}$ Structure Card

The format for the nth structure card is as follows:

FORMAT (8E10.5)
\mathbf{N}_{j}^{\prime} is any vector parallel to \mathbf{n}_{j}; that is, $\mathbf{N}_{j}^{\prime}=c \mathbf{n}_{j}$ where $0<c$.
Thus $\mathbf{n}_{j}=\mathbf{N}_{j}^{\prime} /\left|\mathbf{N}_{j}^{\prime}\right|$.
l^{*} is taken $=1 \mathrm{~m}$, and $t^{*}=1 \mathrm{~cm}$. Thus, $\alpha_{j}=A_{j}^{*} /(1 \mathrm{~m})^{2}=$ the area of the j th face of the reference spacecraft in m^{2}. τ_{j}^{*} is taken $=1$.

1. Printer Output

Each case starts on a new page. The output from the printer takes the following form ${ }^{5}$:

Label

$$
N_{A 1}=\square \quad N_{A 2}=\square \quad N_{A}=\square
$$

First time-step (T_{0}) printer block
Second time-step (T_{1}) printer block
($N_{T}+1$)th time-step ($T_{N_{T}}$) printer block

$$
\begin{array}{ll}
v_{I}^{*}= & P_{I}^{* *}(\mathrm{~S})=\square \\
C_{A}=\square & C_{B}=\square \\
C_{A}^{\prime}=\square & C_{B}^{\prime}=\square \\
C_{A}^{\prime \prime}=\square & C_{B}^{\prime \prime}= \\
C_{A}^{\prime \prime \prime}= & C_{B}^{\prime \prime \prime}=
\end{array}
$$

${ }^{5}$ Section V of this same Appendix G presents the original printout of this sample problem. In this case the label would be SHORT JUPITER MISSION and C_{r} is printed out as CI as the printer does not differentiate for symbols, subscripts, or superscripts.
$(i+1)^{\prime}$ th time-step (T_{i}) printer block:

$$
\begin{aligned}
& \left(T_{i}\right)=\square \quad i=\square \quad \eta\left(T_{i}\right)=\square \\
& r\left(T_{i}\right)=\square \quad \lambda\left(T_{i}\right)=\square \\
& V_{1}\left(T_{i}\right)=\square \quad V_{2}\left(T_{i}\right)=\square \quad V_{s}\left(T_{i}\right)=\square \\
& n \sigma\left[\mathrm{X}\left(T_{i}\right)\right]=\square \quad \sigma\left[\mathrm{X}\left(T_{i}\right)\right]=\square \\
& j F_{j}^{*}\left(T_{i}\right) \\
& N_{F}= \\
& \pi_{I}^{*}\left(T_{i}\right)=\square
\end{aligned}
$$

J. Punched Card Output

The punched output is as follows: ${ }^{6}$
First case output card block
Second case output card block

Last case output card block
Each case output card block has the following structure:
Label card (same format as input label card)
First time-step (T_{0}) card block
Second time-step (T_{1}) card block
($N_{T}+1$)th time-step ($T_{N_{T}}$) card block
[$\left.\left(N_{F}+4\right) / 5\right]$ integrated flux cards
[$\left.\left(N_{F}+4\right) / 5\right]$ optimum shielding cards
Probability of success card
Uniform shielding coefficient card
Optimum shielding coefficient card
Case end card

[^3]nth Time-step (T_{n-1}) card block:
Position card
Velocity card
Density card
[$\left.\left(N_{F}+4\right) / 5\right]$ flux cards
Failure rate card
All output data cards ${ }^{6}$ except the label and case end cards use FORMAT $[5(E 14.7,1 X)]$:

The case end card has asterisks (*) in all 80 columns.

K. Card Date

The data on each card is as follows:

Card	First datum.	Second datum	Third datum	Fourth datum	Fifth datum
Position card of $(n+1)^{\prime}$ 'th time-step $\left(T_{n}\right)$ card block Velocity card of $(n+1)^{\prime}$ th time-step $\left(T_{n}\right)$ card block Density card of $(n+1)^{\prime}$ th \cdots card block i^{\prime} th flux card of $(n+1)^{\prime}$ 'th time-step (T_{n}) card block Failure rate card of $(n+1)^{\prime}$ th time-step (T_{n}) card block n^{\prime} th integrated flux card n^{\prime} th optimum shielding card Probability of success card Uniform shielding coefficient card Optimum shielding coefficient card	$\begin{gathered} T_{n} \\ \\ V_{1}\left(T_{n}\right) \\ \sigma\left(\mathbf{X}\left(T_{n}\right)\right) \\ \\ F_{5 i-4}^{*}\left(T_{n}\right) \\ \pi_{I}^{*}\left(T_{n}\right) \\ f_{5 n-4}^{*} \\ \tau_{5 n-4}^{*} \\ \nu_{I}^{*} \\ C_{A} \\ C_{B} \end{gathered}$	$\begin{gathered} \eta\left(T_{n}\right) \\ \\ V_{2}\left(T_{n}\right) \\ \sigma\left(\mathbf{X}\left(T_{n}\right)\right) \\ \\ F_{5 i-3}^{*}\left(T_{n}\right) \\ \\ \\ f_{5 n-3}^{*} \\ \tau_{5 n-3}^{*} \\ P_{I}^{*}(S) \\ C_{A}^{\prime} \\ C_{B}^{\prime} \end{gathered}$	$F_{5 i-2}^{*}\left(T_{n}\right)$ $f_{5 n-2}^{*}$ $\tau_{5 n-2}^{\dagger}$ $C_{A}^{\prime \prime}$ $C_{B}^{\prime \prime}$	$\begin{gathered} \lambda\left(T_{n}\right) \\ \\ \\ F_{5 i-1}^{*}\left(T_{n}\right) \\ \\ \\ f_{5 n-1}^{*} \\ \tau_{5 n-1}^{+} \\ C_{B}^{\prime \prime \prime} \\ C_{B}^{\prime \prime \prime} \end{gathered}$	$F_{5 i}^{*}\left(T_{n}\right)$ $f_{\text {亏े }}^{*}$ $\tau_{5 n}^{+}$

```
Ti in days
    \eta in deg
    r in AU
    in deg
    \sigma in (meteoroids with mass }\\mp@subsup{m}{0}{})\mp@subsup{\textrm{AU}}{}{-3
    n\sigma}\mathrm{ dimensionless
```

V_{1}, V_{2}, and V_{3} in $\mathrm{km} \mathrm{s}^{-1}$
F_{j}^{*} in (penetrating meteoroids) $\mathrm{m}^{-2} \mathrm{~s}^{-1}$
$\pi_{l}^{*} \quad$ in (penetrating meteoroids) s^{-1}
f_{j}^{*} in (penetrating meteoroids) m^{-2}
v_{I}^{*} dimensionless [expected number of penetrating meteoroids]
$P_{i}^{*}(S)$ dimensionless [probability of zero penetrating meteoroids]
$\left.\begin{array}{rl}C & \text { in } \mathrm{m}^{-2} \mathrm{~cm}^{3 \beta} \\ C^{\prime} & \text { in } \mathrm{m}^{-2}(1+3 \beta) \mathrm{kg}^{3 \beta} \\ C^{\prime \prime} & \text { in } \mathrm{m}^{-2(1+3 \beta)} \mathrm{kg}^{3 \beta} \\ C^{\prime \prime \prime} & \text { in } \mathrm{m}^{-2} \mathrm{~cm}^{3 \beta}\end{array}\right\} \quad$ i.e. $\quad\left\{\begin{aligned} l & \text { in } \mathrm{m} \\ A_{s} & \text { in } \mathrm{m}^{2} \\ t & \text { in } \mathrm{cm} \\ W_{s} & \text { in } \mathrm{kg}\end{aligned}\right.$
$A_{j}^{*} f_{j}^{f} \quad$ dimensionless [number of meteoroids expected to penetrate j th face]

III. Listing

The following is a listing of the FORTRAN decks.

```
$JOB
SEXECUTE IBJOB
$IBJOB
$IBFTC DJAA..
C**** ASTEFF MAIN PROGRAM
    REAL I,ISC,LSC
    COMMON ICAST/NAST,NA,NA1,NA2,DS(1500,4)
    DIMENSION VSC(3),U(2,2,3),UC(3)
    COMMON /CPI/HALFPI,PI,TWOPI,DEGREE,RADIAN
    COMMON /CG/GMC,VC
    COMMON /CCETC/CI,CZ,RHOSC,HSC,RHOAST,BFTA3,EPSR,EPSL,C
    OIMENSION.DG(100),F(100),FI(100)
    COMMON ICSC/NF,ENF(3,100),ENFR(3,100),AREA(IO0),AS
    CALL ASTDAT
    LOGICAL FIRST
    FIRST=.TRUE.
    NF=0
    1 CALL CASE(ASC,ESC,ISC,OMSC,PERSC,TPSC,T,DT,NT,FIRST,$I)
    DO 2 JF=1,NF
    2 FI(JF)=0.
    FNU=0.
    DO 7 IT=1,NT
    DEN=0.
    NDEN=0
    CALL XVSC(ASC,ESC,ISC,OMSC,PERSC,TPSC,T,RSC,LSC,SL,CL,VSC,IT)
    CALL ROT(SL,CL)
    DO 3 JF=1,NF
    F(JF)=0.
    3 DG(JF)=DOT(VSC,JF)
        DO 6 KA=NA1,NAZ
        A =DS(KA,4)
        E =DS(KA,3)
        1 =DS(KA,2)
        IF(ABS(LSC).GE.(I+EPSL)) GO TO 6
        IF(RSC.GE.(A*(I.+E)*(I.+EPSR))) GO TO 6
        IF(RSC.LE.(A*(1.-E)*(1.-EPSR))) GO TO 6
        CALL UAST(A,E,I,RSC,LSC,U)
        WT=DS(KA,I)**25*SIGMA(A,E,I,RSC,LSC)
        DEN=DEN+WT
        NDEN=NDEN+1
        DO }5\textrm{L}=1,
        DO 5 M=1,2
        DO 4 N=1,3
    4UC(N)=U(L,M,N)
    DO }5\textrm{JF}=1,N
        D=DG(JF)-DOT(UC,JF)
        IF(D.GT.O.) F(JF)=F(JF)+WT*D*ALOG(1.+C2*D*D)**BETA3
    5 CONTINUE
    6 \text { CONTINUE}
    CALL INTER(F,DEN,NDEN,FPI,FI,FNU,IT,NT)
    7 T=T+DT
        CALL POST(FI,FNU,DT,BETA3)
        GO TO 1
        ENO
$IBFTC DJAB..
    SUBROUTINE ASTDAT
C**** READS ASTEROID BELT MODEL DATA
    COMMON /CAST/NAST,NA,NA1,NA2,DS{1500,4)
    READ (5,1) NAST
    1 FORMAT(I5)
    READ (5,2) ((DS(K,J),J=1,4),K=1,NAST)
    2 FORMAT(3(F4.2,2F6.5,F7.5,2X))
    RETURN
    END
```

```
$IBFTC DJAC..
    SUBROUTINE CASE(ASC,ESC,ISC,OMSC,PE'RSC,TPSC,T,DT,NT,FIRST,*)
C**** READ'S DATA SPECIFYING A CASE TO BE ANALYSED
    REAL ISC
    LOGICAL FIRST
    DIMENSION LABEL(12)
    COMMON/CPI/HALFPI,PI,TWOPI,DEGREE,RADIAN
    COMMON /CG/GMC,VC
    COMMON /CCP/CP,CU,CC,DAY,CRHO
    COMMON /CAST/NAST,NA,NAI,NA2,DS(1500,4)
    COMMON ICCETC/C1,C2,RHOSC,HSC,RHOAST,BETAB,EPSR,EPSL,C
    COMMON /CSC/NF,ENF(3,100),ENFR(3,100),AREA(100),AS
    LOGICAL OK
    OK=.TRUE.
    READ (5,1) LABEL,NA1,NA2
1 FORMAT(12AG,214)
    IF(NAl.LE.0) NAl=1
    IF(NA1.GT.NAST) NA1=1
    IF(NA1.GT.NA2) NA1=1
    IF (NAZ.LE.O) NAZ=NAST
    IF(NAZ.GT.NAST) NA2=NAST
    NA=NA2-NAI+1
    WRITE (6,2) LABEL,NA1,NA2,NA
    2 FORMAT(1H1,12A6//25X,5HNA1 =,15,5X,5HNA2 =,15,5X,4HNA =,15//1)
    PUNCH I, LABEL,NAI,NAZ
    READ (5,3) C1,C2,RHOSC,HSC,RHOAST,BETA3,EPSR,EPSL
    3 FORMAT(8E10.5)
    IF((C1.LE.O. .OR. C2.LE.O.) .AND. RHOSC.LE.O. .AND. RHOAST.LE.O.)
    * CALl alFE
    IF{C2.LE.O. .AND. RHOSC.GT.O. .AND. HSC.LE.O.) RHOSC=O.
    IF(RHOAST.LE.O.) RHOAST=7.9
    IF(RHOSC.LE.O.) HSC=120.
    IF(RHOSC.LE.O.) RHOSC=2.7
    FAC=(RHOAST /RHOSC)**(2./3.)
    DATA GS/.00980665/
    IF(Cl.LE.O.) CI=1.8*FAC
    IF(C2.LE.O.) C2=RHOSC*FAC/(4.*HSC*GS)
    IF(BETA3.LE.O.) BETA3=1.9
    IF(EPSR.LE.0.) EPSR=.02
    IF(EPSL.LE.0.) EPSL=.02
    ASTN=NA
    C=3./((TWOPI**3)*EPSR*(3.+EPSR*EPSR)*SIN(EPSL))*1500./ASTN
    CP=CU*(CC*C1)**BETA3
    WRITE (6,4) C1,C2,RHOSC,HSC,RHOAST,BETA3,EPSR,EPSL
    4 FORMAT (8X,4HC1 =,E14.7.7X,4HC2 =,E14.7,4X,7HRHOSC =,E14.7,
    * 6X,5HHSC =,E14.7/ 4X,SHRHOAST =,E14.7,
    * 4X,7HBETA3 =,E14.7,5X,5HEPSR =,E14.7,5X,6HEPSL =,E14.7/1)
    READ (5,5) ASC,ESC,ISC,OMSC,TPSC,T,DT,NT,NFI
5 FORMAT(7EIO.5,2I5)
    IF(ASC.LE.O.) OK=.FALSE.
    IF(ESC.LT.O. .OR. ESC.GE.I.) OK=.FALSE.
    IF(ISC.LT.O. .OR. ISC.GT.l80.) OK=.FALSE.
    IF(OMSC.LE.(-180.) .OR. OMSC.GE.360.) OK=.FALSE.
    TF(DT.EQ.O.) NT=0
    IF(NT.LT.0) NT=0
    IF(NT.EQ.0) DT=0.
    IF (NFI.GT.O) NF=NFI
    IF(FIRST.AND. NFI.LE.O) OK=.FALSE.
    TO}=
```

 ANT \(=N T\)
 \(T F=T O+A N T * D T\)
 WRITE \((6,6)\) ASC, ESC, ISC,OMSC,TPSC,TO,TF,DT,NT
 6 FORMAT \(7 \mathrm{XX}, 5 \mathrm{HASC}=, \mathrm{E} 14.7,6 \mathrm{X}, 5 \mathrm{HESC}=, \mathrm{E} 14.7,6 \mathrm{X}, 5 \mathrm{HISC}=, \mathrm{E} 14.7\),
 * \(5 \mathrm{X}, 6 \mathrm{HOMSC}=\), E14.7/ 6 X, SHTPSC \(=\), El4.7,
 * \(7 \mathrm{X}, 4 \mathrm{HTO}=\), E14.7,7X,4HTF \(=\), E14.7,7X,4HDT \(=\), E14.7/

IF(NFI.GT.0) CALL GEOMIN
IF (NFI.GT.O) FIRST=.FALSE.
IF(.NOT.FIRST) CALL GEOMOU
ISC=ISC*DEGREE
OMSC=OMSC*DEGREE
PERSC=TWOPI*SORT(ASC**3)/GMC
$\mathrm{NT}=\mathrm{NT}+1$
IF(.NOT.OK) RETURN I
RETURN
END

```
$IBFTC DJAD..
    SUBROUTINE ALFE
C**** ESTABLISHES PARAMETERS FOR ALUMINUM SPACECRAFT, IRON METEOROIOS
    COMMON /CCETC/Cl,C2,RHOSC,HSC,RHOAST,BETA3,EPSR,EPSL,C
    Cl=2.016
    C2=3.00
    RHOSC=2.7
    HSC=120.
    RHOAST=7.9
    RETURN
    EMD
$IBFTC DJAE..
        SUBROUTINE GEOMIN
C**** READS DATA SPECIFYING SPACECRAFT GEOMETRY
    COMMON /CSC/NF,ENF(3,100),ENFR{3,100),AREA(100),AS
    READ (5,1) ((ENF(I,J),I=1,3),AREA(J),J=1,NF)
    1 FORMAT(8E10.5)
        DO }4\textrm{J}=1,N
        ENFL=O.
        00 2 I=1,3
    2 ENFL=ENFL+ENF(I,J)**2
        IF(ENFL.EQ.O.) GO TO 4
        ENFL=SQRT(ENFL')
        DO 3 I=1,3
    3 ENF(I,j)=ENF(I,J)/ENFL
    4 \text { CONTINUE}
        AS=0.
        DO 5 J=1,NF
    5 AS=AS+AREA(J)
        RETURN
        END
$IBFTC DJAF..
        SUBROUTINE GEOMOU
C**** OUTPUTS DATA INPUT BY GEOMIN
        COMMON /CSC/NF,ENF(3,100),ENFR(3,100),AREA(100),AS
        WRITE (6,1)
    1 FORMAT 1 12X, 1HJ,7X,8HENF(1,J),8X,8HENF(2,J),8X,8HENF(3,J),10X,
        * 7HAREA(J))
        WFITE (6,2) (J,(ENF(I,J),I=1,3),AREA(J),J=1,NF)
    2 FORMAT(BX,I5,4X,E14.7,2X,E14.7,2X,E14.7,4X,E14.7)
        WRITE (6,3) AS
    3 FORMAT(1HO,62X,4HAS =,E14.7/1/)
        RETURN
        END
```

```
$IBFTC DJAG..
    SUBROUTINE XVSCIA,E,I,OM,PER,TP,T,R,L,SL,CL,V,IT)
C**** COMPUTES SPACECRAFT POSITION AND VELOCITY AT SPECIFIED TIME
    REAL I,L
    DIMENSION V(3)
    COMMON /CPI/HALFPI,PI,TWOPI,DEGREE,RADIAN
    COMMON/CG/GMC,VC
    TD=T-TP
    IF(TD.GT.O.) TD=AMOD(TD,PER)
    IF(TD.LT.O.) TD=-AMOD(-TD,PER)
    ETA=ETAF(E,TWOPI*TD/PER)
    EO=ETA+OM
    P=A*(1.,E*E)
    R=P/(1.+E*COS(ETA))
    SL=SIN(I)*SIN(EO)
    CL=SQRT(1.-SL*SL)
    L=ASIN(SL)
    VT=VC*SQRT(2./R-1./A)
    VA=VC*SQRT(P)/R
    VP=SQRT(AMAX1(O.,VT*VT-VA*VA))
    IF(ETA.GT.PI),VP=-VP
    CA=COS(I)/CL
    SA=SQRT(1.-CA*CA)
    IF(EO.LE.HALFPI) EO=EO+TWOPI
    IF(EO.GT.(TWOPI+HALFPI)) EO=EO-TWOPI
    IF(EO.LT.(PI+HALFPI)) SA=-SA
    V(I)=VP
    V(2)=VA*CA
    V(3)=VA*SA
    ETAO=ETA*RADIAN
    REAL LO
    LO=L*RADIAN
    WRITE (6,I) T,IT,ETAO,R,LO,V
    1 FORMAT(1X,3HT =,E14.7,23X,15,21X,5HETA =,E14.7/
    * 14X,3HR =,E14.7,31X,5HLAT =,E14.7।
    * l3X,4HVR =,E14.7,4X,7HVLONG =,E14.7,5X,6HVLAT =,E14.7)
    PUNCH 2, T,ETAO,R,LO
    PUNCH 2, V
    2 FORMAT(5(E14.7.1X))
    RETURN
    END
```

\$ IBFTC DJAH..
FUNCTION ETAF(E,M)
C**** INVERTS THE RELATIONS M=EE-E*SIN(EE) AND
$\operatorname{TAN}(E E / 2) * \operatorname{SQRT}(1 .+E)=\operatorname{TAN}(E T A / 2) * \operatorname{SQRT}(1 .-E)$
REAL M,MT
LOGICAL K
COMMON /CPI/HALFPI,PI,TWOPI,DEGREE,RADIAN
PIEPS $=.0000003$
$K=, ~ F A L S E$.
IF(M.LE.PI) GO TO 1
$K=. T R U E$.
$M=T W O P I-M$
1 IF(ABS(PI-M).GT.PIEPS) GO TO 2
$E T A F=P I$
RETURN
$2 E E=0$.
$D E=2$.
3 1F(11.+DE).EQ.1.) GO 105
$4 E T=E E+D E$
$D E=.5 * D E$
IF(ET.GE.PI) GO TO 4
$M T=E T-E * S I N(E T)$
IF (MT.GT.M) GO TO 3
$E E=E T$
IF (MT. NE.M) GO TO 3
$5 \mathrm{~S}=\operatorname{TAN}(.5 * E E)$
- $Q=S * S Q R T(1 .+E) /(1 .-E)$
ETAF $=2 \cdot * A T A N(Q)$
IF (K) ETAF = TWOPI-ETAF
RETURN
END

```
$IBFTC DJAI..
    SUBROUTINE ROT(SL,CL)
C**** ROTATES SPACECRAFT-FIXED VECTORS TO SPACE-FIXED CO-ORDINATES
    COMMON /CSC/NF,ENF(3,100), ENFR(3,100),AREA(100),AS
    00 1 IF=1,NF
    x=ENF(1,IF)
    y=ENF(2,IF)
    Z=ENF(3,IF)
    ENFR(I,IF)=CL*Y+SL*Z
    ENFR(2,IF) =X
    1 ENFR(3,IF)=CL*Z-SL*Y
        RETURN
        END
$IBFTC DJAJ..
    FUNCTION DOT(X,J)
C**** TAKES DOT PRODUCT OF DIRECTION AND VELOCITY VECTORS
    DIMENSION X(3)
    COMMON /CSC/NF,ENF(3,100),ENFR(3,100),AREA(100),AS
    OOT=0.
    DO 1 I = 1,3
    1 DOT=DOT+X(I)*ENFR(I,J)
    RETURN
    END
SIBFTC DJAK..
    SUBROUTINE UAST(A,E,I,RI,LI,U)
C**** COMPUTES METEOROID SWARM VELOCITIES AT SPECIFIED POSITION
    REAL I,LI,LA
    DIMENSION U(2,2,3),UC(3)
    COMMON /CG/GMC,VC
    RA=RI
    LA=LI
    RMIN=A*(1.-E)
    IF(RA.LT.RMIN) RA=RMIN
    RMAX=A*(1.+EE)
    IF(RA.GT.RMAX) RA=RMAX
    IF(ABS(LA).GT.I) LA=SIGN(I,LA)
    UT=VC*SQRT(2./RA-1./A)
    UA=VC*SQRT(A*(1.-E*E))/RA
    UP=SQRT (AMAX1(0.,UT*UT-UA*UA))
    SL=SIN(LA)
    CL=SQRT(I.-SL*SL)
    CA=COS(I)/CL
    SA=SQRT(1.-CA*CA)
    UC(1)=UP
    UC(2)=UA*CA
    UC(3)=UA*SA
    DO 1 L=1,2
    DO 1 M=1,2
    U(L,M,1)=SIGN(UC(1),(-1.)**L)
    U(L,M,2)=UC(2)
    1 U(L,M,3)=SIGN{UC(3),(-1.)**M)
    RETURN
    END
SIBFTC DJAL..
    FUNCTION SIGMA(A,E,I,R,L)
C**** COMPUTES METEOROID SWARM SPACE DENSITY AT SPECIFIED LOCATION
    REAL I,L
    COMMON /CCETC/C1,C2,RHOSC,HSC,RHOAST,BETA3,EPSR,EPSL,C
    SIGMA=(SSTAR(R*(1.+EPSR),A,E)-SSTAR(R*(1.-EPSR),A,E))
    * *(RSTAR(L+EPSL,I)-RSTAR(L-EPSL,I))
    * *ETURN(/R**3*COS(L))
    RETURN
    END
```

```
$IBFTC DJAM..
    FUNCTION RSTAR(L,I)
C**** EVALUATES LATITUDE-DEPENDENCE OF METEOROID SWARM SPACE DENSITY
    REAL L,I
    RSTAR=ASIN(SIN(L)/SIN(I))
    RETURN
    END
$IBFTC DJAN..
    FUNCTION ASIN(X)
C**** THIS FUNCTION IS USED BECAUSE THE FORTRAN IV LIBRARY FUNCTION
C**** ARSIN HAS ARSIN(X)=0., AND MAY HALT EXECUTION OF THE PROGRAM,
    WHEN ABS(X) IS GREATER THAN 1.
    COMMON /CPI/HALFPI,PI,TWOPI,DEGREE,RADIAN
    IF(ABS(X)-1.)2,1,]
    1 ASIN=SIGN(HALFPI,X)
    RETURN
    2 ASIN=ARSIN(X)
        RETURN
        END
$IBFTC DJAO..
    FUNCTION SSTAR(R,A,E)
C**** EVALUATES RADIAL DEPENDENCE OF METEOROID SWARM SPACE DENSITY
    x=ACOS((A-R)/(A*E))
    SSTAR = X-E*SIN(X)
    RETURN
    END
$IBFTC DJAP..
    FUNCTION ACOS(X)
C**** THIS FUNCTION IS USED BECAUSE THE FORTRAN IV LIBRARY FUNCTION
C**** ARCOS HAS ARCOS(X)=0., AND MAY HALT EXECUTION OF THE PROGRAM,
C**** WHEN ABS (x) IS GREATER THAN I.
    COMNON/CPI/HALFPI,PI,TWOPI,DEGREE,RADIAN
    ACOS=HALFPI-ASIN(X)
    RETURN
    END
$IBFTC OJAQ..
    SUBROUTINE INTER(F,DEN,NDEN,FPI,FI,FNU,IT,NT)
C**** EVAlUATES, OUTPUTS INTERMEDIATE DATA DURING A CASE
    DIMENSION F(100),FI(100)
    COMMON /CCP/CP,CU,CC,DAY,CRHO
    COMMON /CSC/NF,ENF(3,100),ENFR(3,IO0),AREA(100),AS
    DEN=4.*DEN
    WRITE (6,1) DEN,NDEN
    I FORMAT (28X,5HDEN =,E14.7,6X,6HNDEN =,!5/4X,7HJ F(J))
        DO 2 j=1,NF
    2F(J)=F(J)*CP
    WRITE (6,3) (J,F(J),J=1,NF)
    3 FORIMAT(5:I5,1X,E14.7,1X))
        FPI=0.
        DO }4\textrm{J}=1,N\mp@subsup{N}{}{*
    4 FPI=FPI +AREA(J)*F(J)
        WRITE (6,5) FPI
    5 FORMAT(13X,5HFPI =,E14.7/1)
        DO '6 J=1,NF
        FI(J)=FI(J)+F(J)
    6 IF(IT.EQ.I .OR. IT.EQ.NT) FI(J)=FI(J)-.5*F(J)
        FNU=FNU+FPI
        IFIIT.EQ.I .OR. IT.EQ.NT: FNU=FNU-.5*FPI
        PUNCH 7, DEN,NDEN
        PUNCH 7, (F(J),J=1,NF)
        PUNCH 7, FPI
    7 FORMAT(5(E14.7,1X))
        RETUPN
        END
```

```
$IBFTC DJAR..
    SUBROUTINE POST(FI,FNU,DT,BETA3)
C**** EVALUATES, OUTPUTS FINAL DATA F
    COMMON /CCP/CP,CU,CC,DAY,CRHO
    COMMON /CCETC/C1,C2,RHOSC,HSC,RHOAST,BETA3,EPSR,EPSL,C
    COMMCN /CSC/NF,ENF(3,100),ENFR(3,100),AREA(100),AS
    DIMENSION FI(100),FIF(100),AFI(100),AFIF(100),TAU(100), X(1C0)
    DIMENSION CA(4),CB(4)
    FIS=0.
    AFIS=0.
    DO 1 J=1,NF
    FI(J)=FI(J)*DT*DAY
    AFI(J)=AREA(J)*FI
    FIS=FIS+FI(J)
    1 AFIS=AFIS+AFI(J)
    IF(FIS.EQ.O.) FIS=1.
    IF(AFIS.EQ.O.) AFIS=1.
    DO 2 J=1,NF
    FIF(J)=FI(J)/FIS
    2 AFIF(J)=AFI{J)/AFIS
    AXS=0.
    DO 3 J=1,NF
    X(J)=FI(J)**(1./(BETA3+1.))
    3 AXS=AXS+AREA(J)*X{J}
    XX=AS/AXS
    DO 4 J=1,NF
    4 TAU(J)=X(J)*XX
    CO=AXS**(BETA3+1*)/AS**BETA 3
    FNU=FNU*DT*DAY
    PS=EXP(-FNU)
    CHECK=.05-ALOG10(AMAX1{1.E-10,ABS(FNU-AFIS)*2./(FNU+AFIS)))
    RHO=CRHO*RHOSC
    CA(1)=FNU
    CA(2)=FNU*RHO**BETA3/AS
    CA(3)}=F\mp@subsup{\textrm{NU*}}{(\mathrm{ (RHO*AS)**BETA3}}{
    CA(4) =FNU/AS
    CB(1)=CO
    CB(2)=CO*RHO**BETA3/AS
    CB(3)=CO*(RHO*AS)**BETA3
    CB(4)=CO/AS
    WRITE (6,5)
    5 FORMAT (1HO, 3X, 1HJ,5X,5HFI(J),10X,5HFIF(J),
    * 6X,6HAFI(J),9X,7HAFIF(J),5X,5HTAU(J))
    WRITE (6,S) (J,FI(J),FIF(J),AFI(J),AFIF(J),TAU(J),J=I,NF)
    6 FORMAT(I5,2X,E14.7,FI1.7,2X,E14.7,F11.7,2X,E14.7)
    WRITE (6,7) FNU,PS,CHECK
    FGORMAT(1HO,10X,5HFNU =,E14.7,11X,6HP(S) =,514.7,10X,F5.1)
    WRITE (6,8) (CA(I),CB(I),I=I,4)
    8 FORMAT(1HO,13X,6HCA =,E14.7,4X,5HCB =,514.7/
    * I4X,5HCA- =,E14.7,4X,6HCB- =,E14.7/
    * 14X,6HCA-- =, E14.7,4X,GHCB-- =,E14.7/
    PUNCH 9, (FI(N),J=1,NF)
    PUNCH 9, (TAU(J),J=1,NF)
    PUNCH 9, FNU,PS
    PUNCH 9,CA
    PUNCH 9, CB
    G FORMAT(5(E14.7,1X))
    OATA ASTRSK/4H****/
    {ASTRSK,1=1,20)
    10 FORMAT(20A4)
    RETURN
    END
```

```
$IBFTC DJAZ..
    BLOCK DATA
    COMMON /CPI/HALFPI,PI,TWOPI,DEGREE,RADI/AN
    COMMON /CG/GMC,VC
    COMMON /CCP/CP,CU,CC,DAY,CRHO
    DATA HALFPI/1.5707963/,PI/3.1415927/,TWOP1/6.2831853/,
    - DEGREE/.017453293/,RADIAN/57.295780/
    DATA GMC/.017202099/,VC/29.784696/
    DATA CU/2.9869199E-31/:CC/4.3E+5/,DAY/86400.1,CRHO/10.1
C**** AU = ASTRONOMICAL UNIT
C***** = 149 597 892. RILOMETERS (ASTRONOMICAL JOURNAL, APRIL 1967)
C**** GMC = GAUSSIAN GRAVITATIONAL CONSTANT FOR THE SUN
C**** 
C**** VC = EMOS = EARTH MEAN ORBITAL SPEED = GMC/AU**.5
C**** =.017 202 098 95 AU/DAY = 29.784 696 08 KILOMETERS/SECOND
C**** CU = ((1 KILOMETER/SECOND)/(1 METER/SECOND))/(I AU/1 METER)***
C**** = 2.986 919 914 E-31
C**** CC = RO/T*
C**** RO = RADIUS OF STANDARD ASTEROID (4.3 KILOMETERS)
C**** T* = THICKNESS OF REFERENCE SPACECRAFT SHIELDING (l CENTIMETER)
C**** DAY = 1 DAY/1 SECOND = 86 400.
C**** CRHO=
C**** (1 GRAM/CENTIMETER**3)/(1 KILOGRAM/(1 CENTIMETER*I METER**2))
    END
```


IV. Sample Problem Input

The following is a sample problem with input, including asteroid belt data.

$\begin{array}{r} \text { SDATA } \\ 150 \end{array}$			
100	18513	7590	276747
100	12448	8888	236166
100	9601	22978	238590
100	6655	9961	315083
100	28850	8530	257633
100	5390	13530	292282
100	2716	15761	244183
100	23953	10302	290915
100	37648	25533	240068
100	16418	15369	277507
100	45932	21271	316876
100	9619	10814	268682
100	5372	17528	264275
100	7432	4700	226706
100	6051	16816	220323
100	4040	17038	252454
100	5507	22408	309891
100	1301.	11062	309557
100	12559	14263	275982
100	8809	4449	269928
100	31748	16090	298907
100	2290	12443	268181
100	10489	18484	242138
100	20279	18150	261443
100	4150	4278	266574
100	3634	20351	336639
100	8055	19384	244400
100	4958	22337	276202
100	20851	19151	265436
100	9137	16537	276631
100	3684	10746	259007
100	14017	10278	315335
100	20577	25745	266876
100	11198	16832	308707
100	9440	7879	270174
100	8072	17427	316714
100	14022	29826	269604
100	4538	12748	243393
100	20230	19223	237934
100	13586	16183	243804
100	13237	12610	345377
100	5123	7722	263037
100	14413	6431	275576
100	40064	20778	312195
100	12498	13933	306162
100	16696	8484	228692
100	19160	17287	278289
100	3903	13317	241871
100	22052	14482	267369
100	44213	18615	277022

100	60734	23402	277181
100	9315	18534	2578
100	10287	156	220160
100	8083	10	2
100	15933	16443	258779
100	97	1.3	246924
100	1218	14334	24
100	17741	23	26
100	6217	8808	265556
00	10620	7360	255439
100	9510	8197	258763
100	14020	21518	300585
100	12163	15547	273858
100	27704	27	27
100	647	15052	242189
100	8716	13501	287733
100	4929	28678	26
100	89	206	261644
100	14043	23767	259730
100	15060	11672	271405
100	3871	16932	313441
100	6185	12123	342048
100	13902	18453	278394
100	40621	17308	275587
100	6999	2384	277858
100	42	1318	26
0	15041	20000	229599
100	8725		243087
100	8390	21940	310073
100	28044	18093	255205
100	17335	7176	319987
0	22628	14928	306889
0	27213	1893	268684
100	17771	1396	258295
100	4979	1688	313987
100	17317	6995	348946
100	10448	8009	273246
100	8795	8571	237619
100	6231	14315	276591
100	10051	8076	258067
100	2827	6018	321191
100	8098	7983	274287
100	10908	12500	275147
100	8671	6956	243089
100	20274	11469	256420
100	23293	21521	312116
100	5568	21542	273224
100	20024	7313	275993
100	22845	6613	27

100	22677	25848	266832	1
100	25754	20267	242591	2
100	9741	12197	238626	3
100	14624	22071	233317	4
100	20450	18628	264250	5
100	17701	21882	229542	6
100	5372	16117	243612	7
100	1340	12083	313800	8
100	2770	17217	234716	9
100	3672	12700	236573	10
100	3323	34003	285217	11
100	32364	30056	274877	12
100	18111	11201	277019	13
100	14868	22539	244097	14
100	11523	8058	272136	15
100	11369	7219	311162	16
100	17371	6561	236572	17
100	20616	19966	270959	18
100	26470	10048	315777	19
100	6267	18347	239330	20
100	10093	12748	239461	21
100	5327	17217	264674	22
100	14888	16983	297828	23
100	9437	12029	226635	24
100	8709	30616	267155	25
100	15181	20887	261861	26
100	13762	21179	285348	27
100	16301	23633	236246	28
100	18947	9725	347866	29
100	3915	17478	313684	30
100	14949	14130	275411	31
100	28035	13355	305504	32
116	24244	19708	266380	33
100	8959	25550	265911	34
100	37488	17549	237355	35
100	7671	9227	321292	36
100	8610	10295	259310	37
100	8610	13945	267519	38
100	26073	2237	299264	39
100	12146	5085	312089	40
100	11195	12194	269361	41
100	5123	10635	243912	42
100	21358	20552	287409	43
100	43914	38276	261226	44
100	4019	20738	242810	45
100	5536	16608	244804	46
100	20796	21475	266531	47
100	8390	23489	265440	48
100	3355	2009	313856	49
100	3793	12511	298246	50

**	SHORT	JUPITER	MISSION	--	$B E T A=1$. $9 / 3$	**		ICASE		
4.5	731	. 77887	2.1304		177.92			180.	20.		226
-1.				1		+1.					1.
		1.		1.				+1.			1.
			-1.	1.	,				+1.		1.
-1.		1.		1.	.	-1.		+1.			1.
+1.		1.		1.	,	+1 .		+1.			1.
-1.			-1.	1.	-	-1.			+1.		1.
+1 .			-1.	1.		+1 .			+1.		1.
		1.	-1.	1.	.			-1.	+1.		1.
		1.	-1.	1.				$+1$.	+1.		1.
-1.		1.	-1.		. 4330127	-1.		-1.	+1.		.43301270
-1.		1.	-1.		. 4330127	-1.		+1 .	+1.		.43301270
' +1.		1.	-1.		. 4330127	+1		-1.	+1.		. 43301270
+1 .		1.	-1.		. 4330127	+1.		+1 .	+1.		.43301270
*	LONG	JUPITER	MISSION	--	$B E T A=1$.	/3	**		ICASE	I I)	
3.0	135	. 66562	4.3296		170.09			210	30.		2
**	SHORT	JUP ITER	MISSION	--	$B E T A=1$	**			ICASE	I I)	
								3.0			
4.5	731	. 77887	2.1304					180.	$20 .$		2
	LONG	JUPITER	MISSION		$\mathrm{BETA}=1$				ICASE		
								3.0			
3.0	135	.66562	4.3296		170.09			210.	30.		2
\$EOF											

note the two blank cards - the only ones used - immediately following the CASE I AND CASE II LABEL CARDS.

V. Sample Problem Printed Output

The following is the sample problem printed output.

\checkmark	ENF ($1, \mathrm{~d}$)	ENF (2, 〕)	ENF (3,3)	AREA (J)
1	-0.1000000E 01	-0.0000000E-38	-0.0000000E-38	$0.1000000 E 01$
2	0.1000000E 01	-0.0000000E-38	-0.0000000E-38	0.1000000 E 01
3	-0.0000000E-38	-0.1000000E 01	-0.0000000E-38	0.1000000 el
4	-0.0000000E-38	0.1000000 E Cl	-0.0000000E-38	0.1000000 E 01
5	-0.0000000E-38	-0.0000000E-38	-0.1000000E 01	0.1000000 E Ol
6	-0.0000000E-38	-0.0000000E-38	0.1000000 E 01	0.1000000 E 01
7	-0.7071068E 00	-0.7071068E 00	-0.0000000E-38	0.1000000 El
8	-0.7071068E 00	0.7071068 E 00	-0.0000000E-38	0.1000000 E 01
9	0.7071068800	-0.7071068E 00	-0.0000000E-38	0.1000000 e 01

VI. Sample Problem Punched Output

The following is the sample problem punched output.

** SHORT JUP	PITER MISSION	BETA $=1$ **		(CASE III)	1150
0.1800000 E 03	$0.1111522 E 03$	$0.2502104 E 01$	-0.2013408E 01		
0.1613110 E 02	0.1596456 E 02	0.1940643 E 00			
$0.1211546 E 03$	$0.0000003 \mathrm{E}-38$				
0.2402165E-08	$0.2405121 \mathrm{E}-18$	$0.0000000 \mathrm{E}-38$	0.1142221E-06	0.7022925E-09	
$0.3814752 \mathrm{E}-09$	0.0000000E-38	$0.7942508 \mathrm{E}-07$	0.0000000E-38	0.4019007E-07	
0.2104848E-08	0.1348515E-08	0.5450210E-10	0.3632679E-10	0.0000000E-38	
0.0000000E-38	0.6164019E-07	0.5632573E-07	$0.0000000 \mathrm{E}^{-38}$	$0.0000000 \mathrm{E}-38$	
0.5576346E-07	0.5158015E-07	0.0000000E-38	0.0000000E-38	0.2838820E-07	
$0.2532675 \mathrm{E}-07$					
0.4285737E-06					
0.2000000803	0.1150851503	0.2685750 E 01	-0.1960901E O1		
0.1566503 E 02	0.1487246 E 02	0.2162220 E OC			
$0.1290913 E 03$	0.0000003E-38				
0.2806445E-08	$0.1263755 \mathrm{E}-18$	0.0000000E-38	0.1148001E-06	0.5286038E-09	
$0.3070850 \mathrm{E}-09$	0.0000000E-38	0.8108653E-07	$0.0000000 \mathrm{E}-38$	0.3917697E-07	
0.2081612E-08	0.1387968E-08	$0.3746436 \mathrm{E}-10$	$0.2542316 \mathrm{E}-10$	$0.0000000 \mathrm{E}-38$	
0.0000000E-38	$0.6131333 \mathrm{E}-07$	$0.5656737 \mathrm{E}-07$	$0.0000000 \mathrm{E}-38$	0.0000000E-38	
$0.5648774 \mathrm{E}-07$	0.5272789E-07	0.0000000E-38	0.0000000E-38	0.2734110E-07	
$0.2464667 \mathrm{E}-07$					
0.4299220-06					
0.2200000 E 03	$0.1185211 E 03$	0.2863991501	-0.1907457E OI		
0.1519737 E 02	0.1394644 E 02	$0.2310191 E 00$			
0.8988587 E 02	0.0000002E-38				
0.1928899E-08	$0.7628982 \mathrm{E}-19$	0.0000000E-38	$0.7542844 \mathrm{E}-07$	0.3985639E-09	
0.2430184E-09	$0.0000000 E-38$	$0.5367445 \mathrm{E}-07$	0.0000000E-38	$0.2525249 \mathrm{E}-07$	
0.1464727E-08	0.1041707E-08	$0.2406846 \mathrm{E}-10$	$0.1683594 \mathrm{E}-10$	0.0000000E-38	
0.0000000E-38	0.4005855E-07	$0.3730038 \mathrm{E}-07$	$0.0000000 \mathrm{E}-38$	0.0000000E-38	
0.3723243E-07	$0.3503812 \mathrm{E}-07$	$0.0000000 \mathrm{E}-38$	0.0000000E-38	0.1754396E-07	
0.159958CE-07					
0.2826493E-06					
0.8591576E-02	0.4920954E-12	-0.0000000E-38	$0.3622327 E 00$	0.1864567E-02	
$0.1070205 \mathrm{E}-02$	-0.0000000E-38	0.2551155 E OC	-0.0000000E-38	0.1242402 E 00	
$0.6681138 \mathrm{E}-\mathrm{C} 2$	C.4463560E-02	$0.1326234 E-03$	0.8986381E-04	-0.0000000E-38	
-0.0000000E-38	$0.1938171 E 00$	0.1786414 E 00	-0.0000000E-38	-0.0000000E-38	
0.1779593 E 00	$0.1659520 E 00$	-0.0000000E-38	-0.0000000E-38	0.8693081E-01	
0.7829214E-01					
0.1115412 ECl	0.3068524E-C2	-0.0000000E-38	$0.2842262 \mathrm{E} \mathrm{O1}$	0.7613103 E 00	
0.6626496500	-0.0000000E-38	0.2603763 E 01	-0.0000000E-38	0.2175117 E O1	
0.1047442501	0.9469729 OO	0.3931626 E 00	0.3567085 E 00	-0.0000000E-38	
-0.0000000E-38	0.2430890 O1	0.2381841 E 01	-0.0000000E-38	-0.0000000E-38	
0.2379564 E 01	0.2338368 E O1	-0.0000000E-38	-0.0000000E-38	0.1989347 El	
0.1937969 E O1					
0.1357402 E 01	0.2573285 E 00				
0.1357402 E 01	0.1244764 E C4	$0.2642030 E 09$	$0.6324057 E-01$		
0.1191362 E 00	$0.1092503 E 03$	0.2318853 E 08	0.5550489E-02		
*					

```
    ** LONG JUPITER MISSION -- BETA=1 **
    0.2100000E 03 0.1209315E 03 0.2551244E 01 -0.4040952E O1
    0.1312662E O2 0.1511906E O2 0.4106112E OO
    0.1085456E 03 0.0000002E-38
    0.3415291E-08
    0.2888663E-09. 0.0000000E-38
    0.2709444E-08 0.1535126E-08
    0.3789608E-07
    0.3877805E-07 0.3418969E-07
    0.1124528E-07
    0.2637881E-06
    0.2400000E O3 0.1263439E 03 0.277172OE 01 -0.3876202E O1
    0.1232616E 02 0.1391365E 02
    0.8031670E 02
    0.234.9608E-08
    0.2390171E-09
    0.1765199E-08
    0.1265577E-14
    0.2532298E-07
    0.7342538E-08
    0.1732926E-06
    0.2700000E O3 0.1309803E 03 0.2978540E O1 -0.3707513E O1
    E 
    0.1155276E 02
    0.5304787E 02
    0.1936293E-08
    0.2140780E-09
    0.1361134E-08
    0.2323666E-15
    0.154.7718E-07
    0.3900303E-08
    0.3900303E-08
    0.1030892E-06
    0.1302584E-01 -0.0000000E-38-0.0000000E-38 0.2412252E 00
    0.1271348E-02 -0.0000000E-38 0.1927804E 00 -0.0000000E-38
    0.9850864E-02 0.6384033E-02
    0.5624125E-08 0.1303137E 00
    0.1359519E 00 0.1228029E OO
    0.1294500E 02
    0.0000002E-38
    0.0000000E-38
    0.0000000E-38
    0.1063441E-08
    0.1393347E-07
    0.1451443E-07
    0.1391365E 02
    0.0000002E-38
    0.0000000E-38
    0.0000000E-38
    0.0000000E-38
    0.2616913E-10 0.1675584E-10
    0.2436058E-07 0.2162725E-07 0.1397642E-12
    0.1487880E-13 0.1657812E-16
    0.5058029E OO
    0.0000000E-38 0.2637867E-07
    0.2233488E-07 0.0000000E-38
    0.2233488E-07
```



```
    0.4178400E-14 0.5629412E-18
    0.6109618E-08
    0.2383341E-13
0.1349471E-13
                                    0.4397669E-08
0.3866053E-01
0.1301318E OL -0.0000000E-38 -0.0000000E-38 0.2699528E Ol
0.7273580E OO-0.0000000E-38 0.2552395E 01 -0.0000000E-38
0.1213531E 01 0.1088820E 01
0.33357GE O1 0.1088820E 01 0.4169008E 00.0.3721623E 00
0.3335768E-01 0.2314353E O1 0.2241570E 01 0.1110302E 0O
0.2338991E O1 0.2280259E 01 0.6572908E-01 0.102140IE-OI
    0.0000000E-38 0.6904582E-07
    0.6904582E-0
    0.5429970E-07 0.0000000E-38
    0.3737212E-10 0.2155003E-10
    0.3737212E-10 0.2155003E-10
    0.3148191E-13 0.4427075E-1
    0.3148191E-13 0.4427075
    0.2771720E 01.
    0.0000000E-38 0.4535306E-07
    0.3605786E-07 0.0000000E-38
    0.2162725E-07 0.1397642E-12
                                ... -..-
0.2420748E-0.2
0.6360371E-01
0.3684424E-06
0.3684424E-06
0.4468429E-07
0.4468429E-07
0.8544163E 00
0.1934429F O1
0.1934429E Ol
0.9490182E-01
0.5600423E-01
0.1787592E O1
0.1708044E O1
0.9246475E 00 0.3966712E 00
0.924.6475E 00 0.3966712E 00
6475E OO 0.8479198E 03 0.1799722E 09 0.4307879E-01
0.9749542E-O1 0.8940520E O2 0.1897639E 08 0.40.4542255E-02
*************************************************************************************
```


Nomenclature

> A the set of spacecraft surface elements
> A(α) area density function over \underline{A}
> $A_{j} \quad$ area of the j th face of a polyhedral spacecraft
> $A_{j}^{*} \quad A_{j}$ for standard spacecraft
> $A_{s} \quad$ surface area of the spacecraft
> $A_{s}^{*} \quad A_{s}$ for standard spacecraft
> a semi-major axis of spacecraft orbit
> $a_{k} \quad$ semi-major axis of the orbit of the k th asteroid
> \underline{B} a subset of \underline{A}; a set of spacecraft surface elements
> b a constant
> $b(a) \quad$ a function of a
> $C \quad$ coefficient in equation for $P_{I}(S)$ in terms of l and t
> $C^{\prime} \quad$ coefficient in equation for $P_{I}(S)$ in terms of A_{s} and W_{s}
> $C^{\prime \prime} \quad$ coefficient in equation for $P_{I}(S)$ in terms of l and W_{s}
> $C^{\prime \prime \prime} \quad$ coefficient in equation for $P_{I}(S)$ in terms of A_{s} and t
> $C_{1}, C_{2} \quad$ constants in the meteoroid damage function
> $C_{j} \quad f_{j}^{*}\left(\tau_{j}^{*} t^{*}\right)^{3 \beta}$
> $C_{j}^{\prime} \frac{f_{j}^{*}}{\alpha_{s}}\left(\frac{\tau_{j}^{*} W_{s}^{*}}{A_{s}^{*}}\right)^{3 \beta}$
> $C_{A}, C_{A}^{\prime}, C_{A}^{\prime \prime}, C_{A}^{\prime \prime \prime} \quad$ are $C, C^{\prime}, C^{\prime \prime}, C^{\prime \prime \prime}$ respectively, for uniformly distributed spacecraft shielding
> $C_{A}^{\prime} \quad C_{A} \frac{p_{s}^{3 \beta}}{\alpha_{s}}$
> $C_{A}^{\prime \prime} \quad C_{A}\left(\alpha_{s} \rho_{s}\right)^{3 \beta}$
> $C_{A}^{\prime \prime \prime} \quad \frac{C_{A}}{\alpha_{s}}$
> $C_{B^{\prime}} C_{B^{\prime}}^{\prime}, C_{B}^{\prime \prime}, C_{B}^{\prime \prime \prime} \quad$ are $C, C^{\prime}, C^{\prime \prime}, C^{\prime \prime \prime}$, respectively, for optimum distribution of spacecraft shielding
> $C_{B}^{\prime} \quad C_{B} \frac{\rho_{s}^{3 \beta}}{\alpha_{s}}$
> $C_{B}^{\prime \prime} \quad C_{B}\left(\alpha_{s} \rho_{s}\right)^{3 \beta}$
> $C_{B}^{\prime \prime \prime} \quad \frac{C_{B}}{\alpha_{s}}$
> C (a) a function of a
> $D=-\mathbf{n}_{j} \cdot \mathbf{W}^{\prime} \quad$ component of meteoroid relative velocity normal to spacecraft

Nomenclature (contd)

$$
\begin{aligned}
& D_{k}^{(l, m)} \text { the four (l,m=1,2) components of relative velocity normal to the spacecraft of the } \\
& k \text { th meteoroid swarm } \\
& d_{p} \quad \text { projectile diameter } \\
& d, d^{*} \quad \text { constants } \\
& E(T) \quad \text { eccentric anomaly of spacecraft mission orbit at time } T \\
& E_{k}(r) \quad \cos ^{-1}\left[\left(a_{k}-r\right) / a_{k} e_{k}\right] \\
& e \quad \text { eccentricity of spacecraft orbit } \\
& \text { e a three-dimensional unit vector } \\
& \mathbf{e}_{1}(\mathbf{X}) \quad \mathbf{e}_{x} \\
& \left.\mathbf{e}_{2}(\mathbf{X}) \quad \frac{\mathbf{e}_{N} \times \mathbf{e}_{X}}{\left|\mathbf{e}_{N} \times \mathbf{e}_{X}\right|}\right\} \text { basis vectors for the space-fixed coordinate system } \\
& \mathbf{e}_{3}(\mathbf{X}) \quad \mathbf{e}_{1} \times \mathbf{e}_{2} \\
& \left.\mathbf{e}_{1}^{\prime}(T) \quad \mathbf{e}_{2}=\frac{\mathbf{e}_{N} \times \mathbf{e}_{X}}{\left|\mathbf{e}_{N} \times \mathbf{e}_{x}\right|} \right\rvert\, \\
& \left.\mathbf{e}_{2}^{\prime}(T) \quad \mathbf{e}_{Y}=\mathbf{e}_{1} \times \mathbf{e}_{3}^{\prime}\right\} \text { basis vectors for the spacecraft-fixed coordinate system } \\
& \mathbf{e}_{3}^{\prime}(T \\
& \mathbf{e}_{x} \\
& e_{k} \quad \text { eccentricity of the orbit of the } k \text { th asteroid } \\
& \mathbf{e}_{*} \text { unit vector in the direction of ecliptic North } \\
& \mathbf{e}_{\uparrow} \text { unit vector in the direction of the vernal equinox } \\
& \text { e. unit vector equal to } \mathbf{e}_{N} \times \mathbf{e}_{\text {P }} \\
& \mathbf{e}_{x} \quad \text { unit vector in the direction of } \mathbf{X} \\
& \mathbf{e}_{Y} \quad \text { unit vector in the direction of } \mathbf{Y} \\
& F_{a} \quad \text { failure; a spacecraft state } \\
& F, F^{\prime} \quad \text { meteoroid flux (meteoroids } \mathrm{m}^{-2} \mathrm{~s}^{-1} \text {) } \\
& F_{j}(T) \quad \text { effective meteoroid flux on the } j \text { th face of a polyhedral spacecraft (destructive impacts } \\
& \mathrm{m}^{-2} \mathrm{~s}^{-1} \text {) } \\
& f \text { probability of discovery of an asteroid } \\
& f_{j}=\int_{T_{0}}^{T_{j}} F_{j}(T) d T \quad \begin{array}{l}
\text { expected number of penetrating meteoroid impacts } / \mathrm{m}^{2} \text { on the } j \text { th face of a polyhedral } \\
\text { spacecraft; integrated flux }
\end{array} \\
& f_{j}^{*}=\int_{T_{0}}^{T_{s}} F_{j}^{*}(T) d T \quad \begin{array}{l}
\text { expected number of penetrating meteoroid impacts } / \mathrm{m}^{2} \text { on the } j \text { th face of the standard } \\
\text { spacecraft; integrated flux for standard spacecraft }
\end{array} \\
& G_{k} \quad \text { absolute magnitude of the } k \text { th asteroid } \\
& G_{0} \quad \text { reference meteoroid absolute magnitude }\left(G_{0}=13.6\right) \\
& G\left(p_{0}, a\right) \quad p_{0}-5 \log _{10}[a(a-1)], a \text {, in AU }
\end{aligned}
$$

Nomenclature (contd)

```
            H(x) the unit step function; H(x)=0 for }x<0,1/2\mathrm{ for }x=0,1\mathrm{ for }x>
            h(M) Brinell hardness of material M
    ht =h harget Brinell hardness
    I a particular value that i can assume
    i inclination to the ecliptic of spacecraft orbit
    i
    J Jacobian \partial (M,\omega,\Omega)/\partial (r,\lambda,\Lambda)
K=\GammaM}\mp@subsup{M}{\odot}{}\quad\mathrm{ gravitational field constant of the sun
    k
            k a number ranging from 1 to 1500, used to label asteroid and meteoroid-swarm
            properties
            l a length parameter associated with a spacecraft
            l* l for standard spacecraft
    ln}(x)\quad\mathrm{ natural logarithm
    log}(x)\quad10\mathrm{ -based logarithm
            M set of meteoroid types
            M material
            M' meteroid material; iron
            M(T) mean anomaly of the spacecraft at time T
            M'(\mu) material composition of meteoroid of type }
            M(\alpha) material composition of spacecraft surface element \alpha
            M
            M
            M\odot mass of the sun = 1.989 }\times1\mp@subsup{0}{}{33}\textrm{g
                            m(T) spacecraft orientation matrix at time T; rotation matrix which converts a vector from
                            spacecraft-fixed coordinates to space-fixed coordinates. Example: n ( },,T)=\mathbf{n}(\alpha)冈M(T
m}\mp@subsup{m}{}{-1}(T) rotation matrix which converts a vector to spacecraft-fixed coordinates from space-
            fixed coordinates. Example: n(\alpha)=\mathbf{n}(\alpha,T)<\mp@subsup{m}{}{-1}(T)
            m(\mu) mass of meteoroid of type }
            morerence meteoroid mass = 2.56 < 1018 g (absolute magnitude 13.6)
            N
            N
                    N
```


Nomenclature (contd)

$$
\begin{aligned}
& N_{1}^{\prime}(m) \quad \frac{d N_{1}}{d m} \\
& N_{2}(r) \quad \text { number of meteoroids of radius } \geq r \\
& N_{2}^{\prime}(r) \quad d N_{2}(r) / d r \\
& N_{3}(G) \quad \text { the number of meteoroids with absolute magnitude } \leq G \\
& N_{3}(G, a) \quad \text { number of meteoroids with absolute magnitude } \leq G \text { and semi-major axis } \geq a \\
& N_{3}^{\prime}(G, a) \quad \partial N_{3}(G, a) / \partial a \\
& N_{\star}\left(p_{0}\right) \quad \text { number of meteoroids with mean opposition magnitude } \leq p_{0} \\
& N_{j}^{\prime} \quad \text { any vector parallel to } \mathbf{n}_{j} \text {, that is } \mathbf{N}_{j}^{\prime}=c \mathbf{n}_{j} \text { where } c>0 \\
& \mathbf{n}(\alpha, T) \quad \text { outwardly directed unit vector normal to the spacecraft surface element } \alpha \text {, at time } T \text {, } \\
& \text { in space-fixed coordinates } \\
& \mathbf{n}=\mathbf{n}(\alpha) \quad \text { outwardly directed unit vector normal to spacecraft surface element } \alpha \text {, in spacecraft- } \\
& \text { fixed coordinates } \\
& \mathbf{n}_{j} \quad \text { outwardly directed unit vector normal to the } j \text { th face of a polyhedral spacecraft, in } \\
& \text { spacecraft-fixed coordinates } \\
& P(0) \quad \text { probability of no meteoroid penetrations of spacecraft shield } \\
& P(S) \quad \text { the mission probability of success } \\
& P_{I}(\mathrm{~S}) \quad \text { probability that spacecraft does not fail because of meteoroid impact } \\
& P(s, T) \quad \text { spacecraft status at time } T \text {; a probability density function over } \mathrm{S} \\
& P_{s}(T) \quad \text { probability of spacecraft success through time } T \\
& P\left(F_{a}, T\right) \quad \text { probability of failure state at time } T \\
& p \text { semi-latus rectum of spacecraft orbit } p=a\left(1-e^{2}\right) \\
& p_{0} \quad G_{k}+5 \log _{10}\left[a_{k}\left(a_{k}-1\right)\right]=\text { mean asteroid magnitude at opposition } \\
& p_{1} \quad \text { meteoroid penetration depth } \\
& Q \quad\left(-\frac{3 \beta}{q}\right)^{\frac{1}{1+3 \beta}} \\
& q \quad \text { Lagrange multiplier } \\
& \text { R } \\
& R \quad \text { radius of meteoroid which just penetrates the shielding of the } j \text { th face of a polyhedral } \\
& \text { spacecraft } \\
& r(\mu) \quad \text { radius of meteoroid of type } \mu \\
& r_{0} \quad \text { reference meteoroid radius }=4.3 \mathrm{~km} \text { (absolute magnitude 13.6) } \\
& \text { S continuum of possible spacecraft states } \\
& \text { S success (so far); a spacecraft state }
\end{aligned}
$$

Nomenclature (contd)

$S_{h}(\alpha, \mathbf{Z}, T)$	spacecraft shadowing function; probability that the line drawn from the spacecraft surface element α in the direction \mathbf{Z}, at time T, will penetrate a part of the spacecraft
$\mathrm{S}_{b}(\alpha, \mathbf{Z})$	spacecraft shadowing function; probability that the line drawn from the spacecraft surface element α in the direction \mathbf{Z} will penetrate a part of the spacecraft
$S_{h}(j, \mathbf{Z})$	polyhedral spacecraft shadowing function; probability that the line drawn from the j th face in the direction \mathbf{Z} will penetrate a part of the spacecraft
$\underline{S t}(\alpha)$	set of structural properties of the spacecraft surface at α
$\underline{S t}{ }^{\prime}(\mu)$	set of structural properties of meteoroids of type μ
s, s^{\prime}	spacecraft states; elements of \underline{S}
T	time
T	the time at which the spacecraft mission starts
T_{t}	the time the spacecraft mission ends
T_{P}	time of perihelion passage of spacecraft in its orbit
$t=\frac{W_{s}}{\rho_{s} A_{s}}$	the average thickness of the spacecraft surface
$t(\alpha)$	thickness of spacecraft surface element α
t_{c}	thickness of plate required to stop projectile
t_{j}	thickness of j th face of polyhedral spacecraft
t_{j}^{*}	t_{j} for standard spacecraft
U	a three-dimensional vector giving the velocity of a meteoroid
$\mathbf{U}_{k}^{(l, m)}(\mathbf{X})$	the four ($l, m=1,2$) velocity functions of the k th meteoroid swarm: $\mathbf{U}_{k}^{(1,1)}(\mathbf{X})$, $\mathbf{U}_{k}^{(1,2)}(\mathbf{X}), \mathbf{U}_{k}^{(2,1)}(\mathbf{X}), \mathbf{U}_{k}^{(2,2)}(\mathbf{X})$
$U_{k, i}^{(l, m)}(\mathbf{X})=\mathbf{U}_{k}^{(l, m)}(\mathbf{X}) \cdot \mathbf{e}_{i}$	component of $\mathbf{U}_{k}^{(l, m)}(\mathbf{X})$ along \mathbf{e}_{i}
$U_{k, a}^{(l, m)}(\mathbf{X})=\left\|\mathbf{U}_{k, a}^{(l, m)}(\mathbf{X})\right\|$	azimuthal velocity functions of k th meteoroid swarm
$U_{k, r}^{(l, m)}(\mathbf{X})=\left\|\mathbf{U}_{k, r}^{(l, m)}(\mathbf{X})\right\|$	radial velocity functions of k th meteoroid swarm
$\mathbf{V}(T)$	a three-dimensional vector giving the spacecraft velocity at time T.
$V(T)=\|\mathbf{V}(T)\|$	magnitude of velocity vector \mathbf{V}
$\mathbf{V}_{a}(T)$	azimuthal velocity of spacecraft at time T; component of V perpendicular to \mathbf{X}
$V_{a}(T)=\left\|\mathbf{V}_{a}(T)\right\|$	magnitude of azimuthal velocity vector
V_{p}	projectile relative velocity normal to the surface of the target
$\mathbf{V}_{r}(T)$	radial velocity of spacecraft at time T
$V_{r}(\boldsymbol{T})=\left\|\mathbf{V}_{r}(\boldsymbol{T})\right\|$	magnitude of radial velocity at time T
W	velocity (three-dimensional vector) of a meteoroid with respect to the spacecraft
$\mathbf{W}^{\prime}=\mathbf{W} m^{-1}(T)$	velocity of meteoroid relative to the spacecraft in spacecraft-fixed coordinates
W_{j}	the mass of the j th face of a polyhedral spacecraft

Nomenclature (contd)

$W_{j}^{*} \quad W_{j}$ for standard spacecraft
$W_{s} \quad$ shielding mass of spacecraft
$W_{s}^{*} \quad W_{s}$ for standard spacecraft
$w_{k}=\frac{1}{f} \quad$ statistical weight of the k th asteroid
$\frac{\mathbf{W}}{|\mathbf{W}|}$ unit vector in direction of \mathbf{W}
$\mathbf{w}^{\prime} \quad \frac{\mathbf{W}^{\prime}}{\left|\mathbf{W}^{\prime}\right|}$ unit vector in direction of \mathbf{W}^{\prime}
X a three-dimensional vector giving the position of a point in space
$\mathbf{X}(T) \quad$ a three-dimensional vector giving the spacecraft position at time T
$X_{N} \quad$ component of \mathbf{X} in the \mathbf{e}_{N} direction
$X_{\rho} \quad$ component of \mathbf{X} in the \mathbf{e}_{\uparrow} direction
$\bar{X}_{-} \quad$ component of \mathbf{X} in the \mathbf{e}_{-}direction
$\mathbf{X}_{k}^{\prime} \quad$ modified version of \mathbf{X} used as argument of $\mathbf{U}_{k}^{(l, m)}$ in connection with $<\sigma_{k}>$
$Y \quad$ component of \mathbf{X} in the \mathbf{e}_{Y} direction; $Y=r \cos \lambda$
\mathbf{Y} projection of \mathbf{X} on the ecliptic plane
Z a three-dimensional unit vector originating at surface element α of the spacecraft

* a superscript to $A_{j}, A_{s}, F_{s}, f_{j}, \pi_{I}, v_{I}, P_{I}, W_{j}, W_{s}, t, t_{j}$, and τ_{j} referring to the standard
spacecraft
α an element of A; a spacecraft surface element
$\alpha_{c}, \alpha_{c}^{\prime}, \alpha_{c}^{\prime \prime} \quad$ constants
$\alpha_{j}=\frac{A_{j}}{l^{2}}=\frac{A_{j}^{*}}{l^{\omega^{2}}} \quad \alpha_{j}^{*}$
$\alpha_{j}^{\prime} \quad \frac{A_{j}}{A_{j}^{*}}$
$\alpha_{s}=\frac{A_{s}}{l^{2}}=\sum_{j=1}^{N_{F}} \alpha_{j} \quad \alpha_{s}^{*}$
$\alpha_{s}^{\prime} \quad \frac{A_{s}}{A_{s}^{*}}$
$\alpha(T) \quad$ angle between \mathbf{V}_{a} and \mathbf{e}_{2} at time T
$\alpha_{f_{i}}^{(l, m)}(\mathbf{X}) \quad$ angle between $\mathbf{U}_{k, a}^{(l, m)}(\mathbf{X})$ and \mathbf{e}_{2}
β the exponent in the meteoroid mass distribution law
$\Gamma \quad$ universal gravitation constant $=6.668 \times 10^{-8}$ dynes $\mathrm{cm}^{2} \mathrm{~g}^{-2}$
$\Delta T \quad$ interval between time steps
$\delta\left(s, s^{\prime}, \alpha, \mu, \mathbf{W}, T\right) \quad$ probability that the spacecraft, in state s at time T, will change to state s^{\prime} when hit on
surface α by a meteoroid of type μ moving at a relative velocity W with respect to the
spacecraft

Nomenclature (contd)

$$
\begin{aligned}
& \delta(\alpha, \mu, \mathbf{W}, T) \quad \text { probability that the spacecraft fails at time } T \text { when hit on surface } \alpha \text { by a meteoroid of } \\
& \text { type } \mu \text { moving at relative velocity } \mathbf{W} \text { with respect to the spacecraft } \\
& \delta\left(\alpha, \mu, \mathbf{W}^{\prime}\right) \\
& \delta_{j}\left(\mu, \mathbf{W}^{\prime}\right) \\
& \text { probability the spacecraft fails when hit on surface } \alpha \text { by a meteoroid of type } \mu \text { moving } \\
& \text { at relative velocity } W^{\prime} \text { with respect to the spacecraft } \\
& \text { probability the polyhedral spacecraft fails when hit on surface } j \text { by a meteoroid of } \\
& \text { type } \mu \text { moving at relative velocity } \mathbf{W}^{\prime} \text { with respect to the spacecraft } \\
& \delta_{i j} \quad \begin{cases}1 & \text { for } i=j \\
0 & \text { for } i \neq j\end{cases} \\
& \varepsilon_{r} \\
& \left.\begin{array}{l}
\varepsilon_{\lambda} \\
\varepsilon_{\Lambda}
\end{array} \quad\right\} \text { averaging parameters: } \underset{\varepsilon_{r}, \varepsilon_{\lambda} \rightarrow 0}{\operatorname{limit}_{i}}\left\langle\sigma_{k}\right\rangle(r, \lambda, \Lambda)=\sigma_{k}(r, \lambda, \Lambda) \\
& \zeta(m, \mathbf{X}), \zeta(m) \quad \text { meteoroid mass distribution functions } \\
& \eta(T) \quad \text { true anomaly of spacecraft at time } T \\
& \theta \text { argument of the latitude (angle measured at the sun from the ascending node of the } \\
& \text { meteoroid orbit plane to the spacecraft) } \\
& \theta^{\prime} \quad \text { angle between } \mathbf{V} \text { and } \mathbf{V}_{a} \\
& \Lambda, \Lambda(\mathbf{X}), \Lambda(T) \quad \text { ecliptic longitude of spacecraft } \\
& \lambda, \lambda(\mathbf{X}) \quad \text { ecliptic latitude of spacecraft } \\
& \mu \quad \text { an element of } \underline{M} \text {; a meteoroid type } \\
& \mu_{s} \\
& \text { mean motion in the spacecraft orbit; } \mu_{s}=\left(\frac{\Gamma M_{\odot}}{a^{3}}\right)^{1 / 2} \\
& \int_{T_{0}}^{T_{t}} \pi_{i}(T) d T=i \text { h partial failure rate integral }
\end{aligned}
$$

Nomenclature (contd)

$$
\begin{aligned}
& \rho_{k}^{*}(\lambda) \quad \sin ^{-1}\left(\frac{\sin \lambda}{\sin i_{k}}\right) \\
& \rho_{p} \quad \text { density of projectile } \\
& \rho_{s} \text { density of the spacecraft surface material, taken as uniform in composition } \\
& \rho_{t} \quad \text { target density } \\
& \sigma(\mathbf{X}) \quad \text { number of asteroidal meteoroids of mass } \supseteq m_{0} \text { per unit volume at } \mathbf{X} \\
& \sigma_{k}, \sigma_{k}(\mathbf{X}), \sigma_{k}(r, \lambda, \Lambda) \quad \text { number of meteoroids per unit volume at } \mathbf{X} \text {, or at }(r, \lambda, \Lambda) \text {, the meteoroids having } \\
& \text { mass } \geqslant m_{0} \text { and coming from the } k \text { th swarm } \\
& <\sigma_{k}>(r, \lambda, \Lambda) \quad \text { averaged version of } \sigma_{k}(r, \lambda, \Lambda) \text {, used to avoid singularities } \\
& \sigma_{k}^{*}(r) \quad E_{k}(r)-e_{k} \sin E_{k}(r) \\
& \tau_{j} \quad \frac{t_{j}}{t} \\
& \tau_{j}^{*} \quad \frac{t_{j}^{*}}{t^{*}} \\
& \tau_{j}^{\prime} \quad \frac{t_{j}}{t_{j}^{*}} \\
& \tau_{j}^{+} \quad \frac{t_{j}^{+}}{t} \text { optimal pattern of thicknesses } \tau_{j} \\
& \uparrow \quad \text { vernal equinox } \\
& \Phi \quad \alpha_{c}^{\prime \prime} m^{-\beta}=\text { the total number of asteroidal meteoroids with mass } \supseteq m \\
& \psi(\mu, \mathbf{X}, \mathbf{U}, T) d \mu d^{3} \mathbf{X} d^{3} \mathbf{U} \\
& =\psi(\mu, \mathbf{X}, \mathbf{U}) d \mu d^{3} \mathbf{X} d^{3} \mathbf{U} \\
& \psi(m, \mathbf{X}, \mathbf{U}) d m d^{3} \mathbf{X} d^{3} \mathbf{U} \\
& \text { the probability that a meteoroid of type } \mu \text { will pass through position } \mathbf{X} \text { with velocity } \\
& \mathbf{U} \text { at time } T \text { with tolerances } d \mu, d^{3} \mathbf{X} \text {, and } d^{3} \mathbf{U} \text { in meteoroid type, position, and velocity } \\
& \text { the probability that an iron meteoroid of mass } m \text { will pass through position } \mathbf{X} \text { with } \\
& \text { velocity } \mathbf{U} \text { at time } T \text { with tolerances } d m, d^{3} \mathbf{X} \text {, and } d^{3} \mathbf{U} \text { in meteoroid mass, position, and } \\
& \text { velocity } \\
& \Omega \quad \text { longitude of the ascending node of spacecraft orbit } \\
& \Omega^{\prime} \quad \text { the surface of the unit sphere } \\
& \omega \quad \text { argument of perihelion of spacecraft orbit }
\end{aligned}
$$

References

1. Volkoff, J. J., Protection Requirements for the Resistance of Meteoroid Penetration Damage of Interplanetary Spacecraft Systems, Technical Report 32-410, Jet Propulsion Laboratory, Pasadena, California, July 1, 1964.
2. Narin, F., The Accessible Regions Method of Energy and Flight Time Analysis for One-Way Ballistic Interplanetary Missions, Report T-6, I.I.T. Research Institute, Chicago, Illinois, June 22, 1964.
3. Friedlander, A. L., and Vickers, R. S., A Survey of Missions to the Asteroids, Report M-3, I.I.T. Research Institute, Chicago, Illinois.
4. Chestek, J. H., Advanced Pioneer: Synthesis of System Concepts for a Mission to 10 A.U., American Astronautical Society Preprint 65-36, Symposium on Unmanned Exploration of the Solar System, Denver, Colorado, February 8-10, 1965.
5. Narin, F., Spatial Distribution of the Known Asteroids, Report T-9, I.I.T. Research Institute, Chicago, Illinois, April 1, 1965.
6. Narin, F., "Spatial Distribution and Motion of the Known Asteroids," AIAA Paper No. 66-149, AIAA Third Aerospace Sciences Meeting, New York, N.Y., January 1966.
7. Herrman, W., and Jones, A. H., "Correlation of Hypervelocity Impact Data." Proceedings of the Fifth Symposium on Hypervelocity Impact, Vol. 1, Part 2, pp. 389-438, April 1962.
8. Bruce, E. P., "Review and Analysis of High Velocity Impact Data," Proceedings of the Fifth Symposium on Hypervelocity Impact, Vol. 1, Part 2, pp. 439-474, April 1962.
9. Hawkins, G. S., Radio Meteor Proiect, Report Ijo. 3, Harvard College Observatory, Smithsonian Astrophysical Observatory, Cambridge, Mass., August 1963.
10. Anders, E., "Fragmentation History of Asteroids," Icarus, Vol. 4, pp. 398-408, 1965.
11. Chebotarev, B., Ephemerides of Minor Planets, Institute of Theoretical Astronomy, Leningrad, USSR, 1966.
12. Cole, D. M., and Cox, D. W., Islands in Space; The Challenge of the Planetoids, Chilton Books, Philadelphia and New York, 1964.
13. Kuiper, G. P., et al, "Survey of the Asteroids," Astrophys. J. Suppl. Ser., Vol. 3, page 289, 1958.
14. Ehricke, K. A., Space Flight, Vol. I, Environment and Celestial Mechanics, D. Van Nostrand Co., 1960.
15. Handbook of Chemistry and Physics, Forty-Second Edition, p. 356.
16. Piotrowski, S. L., "The Collisions of Asteroids," Astron. J., Vol. 57, pp. 23-24, 1952.
17. Kiang, T., "Asteroid Counts and Their Reduction," Monthly Notices of the Royal Astronomical Society, Vol. 123, page 509, 1962.

References (contd)

18. Allen, C. W., Astrophysical Quantities, University of London, Athlone Press, 2nd Edition, 1963.
19. Hartmann, W. K., "Secular Changes in Meteoritic Flux through the History of the Solar System," Icarus, Vol. 4, pp. 207-213, 1965.
20. Sokolnikoff, I. S. and E. S., Higher Mathematics for Engineers and Physicists, McGraw Hill Co., 1941.

[^0]: ${ }^{1}$ Anders obtained this value from "recent unpublished work by C. J. and I. Van Houten, based on data for 2179 asteroids."

[^1]: $\overline{\text { Note that } T_{f}=T_{0}}+N_{T} \Delta T$.

[^2]: ${ }^{3}$ Denotes a number of cards.
 ${ }^{4}$ Denotes the start of, and continuation of, a number of cards in the series.

[^3]: ${ }^{6}$ Section VI of this same Appendix G presents an original sample problem punched output for comparison.

